
Received: 26 August 2021 Revised: 23 September 2022 Accepted: 9 October 2022 The Journal of Engineering

DOI: 10.1049/tje2.12208

ORIGINAL RESEARCH

Template-based generation of programming language specific

code for smart grid modelling compliant with CIM and CGMES

Jan Dinkelbach1 Lukas Razik2 Markus Mirz1,3 Andrea Benigni2,4

Antonello Monti1,3

1Institute for Automation of Complex Power
Systems, RWTH Aachen University, Aachen,
Germany

2IEK-10: Energy Systems Engineering, Jülich
Research Centre, Wilhelm-Johnen-Straße, Jülich,
Germany

3Center for Digital Energy Aachen, Fraunhofer FIT,
Aachen, Germany

4Chair of Methods for Simulating Energy Systems,
RWTH Aachen University, Aachen, Germany

Correspondence

Jan Dinkelbach, Institute for Automation of
Complex Power Systems, RWTH Aachen University,
Mathieustr. 10, Aachen, Germany.
Email: jdinkelbach@eonerc.rwth-aachen.de

Funding information

H2020 Leadership in Enabling and Industrial
Technologies, Grant/Award Number: I-NERGY -
Grant agreement ID: 101016508; Helmholtz
Association, Grant/Award Number: Joint Initiative
Energy Systems Integration; H2020 Energy,
Grant/Award Number: SOGNO - Grant agreement
ID: 774613

Abstract

The transition to Smart Grids increases the complexity of power grids by involving many
more interdependent actors and integrating additional information and communications
technology. To provide a common basis for Smart Grid data representation and exchange,
the standardized Common Information Model (CIM) has been introduced and extended,
i. a., by the Common Grid Model Exchange Specification (CGMES). An increasing accep-
tance by power grid operators and other actors has made CIM and CGMES more and more
relevant. However, the implementation of CIM / CGMES support in software projects
appears to be challenging due to the complexity of CIM / CGMES and the ongoing stan-
dardisation process with iterative adaptations. Thus, the main contribution of this paper
is the presentation of a methodology for an automated generation of programming lan-
guage specific code from CIM / CGMES specifications. The approach is based on the
use of a template language and enables to keep software projects fully compliant with
CIM / CGMES specifications. The paper outlines the process of code generation and the
consecutive codebase integration for a JavaScript based CIM / CGMES web editor and for
two CIM / CGMES de-/serialiser libraries in C++ and Python. The approach is evaluated
in use cases involving the visualisation and simulation of a benchmark grid.

1 INTRODUCTION

1.1 Motivation

The transition from conventional power grids to Smart Grids
requires advanced grid monitoring and control. This is accom-
panied by the incorporation of many more interdependent
actors and the integration of additional information and com-
munications technology (ICT) systems. The corresponding
increase in information exchange demands efficient commu-
nication technologies as well as ensuring the security and
consistency of the data transfer [1]. Recent technological trends
like 5G communication and machine learning may enable an
efficient communication and secure data transfer [2–4]. Still,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2022 The Authors. The Journal of Engineering published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

ensuring the consistency of the information exchange between
a variety of actors and heterogeneous ICT systems remains a
key challenge in Smart Grids.

As an example, the installation of renewable energy sources
(RES) needs a coordinated operation of transmission and
distribution systems and, correspondingly, an increasing data
exchange between transmission system operators (TSOs)
and distribution system operators (DSOs). This should be
based on a standardized data representation and exchange,
for example, implemented by energy management systems
(EMSs) of TSOs [5] and distribution management systems
(DMSs) of DSOs [6]. Here, not only the syntax but also
the semantics of data representation and exchange must be
explicitly defined to avoid ambiguities and misunderstandings,

J. Eng. 2023;2023:e12208. wileyonlinelibrary.com/iet-joe 1 of 13

https://doi.org/10.1049/tje2.12208

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4996-0697
https://orcid.org/0000-0002-0820-2489
https://orcid.org/0000-0003-3209-9861
https://orcid.org/0000-0002-2475-7003
https://orcid.org/0000-0003-1914-9801
mailto:jdinkelbach@eonerc.rwth-aachen.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-joe
https://doi.org/10.1049/tje2.12208

2 of 13 DINKELBACH ET AL.

achieving compatible implementations coming from different
entities.

In this context, the Common Information Model (CIM) was
developed to meet the requirements of a well-defined and exten-
sible data model, which is nowadays used by many entities in the
energy sector [7]. The base model of CIM has been defined by
the International Electrotechnical Commission (IEC) as part of
the standard IEC 61970 [8]. Targeting the energy transmission
management, the base model enables in particular the repre-
sentation of power grid topologies and their assets. Besides,
CIM was extended within the standard IEC 61968 for distribu-
tion management [9] and within IEC 62325 for energy market
communications [10]. CIM belongs to IEC’s core semantic
standards for Smart Grids, as well as IEC 61850 [11]. Fur-
ther CIM use cases are the system integration using predefined
interfaces between the CIM of DMSs and automation parts
as well as custom system integration using XML-based pay-
loads for semantically sound coupling of systems [12]. Besides,
CIM has been employed as a base data model in multi-domain
co-simulations for Smart Grid planning [13].

The Common Grid Model Exchange Specification
(CGMES) is a superset of the CIM based data exchange
standard (Profile 1 based on CIM UML 14v02) of the
European Network of Transmission System Operators for
Electricity (ENTSO-E) and is specified by IEC TS 61970-600
[14]. For instance, additionally to CIM, CGMES defines the
file exchange and extensions to CIM classes. Its purpose is
the interface definition for TSO software in order to exchange
power grid modelling information as required by the ENTSO-
E and TSO business processes. The TSOs use it, for example,
for modelling in power flow and contingency analysis, short
circuit calculations, and dynamic security assessment.

A substantial challenge is that CIM and CGMES are under-
going frequent changes during the transition to Smart Grids, for
example, with CGMES versions v2.4.13, v2.4.14, and v2.4.15
released in 2013, 2014, and 2015 respectively [15]. Besides,
the specified data models contain hundreds of classes and
attributes. This makes it difficult to keep the source code of
CIM / CGMES based software projects constantly up-to-date
and fully compliant with the CIM / CGMES specifications. In
fact, manual software updates would be very cumbersome and
error prone. Hence, the frequent changes and the complexity
of CIM / CGMES motivate the application of an automated
source code generation approach for CIM / CGMES based
software projects.

1.2 Contribution and outline

The main contribution of this paper is the presentation of an
automated generation of programming language specific code
from CIM / CGMES specifications. The concept presented
in this work is based on the Mustache template language [16]
and has been implemented in the software project CIMgen.
CIMgen incorporates our crucial methodology to perform the
automated code generation and ensure that the processing of
CIM / CGMES based data can be kept compliant with the fre-

quently changing and complex CIM / CGMES specifications.
The generated code, obtained by using CIMgen, has been inte-
grated into the recently released software projects CIMpy and
Pintura, both presented in this paper for the first time, as well as
into the existent software project CIM++ [17] and evaluated in
use cases covering network visualisation and simulation.

Within the scope of this paper, we begin with the presenta-
tion of related work carried out regarding the automated code
generation for CIM / CGMES in Section 2. Then, Section 3
explains relevant fundamentals and, based on them, Section 4
introduces the proposed concept of language-specific code gen-
eration from CIM / CGMES specifications. In Section 5, we
outline how we address the different programming language
characteristics and explain the code generation process for a
JavaScript codebase required in a graphical power grid topolo-
gies editor as well as for two codebases of de-/serialiser libraries
written in C++ and Python. Finally, Section 6 evaluates the gen-
erated codebases applying them in use cases which consider the
visualisation and simulation of a benchmark grid.

2 RELATED WORK

The here presented code generation belongs to the forward
engineering approaches of the traditional software engineer-
ing disciplines [18]. Besides the methodology proposed in this
paper, the only such approaches for CIM known to the authors
have been employed for the software projects CIM++ and
PyCIM (the latter is not to be confused with the here presented
CIMpy).

In case of CIM++, an automated deserialiser generation was
presented in [17], which is based on a C++ codebase generation
from CIM UML with the aid of a UML editor. A succeeding cor-
rection, extension, and adaptation of the CIM C++ codebase is
needed as, for instance, the CIM UML defines an Integer class
but not how this shall be implemented in a particular program-
ming language. The general usability of the generated codes out
of CIM / CGMES specifications has been presented in case of
CIM++, for example, in [19], for a converter from CIM based
topologies to power grid simulator specific system models.

In contrast to the proceeding in [17], the methodology pro-
posed in this paper does not require any adaptation steps after
the generation of the CIM C++ codebase, as all the needed
information is used during the code generation by the pre-
sented source code generator CIMgen. Beyond that, depending
on the templates, CIMgen can output program code for differ-
ent languages and does not rely on suitable compiler frontends
for further adaptation of the CIM codebase, as, for example,
it was the case for the CIM C++ codebase of CIM++. More
than that, CIMgen is completely freely available under an open
source license [20] and independent from further software tools
such as commercial UML editors like, for example, Enterprise
Architect that was needed by CIM++.

With PyCIM there is a CIM implementation in Python [21].
Its code generation from CIM XMI is sketched in [22] which
makes use of a toolchain around the meta model Ecore as inter-
mediate representation. The needed tools are not maintained

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

DINKELBACH ET AL. 3 of 13

anymore and the original developer considered in August 2017
to mark PyCIM as deprecated.

With CIMgen we avoid the usage of intermediate representa-
tions and several tools. Instead, we generate the codes directly
from the provided documents specifying CIM and CGMES.
Consequently, there is no need for maintenance of several
tools. CIMgen supports the generation from the freely avail-
able documents provided by ENTSO-E which makes CIMpy
and CIM++ compatible with CGMES, whereas in PyCIM the
support for CIM16 and higher versions as well as CGMES may
be available under a contract only [21]. With respect to PyCIM,
the here presented CIMpy introduces fundamental changes
with the incorporation of CIMgen’s codebase, due to which
we refrained from substantially modifying the existent PyCIM
project.

3 FUNDAMENTALS

For the understanding of the overall concept, several funda-
mentals related to CIM / CGMES and the proposed concept
of this paper are explained in the following. Our concept is
based on the processing of machine-readable documents that
specify CIM / CGMES. The related specification languages and
text-based formats that are mainly employed by the institutions
specifying CIM / CGMES are briefly explained. Thereafter,
we introduce the concept of template processing by means of
a template engine, as our automated source code generation
makes use of it.

3.1 CIM and CGMES

The CIM is maintained by the CIM User Group (CIMug) based
on the Unified Modeling Language (UML), a formalism for
graphical object-oriented modelling [23]. With UML class dia-
grams, object classes and relations between them (e.g. inheritance,
associations, aggregations etc.) can be defined. CIM UML speci-
fies which kind of objects a CIM document can contain and
how these objects are interlinked, which more generally spo-
ken is called an ontology [24]. The UML class diagrams contain
attributes only, as there is no need for function definitions in
case of CIM as information model specification. The differ-
ent CIM UML versions are distributed in machine-readable
form, for example, as XMI documents. A more comprehensive
introduction to CIM is provided by [25].

Instead, CGMES is maintained by the ENTSO-E in the
CGMES Library which contains all documents approved by
ENTSO-E respectively IEC for a harmonisation and imple-
mentation of standards related to CGMES [15]. For the
structure description of CGMES documents, there are so-called
RDFS documents, provided by ENTSO-E.

Both RDFS documents (for CGMES) and XMI documents
(for CIM) form the basis of our automated code genera-
tion approach. Therefore, we introduce their fundamentals in
the following.

3.2 XML and XSD

The Extensible Markup Language (XML) is a well established
markup language, standardised by the World Wide Web Con-
sortium (W3C) for human- and machine-readable documents
[26]. XML works with tags that are not predefined and therefore
can be invented by the editor of the XML file. For instance, the
attributes of a book could be stored as follows:
<book>
<title>Stories</title>
<author>John Doe</author>

</book>

The problem of a sole XML document is that syntax
and semantics of the tags (e.g. <book>) are not formally
defined and that only hierarchical (i.e. tree-like) structures can
be represented.

With the aid of the XML Schema Definition (XSD) lan-
guage, the structure and content of XML documents can be
described by a determined syntax which defines the elements
and attributes [27]. For the upper example this XSD document
could look as follows:
<xs:element name="book">
<xs:complexType>

<xs:sequence>
<xs:element name="title"

type="xs:string"/>
<xs:element name="author"

type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

However, XSDs still do not define the semantics. This issue
is addressed by the Resource Description Framework (RDF).

3.3 RDF and RDFS

The RDF describes resources (i.e. arbitrary entities) and their rela-
tions [28, 29]. RDF documents consist of statements (also called
triples) with a

∙ subject, the resource to be described;
∙ predicate, the property of the resource;
∙ object, the value of the property.

The RDF is an abstract model whose syntax respectively doc-
ument’s format is not determined. Possible formats are N3,
Turtle, RDF/XML, graphs, and so forth [29].

The identifiers of resources should be unique. Therefore, Uni-
form Resource Identifiers (URIs) are often used as they can
point to the worldwide unique location of a resource.

Similarly to XSD, in case of XML documents, RDF Schema
(RDFS) provide a data modelling vocabulary for RDF docu-
ments [30]. With the vocabulary a particular application domain
can be modelled. RDFS therefore allows to formalise simple

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 13 DINKELBACH ET AL.

ontologies for complexity limitation and organisation of data
into information and knowledge. Important RDFS constructs
are: rdfs:class for class definitions, rdfs:subClassOf for
inheritance representation, rdfs:domain for a class declara-
tion of the subject in a triple, and rdfs:range for a class or
type declaration of the object. An example ontology could be
expressed with the aid of RDFS as follows:

<rdf:RDF ...>
<rdfs:Class rdf:ID="Person">
<rdfs:comment>Class of all human beings
</rdfs:comment>

</rdfs:Class>
<rdfs:Class rdf:ID="Student">
<rdfs:comment>A person who likes to learn
</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Book"/>
<rdf:Property rdf:ID="reads">
<rdfs:domain rdf:resource="#Student"/>
<rdfs:range rdf:resource="#Book"/>

</rdf:Property>
</rdf:RDF>

A corresponding RDF/XML document (i.e. instantiation of
the RDFS) could be:

<rdf:RDF ... xmlns:school="http://city.tld/
school.rdf#">

<school:Student rdf:about="http://city.tld/
people/1234">

<school:name>Bart Simpson</school:name>
<school:reads rdf:resource="http://city.
tld/library/faust"/>

</school:Student>
<school:Book rdf:about="http://city.tld/

library/faust">
<school:name>Faust</school:name>
<school:author>Johann Wolfgang Goethe
</school:author>

</school:Book>
</rdf:RDF>

The elements name and author would be defined in the
school namespace. More on RDF/XML can be found in [31].
Such RDF/XML documents are used for both, CIM and
CGMES documents. They store the actual CIM / CGMES
objects which are the instances of the classes as specified
by CIM / CGMES. The process of reading in objects from
RDF/XML into the main memory is called unmarshalling per-
formed by a deserialiser. The other way round is called marshalling

and performed by a serialiser.
RDFS enables the description of metadata with declarative

semantics which allows statements on classes and proper-
ties. The modelling with the aid of RDFS is possible in
many application areas such as in the energy sector. There-
fore, RDFS documents for the modelling of CGMES are
provided by the ENTSO-E [15]. Additionally, a format used

for storing CIM UML specifications is introduced in the
following.

3.4 XMI

The XML Metadata Interchange (XMI) is a standard of the
Object Management Group (OMG) which enables an open
and vendor-neutral data exchange of objects in terms of XML
elements and attributes according to the Meta Object Facility
(MOF) [32]. MOF closes the gap between different meta-
models by creating a common basis for them. Besides UML
models, arbitrary metadata can be exchanged using XMI as long
as it can be expressed by the MOF. Among others, the XMI
standard defines mechanisms to link objects within the same
document and across documents, the validation of XMI docu-
ments, and how objects can be referenced (e.g. using Universally
Unique Identifier (UUID)).

The CIM UML drafts provided by the CIMug can be stored
as XMI files and can be read by standard XML parsers which
allows a simple storage, transfer, and processing. A source code
generation from UML diagrams is called forward engineering. This
can be done, for example, by a UML editor with code gener-
ation capability or by a separate code generator from an XMI.
To summarise the introduced fundamentals, the relationships of
the presented documents to each other and to CIM / CGMES
UML are shown in Figure 1.

3.5 Template engine

The automated source code generation presented here utilises
a template engine (also called template processor or template system) as
it is common, for example, in web site development. Template
engines allow the separation of the model (i.e. logic and data)
and the view (i.e. resulting code). For the source code genera-
tion it means that the Python source code of CIMgen contains
no code that is written by CIMgen into the generated resulting
documents. To achieve this, template engines have a

∙ data model: for instance based on a database, a text / binary
file, or a container type of the template engine’s programming
language,

∙ template files (also called templates): written in the language of
the resulting documents together with special template language

statements, and
∙ result documents: which are generated after the processing of

data and template files, so-called expanding.

A simple template file with the C++ statement
cout << "Hello {{name}}!" << endl;

containing a place holder {{name}} can be substituted by
the name World, for instance from a dictionary from which the
template engine gets various names. The resulting C++ would
look as follows:
cout << "Hello World!" << endl;

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

DINKELBACH ET AL. 5 of 13

CGMES
XMI

CGMES
UML

stored as

form
basis

for

CIM
RDF/XML

describes

CIM
RDFS

CGMES
RDF/XML

describes

CGMES
RDFS

CIM
XMI

CIM
UML

stored as

FIGURE 1 The CIM / CGMES UML can be stored in the form of an
XMI document. It forms the basis for CIM / CGMES RDFS documents
which describe the structure of CIM / CGMES RDF/XML documents. Smart
Grid topologies are then stored as CIM / CGMES RDF/XML documents that
are structured as required by the associated RDFS documents

For CIMgen the Python project chevron was chosen as tem-
plate engine [33]. Chevron works independently from the
language in which the templates are written. For chevron these
are just strings containing tags of the Mustache template language
which can be, i. a., of following types:

∙ Variable tags of the form {{VAR}} which are replaced by text.
∙ Begin and End Section tags of the form
{{#SECTION}}…{{SECTION}}, enclosing sections which
may appear zero to N times.

∙ Partial tags of the form {{>SUBTEMPLATE}}, advising
chevron to insert and expand another template (subtemplate)
at the tags’ location, which also can be repeated zero to N

times in the output.

Data are to be provided for the mappings from keys (e.g. name)
to values (e.g. World). More on Mustache and the substitution
process of tags by data, called rendering, can be found in [16]. In
case of CIMgen the data comes from CIM / CGMES specifica-
tions. The concept of this approach is presented in more detail
in the following.

4 CONCEPT

The overall concept of the CIM / CGMES to language-specific
code generation is shown in Figure 2. The main two Python

CIM JavaScript
Codebase

Pintura

Templates for
C++ Classes

with
UnMarshalling

Template for
JavaScript

Classes

Template for
Python
Classes

CGMES
RDF Schema

CIM
XMI

CIM Python
Codebase

CIMpy
DeSerialiser

CIM Python
Objects

chevron xml2dict

CIMgen

RDF/XML
Topology Document

CIM C++
Codebase

with
UnMarshalling

CIM C++
Objects

...

...

CIM++
DeSerialiser

FIGURE 2 CIMgen serves as source code generator for software projects
compliant with CIM / CGMES specifications. The source code generated by
means of CIMgen forms the basis of software projects like the graphical web
editor Pintura and the de-/serialiser libraries CIM++ and CIMpy

libraries used by the source code generator CIMgen are the
template engine chevron and xml2dict as converter between
XML strings and Python dictionaries. Python was chosen as
programming language for CIMgen as it is one of the most
popular scripting languages due to its simplicity. This makes
CIMgen easily maintain- and extendable. Conceptually, CIMgen
reads in RDF Schema or XMI files specifying a certain version
of CIM / CGMES and renders templates written in arbitrary
formats according to the CIM / CGMES specification.

In this work, CIMgen is applied on templates addressing
several software projects written in different programming lan-
guages: the web based graphical CIM / CGMES editor Pintura

as well as the two de-/serialiser libraries CIM++ and CIMpy.
CIMgen is employed for the generation of the CIM JavaScript,
CIM C++ and CIM Python codebases respectively during the
software projects’ implementation. The hereby implemented
forward engineering allows an automated update of these and
other software projects whenever CIM / CGMES changes and
avoids cumbersome and error prone manual adaptations of the
source codes. The code generation process for these projects
will be explained in the following.

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 13 DINKELBACH ET AL.

4.1 Pintura

The aim of Pintura [34] is to provide a human-machine inter-
face for CIM / CGMES. While RDF/XML documents are
easily processed by machines, they are not a good representa-
tion for the user to understand and edit grid data. Pintura allows
the user to explore and edit grid data through a graphical user
interface (GUI). After editing, Pintura stores the grid again in
CIM / CGMES so that it can be processed by CIM / CGMES
compatible applications, for example, using the de-/serialiser
libraries CIM++ and CIMpy. Since web browser based graph-
ical user interfaces support cross-platform compatibility, we
decided to build Pintura as a web application relying on HTML,
CSS, and JavaScript.

CIMgen employs a template to generate JavaScript classes
according to the CIM / CGMES specification. The JavaScript
codebase enables to handle the CIM class instances when
the grid data is loaded. For the graphical representation, the
network diagram is generated as a SVG graphic, which can
be easily exported and imported in other applications. This
feature has already been used to visualise grid data in the
co-simulation web frontend VILLASweb, which is part of the
VILLASframework [35].

4.2 CIM++

The CIM++ [36] de-/serialiser library libcimpp is written in
C++. The original code generation for libcimpp is presented in
[17]. It is based on a first generation stage of class header and
implementation files, which form the CIM C++ codebase, as
well as on a subsequent generation of the actual unMarshalling
code for libcimpp. In case of CIMgen, these two generation
stages are combined to one as presented later in this paper.
The library is of particular interest for performance critical
applications written in C++, for example, for a C++ real-time
simulator for power grids.

4.3 CIMpy

CIMpy [37] is a de-/serialiser library written in the Python lan-
guage. It additionally features functionalities to modify grid data
compliant with CIM / CGMES. The motivation behind the
Python library is that engineering solutions, for example, for
grid monitoring or control take often grid model information
into account while being implemented in Python.

5 IMPLEMENTATION

In this section, we explain the implementation of the genera-
tion of language specific code based on the use of templates.
We explain how we address programming language character-
istics and how the generated code is integrated into the three
different software projects. In the following, CIM always stands
for CIM and CGMES.

5.1 Pintura

For the visualisation of CIM data with Pintura, CIMgen gen-
erates a JavaScript class for each CIM class based on the
class file template depicted in Listing 1. Each JavaScript class
has three static functions to render CIM data. Here, only
the most important function attributeHTML is presented.
This function is composed of several sections following the
same structure, one section per CIM class attribute. These
sections generate the HTML code required to visualise the
attribute name and value in a browser using a helper function
cimmenu.getAggregateComponentMenu.

Upon loading CIM data, Pintura iterates through the list of
JavaScript objects retrieved from the grid data and executes the
static rendering functions of the class associated to each object.
For example, when an object of type ACLineSegment is found,
Pintura calls the static functions defined in the JavaScript class
ACLineSegment to render the resistance r and other attributes
specified for this class.

Listing 1: Snippet of JavaScript class file template for CIM
class {{class_name}} extends {{sub_class_of}}{

static attributeHTML(object, cimmenu) {
let attributeEntries = {{sub_class_of}}.attributeHTML(object, cimmenu);

{{#attributes}}
if (’cim:{{about}}’ in object) {

attributeEntries[’cim:{{about}}’] = cimmenu.getAggregateComponentMenu("cim:{{domain}}",
object[’pintura:rdfid’], object[’{{about}}’], ’cim:{{attributeClass}}’ ’cim:{{about}}’);

}
{{/attributes}}

return attributeEntries;
}

...
};

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

DINKELBACH ET AL. 7 of 13

5.2 CIM++

As part of the CIM++ software environment, the C++ de-
/serialiser library libcimpp requires a code generation at two
stages. First, the C++ codebase, and second, the unmarshalling
code is generated as explained in the following.

5.2.1 CIM C++ class generation by CIMgen

The CIM C++ codebase provides libcimpp the knowledge of
all classes specified in CIM with their associations, aggrega-
tions, compositions, and the inheritance hierarchy. It consists of
.hpp and .cpp files with class declarations and con-/destructor
definitions. The actual mapping of the CIM ontology to C++
with its Standard Template Library (STL) is presented in [17].
One type of classes defined by the CIM ontology are the so-
called primitive (data) types such as String, Integer, Float,
Decimal, and Boolean corresponding to intrinsic data types
of many programming languages. However, UML (i. e. XMI)
and the RDFSs do not define on which intrinsic C++ data types
or classes these primitive CIM types must be mapped. There-
fore, CIMgen maps these primitive data types to customised
CIM++ classes based on intrinsic C++ data types.

List. 2 shows the template file used by CIMgen for the gen-
eration of the C++ implementation files of all CIM classes.
It contains various Mustache tags for header file includes,
the constructor plus destructor, and a class factory func-
tion. {#langPack.create_assign} stands for a Mustache
lambda tag (referring to lambda functions) which allows to call the
create_assign function of the according CIMgen module
langPack for C++. This function generates the assignment
functions that are needed for, for example, the attributes of
primitive CIM types.

Listing 2: Snippet of C++ class implementation
file template for CIM
#include <sstream>
#include "{{sub_class_of}}.hpp"
#include "{{class_name}}.hpp"
{{#attributes}}
#include "{{> class}}.hpp"
{{/attributes}}
...
{{class_name}}::{{class_name}}() {};
{{class_name}}::≃{{class_name}}() {};
...
{{#attributes}}
{{#langPack.create_assign}}{{.}}
{{/langPack.create_assign}}
{{/attributes}}
...
void {{class_name}}::addPrimitiveAssignFnsTo
Map(std::unordered_map<std::string,
assign_function>& assign_map) {

{{#attributes}}
{{> insert_assign}}

{{/attributes}}
}
...
BaseClass* {{class_name}}_factory() {

return new {{class_name}};
}
...

5.2.2 Unmarshalling in CIM++

Like pure XML, also RDF/XML documents can be read by
standard XML parsers. The type utilised by libcimpp is called
an event-based Simple API for XML (SAX) parser which tra-
verses XML documents linearly and triggers event callbacks
(i.e. a certain type of functions). For instance, a certain callback
function is called by the SAX parser in case it encounters char-
acters representing no XML tag. These characters are passed
to an assignment function which interprets the characters to values
and tries assigning them to the right attribute of the respective
CIM object. The simplest way for the initialisation of attributes
with the values read from RDF/XML document would be using
reflection capabilities of the programming language which is the
ability to examine, introspect, and modify the object’s struc-
ture and behaviour at the program’s runtime. For instance, this
would allow the program to iterate through all attributes of
an object, investigate their names and types, and assign the
concerning values. Contrary to dynamic programming languages
such as Python, providing reflection and even object runtime alter-

nation, C++ as a static and ahead-of-time compiled language
provides only very limited reflection mechanisms. Therefore,
for each class attribute there must be an according assignment
function implemented in C++. Since the syntax of each assign-
ment function has the same structure, a template file can be
written which is rendered for each attribute of all CIM classes.
The same applies to other functions to be implemented for
libcimpp. More details on the unmarshalling code can be found
in [17].

5.2.3 Unmarshalling code generation by
CIMgen

Contrary to the original unmarshalling code generation of
CIM++, the callback (e.g. assignment) functions are not gener-
ated separately to the CIM class files. Originally, the CIM C++
classes (i.e. CIM C++ codebase) were generated by a UML edi-
tor and the unmarshalling code later on by the unmarshalling
generator based on the previously generated CIM C++ code-
base. One advantage of the new approach is that all callback
functions related to a class are implemented in the appropri-
ate class implementation file. This makes the whole source
code more readable and therefore better maintainable. More-
over, now a white list can be specified during the build process

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 13 DINKELBACH ET AL.

of libcimpp specifying the CIM classes which should be sup-
ported. This can reduce libcimpp’s compile time and size if
support for only a few CIM classes is needed. The evalua-
tion of the new code generation by CIMgen is presented in
Section 6.

5.3 CIMpy

The de-/serialiser library CIMpy was developed in the Python
language. It encompasses two core modules: cimimport for
the unmarshalling of RDF/XML documents and cimexport
for the marshalling of CIM objects.

5.3.1 CIM Python class generation by CIMgen

CIMpy is based on the CIM Python class code generated by
CIMgen using the template in List. 3. Due to the dynamic
typing in Python, the class code generation does not necessi-
tate an explicit mapping of the CIM ontology’s primitive data
types to language intrinsic data types. Yet, default values are set
according to the primitive data types specified by CIM for class
attributes by means of the Mustache lambda tag #setDefault,
where the corresponding function set_default is part of
CIMgen’s langPack for Python. Besides, the initialization of
parent class attributes is enabled by insertion of a recursive
parent class constructor call with super().__init__. CIM-
gen also processes the multiplicity of associations according
to the CIM specification. As Python provides reflection and
object runtime alternation, no unmarshalling code generation
is performed by CIMgen. Instead, the setting and getting of
attributes can be handled with the Python’s intrinsics setattr
and getattr. In the following, we focus on the explanation of
the marshalling in CIMpy.

Listing 3: Snippet of Python class implementation file template for CGMES
from {{ClassLocation}} import {{sub_class_of}}
class {{class_name}}({{sub_class_of}}):

...
possibleProfileList = {

’class’: [{{#class_origin}}cgmesProfile.{{origin}}.value, {{/class_origin}}],
{{#attributes}}’{{label}}’: [{{#attr_origin}}cgmesProfile.{{origin}}.value,
{{/attr_origin}}], {{/attributes}} }

serializationProfile = {}
...
def __init__(self,

{{#attributes}}{{label}} ={{#setDefault}}{{dataType}}{{/setDefault}},{{/attributes}}
{{#super_init}}*args, **kw_args{{/super_init}}):

{{#super_init}}
super().__init__(*args, **kw_args)
{{/super_init}}
{{#attributes}}
self.{{label}} = {{label}}
{{/attributes}}
...

5.3.2 Marshalling in CIMpy

CGMES defines profiles based on data model subsets with
the purpose of providing interfaces for different types of data
exchange. Each instance of a class together with its attributes
and associations can be serialised to certain profiles that are
defined by the CGMES. Therefore, as it can be seen in List.
3, each class has the two dictionaries possibleProfileList
and serializationProfile, which hold information about
the profiles to which the class instance with its attributes and its
associations can and will be serialised to.

CIMpy serialises to a set of active profiles that are defined
by the user or the software using CIMpy. For each activated
profile, CIMpy generates a dedicated RDF/XML document,
for which, analogously to CIMgen, CIMpy uses chevron as
template engine. List. 4 shows a snippet of the template
file for the serialisation of CIMpy objects to RDF/XML.
#set_attributes_or_reference is again a Mustache
lambda tag, which refers to a function that sets attributes or
resolves references to other instances.

Listing 4: Snippet of Python serialisation file
template for CGMES
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF {{#namespaces}}xmlns:{{key}}
="{{url}}" {{/namespaces}}>
...
{{#classes}}
<cim:{{name}} rdf:ID="{{mRID}}">
{{#attributes}}

<cim:{{attr_name}}{{#set_attributes_or
_reference}}{{value}}@{{attr_name/
set_attributes_or_reference}}
{{/attributes}}
</cim:{{name}}>
{{/classes}}
...
</rdf:RDF>

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

DINKELBACH ET AL. 9 of 13

6 EVALUATION BY USE CASES

We evaluate the generation of codebases and their integration
into the above mentioned software projects by application
in use cases which cover the visualisation and simulation of
a benchmark grid as well as the change between different
versions of CGMES specifications.

6.1 Topology visualisation with Pintura

List. 5 shows the Pintura JavaScript class IdentifiedObject,
which derives from BaseClass and renders the attributes
of an instance of the class. Here, the section for the
shortName attribute is depicted. Eventually, the function
getAggregateComponentMenu returns the HTML code to
render the attributes and their values in a browser.

FIGURE 3 Pintura network diagram, object list, and parameters

Listing 5: Snippet of the rendered JavaScript implementation of the CGMES class IdentifiedObject
class IdentifiedObject extends BaseClass {

static attributeHTML(object, cimmenu) {
...

if (’cim:IdentifiedObject.shortName’ in object) {
attributeEntries[’cim:IdentifiedObject.shortName’] = cimmenu.getAggregateComponentMenu(
"cim:IdentifiedObject",
object[’pintura:rdfid’], object[’IdentifiedObject.shortName’],
’cim:String’, ’cim:IdentifiedObject.shortName’);

}
return attributeEntries;

}
...

};

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 13 DINKELBACH ET AL.

Figure 3, presents the CIGRE MV benchmark system [38]
as an example rendered in Pintura. The screenshot shows the
network diagram in the background and several menus in the
foreground. In this case, the menus list several instances of
ACLineSegment and the attribute values of one particular
instance, which is selected in the diagram. The RDF/XML
documents loaded into Pintura have been generated by the
commercial software tool NEPLAN™. This example demon-
strates the advantages of a standard format like CGMES
regarding interoperability, which enables in this case a proper
grid data exchange between the two software tools.

6.2 Deserialisation and simulation using
CIM++ and CIMpy

For an evaluation of the two libraries CIM++ and CIMpy sim-
ulations were performed utilising them for a deserialisation of
the aforementioned CIGRE MV grid topology data. The RDF
schema documents specifying CGMES_2.4.15_16FEB2016
were used in the following. Here, the processing of CGMES
instead of CIM specifications underlines the new capabilities
brought by the usage of CIMgen, whereas the original CIM++

codebase toolchain was designed to generate code for libcimpp
from CIM UML only.

First, we show an example of a CGMES class imple-
mentation file in C++ and Python, respectively. In List.
6, the C++ implementation file for the CGMES class
IdentifiedObject is depicted as it is rendered using the
template in List. 2. It shows some generated includes and func-
tions, such as assign_IdentifiedObject_name. The latter
assigns a string read from the CGMES RDF/XML topol-
ogy file to the name attribute of the IdentifiedObject
instance.

Listing 6: Snippet of the rendered C++ implementation file for the CGMES class IdentifiedObject
#include <sstream>
#include "BaseClass.hpp"
#include "IdentifiedObject.hpp"
#include "DiagramObject.hpp"
...
IdentifiedObject::IdentifiedObject() {};
IdentifiedObject::≃IdentifiedObject() {};
...
bool assign_IdentifiedObject_name(std::stringstream &buffer, BaseClass* BaseClass_ptr1) {

if(IdentifiedObject* element = dynamic_cast<IdentifiedObject*>(BaseClass_ptr1)) {
element->name = buffer.str();
...

}
...
void IdentifiedObject::addPrimitiveAssignFnsToMap(std::unordered_map<std::string,
assign_function>& assign_map) {

...
assign_map.insert(std::make_pair(std::string("cim:IdentifiedObject.name"),

&assign_IdentifiedObject_name));
}
...
BaseClass* IdentifiedObject_factory() {

return new IdentifiedObject;
}
...

Such templates also exist for the appropriate class header
files generation and for C++ enum class constructs (e.g.
implementing the CIM / CGMES UnitMultiplier) as well
as for certain more specialised CIM / CGMES class imple-
mentations. More on the code to be generated can be found
in [17].

In comparison, List. 7 shows CIMpy’s implementation
file of IdentifiedObject, which was rendered with CIM-
gen using the Python class template in List. 3 and as well
the CGMES_2.4.15_16FEB2016 specification. It includes an
excerpt of the rendered list of possible CGMES profiles
for the class instances and the attribute shortName, the

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

DINKELBACH ET AL. 11 of 13

TABLE 1 Number of objects instantiated from CGMES C++/Python
classes by CIM++ and CIMpy to perform the powerflow simulation of the
CIGRE MV benchmark grid using the powerflow solvers of DPsim and pyvolt

CGMES class Number of objects

ACLineSegment 12

EnergyConsumer 18

ExternalNetworkInjection 1

PowerTransformer 2

PowerTransformerEnd 4

SvPowerFlow 18

SvVoltage 15

Terminal 47

TopologicalNode 15

class constructor, and the initialisation of class attributes.
As IdentifiedObject inherits from Base only, where
Base does not require the initialisation of any attributes, no
code is generated for the template sections marked by the
#super_init tag in List. 3.

Listing 7: Snippet of the rendered Python implementation for the CGMES class IdentifiedObject
from cimpy.cgmes_v2_4_15.Base import Base
class IdentifiedObject(Base):

...
possibleProfileList = {’class’:[cgmesProfile.DI.value, cgmesProfile.DY.value,

cgmesProfile.EQ.value, ...], ...,
’shortName’: [cgmesProfile.EQ.value, cgmesProfile.TP.value,] }

serializationProfile = {}
def __init__(self, DiagramObjects = "list", mRID = ", name = ", description = ",

energyIdentCodeEic = ", shortName = ",):
self.DiagramObjects = DiagramObjects
self.mRID = mRID
self.name = name
self.description = description
self.energyIdentCodeEic = energyIdentCodeEic
self.shortName = shortName

Using the generated classes, we run powerflow simulations
of the CIGRE MV benchmark grid, as visualised in Figure 3,
in both languages C++ and Python. For C++, the power-
flow solver of the real-time simulator DPsim [39] [40] was
applied together with the use of CIM++ for deserialising the
grid’s RDF/XML documents. In case of Python, the power-
flow solver of the package pyvolt [41] was used with CIMpy
as deserialiser.

Both deserialiser libraries, CIM++ and CIMpy, were pro-
cessing the grid data according to the aforementioned CGMES
specification. The data of the CIGRE MV benchmark grid con-
sisted of the three CGMES profiles EQ, TP and SV stored as
RDF/XML documents. The three documents included in total
the description of 300 CGMES objects. Only a subset of these

objects were essential for running the powerflow simulation of
the CIGRE MV benchmark grid. The corresponding number
of these objects is listed in Tab. 1 according to the CGMES
C++/Python classes they have been instantiated from.

With both powerflow solvers, which used the deseriali-
sation capabilities of CIM++ and CIMpy, we obtained the
same simulation results as with the commercial simulation tool
NEPLAN™. This shows that the deserialisation of CIM++

and CIMpy leads to a system model representation in both
languages that properly reflects the involved grid components
together with their parametrisation and interconnections in the
performed powerflow simulations.

As deserialiser, CIMpy has already been employed as well for
grid monitoring and control service implementations within the
European project Service Oriented Grid For The Network of
The Future (SOGNO) [42]. It should be pointed out that these
evaluations by use case are limited to the validation of a subset
of CGMES. For a comprehensive and automated validation of
the generated codebases, which verifies the consistency with
the complete CGMES, a corresponding methodology needs to
be developed, which however is beyond the scope of this paper.

6.3 Code generation from further CGMES
versions

In addition, we have considered CIMgen’s capability to
change readily to codebases that are compliant with
further CGMES versions. In the previous section, CIM-
gen’s generated code for unmarshalling with CIM++ was
based on CGMES_2.4.15_16FEB2016. The code
generation was executed for two further CGMES
versions: CGMES_2.4.13_18DEC2013 and CGMES_2.4.
15_27JAN2020. The generated codebases were included in
CIM++. They were verified successfully by obtaining the
same simulation results with the DPsim simulator as in the
previous section.

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 13 DINKELBACH ET AL.

7 CONCLUSION AND OUTLOOK

This paper presents an automated mapping from
CIM / CGMES specifications to language specific source
code. The approach is based on XMI and RDF schema doc-
uments as well as templates written in the Mustache template
language and was implemented as the software project CIMgen.
Contrary to former approaches, CIMgen does not rely neither
on any meta models for the intermediate representations of
CIM / CGMES nor on any further intermediate software tools
for the code generation. Therefore, CIMgen only depends on
a common XML handling library (xml2dict) and a template
engine (chevron). This and the choice of Python as a modern
scripting language intend to make CIMgen easily maintainable
and flexible extendable for other software projects based on
CIM and CGMES. The applicability of the approach and its
implementation is shown on the one hand with code genera-
tions for the de-/serialiser libraries CIM++ and CIMpy, which
are both integrated into power grid simulators and tested in
benchmark system simulations. On the other hand, CIMgen
is applied for the development of a graphical CIM / CGMES
editor, the web based application Pintura. With CIMgen the
mentioned and other CIM / CGMES based software projects
programmed in arbitrary programming languages can be kept
up-to-date with minimum programming effort as demonstrated
with CIM++ covering various CIM / CGMES versions. Given
that, CIMgen leverages an easy CIM / CGMES based data
exchange between multiple entities, for example, within the
European project Artificial Intelligence for Next Generation
Energy (I-NERGY) [43]. As open-source software project,
CIMgen can be investigated, improved, and extended by
anyone for the own purpose.

AUTHOR CONTRIBUTIONS

Jan Dinkelbach: Conceptualization, software, writing - original
draft, writing - review and editing. Lukas Razik: Conceptual-
ization, software, writing - original draft, writing - review and
editing. Markus Mirz: Conceptualization, software, writing -
original draft, writing - review and editing. Andrea Benigni:
Funding acquisition, supervision. Antonello Monti: Funding
acquisition, supervision.

ACKNOWLEDGEMENTS

The work of J.D., M.M. and A.M. was supported by SOGNO
and I-NERGY, which are European projects funded from
the European Unions Horizon 2020 programme under Grant
Agreement Nos. 774613 and 101016508, respectively. The work
of L.R. and A.B. was supported by the Helmholtz Association
under the Joint Initiative Energy Systems Integration.

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ORCID

Jan Dinkelbach https://orcid.org/0000-0003-4996-0697
Lukas Razik https://orcid.org/0000-0002-0820-2489
Markus Mirz https://orcid.org/0000-0003-3209-9861
Andrea Benigni https://orcid.org/0000-0002-2475-7003
Antonello Monti https://orcid.org/0000-0003-1914-9801

REFERENCES

1. Buchholz, B.M., Styczynski, Z.A.: Smart Grids: Fundamentals and Tech-
nologies in Electric Power Systems of the future. Springer, Berlin,
Heidelberg (2020)

2. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S., Rodrigues,
J.J.P.C.: Fog computing for smart grid systems in the 5G environment:
challenges and solutions. IEEE Wireless Commun. 26(3), 47–53 (2019)

3. Garau, M., Anedda, M., Desogus, C., Ghiani, E., Murroni, M., Celli, G.:
A 5G cellular technology for distributed monitoring and control in smart
grid. In: 2017 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB), pp. 1–6. IEEE, Piscataway (2017)

4. Liu, Y., Wang, J., Li, J., Niu, S., Song, H.: Machine learning for the detection
and identification of internet of things devices: A survey. IEEE Internet
Things J. 9(1), 298–320 (2022)

5. Mercurio, A., Di.Giorgio, A., Cioci, P.: Open-source implementation of
monitoring and controlling services for EMS/SCADA systems by means
of web services- IEC 61850 and IEC 61970 standards. IEEE Trans. Power
Delivery 24(3), 1148–1153 (2009)

6. Pau, M., Mirz, M., Dinkelbach, J., Mckeever, P., Ponci, F., Monti, A.:
A service oriented architecture for the digitalization and automation of
distribution grids. IEEE Access 10, 37050–37063 (2022)

7. CIM Users Group: CIMug. Accessed 15 Sept 2022. http://cimug.ucaiug.
org

8. IEC: IEC 61970-301:2012 Energy management system application pro-
gram interface (EMS-API) – Part 301: Common Information Model
(CIM) base. IEC, Stevenage (2012)

9. IEC: IEC 61968-11:2013 Application Integration at Electric Utilities -
System Interfaces for Distribution Management – Part 11: Common
Information Model (CIM) Extensions for Distribution. IEC, Stevenage
(2012)

10. IEC: IEC 62325-301:2014 Framework for Energy Market Communica-
tions – Part 301: Common Information Model (CIM) Extensions for
Markets. IEC, Stevenage (2014)

11. Lefebvre, T., Englert, H.: IEC TC57 Power system management and asso-
ciated information exchange. Accessed 22 Feb 2020. https://www.iec.ch/
resources/tcdash/Poster_IEC_TC57.pdf

12. Uslar, M., Specht, M., Rohjans, S., Trefke, J., González, J.M.: The com-
mon information model CIM: IEC 61968/61970 and 62325 – A practical
introduction to the CIM. Springer, Berlin, Heidelberg (2012)

13. Mirz, M., Razik, L., Dinkelbach, J., Tokel, H.A., Alirezaei, G., Mathar, R.,
et al.: A cosimulation architecture for power system, communication, and
market in the smart grid. Complexity 2018, 1–12 (2018)

14. IEC.: IEC TS 61970-600-1: Common Grid Model Exchange Specification
(CGMES) – Structure and rules. (2017). Accessed 20 May 2020. https://
webstore.iec.ch/preview/info_iec61970-600-1%7Bed1.0%7Den.pdf

15. ENTSO-E.: Common Grid Model Exchange Standard (CGMES) Library.
Accessed 20 May 2020. https://www.entsoe.eu/digital/cim/cim-for-grid-
models-exchange/

16. Wanstrath, C.: Mustache manual (2009). Accessed on 24 May 2020.
https://mustache.github.io/mustache.5.html

17. Razik, L., Mirz, M., Knibbe, D., Lankes, S., Monti, A.: Automated dese-
rializer generation from CIM ontologies: CIM++—an easy-to-use and
automated adaptable open-source library for object deserialization in C++
from documents based on user-specified UML models following the Com-
mon Information Model (CIM) standards for the energy sector. Comp. Sci.
- Res. Develop. 33(1), 93–103 (2018)

18. Agarwal, B.B., Tayal, S.P., Gupta, M.: Software Engineering and Test-
ing. Computer Science Series. Jones & Bartlett Learning, Sudbury, MA
(2010)

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4996-0697
https://orcid.org/0000-0003-4996-0697
https://orcid.org/0000-0002-0820-2489
https://orcid.org/0000-0002-0820-2489
https://orcid.org/0000-0003-3209-9861
https://orcid.org/0000-0003-3209-9861
https://orcid.org/0000-0002-2475-7003
https://orcid.org/0000-0002-2475-7003
https://orcid.org/0000-0003-1914-9801
https://orcid.org/0000-0003-1914-9801
http://cimug.ucaiug.org
http://cimug.ucaiug.org
https://www.iec.ch/resources/tcdash/Poster_IEC_TC57.pdf
https://www.iec.ch/resources/tcdash/Poster_IEC_TC57.pdf
https://webstore.iec.ch/preview/info_iec61970-600-1%7Bed1.0%7Den.pdf
https://webstore.iec.ch/preview/info_iec61970-600-1%7Bed1.0%7Den.pdf
https://www.entsoe.eu/digital/cim/cim-for-grid-models-exchange/
https://www.entsoe.eu/digital/cim/cim-for-grid-models-exchange/
https://mustache.github.io/mustache.5.html

DINKELBACH ET AL. 13 of 13

19. Razik, L., Dinkelbach, J., Mirz, M., Monti, A.: CIMverter—a template-
based flexibly extensible open-source converter from CIM to Modelica.
Energy Informatics 1(1), 47 (2018)

20. CIMgen Developers: CIMgen. https://www.fein-aachen.org/projects/
cimgen/

21. Lincoln, R.: GitHub - rwl/PyCIM: Python implementation of the Com-
mon Information Model. Accessed 20 May 2020. https://github.com/
rwl/PyCIM

22. Lincoln, R.: GitHub - Code generation flow - Issue #26 - rwl/PyCIM.
Accessed 20 May 2020. https://github.com/rwl/PyCIM/issues/26

23. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language
Reference Manual, 2nd ed. Pearson Higher Education, Reading, MA (2004)

24. Quirolgico, S., Assis, P., Westerinen, A., Baskey, M., Stokes, E.: Toward a
formal common information model ontology. In: Web Information Sys-
tems – WISE 2004 Workshops, pp. 11–21. Springer, Berlin, Heidelberg
(2004)

25. McMorran, A.W.: An introduction to IEC 61970-301 & 61968-11: The
common information model. Univ. Strathclyde 93, 124 (2007)

26. Bray, T., Paoli, J., Sperberg.McQueen, C.M., Maler, E., Yergeau, F.:
Extensible markup language (XML). World Wide Web J. 2(4), 27–66 (1997)

27. W3C.: XML Schema Definition Language (XSD) 1.1 Part 1: Structures
(2012). Accessed 20 May 2020. https://www.w3.org/TR/xmlschema11-
1/

28. Pan, J.Z.: Resource description framework. In: Handbook on Ontologies,
pp. 71–90. Springer, Berlin, Heidelberg (2009)

29. W3C: RDF 1.1 XML Syntax (2014). Accessed 20 May 2020. https://www.
w3.org/TR/rdf-syntax-grammar/

30. W3C: RDF Schema 1.1 (2014). Accessed 20 May 2020. https://www.w3.
org/TR/rdf-schema/

31. w3schools: XML RDF. Accessed 20 May 2020. https://www.w3schools.
com/xml/xml_rdf.asp

32. OMG: XML Metadata Interchange (XMI) Specification. Accessed 20 May
2020. https://www.omg.org/spec/XMI/2.5.1/PDF/changebar

33. Chevron Developers: GitHub - noahmorrison/chevron: A Python imple-
mentation of mustache. Accessed 20 May 2020. https://github.com/
noahmorrison/chevron

34. Pintura Developers: Pintura - Graphical CIM Editor. Accessed 24 Aug
2021. https://www.fein-aachen.org/projects/pintura/

35. Monti, A., Stevic, M., Vogel, S., De-Doncker, R.W., Bompard, E.,
Estebsari, A., et al.: A global real-time superlab: enabling high penetration
of power electronics in the electric grid. IEEE Power Electron. Mag. 5(3),
35–44 (2018)

36. CIM++ Developers: CIM++ - CIM for C++. Accessed 24 Aug 2021.
https://www.fein-aachen.org/projects/cimpp/

37. CIMpy Developers: CIMpy - Python package for CIM data. Accessed 24
Aug 2021. https://www.fein-aachen.org/projects/cimpy/

38. Strunz, K., Abbasi, E., Fletcher, R., Hatziargyriou, N., Iravani, R., Joos, G.:
TF C6.04.02 : TB 575 – Benchmark Systems for Network Integration of
Renewable and Distributed Energy Resources (2014)

39. Mirz, M., Dinkelbach, J., Monti, A.: DPsim - Advancements in power
electronics modelling using shifted frequency analysis and in real-time
simulation capability by parallelization. Energies 13(15), 3879 (2020)

40. DPsim Developers: DPsim: A Real-Time Power System Simulator.
Accessed 24 Aug 2021. https://dpsim.fein-aachen.org

41. Pyvolt Developers: Pyvolt. Accessed 24 Aug 2021. https://github.com/
sogno-platform/pyvolt

42. SOGNO Project Partners: SOGNO—D4.3 Report on development,
implementation and component tests (2020)

43. I-NERGY Project Partners: I-NERGY—D4.1 I-NERGY Analytics
Applications (1st technology release) (2021)

How to cite this article: Dinkelbach, J., Razik, L.,
Mirz, M., Benigni, A., Monti, A.: Template-based
generation of programming language specific code for
smart grid modelling compliant with CIM and CGMES.
J. Eng. 2023, 1–13 (2022). https://doi.org/10.1049/
tje2.12208

 20513305, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12208 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [25/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.fein-aachen.org/projects/cimgen/
https://www.fein-aachen.org/projects/cimgen/
https://github.com/rwl/PyCIM
https://github.com/rwl/PyCIM
https://github.com/rwl/PyCIM/issues/26
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3schools.com/xml/xml_rdf.asp
https://www.w3schools.com/xml/xml_rdf.asp
https://www.omg.org/spec/XMI/2.5.1/PDF/changebar
https://github.com/noahmorrison/chevron
https://github.com/noahmorrison/chevron
https://www.fein-aachen.org/projects/pintura/
https://www.fein-aachen.org/projects/cimpp/
https://www.fein-aachen.org/projects/cimpy/
https://dpsim.fein-aachen.org
https://github.com/sogno-platform/pyvolt
https://github.com/sogno-platform/pyvolt
https://doi.org/10.1049/tje2.12208
https://doi.org/10.1049/tje2.12208

	Template-based generation of programming language specific code for smart grid modelling compliant with CIM and CGMES
	Abstract
	1 | INTRODUCTION
	1.1 | Motivation
	1.2 | Contribution and outline

	2 | RELATED WORK
	3 | FUNDAMENTALS
	3.1 | CIM and CGMES
	3.2 | XML and XSD
	3.3 | RDF and RDFS
	3.4 | XMI
	3.5 | Template engine

	4 | CONCEPT
	4.1 | Pintura
	4.2 | CIM++
	4.3 | CIMpy

	5 | IMPLEMENTATION
	5.1 | Pintura
	5.2 | CIM++
	5.2.1 | CIM C++ class generation by CIMgen
	5.2.2 | Unmarshalling in CIM++
	5.2.3 | Unmarshalling code generation by CIMgen

	5.3 | CIMpy
	5.3.1 | CIM Python class generation by CIMgen
	5.3.2 | Marshalling in CIMpy

	6 | EVALUATION BY USE CASES
	6.1 | Topology visualisation with Pintura
	6.2 | Deserialisation and simulation using CIM++ and CIMpy
	6.3 | Code generation from further CGMES versions

	7 | CONCLUSION AND OUTLOOK
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES

