
Adverse drug reactions (ADRs) endanger patients’ health and pose a challenge to drug 
development and medical care. Predicting ADRs still fails in many cases due to their idio-
syncrasy and limited assay or cross-species translatability. Findings from diverse sources 
need to be contextualised with individual patient conditions, e.g., diseases, genotypes, 
or co-medications, to enable a systemic understanding and reliable predictions of ADRs. 
However, experiments mimicking realistic patient scenarios are often expensive, infeasi-
ble, and insufficient. Here, mechanistic in silico models have emerged as a promising 
and cost-effective alternative to overcome the imbalance between the lack of viable and 
sound model systems and the necessity to predict ADRs effectively.
In this work, computational modelling was applied to identify drugs with a high risk 
of inducing hepatic ADRs as well as patients prone to experience such. Predisposing 
patient factors associated with drug toxicity were considered throughout the studies to 
account for the idiosyncrasy of ADRs. A model of bile acid circulation was developed 
to investigate drug-induced cholestasis by coupling it to a drug-specific whole-body 
physiologically-based pharmacokinetic model. Through contextualisation of physiologi-
cal and pharmacokinetic data, the model allowed the simulation of bile acid levels and 
confirmed cholestasis susceptibility in hereditarily predisposed patients during cyclospo-
rine A treatment. Additional integration of time-resolved in vitro expression data enab-
led a systematic categorisation of the cholestasis risk of ten known hepatotoxicants as 
a reference dataset. The framework for benchmarking drugs against this dataset could 
support identifying drug-induced cholestasis risk of drugs during their development. 
Computational modelling was further utilised to guide a clinical test strategy striving for 
personalised treatment decisions by investigating the metabolic phenotype of a patient. 
Simulations of virtual populations permitted differentiation between biometric and me-
tabolic contributions to drug exposure, and recommendations for the test strategy were 
derived to support optimal study design.
The presented approaches support the early identification of ADRs during drug develop-
ment as well as in routine health care. By elucidating the link between individual patient 
factors and ADRs, this work can be employed to increase patients’ safety and optimise 
drug development in the future.
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Abstract  

Adverse drug reactions endanger patients’ health and pose a considerable challenge to drug 
development and medical care. Despite a variety of approaches ranging from in silico up to clinical 
studies, predicting drug toxicity still fails in many cases due to limited inter-assay or cross-species 
translatability and the idiosyncrasy of many drug effects. Thus, findings from diverse sources, such as 
in vitro assays or animal models, need to be jointly analysed and contextualised with individual patient 
conditions, e.g., diseases, specific genotypes, or co-medications. Thereby, a systemic understanding 
and reliable predictions of adverse reaction risks become possible. However, experiments mimicking 
realistic patient scenarios are frequently expensive, infeasible, and insufficient. Therefore, integrating 
data from different levels into mechanistic in silico models has emerged as a promising and cost-
effective alternative to overcome the imbalance between the lack of viable and sound models and the 
necessity to predict adverse drug reactions effectively.  
In this work, computational modelling was applied to identify drugs with a high risk of inducing hepatic 
adverse drug reactions as well as patients prone to experience such. Predisposing patient factors 
associated with drug toxicity were considered throughout the studies to account for the idiosyncrasy 
of adverse drug reactions. A model of bile acid circulation was developed to investigate drug-induced 
cholestasis by coupling it to a drug-specific whole-body physiologically-based pharmacokinetic model. 
Through contextualisation of physiological knowledge, pharmacokinetic data, genotype, and in vitro 
inhibition data, the model allowed the simulation of bile acid levels in healthy individuals and 
confirmed cholestasis susceptibility for familial cholestasis genotypes during cyclosporine A 
treatment. The further integration of time-resolved expression data from a drug-treated in vitro assay 
into the model enabled a systematic categorisation of the cholestasis risk of several hepatotoxic drugs. 
By providing a framework to benchmark potentially cholestatic drugs against a reference dataset of 
ten drugs, this approach could support the identification of drug-induced cholestasis in drug 
development in the future. Finally, to assist patient safety in clinical care, computational modelling 
was utilised to guide a clinical test strategy striving for a personalised treatment decision by 
investigating the individual metabolic phenotype of a patient. The simulations of virtual populations 
permitted to differentiate between biometric and metabolic contributions to drug exposure. 
Subsequently, recommendations for the test strategy were derived to support optimal study design 
in terms of sampling time points or selection of compounds.  
The presented approaches support the early identification of adverse drug reactions during drug 
development as well as in routine health care. Thus, by elucidating the link between individual patient 
factors and adverse drug reactions, this work can be employed to increase patients’ safety and 
optimise drug development in the future.
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Zusammenfassung 

Nebenwirkungen von Medikamenten bedrohen nicht nur Patienten und deren Gesundheit, sondern 
stellen auch die Arzneimittelentwicklung sowie den klinischen Alltag vor Herausforderungen. Trotz 
einer Bandbreite an Ansätzen, eine toxische Wirkung von Medikamenten vorherzusagen, ist eine 
solche Bewertung bisher nicht verlässlich möglich – zumeist auf Grund der begrenzten Genauigkeit in 
der Erkenntnisübertragung zwischen in vitro oder Tierversuchen und Menschen. Eine integrative 
Analyse von Ergebnissen aus der in silico, in vitro und in vivo Forschung, vereint mit individuellen 
Patientenfaktoren, wie Genotyp oder Komedikation, ist notwendig, um Arzneimittelnebenwirkungen 
verlässlich zu prädizieren. Jedoch erweisen sich Experimente, die ein realistisches Patientenszenario 
widerspiegeln, als teuer, aufwendig und oft unzureichend. Stattdessen stellen sich mechanistische 
Computermodelle, die Daten verschiedener experimenteller Level integrieren können, als 
kosteneffiziente Alternative heraus, um die Kluft zwischen fehlenden, umsetzbaren Modellen und der 
Notwendigkeit einer frühzeitigen, verlässlichen Vorhersage zu überbrücken. 
Im Rahmen dieser Arbeit wurden rechnergestützte Modelle entwickelt, welche die Identifikation von 
Medikamenten erlauben, die in Verbindung mit patientenspezifischen Faktoren ein hohes Risiko 
bergen, leberschädigende Nebenwirkungen zu verursachen. In diesem Sinne wurde ein Modell 
entwickelt, das die Zirkulation von Gallensäuren im Körper beschreibt und, durch Kopplung mit einem 
weiteren medikamentenspezifischen Modell, das Risiko einer medikamenteninduzierten Cholestase 
untersucht. Durch die Kontextualisierung von physiologischem Wissen, pharmakokinetischen Daten, 
Genotyp und in vitro gemessenen Inhibitionsparametern war es möglich, Gallensäurelevel unter 
gesunden Bedingungen zu simulieren und die Cholestaseprädisposition von Patienten mit familiärer 
Cholestase während einer Cyclosporine A-behandlung zu bestätigen. Des Weiteren wurden 
zeitaufgelöste Expressionsdaten – ermittelt in einem medikamenten-behandelten in vitro Experiment, 
in das Modell integriert, um das Cholestaserisiko verschiedener bekannter lebertoxischen Substanzen 
zu kategorisieren. Das Ergebnis erlaubt einen quantitativen Vergleich des cholestatischen Potenzials 
von anderen Medikamenten in Relation zu den zehn kategorisierten Referenzsubstanzen. Um ferner 
personalisierte Medikationsentscheidungen im klinischen Alltag zu unterstützen, wurden 
Computermodelle entwickelt, mit deren Hilfe ein metabolischer Phaenotypentest untersucht wurde. 
Hierbei konnten Simulationen virtueller Populationen helfen, zwischen biometrischen und 
metabolischen Effekten auf eine Medikamentenexposition zu differenzieren und Empfehlungen für 
eine Teststrategie in Bezug auf die Auswahl geeigneter Testzeitpunkte und Testmoleküle 
auszusprechen. 
Zusammenfassend zielen die präsentierten Ansätze darauf ab, toxische Arzneimittelwirkungen 
vorherzusagen und zu vermeiden, sei es im Rahmen der Arzneimittelforschung oder der klinischen 
Versorgung. Durch die Beleuchtung des Zusammenspiels individueller Patientenfaktoren und 
potenzieller Nebenwirkungen von Medikamenten eignen sich diese Arbeiten, um zukünftig die 
Patientensicherheit zu erhöhen und die Arzneimittelentwicklung zu optimieren.
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UGT ................. UDP-glucuronosyltransferase 
UM .................. ultra-rapid metaboliser 
Vd .................... volume of distribution 
vmax .................. maximum reaction velocity 
VPA ................. valproic acid 
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General Introduction  

Pharmaceutical drugs are essential for modern medical care, being used as sole agents or coadjuvant 
therapy in the treatment and prevention of most human diseases. However, despite their benefits, 
drugs carry the potential to induce toxic side effects. Such adverse drug reactions (ADRs) can be fatal 
and, therefore, require a thorough analysis prior to drug administration to patients. Approximately 5-
10 % of hospitalised patients experience at least one ADR associated with their hospitalisation [1]. This 
does not include accidental or intentional overdoses but rather the side effects related to the 
therapeutic dosing according to the drug label. Thus, the threat posed to patients’ health, along with 
the monetary pressure on the healthcare system and drug developers, render ADRs a research area 
of high value to the medical community. 
ADRs can affect various organ systems in the body, such as the central nervous system and the 
immune system, or single organs, e.g., the heart or the liver. Common ADRs are diarrhoea, allergic 
reactions, and dizziness, depending on the affected system [2]. The symptoms of ADRs can range from 
elevated biomarkers in plasma with only minor signs of illness up to acute organ failure with possibly 
fatal consequences. Since the liver is the primary site of detoxification in the body, the chance of 
experiencing enlarged exposure to toxic substances, such as a drug or its metabolites, is substantially 
higher in the liver, making it a high-risk organ for ADRs [3]. ADRs in the liver show a vast spectrum of 
injuries such as cholestasis (perturbation of bile flow), steatosis (accumulation of fat), fibrosis and 
cirrhosis (tissue scarring), liver failure, and hepatic cancer [4, 5]. Thus, due to the incidence and 
potentially high severity of ADRs, substantial efforts are made during drug development and patient 
care to prevent them. 
The prediction and prevention of ADRs is a key effort in the pharmaceutical industry and clinical care. 
The different categories of ADRs, intrinsic or idiosyncratic, directly impact the chance of successful 
prediction. Intrinsic ADRs are dose-related and can be identified in the late stages of drug 
development, often leading to the discontinuation of the development program of the respective 
compound. With the substantial attrition rates entailing a significant subsequent depreciation of 
financial investments, dose-related ADRs constitute a high economic burden to the industry [6]. 
Idiosyncratic ADRs are not dose-related but rather patient-specific, posing an intricate problem to 
drug development and a direct danger to patients. Since the underlying mechanisms for idiosyncratic 
ADRs are often unclear, and their incidence rates are frequently too low to be discovered in clinical 
studies, their prediction is very difficult. Although idiosyncratic events can be related to predisposing 
patient-specific factors such as metabolic phenotype, co-medication, or state of the immune system, 
they mostly become apparent only after drug launching. The detection of an ADR in the post-
marketing phase may lead to additional restrictions on the drug’s usage or even market withdrawal, 
implying fewer benefits for patients as well as the marketing company [7]. Hence, the early 
identification or prediction of idiosyncratic ADR risks and their underlying mechanism is as important 
as predicting intrinsic ADR risks but much more complex.  
The identification of the underlying mechanisms of ADRs requires two main contributors to be 
present: overall systemic knowledge and patient-specific considerations. On one hand, a systemic 
approach comprising the whole-body perspective with the interaction of several organs down to the 
cellular level is necessary to understand the complex interplay and reactions of a body to a drug. This 
entails the understanding of the drug-organism interactions at different levels, including 
comprehensive physiological processes, in vitro knowledge of metabolism and drug effects, and 
detailed information on the substance’s chemical and pharmacological properties. On the other hand, 
the effect of patient-specific factors on the drug-organism interactions, e.g., due to metabolic capacity 
or diseases, needs to be unravelled to identify those patients who are at particular risk of experiencing 
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toxic effects. The knowledge of both aspects must be combined in an integrative model that generates 
a quantifiable biomarker indicating an ADR risk [8]. Ideally, such a biomarker would be non- or 
minimally invasively accessible in the clinical routine, e.g., by blood samples, and would allow 
identifying patients on the bedside predisposed to an ADR when administering a specific drug. 
Model-based approaches and studies addressing the identification of ADRs are deployed on several 
levels of pharmaceutical development programmes. The most reliable ADR studies are in vivo clinical 
trials or even post-marketing pharmacovigilance records since they are conducted in the target 
species and, thus, cannot suffer from translational biases. However, these studies are also the most 
expensive ones, not only with respect to patient safety but also in terms of financial expenses for the 
development process. Due to the post hoc nature of pharmacovigilance reports, they are not suited 
for predictions before launching a drug. However, they may still help prevent further harm to patients 
by investigating the ADR potential and the subsequent labelling or market withdrawal of the drug [9]. 
 
Preferably, the ADR risk should be detected before a drug enters the market or even the clinical phase 
of development. During preclinical testing, animal models can be used to identify harmful drugs, but 
since translation to humans is not straightforward, their reliability is limited [10]. In vitro models with 
human cell cultures like Hep3G sandwich or spheroids are good surrogates to help qualify or quantify 
the ADR potential in the human system. Unfortunately, in vitro cell cultures can be biased because of 
the lack of the proper physiological environment and systemic influence, e.g., the pharmacodynamic 
adaptation of other organs or co-factor supply [11]. In addition to wet-lab experiments, in silico 
approaches have been used to establish quantitative structure-activity relationship (QSAR) models, 
which can be applied to predict a drug’s interaction with a protein based on chemical properties [12]. 
The advantage of in silico models is that they are cost-efficient since they do not involve living animals 
or cells, which are expensive to acquire, keep and analyse. QSAR results, though, are often imprecise 
and may rather serve as rough guidance [13, 14]. However, all these approaches, i.e., in vitro, 
preclinical, and in silico, produce valuable pieces of information that help fill specific knowledge gaps 
and that, once consolidated in a bigger picture, may help better predict ADR risks in humans. 
Computational models such as physiologically-based pharmacokinetic (PBPK) or Quantitative Systems 
Pharmacology (QSP) models are suitable tools for contextualising such manifold information by 
combining models focusing on single aspects, like QSAR or in vitro metabolism and effect models, to 
comprising models. The general approach of QSP and (PB)PK- pharmacodynamic models is to 
mathematically describe the drug exposure in the body or relate this exposure to drug effects 
following the principle of a dose-response relationship. The body drug exposure, which is key for the 
prediction of ADRs, is governed by the drug’s pharmacokinetics, comprising the processes of 
absorption, distribution, metabolism, and excretion (ADME). These ADME processes can be modelled 
with PBPK models, which are a mechanistic description of a drug’s distribution in the body, 
incorporating physiological and anatomical information, such as organ volumes or blood flow rates, 
as well as compound-specific information such as physico-chemical and biochemical properties. 
Metabolic processes can be informed by in vitro measurements or QSAR predictions and validated by 
(pre-)clinical PK data. By their mechanistic nature, PBPK models are well-suited to assess drug 
interactions [15] or to test hypotheses on the mechanistic processes underlying observed phenomena 
[16].  
While PK describes the effect that the body has on the drug, pharmacodynamics (PD) describes the 
effects of a drug on the body or on its specific target, e.g., a receptor [17]. PD models translate a drug 
concentration to a quantifiable effect, for example, the percentage of surviving tumour cells after 
exposure to a specific drug concentration; thus, the concentration of the drug which reaches the 
target site needs to be known to quantify the drug action after drug administration accurately. 
However, measurements of drug concentrations on the site of action often imply invasive sampling 
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approaches that are, in most cases, unethical to perform in humans. An alternative to direct drug 
concentration measurements is the use of computational models to estimate drug concentrations in 
tissues which can subsequently be provided as an input for effect models. Such a prediction of time-
drug concentration profiles for different organs can be accomplished by PBPK models, which have 
already been integrated as part of the drug-development process [18, 19]. Apart from describing drug 
PK, PBPK models can also be used to represent endogenous physiological molecules like glucose, 
insulin, or bile acids and their interplay on the whole-body level. By coupling them to a drug-specific 
PBPK model, endogenous models can function as the PD part in the resulting QSP model [20]. 
Computational approaches linking drug exposure to drug effects are called PK-PD models, e.g., non-
compartmental models with covariate analyses, dose-effects, signal transduction models, 
stoichiometric models, or sophisticated QSP models [21, 22]. 
PBPK or QSP models are deployed on different levels of risk assessment. The integration of different 
types of data, such as a reasonable representation of the PK processes and detailed information about 
the treated disease and the drug effect, is necessary for accurate ADR prediction. On the drug 
development level, in vitro testing of candidate compounds can be performed in a reasonable and 
clinically relevant setup. Thus, a beforehand prediction of physiologically relevant drug exposures can 
be made using PBPK or QSP models to inform in vitro assays, yielding more meaningful results [23]. 
On the clinical level, the readout from such a model-informed in vitro assay can be incorporated with 
physiological knowledge to identify interactions with organs at risk, like the liver [24]. On the patient 
level, personalised information can be included in the model to simulate individual ADME kinetics and, 
by that, drug exposure, even in organs where physical sampling is not feasible. Such a model can be 
used to evaluate and improve a clinical study design, e.g., by the consideration of the 
pharmacogenomic phenotype [25]. 
Existing approaches for the identification of predisposed patients by assessing the metabolic 
phenotype are accompanied by several shortcomings. After administering a probe drug and 
measuring the resulting drug levels, conclusions are drawn on the individual capacity of metabolising 
enzymes by calculating metabolite ratios. However, such non-model-based approaches, e.g., for 
caffeine or dextromethorphan [26, 27], do not account for patients’ individualities. Since these 
methods are purely data-driven and not mechanistic, the true metabolic capacity and other drug-
specific influences are hard to separate, hampering the translatability of the results to different 
cohorts or drugs. Additionally, only a small subset of drug-metabolising enzymes can be tested by the 
use of a single drug, while it would be beneficial to gather information on a broad spectrum of enzymes 
when conducting such a phenotyping test. 
For the prediction of drug-induced liver injury (DILI), in silico PBPK model-based approaches trying to 
predict different types of hepatotoxicity exist [28] but are not freely available, obscuring their level of 
mechanistic detail utilized. For the prediction of drug-induced cholestasis, computational models need 
a proper representation of the endogenous bile acid (BA) metabolism but also the possibility of 
simulating drug PK on the whole-body scale. Although there are some BA models available [29], they 
neither represent the whole body nor do they focus on the prediction of DILI; thus, their integration 
into drug PK or PD models is not straightforward. Other models described BA metabolism in detail and 
were used to simulate DILIs. However, the nature of the mechanistic description of cholestasis 
development and the possibility of integrating data reflecting such an onset remains unclear [30].  
Thus, despite the existing approaches aiming to predict ADRs, freely available, tailor-made model-
based methods for risk assessment are still scarce. This work presents several integrative model-based 
approaches for risk assessment related to idiosyncratic ADRs. Besides a PBPK model-guided test 
strategy for a metabolic phenotyping test for the identification of ADR risked patients, a PBPK model 
representing the BA circulation was developed. This model was used to identify genetic 
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predispositions and drugs, potentially compromising BA metabolism and, thus, increasing the risk for 
DILI events. The outlined structure was followed:  
 

 General Introduction: Overall motivation 
 Part I: Background (Chapters 1-6) 
 Part II: Materials and methods of the research chapters (Chapters 7-10) 
 Part III: Results of the research chapters (Chapters 11, 12, and 13) followed by the  
 General Conclusion and Outlook 
 Part IV: Appendices containing additional and supportive information 

 
First, in an introduction to drug-induced toxic events, the importance of ADRs in drug development 
and clinical care is explained. A particular focus is set on drug-induced liver injuries since they are very 
frequent and were investigated in the research chapters (Chapters 11 and 12). The basics of 
pharmacokinetics, which are crucial for the identification of ADRs, are elucidated along with the 
respective modelling approaches. In particular, this part is focused on PBPK models, which are 
sophisticated tools to simulate the fate of drugs within the body and can be coupled with PD models 
to generate QSP models able to describe specific drug effects. This, in turn, is needed for the modelling 
of ADRs. Individual factors that influence the PK and PD of a drug, e.g., interindividual variability or 
pharmacogenomics, are last outlined in the background section, providing the scientific foundation 
for the following research chapters. 
The first research chapter introduces a mechanistic model describing the enterohepatic circulation of 
BA as a physiological system of bile acid homeostasis. The coupling of this physiology-based bile acid 
(PBBA) model with a drug-specific PBPK model of cyclosporine A (CsA) allowed the assessment of 
potential interactions that this drug exhibits on BA metabolism, possibly leading to an ADR. Further, 
by combining the developed model with patient-specific information on transporter proteins, the 
predisposition towards BA homeostasis disturbances of clinically known phenotypes like progressive 
familial intrahepatic cholestasis (PFIC) patients was demonstrated. The results of Chapter 11 were 
published as an original article in Frontiers of Physiology [31].  
The second systematic workflow developed in this work was the integration of in vitro expression data 
into the PBBA model in order to benchmark the cholestatic potential of drugs. Thus, Chapter 12 
focuses on the application of the developed PBBA model in the context of assessing the cholestatic 
risk of drugs by integrating in vitro expression data. The expression data were generated with a model-
based approach, aiming at replicating in-vivo-like drug exposures over 14 days of repeated 
administration in the in vitro model. This yielded a realistic representation of the effect of ten different 
drugs on liver cells. The generated time-resolved expression data was integrated into the QSP-PBBA 
model to assess changes in BA levels. This re-integration of the system's reaction by means of gene 
expression data into a PBPK model allowed for a comparative analysis of the cholestatic potential of 
the ten assessed drugs. The results of this chapter were published as an original article in Clinical 
Pharmacology & Therapeutics [32]. 
In the third research chapter (Chapter 13), the potential of PBPK model-guided metabolic phenotyping 
to support personalised medicine decisions and prevent ADRs was investigated. To establish a 
clinically applicable test for the metabolic phenotype of patients, four drug-specific PBPK models were 
built. Then, the drug PK was modelled after a single intake of an over-the-counter drug cocktail. 
Following the generation of a reference PK profile for standard patient phenotypes, deviating 
metabolisers with different enzyme activities were simulated, allowing the comparison with the 
reference PK profile. The differences in PK profiles were analysed to give recommendations for an 
optimised sampling strategy within the test. The model-based approaches established in this chapter 
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can be used to help identify individuals at risk of experiencing ADRs due to an uncommon metabolic 
capacity and may hence assist in the risk assessment with minimally invasive techniques. 
To conclude and summarize the thesis, the General Conclusion and Outlook recaps the research 
chapters and embeds the work into the current scientific context. Preceded by the bibliography used 
for this work, appendices with supplementary information on the research chapters are provided 
(Appendices A-C). 
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1 Drug-induced adverse reactions 
Adverse drug reactions (ADRs) are a huge burden to both the public health system as well as the drug-
development process. The WHO defines an ADR as a noxious and unintended response to medication. 
Triggered by extensive exposure to a drug, the coping mechanisms of the body are exhausted, and 
toxic effects can appear. At first glance, the exposure of a body to the drug is governed by the 
administered dose. However, the exposure can also be influenced by patient-specific factors like 
absorptive or metabolic capacities. Thus extensive exposure can occur after an intentional or 
unintentional overdose but also after therapeutic treatment in patients with a disadvantageous 
predisposition. A study in the UK showed that around 8.7 % of hospital admissions are related to 
adverse events, generally leading to a prolonged hospital stay and a long-term worsening of health 
state or even death with 15 % or 10 %, respectively [33]. Others report a rate of 3.5 % of ADRs as a 
cause for hospitalisation, with 10 % of hospitalised patients experiencing ADRs and 197,000 deaths in 
Europe per year [9]. Additionally to this clinical burden, expensive measures in the drug development 
process are taken to avoid such fatal consequences of drug use. 
In drug development, much effort is undertaken to find molecules that exhibit the desired therapeutic 
effect, i.e., drug efficacy. However, upon success in this matter, an enormous extent of resources is 
spent on the investigation of possible adverse drug reactions and side effects, i.e., on patient safety. 
The drug development pipeline follows a standardised workflow, starting with the identification of a 
target, choosing a lead compound that modulates this target, and eventually running a series of in 
vitro and later also in vivo tests on this compound. This in vivo testing can be further differentiated 
into a preclinical phase, involving safety testing in animals and the up-following clinical phases where 
first administration to men for proof of safety (Phase 1), proof of concept and efficacy (Phases 2&3), 
and proof of efficacy and effectiveness is demonstrated (Phase 4) (Figure 1). While the first steps in 
the drug development pipeline are undertaken in a high-throughput manner and are therefore 
comparably cheap, the later tests, especially clinical studies, are very cost-intense, and the expenses 
accumulate.  
In general, a good understanding of the pathophysiology is crucial for successful drug development 
[34]. However, only around 11 % of overall drugs from the ten biggest pharma companies between 
1991 and 2000 entered the clinical phase and were promoted to a successful launch [35]. While 
substantial progress was made in reducing program termination due to a PK-related lack of 
understanding in the last century, nowadays, safety reasons cause the majority of project shut-downs 
in preclinical (82 %) or early clinical phases (62 %) (Figure 2) [34, 36]. Although in later clinical phases, 
efficacy was the predominant reason for project closure, this can be ascribed to dose limitations 
established due to safety and related ADRs (Figure 2) [34, 37]. 
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Figure 1 Drug development pipeline, test systems, costs, and success rates. The classical drug development pipeline is divided 
into a preclinical (1-4) and a clinical (5-8) phase. While the early preclinical phases are comparably cheap, the major expenses 
are spent on the later clinical phases. Simultaneously, fewer projects progress to the next phase. Figure was adapted from [6, 
37, 38].  
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Figure 2 Reasons for failure in drug development and toxicity-related organ systems. Panel A shows the percentages of 
termination causes in different phases of drug development. In the preclinical, around half of the project terminations are 
due to safety concerns. In the clinical Phase I, both safety and efficacy cause about 40 % of terminations, while in Phase II, 
efficacy prevails. However, the safety limits in dosing might be responsible for the lacking efficacy. Panel B shows the organ 
systems involved in toxicity project termination in the preclinical phase, the clinical phases, or market withdrawal. Hepatic 
events are numerous in all three groups. Figure was adapted from [34, 39]; (Torsades were counted as cardiovascular events, 
rhabdomyolysis was counted as a musculoskeletal event.) 

There are roughly two types of ADRs. Type 1 adverse reactions are classified as an exaggeration of the 
actual effect of the drug at the target or an off-target effect. Such adverse reactions are inherent to 
the drug, directly dose-related, and mainly evoked by overdosing. These are often acute toxic events 
like an acute acetaminophen overdose. For example, while being well-tolerated in regular dosing 
ranges, an overdose of APAP leads to the accumulation of a reactive metabolite causing severe 
damage and leading to liver failure in many cases [40]. It was shown that such metabolism-related 
safety issues were related in 28 % of terminations [36]. This ADR type is most important for drugs that 
have a narrow therapeutic window which describes the range between the minimal effective and the 
maximum tolerable dose of a drug and are, therefore, often acute or sub-acute events. However, this 
kind of ADR is considered detectable in preclinical phases in in vitro toxicology screenings or animal 
dose-escalation models. A discovery of type 1 adverse effects often leads to project termination, and 
an earlier detection would save millions of dollars [6]. 
Type 2 adverse reactions are usually hard to predict since they are not obviously dose-related and 
occur less often, which makes them hard to discover in preclinical or clinical trials [34]. These adverse 
reactions are also called idiosyncratic and usually involve multiple causes, like patient-specific 
predisposing factors, or can be immune-mediated hypersensitivity, e.g., penicillins [36]. Idiosyncratic 
ADRs might be acutely induced or chronic effects after long-term treatment, e.g., hepatotoxicity of 
isoniazid or valproate [41]. The underlying mechanisms of these ADRs are usually poorly understood, 
and the majority of post-marketing restrictions by the U.S. Food and Drug Administration (FDA) have 
been due to idiosyncratic adverse reactions [42]. Studies also showed the importance of diligent 
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patient stratification to avoid potentially unnecessary withdrawals or terminations (Figure 3A). The 
central role of patient-specific conditions, especially in idiosyncratic ADR events, underlines the 
importance of a careful choice of the target patient cohort (Figure 3B). This strains not only drug 
development but also patient safety and the health system.  
While the trigger of an adverse reaction clearly is the drug, the drug reaction itself can happen in every 
system in the body. The frequently affected ones are the cardiovascular system (CVS), central nervous 
system (CNS), and liver [34]. The symptoms can cover the whole range from being asymptomatic but 
with changed lab parameters up to organ failure and death. In many cases, there is no good treatment, 
and even after treatment termination, the symptoms might persist, distressing patients and 
practitioners. Besides, recent studies showed that withdrawal after marketing is more likely to happen 
quickly in areas with well-developed pharmacovigilance and regulatory authorities. Thus, in regions 
like Africa, harmful drugs are less frequently and potentially later withdrawn [43].  
ADRs are the most frequent cause of programme termination or even withdrawal after marketing, 
severely impacting drug development. Hundreds of millions of dollars and several years of research 
are wasted in case of late programme termination [36]. For an earlier identification of the toxic 
potential of a drug, a detailed understanding of the underlying mechanisms can be investigated by in 
silico predictions in early phases, valid in vitro systems, preclinical models, or suitable biomarkers in 
the clinical phases are necessary. 

 

 
Figure 3 Importance of personalised medicine and clinical study design for drug development. Panel A shows the relation 
between the level of confidence in adequate patient selection and the respective project progression. High confidence in early 
phases leads to a high number of projects progressing in Phase 2b, while low confidence makes a project more likely to fail. 
Panel B outlines the relative importance of intrinsic drug factors and patient susceptibility in order to identify hepatotoxicity. 
The lesser extent of intrinsic toxicity in the cases of idiosyncratic and allergic events underlines the importance of diligent 
patient stratification in the clinical phases. Figure was adapted from [34, 36, 44]. 



 
Drug-induced liver injury 

31 

2 Drug-induced liver injury 
Since the liver is the site of metabolism and many drugs produce reactive metabolites, drug-induced 
liver injury (DILI) is the most frequent of the drug-induced adverse events and challenging drug 
development and clinical care [3]. DILI is one of the leading causes of acute liver failure leading to liver 
transplantation or death, and also a leading cause of drug development attrition (Figure 2) [34]. The 
incidences are low, with estimated numbers of 1-15 cases per 100,000 patients per year [45, 46], with 
12 % leading to hospitalisation and 6 % to death reported for France [46, 47]. 
However, these numbers are likely to be underreported since diagnosing DILI is not straightforward 
due to manifold presentation and a lack of adequate applicable biomarkers [48, 49]. This is particularly 
true for idiosyncratic events, which were reported to account for 1 in 1000 - 20000 cases, up to 75 % 
of which lead to death [45, 50]. Of the about 2000 cases of acute liver failure in the U.S., are about 
50 % DILI events, with 39 % related to acetaminophen and another 13 % to idiosyncratic events [51]. 
DILI is accountable for 5 % of all hospital admissions and for 50 % of acute liver failures [50]. In the 
years 1992 to 2002, 15 % of patients presenting acute liver failure and in need of liver transplantation 
were DILI patients, with almost half of all cases being due to acetaminophen, isoniazid, phenytoin, and 
valproate among the most frequent causing drugs [7]. 
DILI can roughly be separated into hepatocellular, cholestatic, or mixed type DILI, based on the R-
value, which is calculated from the ratio of blood enzyme levels of alanine aminotransferase (ALT) and 
alkaline phosphatase (AP). However, the injury pattern can resemble almost every liver disease 
ranging from only elevated liver enzymes, fatty liver, cholestasis, or hepatitis up to necrosis, acute 
liver failure, or even cancer [9, 48]. Despite the low incidences, DILI should always be suspected if an 
unexplained acute or chronic liver injury occurs and drugs or herbal supplements are used. The general 
approach of DILI diagnosis often consists only in excluding other possible diagnoses, although 
attempts for standardisation like the RUCAM have been made [52]. The RUCAM (Roussel Uclaf 
Causality Assessment Method) tries to assess the signature of a DILI event by following a diagnosing 
algorithm, including detailed patient anamnesis, the latency of onset, which can be up to weeks or 
years, and R-value [41].  
Often, the only effective treatment of a DILI event consists of cessation of drug intake [46]. To improve 
DILI discovery and, therefore, patient safety, several databases and networks have been initialised, 
like the Spanish DILI registry [53], LiverTox [54] or DILIN [55]. Such public and centralised collections 
of DILI-related information help correlate drug use with DILIs and provide a standardised data resource 
to investigate mechanisms and methods for the identification of suspected drugs or predisposing 
patient factors.  
Despite these common efforts, the mechanistic understanding is still very limited, and only a few 
biomarkers have been recently established. It was shown that high doses (> 50 mg) are more likely to 
induce hepatic adverse events [44]. Apart from the drug properties, also, patient factors play a crucial 
role in DILI, e.g., sex, age, metabolic phenotype, or diseases. However, these relationships are often 
of correlative nature without a deeper understanding of the mechanisms [56]. The same applies to 
standard liver enzymes like ALT, AP, or aspartate aminotransferase (AST), which are used as 
biomarkers to assess DILI – as well as non-drug-induced liver injuries. Those markers are released upon 
cell damage without explaining the underlying mechanisms. Thus, the standard palette of liver 
enzymes is not very specific for DILI, yet it is used for rough classification into hepatocellular, 
cholestatic, or mixed-type DILI. Recently developed biomarkers are more specific and cover mRNA 
[57], miRNA [58], or proteins like cytokeratin [40] but are not routinely applied in DILI diagnostics. 
In the drug development process, especially the idiosyncratic type of DILI is challenging to discover 
since the low incidence combined with the low number of individuals enrolled in clinical trials prevents 
a statistically significant incidence rate [40]. As of 2017, over 80 drugs have been withdrawn from the 
market with DILI concern, and over 150 are still available, labelled as potentially DILI-causing [44]. If 
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not withdrawn, many drugs carry a black box warning, e.g., valproate or isoniazid, to indicate their 
ADR potential and limit their use (Figure 4). Such warnings and withdrawals are not only a problem 
for the drug-developing industry but even more for the patients who need to renounce an otherwise 
effective drug. Hence, an early discovery would be highly beneficial to avoid the high number of DILI-
related warnings. Yet, over 900 drugs, toxins, and herbs are reported to cause liver injury, but reliable 
in vitro or animal models are still lacking due to differences in metabolism and only limited 
translatability between animals and humans [10, 48].  
Approaches to address DILI as early as possible have been made in silico and in vitro [4]. However, the 
past has shown that also low rates of elevated liver enzymes should be considered, as seen for 
troglitazone [52]. A promising approach was an imaging assay that could prove mitochondrial 
perturbation for 50-60 % of known hepatotoxic drugs, with only a very low false-positive rate [59]. 
Another study tried to predict DILI potential by in silico protein-drug interaction predictions [60]; 
however, their routine application will take some time. 
 

 
Figure 4 DILI concern of drugs. A) Drugs with DILI concern and possibly ADRs or black box warnings. The majority of drugs on 
the market have been related to DILI events. B) Drugs withdrawn from the market and DILI concern. All drugs withdrawn from 
the market had a most or less DILI-concern label. Figure was adapted from [44]. 

Recently, a roadmap for predicting DILI has been proposed [8]. This multi-layer approach identified 
three main contributors that need to be assessed, i.e., the cell systems, the phenotype, and the 
functional layer. On the cell systems level, the spectrum of different cell cultures like 2D, 3D, or even 
animal models can help to decipher the biological or toxic effects of a compound. Moreover, it is 
important to include also the phenotype of a system in terms of metabolic activity or the human 
leukocyte antigen (HLA) phenotype, which is often involved in allergic reactions. The integration of 
the phenotype allows the representation of the physiological, pharmacokinetic, and pharmaco- or 
toxicodynamic function within the test system and can be accomplished by computational models like 
physiologically-based pharmacokinetic (PBPK) or quantitative systems pharmacology (QSP) models 
(Figure 5).  
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Figure 5 DILI and suitable approaches for its prediction. DILI prediction builds on knowledge from the different pillars of the 
system, phenotype, and function level. Information on the toxic effects of the drug assessed in in vitro models, on the patient's 
specifics like underlying diseases, and on the functional system can be integrated into a PBPK model to evaluate the risk of 
DILI. Figure was adapted from [8]. 

 

3 Pharmacokinetics 
The effects of a drug, no matter if therapeutic or toxic, depend on the drug exposure in the body. The 
exposure is governed by various processes, which are summarised in pharmacokinetics (PK). Typically, 
PK is differentiated into several phases, the so-called (L)ADME phases – absorption, distribution, 
metabolisation, excretion, and, depending on the formulation of a drug, liberation (Figure 6). 
 Liberation is defined by the decay of the tablet or other not readily dissolved application forms of a 
drug. Since only the dissolved form can be absorbed by the body, this liberation phase has an influence 
on the time course of the drug concentration in the system. The absorption phase is described by the 
uptake of the drug into the body and the systemic bloodstream. It is mainly governed by the 
application route like intravenous (IV), intramuscular, subcutaneous, or oral administration (PO). 
While all drug is absorbed immediately after IV dosage by definition, a delayed and possibly 
incomplete absorption after the other administrations is expected due to slow diffusion, intestinal 
transit, and the intestinal membrane as a natural barrier towards the outside of the body.  
Upon reaching the systemic blood flow, the drug is distributed throughout the body and can reach all 
tissues and organs. Most of the distribution is determined by the passive diffusion of the drug through 
the epithelial membrane into the organs. Additionally, there are other transport mechanisms, e.g., 
receptor-mediated uptake or transport proteins like symporter, antiporter, or ABC transporters. 
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Figure 6 PK-PD concept. The PK phase is governed by the (L)ADME processes comprising liberation, absorption, distribution, 
and finally, the metabolisation or excretion of a drug. Various PK parameters can be read from the time-concentration curve 
(upper right panel). Once reaching the target, the PD describes the effect the drug exhibits on it, which can be therapeutic or 
toxic. Typical PD parameters are illustrated (lower right panel). Figure was partially adapted from [17].  

The most common administration route is PO administration, at which the drug is absorbed from the 
intestinal tract and collected by the portal vein system leading everything directly to the liver for 
detoxification. Detoxification in the liver is achieved by metabolising the xenobiotic, usually to make 
the molecule more water-soluble and, by that, prepare it for urinary excretion. There are two 
prominent types of metabolisation reactions, Phase I and Phase II reactions. Phase I reactions include 
hydrolysis, reduction, or oxidation. Most of these reactions are mediated by enzymes from the 
cytochrome P450 (CYP) superfamily, which is further categorised into families (i.e., CYP1, CYP2, CYP3, 
etc. ), their subfamilies indicated by letters (i.e., CYP1A), and their isoforms identified by subsequent 
numbers (i.e., CYP1A1). Two prominent examples are CYP3A4 and CYP2D6 catalysing about 50 % of all 
xenobiotics [61], but also other enzymes like carboxylesterases or alcohol dehydrogenases are 
representatives of Phase I enzymes. Phase II reactions, however, catalyse conjugations with, for 
example, sulfate (sulfotransferases, SULT), glucuronate (uridine diphosphate-
glucuronosyltransferase, UGT), or acetyl (N-acetyl transferase, NAT) (Figure 7). The liver is the main 
site of metabolisation, where detoxification and solubilisation of xenobiotics are performed in order 
to support its excretion from the body [17].  
Excretion means the elimination of the drug from the body by urine, faeces, or sometimes also 
breathing or sweating. For a molecule to be excreted via faeces, it needs secreting into the intestine. 
The main route for faecal excretion is the secretion from the liver into bile that is released into the 
duodenum. By intestinal transit, the molecule reaches the faeces. However, if a substance is 
reabsorbed in the intestine, so-called enterohepatic circulation (EHC) can occur. The reabsorbed drug 
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or metabolite again enters the systemic circulation and increases the exposure, and prolongs the half-
life of a drug. Furthermore, there are also active transporters located in the intestinal wall, like Poly-
glycoprotein (P-gp), that are able to re-secret molecules to the intestinal lumen entailing faecal 
excretion.  
However, the major route of excretion is renal excretion, meaning the elimination of a substance from 
the blood by the kidneys into the urine. In the kidney, two mechanisms for excretion into urine exist 
– glomerular filtration and tubular secretion. Glomerular filtration is a passive filtration of the blood 
plasma and allows small, unbound molecules to diffuse into the primary urine. In contrast, tubular 
secretion is a transport mediated by non-selective carriers in the renal tubules. It allows the secretion 
of larger and ionised molecules that would not diffuse over the membrane otherwise. Upon secretion, 
there is also tubular re-absorption of the secreted molecules possible. This is an important 
mechanism, for example, in glucose metabolism, where glucose gets filtered via glomerular filtration 
but is then reabsorbed into the venous blood by the tubules to avoid the loss of this energy-rich 
molecule. Additionally to the passive mechanisms, there are active transport proteins that clear 
compounds in a selective manner, e.g., P-gp. In kidney disease, a decreased renal function can cause 
a higher systemic exposure since less drug is cleared via the urine. Such an increased exposure can 
lead to unexpected events and ADRs and needs to be taken into account for personalised medication. 
For a mathematical description of a drug's PK, there are several established PK parameters that allow 
a comparison among different compounds (see Figure 6). The exposure is typically described by the 
area under the curve (AUC) of the time-concentration curve in plasma or tissue of interest. The 
clearance (CL) describes the elimination from the body and is given by , where  is the 
dose. A similar measure is the half-life time . It describes the time after which the drug 
concentration has decreased to 50 % of the peak and is calculated by , with  being 
the elimination rate. The peak concentration is called cmax and has the corresponding time point called 
tmax. As a surrogate for tissue permeation, the volume of distribution (Vd) is calculated as  
with  as the drug amount and  as the plasma concentration. Vd is a theoretical measure since it 
can achieve very high values beyond the actual body water volume, and a high Vd reflects high tissue 
absorption. The bioavailability (F) defines the percentage of the drug which reaches the systemic 
circulation and is thus available for fulfilling its action.  
After IV administration,  by definition, a number that might differ after parenteral 
administration due to the so-called first-pass effect. The first pass effect is induced by the physiological 
feature that from the intestinal tract absorbed substances are collected by the portal vein and directed 
to the liver, where a first-pass metabolism before reaching the systemic blood occurs. Thus, only a 
reduced amount of drug reaches the systemic circulation while a small fraction is already metabolised 
and excreted beforehand.  
An extensive first-pass effect might require a higher dose for PO compared to IV application to achieve 
the therapeutic effect of a drug. This therapeutic dose of a drug is determined to match a drug-specific 
concentration in blood or tissue that is above the minimal effectiveness but below the minimum toxic 
concentration. This range is called the therapeutic window (Figure 6). 
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Figure 7 Drug metabolism. The liver is the main site of drug metabolisation and contains a broad spectrum of enzymes. Those 
are categorised into Phase I and Phase II classes. Phase I reactions are mainly catalyzed by the over 50 members of the 
cytochrome P450 (CYP) family [61] but also carboxylesterases (CES) or flavin-containing monooxygenase (FMO). Phase II 
reactions are performed by various enzyme families like n-acetyl-transferase (NAT), UDP-glucuronosyltransferase (UGT), 
glutathione S transferase (GST), or sulfotransferase (SULT) [17].  

 

4 Pharmacogenomics 
A known cause of ADRs is a genetic predisposition, also known as pharmacogenomics. Polymorphisms 
in genes coding for metabolising enzymes can lead to a diminished or increased functionality of the 
respective enzyme. Some of the functional phenotypes can be directly deduced from their genotype, 
like in the case of the CYP2D6, where there are rapid or extensive metabolisers (EMs) who are 
considered the normal function. Due to genetic variants, there are also intermediate (IMs) and poor 
metabolisers (PMs) where the enzyme function is diminished. On the contrary, also ultra-rapid 
metabolisers (UM) are known, who have a third copy of the gene, increasing the enzyme amount. As 
a consequence, patients respond differently to a drug like codeine, which is metabolised to a certain 
extent to morphine by CYP2D6. While PMs or IMs might show a decreased response because 
morphine levels stay low, UM or EMs might experience very high levels of morphine and are at risk 
for side effects (Figure 8) [62]. 
To include pharmacogenomics in clinical care, several steps are necessary. First, the molecular 
mechanisms of the drug metabolism or the drug targeting need to be known. Moreover, the extent of 
the contribution of a specific protein to the PK or the pharmacodynamics (PD) needs to be quantified 
to estimate the relevancy of the pharmacogenomic effect. This might become especially important for 
drugs with a narrow therapeutic window where effective and toxic doses lie close together (Figure 8). 
Additionally, a designated test, e.g., sequencing, is mandatory to identify the patients at risk and to 
provide them with personalised medical care.  
Unfortunately, not all metabolic phenotypes refer directly to the genotype but are influenced by 
multiple factors like age, concurrent diseases or co-medication, or even diet. This is the case for 
CYP3A4, which is the most common drug metabolising enzyme. Its activity varies by a factor of 30 to 
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100 in patients but could not have been associated with specific alleles yet. In fact, it can be induced 
by certain drugs like rifampin or can be inhibited by dietary components like grapefruit juice, or its 
gene regulation is altered due to variation in transcription factors [63, 64].  
In general, the effects of changed enzyme activity are hard to predict due to the complexity of many 
drug metabolism and the unclear contributions of single pieces to the overall pathway. Moreover, an 
impaired function of a main metabolising enzyme can be compensated by an otherwise not pivotal 
enzyme, like in the chlorpheniramine metabolism [65]. Such examples underline the multiplicity of 
contributing factors, making it hard for the daily medical practice to consider each one by itself (Figure 
8). 
 

 
Figure 8 Influence of enzyme polymorphisms on PK and PD. Pharmacogenomic variations can lead to different phenotypes. 
Compared to the extensive metaboliser (EM) as a reference, the intermediate (IM) or poor metaboliser (PM) have one or two 
defective alleles, respectively, leading to a diminished enzyme function. Reduced enzyme function entails a reduced drug 
clearance and, thus, an increased exposure resulting in enhanced or toxic drug effects. On the contrary, ultra-rapid 
metabolisers (UM) tend to have a decreased drug effect due to their accelerated clearance induced by gene multiplications. 
Moreover, patient- and lifestyle-specific factors, such as food, co-medication, organ impairments, can influence metabolic 
activity. Figure was adapted from [17]. 

 

5 Pharmacodynamics 
In contrast to PK, PD describes the effects a drug has on the body. Pharmacodynamic considerations 
encompass, for example, the effect quality, the mechanism, the site of action, potency, and efficacy. 
While there are few drugs with a non-specific action, most drugs have a specific action and act on 
specific proteins, DNA, or lipids to exhibit their pharmacodynamical effect. Generally, it is preferable 
that drugs have selective targets with a sufficient high binding or action to ensure a specific effect and 
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avoid side effects. Possible mechanisms of action are interaction with membrane receptors, ion 
channels, gene regulation, inhibition and induction of transporters or enzymes, or even exogenous 
effects on microorganisms such as antibiotics [17]. 
The general mechanism of the PD of a drug is its interaction of the drug with a receptor. These can be 
ion channels, G-protein coupled enzyme-linked or intracellular receptors. Receptors are proteins that 
fulfil their specific action upon ligand binding. Molecules that act in the same direction as the natural 
ligand are called agonists, while those who inactivate the basal activity are called inverse agonists. If 
the receptor is blocked upon ligand binding, this molecule is an antagonist. Antagonists can be 
competitive, non-competitive, or allosteric. A possible PD effect can also be a changed gene 
expression. 
The main principle in PD is the concept of dose-response or exposure-response since the number of 
molecules that can bind to a receptor governs the strength of the response. For an objective 
description of a drug’s PD, quantitative parameters have been introduced. While efficacy describes 
the maximal effect (Emax) a drug can exhibit regardless of its given dose, potency describes the dose at 
which 50 % of the maximal efficacy is observed. By definition, a drug has an efficacy of 100 % if it is as 
efficacious as the endogenous ligand. Of course, not only the desired effect can be described by such 
a dose-response curve but also the undesired or toxic effect. This is then often referred to as 
toxicodynamics (TD).  
The second way of PD description relates to the dose and number of patients who show a response. 
The ED50 describes the dose at which 50% of the population experiences the desired effect. 
Analogously, the TD50 or LD50 describe the doses at which 50 % of the population experience toxic 
or lethal effects, respectively. From these measures, the therapeutic index (see Figure 6) can be 
derived by calculating the ratio of TD50/ED50, which gives a quantitative measurement of a drug's 
safety. 
While quantification of the dose within the dose-response relationship is straightforward, the 
quantification of the response often is not. For measuring the response or effect of a drug, suitable 
biomarkers are needed. They optimally are directly linked to the drug’s effect and robust to assess 
implicating a decisive change under drug treatment larger than the intra-or interindividual variability. 
For developing a suitable biomarker, proof of mechanism and proof of concept are needed to describe 
the effect on the target of the drug as well as the functional changes induced by it. 
Today, multimorbidity, along with polypharmacy, occurs frequently. As a result, drug-drug 
interactions (DDIs) can arise. DDIs can be beneficial, such as the co-administration of the antifungal 
itraconazole (ITZ) and the immunosuppressive cyclosporine A (CsA). By inhibiting the metabolism of 
CsA, ITZ lowers the effective dose of CsA and additionally prevents a fungal infection in the 
immunosuppressed patient [66]. The increased exposure to CsA, however, also increases the risk of 
an ADR. Around 20 % of adverse reactions are due to DDIs [17]. DDIs cause additional pressure on the 
health system the clinical care and, most importantly, can lead to permanent or fatal injury. An 
aggravating factor is that the number of co-medications of two or often even more drugs is still rising 
due to the increasing number of co-morbidities in an ageing population. DDIs can be based on both 
PK or PD interaction, and the effects can be antagonistic, additive, or synergistic. PK interactions might 
occur at every ADME phase, e.g., in the absorption or elimination due to a drug-induced shift in pH or 
transporter interactions, or at the metabolism level due to enzyme inhibition or induction, or co-factor 
depletion [17]. 
During drug development, it is virtually impossible to explore all DDIs since the combinatory 
possibilities are numerous. As clinical DDI studies are only rarely performed, the chances of 
experiencing DDIs in daily life are unclear. However, prominent DDI sites can be evaluated, e.g., 
CYP3A4 metabolism, P-gp transport, or receptor affinities, and further assessed by in silico modelling. 
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Thus, computational models can assist in the evaluation of potential DDI risks without the need for 
various clinical trials [67]. 
 

6 Computational modelling in pharmacometrics 
PK and PD, along with a quantitative analysis of a patient’s physiology and their mutual interaction, 
are summarised in the term pharmacometrics. In the scope of pharmacometrics, computational 
models can be used to simulate a drug’s PK or PD. A PK model is a mathematical description of the 
drug concentration over time in the body. There are different principles to approach mathematical PK 
modelling, e.g., non-compartmental or one-compartmental modelling up to multicompartment 
models. Non-compartmental models are descriptive data-driven and thus non-mechanistic models. 
While they might be sufficient for basic linear PK assessment, they are not suitable for describing non-
linearities or extrapolation scenarios since they do not include information on the underlying 
mechanism. Because these models solely rely on PK measurements, dense sampling is needed to 
assess PK parameters with them [68]. 
Compartmental models, in contrast, represent the system in which the drug is distributed as 
compartments, generally with two assumptions: a compartment is instantaneously well-stirred and 
kinetically homogenous. The advantage of the well-stirred compartmental view lies in a quasi-
reduction of the spatio-temporal problem of drug distribution in the body to the temporal component. 
The compartments in these models are connected to each other and have a defined in- and output 
flow. Thus, the concentration changes in every compartment can be described by ordinary differential 
equations (ODEs). Compartmental models always need multiple inputs, i.e., the representation of the 
system (organs of a body connected via blood flow) and the description of the experimental design, 
like the dose and the administration route. Such ODE-based models are appropriate for modelling 
non-linearities in PK, hypothesis testing, translation, aiding experimental design. 
To establish a suitable model for a given question, the best trade-off between complexity and 
feasibility needs to be met. Since a model will, in most cases, be a simplification of the actual 
physiological processes, the right level of detail needs to be explored. This is usually accomplished by 
an iterative model building procedure. Starting from a rather simple model, the simulation results will 
be compared to reference data to assess the model quality. When the quality is insufficient, model 
parameter values can be optimised or the incorporated processes refined.; thus, the model’s 
complexity increases stepwise to match the requisite level of detail. For (PB)PK models, the good 
general practice within this iterative approach stipulates starting with a model of IV administration, 
followed by an extension of the model for PO administration (Figure 9) [69]. 
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Figure 9 Iterative model development. The typical workflow to build a PBPK/QSP model with an appropriate level of detail to 
answer the scientific question requires gradual refinement of the model. Structural processes are built into the model, 
parameterised by in vitro measurements or fitting, and compared to experimental data. 

While there are models with only a few compartments, like one or two-compartment models, the 
spectrum goes up to whole-body PBPK models where every organ, along with sub-organ spaces, are 
represented [70]. One-compartment models are, for example, well suited for describing the drug 
concentration in plasma after IV administration since input, output, and measurement are all assumed 
to take place in one compartment. Of course, in the majority of cases, a drug not only distributes into 
one compartment but also reaches the tissues at a different rate than the administration occurs. For 
describing this behaviour, multicompartment models are needed, which have separate compartments 
for, e.g., slowly or richly perfused tissues and are able to describe a biphasic PK profile. However, it 
remains difficult to extrapolate or translate these PK models to other species since the compartments 
do not reflect actual organs or physiological quantities in contrast to PBPK models. 
 

6.1 PBPK modelling 
A more advanced type of PK models are physiologically-based PK (PBPK) models aiming for a 
physiological representation of the system of the body. The compartments of PBPK models reflect the 
organs and are connected with each other by the systemic blood flow, all of which are informed by 
physiological measurements like organ weight or blood flow rates (Figure 11). The organs are further 
subdivided into different compartments, such as plasma, red blood cells, interstitial and intracellular 
space. Between connected compartments, substance flow is modelled by passive diffusion based on 
the physico-chemical information on the drug. The majority of the parameters describing the anatomy 
or physiology of the body, for example, organ volumes, surface areas, or blood perfusion rates, are 
taken from curated data collections provided within the PBPK software. [31, 70] Furthermore, PBPK 
models incorporate partition coefficients describing the partitioning of the drug from the blood 
(plasma) into the tissue based on tissue composition and drug physico-chemical properties. Such 
partition coefficients are crucial parameters to PBPK models and are predicted by other in silico 
models usually incorporated into PBPK software (Figure 10, Figure 11) [71].  



 
Computational modelling in pharmacometrics 

41 

 
Figure 10 Input parameters for PBPK models. The input parameters for PBPK models can be separated into physiology- and 
compound-specific categories. The compound is described by its physico-chemistry, e.g., molecular weight (MW), lipophilicity, 
or solubility. To describe the physiology, organ volumes, blood flow rates, and tissue compositions are incorporated. These 
are typically already contained in the PBPK software like PK-Sim. Based on the interplay of the compound- and physiology-
specific parameters, membrane permeability, and tissue-specific partition coefficients are calculated. Additional parameters 
about metabolism or protein expression can be incorporated. Figure was adapted from [69]. 

PBPK models are also the tool of choice for predicting PK in humans without any clinical data by the 
use of partition coefficient predictions and in vitro metabolism measurements [72]. These models 
integrate different data sources like physico-chemistry data of the modelled substance, in vitro 
measurements on drug metabolism, or biometric information of the individual. Their mechanistic 
nature allows PBPK models also to extrapolate PK, e.g., to the time after the last measurement or also 
from one species to another by additionally replacing the physiological information. PBPK models 
additionally incorporate tissue-specific protein abundance based on expression data [73]. With all that 
underlying physiological information, PBPK models have been used for species extrapolation, special 
populations like paediatrics, or organ impairment due to their vast included physiological knowledge 
(Figure 12) [62, 74, 75]. 
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Figure 11 Whole-body PBPK model structure. In a whole-body PBPK model, all major organs are modelled as compartments 
connected to the systemic blood flow. Each organ has additional subcompartments representing the vascular space, including 
plasma and blood cells, an interstitial, and a cellular space. Administration primarily occurs intravenously or by ingestion via 
the stomach (bold green arrows). Arrows indicate possible compound flow via passive diffusion or active transport processes. 
Figure was adapted from [31]. 

 
Figure 12 Applications of PBPK modelling. PBPK modelling is applied for various scenarios, including in silico analysis and 
study planning for DDI or in vitro studies, dose adaption for special populations like elderly or paediatrics, personalised 
medicine, cross-species extrapolations, or PK-PD modelling with QSP approaches. Figure was adapted from [69]. 
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6.2 Population PBPK modelling 
For a true representation of a drug’s PK and, by that, also its PD, variability needs to be taken into 
account. In principle, variability can arise from different sources and might be drug-related, patient-
related, or a mixture of both. Drug-related variability, e.g., caused by irregularities in the product 
formulation behaviour, or handling, is easy to control and reduced to a minimum. The larger source 
of variability is patient-specific factors which can range from age, race, different body weight or height, 
all of which lead to a different volume of distribution or differences in organ weights. Additionally, the 
patient’s sex, differences in body composition, or variations in metabolic capacity can lead to the 
variability of PK. Even differences in absorption due to the interplay of drug dissolution and a shifted 
intestinal pH, e.g., by food consumption, can influence PK [70]. 
Such sources of variability can be integrated into a PBPK model by simulating a population comprising 
multiple slightly different individuals instead of one average individual. Multiple algorithms have been 
developed for generating such a population as Simcyp Simulator [76], P3M [77], or in PK-Sim [78]. The 
latter uses an underlying database of physiological measurements containing information about the 
correlation of age, sex, body weight, organ volumes, and blood flow rates. Based on these values, 
virtual individuals can be sampled from these distributions by defining covariates like age, sex, and 
body mass index (BMI) [78]. A subsequent simulation of the drug-specific PBPK model for all 
individuals yields a range of probable PK profiles instead of a point estimate. 
In contrast to a clinical population PK approach which allows only a posteriori observation of a priori-
defined possible confounding covariates influencing PK, and is thus accompanied by a thorough 
patient stratification, population PBPK is a more explorative approach. It can guide clinical phase I 
study design by estimating the range of PK profiles, and also special populations like children, elderly, 
or organ-impaired patients can be simulated, which has been successfully applied in the past [74]. 
Although it is limited by the incorporated mechanisms of the PBPK model itself and the variability 
information on physiologically relevant properties, population PBPK can be used for hypothesis 
development and testing, even in an a priori manner, instead of only a posteriori like in population PK.  

 

6.3 PD and QSP modelling 
To simulate desired as well as toxic effects of a drug, PD or QSP models are necessary. In contrast to 
the PK model, which describes only the effects the body has on the drug, a PD model needs to describe 
the effect of the drug on the body or its target. Such models are available at various levels of detail, 
from simple Emax models [25] up to complex cellular [79] or signal cascade models [21]. However, 
neither the drug exposure alone nor the drug effect presents the full picture of drug response. To 
model the quantitative relationship between drug dose or exposure and the response, PK and PD 
models can be coupled to PK-PD or QSP model (Figure 6).  
For a realistic representation, the integration of knowledge on the body’s physiology, the drug ADME 
processes, and the drug’s mode of action should be pursued. The relatively recent approach of QSP 
modelling aims exactly for that and joins the systems biological representation of the physiology with 
the drug effect [80]. Thus, QSP models entail a qualitatively detailed and mechanistic representation 
of the system. Together with the quantitative elements from PK and PD, QSP models are capable of 
simulating complex situations like diseases in a quantitive manner and have a measurable output that 
could relate to a biomarker.  
PBPK models are predestined to represent complex physiology in an already quantitative model. 
Coupling them to a PD model yields a QSP model that can be used for the simulation of drug effects 
in complex diseases like diabetes [20], support drug development [81], investigate drug-drug 
interactions and their effects [24], or guide personalised medicine decisions [25, 31]. Due to their 
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broad spectrum of applications, QSP models allow for answering complex questions in drug 
development on a network level (Figure 13). 

 

 
Figure 13 Modelling approaches in pharmacometrics. Various model approaches have been deployed to assess the PK and 
the PD of drugs covering different scales of biological levels and target interplay. The most advanced in both regards are the 
QSP models: they can describe drug PK from a cellular up to a whole-body or population level, e.g., by using PBPK models, as 
well as a quantitative PD effect by coupling a systems biology effect model. Figure was adapted from [80].  
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the literature search of Chapter 10.2. Baier, V. implemented all other methods and wrote this part. 
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7 Software 
All physiologically-based pharmacokinetic (PBPK) models were built using PK-Sim and Mobi from the 
Open Systems Pharmacology Suite (OSPS) [82]. Analyses and population simulations were performed 
in Matlab and R with the OSPS toolboxes. The latest versions of PK-Sim® and MoBi® are freely available 
under the GPLv2 License1. PK-Sim® ensures continuous re-qualification of PBPK models between 
different versions of the OSPS [83]. 
Illustrative figures were generated with Inkscape [84] and BioRender [85], while results plots were 
generated using Matlab [86–88], R [89], and Rstudio [90]. Data digitisation was done with the 
WebPlotDIgitizer [91].  

 

8 Materials and Methods used in Chapter 11 
 

8.1 Model building 
The reference model of a healthy average individual includes synthesis, circulation, and excretion of 
an exemplary bile acid (BA). In our study, glycochenodeoxycholic acid (GCDCA) was chosen since it is 
the most abundant BA accounting for about 20 % of the total human BA pool [92]. This enabled us to 
reduce model complexity to the key physiological processes and improve the identifiability of the free 
model parameters. In addition, the consideration of a lumped pool by using a single exemplary BA 
species allowed the integration of heterogeneous literature data that analysed different BA species. 
Following best practice guidelines for PBPK model building, physicochemical parameters of GCDCA 
like molecular weight (MW), solubility, lipophilicity (as logP), and plasma-protein binding (fraction 
unbound) (Table 1) were used to parametrise the compound properties of the PBPK model for small 
molecules.  

Table 1 Physico-chemical parameters of bile salt GCDCA 

Parameter Value Reference 
logP 2.12 [93] 
Fraction unbound 0.01 [94] 
Solubility [mg/l] 99999 [95] 
Molecular weight [g/mol] 449.62 [96] 
pKa 3.77 [96] 

 

Thus, passive transport processes, as well as organ-plasma partitioning, can be directly calculated 
using an appropriate distribution model. To compensate for the daily loss of BAs, a continuous 
synthesis reaction was introduced to the model. This formation of GDCDA is represented by a constant 
synthesis in the intracellular space of the liver. In vivo, this synthesis rate accounts for cytochrome 
P450-mediated oxidation of cholesterol and subsequent conjugation with glycine within the liver [97, 
98]. In total, four active transport processes were included in the PBBA model: (1) The bile salt 
excretion pump (BSEP) on the apical membrane of hepatocytes, (2) the sodium-taurocholate co-
transporting polypeptide (NTCP) on the basolateral membrane of hepatocytes, (3) the human ileal 
apical sodium-dependent bile acid transporter (ASBT) apically in the ileum mucosa, and (4) the organic 
solute and steroid transporter (OSTα/β) basolaterally in the ileum mucosa [97, 99]. A fraction of 65 % 
of biliary excreted BAs was assumed to be stored in the gallbladder, while the remaining fraction is 
directly secreted to the duodenum [100]. Gallbladder emptying is triggered by meal ingestions. In all 
simulations, three meals over 24 h representing breakfast, lunch, and dinner, have been considered. 
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Such emptying processes are modelled via in-built plug-ins of the OSPS, and their values were adapted 
to fit the experimental data (Table 2). In order to close the overall mass balance, faecal and renal 
excretion of GCDCA were implemented in the model by passive transport and active clearance, 
respectively (Table 2). Altogether, the initial PBPK model of GCDCA structurally describes continuous 
BA synthesis as well as enterohepatic circulation (EHC) through the liver and the gastrointestinal (GI) 
tract, including re-absorption from the ileum.  

Table 2 PBBA model parameters  

Parameter Value Start value 
 (BSEP) [μmol/l] 5 4 [97]  
 (ASBT) [μmol/l] 0.5 50 
 (NTCP) [μmol/l] 1 6 [97] 
 (OSTα/β) [μmol/l] 7.5 50 
(BSEP) 300 100 
 (ASBT) 5 100 
 (NTCP) 125 100 
 (OSTα/β) 9000 1000 

Body weight [kg] 73 Not fitted 
Age [years] 30 Not fitted 
Height [m] 1.76 Not fitted 
GB Volume [l] 0.02 Fixed [101] 
Refilling time [min] 147.8 419 
Emptying half-life [min] 69.98 69.98 
Synthesis rate [μmol/min] 0.78 Fixed [97] 
Renal excretion [μmol/l/min] 981.30 100 [102] 

 (CsA) [μmol/l] 2 2 [103] 
Distribution model PK-Sim standard  

GB, gallbladder; kcat, catalytic rate constant; Km, Michaelis Menten constant; Ki, inhibitory constant 

 
Next, uninformed model parameters were identified in order to accurately describe the dynamics of 
the BA metabolism in a healthy reference individual. Notably, only a limited set of modelling 
parameters had to be considered since the model relies on large datasets of physiological and 
physicochemical information as provided by the underlying PBPK model. The basic physiology-based 
bile acid (PBBA) model mainly described GCDCA with its passive distribution and the transport 
molecules with their transport processes and was established within PK-Sim. The additional 
endogenous processes, i.e., BA synthesis and gallbladder emptying events, were implemented in 
MoBi. The technical building description of the model is available in Appendix A.1.  
For the population simulations, a virtual population of 1,000 healthy individuals with varied 
anthropometric properties (Age: 20–60 years, females: 50 %, body mass index (BMI): 19–25 kg/m2) 
and reference concentrations for all transporters was constructed in PK-Sim. Up to 10 % variation was 
allowed for the transporters’ abundance. Population simulations and model analyses were performed 
in Matlab with the standard boxplot function.  

8.2 Competitive Inhibition of BSEP Transport by Cyclosporine A 
A PBPK model of CsA was previously developed with PK-Sim [15] and was integrated into the PBBA 
model to simulate the effects of CsA on BA levels. Additionally, a term describing the competitive 
inhibition by the drug on BSEP transport kinetics was introduced to the integrated model as follows:  
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 with  

Where  is the maximum velocity,  is the concentration of BSEP substrate GCDCA,  is the 
apparent,  defined as above,  is the concentration of the inhibitor CsA,  is the inhibitor’s 
dissociation constant, and  is the Michaelis Menten constant [104].  

8.3 Observed DData  
Consolidated experimental data from the literature describing BA levels in the blood plasma of healthy 
individuals were used for parameter estimation and model validation. BA plasma levels under fasting 
conditions were used to identify the basal level of systemic BAs [92]. In addition, results from various 
studies measuring postprandial plasma BA profiles after three subsequent meals in healthy male 
individuals [105], healthy women [106], pregnant women, and diseased volunteers [107] were used 
to identify the system dynamics of circulating BA levels in the human body. Furthermore, we used 
another set of published experimental data, not used for parameter identification, to validate our 
model predictions and to additionally assess the variability of individual BA blood plasma levels [108–
112]. Experimental plasma BA data were extracted from the original publications (see Chapter 7). 

8.4 Data Normalisation  
Notably, the various studies measured different BA conjugates; thus, we normalised the data. In the 
study of Hepner and Demers (1977) [105], glycine conjugates of cholic acid (CA), chenodeoxycholic 
acid (CDCA), deoxycholic acid (DCA) and sulpholithocholic acid (SLCA) were identified, as such 
representing only a subset of the complete BA pool. Another study [107] investigated postprandial 
plasma BA profiles in five healthy as well as in pregnant and diseased volunteers and measured chenyl- 
and cholyl- conjugates, whereas yet others [106] measured postprandial plasma BA profiles in five 
healthy women and quantified CA, CDCA, and DCA without amidation and sulphation. The measured 
BA species vary considerably among the different studies, and we normalised the postprandial BA 
profiles to allow a comparison of the different data sources. Therefore, a percentage scaling factor 
was calculated from the literature for scaling all datasets to the fraction of summed conjugated CA, 
CDCA, and DCA as far as the study description allowed (Table 9 and Figure 37; [92]) by the following 
formula  

 

 

8.5 Goodness of Fit  
To quantify how well the model describes the data, four different measures were used:  

1) -fold deviation with , to quantify the percentage of observed data lying within 
a given deviation  

2) Root-mean-square deviation (RMSD) according to the following formula:  

 

3) Normalised root-mean-square deviation (NRMSD) according to the following formula:  
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4)   according to the following formula: 

 

where  is the number of data points, and  describes the mean of the observed data points. 

 

9 Materials and Methods used in Chapter 12 
 

9.1 Drug-specific PBPK models  
The physiologically-based pharmacokinetic (PBPK) models of azathioprine (AZA), acetaminophen 
(APAP), cyclosporine A (CsA), diclofenac (DIC), phenytoin (PHE), and rifampicin (RIF) have been 
published previously by Thiel et al. [15, 113]. The PBPK model for isoniazid (INH) has been published 
previously in Cordes et al. [25]. All necessary model parameters, as well as descriptions of how to build 
the models, are provided in these publications (Table 10). The parameters for PBPK models of 
methotrexate (MTX), valproic acid (VPA) [114], and 5-fluorouracil (5FU) [115] are listed in Table 11, 
Table 12, and Table 13, respectively. Simulation results were re-plotted from the MTX and the 
available models, indicating sufficient quality of the PBPK (Appendix B.2, Figure 39 - Figure 48). 

 

9.2 Model-based in vitro assay 
We performed a PBPK-assisted liver spheroid in vitro assay. The in vitro incubation experiments with 
3D InSight Human Liver Microtissues were conducted with a specifically designed in vitro assay 
mimicking in vivo drug exposure [23]. Assay concentrations of the hepatotoxicants were applied 
according to the simulations of drug-specific PBPK models predicting the in vivo liver exposure during 
repeated therapeutic dosing according to the drug label. Two hundred thirty-four samples of 
spheroids were taken and analyzed with sampling time points at 2 h, 8 h, 24 h, 72 h, 168 h, 240 h, and 
336 h. Samples were sequenced, and RNA fold changes of the genes coding for the liver proteins 
cytochrome P450 (CYP) 7A1, bile salt export pump (BSEP), and sodium-taurocholate co-transporting 
polypeptide (NTCP) were obtained at different time points during the two weeks of treatment (Figure 
50).  

 

9.3 Integration of expression data into the PBBA model  
For our analyses, we used the previously described computational PBBA model, which is based on 
physiology-based pharmacokinetic modelling (Section 8.1) [31]. The model allows predictions of BA 
levels by using GCDCA as a surrogate BA. It describes the enterohepatic circulation of BAs on a whole-
body scale with the fundamental transport processes of the BA metabolism as well as the de novo 
synthesis of BAs and their excretion. We used in vitro transcriptome data from liver spheroids as a 
surrogate for protein abundances of BSEP, NTCP, and CYP7A1 (Figure 15, Figure 50). Protein 
expression levels could not be measured for the transporters since the proteins were membrane-
bound, and for the sake of consistency, transcriptome data was used to inform all three proteins. 
Intestinal transporters could not be informed by the liver assay.  
The PBBA model incorporates three protein-driven processes in the liver explicitly (Figure 15). These 
are the BA synthesis via CYP7A1 and the active transports of BA via BSEP (ABCB11) and NTCP 
(SLC10A1). Hence, the read counts of ABCB11 (ENSG00000073734.8), SLC10A1 
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(ENSG00000100652.4), and CYP7A1 (ENSG00000167910.3) from all drugs were normalized to their 
time point t0 within our dataset to integrate only the relative changes to the untreated status. This 
was done because the expression data was used as a scaling factor for the active processes in the 
PBBA model, where the untreated state of t0 (which evaluates to 1 after normalization) corresponds 
to the steady-state in the PBBA. This scaling factor was linearly interpolated between the above-
mentioned measured time points of the assay to translate the continuous treatment and adaptive 
development to the model. 

 

9.4 Population Simulations 
 The same virtual population of 1,000 healthy individuals with varied anthropometric properties (Age: 
20–60 years, females: 50 %, BMI: 19–25 kg/m2) and reference concentrations for all transporters from 
Section 8.1 was used. Up to 10 % variation was allowed for the transporters’ abundance. 

 

9.5 Cholestatic potential 
The cholestatic potential was calculated by taking the mean BA concentration over time interval t 
divided by the administered in vivo dose. 

 

 

10 Materials and Methods used in Chapter 13 
 

10.1 PBPK model building 
Physiologically-based pharmacokinetic (PBPK) models for all four substances were built following the 
general workflow of PBPK modelling practice [69]. First, a model for intravenous (IV) administration 
was built. Since this kind of administration releases the drug directly to the central circulation, which 
is also the typical site of measurement, it does cut out sources of variability like absorption kinetics or 
the first-pass effect. Processes like distribution and clearance can be identified here. Next, a PBPK 
model for oral (PO) administration is added, which additionally takes into account intestinal factors 
like solubility, intestinal permeability, intestinal metabolism, or first past effect in the liver but also 
individual factors like gastric emptying time. While the physicochemical properties are kept consistent 
among the different simulations, individualised values for gastric emptying time (GET) and clearance 
(in the case of known pharmacogenetic phenotypes) were fitted to the observed data. The 
physicochemical parameters for the metabolites were calculated with cheminformatics software 
[116] if not stated otherwise (Appendix C.2, Table 14 - Table 17). All parameter identifications were 
performed using the Monte Carlo method of the integrated Open Systems Pharmacology Suite (OSPS) 
parameter identification tool.  

10.2 Literature PK data 
A summary of used published pharmacokinetics (PK) data of the drugs chlorpheniramine (CPM), 
caffeine (CAF), dextromethorphan (DEX), and acetaminophen (APAP) along with the study details 
given by the respective authors can be found in Table 3. 
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Table 3 Study details of used literature PK data on CPM, DEX, APAP, and CAF  

Author Administration 
route 

Details Validation 
data set 

Comment 

CPM 
Huang et al. 
1982 [117] 

IV (5 mg),  
PO (10 mg as 
solution, multiple 
PO (6 mg/12h) 

n = 5, HV 
(1 f/4 m)  

no Administered as maleate 

Chen et al. 
2004 [118] 

PO (4 mg) n = 18, HV no LLOQ = 0.2 ng/mL 
Administered as maleate 

Koch et al. 
1998 [119] 

PO (4 mg as tablet) n = 24, male HV no R- and S- enantiomeres 

Vallner et 
al. 1982 
[120] 

PO (4 mg/6h, 
8 mg/12h, 
8 mg/12h) 

n = 15, male HV yes different formulations 

Yasuda et 
al. 1995 
[121] 

PO (8 mg)  n = 11,  
EM(6), PM(5) 

no Administered as maleate, 
LLOQ = 1 ng/ml 

DEX 
Duedahl et 
al. 2005 
[122] 

IV (0.5 mg/kg, 
30min) 

n = 25, male HV no  

Eichhold et 
al. 1997 
[123] 

PO (30 mg 
hydrobromide, 
syrup) 

n = 1 no LLOQ of DEX & DOR = 
5 pg/ml (other methods 
500 pg/ml) 

Chen et al. 
1990 [124] 

PO (30 mg 
hydrobromide 

n = 54,  
PM and EM 

no LLOQ = 0.5 ng/ml for 3HM 
and 3MM,  
LLOQ = 1 ng/ml for DEX 
and DOR 

Pfaff et al. 
1983 [125] 

PO (25 mg 
hydrobromide as 
solution) 

n = 12, HV,  
EMs (3 m/3 f),  
PMs (3 m/3 f) 

no Phenotypes were assessed 
by prior PK study 

CAF 
Blanchard 
and Sawers 
1983 [126] 

IV (5 mg/kg), 
PO (5 mg/kg) 

n = 10, male 
HV, young and 
elderly 

no  

Kaplan et al. 
1997 [127] 

PO (250 mg, 
500 mg) 

n = 12, mixed 
HV 

yes  

Lelo et al. 
1986 [128] 

PO equimolar doses 
of CAF (270 mg),  
TBR, TPY, PXT 
(250 mg each) 

n = 6, male HV no  

Jeppesen et 
al. 1996 
[129] 

PO (200 mg) n = 8, male HV yes With two days of CAF 
abstinence 

Newton et 
al. 1981 
[130] 

PO (gelatine 
capsule) 50, 300, 
500, 750 mg 

n = 6,  
HV (1 f/5 m) 

yes 72 h abstinence 
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Author Administration 
route 

Details Validation 
data set 

Comment 

Bonati et al. 
1982 [131] 

PO (1, 5, 10 mg/kg 
aequous solution) 

n = 4, male HV no 10 d abstinence, also from 
chocolate 

APAP 
Albert et al. 
1974 [132] 

PO 2x 325 mg as 
tablets (B) or soft 
gelatine capsules (A) 

n = 10, HV yes  

Critchley, J. 
A. J. H. et al. 
2005 [133] 

PO (20 mg/kg syrup) n = 20, HV,  
Chinese 
(5 m/6 f), 
Caucasian 
(6 m/3 f) 

no  

Perucca and 
Richens 
1979 [134] 

IV (1000 mg 5min) 
 

n = 6, HV no Epileptic population not 
used 

Prescott 
1980 [135] 

PO (20 mg/kg) n = 8, HV no  

Liukas et al. 
2011 [136] 

IV (1000 mg, 
15 min) 

n = 10, HV 
(7 m/3 f) 
(young) 

no  

Clements et 
al. 1984 
[137] 

IV (5 or 20 mg/kg, 
2 h) 

n = 5, male HV yes  

Morais et al. 
1992 [138] 

IV (20 mg/kg 12min) n = 5, HV no Gilbert syndrome 
population not used 

Rawlins et 
al. 1977 
[139] 

IV (1000 mg, 5min), 
PO (500, 1000, 
2000 mg as tablets) 

n = 6, male HV yes  

PO, oral; HV, healthy volunteer(s); m, male; f, female; PM, poor metaboliser; EM, extensive metaboliser; LLOQ, lower limit of 
quantification 

 

10.3 Virtual populations 
A virtual population of 1000 individuals was generated in PK-Sim for the analysis [78]. To simulate the 
pure physiologic variability, the ontogeny factor, which is added by default in PK-Sim, was set to one 
to neglect any additional enzymatic variability. The population details are given in Table 4. A second 
population was generated using the first population and adding an additional variability in enzyme 
concentrations based on ranges found in the literature (Table 5). For this, the reference concentration 
was sampled from a lognormal distribution defined by the parameters in Table 5. The parameters 
were calculated by , where m was the original mean taken from the PK-Sim database, 

 is the z score = 1.645, and X is the variability factor. The calculated sigma was then used as a standard 
deviation for the sampling distribution. To avoid extreme values, only values between the 1st and 99th 
percentiles were used. For CYP2D6, formerly established variability values of 4 %, 35 % 100 %, and 
134 % were taken for poor metaboliser (PM), intermediate metaboliser (IM) extensive metabolisers 
(EM), and ultrarapid metabolisers (URM), respectively. The EMs correspond to the value used in the 
average reference model [62].  
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Table 4 Population details 

Population Age BMI Gender Comment 
Only physiology 20-60 yrs IQR = 59.5-75.8 kg 500 females, 500 

males 
PK-Sim default 

Enzyme 
expression 

20-60 yrs IQR = 59.5-75.8 kg 500 females, 500 
males 

PK-Sim default 

IQR, interquartile range 

 

Table 5 Variability of enzyme concentration 

Enzyme Reference 
concentration 
(PK-Sim) 

Factor Source Parameters of 
distribution 

CYP1A2 1.8 μmol/l Up to 60 fold 
Commonly 5-15 fold 

[140] ,  

CYP2E1 1.96 μmol/l 19 fold [141] ,  
CYP3A4 4.32 μmol/l 10-100 fold, 5-350 fold [63, 142]  ,   
UGT 1 μmol/l 2 [143] ,  
SULT 1 μmol/l 1.5 fold [144] not varied 
CYP2D6 0.4 (EM),  

0.004 (PM, fitted) 
4 %, 35 %, 134 % [62] 4 %, 35 %, 100 %, 134 % 

of reference 
concentration 

 

For classification of the various phenotypes, population PK profiles were differentiated by quantiles 
of enzyme concentration in average metabolisers (10-90 % quantiles), low metabolisers (<10 % 
quantiles), and high metabolisers (> 90 % quantiles). Significance testing of the differences between 
the high or low vs. average population splittings was performed by the Wilcoxon test provided within 
the R software. 
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11 A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile 
Acid Tissue Levels after Drug Administration in Healthy Subjects and BRIC 

Type 2 Patients 
 

Abstract 

Drug-induced liver injury (DILI) is a matter of concern in the course of drug development and patient 
safety, often leading to the discontinuation of drug-development programs or early withdrawal of 
drugs from the market. Hepatocellular toxicity or impairment of bile acid (BA) metabolism, known as 
cholestasis, are the two clinical forms of DILI. Whole-body physiology-based modelling allows a 
mechanistic investigation of the physiological processes leading to cholestasis in man. Objectives of 
the present study were: (1) the development of a physiology-based model of the human BA 
metabolism, (2) population-based model validation and characterisation, and (3) the prediction and 
quantification of altered BA levels in special genotype subgroups and after drug administration. The 
developed physiology-based bile acid (PBBA) model describes the systemic BA circulation in humans 
and includes mechanistically relevant active and passive processes such as hepatic synthesis, 
gallbladder emptying, transition through the gastrointestinal tract, reabsorption into the liver, 
distribution within the whole body, and excretion via urine and faeces. The kinetics of active processes 
were determined for the exemplary BA glycochenodeoxycholic acid (GCDCA) based on blood plasma 
concentration-time profiles. The robustness of our PBBA model was verified with population 
simulations of healthy individuals. In addition to plasma levels, the possibility of estimating BA 
concentrations in relevant tissues like the intracellular space of the liver enhances the mechanistic 
understanding of cholestasis. We analysed BA levels in various tissues of Benign Recurrent 
Intrahepatic Cholestasis type 2 (BRIC2) patients, and our simulations suggest a higher susceptibility of 
BRIC2 patients toward cholestatic DILI due to BA accumulation in the liver. The effect of drugs on 
systemic BA levels was simulated for cyclosporine A (CsA). Our results confirmed the higher risk of DILI 
after CsA administration in healthy and BRIC2 patients. The presented PBBA model enhances our 
mechanistic understanding underlying cholestasis and drug-induced alterations of BA levels in blood 
and organs. The developed PBBA model might be applied in the future to anticipate the potential risk 
of cholestasis in patients. 

 

Partially published as: 

Baier, V., Cordes, H., Thiel, C., Castell, J. V., Neumann, U. P., Blank, L. M., and Kuepfer, L. 2019. A 
Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After 
Drug Administration in Healthy Subjects and BRIC Type 2 Patients. Frontiers in physiology 10, 1192. 
DOI: 10.3389/fphys.2019.01192. 

[Reprinted (adapted) with permission from Frontiers Media SA. Open access CC-BY © The Authors 2019] 

 

Contributions: 

V. Baier developed the PBBA model, performed the simulations, created the figures, and wrote the 
chapter. C. Thiel developed the CsA model. L.M. Blank and L. Kuepfer advised on all analyses. H. 
Cordes, C. Thiel, J.V. Castell, U.P. Neumann, L.M. Blank, and L. Kuepfer discussed the data and 
reviewed the chapter. 



A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels after Drug 
Administration in Healthy Subjects and BRIC Type 2 Patients 

58 

11.1 Introduction 
Drug-induced liver injury (DILI) places an enormous burden on healthcare systems worldwide. About 
2-19 incidences per 100,000 inhabitants occur annually in Europe, with symptoms ranging from mild 
forms such as slightly elevated blood levels of liver enzymes to fatal clinical incidents resulting in acute 
liver failure [145, 146]. Due to this medical relevance, the detection of DILI at an early stage would be 
highly beneficial, both for a duly termination of treatment with the DILI-causing compound as well as 
for an early start of therapeutic interventions with curative counteragents.  
Manifestations of DILI can be differentiated into hepatocellular DILI, where the cellular damage of the 
hepatocytes dominates, into cholestatic DILI, where impaired transport functions of hepatocytes and 
cholangiocytes are the predominant alteration, or into a mixed type showing clinical features of both 
phenotypes of DILI [147]. For the categorisation of DILI, current clinical diagnosis guidelines rely on 
the increase in blood plasma levels of the enzymes alanine transferase (ALT) and alkaline phosphatase 
(ALP). Elevated ALT levels are a general surrogate marker for hepatocellular damage as ALT is released 
into the blood from the cytoplasm of severely injured hepatocytes [41]. In contrast, increased ALP 
levels are a specific marker for cholestasis since ALP is released from damaged cholangiocytes as a 
possible consequence of impaired bile flux in bile ducts [148].  
However, increased ALT and ALP levels are endpoints that only become noticeable once the liver 
damage has already occurred. Ideally, biomarkers would anticipate cholestasis already before the 
hepatic injury actually occurs in a DILI event. In order to achieve this goal, a mechanistic understanding 
of the underlying physiological alterations of bile production and transport is required. For 
hepatocellular DILI, a number of in vitro assays, as well as computational models, are already available, 
allowing the analysis of drug-induced responses and alterations of intracellular metabolic pathways 
[149]. Cholestatic DILI, on the contrary, is more complex to investigate since it originates from altered 
crosstalk between the liver and gastrointestinal (GI) tract at the whole-body level.  
The altered crosstalk results in the impairment of bile acid (BA) formation and circulation. BAs are 
endogenous metabolites with various functions. Their detergent properties facilitate micelle 
formation allowing the solubilisation of lipids and thereby enabling the absorption of dietary fat and 
fat-soluble vitamins [150]. In addition, BAs are the result of the catabolism of cholesterol and 
constitute a major pathway for its elimination. Because of their amphipathic nature, BAs confer the 
ability of bile to facilitate the excretion of lipophilic substances [100]. Furthermore, BAs function as 
endogenous signalling molecules in different pathways, such as homoeostasis control of cholesterol, 
energy, or glucose [151].  
BA metabolism is a nearly closed circuit including de novo synthesis, transformation, diffusion, and 
intestinal reabsorption, as well as multiple active transport processes. Within the body, BAs undergo 
continuous enterohepatic circulation (EHC), connecting the liver and GI tract through the gut-liver axis. 
The total BA pool comprises a wide variety of conjugated and unconjugated BA species. BAs are 
synthesised by hepatocytes and conjugated with glycine and taurine before leaving the liver as 
primary bile acids. Following their synthesis, BAs are actively secreted by hepatocytes. From the 
hepatocytes, they can be transported either to bile canaliculi (apical membrane) or to the liver 
sinusoids (basolateral membrane). BAs are secreted into bile canaliculi, and bile ducts accumulate in 
the gallbladder. From there, they are released into the luminal space of the duodenum and 
subsequently metabolised by the microbial gut flora to secondary BAs. Secondary BAs are absorbed 
from the intestinal lumen by gut enterocytes. From there, they are either re-secreted to the gut lumen 
(apical) or secreted to the blood capillary vessels (basolateral). Those BAs secreted basolaterally reach 
the liver again via the portal vein (enterohepatic circulation) and thereafter enter the vascular 
circulation and eventually reach other tissues.  
Notably, these transporter-mediated processes are key steps in enterohepatic circulation, which have 
a significant impact on the dynamics and mass distribution of the BA pool. Due to effective recycling, 
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only around 5 % of the BA pool is lost over 24 h, mainly via faeces [151]. Hence, the turnover of BAs is 
a systemic process that involves different tissues and active enzymatic and transport processes. An 
impairment of, for example, canalicular BA transporters, such as sodium-taurocholate co-transporting 
polypeptide (NTCP), multidrug resistance protein 1/3 (MDR1/3), multidrug resistance-associated 
protein 2 (MDR2) and bile salt export pump (BSEP), results in the accumulation of BAs in the liver or 
other tissues, with potential toxic consequences [152–154]. Such an accumulation of BAs in tissues 
leads to the clinical symptoms of cholestasis (pruritus and jaundice).  
At the beginning of DILI pathogenesis, plasma BA levels start to increase before the cellular damage 
finally occurs. Hence, the rise of BA concentration in blood, along with the BA composition pattern, 
would be an ideal early biomarker for cholestasis from a clinical perspective. Recent improvements in 
analytical methods facilitate a fine-tuned analysis of different BA species for a differential diagnosis of 
DILI [155, 156]. In clinical practice, these analytics are, however, still not applicable as a standard 
methodology. In addition, BA composition is influenced by the sampling site, and plasma profiles 
might not be representative of the concentrations of BA species present in tissues. Furthermore, it is 
difficult to assess the relevance of BA profiles in the various types of cholestasis [157]. This is even 
more relevant in the case of in vitro experiments where BA circulation across different tissues cannot 
be modelled appropriately. In vitro, such a scenario can only partially be achieved in an organotypic 
microenvironment as, e.g., in sandwich or spheroidal microtissue cultures [158], or in much more 
complex experimental settings that incorporate microfluidics to reproduce the interplay with other 
organs [159, 160]. Therefore, even advanced assays can only focus on limited aspects of cholestasis, 
like the BA uptake and excretion by liver parenchymal cells and potential interferences of drugs with 
BA hepatic transporters.  
Computational modelling stands as a tool that can contribute to a mechanistic understanding of the 
interplay of the various physiological processes underlying BA metabolism. In the case of cholestasis, 
such computational models, which ideally should be knowledge-driven and physiology-based, have to 
account for the EHC of BAs as well as their accumulation in different tissues. Computational models 
may be used specifically to simulate physiological concentration profiles in sites that are 
experimentally not accessible in vivo, such as the intracellular space of different organs. In addition, 
computational models may help to integrate the existing knowledge into a mathematical 
representation to identify gaps in the current understanding of a physiological or pathological 
phenomenon. Likewise, they may be used to pinpoint targeted screening biomarkers for the 
emergence of cholestasis.  
In this study, we present a physiology-based model of BA metabolism at the whole-body level based 
on physiology-based pharmacokinetic (PBPK) modelling [69]. Our model describes the systemic 
distribution and EHC of glycochenodeoxycholic acid (GCDCA) as an exemplary BA. Besides the passive 
diffusion and distribution processes, the model includes the active processes of synthesis, transport, 
distribution, and excretion of GCDCA. We qualified the computational physiology-based bile acid 
(PBBA) model with time-concentration BA profiles from healthy individuals. 
Subsequently, the PBBA model was applied to analyse aberrant states of BA metabolism as they occur 
in cholestasis. First, the model was used to analyse shifts in BA levels due to a genetic predisposition 
for cholestasis in BRIC2 patients (BRIC2, benign recurrent intrahepatic cholestasis type 2). These 
patients are mostly asymptomatic but may develop symptoms of cholestasis following medical 
incidents such as, for example, drug intake. Secondly, we applied the model to examine cholestasis 
induced by the drug cyclosporine A (CsA), which is known to competitively inhibit canalicular BA 
transporters, as a representative case of drug-induced cholestasis. This overall workflow is depicted 
in Figure 14.  
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Figure 14 Study workflow followed in Chapter 11. The five steps of model development are depicted: basic PBPK model, 
healthy reference model, population simulation, a disease model for BRIC, and drug interaction with Cyclosporine A (CsA). 
The upper row of boxes depicts the inputs for the different model stages (middle row). The lower row depicts the outputs of 
the model simulations. 

 

11.2 Results  
11.2.1 Physiology-Based Model of Bile Acid Metabolism.  
A computational physiology-based model describing the distribution and EHC of an exemplary BA at 
the whole-body scale in an average healthy individual has been developed. The overall workflow of 
the study in terms of model development and subsequent analyses is presented in Figure 14. The 
reference model of BA metabolism in healthy individuals was developed based on the physicochemical 
properties of GCDCA as an exemplary BA and the known physiological processes that take place during 
enterohepatic circulation. BA synthesis, renal and faecal excretion, passive diffusion, gallbladder 
emptying, and four active transport processes (BSEP, NTCP, ASBT, and OSTα) were implemented 
(Figure 15). Subsequently, a virtual population of 1,000 individuals was created to assess the variability 
in post-prandial BA levels. Also, the impact of the BRIC2 and progressive familial intrahepatic 
cholestasis type 2 (PFIC2) mutations as a cause of DILI predisposition, as well as CsA administration, 
on BA levels was analysed. A detailed description of the model is given in Section 8.1. Measurements 
of basal and postprandial BA concentration levels from the literature were used to evaluate the 
agreement of the computational simulations with the scaled experimental data [105, 107, 111]. 
 

 
Figure 15 Physiology-based bile acid (PBBA) model. Building on a PBPK model of the bile acid GCDCA, biosynthesis via CYP7A1 
in the liver, active transport processes via BSEP, ASBT, OSTα/β, and NTCP, faecal and renal excretion were additionally 
included. GCDCA is stored in the gallbladder and partially secreted directly into the duodenum, and is reabsorbed along the 
intestine (enterohepatic circulation). Emptying of the gallbladder is triggered by food intake. 
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The comparison between the simulated kinetics of BA levels over 24 h with reported data is shown in 
Figure 16. Experimental data of post-prandial BA profiles from two studies are shown, in which healthy 
individuals were fasted overnight and given three meals at 8:00, 12:00, and 16:00 h. Following 
parameter identification, the model could describe the plasma BA dynamics well despite a significant 
level of variability in the experimental data. The peak concentrations, as well as the corresponding 
postprandial levels and the dynamics of gallbladder emptying, are met with sufficient accuracy (Figure 
16 and Table 6). Next, we verified whether several physiological reference measurements of the BA 
metabolism, such as total BA pool size, cycling times, and concentrations in various compartments 
could be described by the model. Hence, a series of clinical parameters were retrieved from the 
scientific literature and used for model fitting and comparing to corresponding values calculated from 
the simulation results (Table 7). Even though the model is an open system with complex dynamic 
behaviour, a good agreement between literature values and simulation outcomes was achieved. The 
accordance of physiological reference values represents a strong indication of good overall model 
quality in terms of both mass balance and dynamics (Figure 16, Table 6 & Table 7, and Figure 38).  

 

Table 6 Goodness of fit of the PBBA model 

Parameter 2-fold 
deviation 

3-fold 
deviation 

4-fold 
deviation 

RMSD NRMSD R2 

Value 0.64 0.88 0.97 6.21 0.85 -0.41 

RMSD = root mean square deviation, NRMSD = normalised RMSD 

 

 
Figure 16 Simulation of venous blood plasma BA levels in a human reference individual. The PBBA model was simulated with 
three meals per day given at 8, 12, and 16 o’clock, and simulated BA concentrations in venous plasma (solid red curve) are 
compared with reported values from the literature [105] (exp. data 1, dark blue dots connected by dashed line [105]) and exp. 
data 2, green dots connected by dashed line [111]). 
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11.2.2 Population Simulation of the PBBA Model  
The developed PBBA model describes BA profiles in an average adult individual. This is an extensive 
assumption, given the significant inter-individual variability in the clinical data (Figure 16). In order to 
test the robustness of the PBBA model, a population simulation was performed. For this, a virtual 
population of 1,000 individuals was created with PK-Sim based on the parameters given in Section 8.1. 
To account for variability in the transporter expression, which is not part of the PK-Sim database for 
populations, a 10 % variability was assumed. The simulations were run to a steady-state, and Figure 
17 shows the BA levels per meal from the population simulation and observed data (Section 8.4). Data, 
both from the literature and the simulations, were assigned to a first, second, and third meal 
whenever possible. Single BA measurements in plasma (one symbol per study), as well as boxes 
condensed to bars indicating the interquartile range (IQR) with the 25th and 75th percentiles for the 
experimental data and the simulations, are shown. The median BA concentration per meal decreases 
over the daytime in both the experimental data and the simulations. The predicted population 
variability was in a to-be-expected physiological range and matched the experimentally measured BA 
values (80 and 100 % of observed data within the IQR and the 95th and 5th percentiles of observed 
data, respectively).  
The comparison of the PBBA model with various physiological reference measurements (Table 7) as 
well as clinical data sets (Figure 17) is a strong indication of the overall correctness of the model for 
healthy reference individuals. This positive validation of our computer model gives confidence for 
further predictions and investigations. 

 

Table 7 Physiological reference measurements of BA metabolism. Values with (*) were converted to model units. 

Parameter Literature Model Reference 
BA concentration in 
venous blood [μmol/l] 

[0.9, 8.4]  [1.68, 8.91]  Various sources  
(see Section 8.3) 

BA concentration in portal 
vein blood [μmol/l] 

[2.8, 33.2]  [3.95, 34.5]  [161] 

Faecal excretion rate 
[μmol/min] 

0.72* 0.72  [162] 

BA pool size [μmol] [4250, 6672]*  5697.69 [163, 164] 

Average secretion rate per 
meal [mmol/h]  

5  ~1.2  [100] 

BA concentration in 
gallbladder [μmol/l] 

[3000; 100,000] [25;2800;5000]  [100, 150] 

BA concentration in 
intestinal lumen [μmol/l] 

[2000, 10,000]  [75, 5175.02]  [100, 147] 

BA concentration in liver 
cells [μmol/l] 

1-2; < 3  [0.23, 1.07]  [95, 100] 
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Figure 17 Simulation of venous blood plasma BA levels in a healthy virtual population of 1,000 individuals. BA levels were 
assigned to the meal, after which they were measured or simulated. Symbols represent BA plasma measurements from 
experimental studies [o= Angelin and Björkhem, 1977 [106], + = Galeazzi et al., 1980 [109],  = Gälman et al., 2005 [108], 
x = Salemans et al., 2009 [112],  = Ponz de Leon et al., 1978 [111]]. Bars (compact boxes) represent the interquartile range 
of the experimental data (orange) and the simulation (black), with the median marked as a dot on the box. 

 

11.2.3 Disease Model of Benign Recurrent Intrahepatic Cholestasis Type 2 (BRIC2)  
A variety of clinical cases of cholestasis result from inborn mutations in humans [165]. Depending on 
the affected protein and the locus of mutation, different types and severities of cholestasis may 
emerge. It is known that carriers of PFIC2 or BRIC2 have a higher risk of encountering cholestasis as a 
consequence of other diseases or drug therapies [166]. Both the severe PFIC2 and the milder BRIC2 
are caused by polymorphisms of the BSEP-coding gene leading to an impaired function of the encoded 
protein. As a result, PFIC2 patients usually experience an early onset of cholestasis in their lifetime 
and often need early liver transplantations. The BRIC2 mutations are less severe such that a basal 
functionality of BSEP remains. However, affected patients have clinical episodes of cholestasis during 
their lifetime and slightly elevated basal BA plasma levels [167–169]. 
Based on the PBBA model developed for healthy individuals, we simulated the effect of PFIC2 and 
BRIC2 on systemic BA levels by decreasing the transporter activity in this genotype subgroup. For 
BRIC2 patients, we reduced the BSEP kcat from 100 % to 20-13 % of the original BSEP transporter 
activity to account for the remaining functionality. For the PFIC2 genotype, the transporter activity of 
BSEP was further reduced to 5 % [170]. The simulation results show the relative differences in BA 
amount in various enterohepatic compartments after simulating the gradual loss of BSEP function 
(Figure 18). While the downstream compartments of the liver, including the gallbladder, intestinal 
tract (not shown), and faeces, contain fewer BAs, the upstream compartments of the portal vein, 
venous blood, and urine contain higher amounts of BAs compared to simulation results with 100 % 
BSEP function. The range of BSEP function in BRIC2 individuals is indicated in blue, and simulations 
show that individuals have up to doubled BA levels in the blood and up to a six-fold increase in the 
liver cells (Figure 18).  
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Figure 18 Simulation of BA levels in various compartments with decreasing BSEP function. The mean difference (in % of 
reference) of BA content in various compartments, as well as the total BA pool, are plotted over decreasing BSEP function. 
The reported ranges of BSEP functionality in BRIC2 patients with 20–13 % and in PFIC2 patients with < 13 % are marked in 
blue and red, respectively. BA content in faeces, gallbladder, and the total pool decrease with decreasing BSEP function, while 
BAs in liver cells, venous blood, portal vein blood, and urine increase. 

 

11.2.4 Drug Interaction With Cyclosporine A  
As another clinical scenario, we modelled the influence that CsA administration could exert on BA 
levels. CsA is known to induce cholestatic DILI with different degrees of severity by influencing gene 
expression of liver enzymes and transporters but also inhibiting transport processes of BSEP 
competitively. We incorporated a previously published PBPK model of CsA [15, 113] into the PBBA 
model to investigate the potential impact of the drug on BA levels. Drug-drug interaction models are 
a frequent application in PBPK modelling [113]. The present model simultaneously describes the 
disposition of endogenous BA species as well as the pharmacokinetics (PK) of an exogenous drug. The 
PBPK model for CsA has been validated before with different PK data for intravenous and oral 
administration (Figure 19) [15].  
The inhibition of CsA on BSEP was integrated by the introduction of a competitive inhibition term for 
the BSEP kinetics (Section 8.2). Simulations were performed for healthy individuals as well as BRIC2 
patients. Figure 6A shows the CsA levels after a bi-daily intravenous dose of 2 mg/kg CsA in venous 
blood and liver cells. The simulations show mildly elevated BA levels in venous and portal vein blood 
in healthy individuals (Figure 19B). A more pronounced effect is observed in the liver, where BA levels 
increase by about 22 % compared to the untreated case. After CsA administration in BRIC2 patients, 
the model anticipates an increase of BA levels up to eight-fold relative to healthy reference individual 
(Figure 19B). These results suggest that even routine medical treatments may increase BA plasma 
concentrations in BRIC2 patients to levels clearly above normality, indicating a potentially cholestatic 
effect.  
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Figure 19 Simulated CsA concentrations and BA changes. (A) Time-concentration profile of CsA in venous blood after oral 
intake of 4 mg/kg. Observed (Aweeka et al., 1994 [171]; see also [15]) versus simulated concentrations of CsA levels in venous 
blood plasma after intravenous and oral administration of 4 mg/kg and 10 mg/kg. (B) 7 Simulation of the coupled CsA PBPK 
and the PBBA model. Simulated mean BA (in % of healthy reference) of the reference model, the BRIC2, and the CsA-coupled 
models in the intracellular space of the liver, venous blood plasma, and portal vein plasma are shown. 

 

11.3 Discussion and Conclusion 
The distribution and accumulation of BAs in blood plasma and tissues is a direct clinical biomarker for 
cholestasis. However, a standard clinical assessment of BAs accumulation within different tissues is 
infeasible due to technical and ethical limitations. Therefore, a truly comprehensive picture of BA 
distribution and metabolism cannot be achieved from clinical measurements alone. Enterohepatic 
circulation of BAs, a systemic process that involves multiple consecutive and fine-tuned steps in 
different organs, adds even more complexity and variability. Altogether, the causes of altered BA 
metabolism and accumulation in tissues are difficult to monitor precisely in individual patients, which 
significantly limits the usage of BAs measurement for diagnostic profiling. A computational model 
capable of quantitatively describing BA concentration in body fluids and tissues could be a valuable 
tool to understand and interpret the alterations of the systemic BA distribution and metabolism. Such 
a mechanism-based computer model could be helpful in identifying novel and early markers for 
cholestasis in clinical practice. Moreover, it could be used to understand the underlying mechanisms 
of cholestasis, anticipate toxic effects and envisage clinical strategies to improve patient's recovery 
once the first cholestatic DILI symptoms have been recognised.  
The computational whole-body PBBA model allows the simulation of BA exposure in blood plasma and 
different tissues. The main processes of BA metabolism, such as synthesis, excretion, and 
enterohepatic circulation, are mechanistically included in the model at a large level of physiological 
detail based on the underlying PBPK model structure. Likewise, as the model builds on the well-
established PBPK framework, organ-plasma partitioning is explicitly represented for different tissues 
throughout the body. It should be noted that, as such, the model is similar to a typical PBPK model for 
xenobiotic drugs, even though the distribution and excretion of an endogenous compound are 
considered here. This similarity is a particular advantage of our approach since the basic PBPK model 
already includes a detailed physiological representation of the GI tract, involving several segments to 
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quantitatively describe, e.g., the dissolution of tablets [172]. This is of utmost importance to describe 
the re-absorption of BAs from the gut lumen during enterohepatic circulation in a physiological 
manner.  
With this model, intracellular concentrations, e.g., in the liver, are directly accessible. Additionally, 
concentrations in other off-target tissues, such as the skin or brain, may also be simulated to evaluate 
the risk of complications like pruritus. We initially parametrised the presented PBBA model based on 
a comprehensive set of plasma BA data. Subsequent model validations were conducted with 
independent data sets not used during model establishment. We showed that the PBBA model is 
capable of reproducing the dynamic postprandial BA levels in healthy individuals, as well as simulating 
BA levels for different clinical disease cases of inborn variants and for inhibitory interactions after drug 
administration.  
However, a perfect correlation of the model with the observed data cannot be expected due to 
multiple factors. On the one hand, the BA lumping introduces some bias since the kinetics of different 
BA species vary considerably [105]. But modelling of different BA species with their kinetics, in turn, is 
hampered by the limited and sometimes conflicting data that is displayed in Figure 16. On the other 
hand, the general variability in BA blood levels is high, even under healthy conditions. Therefore, we 
further validated the model to different available observed concentrations and rates (Table 7). Since, 
intrinsically, the simulation of one average individual cannot cover such interindividual variability, a 
population simulation was performed to confirm the model’s performance (80 % of observed data 
within IQR, Figure 17).  
The computational PBBA model allowed a systematic consideration of different degrees of BSEP 
activity in BRIC2 and PFIC2 patients, which could otherwise not have been analysed. The genotype-
specific functionality of the BSEP was simulated and confirmed the predisposition of the BRIC2 
subgroup toward drug-induced cholestasis by elevated BA levels in the blood and in the liver. The lack 
of clinical data renders it hard to validate the simulations, but the physiology-based mechanistic 
background integrates as much knowledge as we have. Therefore, our predictions are the closest 
quantitative guess for inaccessible but critical compartments like the liver cells. The simulation of CsA 
administration to this patient group anticipated a considerable increase of the BA levels in these 
patients, which should warn the clinician about increasing the risk of cholestasis. Here, computational 
modelling enabled the quantitative estimation of tissue-specific BA exposure, which is not accessible 
in the clinics. The overall model behaved in a consistent and physiologically expected manner, 
indicating the appropriateness of the assumptions, equations, and restrictions self-imposed in the 
course of its mathematical development. 
In addition, the developed PBBA model is not data-driven but rather knowledge-based since a lot of 
prior physiological information is included in the underlying PBPK model. For this reason, it is also 
possible to extrapolate scenarios with the model to consider specific questions or hypotheses, like 
functional changes or alterations in environmental conditions, which have not been explicitly 
considered during model establishment itself. This has been done with PBPK models in other contexts 
like paediatric scaling [173]. Hence, the PBBA model presented here is well suited to simulate 
scenarios that can take place in patients with impaired BA transport based on the reference PBBA 
model of healthy reference individuals.  
The first attempts to mathematically model BA metabolism were published in the early 1980s [174, 
175]. These models were detailed in the description of the BA species and the enterohepatic 
circulation but lacked mechanistic knowledge regarding the whole-body physiology and relevant 
transporters. Recent models make use of a simplified representation of the body's physiology and do 
not include organs or their sub-compartments like intracellular or interstitial space [29, 30], as such 
potentially limiting the quantification of specific tissue concentration profiles. Moreover, such models 
are mostly data-driven, limiting their translation to new indications, patient subgroups, or clinical 
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scenarios such as BRIC2 and PFIC2 patients, which were explicitly considered in this study. Since our 
focus lies on the basic physiological mechanisms of cholestasis development, none of the general yet 
secondary clinical biomarkers like ALP have been considered in our model [30, 176]. Instead, we aimed 
toward a description of the actual defect and not the indirect consequences of the tissue damage 
induced by accumulated BA. In contrast to data-driven approaches [29], the presented PBBA model is 
knowledge-based and relies largely on prior curated information explicitly included in the originating 
PBPK model. This increases the reliability of both the identified parameters and the model-based 
analyses.  
In the future, the PBBA model might also help to explain the causalities of idiosyncratic cases of DILI, 
such as genetic or physiological predisposition of individual patients. Functional consequences of 
kinetic alterations such as different genotypes or diseases can be mechanistically represented in 
physiology-based modelling [25, 43, 177], allowing, for example, to describe cases of DILI beyond 
intrinsic predictable dose-relations. Since PBPK models enable the inclusion of patient-specific 
physiological information, the PBBA model might be used to analyse cases of idiosyncratic drug-
induced cholestasis. In particular, the model allows the simulation of individual drug exposure in off-
target tissues as a consequence of a patient’s anatomy, physiology, lifestyle, gender, or age. In 
addition, the PBPK framework can be used to translate model predictions from the current human 
PBBA model to other species like mice to support model-based experimental design [75].  
The current mathematical formulation of this model has, however, a certain number of shortcomings. 
The population simulation showed that the simulated variability is higher than the recorded one. This 
deviation is likely to be overcome by adjusting the BAs synthesis rate to the liver size instead of 
assuming a fixed liver volume. Basolateral transport processes for BA excretion from the hepatocytes 
have been neglected since their activity rates are difficult to catch because only a net transport rate 
into the hepatocytes can be reliably identified. For this reason, counteracting processes that could 
potentially reduce the effect of functional BSEP impairment in BRIC and PFIC2 patients have not been 
considered so far (Figure 18). In this version of the PBBA, we only considered GCDCA as a surrogate 
BA. However, it is known that different BA species do have different kinetics [178]. Therefore, this 
approach may introduce a systemic error leading to a reduced agreement of the model simulations 
with the experimental data. It can also be argued that the smaller peaks secondary to the main meal 
peaks (Figure 16) are not reflected by the model. This is probably also due to the lack of the different 
BA species with their different dynamics. Despite these drawbacks, it should be recognised that the 
model is still capable of describing the global behaviour of BA dynamics at the whole-body level with 
sufficient accuracy.  
Future improvements of the model will include differentiation in various BAs (primary and secondary) 
and their metabolites. This extension of the current PBBA model is important since BAs are 
continuously transformed and may accumulate differentially in various tissues all over the body. The 
prediction of such shifts in BA pool composition in specific tissues like the liver based on simple blood 
samples could also be a fine-tuned biomarker for the assessment of the different diseases as well as 
cholestasis. For such a differentiated BA pool, the necessary metabolisation steps that are catalysed 
by the intestinal microbiome need to be integrated. The tools for the vertical integration of metabolic 
network models into PBPK models already exist and can directly be incorporated into the current PBBA 
model [79, 81].  
There is also a growing interest in the role of BAs as mediators and signalling molecules within systemic 
circulation at the whole-body level. For example, it has been shown that BAs play an essential role in 
the activation of cellular receptors like the G protein-coupled bile acid receptor 1 or farnesoid X 
receptor alpha [179]. Likewise, BAs have been shown to regulate intracellular pathways such as insulin 
signalling in the liver or the intestinal tract, as well as energy metabolism in brown adipose tissue 
[180]. Consequently, a therapeutic administration of BAs may help to treat metabolic diseases through 
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fine-tuning of metabolic control [181]. There are also indications that BAs influence energy 
metabolism beyond enterohepatic circulation in the central nervous system through direct or indirect 
pathways [182]. Metabolomics studies have identified bile acids as biomarkers for various pathologies, 
such as hepatic impairment in polycystic kidney disease [183], gestational diabetes [184], hepatitis B-
induced cirrhosis [185], or Alzheimer’s disease [186]. Also, in this regard, an extended PBBA model 
could be of use in the future to mechanistically describe and explain BA disposition in specific tissues 
as well as the underlying multi-tissue interplay.  
Further modifications of the presented PBBA model could include circadian BA synthesis or gallbladder 
emptying overnight, which have been neglected in the present version of the model. Therefore, the 
simulated nightly BA profiles are not as reliable as of now. Additionally, different meal compositions 
could be considered to trigger specifically different responses. This could also include the effect of 
change in lifestyle on the composition of the intestinal microbiome, along with subsequent changes 
in BA composition [187]. Furthermore, specific preclinical in vitro data can be integrated and used for 
in vitro-in vivo translation of omics data [23]. This will ideally involve time series of omics data which 
could be contextualised in the model to describe the adaption of BA metabolism towards repeated 
drug administration or to track specific pathogeneses. The clinical cases shown in this work, however, 
illustrate that the current model can already be applied to analyses of clinical relevance. Another 
extension of the current PBBA model could be its translation to preclinical animal species to 
mechanistically support the analysis of targeted experimental measurements, such as two-photon 
imaging data [188], or to investigate physiological phenomena at the systems level, such as bile infarct 
formation [189]. We are therefore confident that the presented model provides an important 
platform for model-based analyses of BA metabolism in the future.



 
 

 
 

12 A Model-Based Workflow to Benchmark the Clinical Cholestasis Risk of Drugs 
 

Abstract 

A generic workflow combining physiologically-based computational modelling and in vitro data to 
systematically assess the clinical cholestatic risk of different drugs is presented. Changes in expression 
levels of genes involved in the enterohepatic circulation of bile acids were obtained from an in vitro 
assay mimicking 14 days of repeated drug administration for ten marketed drugs. These changes in 
gene expression over time were contextualized in a physiology-based bile acid model of 
glycochenodeoxycholic acid. The simulated drug--induced response in bile acid concentrations was 
then scaled with the applied drug doses to calculate the cholestatic potential for each compound. A 
ranking of the cholestatic potential correlated very well with the clinical cholestasis risk obtained from 
medical literature. The proposed workflow allows benchmarking the cholestatic risk of novel drug 
candidates. Applied during preclinical or clinical phases, this workflow can be expected to significantly 
contribute to the stratification of the cholestatic potential of new drugs and to support animal-free 
testing in future drug development. 
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12.1 Introduction 
Drug-induced cholestasis is a severe incident in clinical practice. About 18-32 % of patients in clinical 
studies investigating cases of drug-induced liver injury (DILI) can be classified as cholestatic [10]. The 
associated patient mortality of drug-induced cholestasis is estimated to be up to 10 % [5]. Cholestasis 
describes an impaired bile flow from the liver to the gastrointestinal (GI) tract. In consequence, toxic 
bile acids (BAs) accumulate inside the liver and other tissues during intrahepatic cholestasis, ultimately 
leading to symptoms such as dilated bile canaliculi or bile stasis [150]. However, a mechanistic 
understanding of the diverse molecular events underlying drug-induced cholestasis is incomplete to 
date. This is owed to the systemic nature of cholestasis involving the enterohepatic circulation (EHC) 
of BAs with biochemical transformation steps in different tissues along the gut-liver axis. Hence, a 
pure in vitro assessment is hampered by the fact that assays usually represent only one single isolated 
tissue. Due to the different involved scenes, deciphering the mutual interplay of the causes of drug-
induced cholestasis requires a tailor-made systemic approach of the BA metabolism and 
enterohepatic circulation.  
The fine-tuned enterohepatic BA transport system is one example of such an interplay. In 
consequence, drugs competing with endogenous BAs for the bile salt export pump (BSEP) or multidrug 
resistance (MDR) 3 transporter activity [190–193] are assumed to have a higher cholestatic potential. 
Even though transporter inhibition is a recognised confounding factor causing drug-induced 
cholestasis, no generally applicable workflow for a de novo assessment of the cholestatic potential of 
different drugs has been established. Especially animal toxicology screens may lead to false-negative 
results due to physiological differences between different species and are therefore not well-suited 
[10, 190]. A reliable and robust workflow should generally be applicable to any class of molecules. It 
should allow accounting for typical cholestasis-associated co-factors such as a delayed onset of 
cholestasis as well as the emergence at the systems level. Ideally, such a concept should avoid animal 
experimentation and be designed in a way that laboratory results can be easily extrapolated to the in 
vivo situation in humans. 
We present a model-based in vitro workflow integrating in vitro data into a previously developed 
physiology-based bile acid (PBBA) model of glycochenodeoxycholic acid (see Figure 15) to predict the 
cholestatic potential of a drug [31]. The PBBA model was used to contextualize in vitro expression data 
of key genes in the BA metabolism obtained from a specifically designed in vitro assay using human 
liver spheroids [23]. The different incubation times allow tracking the adaptation of hepatic tissue in 
response to repeated drug administration. The results are a quantitative estimate of changes in the 
BA metabolism induced by in vivo drug exposure and allow an evaluation of the cholestatic potential 
for each drug reflected by the specific change of BA levels in the clinical situation. In addition, the 
presented workflow can be used to assess the cholestatic potential of novel drugs by benchmarking 
this functional change against those compounds considered as reference hepatotoxicants in this 
study. 
 

12.2 Results 
We built a workflow to assess a drug’s clinical cholestasis risk based on physiology-based 
computational modelling and specifically designed in vitro experiments. The overall workflow consists 
of the following six steps (Figure 20: Step 1) drug-specific PBPK models simulating clinically relevant 
administration protocols were used to calculate in vivo-like liver concentration profiles, which were 
then translated into an in vitro experimental design; Step 2) 3D human liver spheroids (see 
Appendix B.1.1) were incubated with drug concentrations that correspond to simulated in vivo liver 
pharmacokinetic (PK) profiles; Step 3) omics data were generated as assay readout; Step 4) expression 
fold changes were integrated into the PBBA model, and drug-provoked changes in BA levels were 
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simulated; Step 5) simulated BA levels were compared to the clinical cholestasis risk for each drug. For 
new test compounds, Steps 1-5 can be performed, and the induced BA levels can then be 
benchmarked with the already categorized drug set to estimate the cholestatic potential of this new 
compound (Step 6). 
 

 
Figure 20 Schematic representation of the workflow followed in Chapter 12 Combining physiology-based computational 
modelling and targeted experimental data to benchmark the clinical cholestatic risk of drugs. 

In a preceding step, we selected ten compounds known to cause DILI events according to the 
literature, namely: 5-fluorouracil (5-FU), acetaminophen (APAP), azathioprine (AZA), cyclosporine A 
(CSA), diclofenac (DIC), isoniazid (ISO), methotrexate (MTX), phenytoin (PHE), rifampicin (RIF), and 
valproic acid (VPA) (Figure 21). These compounds were chosen to include various types of 
hepatotoxicity. Although some compounds are well-known examples of either drug-induced 
cholestasis (AZA and CSA) or drug-induced hepatocellular toxicity (APAP and 5-FU), others induce 
mixed types. Still, the clinical DILI risk of a drug, particularly its clinical cholestasis risk, is hard to 
quantify due to the largely patient-specific rather than the dose-related character of clinical DILI and 
drug-induced cholestasis. We, therefore, used various data resources to assess the clinical cholestasis 
risk of a given drug (Figure 21). First, cholestasis case numbers were taken from the Spanish DILI 
repository [55]. Similar information was obtained from cholestasis labels of LiverTox [53] and a 
comprehensive review of drug-induced cholestasis [194]. Finally, own patient data were included from 
patients with DILI at the Hepatotoxicity Clinical Unit of the Hospital HuLaFe in Valencia, Spain. In this 
data set, a total of 19 samples of patients displaying cholestasis after a DILI episode attributed to 
treatment with AZA or MTX were analyzed by time-of-flight mass spectrometry (TOF-MS) to 
determine a set of BAs present in sera. Hence, four different sources were considered to quantify the 
clinical cholestasis risk of a drug (Figure 21). 
 
 

 
Figure 21 Clinical cholestasis risk categorization of the ten hepatotoxicants. a [55], b [53], c [194], d see Appendix B.1.2).  
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Based on this data collection, all ten hepatotoxicants were assigned to a low, medium, or high category 
of the clinical cholestasis risk (Figure 21). For this, we checked for each compound if it was reported 
as cholestasis-inducing in any of the four sources. We used the cumulated number of occurrences 
(one point per source, without relative weighting) for each drug to differentiate the clinical cholestasis 
risk in the categories low (0 reports: 5-FU and APAP), medium (1 report: MTX, PHE, and VPA) and high 
(2+ reports: AZA, CSA, DIC, ISO, and RIF; Figure 21). This review of cholestasis reports is an essential 
prerequisite for our further analyses because it allows for an objective assessment of the clinical 
cholestasis risk for each compound, even though the amount of data varies considerably between the 
sources. 
Drug-induced cholestasis usually occurs after multiple administrations of a drug [194]. Therefore, it is 
mandatory to use a long-term in vitro assay to reproduce the drug intake scenario and the underlying 
mechanisms. To account for the adaptation of hepatic gene expression following repeated drug 
dosing, a specifically designed in vitro assay was implemented [23]. In order to mimic the actual in vivo 
PKs, the in vitro treatment concentrations were simulated beforehand with drug-specific PBPK models 
(Figure 20, Step 1). PBPK models for all drugs but MTX have been previously developed and validated 
(see Section 9.2, Figure 39 - Figure 48) [23], [15, 24, 25, 113–115]. An excerpt of the simulations is 
presented in Figure 22. The models were used to simulate concentration profiles in the interstitial 
space of the liver over two weeks of therapeutic dosing regimen according to the specific drug label 
(Figure 20, Step 2, Appendix B.1.1). To this end, the simulated PK profiles are discretized at multiple 
sampling times, and assay media, which correspond to the interstitial space of the liver, are replaced 
after 2, 8, and 24 hours each day [23]. The incubation concentrations for the 3D human liver spheroid 
thereby approximate the in vivo situation predicted by the specific PBPK models. As a readout, the 
gene expression fold changes of the three genes coding for BSEP, sodium-taurocholate co-
transporting polypeptide (NTCP), and cytochrome P450 (CYP) 7A1 (see Section 9.3 and Appendix B.1.3) 
from the measured transcriptome data were extracted and used to approximate changes in protein 
concentration in the model (Figure 20, Step 3). Unfortunately, protein abundance could not be 
measured for membrane-bound transporters. These concentration changes over the treatment time 
were then integrated into the previously published PBBA model (see Chapter 11 and [31]). The model 
simulates the systemic distribution and EHC of endogenous glycochenodeoxycholic acid (GCDCA) as a 
representative BA, including its synthesis, transport, distribution, and excretion. A scaling factor was 
used to calculate the total BA pool from GCDCA concentrations. The PBBA model was simulated with 
the updated transporter activities to investigate the effects on BA levels over two weeks of therapeutic 
drug treatment (Figure 20, Step 4). 
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Figure 22 Simulated time-concentration curves for parent drugs and metabolites (solid and dashed lines) generated with 
compound-specific PBPK models. The simulation outcomes are compared with experimental PK profiles (time series) as well 
as the amount excreted renally (single time point); 5-FU: red = 5-FU in plasma, turquoise = FBAL in plasma, purple = FUPA in 
plasma, green = 5FUH2 – all after 902 mg i.v. [195]; AZA: red = 6MP in plasma (50 mg i.v.), red = 6MP in plasma (100 mg p.o.) 
[196], [197]; APAP: red = APAP in plasma, ochre = APAPC in plasma, olive = APAPG in plasma, green = APAPS in plasma, 
turquoise = APAP in urine, blue = APAPC in urine, purple = APAPG in urine, pink = APAPS in urine; circles = 20 mg/kg p.o., [133] 
squares = 1 g i.v., [139] diamonds = 2 g p.o., [139] triangles = 1g p.o. [198]; CsA: red solid/circles = CsA in plasma (10 mg/kg 
i.v.), red dashed/squares = CsA in plasma (4 mg/kg p.o.) [199]; DIC: red = DIC in plasma, turquoise = DIC AGLU, solid/circles = 
50 mg p.o., [200] short dash/squares = 50 mg i.v., [201] long dash/diamonds = 50 mg p.o. [202]; INH: red = AcHz in plasma, 
ochre = DiAcHz in plasma, olive = AcHz in urine, turquoise = AcINH in urine, blue = DiAcHz in urine, purple = Hz in urine, pink = 
INH in urine – all after 300 mg p.o. [203]; MTX: red = MTX in plasma, green = MTX-OH in plasma, blue = MTX in urine, 
solid/circles = 2.5 mg p.o. dashed/squares = 5 mg p.o. [204]; PHE: red = PHE in plasma, solid/circles = 5 mg/kg i.v., 
dashed/squares = 5 mg/kg p.o. [205]; RIF: red = DE-RIF in plasma, green = RIF in plasma, blue = RIF in urine, solid/circles = 
600 mg i.v., [206] dashed/squares = 300 mg i.v., long/dash/diamonds = 450 mg p.o. [207]; VPA: blue = VPA in plasma, green 
= omega-ox in plasma, red = beta-ox in plasma, solid/circles = 800 mg p.o., [208] dashed/squares = 800 mg i.v. [209] For more 
information on model development and validation, please refer to Figures S1–S10.  

*FUPA, fluoro-beta-ureidopropionate; FBAL, fluoro-beta-alanine; FUH2, dihydrofluorouracil; 6MP, 6-mercapto-purine; APAP-
C, acetaminophen-cysteine; APAP-G, acetaminophen glucuronide; APAP-S, acetaminophen sulfate; DIC AGLU, diclofenac acyl 
glucuronide; DiAcHz, Diacetylhydrazine; AcHz, Acetylhydrazine; Hz, hydrazine; AcINH, N-Acetylisoniazid; MTX-OH, hydroxy-
MTX; DE-RIF, desacetyl rifampicin; omega-ox, lumped metabolites from omega oxidation; beta-ox, lumped metabolites from 
beta-oxidation.  

The simulations were performed for all ten drugs in a virtual population of healthy individuals, and the 
resulting changes in BA levels for different tissues were analyzed. In previous work, a virtual 
population of 1,000 individuals with variability in base anthropometry, physiology, and protein 
concentration was found to adequately describe the physiological variability of plasma BA levels 
(Figure 17). Individuals with disadvantageous anthropometric and physiological parameters may 
display BA levels significantly affected by drug administration and, therefore, represent subgroups of 
patients who are highly susceptible to drug-induced cholestasis. 
The population simulation illustrates the time-dependent development of BA levels in response to the 
adaptation of hepatic gene expression during repeated drug dosing (Figure 23, Figure 49). Changes in 
BA concentrations are exclusively caused by the measured alterations in gene expression, which are 
simultaneously contextualized within the PBBA model. BA levels were simulated for the therapeutic 
doses of all 10 model drugs. The results are summarized with boxplots in Figure 23. Each boxplot 
presents the simulation of the same 1,000 healthy individuals with integrated in vitro changes after 
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treatment with one of the ten drugs. The plots show a drug-specific development of BA levels over 
the treatment time. 
 

 
Figure 23 Simulation results of the PBBA model for the ten hepatotoxicants. Each box plot shows the simulated plasma BA 
levels of 1,000 virtual patients for one drug. The boxes represent the 25 % and 75 % quartiles of the BA levels of the population 
per day. The median value is marked as a horizontal line within the box, whereas the whiskers show the minimal and maximal 
values reached. The blue horizontal line describes the median before the treatment. The whiskers show the minimum and 
maximum values reached among the 1,000 individuals over the respective day. The red horizontal line describes the maximal 
measured value of a patient with cholestatic DILI from HuLaFe after respective drug treatment (MTX and AZA).  

For 5-FU, median plasma BA levels are reduced over the whole treatment period (Figure 23). For APAP, 
VPA, AZA, and DIC, BA levels fluctuate, but they ultimately increase. The remaining five compounds 
(MTX, PHE, CSA, ISO, and RIF) rise continuously at later time points. Comparison with measured 
patient BA levels after an MTX-induced cholestasis event (red line) shows good agreement with our 
simulated BA levels. This finding strongly supports the general relevance of computational prediction. 
For AZA, the clinically measured BA levels were even higher than in our simulations. In both cases, our 
results indicate the need for longer exposure times above seven days to identify clear trends in the 
drug-induced effect. 
We next analyzed the predicted BA concentrations in liver cells where increased BA levels may 
ultimately induce apoptosis of hepatocytes [150]. Of note, it has been shown before that BA levels in 
tissue may differ from those in systemic blood plasma [31, 157]. We, therefore, compared the mean 
of the 10 % maximal BA levels reached in blood plasma with those simulated in liver cells (Figure 24). 
It was found that liver concentration levels exceeded plasma BA levels at 14 days for population 
outliers. This is in contrast to the average population, where such an effect is not observable (mean 
area under the curve (AUC) as well as mean maximum concentration (cmax), results not shown). For 
population outliers, all drugs are dense together after three days of treatment, whereas they diverge 
on day 7 and day 14 and ultimately cover a wide range of BA concentrations. In agreement with 
another study [210], the regression line reveals that liver exposure disproportionately exceeds the 
blood plasma levels the longer the treatment period is. This confirms that the systemic plasma levels 
are not sufficient for describing the accumulation of BA in the liver. 
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Figure 24 Scatterplot of 10 % highest AUC values reached in venous blood plasma vs. liver cells per drug in the simulations of 
the PBBA model. Open circle = 5-FU, plus = APAP, closed circle = MTX, left-pointing triangle = PHE, cross = VPA, square = AZA, 
up-pointing triangle = CsA, down-pointing triangle = DIC, diamond = ISO, star = RIF. The light blue line is the linear regression 
line.  

This observation is further confirmed by the percentage of individuals in the virtual population whose 
tissue concentration levels lie above a particular threshold value. From in vitro measurements, it has 
been estimated that BA levels above 15 μmol/L induce integrin signalling, BA levels above 50 μmol/l 
cause apoptosis, and BA levels above 200 μmol/l lead to necrosis [150]. Liver concentrations of BA 
induced by all ten drugs reach values above 15 and 50 μmol/L, respectively (Table 8). Even the critical 
value of 200 μmol/L is exceeded by AZA, MTX, PHE, CSA, and DIC. Consequently, for these drugs, one 
would expect cholestasis and liver damage because of BA accumulation, at least in susceptible 
patients, represented through increased tissue concentration levels (Table 8). 
The various analyses indicate significant differences in the plasma BA levels induced by different drugs 
at therapeutic doses (Figure 23). Because the observed drug response, however, is exposure-driven 
due to the underlying PBPK-based assay design, the simulated BA levels were again divided by the 
therapeutic drug dose applied (Figure 25). This normalisation, hereafter referred to as “cholestatic 
potential”, is conceptually similar to the potency of a drug in pharmacology. Of particular note, this 
normalization ensures that drugs with a similar cholestasis risk show a similar BA response at 
therapeutic dose levels. In our analysis, the ten tested drugs were first ranked according to their 
cholestatic potential (Figure 25, Figure 20, Step 5). In the second step, the bars were coloured 
according to the clinical cholestasis risk of each drug (Figure 25, Figure 21). This visualization shows a 
good correlation between the cholestatic potential, which is quantified by the size of each bar, and 
the clinical cholestasis risk indicated by the colour code (Figure 21). On the one hand, CSA, ISO, DIC, 
and AZA show a large cholestatic potential in perfect agreement with their high clinical cholestasis 
risk. On the other hand, 5-FU, VPA, and APAP were all found to have a small cholestatic potential, 
again corresponding to the low clinical cholestasis risk. Notably, the choice of the PK parameter (AUC 
or cmax) or the compartment (venous blood plasma or liver intracellular) has only a slight impact on 
the ranking, with single drugs changing positions among each other in the low/medium-risk range 
(VPA, 5-FU, and APAP) or the high-risk range (ISO and CSA or AZA and DIC). The notable outlier in the 
ranking of the cholestatic potential is MTX, which is in the top position concerning the cholestatic 
potential but has only a medium clinical cholestasis risk in clinical practice. 
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Figure 25 Ranking of the ten hepatotoxicants according to their cholestatic potential. The colour represents the clinical 
cholestasis risk as defined in Figure 21.  

Table 8 Critical thresholds and simulated BA concentrations. Percentage of virtual individuals with simulated BA levels in liver 
cells above critical thresholds for signalling (15 μmol/l), apoptosis (50 μmol/l), and necrosis (200 μmol/l) [150] 

Drug >15 μmol/l > 50 μmol/l > 200 μmol/l 

5FU 31.5 1.3 0 
APAP 51.2 13.2 0 
MTX 65.1 27.1 0.4 
PHE 54.7 21.4 0.3 
VPA 44.3 15.2 0 
AZA 51.4 21.1 0.5 
CSA 59.3 21.4 0.2 
DIC 70.7 17.7 0.2 
ISO 44 14.2 0 
RIF 57.9 6.7 0 

 

Because the cholestatic potential of each of the ten hepatotoxicants has been quantified 
independently, the clinical cholestasis risk of a novel drug candidate can be analyzed with the same 
model-based in vitro workflow. The relative ranking between known hepatotoxicants, as done in this 
study, allows a direct assessment of the to-be-expected clinical cholestasis risk of a new 
pharmaceutical development candidate. The proposed steps for benchmarking the cholestatic 
potential of novel drugs are as follows: 

1. Build a PBPK model for a drug candidate from in vitro measurements and simulated in vivo-
like liver drug concentrations, which can then be applied in an in vitro cell assay; 

2. contextualize the measured expression data with the PBBA model and predict alterations of 
BA levels for the drug candidate; 

3. calculate the cholestatic potential of the drug candidate by dividing the BA levels by the 
applied therapeutic dose of the drug candidate; 

4. rank the cholestatic potential of the drug candidate within a set of known benchmark 
compounds. 

This benchmarking of the cholestatic potential finally allows the assignment of the clinical cholestasis 
risk to a novel drug candidate at an early phase of clinical development based on standard preclinical 
in vitro information without the need for animal sacrifice. 
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12.3 Discussion 
Identifying and assessing the cholestasis risk of drugs is a challenge in drug development and clinical 
practice [30]. We applied a model-based integrative workflow in which time-series expression data 
were contextualized in a physiology-based bile acid model to simulate changes in BA levels after 
repeated drug dosage (Figure 20). In the first step, gene expression data were obtained from a 3D 
human liver spheroid assay designed to reproduce in vitro the hepatic drug exposure occurring in vivo 
after multiple drug administration at physiologically relevant concentrations [23]. The hepatic drug 
exposure was estimated for each substance by a drug-specific PBPK model, which requires basic 
physicochemical information as well as a functional absorption, distribution, metabolism, and 
excretion (ADME) understanding of the respective compound. Such a level of information is available 
at late preclinical and early clinical phases and does not rely on animal data, which makes our approach 
complementary to current workflows in preclinical development. In a second step, gene expression 
data were contextualized in the PBBA model [31] to simultaneously integrate changes in the 
expression of multiple hepatic transporters and enzymes over time. This is an extension of current 
approaches to identify cholestatic compounds from isolated targets because it allows the observation 
of time-resolved long-term effects and the complex interplay of multiple transporters and enzymes in 
BA metabolism within an organism. In that sense, our generic workflow is an example for analysis at 
the systems level in pharmacology and toxicology by integrating in silico, in vitro, and in vivo layers 
and accounting for tissue interplay at the organ level. 
A computational model of bile acid homeostasis has been developed and validated in the commercial 
DILIsym platform, which has been applied in several studies [30]. However, because DILISym is a 
closed-source tool, customized modifications, such as in the present work, are at least difficult to 
implement. Our simulations allow analyzing the functional effect of repeated drug administration on 
BA metabolism, including changes in BA levels in blood plasma and organs, such as the liver. The time-
series data account for the adaptation of hepatic gene expression following multiple drug 
administration to cover a potentially delayed onset of cholestasis. The results thereby enhance a 
mechanistic understanding of physiological processes underlying chronic toxicity, for example, 
increased accumulation of BAs in hepatocytes due to a locally impaired excretion transport. 
Furthermore, the normalization of the simulated BA profiles by the therapeutic drug dose allows for 
calculating the cholestatic potential of a drug, which is then ranked among different hepatotoxic 
drugs. This ranking, which is only obtained from the model-based in vitro workflow, correlates very 
well with the clinical cholestasis risk of the drugs (Figure 25). The presented workflow thus provides a 
possibility for benchmarking the to-be-expected cholestasis risk for novel drug candidates to a set of 
marketed compounds with a known risk profile (Figure 20, step 6). Because the workflow is based on 
the whole-body PBBA model, it accounts for different interfering factors of BA metabolism at the 
systems level along the enterohepatic circulation of BAs and could not have been achieved with 
standard in vitro assays alone [44]. We also included the simulation of a virtual population to account 
for individuals with a physiological predisposition for cholestasis [31]. Remarkably, our workflow does 
not rely on any animal data and, therefore, can significantly contribute to applying the 3Rs principles 
for animal welfare in pharmacology and toxicology [211]. 
The original version of the PBBA model for healthy individuals was validated with BA concentrations 
in different tissues, transition times, or turn-over times [31]. In the current extension, the model-based 
in vitro workflow presented was used to describe changes in BA plasma levels in patients receiving 
repeated drug treatment based on in vitro expression data. Although usage of protein expression data 
would have been clearly preferable, transcriptome data can be assumed as a reasonable surrogate for 
protein abundance because the correlation between gene and protein expression is generally positive 
[212]. The validation of the resulting BA profiles with clinical data (Figure 23) is not straightforward 
due to the limited availability of adequate patient data. In real life, patients are only hospitalized once 
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the DILI event has occurred, and the damage is already apparent and diagnosable. Hence, the onset 
of the cholestatic event, which is what the presented workflow basically describes, is very difficult to 
obtain from clinical records. Besides, patients hospitalized after a DILI event have usually been treated 
simultaneously with several drugs. In this study, we had access to data from patients with DILI after 
MTX or AZA monotherapy. Comparing the measured BA levels in these patients and our computational 
simulations overall showed a good agreement. In the future, more clinical records of DILI cases in 
individual patients would be a powerful data source for model refinement and further benchmarking. 
Although there is generally a good correlation between the clinical cholestasis risk and the estimated 
cholestatic potential (Figure 25), deviations can be observed for MTX. Among the investigated drugs, 
the highest rise in BA levels was consistently predicted for MTX, which seems to overestimate the 
clinical cholestasis risk where MTX is only ranked “medium” (Figure 21). Because MTX is usually known 
to induce miscellaneous damage, a possible explanation for this deviation is that the clinical 
cholestasis risk of this drug is masked by the predominant hepatocellular damage. Hence, the 
simulated elevated BA levels possibly induce cholestatic damage, but the hepatocellular damage 
triggers the clinically apparent symptoms. Our clinical data support this hypothesis, where we have a 
patient with MTX-induced cholestasis with elevated BA levels matching those of our simulations. 
For future applications, the inclusion of more compounds would be beneficial to enhance the 
predictive accuracy of the benchmarking. A current limitation of the PBBA model is that it describes 
the enterohepatic circulation of only a single BA and considers only four active processes to ensure 
the identifiability of corresponding model parameters. Future versions of the PBBA model will include 
different BAs and account, in particular, for the biochemical conversion among them. Further 
extension of the computational model could include consideration of specific effect models [79, 213, 
214]. Likewise, direct drug effects may be described if inhibitory binding constants were available for 
all ten compounds. Alternative calculations of the cholestatic potential, for example, through a 
normalization by bioavailability, are conceivable. 
Altogether, the contextualization of in vitro expression data in a physiology-based computational 
model allows describing the functional effect of drug administration on BA metabolism at the systems 
level. Our workflow enables a time-resolved investigation of cholestasis-inducing drugs by accounting 
for the adaptation of hepatic gene expression in response to multiple dosages. Of note, changed BA 
levels in hepatic tissue can be quantified, which may differ considerably from BA plasma levels [157]. 
We expect our workflow to significantly support the application of animal-free toxicity tests in drug 
development in the future.



 
 

 
 

13 PBPK-guided assessment of a liver function test 
 

Abstract 

Idiosyncratic adverse drug reactions (ADR) occur at first glance independently from the dose of 
administered drug, sometimes with long latency, and are frequently related to a patient’s individual 
metabolic phenotype. The long period of time that may elapse between the drug administration and 
the adverse reaction, together with the subject-specific dependency of idiosyncratic ADRs, hamper 
their diagnosis and prediction as a clear causal correlation between administration and reaction is 
difficult to establish. However, a reliable prediction of ADRs for individual patients would be of 
immediate benefit in clinical routine to ensure patient safety and to design optimal individual 
treatment schedules. So far, the prediction of idiosyncratic ADRs towards a specific drug is challenging 
and requires complex, invasive, expensive, or time-consuming testing. Thus, a reliable, convenient, 
and accessible test for idiosyncratic ADRs is required, for example, by quantifying the metabolic 
activity of a patient through the pharmacokinetics (PK) profile of a specific probe drug. In this work, a 
whole-body physiologically-based pharmacokinetic (PBPK) model for the flu medication Frenadol® 
was built to assess the feasibility of using this drug as a probe drug for a metabolic phenotyping test. 
Frenadol® is a drug cocktail containing caffeine, dextromethorphan, acetaminophen (APAP), and 
chlorpheniramine. After establishing reference models for the four active ingredients and their main 
metabolites, virtual populations with only a biometrically varied metabolic phenotype or an additional 
enzymatically varied one were simulated. By analysing the effect of these different sources of 
variability on the drug PK, diligent sampling time points and adequate molecules for the phenotyping 
test were derived. The simulations showed that for a simultaneous activity assessment of cytochrome 
P450 (CYP) 1A2, CYP2D6, CYP3A4, UDP-glucuronosyl transferase 1A9, and possibly CYP2E1 activity, 
plasma level measurements between three and five hours after drug administration need to be 
considered for the following molecules: the caffeine metabolite paraxanthine, dextromethorphan and 
its metabolites dextrorphan and 3-hydroxymorphinan, as well as the APAP metabolites APAP-
glucuronide, and APAP-cysteine. The presented PBPK model-based approach can be used to optimize 
the clinical study design for patients’ phenotyping in a fast, reliable, and non-invasive manner. By that, 
this method promotes personalised medication decisions and contributes to a timely prediction and 
prevention of idiosyncratic ADRs. 

 

 

 

In preparation: 

Baier, V.; Schneider, A. R. P.; Kreuzer, H.; Cordes, H.; Castell, J. V.; Blank, L. M.; Kuepfer, L. PBPK-guided 
assessment of a liver function test. 

Contributions: 

V. Baier developed the model, performed the analysis, prepared the figures, and wrote the chapter. 
H. Kreutzer and H. Cordes supported the literature research and model development. A.R.P. 
Schneider, L. Kuepfer, and L.M. Blank discussed the data and reviewed the chapter. J.V. Castell 
registered the original idea and clinical study of Hepatotest with Frenadol®. 

 



 
PBPK-guided assessment of a liver function test 

80 

13.1 Introduction 
Drug-induced adverse reactions are serious incidents in clinical practice for the public health systems 
as well as for the drug-developing industry [215]. Many adverse drug reactions (ADRs) are idiosyncratic 
cases and, therefore, not exactly dose-related. Instead, these ADRs may be influenced by patient-
specific factors such as co-medication, genotype, lifestyle, or health state. Thus, largely, the patient-
specific factors are putting an individual at risk of experiencing a toxic reaction to an otherwise broadly 
well-tolerated drug. An easy-to-perform test on the clinical bedside to evaluate a patient’s risk of ADRs 
would be highly beneficial to avoid idiosyncratic ADRs. Such a test should be minimally invasive, well-
tolerated, and low-cost. 
While many of the above-mentioned patient-specific factors can be read from health records, the 
metabolic phenotype represents an additional pre-disposition that is difficult to estimate beforehand 
since it cannot be measured easily. The metabolic capacity of one or more enzymes important for drug 
pharmacokinetics (PK) is not only determined by the genotype but also influenced by other personal 
conditions such as individual co-factor availability or even lifestyle, e.g., smoking. Therefore, the sole 
assessment by genetic sequencing does not allow for reliably identifying the phenotype and, thus, 
patients at risk for ADR [215]. 
A more suitable approach than sequencing is a functional assessment of the metabolic phenotype. 
This can be done by measuring a probe drug’s PK parameters which are governed by absorption, 
distribution, metabolisation, and excretion (ADME) processes and, hence, the patient’s individual 
metabolic activity. Such functional measurements of individual drug metabolism should be performed 
using a low-dose non-toxic drug or drug cocktail to avoid challenging a possibly affected patient with 
a potentially harmful drug. Ideally, the involved ADME enzymes should be drug-specific to avoid 
interactions but also representative of a broad spectrum such that a large set of phase I and II enzymes 
is covered. 
Some non-model-based approaches for probe-drug mediated phenotyping can be found in the 
literature. A popular example is assessing the ratio of caffeine (CAF) and its primary metabolite 
paraxanthine (PXT) as a surrogate for the cytochrome P450 (CYP) 1A2 capacity [26, 140]. For CYP2D6, 
extensive metaboliser (EM) and poor metaboliser (PM) genotype-determined phenotypes are known. 
Measuring dextromethorphan (DEX) and one of its metabolites, 3-methoxymorphinan (3MM), can be 
considered as surrogates for CYP2D6 metabolism activity since they are only measurable under 
CYP2D6 deficiency [27]. However, these approaches do not account for patients’ individualities and, 
therefore, tend to be imprecise and are hard to translate to other drugs’ metabolism due to a missing 
separation of enzymatic and non-enzymatic contributions to PK variability like age or smoking. 
Additionally, these tests characterise only single enzymes and are generally performed separately, 
where it would be desirable to cover a broad spectrum of enzymes within a single test. 
We here investigated the application of the drug cocktail Frenadol® (frenadol) for metabolic 
phenotyping. This analysis is based on the concept of the clinical study Hepatotest [216]. Frenadol is 
a marketed over-the-counter (OTC) drug containing low doses of CAF, DEX, acetaminophen (APAP), 
and chlorpheniramine (CPM) [217]. The enzymes involved in the metabolism of this drug cocktail are 
differential, mainly CYPs, glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). The aim of 
our analysis was to investigate the opportunities and limitations of performing a metabolic test with 
frenadol. For this purpose, we built PBPK models for all four substances contained in frenadol. The 
models were used to quantify the variability in the drug PK by simulations of virtual populations. 
Parallel simulations of all test substances were then used to find optimal time points for sample 
collection at which individuals at risk could be best distinguished from the non-risk population. In this 
way, the test design was optimized to minimize the number of required blood samples and to 
determine conclusive sampling time points.  
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13.2 Results 
To assess the use of frenadol for metabolic phenotyping, four PBPK models were built based on 
published data on physico-chemistry and PK. The models were used to characterize the range of PK 
profiles in a virtual population. By adding a literature-informed variability on enzyme activity, it was 
possible to identify those phenotypes that might be prone to experience ADRs. Based on the analyses 
of the population simulations, recommendations for the study design were derived (Figure 26). In the 
following, we will first describe how the reference PBPK models have been developed and validated.  

 

 
Figure 26 Overall workflow the assessment of the phenotyping test. The workflow is based on three main steps. First, PBPK 
models for all four substances were built based on literature PK data to simulate the reference PK range. Next, the virtual 
population were simulated with and without an additional variability in the enzymatic activity based on the literature. The 
population results were stratified into three phenotypes, and the differences in the PK were assessed to support the test 
design.  

 

13.2.1 PBPK model building 
PBPK models were built for the four substances contained in frenadol: CPM – an antihistamine; DEX – 
an anti-tussive; CAF – a central nervous system stimulant; and APAP – a commonly used painkiller. 
The OTC drug frenadol is applied against flu symptoms and formulated as a powder to be dissolved in 
water. The main metabolising enzymes are CYP1A2 for CAF, CYP2D6 and 3A4 for CPM and DEX, as well 
as UGT1A9, CYP2E1 or SULT1A1 for APAP. A detailed overview of the metabolism as it was 
implemented in the four substance-specific PBPK models is depicted in Figure 27. 
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Figure 27 Overview of the main drug metabolising steps of frenadol represented in PBPK models. The main metabolising 
enzyme of CPM is CYP2D6, although CYP3A4 contributes especially under CYP2D6 deficiency (not modelled). CAF is mainly 
metabolised by CYP2A1 into PXT, TBR and TPY. The metabolism of DEX is governed by CYP2D6 and CYP3A4. DOR is the primary 
metabolite of DEX, metabolised by CYP2D6 and then subsequently glucuronidated by UGTs or, to a minor extent, further 
metabolised to 3HM. Under CYP2D6 deficiency, 3MM is built up by CYP3A4 and converted to 3HM. The latter undergoes 
glucuronidation by UGT. APAP is metabolised via UGTs, CYPs, and SULTs into the metabolites APAP-G, NAPQI, and APAP-S, 
respectively. NAPQI is rapidly converted to APAP-GSH by GSTP/GSMP and then reacts to APAP-C. All molecules except for 
NAPQI are renally excreted. The enzymes which are assessed for metabolic phenotyping are depicted in blue boxes. Potentially 
successful phenotyping candidate enzymes and molecules are printed in bold (see Section 13.2.3). 

One of the substances contained in frenadol is CPM. Although an alternative pathway via CYP3A4 
exists, CPM is metabolised in the liver to two metabolites - mono- and di-desmethyl chlorpheniramine 
(DCPM and DDCPM) via CYP2D6 in most subjects [218]. The renal excretion of CPM is highly dependent 
on the urinary pH, i.e., values of <1 % renal excretion in alkaline but up to 25 % in acidic urine have 
been quantified [218]. The prediction of CPM PK is hampered by different enzyme affinities towards 
the CPM racemates [65]. However, the racemic composition of CPM in frenadol is not reported.  
The baseline PBPK model of CPM incorporates clearance processes via CYP2D6 and the kidneys after 
IV and PO administration. The racemic mixture of CPM was neglected for PBPK model building, and 
the pH-dependent renal excretion was not taken into account. The compound properties of CPM and 
its metabolite DCPM are summarised in Table 14. DDCPM was not modelled due to insufficient data. 
Figure 28 shows the results of the intravenous (IV) simulation (Panel A) and the oral (PO) simulation 
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(Panel B) compared to in vivo PK data from various published studies, split into fitting and validation 
data sets (see Table 3). The overall agreement of simulated results and the published blood time-
concentration curves was good, while the predictions on urine differed significantly from the observed 
data. All performed simulations are summarised in Figure 28 (Panel C). 
The second substrate of CYP2D6 and CYP3A4 in frenadol is DEX. In the majority of patients, DEX is 
rapidly metabolised to dextrorphan (DOR) via CYP2D6. This metabolic step is so effective that DEX is 
usually only detectable in very small amounts in plasma [123]. Subsequently, DOR itself is either 
directly glucuronidated for excretion or metabolised to 3-hydroxymorphinan (3HM) and then 
glucuronidated. The secondary pathway contributing to the 3HM pool is the metabolisation of DEX to 
3-methoxymorphinan (3MM) via CYP3A4 and to 3HM via CYP2D6 (see Figure 27). All molecules are 
also quantifiable in urine [219]. For CYP2D6 poor metabolisers, higher amounts of DEX and 3MMs are 
detected than for fast metabolisers [219].  
The PBPK model of DEX describes the metabolic clearance processes via CYP2D6 and CYP3A4, as well 
as the glucuronidation by UGTs. Additionally, renal clearance of all molecules is implemented. The 
used parameters of the PBPK model are summarised in Table 15. For model fitting, CYP2D6 EM data 
was used since EM represents the common phenotype [17]. For PMs, the enzyme concentration was 
reduced without further parameter fitting to be consistent with the phenotype-specific simulations 
for further analyses of all compounds. The simulation results compared to the observed 
concentrations of various studies (Table 3) are presented in Figure 29. Representative simulations of 
IV and PO administration of DEX are shown in Figure 29, Panels A and B, respectively. The model 
captures the PK of DEX and its metabolites reasonably well, as summarised in Figure 29 (Panel C).  
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Figure 28 CPM PBPK model simulations. Panel A shows CPM plasma concentration (red) and fraction excreted to urine 
(turquoise) after 5 mg (18.2 μmol) IV administration in one subject. Panel B shows the CPM plasma concentration after PO 
administration of 8 mg (29.1 μmol). Panel C shows observed versus predicted concentrations of all simulated doses from 
various references. * simulation scenario used for fitting 
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Figure 29 DEX PBPK model simulations. Panel A shows DEX plasma concentration (red) after 0.5 mg/kg (1.84 μmol/kg) BW IV 
infusion. Panel B shows the DEX and its metabolites in plasma after PO administration of 30 mg (110 μmol/kg) BW in an EM 
phenotype. Panel C shows observed versus predicted concentrations of all simulated doses from various references. BW; 
bodyweight; * simulation scenario used for fitting 
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The third compound of the drug cocktail frenadol is CAF, which is metabolised into several 
metabolites. All of the three considered metabolites, paraxanthine (PXT), theobromine (TBR), and 
theophylline (TPY), are produced by CYP1A2 [220]. As CAF, also its metabolites are renally excreted 
and measurable in urine. The PBPK model for CAF and its metabolites was built, including the CAF 
metabolisation by CYP1A2 to PXT, TBR, and TPY. and linear renal clearance for all molecules. The 
parameters used in the model are listed in Table 16, while the simulation results are shown in Figure 
30. Panel A shows an exemplary CAF PK profile in plasma and urine after IV administration. The PBPK 
model describes the data well. In panel B, the profiles of CAF and its metabolites PXT, TBR, and TPY 
are excellently described by the PBPK model. In Panel C, an observed vs. predicted plot presents the 
overall performance of the model with respect to the literature data (Table 3), showing a few outliers, 
mainly in urine measurements.  
The fourth substance contained in frenadol is APAP, also known as paracetamol. In the metabolism of 
APAP, various enzymes of different classes are involved. The main metabolite APAP glucuronide 
(APAP-G) is formed by the glucuronidation of the parent via UGTs, while APAP sulfate (APAP-S) is 
formed by SULTs. The toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI) is mainly formed via 
CYP2E1, usually not quantified but rapidly metabolised to APAP glutathione (APAP-GSH) via 
glutathione S-transferases (GST) and subsequently to APAP cysteine (APAP-C) [221, 222]. The 
metabolites, except for NAPQI, as well as the parent drug, undergo renal excretion. 
All the above-described metabolisation processes are performed by multiple enzymes of the same 
family, each with one main contributor. Thus, only one enzyme was implemented per metabolisation 
step in the model, namely UGT1A9, SULT1A1, CYP2E1, and GSTP1. Since the metabolisation of NAPQI 
to APAP-GSH is considered to be rate-limiting for the formation of APAP-C, APAP-GSH was not 
modelled explicitly in the model [222]. The parameter values used in the PBPK model are summarised 
in Table 17. The simulation results are presented in Figure 31. In Panel A and B, exemplary APAP PK 
profiles in plasma and urine after IV and PO administration are presented, respectively. All molecules 
are well-described apart from APAP-C, which is underpredicted. Panel C shows the observed vs. 
predicted data of all performed simulations indicating good overall agreement of the simulated with 
the published PK data (Table 3). 
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Figure 30 CAF PBPK model simulations. Panel A shows CAF plasma concentration (red) and fraction excreted to urine 
(turquoise) after 5 mg/kg (25.8 μmol/kg) BW IV administration. Panel B shows the CAF and its metabolites in plasma after 
PO administration of 250 mg (1289 μmol) caffeine. Panel C shows observed versus predicted concentrations of all simulated 
doses from various references. BW, bodyweight; * simulation scenario used for fitting 

  



PBPK-guided assessment of a liver function test 

88

 

 

 
Figure 31 APAP PBPK model simulations. Panel A shows APAP and metabolite plasma concentration and fraction excreted to 
urine after 20 mg/kg (132.5 μmol/kg) BW IV administration. Panel B shows the APAP and its metabolites in plasma after PO 
administration of 20 mg/kg. Panel C shows observed versus predicted concentrations of all simulated doses from various 
references. BW, bodyweight; * simulation scenario used for fitting 
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13.2.2 Population simulations 
So far, reference PBPK models of all four compounds in frenadol have been developed and established 
for an average individual. In the following, these models were next used for analysing a possible 
distinction between metabolic phenotypes. For this, multiple population simulations were performed 
for the physiologically identical 1000 virtual individuals. First, only biometric variability in PK exposure 
was considered by modifying age, body size, and weight and accordingly sampled organ volumes and 
blood flow rates. Second, variability in the metabolic activity was additionally taken into account by 
changing the enzyme concentrations. Details on the population generation can be found in Section 
10.3.  
The population simulations allow for estimating the average range of drug concentration among 
individuals. In order to differentiate between low-risk and high-risk patients, the contribution of the 
biometric factors, on the one hand, and the metabolic factors, on the other hand, need to be 
examined. The resulting concentration quantiles of all 1000 individuals are shown in Figure 32 - Figure 
35, where each Panel A shows the simulation with variability in the base physiology only, while Panel 
B shows the simulations split according to the additionally varied enzyme concentration of the virtual 
individuals. For classification of the various phenotypes, population PK profiles were differentiated 
into average metabolisers (10-90 % quantiles), low metabolisers (<10 % quantiles), and high 
metabolisers (> 90 % quantiles).  
For CPM, the sole physiology-induced variability is small (Figure 32A). At the same time, the results 
split by CYP2D6 phenotype for the physiology and enzyme-based varied population show a clear 
separation between the concentration bands (Figure 32). The same applies to the results of the 
metabolite DCPM.  
The PBPK model of the other CYP2D6 substrate, DEX, was simulated with the same populations and 
variability in CYP2D6 concentration as CPM. The bandwidth of the biometrically varied population is 
smaller compared to the one with additional enzymatic variability (Figure 33). The results of the latter 
show huge variability but no clear separation between the metabolising phenotypes. In the very 
beginning, the separation of DOR and DOR-gluc bands is visible, especially between the low group 
compared to the other groups. However, the median concentrations of 3MM are separable over the 
whole time course (Figure 33B). When split by the CYP3A4 phenotypes, a separation for 3HM over the 
first five hours was achieved but not for other metabolites.  
In the case of CAF, the physiologically induced variability is considerably smaller than the additional 
enzyme-induced variability (Figure 34). According to the simulations, the medians were separable for 
all molecules, but the percentiles of the metaboliser groups were overlaying. For PXT, at least 
separation between the high and low phenotype was possible for later time points, while a distinction 
from the average type was not achieved.  
For APAP, multiple scenarios were simulated. Generally, the physiology-induced variability is not as 
low as for the other drugs compared to the combined one. For the population with only additional 
variability in CYP2E1, a clear separation in the APAP-C metabolite can be seen (Figure 35, 2nd column). 
The same holds for NAPQI, but the concentrations are very low and neglectable. However, a combined 
enzyme variability of CYP2E1 and UGT1A9 blurs the separation of the phenotypes in APAP-C (Figure 
35, 3rd column). Instead, the parent compound gets separable, which indicates that UGT governs APAP 
availability. This is confirmed by the simulation of a population with only UGT variability without 
additional variability in CYP2E1 (Figure 35, 4th column). An additional variability for SULT was not 
tested.  
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Figure 32 CPM population comparison. Each row shows the results of one molecule. The left panel shows the 50th, 90th, and 
10th quantiles of the population simulation with only physiological variability. The right panel shows the quantiles of the 
population with the additional variability in the CYP2D6 concentration. The low activity (purple) group and high activity 
(green) are based on the individuals with 10 % lowest and highest enzyme concentrations, respectively, while the average 
group comprises the remaining individuals. 
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Figure 33 DEX population comparison. Each row shows the results of one molecule. The left panel shows the 50th, 90th, and 
10th quantiles of the population simulation with only physiological variability. The second and third panels show the same 
quantiles but of the population simulations with the additional enzymatic variability, split by CYP2D6 and CYP3A4, 
respectively. The low activity (purple) group and high activity (green) are based on the individuals with 10 % lowest and 
highest enzyme concentrations, respectively, while the average group comprises the remaining individuals. 
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Figure 34 CAF population comparison. Each row shows the results of one molecule. The left panel shows the 50th, 90th, and 
10th quantiles of the population simulation with only physiological variability. The right panel shows the quantiles of the 
population with the additional variability in the CYP1A2 concentration. The low activity (purple) group and high activity 
(green) are based on the individuals with 10 % lowest and highest enzyme concentrations, respectively, while the average 
group comprises the remaining individuals. 
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Figure 35 APAP population comparison. Each row shows the results of one molecule. The left panel shows the 50th, 90th, and 
10th quantiles of the population simulation with only physiological variability. The second and third panels show the quantiles 
of the population with the additional enzyme variability split by CYP2E1 and UGT1A9 activity, respectively. The fourth panel 
shows the simulation results of the same population but without variability in the CYP2E1 concentration. The low activity 
(purple) group and high activity (green) are based on the individuals with 10 % lowest and highest enzyme concentrations, 
respectively, while the average group comprises the remaining individuals.  

 

13.2.3 Test design 
The results of the population simulations were used to design an optimal sampling scheme in terms 
of descriptive sampling time points and molecules for metabolic phenotyping with frenadol. The 
analysis revealed that depending on the metabolising enzyme and the respective phenotype, only 
designated metabolites are representative and suitable for the differentiation of phenotypes. 
Furthermore, a deliberate choice of blood sampling time points after administering the test cocktail is 
crucial to capture the differences between phenotypes. Figure 36 visualises the concentrations of the 
different candidate metabolites at different time points as a box plot. Time points between 2 h and 
24 h were analysed and can be found in Figure 52 - Figure 58. The simulation results were tested for 
their statistical significance, i.e., it was calculated whether the median concentrations in the three 
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phenotype subgroups (low, average, high) could be differentiated according to the concentration 
ranges at the various time points. The results are indicated with asterisks in Figure 36. 
The APAP model simulations revealed possibilities for phenotyping regarding CYP2E1 and UGT1A9 
(Figure 36E-G). While for UGT (Figure 36F and G, molecule APAP and APAP-G), a separation of the low 
activity phenotype against the others was possible best at 3 h up to 5 h, this was not straightforward 
for the CYP. Even though significant differences in the CYP metabolite APAP-C (Figure 36E) were 
apparent, they were not unique for the variation of CYP activity but also for the UGT (Figure 36F). 
For the separation of CYP2A1 phenotypes, CAF, PXT, and TBR could be used according to the 
simulations. Among the modelled molecules, TBR split the phenotypes best, not only regarding the 
medians but also the IQR (Figure 36D). Around the 5 h time point, additionally, PXT discriminates 
between the high and low groups. TPY was not suitable for phenotype separation and could be 
neglected in the analyses. For CYP1A2, the recommended timepoint for sampling PXT was 5 h > 4 h. 
Despite the clear separation by CPM based on the model simulations (Figure 36A), this was not 
resembling the true PK observed in vivo. Literature reported that 2D6 poor metabolisers do not have 
a significant change in PK due to possible covering via alternative metabolisation by 3A4. For CYP2D6 
assessment, DEX is preferable over CPM due to the compensation in 2D6 activity by 3A4. According to 
the simulations, clear differences in DOR-gluc and 3MM concentrations between 3 h and 5 h can be 
expected, matching the literature reports [219]. The results indicate further that at the same time 
points also, the CYP3A4 phenotype is represented by the differences in 3HM and 3HM-gluc (Figure 
36B and C). 
According to our analyses, the time between 3 h-5 h after administration was the best minimal 
sampling strategy for metabolic phenotyping with frenadol. The phenotypes that can be identified by 
the test were UGT (high and low) by APAP-G, CYP1A2 (high and low) by PXT or TBR, CYP2D6 (high, 
intermediate, low) by DOR-gluc and 3MM, and CYP3A4 by 3HM and 3HM-gluc. Under appropriate 
conditions (i.e., regular UGT activity, sufficient cofactor supply), additionally, the CYP2E1 phenotype 
can be deduced from APAP-C concentrations.  
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Figure 36 Boxplot of concentration for possible measurement timepoints of suitable metabolites. Each row shows the 
concentration per time point 3h, 4h, or 5h (columns). Each subplot shows the IQR of the parent and its metabolites. Asterisks 
indicate significance levels of high or low group vs average. Asterisks indicate significance levels: *, 0.9; ** 0.95, *** 0.975, 
**** 0.99 

 

13.3 Discussion 
To investigate the feasibility of metabolic phenotype testing by frenadol as a probe drug cocktail, in 
silico PBPK model analyses of the single compounds were performed. Virtual populations were 
simulated to quantify the contribution of intra-individual variability in (1) patient biometry and (2) 
metabolic activity. The simulation outcomes allowed the assessment of an optimized test design in 
terms of sampling time points and the identification of marker metabolites.  

 

13.3.1 PBPK simulations 
Since the performed analyses rely on the PBPK model simulations, the quality of the latter is decisive 
for the reliability of the recommendations. The average PBPK model for CPM and its metabolite DCPM 
was able to capture most of the literature data. However, simulated urinary excretion was only a rough 
estimate since, in vivo, its extent is strongly influenced by urinary pH value [223] not incorporated in 
the model. The unknown racemic mixture with different affinities of the racemates towards the 
metabolising enzymes or plasma protein binding influences the ADME processes of CPM but could not 
be included in the model. 
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While the population simulations of CPM PK in the different phenotype groups allowed for a clear 
separation, this does probably not resemble the in vivo situation in which other enzymes, mostly 
CYP3A4, cover the metabolisation of CPM under CYP2D6 deficiency [65]. This mechanism was not 
modelled due to a lack of quantitative data on this process. Additionally, since the CPM PK profiles of 
known CYP2D6 PMs are comparable to normal metabolisers, a benefit from assessing CPM for 
phenotyping was not expected. Moreover, both involved enzymes are also catalysing DEX 
metabolisation leaving CPM redundant. In consequence, we consider CPM not to be a suitable 
candidate for phenotyping the CYP2D6 metabolisation capacity. 
The PBPK model for DEX and its metabolites reproduces the literature data well. As expected, the 
known significant differences among CYP2D6 phenotypes govern the differences in PK, while the 
physiologically-induced variability is low compared to the additional enzymatic variability. Even 
though multiple other CYP isoforms are involved in DEX metabolism in vitro, the major contributors in 
vivo are 2D6 and 3A4. In 2D6 EMs, DEX blood levels are very low while the metabolites DOR and DOR-
gluc prevail [224]. On the contrary, DEX is high, whereas DOR and 3HM concentrations are deficient 
in PMs [224]. Thus, 3HM and DOR or their metabolites 3HM-gluc and DOR-gluc, respectively, indicate 
CYP2D6 phenotypes [219]. Although 3HM can be formed in two ways, first via the intermediate 
CYP3A4 metabolite 3MM and second via the intermediated CYP2D6 metabolite DOR, the higher 
affinity of 2D6 in both pathways can be assumed to govern the 3HM formation [27]. 
To assess the activity of CYP3A4, the determination of 3MM levels is necessary as the main 3A4 
metabolite. The simulations show, in addition, that CYP3A4 also has an influence on 3HM and 
3HM- gluc as downstream metabolites of 3MM. During the first hours after administration, these 
concentrations separate the CYP3A4 activity. On the contrary, the 3MM concentrations indicate the 
CYP2D6 phenotype, though not as clear as DOR-gluc (Figure 33). In vitro measurements revealed a 
high intrinsic clearance (high vmax, low Km) for CYP2B6, but the enzyme was shown to have a low 
abundance in liver microsomes such that the overall contribution to 3MM formation is probably 
negligible [27]. However, one could be considered to include a CYP2B6 substrate in the drug cocktail 
as a control. 
DEX is already an established probe substrate for CYP2D6 phenotyping by the ratio of DEX/DOR or 
DEX/3HM. While these approaches are useful for assessing the CYP2D6 metabolic activity, they do not 
give a quantitative measure or information on CYP3A4. The latter is an important pharmacokinetic 
enzyme since it metabolises about 50 % of drugs [225]; thus, providing also information on CYP3A4 
activity improves a metabolic phenotyping test and would be lost by a non-model based approach 
using the metabolite ratio. The semi-quantitative phenotyping generally impedes a translation of the 
activity to other drugs. In contrast, using a PBPK model approach, an individualised activity can be 
quantified by simulating a patient's PK. Compared to a reference range of enzyme activity, such an 
activity ratio could be translated to other substrates of this enzyme.  
The PBPK model for CAF and its metabolites, PXT, TBR, and TPY, reproduced the measured PK profiles 
of published literature well. However, data on IV administration were sparse, rendering model 
development challenging since a clear differentiation of the ADME processes is hampered. Since 
CYP1A2 activity has a direct influence on the parent and metabolites, the enzymatic variability induced 
a stronger effect on the PK than the physiologically-induced variability.  
According to the simulations, the most suitable molecules for the separation of the different 
phenotypes are TBR and PXT. This is in agreement with the established non-model-based CYP1A2 
activity test based on the CAF/PXT ratio [26]. However, this method neglects other individual factors 
like age, body weight, or organ impairment. Such factors can be integrated into the PBPK model and 
therefore lead to more reliable statements on enzyme activity than the CAF/PXT ratio [226]. 
CAF is routinely consumed in beverages like coffee, coke, or energy drinks [227]; furthermore, TBR is 
contained in cocoa products; thus, obtaining a baseline concentration of CAF and metabolites is 
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challenging in the clinical routine when patients refuse instructions of abstinence. Therefore, 
additional sampling before administering the probe drug is conceivable to obtain a baseline 
measurement. Such a patient-specific baseline could also improve the test accuracy when CYP1A2 is 
induced due to regular consumption of CAF [227]. For patient risk assessment, such an induction could 
be important to capture, making this test approach superior to genetic methods assessing only the 
genotype.  
For APAP and its metabolites, the average PK profiles were well described by the model. Although no 
genotype- or phenotype-specific PK behaviour is reported, APAP could be a potential surrogate 
marker for many different enzyme phenotypes due to its complex metabolism. The population 
simulations showed a separation for the metabolite APAP-C. APAP-C is formed from NAPQI, which is 
produced from APAP by CYP2E1. Since NAPQI is immediately metabolized into APAP-C and not 
quantifiable in blood, APAP-C can be considered a marker for CYP2E1 activity. This assumption is only 
valid when NAPQI formation is the rate-limiting step in the metabolisation of APAP > NAPQI > APAP-
glutathione > APAP-C. However, it is known that acute intoxication by APAP is caused by glutathione 
depletion and subsequent accumulation of NAPQI. Therefore, sufficient glutathione supply, e.g., by 
co-administration of acetylcysteine, should be ensured to exclude NAPQI downstream metabolism as 
a rate-limiting step [222]. Otherwise, the separation between the activity of CYP2E1 and the following 
steps might be biased. 
However, the simulation results indicated that UGT variability also affects the PK of APAP-C. As the 
main metabolising enzyme of APAP, UGT governs not only the amount of APAP-G but also of the 
parent and, thus, of APAP-C. While APAP-G could be used to separate the low and high activity 
phenotype of UGT, it should also be taken into account when assessing APAP-C. Only if APAP-G does 
not indicate a changed UGT activity a reliable statement of the CYP status can be deduced. Otherwise, 
the UGT activity could falsely indicate an altered CYP activity.  
 

13.3.2 Clinical setup 
To ensure the performance of such a phenotype test with frenadol, a provisionary design along with 
the necessary degree of individualisation is of utmost importance for reliable identification of the 
metabolic phenotype. As shown here, in silico analyses regarding feasibility and the setup of a test 
scenario can help to identify caveats, such as unfavourable sampling time points or molecules, and 
save resources and unnecessary patient treatment. In addition, the test should be individualised to a 
specific patient by taking as much information into account as possible. This might incorporate 
biometric parameters, physiological information such as specific liver weight, lab parameters such as 
haematocrit, or disease information, e.g., renal insufficiency. Analysis of the PK data of the drug 
cocktail in a patient using an in silico model integrating all available information can then identify the 
metabolic phenotype for single enzymes for the patient separate from other physiological influences. 
Moreover, DDI effects can be considered when using the PBPK-based approach. This will be especially 
interesting when testing a multimorbid patient who takes already one or even several drugs. 
The ideal phenotyping test should be cheap, safe, and easy to conduct. As a marketed OTC drug 
intended for self-medication, frenadol can be considered safe, and with a price of around one euro 
per dose, also low-cost. Further costs amount then to personal, sampling, and analytics costs, all of 
which are inevitable and should be reduced to a minimum. This can be assisted by the model-based 
design, where the most suitable sampling matrices, time points, and molecules have been identified. 
Due to the OTC label, the use of frenadol will be unlikely to give rise to ethical reservations facilitating 
clinical study consent. Additionally, the test conduction itself with frenadol as a test cocktail is easy. 
The drug is formulated as a powder that needs to be dissolved in water. This easy way of 
administration enhances the patient's compliance and also diminishes formulation-dependent biases 
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like tablet disintegration or the amount of fluid with which the drug is taken. Although an intravenous 
administration would show a more consistent and reliable PK profile, it seems like a good trade-off 
between patient compliance and reliability. 
By using a sophisticated combination of test substances, i.e., a cocktail of drugs, a patient has to take 
only one test to elucidate a broad landscape of his metabolic capacity. Nevertheless, the drug 
combination contained in frenadol might not be optimal for phenotyping. Our analyses showed that 
using CPM for CYP2D6 phenotyping is not well-suited because of the secondary metabolisation 
pathway via CYP3A4, although DEX can cover 2D6. Further, precautions should be taken for the other 
enzymes, e.g., patients should stay abstinent from caffeine for the duration of the test and before, 
which also includes coke, energy drinks, and preferably cocoa products because of their TBR content. 
They should also refrain from the frequently used OTC drug APAP to ensure glutathione availability. 
The use of saliva as a sampling matrix would enhance the patients' compliance and save money since 
no blood samples are necessary. As a non-invasive sampling, saliva is advantageous over urine since 
it is not an aggregated sample but a concurrent reflection of the plasma concentration. However, not 
every drug can be measured in saliva, although it was demonstrated for DEX [228]. 
The model simulations illustrated further which sampling time points might be best for phenotyping. 
Since the objective is to infer the metabolic activity, it is essential to sample the phase governed by 
clearance processes. A premature sampling might primarily reflect the absorption phase, and no clear 
statement on the clearance can be deduced. Also, late sampling might lead to measurements below 
the lower limit of quantification (LLOQ); thus, accurate sampling is critical for successful phenotyping.  
Similarly important is a well-characterised reference activity. To precise the PBPK predictions on the 
population simulations, the reference range of interindividual variability of non-risk patients needs a 
robust characterisation. Up to now, the simulated variability is based on reported ranges of enzyme 
activity, which renders only a rough estimate of the reality. To identify the true average variability, 
assessing the in vivo activity of the involved enzymes is mandatory. Obtaining such samples, both for 
risk and non-risk patients, would be necessary to calibrate and validate the model and test. However, 
this requires invasive sampling by collecting a liver biopsy. Since such samples will be very limited, the 
use of Bayesian inference, e.g., by a Markov Chain Monte Carlo approach, should be considered to 
exploit its information fully [229]. 
In summary, the analyses assessed the feasibility and applicability of a phenotype test with frenadol 
for a simultaneous differentiation between metabolic phenotypes. The overall concept is good, but 
some caveats need to be taken into account regarding the sampling time points and molecules. We 
recommend having at least two sampling points between three and five hours after drug 
administration. Additionally, a reference sample before administration would also be useful, 
especially for CAF and its metabolites which could show elevated base levels. Informative clinical 
measurements for the enzyme activity of the average population could improve this approach 
substantially.
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General Conclusion and Outlook  

Although medications are the base of the current health care system, carrying immense benefits for 
patients, the risk of suffering unintended adverse drug reactions (ADRs) imposes the need for a careful 
analysis before administering any drug to patients [1]. To avoid such ADRs, a thorough knowledge of 
the patient's physiology and the drug mechanisms is necessary. In addition, the interplay between 
those two factors needs to be understood in detail to estimate the ADR risk properly [8]. 
To obtain knowledge on the effect of a drug on patients, studies on different levels are required. In 
vitro studies are the first source of information, but they often have poor translatability due to the 
difficulties in recreating physiologically meaningful conditions during experiments [11]. Moreover, 
animal testing, a good source of knowledge on drug-organism interactions, can be labelled as ethically 
questionable because of the limited translatability between some animal species and humans [10]. 
More direct and relevant information can be obtained from clinical trials. However, from an ethical 
point of view, it is difficult to gather the required data that may help elucidate the associated factors 
or the mechanism of action leading to an ADR in clinical studies. Therefore, an alternative approach 
towards understanding a drug’s effect on the human body and, thus, estimating ADRs, is 
computational modelling. A computational model allows to integrate knowledge from different 
sources such as clinical, preclinical, physiological, genetic, and pharmacokinetic data, as well as in vitro 
data, chemical information, or other data obtained by in silico means, all constituting parts of a 
comprising drug effect model [8].  
Compared to in vitro or in vivo studies, in silico models are inexpensive. In addition, they are easier to 
individualise, which makes them suitable tools for personalised medicine, both during drug 
development and in the clinic [226]. Model-based risk assessment for patient safety is often carried 
out during drug development to make early decisions on candidate molecules or to guide patient 
stratification [34]. In daily health care, personalized decisions on suitable medications for the patient 
are mandatory to prevent the occurrence of ADRs. This holds true, especially for idiosyncratic ADRs, 
which are rarely discovered during clinical trials [44]. Thus, reliable in silico predictions on drug effects 
and, therefore, on ADR risk can be used to help save costs, time, and lives. 
As shown in Chapter 11, computational models can be used to assess complex physiological 
phenomena like cholestasis, i.e., the disruption of bile flow, a common drug-induced liver injury. Bile 
acids (Bas), the main constituents of bile, circulate through the enterohepatic organs involving 
multiple organs and tissues. Such complex interplays are hard to reconstruct in in vitro assays, 
translate from animal models, or assess in humans without invasive techniques. Computational 
modelling, however, fills this gap and allows the functional assessment of complex physiological 
processes as well as abnormalities in such processes. Thus, PBPK models allow for the estimation of 
the effects of multiple pathologies on different systems by reproducing the main physiological cause 
of a specific condition. 
Computational models can also be used to guide assay and study designs as outlined in Chapters 12 
and 13, where PBPK models were used to identify a physiologically-relevant drug concentration for in 
vitro assays to overcome the insufficient translatability of in vitro findings to the in vivo situation. The 
simulated tissue-specific concentrations after therapeutic drug administration represented the in vivo 
scenario and helped establish the in vitro concentrations used to treat liver cell cultures. Subsequently, 
the results of the in vitro assay in terms of gene expression changes induced by ten hepatotoxic drugs 
were re-integrated into the computation model of BA metabolism to transfer the adaption of the 
system and re-simulate the drug-induced changes. These tested, well-known hepatotoxicants were 
categorised into different risk classes for cholestasis based on their impact on BA concentrations. This 
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framework can be used to similarly test other compounds and benchmark them against the previously 
analysed set of hepatotoxicant drugs to estimate their cholestatic ADR potential. 
In the field of personalised medicine, assessing the individual factors that govern drug PK and PD is of 
key relevance. In this regard, PBPK models can be customised to simulate the PK of a drug in a specific 
patient and are an appropriate tool to describe individualised drug exposure. Thus, a PBPK model that 
includes drug metabolism can be adapted to conduct a personalised assessment of the metabolic 
capacity leading to an ADME phenotype. To identify such phenotypes, computational modelling can 
be an integral part of a metabolic phenotyping test in the form of a personalised PBPK model, or it can 
be used to develop an efficient testing strategy, as shown in Chapter 13. By building drug-specific 
models for the components of a drug cocktail, reference PK profiles for different metabolic 
phenotypes can be deduced. These profiles can be used to compare a patient’s individual PK to the 
reference PK profile indicating the metabolic capacity of different enzymes and their mutual interplay 
on the systems level. Additionally, PBPK modelling could help identify appropriate sampling time 
points and marker metabolites for such a test. This model-based test can be individualised by 
correction for confounding factors such as age, sex, weight, or organ impairments, as well as for co-
administered medications. In clinical care, this approach can be used to develop and perform 
minimally invasive metabolic phenotyping tests considering the individual metabolic capacity of each 
patient. Such a model-guided test can facilitate personalised medication in the clinical routine with a 
particular focus on preventing ADRs. 
To date, ADRs such as drug-induced cholestasis remain challenging to investigate in preclinical and 
clinical settings due to their complexity and idiosyncrasy. Available models like DILIsym need to be 
coupled to a whole-body PBPK model (e.g., GastroPlus®) in order to adequately describe the drug 
exposure within the body [230]. In contrast to DILIsym® and GastroPlus, the Open Systems 
Pharmacology (OSP) tools PK-Sim and MoBi used in this work are freely available. MoBi provides full 
flexibility to introduce new structures and reactions to explore different scenarios, e.g., different 
routes of administration, modelling a second co-administered drug, or incorporating time-resolved in 
vitro expression data as a drug effect without leaving the OSP Suite framework [231]. Thus, a 
correlative description of blood biomarkers and hepatocyte loss as it is available in DILISym could also 
be incorporated into the physiology-based bile acid (PBBA) model approach to extend predictability. 
However, the developed PBBA model contributes to a mechanistic representation of the BA 
metabolism and enables the analysis of the effects of drugs or genetic conditions. With the model-
informed in vitro assay, physiologically relevant drug exposure was achieved in vitro, which leads to 
better translatability to the systemic scenario. The in vitro results were incorporated into the PBBA 
model to simulate a time-resolved effect of specific drugs on gene expression and its influence on BA 
circulation. This multi-level PBBA approach can be used to identify, on the one hand, patients at risk 
for drug-induced cholestasis and, on the other hand, compounds at risk of inducing cholestasis during 
drug development.  
Despite the diligent preparation of the described studies, some limitations apply. The PBBA model 
predictions in Chapter 11 would benefit from a broader BA spectrum instead of simulating only a 
pooled surrogate BA. Additionally, detailed measurements on transporter abundances and their 
activities towards various BAs would improve the model, in particular, to capture the high variability 
apparent in the observed data. Data from tailor-made studies aiming at a time-resolved BA 
assessment and studies on transporter affinities and activities would help improve the model 
substantially and, thus, make the predictions more reliable.  
Some limitations for the re-integration of in vitro data in Chapter 12 are that only transporter gene 
expression changes as a readout of the effect in the in vitro assay were available. A targeted analysis 
of the relevant transporters and their protein abundances would allow a more accurate translation of 
the in vitro effect and improve the predictions due to the sensitivity of these parameters in the model. 
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However, the absolute contribution of the protein abundances to the overall BA concentrations in vivo 
is hard to quantify without additional information on the transport kinetics. The practical feasibility of 
the assay approach could also be a limitation, especially for the early benchmarking of other 
compounds. The current in vitro assay is highly sophisticated and is probably very complex for a high-
throughput application. While constructing a drug-specific PBPK model for each drug might still be 
applicable in practice, the time-consuming treatment assay with multiple media changes per day 
should be simplified. A less complex but still comparable assay, e.g., by replacing the daily profile with 
a meaningful median dosing, could enable a feasible high-throughput analysis of new compounds. 
Additionally, a larger and more specific reference dataset needs to be used to obtain more robust 
results as only ten drugs, with few of them purely cholestatic, were used for the current reference.  
Furthermore, the model-guided metabolic phenotyping from Chapter 13 is still in development. 
Overall, a good understanding of the role of various covariates is key for establishing a robust 
reference model. Thus, sufficient controlled clinical data are necessary to validate the reference 
ranges, especially because of possible interactions and resulting differences in the PK compared to 
single administration data from the literature. Alternatively, data from patients with a deviating PK 
profile correlated with a measured change in enzyme activity would be necessary to train the test. 
However, such data might be challenging to obtain since biopsies are required for enzymatic 
measurements, which are ethically hard to justify.  
In summary, a whole-body PBPK model describing the BA metabolism was developed and used to 
describe genetic predispositions toward cholestasis [31]. The influence of CsA administration and BA 
circulation was analysed, and the cholestatic risk of CsA administration was confirmed. In addition, a 
framework to benchmark the cholestatic potential of several drugs was developed [32] as a follow-up 
application of the PBBA model. This framework integrates gene expression changes inferred from a 
sophisticated PBPK model-guided in vitro assay that mimics in vivo therapeutic exposure. The 
application of the proposed framework during drug development could enable the early identification 
of cholestasis risk for novel compounds. Moreover, to prevent ADRs in the daily clinical routine, a PBPK 
model-guided assessment of a test for metabolic phenotyping was performed. The potential of 
identifying the metabolic phenotype based on a PK profile of a drug cocktail in order to make 
personalised medication decisions was shown, and optimization of the sampling time points and the 
choice of marker metabolites was suggested.  
The presented workflows illustrate how computational models can be applied to help estimate ADR 
risks and optimise drug development, increasing patient safety and reducing costs and development 
time for the pharmaceutical industry.





 
References 

103 

References 

[1] Coleman, J. J. and Pontefract, S. K. 2016. Adverse drug reactions. Clinical medicine (London, 
England) 16, 5, 481–485. DOI: 10.7861/clinmedicine.16-5-481. 

[2] Khalil, H. and Huang, C. 2020. Adverse drug reactions in primary care: a scoping review. BMC 
health services research 20, 1, 5. DOI: 10.1186/s12913-019-4651-7. 

[3] Chalasani, N. and Björnsson, E. 2010. Risk factors for idiosyncratic drug-induced liver injury. 
Gastroenterology 138, 7, 2246–2259. DOI: 10.1053/j.gastro.2010.04.001. 

[4] Kaplowitz, N. 2001. Drug-induced liver disorders: implications for drug development and 
regulation. Drug Safety 24, 7, 483–490. DOI: 10.2165/00002018-200124070-00001. 

[5] Sundaram, V. and Björnsson, E. S. 2017. Drug-induced cholestasis. Hepatology communications 
1, 8, 726–735. DOI: 10.1002/hep4.1088. 

[6] Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., and 
Schacht, A. L. 2010. How to improve R&D productivity: the pharmaceutical industry's grand 
challenge. Nature reviews. Drug discovery 9, 3, 203–214. DOI: 10.1038/nrd3078. 

[7] Holt, M. and Ju, C. 2010. Drug-induced liver injury. Handbook of experimental pharmacology, 
196, 3–27. DOI: 10.1007/978-3-642-00663-0_1. 

[8] Weaver, R. J., Blomme, E. A., Chadwick, A. E., Copple, I. M., Gerets, H. H. J., Goldring, C. E., 
Guillouzo, A., Hewitt, P. G., Ingelman-Sundberg, M., Jensen, K. G., Juhila, S., Klingmüller, U., 
Labbe, G., Liguori, M. J., and Lovatt, C. A., et al. 2020. Managing the challenge of drug-induced 
liver injury: a roadmap for the development and deployment of preclinical predictive models. 
Nature reviews. Drug discovery 19, 2, 131–148. DOI: 10.1038/s41573-019-0048-x. 

[9] Hadi, M. A., Neoh, C. F., Zin, R. M., Elrggal, M. E., and Cheema, E. 2017. Pharmacovigilance: 
pharmacists' perspective on spontaneous adverse drug reaction reporting. Integrated 
pharmacy research & practice 6, 91–98. DOI: 10.2147/IPRP.S105881. 

[10] Petrov, P. D., Fernández-Murga, M. L., López-Riera, M., Goméz-Lechón, M. J., Castell, J. V., and 
Jover, R. 2018. Predicting drug-induced cholestasis: preclinical models. Expert opinion on drug 
metabolism & toxicology 14, 7, 721–738. DOI: 10.1080/17425255.2018.1487399. 

[11] Godoy, P., Hewitt, N. J., Albrecht, U., Andersen, M. E., Ansari, N., Bhattacharya, S., Bode, J. G., 
Bolleyn, J., Borner, C., Böttger, J., Braeuning, A., Budinsky, R. A., Burkhardt, B., Cameron, N. R., 
and Camussi, G., et al. 2013. Recent advances in 2D and 3D in vitro systems using primary 
hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in 
investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of toxicology 87, 
8, 1315–1530. DOI: 10.1007/s00204-013-1078-5. 

[12] Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov, V., Oprea, T. I., 
Baskin, I. I., Varnek, A., Roitberg, A., Isayev, O., Curtarolo, S., Fourches, D., Cohen, Y., and 
Aspuru-Guzik, A., et al. 2020. QSAR without borders. Chemical Society reviews 49, 11, 3525–
3564. DOI: 10.1039/d0cs00098a. 

[13] Maggiora, G. M. 2006. On outliers and activity cliffs--why QSAR often disappoints. Journal of 
chemical information and modeling 46, 4, 1535. DOI: 10.1021/ci060117s. 

[14] Stouch, T. R., Kenyon, J. R., Johnson, S. R., Chen, X.-Q., Doweyko, A., and Li, Y. 2003. In silico 
ADME/Tox: why models fail. Journal of computer-aided molecular design 17, 2-4, 83–92. DOI: 
10.1023/A:1025358319677. 

[15] Thiel, C., Cordes, H., Fabbri, L., Aschmann, H. E., Baier, V., Smit, I., Atkinson, F., Blank, L. M., and 
Kuepfer, L. 2017. A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant 
Situations. PLoS computational biology 13, 2, e1005280. DOI: 10.1371/journal.pcbi.1005280. 



 
References 

104 

[16] Peters, S. A. and Dolgos, H. 2019. Requirements to Establishing Confidence in Physiologically 
Based Pharmacokinetic (PBPK) Models and Overcoming Some of the Challenges to Meeting 
Them. Clinical pharmacokinetics 58, 11, 1355–1371. DOI: 10.1007/s40262-019-00790-0. 

[17] Mutschler, E., Geisslinger, G., Kroemer, H. K., and Schäfer-Korting, M. 2019. Mutschler 
Arzneimittelwirkungen. Pharmakologie - Klinische Pharmakologie - Toxikologie. 
Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, Stuttgart. 

[18] Luzon, E., Blake, K., Cole, S., Nordmark, A., Versantvoort, C., and Berglund, E. G. 2017. 
Physiologically based pharmacokinetic modeling in regulatory decision-making at the European 
Medicines Agency. Clin Pharmacol Ther 102, 1, 98–105. DOI: 10.1002/cpt.539. 

[19] Shebley, M., Sandhu, P., Emami Riedmaier, A., Jamei, M., Narayanan, R., Patel, A., Peters, S. A., 
Reddy, V. P., Zheng, M., Zwart, L. de, Beneton, M., Bouzom, F., Chen, J., Chen, Y., and Cleary, Y., 
et al. 2018. Physiologically Based Pharmacokinetic Model Qualification and Reporting 
Procedures for Regulatory Submissions: A Consortium Perspective. Clin Pharmacol Ther 104, 1, 
88–110. DOI: 10.1002/cpt.1013. 

[20] Balazki, P., Schaller, S., Eissing, T., and Lehr, T. 2018. A Quantitative Systems Pharmacology 
Kidney Model of Diabetes Associated Renal Hyperfiltration and the Effects of SGLT Inhibitors. 
CPT Pharmacometrics Syst. Pharmacol. 7, 12, 788–797. DOI: 10.1002/psp4.12359. 

[21] Balazki, P., Lindauer, K., Einloft, J., Ackermann, J., and Koch, I. 2015. MONALISA for stochastic 
simulations of Petri net models of biochemical systems. BMC bioinformatics 16, 215. DOI: 
10.1186/s12859-015-0596-y. 

[22] Felmlee, M. A., Morris, M. E., and Mager, D. E. 2012. Mechanism-based pharmacodynamic 
modeling. Methods in molecular biology (Clifton, N.J.) 929, 583–600. DOI: 10.1007/978-1-
62703-050-2_21. 

[23] Kuepfer, L., Clayton, O., Thiel, C., Cordes, H., Nudischer, R., Blank, L. M., Baier, V., Heymans, S., 
Caiment, F., Roth, A., Fluri, D. A., Kelm, J. M., Castell, J., Selevsek, N., and Schlapbach, R., et al. 
2018. A model-based assay design to reproduce in vivo patterns of acute drug-induced toxicity. 
Arch Toxicol 92, 1, 553–555. DOI: 10.1007/s00204-017-2041-7. 

[24] Thiel, C., Smit, I., Baier, V., Cordes, H., Fabry, B., Blank, L. M., and Kuepfer, L. 2018. Using 
quantitative systems pharmacology to evaluate the drug efficacy of COX-2 and 5-LOX inhibitors 
in therapeutic situations. NPJ systems biology and applications 4, 28. DOI: 10.1038/s41540-018-
0062-3. 

[25] Cordes, H., Thiel, C., Aschmann, H. E., Baier, V., Blank, L. M., and Kuepfer, L. 2016. A 
Physiologically Based Pharmacokinetic Model of Isoniazid and Its Application in Individualizing 
Tuberculosis Chemotherapy. Antimicrobial agents and chemotherapy 60, 10, 6134–6145. DOI: 
10.1128/aac.00508-16. 

[26] Nordmark, A., Lundgren, S., Cnattingius, S., and Rane, A. 1999. Dietary caffeine as a probe agent 
for assessment of cytochrome P4501A2 activity in random urine samples. British journal of 
clinical pharmacology 47, 4, 397–402. DOI: 10.1046/j.1365-2125.1999.00918.x. 

[27] Yu, A. and Haining, R. L. 2001. Comparative contribution to dextromethorphan metabolism by 
cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both 
CTP2D6 and CYP3A activities? Drug metabolism and disposition: the biological fate of chemicals 
29, 11, 1514–1520. 

[28] Yang, K., Battista, C., Woodhead, J. L., Stahl, S. H., Mettetal, J. T., Watkins, P. B., Siler, S. Q., and 
Howell, B. A. 2017. Systems pharmacology modeling of drug-induced hyperbilirubinemia: 
Differentiating hepatotoxicity and inhibition of enzymes/transporters. Clinical pharmacology 
and therapeutics 101, 4, 501–509. DOI: 10.1002/cpt.619. 



 
References 

105 

[29] Sips, F. L. P., Eggink, H. M., Hilbers, P. A. J., Soeters, M. R., Groen, A. K., and van Riel, N. A. W. 
2018. In Silico Analysis Identifies Intestinal Transit as a Key Determinant of Systemic Bile Acid 
Metabolism. Front. Physiol. 9. DOI: 10.3389/fphys.2018.00631. 

[30] Woodhead, J. L., Yang, K., Brouwer, K. L., Siler, S. Q., Stahl, S. H., Ambroso, J. L., Baker, D., 
Watkins, P. B., and Howell, B. A. 2014. Mechanistic Modeling Reveals the Critical Knowledge 
Gaps in Bile Acid-Mediated DILI. CPT: pharmacometrics & systems pharmacology 3, 7, 123. DOI: 
10.1038/psp.2014.21. 

[31] Baier, V., Cordes, H., Thiel, C., Castell, J. V., Neumann, U. P., Blank, L. M., and Kuepfer, L. 2019. 
A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels 
After Drug Administration in Healthy Subjects and BRIC Type 2 Patients. Frontiers in physiology 
10, 1192. DOI: 10.3389/fphys.2019.01192. 

[32] Baier, V., Clayton, O., Nudischer, R., Cordes, H., Schneider, A. R. P., Thiel, C., Wittenberger, T., 
Moritz, W., Blank, L. M., Neumann, U. P., Trautwein, C., Kelm, J., Schrooders, Y., Caiment, F., 
and Gmuender, H., et al. 2021. A Model-Based Workflow to Benchmark the Clinical Cholestasis 
Risk of Drugs. Clin Pharmacol Ther 110, 5, 1293–1301. DOI: 10.1002/cpt.2406. 

[33] Sari, A. B.-A., Sheldon, T. A., Cracknell, A., Turnbull, A., Dobson, Y., Grant, C., Gray, W., and 
Richardson, A. 2007. Extent, nature and consequences of adverse events: results of a 
retrospective casenote review in a large NHS hospital. Quality & safety in health care 16, 6, 434–
439. DOI: 10.1136/qshc.2006.021154. 

[34] Cook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., and Pangalos, M. 
N. 2014. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional 
framework. Nature reviews. Drug discovery 13, 6, 419–431. DOI: 10.1038/nrd4309. 

[35] Kola, I. and Landis, J. 2004. Can the pharmaceutical industry reduce attrition rates? Nature 
reviews. Drug discovery 3, 8, 711–715. DOI: 10.1038/nrd1470. 

[36] Guengerich, F. P. 2011. Mechanisms of drug toxicity and relevance to pharmaceutical 
development. Drug metabolism and pharmacokinetics 26, 1, 3–14. DOI: 10.2133/dmpk.dmpk-
10-rv-062. 

[37] Morgan, P., Brown, D. G., Lennard, S., Anderton, M. J., Barrett, J. C., Eriksson, U., Fidock, M., 
Hamrén, B., Johnson, A., March, R. E., Matcham, J., Mettetal, J., Nicholls, D. J., Platz, S., and 
Rees, S., et al. 2018. Impact of a five-dimensional framework on R&D productivity at 
AstraZeneca. Nature reviews. Drug discovery 17, 3, 167–181. DOI: 10.1038/nrd.2017.244. 

[38] Kuepfer, L., Lippert, J., and Eissing, T. 2012. Multiscale mechanistic modeling in pharmaceutical 
research and development 736. Springer New York, New York, NY. 

[39] Wilke, R. A., Lin, D. W., Roden, D. M., Watkins, P. B., Flockhart, D., Zineh, I., Giacomini, K. M., 
and Krauss, R. M. 2007. Identifying genetic risk factors for serious adverse drug reactions: 
current progress and challenges. Nature reviews. Drug discovery 6, 11, 904–916. DOI: 
10.1038/nrd2423. 

[40] Weiler, S., Merz, M., and Kullak-Ublick, G. A. 2015. Drug-induced liver injury: the dawn of 
biomarkers? F1000prime reports 7, 34. DOI: 10.12703/P7-34. 

[41] Chalasani, N. P., Hayashi, P. H., Bonkovsky, H. L., Navarro, V. J., Lee, W. M., and Fontana, R. J. 
2014. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver 
injury. The American journal of gastroenterology 109, 7, 950-66; quiz 967. DOI: 
10.1038/ajg.2014.131. 

[42] Shaw, P. J., Ganey, P. E., and Roth, R. A. 2010. Idiosyncratic drug-induced liver injury and the 
role of inflammatory stress with an emphasis on an animal model of trovafloxacin 
hepatotoxicity. Toxicological sciences : an official journal of the Society of Toxicology 118, 1, 7–
18. DOI: 10.1093/toxsci/kfq168. 



 
References 

106 

[43] Onakpoya, I. J., Heneghan, C. J., and Aronson, J. K. 2016. Post-marketing withdrawal of 462 
medicinal products because of adverse drug reactions: a systematic review of the world 
literature. BMC medicine 14, 10. DOI: 10.1186/s12916-016-0553-2. 

[44] Funk, C. and Roth, A. 2017. Current limitations and future opportunities for prediction of DILI 
from in vitro. Archives of toxicology 91, 1, 131–142. DOI: 10.1007/s00204-016-1874-9. 

[45] Han, D., Dara, L., Win, S., Than, T. A., Yuan, L., Abbasi, S. Q., Liu, Z.-X., and Kaplowitz, N. 2013. 
Regulation of drug-induced liver injury by signal transduction pathways: critical role of 
mitochondria. Trends in pharmacological sciences 34, 4, 243–253. DOI: 
10.1016/j.tips.2013.01.009. 

[46] Navarro, V. J. and Senior, J. R. 2006. Drug-Related Hepatotoxicity. N Engl J Med 354, 7, 731–739. 
DOI: 10.1056/NEJMra052270. 

[47] Sgro, C., Clinard, F., Ouazir, K., Chanay, H., Allard, C., Guilleminet, C., Lenoir, C., Lemoine, A., and 
Hillon, P. 2002. Incidence of drug-induced hepatic injuries: a French population-based study. 
Hepatology (Baltimore, Md.) 36, 2, 451–455. DOI: 10.1053/jhep.2002.34857. 

[48] Tujios, S. and Fontana, R. J. 2011. Mechanisms of drug-induced liver injury: from bedside to 
bench. Nature reviews. Gastroenterology & hepatology 8, 4, 202–211. DOI: 
10.1038/nrgastro.2011.22. 

[49] Fu, S., Wu, D., Jiang, W., Li, J., Long, J., Jia, C., and Zhou, T. 2019. Molecular Biomarkers in Drug-
Induced Liver Injury: Challenges and Future Perspectives. Frontiers in pharmacology 10, 1667. 
DOI: 10.3389/fphar.2019.01667. 

[50] Pandit. 2012. Drug-Induced Hepatotoxicity: A Review. J. App. Pharm. Sci. DOI: 
10.7324/JAPS.2012.2541. 

[51] Ostapowicz, G., Fontana, R. J., Schiødt, F. V., Larson, A., Davern, T. J., Han, S. H. B., McCashland, 
T. M., Shakil, A. O., Hay, J. E., Hynan, L., Crippin, J. S., Blei, A. T., Samuel, G., Reisch, J., and Lee, 
W. M. 2002. Results of a prospective study of acute liver failure at 17 tertiary care centers in 
the United States. Annals of internal medicine 137, 12, 947–954. DOI: 10.7326/0003-4819-137-
12-200212170-00007. 

[52] Abboud, G. and Kaplowitz, N. 2007. Drug-induced liver injury. Drug Safety 30, 4, 277–294. DOI: 
10.2165/00002018-200730040-00001. 

[53] National Institute of Diabetes and Digestive and Kidney Diseases. 2012. LiverTox: Clinical and 
Research Information on Drug-Induced Liver Injury. Luspatercept, Bethesda (MD). 

[54] Fontana, R. J., Watkins, P. B., Bonkovsky, H. L., Chalasani, N., Davern, T., Serrano, J., and Rochon, 
J. 2009. Drug-Induced Liver Injury Network (DILIN) prospective study: rationale, design and 
conduct. Drug Safety 32, 1, 55–68. DOI: 10.2165/00002018-200932010-00005. 

[55] Andrade, R. J., Lucena, M. I., Fernández, M. C., Pelaez, G., Pachkoria, K., García-Ruiz, E., García-
Muñoz, B., González-Grande, R., Pizarro, A., Durán, J. A., Jiménez, M., Rodrigo, L., Romero-
Gomez, M., Navarro, J. M., and Planas, R., et al. 2005. Drug-induced liver injury: an analysis of 
461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 129, 
2, 512–521. DOI: 10.1016/j.gastro.2005.05.006. 

[56] Kaplowitz, N. 2004. Drug-induced liver injury. Clinical infectious diseases : an official publication 
of the Infectious Diseases Society of America 38 Suppl 2, S44-8. DOI: 10.1086/381446. 

[57] Donato, M. T., López-Riera, M., Castell, J. V., Gómez-Lechón, M. J., and Jover, R. 2016. Both 
cholestatic and steatotic drugs trigger extensive alterations in the mRNA level of biliary 
transporters in rat hepatocytes: Application to develop new predictive biomarkers for early drug 
development. Toxicology letters 263, 58–67. DOI: 10.1016/j.toxlet.2016.10.008. 

[58] Lee, J., Ji, S. C., Kim, B., Yi, S., Shin, K. H., Cho, J. Y., Lim, K. S., Lee, S. H., Yoon, S. H., Chung, J. Y., 
Yu, K. S., Park, H. S., Kim, S. H., and Jang, I. J. 2017. Exploration of Biomarkers for 



 
References 

107 

Amoxicillin/Clavulanate-Induced Liver Injury: Multi-Omics Approaches. Clinical and 
translational science 10, 3, 163–171. DOI: 10.1111/cts.12425. 

[59] Xu, J. J., Henstock, P. V., Dunn, M. C., Smith, A. R., Chabot, J. R., and Graaf, D. de. 2008. Cellular 
imaging predictions of clinical drug-induced liver injury. Toxicological sciences : an official 
journal of the Society of Toxicology 105, 1, 97–105. DOI: 10.1093/toxsci/kfn109. 

[60] Ivanov, S., Semin, M., Lagunin, A., Filimonov, D., and Poroikov, V. 2017. In Silico Identification 
of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target 
Interactions. Molecular informatics 36, 7. DOI: 10.1002/minf.201600142. 

[61] Zanger, U. M. and Schwab, M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation 
of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & 
therapeutics 138, 1, 103–141. DOI: 10.1016/j.pharmthera.2012.12.007. 

[62] Eissing, T., Lippert, J., and Willmann, S. 2012. Pharmacogenomics of codeine, morphine, and 
morphine-6-glucuronide: model-based analysis of the influence of CYP2D6 activity, UGT2B7 
activity, renal impairment, and CYP3A4 inhibition. Molecular diagnosis & therapy 16, 1, 43–53. 
DOI: 10.2165/11597930-000000000-00000. 

[63] Klein, K. and Zanger, U. M. 2013. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress 
Toward the "Missing Heritability" Problem. Frontiers in genetics 4, 12. DOI: 
10.3389/fgene.2013.00012. 

[64] Westlind, A., Löfberg, L., Tindberg, N., Andersson, T. B., and Ingelman-Sundberg, M. 1999. 
Interindividual differences in hepatic expression of CYP3A4: relationship to genetic 
polymorphism in the 5'-upstream regulatory region. Biochemical and biophysical research 
communications 259, 1, 201–205. DOI: 10.1006/bbrc.1999.0752. 

[65] Yasuda, S. U., Zannikos, P., Young, A. E., Fried, K. M., Wainer, I. W., and Woosley, R. L. 2002. The 
roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. 
British journal of clinical pharmacology 53, 5, 519–525. DOI: 10.1046/j.1365-
2125.2002.01578.x. 

[66] Florea, N. R., Capitano, B., Nightingale, C. H., Hull, D., Leitz, G. J., and Nicolau, D. P. 2003. 
Beneficial pharmacokinetic interaction between cyclosporine and itraconazole in renal 
transplant recipients. Transplantation proceedings 35, 8, 2873–2877. DOI: 
10.1016/j.transproceed.2003.10.058. 

[67] Britz, H., Hanke, N., Volz, A.-K., Spigset, O., Schwab, M., Eissing, T., Wendl, T., Frechen, S., and 
Lehr, T. 2019. Physiologically-Based Pharmacokinetic Models for CYP1A2 Drug-Drug Interaction 
Prediction: A Modeling Network of Fluvoxamine, Theophylline, Caffeine, Rifampicin, and 
Midazolam. CPT: pharmacometrics & systems pharmacology 8, 5, 296–307. DOI: 
10.1002/psp4.12397. 

[68] Gillespie, W. R. 1991. Noncompartmental versus compartmental modelling in clinical 
pharmacokinetics. Clin Pharmacokinet 20, 4, 253–262. DOI: 10.2165/00003088-199120040-
00001. 

[69] Kuepfer, L., Niederalt, C., Wendl, T., Schlender, J.-F., Willmann, S., Lippert, J., Block, M., Eissing, 
T., and Teutonico, D. 2016. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. 
CPT: pharmacometrics & systems pharmacology 5, 10, 516–531. DOI: 10.1002/psp4.12134. 

[70] Peters, S. A. 2012. Physiologically-based pharmacokinetic (PBPK) modeling and simulations. 
Principles, methods, and applications in the pharmaceutical industry /  by Sheila Annie Peters. 
Wiley-Blackwell, Oxford. 

[71] Willmann, S., Lippert, J., and Schmitt, W. 2005. From physicochemistry to absorption and 
distribution: predictive mechanistic modelling and computational tools. Expert opinion on drug 
metabolism & toxicology 1, 1, 159–168. DOI: 10.1517/17425255.1.1.159. 



 
References 

108 

[72] Willmann, S., Lippert, J., Sevestre, M., Solodenko, J., Fois, F., and Schmitt, W. 2003. PK-Sim®: a 
physiologically based pharmacokinetic ‘whole-body’ model. BIOSILICO 1, 4, 121–124. DOI: 
10.1016/S1478-5382(03)02342-4. 

[73] Meyer, M., Schneckener, S., Ludewig, B., Kuepfer, L., and Lippert, J. 2012. Using Expression Data 
for Quantification of Active Processes in Physiologically Based Pharmacokinetic Modeling. Drug 
Metab Dispos 40, 5, 892–901. DOI: 10.1124/dmd.111.043174. 

[74] Ince, I., Dallmann, A., Frechen, S., Coboeken, K., Niederalt, C., Wendl, T., Block, M., Meyer, M., 
Eissing, T., Burghaus, R., Lippert, J., Willmann, S., and Schlender, J.-F. 2021. Predictive 
Performance of Physiology-Based Pharmacokinetic Dose Estimates for Pediatric Trials: 
Evaluation With 10 Bayer Small-Molecule Compounds in Children. Journal of clinical 
pharmacology 61 Suppl 1, S70-S82. DOI: 10.1002/jcph.1869. 

[75] Thiel, C., Schneckener, S., Krauss, M., Ghallab, A., Hofmann, U., Kanacher, T., Zellmer, S., 
Gebhardt, R., Hengstler, J. G., and Kuepfer, L. 2015. A Systematic Evaluation of the Use of 
Physiologically Based Pharmacokinetic Modeling for Cross-Species Extrapolation. Journal of 
pharmaceutical sciences 104, 1, 191–206. DOI: 10.1002/jps.24214. 

[76] Jamei, M., Marciniak, S., Feng, K., Barnett, A., Tucker, G., and Rostami-Hodjegan, A. 2009. The 
Simcyp population-based ADME simulator. Expert opinion on drug metabolism & toxicology 5, 
2, 211–223. DOI: 10.1517/17425250802691074. 

[77] Price, P. S., Conolly, R. B., Chaisson, C. F., Gross, E. A., Young, J. S., Mathis, E. T., and Tedder, D. 
R. 2003. Modeling interindividual variation in physiological factors used in PBPK models of 
humans. Critical reviews in toxicology 33, 5, 469–503. 

[78] Willmann, S., Höhn, K., Edginton, A., Sevestre, M., Solodenko, J., Weiss, W., Lippert, J., and 
Schmitt, W. 2007. Development of a physiology-based whole-body population model for 
assessing the influence of individual variability on the pharmacokinetics of drugs. Journal of 
pharmacokinetics and pharmacodynamics 34, 3, 401–431. DOI: 10.1007/s10928-007-9053-5. 

[79] Cordes, H., Thiel, C., Baier, V., Blank, L. M., and Kuepfer, L. 2018. Integration of genome-scale 
metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-
induced metabolic perturbation. NPJ systems biology and applications 4, 10. DOI: 
10.1038/s41540-018-0048-1. 

[80] Wicha, S. G. and Kloft, C. 2018. Quantitative systems pharmacology in model-informed drug 
development and therapeutic use. Current Opinion in Systems Biology 10, 19–25. DOI: 
10.1016/j.coisb.2018.05.003. 

[81] Krauss, M., Schaller, S., Borchers, S., Findeisen, R., Lippert, J., and Kuepfer, L. 2012. Integrating 
Cellular Metabolism into a Multiscale Whole-Body Model. PLoS Comput Biol 8, 10, e1002750. 
DOI: 10.1371/journal.pcbi.1002750. 

[82] Open Systems Pharmacology Suite. v7-v10. https://github.com/Open-Systems-
Pharmacology/Suite. 

[83] Frechen, S., Solodenko, J., Wendl, T., Dallmann, A., Ince, I., Lehr, T., Lippert, J., and Burghaus, R. 
2021. A generic framework for the physiologically-based pharmacokinetic platform qualification 
of PK-Sim and its application to predicting cytochrome P450 3A4-mediated drug-drug 
interactions. CPT Pharmacometrics Syst. Pharmacol. 10, 6, 633–644. DOI: 10.1002/psp4.12636. 

[84] Inkscape. v1.2. https://inkscape.org. 
[85] BioRender. https://biorender.com. 
[86] The MathWorks Inc. 2015. MATLAB. v8.5.1.281278 (R2015b). 
[87] The MathWorks Inc. 2017. MATLAB. v9.3.0.713579 (R2017b). 
[88] The MathWorks Inc. 2018. MATLAB. v9.7.0.1190202 (R2019b). 
[89] R Core Team. 2020. R: A Language and Environment for Statistical Computing, Vienna, Austria. 

https://www.R-project.org/. 



 
References 

109 

[90] RStudio Team. 2019. RStudio: Integrated Development Environment for R, Boston, MA. 
http://www.rstudio.com/. 

[91] Ankit Rohatgi. WebPlotDigitizer. v3.9 and v4.3. https://automeris.io/WebPlotDigitizer/. 
[92] Bathena, S. P. R., Mukherjee, S., Olivera, M., and Alnouti, Y. 2013. The profile of bile acids and 

their sulfate metabolites in human urine and serum. Journal of Chromatography B 942-943, 53–
62. DOI: 10.1016/j.jchromb.2013.10.019. 

[93] Roda, A., Minutello, A., Angellotti, M. A., and Fini, A. 1990. Bile acid structure-activity 
relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and 
reverse phase HPLC. Journal of Lipid Research 31, 8, 1433–1443. 

[94] Roda, A., Cappelleri, G., Aldini, R., Roda, E., and Barbara, L. 1982. Quantitative aspects of the 
interaction of bile acids with human serum albumin. Journal of Lipid Research 23, 3, 490–495. 

[95] Hofmann, A. F. 1999. The Continuing Importance of Bile Acids in Liver and Intestinal Disease. 
Arch Intern Med 159, 22, 2647. DOI: 10.1001/archinte.159.22.2647. 

[96] Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, 
M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., and Dame, Z. T., et al. 2014. DrugBank 
4.0: shedding new light on drug metabolism. Nucl. Acids Res. 42, D1, D1091-D1097. DOI: 
10.1093/nar/gkt1068. 

[97] Kullak-Ublick, G. A., Stieger, B., and Meier, P. J. 2004. Enterohepatic bile salt transporters in 
normal physiology and liver disease. Gastroenterology 126, 1, 322–342. DOI: 
10.1053/j.gastro.2003.06.005. 

[98] Martinot, E., Sèdes, L., Baptissart, M., Lobaccaro, J.-M., Caira, F., Beaudoin, C., and Volle, D. H. 
2017. Bile acids and their receptors. Molecular Aspects of Medicine 56, 2–9. DOI: 
10.1016/j.mam.2017.01.006. 

[99] Rao, A., Haywood, J., Craddock, A. L., Belinsky, M. G., Kruh, G. D., and Dawson, P. A. 2008. The 
organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid 
transport and homeostasis. Proceedings of the National Academy of Sciences of the United 
States of America 105, 10, 3891–3896. DOI: 10.1073/pnas.0712328105. 

[100] Hofmann, A. F. 1999. Bile Acids: The Good, the Bad, and the Ugly. Physiology 14, 1, 24–29. 
[101] van Erpecum, K. J., van Berge Henegouwen, G. P., Stolk, M. F., Hopman, W. P., Jansen, J. B., and 

Lamers, C. B. 1992. Fasting gallbladder volume, postprandial emptying and cholecystokinin 
release in gallstone patients and normal subjects. Journal of Hepatology 14, 2-3, 194–202. DOI: 
10.1016/0168-8278(92)90158-L. 

[102] Bathena, S. P. R., Thakare, R., Gautam, N., Mukherjee, S., Olivera, M., Meza, J., and Alnouti, Y. 
2015. Urinary Bile Acids as Biomarkers for Liver Diseases I. Stability of the Baseline Profile in 
Healthy Subjects. Toxicological Sciences 143, 2, 296–307. DOI: 10.1093/toxsci/kfu227. 

[103] Böhme, M., Büchler, M., Müller, M., and Keppler, D. 1993. Differential inhibition by cyclosporins 
of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane. FEBS 
Letters 333, 1-2, 193–196. DOI: 10.1016/0014-5793(93)80403-H. 

[104] Berg, J. M., Tymoczko, J. L., Gatto jr., G. J., and Stryer, L. 2018. Stryer Biochemie. Springer eBook 
Collection. Springer Spektrum, Berlin, Heidelberg. 

[105] Hepner, G. W. and Demers, L. M. 1977. Dynamics of the enterohepatic circulation of the glycine 
conjugates of cholic, chenodeoxycholic, deoxycholic, and sulfolithocholic acid in man. 
Gastroenterology 72, 3, 499–501. 

[106] Angelin, B. and Bjorkhem, I. 1977. Postprandial serum bile acids in healthy man. Evidence for 
differences in absorptive pattern between individual bile acids. Gut 18, 8, 606–609. DOI: 
10.1136/gut.18.8.606. 

[107] Schalm, S. W., LaRusso, N. F., Hofmann, A. F., Hoffman, N. E., van Berge-Henegouwen, G. P., and 
Korman, M. G. 1978. Diurnal serum levels of primary conjugated bile acids : Assessment by 



 
References 

110 

specific radioimmunoassays for conjugates of cholic and chenodeoxycholic acid. Gut 19, 11, 
1006–1014. DOI: 10.1136/gut.19.11.1006. 

[108] Gälman, C., Angelin, B., and Rudling, M. 2005. Bile Acid Synthesis in Humans Has a Rapid Diurnal 
Variation That Is Asynchronous With Cholesterol Synthesis. Gastroenterology 129, 5, 1445–
1453. DOI: 10.1053/j.gastro.2005.09.009. 

[109] Galeazzi, R., Lorenzini, I., and Orlandi, F. 1980. Rifampicin-induced elevation of serum bile acids 
in man. Digest Dis Sci 25, 2, 108–112. DOI: 10.1007/BF01308307. 

[110] LaRusso, N. F., Hoffman, N. E., Korman, M. G., Hofmann, A. F., and Cowen, A. E. 1978. 
Determinants of fasting and postprandial serum bile acid levels in healthy man. Digest Dis Sci 
23, 5, 385–391. DOI: 10.1007/BF01072919. 

[111] Ponz de Leon, M., Murphy, G. M., and Dowling, R. H. 1978. Physiological factors influencing 
serum bile acid levels. Gut 19, 1, 32–39. DOI: 10.1136/gut.19.1.32. 

[112] Salemans, J. M. J. I., Nagengast, F. M., Tangerman, A., van Schaik, A., Haan, A. F. J. de, and 
Jansen, J. B. M. J. 1993. Postprandial Conjugated and Unconjugated Serum Bile Acid Levels after 
Proctocolectomy with Ileal Pouch-Anal Anastomosis. Scandinavian Journal of Gastroenterology 
28, 9, 786–790. DOI: 10.3109/00365529309104010. 

[113] Thiel, C., Cordes, H., Baier, V., Blank, L. M., and Kuepfer, L. 2017. Multiscale modeling reveals 
inhibitory and stimulatory effects of caffeine on acetaminophen-induced toxicity in humans. 
CPT: pharmacometrics & systems pharmacology 6, 2, 136–146. DOI: 10.1002/psp4.12153. 

[114] Gubicza, K. 2017. Modeling the influence of valproic acid on endogenous metabolite levels in 
human blood. Masterarbeit, RWTH Aachen University. 

[115] Cordes, H. 2019. Multi-scale modeling in human systems pharmacology & physiology; 1. 
Auflage. RWTH Aachen University. 

[116] ChemAxon. 2015. ChemAxon Suite. v15.3. http://www.chemaxon.com. 
[117] Huang, S. M., Athanikar, N. K., Sridhar, K., Huang, Y. C., and Chiou, W. L. 1982. Pharmacokinetics 

of chlorpheniramine after intravenous and oral administration in normal adults. European 
journal of clinical pharmacology 22, 4, 359–365. DOI: 10.1007/BF00548406. 

[118] Chen, X., Zhang, Y., and Zhong, D. 2004. Simultaneous determination of chlorpheniramine and 
pseudoephedrine in human plasma by liquid chromatography-tandem mass spectrometry. 
Biomedical chromatography : BMC 18, 4, 248–253. DOI: 10.1002/bmc.311. 

[119] Koch, K. M., O'Connor-Semmes, R. L., Davis, I. M., and Yin, Y. 1998. Stereoselective 
pharmacokinetics of chlorpheniramine and the effect of ranitidine. Journal of pharmaceutical 
sciences 87, 9, 1097–1100. DOI: 10.1021/js980045m. 

[120] Vallner, J. J., Kotzan, J. A., Stewart, J. T., Brown, W. J., Honigberg, I. L., Needham, T. E., and Dighe, 
S. V. 1982. Blood levels following multiple oral dosing of chlorpheniramine conventional and 
controlled release preparations. Biopharmaceutics & drug disposition 3, 2, 95–104. DOI: 
10.1002/bdd.2510030203. 

[121] Yasuda, S. U., Wellstein, A., Likhari, P., Barbey, J. T., and Woosley, R. L. 1995. Chlorpheniramine 
plasma concentration and histamine H1-receptor occupancy*. Clin Pharmacol Ther 58, 2, 210–
220. DOI: 10.1016/0009-9236(95)90199-X. 

[122] Duedahl, T. H., Dirks, J., Petersen, K. B., Romsing, J., Larsen, N.-E., and Dahl, J. B. 2005. 
Intravenous dextromethorphan to human volunteers: relationship between pharmacokinetics 
and anti-hyperalgesic effect. Pain 113, 3, 360–368. DOI: 10.1016/j.pain.2004.11.015. 

[123] Eichhold, T. H., Greenfield, L. J., Hoke, S. H., and Wehmeyer, K. R. 1997. Determination of 
dextromethorphan and dextrorphan in human plasma by liquid chromatography/tandem mass 
spectrometry. J. Mass Spectrom. 32, 11, 1205–1211. DOI: 10.1002/(SICI)1096-
9888(199711)32:11<1205:AID-JMS579>3.0.CO;2-C. 



 
References 

111 

[124] Chen, Z. R., Somogyi, A. A., and Bochner, F. 1990. Simultaneous determination of 
dextromethorphan and three metabolites in plasma and urine using high-performance liquid 
chromatography with application to their disposition in man. Therapeutic drug monitoring 12, 
1, 97–104. DOI: 10.1097/00007691-199001000-00018. 

[125] Pfaff, G., Briegel, P., and Lamprecht, I. 1983. Inter-individual variation in the metabolism of 
dextromethorphan. International Journal of Pharmaceutics 14, 2-3, 173–189. DOI: 
10.1016/0378-5173(83)90092-3. 

[126] Blanchard, J. and Sawers, S. J. 1983. Comparative pharmacokinetics of caffeine in young and 
elderly men. Journal of pharmacokinetics and biopharmaceutics 11, 2, 109–126. DOI: 
10.1007/BF01061844. 

[127] Kaplan, G. B., Greenblatt, D. J., Ehrenberg, B. L., Goddard, J. E., Cotreau, M. M., Harmatz, J. S., 
and Shader, R. I. 1997. Dose-dependent pharmacokinetics and psychomotor effects of caffeine 
in humans. Journal of clinical pharmacology 37, 8, 693–703. DOI: 10.1002/j.1552-
4604.1997.tb04356.x. 

[128] Lelo, A., Birkett, D. J., Robson, R. A., and Miners, J. O. 1986. Comparative pharmacokinetics of 
caffeine and its primary demethylated metabolites paraxanthine, theobromine and 
theophylline in man. British journal of clinical pharmacology 22, 2, 177–182. DOI: 
10.1111/j.1365-2125.1986.tb05246.x. 

[129] Jeppesen, U., Loft, S., Poulsen, H. E., and Brśen, K. 1996. A fluvoxamine-caffeine interaction 
study. Pharmacogenetics 6, 3, 213–222. DOI: 10.1097/00008571-199606000-00003. 

[130] Newton, R., Broughton, L. J., Lind, M. J., Morrison, P. J., Rogers, H. J., and Bradbrook, I. D. 1981. 
Plasma and salivary pharmacokinetics of caffeine in man. European journal of clinical 
pharmacology 21, 1, 45–52. DOI: 10.1007/bf00609587. 

[131] Bonati, M., Latini, R., Galletti, F., Young, J. F., Tognoni, G., and Garattini, S. 1982. Caffeine 
disposition after oral doses. Clin Pharmacol Ther 32, 1, 98–106. DOI: 10.1038/clpt.1982.132. 

[132] Albert, K. S., Sedman, A. J., Wilkinson, P., Stoll, R. G., Murray, W. J., and Wagner, J. G. 1974. 
Bioavailability studies of acetaminophen and nitrofurantoin. Journal of clinical pharmacology 
14, 5-6, 264–270. DOI: 10.1002/j.1552-4604.1974.tb02312.x. 

[133] Critchley, J. A. J. H., Critchley, L. A. H., Anderson, P. J., and Tomlinson, B. 2005. Differences in 
the single-oral-dose pharmacokinetics and urinary excretion of paracetamol and its conjugates 
between Hong Kong Chinese and Caucasian subjects. Journal of Clinical Pharmacy and 
Therapeutics 30, 2, 179–184. DOI: 10.1111/j.1365-2710.2004.00626.x. 

[134] Perucca, E. and Richens, A. 1979. Paracetamol disposition in normal subjects and in patients 
treated with antiepileptic drugs. British journal of clinical pharmacology 7, 2, 201–206. 

[135] Prescott, L. F. 1980. Kinetics and metabolism of paracetamol and phenacetin. British journal of 
clinical pharmacology 10 Suppl 2, S2, 291S--298S. DOI: 10.1111/j.1365-2125.1980.tb01812.x. 

[136] Liukas, A., Kuusniemi, K., Aantaa, R., Virolainen, P., Niemi, M., Neuvonen, P. J., and Olkkola, K. 
T. 2011. Pharmacokinetics of intravenous paracetamol in elderly patients. Clinical 
pharmacokinetics 50, 2, 121–129. DOI: 10.2165/11537240-000000000-00000. 

[137] Clements, J. A., Critchley, J. a., and Prescott, L. F. 1984. The role of sulphate conjugation in the 
metabolism and disposition of oral and intravenous paracetamol in man. British journal of 
clinical pharmacology 18, 4, 481–485. DOI: 10.1111/j.1365-2125.1984.tb02495.x. 

[138] Morais, S. M. de, Uetrecht, J. P., and Wells, P. G. 1992. Decreased glucuronidation and increased 
bioactivation of acetaminophen in Gilbert's syndrome. Gastroenterology 102, 2, 577–586. DOI: 
10.1016/0016-5085(92)90106-9. 

[139] Rawlins, M. D., Henderson, D. B., and Hijab, A. R. 1977. Pharmacokinetics of paracetamol 
(acetaminophen) after intravenous and oral administration. European journal of clinical 
pharmacology 11, 4, 283–286. DOI: 10.1007/BF00607678. 



 
References 

112 

[140] Faber, M. S., Jetter, A., and Fuhr, U. 2005. Assessment of CYP1A2 activity in clinical practice: 
why, how, and when? Basic & clinical pharmacology & toxicology 97, 3, 125–134. DOI: 
10.1111/j.1742-7843.2005.pto_973160.x. 

[141] Lucas, D., Ferrara, R., Gonzales, E., Albores, A., Manno, M., and Berthou, F. 2001. Cytochrome 
CYP2E1 phenotyping and genotyping in the evaluation of health risks from exposure to polluted 
environments. Toxicology letters 124, 1-3, 71–81. DOI: 10.1016/s0378-4274(00)00287-3. 

[142] Assis, J., Pereira, D., Gomes, M., Marques, D., Marques, I., Nogueira, A., Catarino, R., and 
Medeiros, R. 2013. Influence of CYP3A4 genotypes in the outcome of serous ovarian cancer 
patients treated with first-line chemotherapy: implication of a CYP3A4 activity profile. 
International journal of clinical and experimental medicine 6, 7, 552–561. 

[143] Court, M. H., Freytsis, M., Wang, X., Peter, I., Guillemette, C., Hazarika, S., Duan, S. X., 
Greenblatt, D. J., and Lee, W. M. 2013. The UDP-glucuronosyltransferase (UGT) 1A 
polymorphism c.2042CG (rs8330) is associated with increased human liver acetaminophen 
glucuronidation, increased UGT1A exon 5a/5b splice variant mRNA ratio, and decreased risk of 
unintentional acetaminophen-induced acute liver failure. The Journal of pharmacology and 
experimental therapeutics 345, 2, 297–307. DOI: 10.1124/jpet.112.202010. 

[144] Hebbring, S. J., Adjei, A. A., Baer, J. L., Jenkins, G. D., Zhang, J., Cunningham, J. M., Schaid, D. J., 
Weinshilboum, R. M., and Thibodeau, S. N. 2007. Human SULT1A1 gene: copy number 
differences and functional implications. Human molecular genetics 16, 5, 463–470. DOI: 
10.1093/hmg/ddl468. 

[145] Björnsson, E. 2016. Hepatotoxicity by Drugs: The Most Common Implicated Agents. IJMS 17, 2, 
224. DOI: 10.3390/ijms17020224. 

[146] Kaplowitz, N. 2005. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4, 6, 489–499. DOI: 
10.1038/nrd1750. 

[147] Hamilton, L. A., Collins-Yoder, A., and Collins, R. E. 2016. Drug-Induced Liver Injury. AACN 
Advanced Critical Care 27, 4, 430–440. DOI: 10.4037/aacnacc2016953. 

[148] Vinken, M. 2013. The adverse outcome pathway concept: A pragmatic tool in toxicology. 
Toxicology 312, 158–165. DOI: 10.1016/j.tox.2013.08.011. 

[149] Kullak-Ublick, G. A., Andrade, R. J., Merz, M., End, P., Benesic, A., Gerbes, A. L., and Aithal, G. P. 
2017. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 66, 6, 
1154–1164. DOI: 10.1136/gutjnl-2016-313369. 

[150] Jansen, P. L. M., Ghallab, A., Vartak, N., Reif, R., Schaap, F. G., Hampe, J., and Hengstler, J. G. 
2017. The ascending pathophysiology of cholestatic liver disease. Hepatology (Baltimore, Md.) 
65, 2, 722–738. DOI: 10.1002/hep.28965. 

[151] Houten, S. M., Watanabe, M., and Auwerx, J. 2006. Endocrine functions of bile acids. EMBO J 
25, 7, 1419–1425. DOI: 10.1038/sj.emboj.7601049. 

[152] Castro, R. E. and Pereira Rodrigues, C. M. 2017. Cell Death and microRNAs in Cholestatic Liver 
Diseases: Update on Potential Therapeutic Applications. CDT 18, 8, 921–931. DOI: 
10.2174/1389450116666151019102358. 

[153] Jackson, J. P., Freeman, K. M., Friley, W. W., St. Claire, R. L., Black, C., and Brouwer, K. R. 2016. 
Basolateral Efflux Transporters: A Potentially Important Pathway for the Prevention of 
Cholestatic Hepatotoxicity. Applied In Vitro Toxicology 2, 4, 207–216. DOI: 
10.1089/aivt.2016.0023. 

[154] Wagner, M. and Trauner, M. 2016. Recent advances in understanding and managing cholestasis. 
F1000Res 5, 705. DOI: 10.12688/f1000research.8012.1. 

[155] García-Cañaveras, J. C., Donato, M. T., Castell, J. V., and Lahoz, A. 2012. Targeted profiling of 
circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated 
method. Journal of Lipid Research 53, 10, 2231–2241. DOI: 10.1194/jlr.D028803. 



 
References 

113 

[156] García-Cañaveras, J. C., Donato, M. T., and Lahoz, A. 2014. Ultra-Performance Liquid 
Chromatography-Mass Spectrometry Targeted Profiling of Bile Acids: Application to Serum, 
Liver Tissue, and Cultured Cells of Different Species. In Mass Spectrometry in Metabolomics, D. 
Raftery, Ed. Methods in Molecular Biology. Springer New York, New York, NY, 233–247. DOI: 
10.1007/978-1-4939-1258-2_15. 

[157] Eggink, H. M., van Nierop, F. S., Schooneman, M. G., Boelen, A., Kalsbeek, A., Koehorst, M., Have, 
G. A. M. ten, Brauw, L. M. de, Groen, A. K., Romijn, J. A., Deutz, N. E. P., and Soeters, M. R. 2018. 
Transhepatic bile acid kinetics in pigs and humans. Clinical nutrition (Edinburgh, Scotland) 37, 4, 
1406–1414. DOI: 10.1016/j.clnu.2017.06.015. 

[158] Bell, C. C., Hendriks, D. F. G., Moro, S. M. L., Ellis, E., Walsh, J., Renblom, A., Fredriksson Puigvert, 
L., Dankers, A. C. A., Jacobs, F., Snoeys, J., Sison-Young, R. L., Jenkins, R. E., Nordling, Å., 
Mkrtchian, S., and Park, B. K., et al. 2016. Characterization of primary human hepatocyte 
spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6, 
1. DOI: 10.1038/srep25187. 

[159] Kimura, H., Sakai, Y., and Fujii, T. 2018. Organ/body-on-a-chip based on microfluidic technology 
for drug discovery. Drug metabolism and pharmacokinetics 33, 1, 43–48. DOI: 
10.1016/j.dmpk.2017.11.003. 

[160] Sudo, R. 2019. Reconstruction of Hepatic Tissue Structures Using Interstitial Flow in a 
Microfluidic Device. In Hepatic Stem Cells, N. Tanimizu, Ed. Methods in Molecular Biology. 
Springer New York, New York, NY, 167–174. DOI: 10.1007/978-1-4939-8961-4_15. 

[161] Angelin, B., Björkhem, I., Einarsson, K., and Ewerth, S. 1982. Hepatic uptake of bile acids in man. 
Fasting and postprandial concentrations of individual bile acids in portal venous and systemic 
blood serum. The Journal of clinical investigation 70, 4, 724–731. DOI: 10.1172/jci110668. 

[162] Dancygier, H. 2003. Klinische Hepatologie. Grundlagen, Diagnostik und Therapie hepatobiliärer 
Erkrankungen ; mit 257 Tabellen. Springer, Berlin. 

[163] Beuers, U., Spengler, U., Zwiebel, F. M., Pauletzki, J., Fischer, S., and Paumgartner, G. 1992. 
Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and 
in chronic cholestatic liver disease. Hepatology 15, 4, 603–608. DOI: 10.1002/hep.1840150409. 

[164] Bisschop, P. H., Bandsma, R. H. J., Stellaard, F., Harmsel, A. ter, Meijer, A. J., Sauerwein, H. P., 
Kuipers, F., and Romijn, J. A. 2004. Low-fat, high-carbohydrate and high-fat, low-carbohydrate 
diets decrease primary bile acid synthesis in humans. The American Journal of Clinical Nutrition 
79, 4, 570–576. DOI: 10.1093/ajcn/79.4.570. 

[165] Pauli-Magnus, C., Stieger, B., Meier, Y., Kullak-Ublick, G. A., and Meier, P. J. 2005. Enterohepatic 
transport of bile salts and genetics of cholestasis. Journal of Hepatology 43, 2, 342–357. DOI: 
10.1016/j.jhep.2005.03.017. 

[166] Srivastava, A. 2014. Progressive Familial Intrahepatic Cholestasis. Journal of Clinical and 
Experimental Hepatology 4, 1, 25–36. DOI: 10.1016/j.jceh.2013.10.005. 

[167] Ermis, F., Oncu, K., Ozel, M., Yazgan, Y., Gurbuz, A. K., Demirturk, L., Demirci, H., Akyol, T., and 
Hahoglu, A. 2010. Benign recurrent intrahepatic cholestasis: late initial diagnosis in adulthood. 
Annals of hepatology 9, 2, 207–210. 

[168] Hayashi, H., Naoi, S., Hirose, Y., Matsuzaka, Y., Tanikawa, K., Igarashi, K., Nagasaka, H., Kage, M., 
Inui, A., and Kusuhara, H. 2016. Successful treatment with 4-phenylbutyrate in a patient with 
benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin 
absorption. Hepatol Res 46, 2, 192–200. DOI: 10.1111/hepr.12561. 

[169] Zellos, A., Lykopoulou, L., Polydorou, A., Tanou, K., Jirsa, M., Roma, E., and Knisely, A. S. 2012. 
Nasobiliary Drainage in an Episode of Intrahepatic Cholestasis in a Child With Mild ABCB11 
Disease. Journal of Pediatric Gastroenterology & Nutrition 55, 1, 88–90. DOI: 
10.1097/MPG.0b013e31822f2bda. 



 
References 

114 

[170] Noe, J., Kullak-Ublick, G. A., Jochum, W., Stieger, B., Kerb, R., Haberl, M., Müllhaupt, B., Meier, 
P. J., and Pauli-Magnus, C. 2005. Impaired expression and function of the bile salt export pump 
due to three novel ABCB11 mutations in intrahepatic cholestasis. Journal of Hepatology 43, 3, 
536–543. DOI: 10.1016/j.jhep.2005.05.020. 

[171] Aweeka, F. T., Tomlanovich, S. J., Prueksaritanont, T., Gupta, S. K., and Benet, L. Z. 1994. 
Pharmacokinetics of orally and intravenously administered cyclosporine in pre-kidney 
transplant patients. Journal of clinical pharmacology 34, 1, 60–67. DOI: 10.1002/j.1552-
4604.1994.tb03967.x. 

[172] Thelen, K., Coboeken, K., Willmann, S., Burghaus, R., Dressman, J. B., and Lippert, J. 2011. 
Evolution of a detailed physiological model to simulate the gastrointestinal transit and 
absorption process in humans, Part 1: Oral solutions. Journal of pharmaceutical sciences 100, 
12, 5324–5345. DOI: 10.1002/jps.22726. 

[173] Willmann, S., Becker, C., Burghaus, R., Coboeken, K., Edginton, A., Lippert, J., Siegmund, H.-U., 
Thelen, K., and Mück, W. 2014. Development of a paediatric population-based model of the 
pharmacokinetics of rivaroxaban. Clinical pharmacokinetics 53, 1, 89–102. DOI: 
10.1007/s40262-013-0090-5. 

[174] Cravetto, C., Molino, G., Hofmann, A. F., Belforte, G., and Bona, B. 1988. Computer simulation 
of portal venous shunting and other isolated hepatobiliary defects of the enterohepatic 
circulation of bile acids using a physiological pharmacokinetic model. Hepatology 8, 4, 866–878. 
DOI: 10.1002/hep.1840080428. 

[175] Hofmann, A. F., Molino, G., Milanese, M., and Belforte, G. 1983. Description and simulation of 
a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile 
acids in man. Cholic acid in healthy man. J. Clin. Invest. 71, 4, 1003–1022. DOI: 
10.1172/JCI110828. 

[176] Longo, D. M., Yang, Y., Watkins, P. B., Howell, B. A., and Siler, S. Q. 2016. Elucidating Differences 
in the Hepatotoxic Potential of Tolcapone and Entacapone With DILIsym ® , a Mechanistic Model 
of Drug-Induced Liver Injury. CPT Pharmacometrics Syst. Pharmacol. 5, 1, 31–39. DOI: 
10.1002/psp4.12053. 

[177] Lippert, J., Brosch, M., Kampen, O. von, Meyer, M., Siegmund, H.-U., Schafmayer, C., Becker, T., 
Laffert, B., Görlitz, L., Schreiber, S., Neuvonen, P. J., Niemi, M., Hampe, J., and Kuepfer, L. 2012. 
A mechanistic, model-based approach to safety assessment in clinical development. CPT: 
pharmacometrics & systems pharmacology 1, e13. DOI: 10.1038/psp.2012.14. 

[178] Setchell, K. D., Rodrigues, C. M., Clerici, C., Solinas, A., Morelli, A., Gartung, C., and Boyer, J. 
1997. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. 
Gastroenterology 112, 1, 226–235. DOI: 10.1016/S0016-5085(97)70239-7. 

[179] Hylemon, P. B., Zhou, H., Pandak, W. M., Ren, S., Gil, G., and Dent, P. 2009. Bile acids as 
regulatory molecules. Journal of Lipid Research 50, 8, 1509–1520. DOI: 10.1194/jlr.R900007-
JLR200. 

[180] Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., Messaddeq, 
N., Harney, J. W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A. C., and Auwerx, J. 2006. Bile 
acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 
439, 7075, 484–489. DOI: 10.1038/nature04330. 

[181] Broeders, E. P., Nascimento, E. B., Havekes, B., Brans, B., Roumans, K. H., Tailleux, A., Schaart, 
G., Kouach, M., Charton, J., Deprez, B., Bouvy, N. D., Mottaghy, F., Staels, B., van Marken 
Lichtenbelt, W. D., and Schrauwen, P. 2015. The Bile Acid Chenodeoxycholic Acid Increases 
Human Brown Adipose Tissue Activity. Cell Metabolism 22, 3, 418–426. DOI: 
10.1016/j.cmet.2015.07.002. 



 
References 

115 

[182] Mertens, K. L., Kalsbeek, A., Soeters, M. R., and Eggink, H. M. 2017. Bile Acid Signaling Pathways 
from the Enterohepatic Circulation to the Central Nervous System. Front. Neurosci. 11. DOI: 
10.3389/fnins.2017.00617. 

[183] Brock, W. J., Beaudoin, J. J., Slizgi, J. R., Su, M., Jia, W., Roth, S. E., and Brouwer, K. L. R. 2018. 
Bile Acids as Potential Biomarkers to Assess Liver Impairment in Polycystic Kidney Disease. Int J 
Toxicol 37, 2, 144–154. DOI: 10.1177/1091581818760746. 

[184] Gao, J., Xu, B., Zhang, X., Cui, Y., Deng, L., Shi, Z., Shao, Y., and Ding, M. 2016. Association 
between serum bile acid profiles and gestational diabetes mellitus: A targeted metabolomics 
study. Clinica Chimica Acta 459, 63–72. DOI: 10.1016/j.cca.2016.05.026. 

[185] Wang, X., Xie, G., Zhao, A., Zheng, X., Huang, F., Wang, Y., Yao, C., Jia, W., and Liu, P. 2016. Serum 
Bile Acids Are Associated with Pathological Progression of Hepatitis B-Induced Cirrhosis. J. 
Proteome Res. 15, 4, 1126–1134. DOI: 10.1021/acs.jproteome.5b00217. 

[186] Marksteiner, J., Blasko, I., Kemmler, G., Koal, T., and Humpel, C. 2018. Bile acid quantification 
of 20 plasma metabolites identifies lithocholic acid as a putative biomarker in Alzheimer’s 
disease. Metabolomics 14, 1. DOI: 10.1007/s11306-017-1297-5. 

[187] Wahlström, A., Sayin, S. I., Marschall, H.-U., and Bäckhed, F. 2016. Intestinal Crosstalk between 
Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism 24, 1, 41–50. 
DOI: 10.1016/j.cmet.2016.05.005. 

[188] Reif, R., Ghallab, A., Beattie, L., Günther, G., Kuepfer, L., Kaye, P. M., and Hengstler, J. G. 2017. 
In vivo imaging of systemic transport and elimination of xenobiotics and endogenous molecules 
in mice. Arch Toxicol 91, 3, 1335–1352. DOI: 10.1007/s00204-016-1906-5. 

[189] Ghallab, A., Hofmann, U., Sezgin, S., Vartak, N., Hassan, R., Zaza, A., Godoy, P., Schneider, K. M., 
Guenther, G., Ahmed, Y. A., Abbas, A. A., Keitel, V., Kuepfer, L., Dooley, S., and Lammert, F., et 
al. 2019. Bile Microinfarcts in Cholestasis Are Initiated by Rupture of the Apical Hepatocyte 
Membrane and Cause Shunting of Bile to Sinusoidal Blood. Hepatology 69, 2, 666–683. DOI: 
10.1002/hep.30213. 

[190] Ballet, F. 2015. Preventing Drug-Induced Liver Injury: How Useful Are Animal Models? Digestive 
diseases (Basel, Switzerland) 33, 4, 477–485. DOI: 10.1159/000374093. 

[191] Mahdi, Z. M., Synal-Hermanns, U., Yoker, A., Locher, K. P., and Stieger, B. 2016. Role of 
Multidrug Resistance Protein 3 in Antifungal-Induced Cholestasis. Molecular pharmacology 90, 
1, 23–34. DOI: 10.1124/mol.116.103390. 

[192] Morgan, R. E., Trauner, M., van Staden, C. J., Lee, P. H., Ramachandran, B., Eschenberg, M., 
Afshari, C. A., Qualls, C. W., Lightfoot-Dunn, R., and Hamadeh, H. K. 2010. Interference with bile 
salt export pump function is a susceptibility factor for human liver injury in drug development. 
Toxicological Sciences 118, 2, 485–500. DOI: 10.1093/toxsci/kfq269. 

[193] Morgan, R. E., van Staden, C. J., Chen, Y., Kalyanaraman, N., Kalanzi, J., Dunn, R. T., Afshari, C. 
A., and Hamadeh, H. K. 2013. A multifactorial approach to hepatobiliary transporter assessment 
enables improved therapeutic compound development. Toxicological Sciences 136, 1, 216–241. 
DOI: 10.1093/toxsci/kft176. 

[194] Padda, M. S., Sanchez, M., Akhtar, A. J., and Boyer, J. L. 2011. Drug-induced cholestasis. 
Hepatology (Baltimore, Md.) 53, 4, 1377–1387. DOI: 10.1002/hep.24229. 

[195] Heggie, J. R., Wu, M., Burns, R. B., Ng, C. S., Fung, H. C., Knight, G., Barnett, M. J., Spinelli, J. J., 
and Embree, L. 1997. Validation of a high-performance liquid chromatographic assay method 
for pharmacokinetic evaluation of busulfan. Journal of chromatography. B, Biomedical sciences 
and applications 692, 2, 437–444. DOI: 10.1016/s0378-4347(96)00520-8. 

[196] Odlind, B., Hartvig, P., Lindström, B., Lönnerholm, G., Tufveson, G., and Grefberg, N. 1986. 
Serum azathioprine and 6-mercaptopurine levels and immunosuppressive activity after 



 
References 

116 

azathioprine in uremic patients. International journal of immunopharmacology 8, 1, 1–11. DOI: 
10.1016/0192-0561(86)90067-6. 

[197] Zins, B. J., Sandborn, W. J., McKinney, J. A., Mays, D. C., van Os, E. C., Tremaine, W. J., Mahoney, 
D. W., Zinsmeister, A. R., and Lipsky, J. J. 1997. A dose-ranging study of azathioprine 
pharmacokinetics after single-dose administration of a delayed-release oral formulation. 
Journal of clinical pharmacology 37, 1, 38–46. DOI: 10.1177/009127009703700107. 

[198] Shinoda, S., Aoyama, T., Aoyama, Y., Tomioka, S., Matsumoto, Y., and Ohe, Y. 
Pharmacokinetics/pharmacodynamics of acetaminophen analgesia in Japanese patients with 
chronic pain. 0918-6158 30, 1. DOI: 10.1248/bpb.30.157. 

[199] Gupta, S. K., Manfro, R. C., Tomlanovich, S. J., Gambertoglio, J. G., Garovoy, M. R., and Benet, L. 
Z. 1990. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following 
oral and intravenous administration. Journal of clinical pharmacology 30, 7, 643–653. DOI: 
10.1002/j.1552-4604.1990.tb01868.x. 

[200] Crook, P. R., Willis, J. V., Kendall, M. J., Jack, D. B., and Fowler, P. D. 1982. The pharmacokinetics 
of diclofenac sodium in patients with active rheumatoid disease. European journal of clinical 
pharmacology 21, 4, 331–334. DOI: 10.1007/BF00637622. 

[201] Willis, J. V., Kendall, M. J., Flinn, R. M., Thornhill, D. P., and Welling, P. G. 1979. The 
pharmacokinetics of diclofenac sodium following intravenous and oral administration. 
European journal of clinical pharmacology 16, 6, 405–410. DOI: 10.1007/BF00568201. 

[202] Zhang, Y., Han, Y.-H., Putluru, S. P., Matta, M. K., Kole, P., Mandlekar, S., Furlong, M. T., Liu, T., 
Iyer, R. A., Marathe, P., Yang, Z., Lai, Y., and Rodrigues, A. D. 2016. Diclofenac and Its Acyl 
Glucuronide: Determination of In Vivo Exposure in Human Subjects and Characterization as 
Human Drug Transporter Substrates In Vitro. Drug metabolism and disposition: the biological 
fate of chemicals 44, 3, 320–328. DOI: 10.1124/dmd.115.066944. 

[203] Lauterburg, B. H., Smith, C. V., Todd, E. L., and Mitchell, J. R. 1985. Pharmacokinetics of the toxic 
hydrazino metabolites formed from isoniazid in humans. The Journal of pharmacology and 
experimental therapeutics 235, 3, 566–570. 

[204] Chládek, J., Grim, J., Martínková, J., Simková, M., Vanìèková, J., Koudelková, V., and Noièková, 
M. 2002. Pharmacokinetics and pharmacodynamics of low-dose methotrexate in the treatment 
of psoriasis. Br J Clin Pharmacol 54, 2, 147–156. DOI: 10.1046/j.1365-2125.2002.01621.x. 

[205] Lund, L., Alvan, G., Berlin, A., and Alexanderson, B. 1974. Pharmacokinetics of single and 
multiple doses of phenytoin in man. European journal of clinical pharmacology 7, 2, 81–86. DOI: 
10.1007/BF00561319. 

[206] Acocella, G. 1978. Clinical pharmacokinetics of rifampicin. Clinical pharmacokinetics 3, 2, 108–
127. DOI: 10.2165/00003088-197803020-00002. 

[207] Houin, G., Beucler, A., Richelet, S., Brioude, R., Lafaix, C., and Tillement, J. P. 1983. 
Pharmacokinetics of rifampicin and desacetylrifampicin in tuberculous patients after different 
rates of infusion. Therapeutic drug monitoring 5, 1, 67–72. DOI: 10.1097/00007691-198303000-
00005. 

[208] Nagai, G., Ono, S., Yasui-Furukori, N., Nakamura, A., Mihara, K., and Kondo, T. 2009. 
Formulations of valproate alter valproate metabolism: a single oral dose kinetic study. 
Therapeutic drug monitoring 31, 5, 592–596. DOI: 10.1097/FTD.0b013e3181b777f9. 

[209] Perucca, E. 2002. Pharmacological and therapeutic properties of valproate: a summary after 35 
years of clinical experience. CNS drugs 16, 10, 695–714. DOI: 10.2165/00023210-200216100-
00004. 

[210] Albrecht, W., Kappenberg, F., Brecklinghaus, T., Stoeber, R., Marchan, R., Zhang, M., Ebbert, K., 
Kirschner, H., Grinberg, M., Leist, M., Moritz, W., Cadenas, C., Ghallab, A., Reinders, J., and 
Vartak, N., et al. 2019. Prediction of human drug-induced liver injury (DILI) in relation to oral 



 
References 

117 

doses and blood concentrations. Arch Toxicol 93, 6, 1609–1637. DOI: 10.1007/s00204-019-
02492-9. 

[211] Russell, W. M. S. and Burch, R. L. 1992. The principles of humane experimental technique. 
Universities Federation for Animal Welfare, Potters Bar, Herts. 

[212] Kosti, I., Jain, N., Aran, D., Butte, A. J., and Sirota, M. 2016. Cross-tissue Analysis of Gene and 
Protein Expression in Normal and Cancer Tissues. Sci Rep 6, 24799. DOI: 10.1038/srep24799. 

[213] Danhof, M. 2016. Systems pharmacology - Towards the modeling of network interactions. 
Official journal of the European Federation for Pharmaceutical Sciences 94. Elsevier, 
Amsterdam, Oxford. 

[214] Iyengar, R., Zhao, S., Chung, S.-W., Mager, D. E., and Gallo, J. M. 2012. Merging systems biology 
with pharmacodynamics. Science translational medicine 4, 126, 126ps7. DOI: 
10.1126/scitranslmed.3003563. 

[215] Roth, A. D. and Lee, M.-Y. 2017. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential 
Mechanisms and Predictive Assays. BioMed research international 2017, 9176937. DOI: 
10.1155/2017/9176937. 

[216] Instituto de Investigación Sanitaria La Fé. Hepatotest. Ensayo clínico piloto fase I/IIa para 
determinar condiciones, dosis mínima y efectividad de un test de función hepática (Hepatotest). 
https://reec.aemps.es/reec/public/detail.html. 

[217] EMA. 2018. Article 57 product data. 
[218] Rumore, M. M. 1984. Clinical pharmacokinetics of chlorpheniramine. Drug intelligence & clinical 

pharmacy 18, 9, 701–707. DOI: 10.1177/106002808401800905. 
[219] Schadel, M., Wu, D., Otton, S. V., Kalow, W., and Sellers, E. M. 1995. Pharmacokinetics of 

dextromethorphan and metabolites in humans: influence of the CYP2D6 phenotype and 
quinidine inhibition. Journal of clinical psychopharmacology 15, 4, 263–269. DOI: 
10.1097/00004714-199508000-00005. 

[220] Lelo, A., Miners, J. O., Robson, R. A., and Birkett, D. J. 1986. Quantitative assessment of caffeine 
partial clearances in man. British journal of clinical pharmacology 22, 2, 183–186. DOI: 
10.1111/j.1365-2125.1986.tb05247.x. 

[221] Forrest, J. A. H., Clements, J. A., and Prescott, L. F. 1982. Clinical Pharmacokinetics of 
Paracetamol. Clinical pharmacokinetics 7, 2, 93–107. DOI: 10.2165/00003088-198207020-
00001. 

[222] Mazaleuskaya, L. L., Sangkuhl, K., Thorn, C. F., FitzGerald, G. A., Altman, R. B., and Klein, T. E. 
2015. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus 
toxic doses. Pharmacogenetics and genomics 25, 8, 416–426. DOI: 
10.1097/FPC.0000000000000150. 

[223] Lai, C. M., Stoll, R. G., Look, Z. M., and Yacobi, A. 1979. Urinary excretion of chlorpheniramine 
and pseudoephedrine in humans. Journal of pharmaceutical sciences 68, 10, 1243–1246. DOI: 
10.1002/jps.2600681012. 

[224] Capon, D. A., Bochner, F., Kerry, N., Mikus, G., Danz, C., and Somogyi, A. A. 1996. The influence 
of CYP2D6 polymorphism and quinidine on the disposition and antitussive effect of 
dextromethorphan in humans*. Clin Pharmacol Ther 60, 3, 295–307. DOI: 10.1016/S0009-
9236(96)90056-9. 

[225] Ince, I., Knibbe, C. A. J., Danhof, M., and Wildt, S. N. de. 2013. Developmental changes in the 
expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo 
investigations. Clin Pharmacokinet 52, 5, 333–345. DOI: 10.1007/s40262-013-0041-1. 

[226] Fendt, R., Hofmann, U., Schneider, A. R. P., Schaeffeler, E., Burghaus, R., Yilmaz, A., Blank, L. M., 
Kerb, R., Lippert, J., Schlender, J.-F., Schwab, M., and Kuepfer, L. 2021. Data-driven 



 
References 

118 

personalization of a physiologically based pharmacokinetic model for caffeine: A systematic 
assessment. CPT Pharmacometrics Syst. Pharmacol. 10, 7, 782–793. DOI: 10.1002/psp4.12646. 

[227] Rybak, M. E., Sternberg, M. R., Pao, C.-I., Ahluwalia, N., and Pfeiffer, C. M. 2015. Urine excretion 
of caffeine and select caffeine metabolites is common in the U.S. population and associated 
with caffeine intake. The Journal of nutrition 145, 4, 766–774. DOI: 10.3945/jn.114.205476. 

[228] Hou, Z. Y., Pickle, L. W., Meyer, P. S., and Woosley, R. L. 1991. Salivary analysis for determination 
of dextromethorphan metabolic phenotype. Clin Pharmacol Ther 49, 4, 410–419. DOI: 
10.1038/clpt.1991.48. 

[229] Krauss, M., Hofmann, U., Schafmayer, C., Igel, S., Schlender, J., Mueller, C., Brosch, M., 
Schoenfels, W. von, Erhart, W., Schuppert, A., Block, M., Schaeffeler, E., Boehmer, G., Goerlitz, 
L., and Hoecker, J., et al. 2017. Translational learning from clinical studies predicts drug 
pharmacokinetics across patient populations. NPJ systems biology and applications 3, 11. DOI: 
10.1038/s41540-017-0012-5. 

[230] Simulations Plus. DILIsym. https://www.simulations-plus.com/software/dilisym/pbpk/. 
Accessed 5 March 2022. 

[231] Open Systems Pharmacology Community. OSPS Documentation. https://docs.open-systems-
pharmacology.org. Accessed 5 March 2022. 

[232] Danan, G. and Benichou, C. 1993. Causality assessment of adverse reactions to drugs--I. A novel 
method based on the conclusions of international consensus meetings: application to drug-
induced liver injuries. Journal of clinical epidemiology 46, 11, 1323–1330. DOI: 10.1016/0895-
4356(93)90101-6. 

[233] Maria, V. A. and Victorino, R. M. 1997. Development and validation of a clinical scale for the 
diagnosis of drug-induced hepatitis. Hepatology (Baltimore, Md.) 26, 3, 664–669. DOI: 
10.1002/hep.510260319. 

[234] Bolger, A. M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30, 15, 2114–2120. DOI: 10.1093/bioinformatics/btu170. 

[235] Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., 
and Gingeras, T. R. 2012. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 1, 15–21. 
DOI: 10.1093/bioinformatics/bts635. 

[236] Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., 
Rinn, J. L., and Pachter, L. 2012. Differential gene and transcript expression analysis of RNA-seq 
experiments with TopHat and Cufflinks. Nature Protocols 7, 3, 562–578. DOI: 
10.1038/nprot.2012.016. 

[237] van Os, E. C., Zins, B. J., Sandborn, W. J., Mays, D. C., Tremaine, W. J., Mahoney, D. W., 
Zinsmeister, A. R., and Lipsky, J. J. 1996. Azathioprine pharmacokinetics after intravenous, oral, 
delayed release oral and rectal foam administration. Gut 39, 1, 63–68. DOI: 
10.1136/gut.39.1.63. 

[238] Bore, P., Bruno, R., Lena, N., Favre, R., and Cano, J. P. 1987. Methotrexate and 7-hydroxy-
methotrexate pharmacokinetics following intravenous bolus administration and high-dose 
infusion of methotrexate. European Journal of Cancer and Clinical Oncology 23, 9, 1385–1390. 
DOI: 10.1016/0277-5379(87)90124-6. 

[239] Comandone, A., Passera, R., Boglione, A., Tagini, V., Ferrari, S., and Cattel, L. 2005. High dose 
methotrexate in adult patients with osteosarcoma: clinical and pharmacokinetic results. Acta 
oncologica (Stockholm, Sweden) 44, 4, 406–411. DOI: 10.1080/02841860510029770. 

[240] Hoekstra, M., Haagsma, C., Neef, C., Proost, J., Knuif, A., and van de Laar, M. 2006. Splitting 
high-dose oral methotrexate improves bioavailability: a pharmacokinetic study in patients with 
rheumatoid arthritis. The Journal of rheumatology 33, 3, 481–485. 



 
References 

119 

[241] Velpandian, T., Jasuja, R., Bhardwaj, R. K., Jaiswal, J., and Gupta, S. K. 2001. Piperine in food: 
Interference in the pharmacokinetics of phenytoin. European Journal of Drug Metabolism and 
Pharmacokinetics 26, 4, 241–247. DOI: 10.1007/BF03226378. 

[242] Bialer, M. 1991. Clinical Pharmacology of Valpromide. Clinical pharmacokinetics 20, 2, 114–122. 
DOI: 10.2165/00003088-199120020-00003. 

[243] Gugler, R. and Unruh, G. E. von. 1980. Clinical pharmacokinetics of valproic acid. Clinical 
pharmacokinetics 5, 1, 67–83. DOI: 10.2165/00003088-198005010-00002. 

[244] Degen, P. H., Dieterle, W., Schneider, W., Theobald, W., and Sinterhauf, U. 1988. 
Pharmacokinetics of diclofenac and five metabolites after single doses in healthy volunteers and 
after repeated doses in patients. Xenobiotica; the fate of foreign compounds in biological 
systems 18, 12, 1449–1455. DOI: 10.3109/00498258809042267. 

[245] Bing, C., Xiaomeia, C., and Jinhenga, L. 2011. Gene dose effect of NAT2 variants on the 
pharmacokinetics of isoniazid and acetylisoniazid in healthy Chinese subjects. Drug metabolism 
and drug interactions 26, 3, 113–118. DOI: 10.1515/DMDI.2011.016. 

[246] Boxenbaum, H. G. and Riegelman, S. 1974. Determination of isoniazid and metabolites in 
biological fluids. Journal of pharmaceutical sciences 63, 8, 1191–1197. DOI: 
10.1002/jps.2600630804. 

[247] Ellard, G. A., Gammon, P. T., and Tiitinen, H. 1973. Determination of the acetylator phenotype 
from the ratio of the urinary excretion of acetylisoniazid to acid-labile isoniazid: a study in 
Finnish Lapland. Tubercle 54, 3, 201–210. DOI: 10.1016/0041-3879(73)90025-1. 

[248] Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., 
Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., and Gale, N., et al. 2018. 
DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research 46, 
D1, D1074-D1082. DOI: 10.1093/nar/gkx1037. 

[249] Widemann, B. C., Sung, E., Anderson, L., Salzer, W. L., Balis, F. M., Monitjo, K. S., McCully, C., 
Hawkins, M., and Adamson, P. C. 2000. Pharmacokinetics and metabolism of the methotrexate 
metabolite 2, 4-diamino-N(10)-methylpteroic acid. The Journal of pharmacology and 
experimental therapeutics 294, 3, 894–901. 

[250] FDA. 2008. Food and Drug Administration. Drugs@FDA Drug Label Stavzor (valproic acid). 
[251] National Center for Biotechnology Information. 2004-. PubChem Compound Summary for CID 

46781155, Desmethyl Chlorpheniramine Maleate Salt. 
https://pubchem.ncbi.nlm.nih.gov/compound/Desmethyl-Chlorpheniramine-Maleate-Salt. 
Accessed 10 March 2022. 

[252] National Library of Medicine (US), National Center for Biotechnology Information. 2004-. 
PubChem. PubChem Annotation Record for CAFFEINE, Source: Hazardous Substances Data Bank 
(HSDB). https://pubchem.ncbi.nlm.nih.gov/source/hsdb/36. Accessed 2022 Mar. 10. 

[253] Gu, L., Gonzalez, F. J., Kalow, W., and Tang, B. K. 1992. Biotransformation of caffeine, 
paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. 
Pharmacogenetics 2, 2, 73–77. DOI: 10.1097/00008571-199204000-00004. 





 
 

 

Part IV: Appendices 





 
A.1 

123 

Appendix A  

A.1 Methods 
The basic physiology-based bile acid (PBBA) model for glycochenodeoxycholic acid (GCDCA) is a 
physiologically-based pharmacokinetic (PBPK) model including four active transport processes 
representing the bile salt export pump (BSEP), sodium-taurocholate co-transporting polypeptide 
(NTCP), apical sodium-dependent bile acid transporter (ASBT) and organic solute transporter alpha 
(OSTα). Physico-chemical parameters of the molecule GCDCA (Table 1), as well as the biometry of the 
individual (Table 2), can be specified in the graphical user interface (GUI) of PK-Sim. Likewise, 
transporter localisation in different tissues (organ subcompartments as well as apical or basolateral 
position), directionality (influx or efflux), and rate laws (first-order or Michaelis-Menten kinetics) can 
be directly selected through the GUI. Note that the transporter equations are automatically generated 
in the PBPK model.  
All transporter equations have the following structure: 

 

For each transporter i, the catalytic rate constant , the protein concentration  and the Michaelis 
constant  are needed (Table 2). The concentration  in the source compartment then 
determines the transport rate of transporter i as a function of time .  
The PBPK model of GCDCA requires the specification of meal events to trigger gall bladder emptying 
(see workflow below). Fill-up of the gallbladder is balanced in PK-Sim by biliary secretion. In the PBBA 
model, this occurs via the BSEP transporter as specified above. Discontinuous release of bile from the 
gallbladder is specified in PK-Sim by providing the start times of the bile ejection (equal to the times 
of meal intake) and the duration of the ejection event given by the refilling time (Table 2).  
The ejection rate of bile ejection is specified as follows 

 

where  is the amount of bile acids [μmol] in the gallbladder and emptying half-life 
 is the half-life of GCDCA in the gallbladder during the emptying event.  

The PBPK model, including the four parametrised transporter reactions, is then exported to MoBi to 
add the synthesis reaction of GCDCA 

 

with  .  

The steps of the workflow for model building are described in detail below. 
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A.1.1 Build a basic PBPK model for GCDCA in PK-Sim 

1. Add building block “Individual” with the following specifications 

1.1.  Biometrics: Use default settings (European male, 30 years, 73 kg, 176 cm) 

1.2. Anatomy & Physiology: Use default settings 

1.1.  Specify active processes in the expression tab: 

a. Add metabolizing enzyme: 
Name CYP7A1 
Rel. expression (Liver Periportal) 1 

 
b. Add transporters (4 in total): 

Transporter Additional steps Value 

BSEP/ABCB11 
(RT-PCR from PK-
Sim database) 

Rel. expression (Gonads) 0 

NTCP/SLC10A1 
(RT-PCR from PK-
Sim database) 

Rel. expression  
(All but liver) 

0 

ASBT/SLC10A2 Transport type Influx 
Rel. expression (Upper Ileum) 1 
Rel. expression (Lower Ileum) 1 

OSTalpha Transport type Efflux 
Rel. Expression (Mucosa Small Intestine) 1 
Rel. Expression (Mucosa Large Intestine) 0.75 

 
2. Add building block “Compound” with the following specifications: 

2.1. Provide basic physico-chemistry information of G-CDCA 
Name G-CDCA 
Lipophilicity 2.12 
Fraction unbound/ binding 
partner 

0.01/Albumin 

Molecular weight 449.62 
pKa 3.77 (acidic) 
Solubility 100,000 mg/l 

 
2.2. Specify associated ADME proteins (choose Michaelis-Menten kinetics for all) 

Protein kcat [1/min] Km [μmol/l] 
CYP7A1 Placeholder Placeholder 
BSEP/ABCB11 300 5 
NTCP/SLC10A1 125 1 
ASBT/SLC10A2 5 0.5 
OSTalpha 9000 7.5 
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3. Add building block “Administration”: 

3.1. Create an arbitrary Administration protocol for G-CDCA (this has to be done to be able to create 
a simulation in PK-Sim and will be deleted afterward) 
 

4. Add building block “Event”: 

4.1. Create an event of the type Meal: Standard (Human) 

5. Create a simulation from the building blocks 

5.1. Map the processes 

5.2. Add the meal event in the pattern 0h - 4h - 8h per 24 hours 

5.3. Export (“send”) this simulation to MoBi 

 

A.1.2 Extend the PBPK model for GCDCA in MoBi 
1. Create a new reaction: 

1.2. In the “Properties” tab, specify 

Name G-CDCA synthesis 
Formula type Formula (an explicit formula) 
Formula name Add Formula > Name: FORMULA G-CDCA synthesis 
dN/ dt PARAM_G_CDCA_synthesis_rate 

 
1.3.  Add a new parameter in the “Parameters” tab to quantify the synthesis rate of GCDCA 

Name PARAM G-CDCA synthesis 
Parameter type Global 
Dimension Amount per time 
Group MoBi 
Formula type Constant (a single numeric value) 
Value 0.78161 

 
1.4. Specify the container criteria in the “Container criteria” tab 

Match tag condition Periportal 
Match tag condition Intracellular 

 

2. Delete the administration protocol: 
2.1. Change all the parameters specified in the manuscript to the corresponding values 

 
3. Simulate  

3.1. Export the simulation to xml  
3.2. Run the simulation to steady-state (e.g.,600h) and export the G-CDCA concentrations in each  

  compartment to an .xls file 
3.3. Import the .xls file into the Molecule Start Values and update the simulation 
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A.2 Figures 
 

 
Figure 37 Bile acid composition in blood plasma. [102] CA = cholic acid, CDCA = chenodeoxycholic acid, DCA = deoxycholic 
acid, LCA = lithocholic acid, UDCA = ursodeoxycholic acid 

 

 

Figure 38 Predicted vs. observed plot with k-fold deviation. 

 

A.3 Tables 

Table 9 Scaling for heterogenous bile acid measurements 

Study Scaling factor 
Angelin and Bjorkhem 1977 [106] 0.66 
Bathena et al. 2013 [92] 1 
Galeazzi et al. 1980 [109] 2.57 
Gälman et al. 2005 [108] 2.57 
Hepner and Demers 1977[105] 2.03 
Leon et al. 1978 [111] 1.68 
Salemans et al. 1993 [112] 1 
Schalm et al. 1978 [107] 1.68 
Setchell et al. 1997 [178] 2.57 
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Appendix B   

B.1 Methods  
 

B.1.1 PBPK-assisted liver spheroid in vitro assay  
The in vitro incubation experiments were conducted by project partners in a sophisticated model 
mimicking the in vivo drug exposure [23]. 3D InSight™ Human Liver Microtissues (hLiMT), 
GravityTRAP™ plates, 3D InSight™ Human Liver Maintenance Medium (hLiMM) AF and hLiMM TOX 
were obtained from InSphero AG, Schlieren, Switzerland. Microclime® lids were obtained from 
Labcyte, Sunnyvale, CA, USA. All spheroid hLiMT used in this study were 3D InSight™ hLiMT and 
produced according to the patent-pending protocol (WO2015/158777A1) using the hanging-drop 
method. Primary human hepatocytes (PHHs) and non-parenchymal cells (NPCs) for the production of 
hLiMTs were from single organ donors or from pooled PHH fractions originating from 10 individual 
donors, purchased from BioIVT (Westbury, NY). GravityTRAP™ plates with single hLiMT in each well 
were covered with Microclime® lids and incubated at 37 °C in a humidified 5 % CO2 cell-culture 
incubator in bovine serum albumin (BSA)-free 3D InSight™ hLiMM TOX medium.  
The hLiMT were cultivated for up to 14 days and treated with ten hepatotoxicants at clinically relevant 
concentrations. These were informed by simulations of drug-specific PBPK models that predicted the 
in vivo liver exposure during repeated therapeutic dosing according to the drug label. For experimental 
practicability, the concentration profile was discretized to three different media concentrations per 
day. The cell culture medium was changed three times daily on working days at 2 h, 8 h, and 24 h to 
mimic the PK of once-daily administration. Over the weekend, no media changes have been made. 
Instead, the concentration resembling the mean exposure over the weekend was applied on Fridays. 
The concentrations were taken from the PBPK simulations and discretized accordingly. Stock solutions 
of the compounds were prepared in DMSO. At the time of re-dosing, 50 μl of cell culture media 
(hLiMM from InSphero AG, Schlieren, Switzerland) was replaced with 50 μl fresh media containing the 
desired concentration. The final DMSO percentage did not exceed 0.1 %. Control spheroids were 
exposed to similar end-concentrations of DMSO. For each sample and time point, spheroids were 
pooled, flash-frozen in liquid nitrogen, and stored at -80°C upon further processing. Total RNA was 
isolated for each exposed microtissues using the Qiagen AllPrep DNA/RNA/miRNA Mini Kit according 
to the manufacturer’s instructions.  
All in all, over 234 samples of spheroids were taken and analyzed for both the 10 drugs and DMSO at 
sampling time points 2 h, 8 h, 24 h, 72 h, 168 h, 240 h, and 336 h, as well as t = 0h (untreated). Three 
repeats were measured in each case. Samples were depleted of ribosomal RNA using the Illumina 
RiboZero Gold kit (Cat #MRZG12324), and libraries were prepared for sequencing using Lexogen SENSE 
total RNA library preparation kit (Cat #009.96). The samples were sequenced on the HiSeq2500 (100bp 
paired-end). From these samples, RNA fold changes of the genes coding for - amongst others - liver 
proteins CYP7A1, BSEP, and NTCP were obtained at different time points during the two weeks of 
treatment (Figure 50) [23]. 
 

B.1.2 Clinical data  
Routine fasting blood samples of healthy volunteers and drug-induced liver injury (DILI) patients were 
collected by project partners, and amongst others, BA levels were analyzed. A clinical study had been 
set up and approved by the ethics committee of the hospital (Ref. Nr 2012/0452) consisting of the 
identification, unequivocal diagnosis, and follow-up of patients suffering a DILI episode. In the course 
of the DILI episode, upon the first admission to the hospital and during the following weeks, serum 
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samples of patients were drawn out, and biochemical determinations and bile acid analysis were 
performed until full recovery of the DILI episode. No criteria for selection was established except an 
unequivocal diagnosis of DILI, based on biochemical data and attrition scales (Council for International 
Organizations of Medical Sciences/ Roussel Uclaf Causality Assessment Method (CIOMS/RUCAM) 
[232, 233]. The presence of selected BAs in sera was determined by metabolomic analysis by HPLC 
coupled to a TOF Mass spectrometer. Annotation of signals was done with the aid of comparison to 
MS-databases.  

 

B.1.3 Transcriptome analysis  
Genedata Profiler® software v.11.0 was used for processing RNA-seq data by project partners. The 
first 12 bases of the 5’-end of all reads and adapter sequences were removed using Trimmomatic 
version 0.32 [234]. Data quality was checked using FastQC before and after trimming. For each sample, 
sequencing reads were mapped to the human genome version hg38 with the splice junction mapper 
STAR (version 2.5.3a) [235] using as annotation the reference genome gencode version 26 (October 
2016 freeze, GRCh38) - Ensembl 88. Features used for quantification were protein-coding and non-
protein-coding sequences (e.g., pseudo-genes missing a coding sequence of the transcripts), and 
quantification of transcripts was performed with an algorithm based on Cufflinks [236]. 



B.2 

129

B.2 Figures  

 
Figure 39 PBPK model simulation of 5FU. The simulation scenario used for fitting is shown (top panel) [195]. No validation 
data set was available. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel). 5FU, 5’-
fluorouracil; FUPA, fluoro-beta-ureidopropionate; FBAL, fluoro-beta-alanine; FUH2, dihydrofluorouracil 
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Figure 40 PBPK model simulation of AZA. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel) [196, 197, 237]. AZA, 
azathioprine; 6MP, 6-mercaptopurine 
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Figure 41 PBPK model simulation of APAP. Simulation scenarios used for fitting and validation are shown on the top and 
middle panels, respectively. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel). [133, 139, 
198] APAP, acetaminophen; APAP-C, acetaminophen-cysteine; APAP-G, acetaminophen glucuronide; APAP-S, acetaminophen 
sulfate 
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Figure 42 PBPK model simulation of MTX. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. Infusions are indicated in the legend. The goodness of fit is summarised as an observed vs. predicted plot 
(bottom panel) [204, 238–240]. MTX, methotrexate 
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Figure 43 PBPK model simulation of PHE. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel) [205, 241]. PHE, 
phenytoin 
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Figure 44 PBPK model simulation of VPA. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel) [208, 209, 242, 243]. 
VPA, valproate; VPA-fu, VPA unbound; omega-ox, lumped metabolites from omega oxidation; beta-ox, lumped metabolites 
from beta-oxidation 
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Figure 45 PBPK model simulation of CsA. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. Infusions are indicated in the legend. The goodness of fit is summarised as an observed vs. predicted plot 
(bottom panel) [199]. CsA, cyclosporine A 
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Figure 46 PBPK model simulation of DIC. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel) [200–202, 244]. DIC, 
diclofenac; DIC AGLU, diclofenac acyl glucuronid 
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Figure 47 PBPK model simulation of INH. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. The goodness of fit is summarised as an observed vs. predicted plot (bottom panel) [203, 245–247]. INH, 
isoniazid; DiAcHz, diacetylhydrazine; AcHz, acetylhydrazine; Hz, hydrazine; AcINH, N-acetylisoniazid; 
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Figure 48 PBPK model simulation of RIF. Simulation scenarios used for fitting and validation are shown on the top and middle 
panels, respectively. Infusions are indicated in the legend. The goodness of fit is summarised as an observed vs. predicted plot 
(bottom panel) [206, 207]. RIF, rifampicin; DE-RIF, desacetyl rifampicin 

  



B.2 

139

Figure 49 Diclofenac treatment simulation results (left) and simulation of venous blood plasma BA levels in a human reference 
individual (right, see Figure 16). Diclofenac treatment simulation results as an exemplary output of the contextualised in vitro 
data with the PBBA model. The simulated median plasma BA levels of 1,000 individuals (dark blue) and the 25 % and 75 % 
quartiles (light blue) are shown from pre-treatment (left of the dashed red line) to the end of diclofenac treatment after 14 
days. Like in the standard PBBA model, three meals per day in a four-hour interval at 8, 12, and 16 o’clock are simulated, each 
of which induces an increase in the plasma BA concentration. 

 

 

Figure 50 Expression data of CYP7A1, BSEP, and NTCP. Fold changes as used in the PBBA model derived from the model-based 
in vitro assay [23]. 

 

 
Figure 51 Ranking of BA levels (unnormalised) 
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B.3 Tables 
 

Table 10 PBPK models used for the assay treatment concentrations 

Drug Model reference 
5FU Table 13, [115] 
APAP [113] 
AZA [15] 
CsA [15] 
DIC [15] 
ISO [25] 
MTX Table 11 
PHE [15] 
RIF [15] 
VPA Table 12, [114] 
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Table 11 PBPK model parameters of MTX and MTX-OH 

Parameter Value Unit Source Comment 
MTX 

logP -0.39* - DB [248]  
fu 0.80* - DB [248]  
MW 454.44 g/mol DB [248]  
pKa 4.7 (acid) - DB [248]  
Solubility 9.04 mg/ml [249]  
GFR fraction 1 -  Assumption for small molecule 
Ren. Cl vmax 80.62* μmol/l/min   
Ren. Cl Km 156.88* μmol/l   
Hydroxylation 
to MTX-OH 
vmax 

0.48 * μmol/l/min   

Hydroxylation 
to MTX-OH 
Km 

109.4* μmol/l   

PC method Rodgers & Rowland -   
MTX-OH 

logP -0.91 - DB [248] Same as parent 
fu 0.50 - DB [248] Same as parent 
MW 470.40 g/mol  Same as parent 
Solubility 9.04 mg/ml [249] Same as parent 
Lin Ren. Cl  0.07* 1/min   
PC method Rodgers & Rowland -   

*, estimated by parameter identification; GFR, glomerular filtration rate; CL, clearance; fu, fraction unbound; DB, 
drugbank.com (Acc. Number: DB00563); MW, molecular weight; PC, partition coefficient  

 
 
Table 12 PBPK model parameters of VPA and metabolites (extracted from the model of Gubicza 2017 [114]) 

Parameter Value Unit Source Comment 
VPA 

logP -0.73* - [116]  
Fu 0.06* - DB [248]  
MW 144.21 g/mol DB [248]  
pKa 5.12 (acid) - [250]  
Solubility 5.86* mg/ml [250]  
Int. perm. 0.457* cm/min   
GFR fraction 0.02* -  Assumption for small molecule 
VPA-ACSM5 to 
beta-ox kcat 2737.63* μmol/l/min  ACSM5 expression as in PK-Sim 

VPA-ACSM5 to 
beta-ox Km 370* mmol/l   

VPA-CYP2C9 to 
omega-ox kcat 348.43* μmol/l/min  CYP2C9 expression as in PK-Sim 

VPA-CYP2C9 to 
omega-ox Km 219* mmol/l   



 
Appendix B 

142 

Parameter Value Unit Source Comment 
VPA-UGT1A9 to 
VPAG kcat 1.62* μmol/l/min  UGT1A9 expression as in PK-Sim 

for UGT1A1 
VPA- UGT1A9 
to VPAG Km 0.11* mmol/l   

PC method PK-Sim standard -   
Beta-ox 

logP -2.00* - [116]  
fu 0.70* -   
MW 150.00 g/mol [116]  
pKa 5.12 (acid) -  Same as parent 
Solubility 11.30* mg/ml   
GFR fraction 0.15* -  Assumption for small molecule 
Beta-ox HADH 
Km 700 * mmol/l  HADH expression as in PK-Sim 

Beta-ox HADH 
vmax 248.88* μmol/l/min   

PC method PK-Sim standard -   
Omega-ox 

logP -2.00* - [116]  
fu 0.70* -   
MW 150.00 g/mol [116]  
pKa 5.12 (acid) -  Same as parent 
Solubility 11.30* mg/ml   
GFR fraction 1* -  Assumption for small molecule 
Omega-ox 
ACADSB vmax 1244.38* μmol/l/min  ACADSB expression as in PK-Sim 

Omega-ox 
ACADSB Km 450* mmol/l   

PC method PK-Sim standard -   
VPAG 
logP -2.68* - [116]  
fu 0.99* -   
MW 320.34 g/mol [116]  
pKa 3.41 (acid) - [116]  
Solubility 22.20 mg/ml [116]  
GFR fraction 2.65* -  Assumption for small molecule 
PC method PK-Sim standard -   

*, estimated by parameter identification; GFR, glomerular filtration rate; CL, clearance; MW, molecular weight; fu, fraction 
unbound; DB, drugbank.com (Acc. No.: DB00313); Int. perm., intestinal permeability; omega-ox, lumped metabolites from 
omega oxidation; beta-ox, lumped metabolites from beta-oxidation; PC, partition coefficient; VPAG, valproate glucuronide 
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Table 13 PBPK model parameters of 5FU and metabolites  (extracted from the model of Cordes 2019 [115]) 

Parameter Value Unit Source Comment 
5FU 

logP -0.66* - [116]  
fu 0.90* - DB [248]  
MW 130.08 g/mol DB [248]  
pKa 7.76 (acid) - [116]  
Solubility 5.86 mg/ml DB [248]  
GFR fraction 1.34* -  Assumption for small molecule 
kcat 5FU-DPYD to FUH2 79400* 1/min  DPYD expression as in PK-Sim 
Km 5FU-DPYD to FUH2  486* mmol/l   
kcat 5FU-UMPS  8.46E-3* 1/min  UMPS expression as in PK-Sim 
Km 5FU-UMPS  2.0* mmol/l   
PC method Schmitt -   

FUPA 
logP -1.25* - [116]  
fu 0.90* -  Same as parent 
MW 150.11 g/mol [116]  
pKa 3.52 (acid) - [116]  
Solubility 3601.9 mg/l [116]  
GFR fraction 1.23* -  Assumption for small molecule 
Km FUPA-UBP1 to FBAL  20.1* μmol/l  UBP expression as in PK-Sim 
kcat FUPA-UBP1 to 
FBAL  18.30* 1/min   

PC method Schmitt -   
5FUH2 

logP -1.04* - [116]  
fu 0.90* -  Same as parent 
MW 132.09 g/mol [116]  
pKa 10.26 (acid) - [116]  
Solubility 3601.9 mg/l [116]  
kcat FUH2-DPYS to 
FUPA  6600* 1/min  DPYS expression as in PK-Sim  

Km FUH2-DPYS to FUPA  10* mmol/l   
PC method Schmitt -   

FBAL 
logP -0.74* - [116]  
fu 0.90* -  Same as parent 
MW 107.08 g/mol [116]  

pKa 2.97 (acid) 
9.00 (base) - [116]  

Solubility 3601.9 mg/l [116]  
GFR fraction  0.97* -  Assumption for small molecule 
PC method Schmitt -   

*, estimated by parameter identification; GFR, glomerular filtration rate; CL, clearance; MW, molecular weight; fu, fraction 
unbound; DB, drugbank.com (Acc. No.: DB00544); 5FU, 5’-fluorouracil; FUPA, fluoro-beta-ureidopropionate; FBAL, fluoro-
beta-alanine; FUH2, dihydrofluorouracil; PC, partition coefficient
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Appendix C  

C.1 Figures 

 
Figure 52 Phenotype-wise analysis of CPM population simulations split by CYP2D6 between 0 and 24 h.CPM, 
chlorpheniramine; DCPM, mono desmethyl chlorpheniramine 
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Figure 53 Phenotype-wise analysis of DEX population simulations split by CYP2D6 between 0 and 24 h. 3HM, 3-
hydroxymorphinan; 3HM-gluc, 3-hydroxymorphinan glucuronide; 3MM, 3-methoxymorphinan; DEX, dextromethorphan; 
DOR, dextrorphan; DOR-gluc, dextrorphan glucuronide  

 

 

Figure 54 Phenotype-wise analysis of DEX population simulations split by CYP3A4 between 0 and 22 h. 3HM, 3-
hydroxymorphinan; 3HM-gluc, 3-hydroxymorphinan glucuronide; 3MM, 3-methoxymorphinan; DEX, dextromethorphan; 
DOR, dextrorphan; DOR-gluc, dextrorphan glucuronide  
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Figure 55 Phenotype-wise analysis of CAF population simulations split by CYP1A2between 0 and 22 h.CAF, caffeine; PXT, 
paraxanthine; TBR, theobromine; TPY, theophylline 

 
Figure 56 Phenotype-wise analysis of APAP population simulations split by CYP2E1 between 0 and 22 h. APAP, 
acetaminophen; APAP-C, acetaminophen cysteine; APAP-G, acetaminophen glucuronide; APAP-S, acetaminophen sulfate 
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Figure 57 Phenotype-wise analysis of APAP population simulations split by UGT1A9 between 0 and 22 h. APAP, 
acetaminophen; APAP-C, acetaminophen cysteine; APAP-G, acetaminophen glucuronide; APAP-S, acetaminophen sulfate 

 

Figure 58 Phenotype-wise analysis of APAP population simulations (only UGT variability) split by UGT1A9 between 0 and 22 h. 
APAP, acetaminophen; APAP-C, acetaminophen cysteine; APAP-G, acetaminophen glucuronide; APAP-S, acetaminophen 
sulfate;   
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C.2 Tables 
Table 14 Physico-chemical properties of CPM and DCPM used in the PBPK model.

Parameter Value Orig Value Reference Comment 
CPM 

MW 274.79 g/mol 274.79 g/mol DB [248]  
Halogens 1 Cl 1 Cl DB [248]  

logP 2.52* 3.58  
3.38  DB [248]  

Solubility  77.54 mg/ml 77.54 mg/ml  
5.5 mg/ml  DB [248]  

Fu 0.30* 0.28 DB [248]  

pKa 9.47 (base) 
3.57 (base) 

9.47 (base) 
3.57 (base) DB [248]  

Int. perm. 2.25E-5 cm/min  calculated  
kcat 
(CYP2D6) 5 1/min*    

Km (CYP2D6) 5.95 μmol/l*    
Renal CL 0.21 1/min*    
PC method  Rodgers & Rowland    

DCPM 
MW 260.77 g/mol 260.77 g/mol [251] w/o maleate 
Halogens 1 Cl 1 Cl [251]  
logP 3.2* 2 [116]  
Solubility 260.77 mg/ml 260.77 mg/ml [116]  
Fu 0.28  parent value  

pKa 10.17 (base) 
2.89 (base) 

10.17 (base) 
2.89 (base) [116]  

Int. perm. 3.18E-5 cm/min  Calculated  
Renal CL 3.52 1/min*    
PC method  Rodgers & Rowland    

*, estimated by parameter identification; CL, clearance; fu, fraction unbound; Int. perm., intestinal permeability; kcat, catalytic 
rate constant; Km, Michaelis Menten constant; MW, molecular weight; PC, partition coefficient  
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Table 15 Physico-chemical properties of DEX, DOR, DOR-gluc, 3HM, 3HM-gluc, and 3MM used in the PBPK model
Parameter Value Orig Value Reference Comment 

DEX 
MW 271.40 g/mol 271.40 g/mol DB [248] DB00514 
Halogens -  DB [248] DB00514 

logP 3.33* 3.49 
3.15 

DB [248] 
[75]  

Solubility 90.88 mg/l 90.88 mg/l (calc) 
250 g/l (exp) 

[116],  
DB [248]  

fu 0.33* 0.3 [75]  
pKa 9.85 (base)  [116]  
Int. perm. 0.00179* cm/min    
kcat (CYP2D6) 38.58 1/min*    
Km (CYP2D6) 3.7 μmol/l  [27]  
kcat (CYP3A4) 60.511 1/min*    
Km (CYP3A4) 232 μmol/l*  [27]  
Renal CL 0.047 1/min*    
PC method  Rodgers & Rowland    

DOR 
MW 257.377 g/mol 257.377 g/mol DB [248] DB14682 
Halogens -  DB [248] DB14682 
logP 1.93 2.903 [116]  
Solubility 146.34 mg/ml 146.34 mg/ml [116]  
fu 0.5*    

pKa 10.43 (acid) 
 9.66 (base) 

10.43 (acid) 
 9.66 (base) [116]  

Int. perm. 1.93E-5 cm/min  Calculated  
kcat (CYP3A4) 22.67 1/min*    
Km (CYP3A4) 724 μmol/l  [27]  
kcat (UGT2B17) 358.13 1/min*    
Km (UGT2B17) 99.7 μmol/l*    
Renal CL 2.00 1/min*    
PC method  Rodgers & Rowland    

DOR-gluc 
MW 433.501 433.501 HMDB HMDB0010341 
Halogens -  HMDB HMDB0010341 
logP 0.06* -1.33  [116]  
Solubility 0.49 mg/ml 0.49 mg/ml [116]  
fu 0.1*    

pKa 2.85 (base) 
9.82 (acid) 

2.85 (base) 
9.82 (acid) [116]  

Int. perm. 2.48E-8   calculated  
Renal CL 2.8 1/min*     
PC method  Rodgers & Rowland    

3MM 
MW 257.377 257.377 HMDB HMDB0014045 
Halogens   HMDB HMDB0014045 
logP -1* 3.11 [116]  
Solubility 120.78 mg/ml 120.78 mg/ml [116]  
fu 0.32*     
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Parameter Value Orig Value Reference Comment 
pKa 10.22 (base) 10.22 (base) [116]  
Int. perm. 2.27E-8 cm/min   calculated  
kcat (CYP3A4) 592.30 1/min*    
Km(CYP3A4) 5 μmol/l*  [27]  
Renal CL 0.74 1/min*    
PC method  Rodgers & Rowland    

3HM 
MW 243.35  CAS CAS 39131-41-4 
Halogens - - CAS  
logP -1*  2.357 [116]  
Solubility 153.91 mg/ml 153.91 mg/ml [116]  
fu 0.44*     

pKa 9.89 (acid) 
10.6 (base) 

9.89 (acid) 
10.6 (base) [116]  

Int. perm. 2.92E-8 cm/min   calculated  
kcat (UGT2B17) 125.83 1/min*    
Km (UGT2B17) 189.99 μmol/l*    
Renal CL 12.66 ml/min/kg*     
PC method  Rodgers & Rowland    

3HM-gluc 
MW 419.47 g/mol 419.47 g/mol DB [248] DBMET01319 
Halogens none  DB [248]  
logP -0.9* -1.455 [116]  
Solubility 0.28 mg/ml 0.28 mg/ml [116]  
fu 0.1*    

pKa 2.85 (base) 
10.21 (acid) 

2.85 (base) 
10.21 (acid) [116]  

Int. perm. 3.14E-9 cm/min  calculated  
Renal CL 5.1 1/min*    
PC method  Rodgers & Rowland    

*, estimated by parameter identification; 3HM, 3-hydroxymorphinan; 3HM-gluc, 3-hydroxymorphinan glucuronide; 3MM, 3-
methoxymorphinan; CL, clearance; DB, drugbank.com; DEX, dextromethorphan; DOR, dextrorphan; DOR-gluc, dextrorphan 
glucuronide; fu, fraction unbound; HMDB, human metabolome data base (hmdb.ca); Int. perm., intestinal permeability; Km, 
Michaelis Menten constant; kcat, catalytic rate constant; MW, molecular weight; PC, partition coefficient 
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Table 16 Physico-chemical properties of CAF, PXT, TBR, and TPY used in the PBPK model
Parameter Value Orig Value Reference Comment 

CAF 
MW 194.194 g/mol 194.194 g/mol DB [248]  
Halogens - - DB [248]  
logP -0.7* -0.546 DB [248]  
Solubility 21.7 g/l 21.7 g/l DB [248]  
fu 0.7* 0.68 [128]   
pKa 0.7 (base) 0.7 (base) [252]  
Int. perm. 2.971E-05 cm/min*    
kcat 
(CYP1A2/PXT) 7.33 1/min* (49.2 pmol/min/mg) [253] IVIVE scaling 

factor unknown 
Km 
(CYP1A2/PXT) 0.310 mmol/l* 1.08 mmol/l [253]  

kcat 
(CYP1A2/TBR) 2.89 1/min* 6.1 pmol/min/mg [253]  

Km 
(CYP1A2/TBR) 0.310 mmol/l* 0.93 mmol/l [253]  

kcat 
(CYP1A2/TPY) 0.79 1/min* (5.9 pmol/min/mg) [253]  IVIVE scaling 

factor unknown 
Km 
(CYP1A2/TPY) 0.310 mmol/l* 2.44 mmol/l   

Renal CL 0.02 ml/min/kg*    
PC method  Rodgers & Rowland    

PXT 
MW 180.164 g/mol 180.164 g/mol HMDB HMDB0001860 
Halogens - - HMDB  
logP 0.03* -0.63 [116]  
Solubility 9130 mg/l* 19730 mg/l [116]  
fu 0.54* 0.52 [128]  
pKa 10.91 (acid) 10.91 (acid) [116]  
Int. perm. 1.20E-6 cm/min   calculated  

kcat (CYP1A2) 13.19 1/min* (22.7 pmol/min/mg) [253] IVIVE scaling 
factor unknown 

Km (CYP1A2) 0.310 mmol/l*  2.5 mmol/l [253]  
Renal CL 0.10 ml/min/kg*    
PC method  Rodgers&Rowland    

TBR 
MW 180.16 g/mol 180.16 g/mol DB [248] DB01412 
Halogens - - DB [248]  
logP -0.78 -0.78 DB [248]  
Solubility 9740 mg/l 9740 mg/l DB [248]  
fu 0.86 0.86 [128]  
pKa 9.28 (acid) 9.28 (acid) [116]  
Int. perm. 8.78E-6 cm/min*    
kcat (CYP1A2) 11.85 1/min*    
Km (CYP1A2) 0.31 mmol/l*    
Renal CL 0.04 ml/min/kg*    
PC method  Rodgers & Rowland    

TPY 
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Parameter Value Orig Value Reference Comment 
MW 180.16 g/mol 180.16 g/mol DB [248] DB00277 
Halogens - - DB [248]  
logP 0.73* -0.02   
Solubility 9740 mg/l* 7360 mg/l DB [248]  
fu 0.58* 0.6 DB [248]  
pKa 7.82 (acid) 7.82 (acid) [116]  
Int. perm. 6.09E-6 cm/min*    
kcat (CYP1A2) 10.6 1/min*    
Km (CYP1A2) 0.310 mmol/l*    
Renal CL 0.08 ml/min/kg*    
PC method Rodgers & Rowland    

*, estimated by parameter identification; CL, clearance; DB, drugbank.com; fu, fraction unbound; HMDB, human metabolome 
database (hmdb.ca); Int. perm., intestinal permeability; IVIVE, in vitro-in vivo extrapolation; MW, molecular weight; Km, 
Michaelis Menten constant; kcat, catalytic rate constant; PC, partition coefficient; 
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Table 17 Physico-chemical properties of APAP, APAP-G-, APAP-C, APAP-S, and NAPQI  used in the PBPK model
Parameter Value Orig Value Reference Comment 

APAP 
MW 151.16 g/mol 151.16 g/mol DB[248] DB00316 
Halogens - - DB[248]  
logP 0.31* 0.91 [116]  
Solubility 14 mg/ml* 11.24 mg/ml [116]  
fu 0.73* 0.75 DB [248]  
pKa 9.5 (acid) 9.5 (acid) [116]  
Int. perm. 5.12E-6 cm/min  calculated  
kcat (CYP2E1) 0.14 1/min*    
Km(CYP2E1) 889.29 μmol/l*    
kcat (SULT1A1) 32.26 1/min*    
Km(SULT1A1) 2.01 mmol/l*    
kcat (UGT1A9) 63.85 1/min*    
Km(UGT1A9) 94.17 μmol/l*    
Renal CL 0.009 1/min*    
PC method/ 
Cellular 
permeability 

Schmitt / Charge 
dependent Schmitt    

APAP-G 
MW 327.29 g/mol 327.29 g/mol HMDB HMDB0010316 
Halogens - - HMDB  
logP -2* -1.04 [116]  
Solubility 445 mg/ml 445 mg/ml [116]  
fu 0.76*    
pKa 3.18 (acid) 3.18 (acid) [116]  
Int. perm. 7.69E-10 cm/min  calculated  
vmax (ABCC3) 0.8 μmol/l/min*    
Km (ABCC3) 979.49 μmol/l*    
Renal CL vmax 50 μmol/l/min*    
Renal CL Km 30 μmol/l*    
PC method/ 
Cellular 
permeability 

Schmitt / Charge 
dependent Schmitt    

APAP-S 
MW 231.33 g/mol 231.33 g/mol HMDB HMDB0059911 
Halogens - - HMDB  
logP 0.12* 0.43 [116]  
Solubility 634 mg/ml 634 mg/ml [116]  
fu 0.24*    

pKa  -2.16 (acid) 
14.65 (acid) [116]  

Int. perm. 4.78E-7 cm/min  calculated  
vmax (ABCC3) 571.33 μmol/l/min*    
Km (ABCC3) 88.3 μmol/l*    
Renal CL 2.26 1/min*    
PC method/ 
Cellular 
permeability 

Schmitt / Charge 
dependent Schmitt    
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Parameter Value Orig Value Reference Comment 
APAP-C 

MW  438.18 HMDB HMDB0060559 
Halogens - - HMDB  
logP 1.2* -1.79 [116]  
Solubility 0.72 mg/ml 0.72 mg/ml [116]  
fu 0.63*    

pKa 
1.93 (acid) 
3.75 (acid) 
9.09 (base) 

1.93 (acid) 
3.75 (acid) 
9.09 (base) 

  

Int. perm. 3.28E-7 cm/min  calculated  
vmax (ABCC3) 46.68 μmol/l/min*    
Km (ABCC3) 0.52 μmol/l*    
Total hep CL 1.90 1/min*    
Renal CL 0.39 1/min*    
PC method/ 
Cellular 
permeability 

Schmitt / Charge 
dependent Schmitt    

NAPQI 

MW  149.149 g/mol 
 HMDB HMDB0060946 

Halogens - - HMDB  
logP 0.26* 0.57 [116]  
Solubility 2.05 mg/ml 2.05 mg/ml   
fu 0.25*    
pKa - -0.31 (base) [116]  
Permeability 1E-20 cm/min   no diffusion 
kcat (GSTP1) 6.9 1/min*    
Km (GSTP1) 0.5 μmol/l*    
PC method/ 
Cellular 
permeability 

Schmitt / Charge 
dependent Schmitt    

 *, estimated by parameter identification; CL, clearance; DB, drugbank.com; fu, fraction unbound; GSTP1, glutathione 
transferase P1; HMDB, human metabolome database (hmdb.ca);  Int. perm., intestinal permeability; MRP3 multidrug 
resistance protein 3; MW, molecular weight; Km, Michaelis Menten constant; kcat, catalytic rate constant; PC, partition 
coefficient; vmax, maximum velocity 
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