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Abstract
This work presents a new numerical approach to efficiently model the cath-
ode’s moving surface in the moving boundary value problem of electrochemical
machining. Until recently, the process simulation with finite elements had the
drawback of remeshing required by the changing surface geometries. This dis-
advantage was overcome by an innovative model formulation for the anodic
dissolution that utilizes effective material parameters as well as the dissolution
level as an internal variable and, thereby, does not require remeshing. Now, we
suggest a new numerical method to model arbitrarily shaped and moving cath-
odes. Two methodologies are investigated to describe the time varying position
of the cathode and compared in terms of implementational effort and numerical
efficiency. In the first approach, we change the electric conductivity of elements
within the cathode and, in a second approach, we apply Dirichlet boundary
conditions on the nodes of corresponding elements. For both methods, ele-
ments on the cathode’s surface are treated with effective material parameters.
This procedure allows for the efficient simulation of industrially relevant, com-
plex geometries without mesh adaptation. The model’s performance is validated
by means of analytical, numerical and experimental results from the litera-
ture. The short computation times make the approach interesting for industrial
applications.

K E Y W O R D S

electrochemical machining, finite element method, moving boundary value problem

1 INTRODUCTION

The industry’s ever increasing need for the production of complex structures that consist of high strength materials propels
the use of electrochemical machining (ECM).1 A decisive advantage of the process is the possibility to machine solid
materials with exceptional hardness at high removal rates. Moreover, being a contactless process, ECM does not lead to
tool wear and does not afflict any mechanical damage to the rim zone of the workpiece. The process utilizes the effect of
electrolysis to machine the workpiece by material dissolution.2-4

Figure 1 shows a schematic sketch for an arbitrarily shaped tool. A direct current is applied at the electrodes and yields
an electric current at the workpiece’s surface that causes the anodic dissolution.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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2 VAN DER VELDEN et al.

F I G U R E 1 Illustration of the electrochemical machining process (after Reference 4).

The fields of application for ECM range from the blade production in turbomachinery manufacturing over the creation
of shape optimized cooling boores for improved stress distributions to the precision machining of filigree structures.4,5

This wide range of applications motivates the development of efficient simulation methods. Since it is difficult to predict
the final shape of the workpiece in ECM, simulations can help to reduce costly trial and error experiments and also to
speed up the design process.6

Over time, different numerical methodologies were employed to model ECM: These are the finite difference method
(e.g., References 7-9), the boundary element method (e.g., References 10,12,13, Hansen in References 11) and also the
finite element method (FEM) (e.g., References 14-16) that is also employed in this work. According to Reference 6, the
FEM possesses the drawback of computationally expensive remeshing due to the changing geometries. To circumvent
remeshing, e.g., Reference 17 tried to delete and modify elements close to the anode’s surface, which also proved to be
expensive. An elegant procedure to adapt the mesh for moving interfaces was presented by Reference 18, who employ an
elastic body analogy19 to realign the refined region of the mesh with the anodic surface.

However, even state of the art formulations like e.g. the one of Reference 20 that models precise ECM with pulsed
current and oscillating cathode still need remeshing to model the anodic dissolution and the cathode movement by assign-
ing separate domains for fluid and solid. To our best knowledge, previous models lack a continuous formulation of the
dissolution process without the requirement of mesh adaption.

Therefore, we proposed a novel approach that works entirely without remeshing and models the anodic dissolution
in ECM with effective material parameters and an internal variable.21 In this work, the novel approach based on effec-
tive material parameters serves to model the movement of arbitrarily shaped cathodes in ECM. Previous studies were
restricted to a stationary cathode or a simplified modeling of the cathode feed. The aspiration to investigate industri-
ally relevant and complex problems underlines the necessity of this contribution to efficiently and accurately model the
cathode.

To this end, this work investigates two approaches for modeling the cathode. In method A, the electric conductivity of
the elements within the cathode is modified. In method B, Dirichlet boundary conditions are applied on all nodes within
the cathode. Both methodologies are based on effective material parameters for elements on the cathode’s surface and,
thereby, allow for a simulation entirely without remeshing.

Nowadays, following the earlier works of e.g. References 22,23, numerous authors investigate electrically coupled
multifield problems. Reference 24 conduct for example, electro-chemo-mechanical simulations, Reference 25 additionally
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VAN DER VELDEN et al. 3

include thermal and Reference 26 magnetic effects to name only a few. We, however, focus in this work on the modeling
of the moving boundary value problem and, therefore, for simplicity, restrict ourselves to the electric field problem, since
the electric current density is the driving force in electrochemical machining. The thermal field is thus assumed to be
constant.

Outline of the work. In Section 2, the electric balance equation and the constitutive laws are introduced. Thereafter,
we give a brief summary of the dissolution model in Section 3 and comment on numerical aspects in Section 4. In Section 5,
we present the new methodologies for modeling the cathode. In Section 6.1, analytical reference solutions serve to validate
the model’s accuracy and additional studies regarding the runtime and the choice of the effective material parameters are
conducted. In Sections 6.2 and 6.3, challenging examples with numerical and experimental references are investigated. In
Section 6.4, the model’s ability to model complex cathode shapes by simulating a blade machining process is confirmed.
A conclusion is provided in Section 7.

Notational conventions. In this work, italic characters a, A denote scalars and zeroth-order tensors and bold-face
italic characters b, B refer to vectors and first-order tensors and bold-face roman characters c, C refer to matrices and
second-order tensors. The operators div (•) and grad (•) denote the divergence and gradient operation of a quantity with
respect to Cartesian coordinates. A dot ⋅ defines the single contraction of two tensors. The time derivative of a quantity is
given by ̇(•). A tilde ̃(•) defines a prescribed quantity on the corresponding boundary. Moreover, Table 1 lists the relevant
symbols and states, if applicable, the corresponding SI units.

T A B L E 1 Relevant symbols

Symbol Unit Definition

𝜖0 [A s∕(V m)] Electric constant

𝜖r [−] Relative permittivity

𝜆cat [−] Cathode ratio

𝜈dis [m3∕(A s)] Effectively dissolved volume

𝜌E [A s∕m3] Electric volume charge density

 [−] Activation function

d [−] Dissolution level

D [A s∕m2] Electric displacement field

E [V∕m] Electric field strength

I [A] Electric current

j [A∕m2] Electric current density

kE [A∕(V m)] Electric conductivity

n [−] Normal vector

Q [A s] Electric charge

R [V∕A] Electric resistance

t [s] Machining time

v [V] Electric potential

Vcat [m3] Cathode volume

Vdis [m3] Dissolved volume

Vel [m3] Element volume

Vref [m3] Reference volume

x [m] Position

(•)CAT Cathode quantity

(•)EL Electrolyte quantity

(•)ME Metal quantity
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4 VAN DER VELDEN et al.

F I G U R E 2 Illustration of the electric boundary value problem. The accentuated blue segment of the boundary on the left part of the
body depicts the Dirichlet boundary Γv where the electric potential is prescribed according to ṽ. On the remaining orange part of the
boundary, Γj, either a prescribed electric current density ̃j or zero flux conditions are applied (Neumann boundary).

2 CONSTITUTIVE MODELING

The present contribution focuses on the modeling of moving cathode geometries. As mentioned in Section 1, we con-
sider isothermal problems and, therefore, solely present the balance of electric charge including Dirichlet and Neumann
boundary conditions (see Figure 2 and cf. Reference 27):

𝜌̇E + div (j) = 0 in Ω
v = ṽ(t) on Γv

j ⋅ n = ̃j on Γj (1)

The primary variable of this problem is the electric potential v. The movement of the cathode’s surface is incorporated
by considering time varying Dirichlet boundary conditions ṽ(t) for the electric potential. The electric field strength E, the
electric displacement field D and Gauss’ law of electrostatics read

E = −grad (v) , D = 𝜖0 𝝐r E, 𝜌E = div (D) (2)

where 𝜖0 denotes the electric constant, 𝝐r the relative permittivity tensor, which reduces for the isotropic case to 𝜖r I with
the identity tensor I, and 𝜌E the electric volume charge density. The constitutive law of the electric current density j yields

j = kE E (3)

where kE denotes the electric conductivity tensor, which simplifies in the isotropic context to kE I. Finally, the weak form
gv may be obtained from Equation (1-1) by multiplying with an arbitrary test function 𝛿v, integrating over the domain Ω,
considering the integration by parts as well as the definitions of Equation (2)

gv ∶= −
∫Ω

(
𝜖0 𝝐r ̇E + kE E

)
⋅ grad (𝛿v) dV + g

̃j = 0 (4)

where ̇E is the time derivative of the electric field strength E and g
̃j the virtual work resulting from a prescribed electric

current density on Γj. For the derivation of Equation (4), the interested reader is kindly referred to the appendix.

3 ANODIC DISSOLUTION

This work utilizes the model of Reference 21 to describe the anodic dissolution. Analogously to damage modeling
(e.g., Reference 28), an internal variable in combination with effective material parameters serves to describe the transition
from an undissolved material state to a fully dissolved one. In the first situation, there is only metal present. In the second
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VAN DER VELDEN et al. 5

F I G U R E 3 Visualization of the reference volume dVref and the incremental dissolved volume dVdis. The orange line surrounds the
anode’s surface.

situation, the metallic material has been fully dissolved such that only electrolyte remains. The dissolution level d ∈ [0, 1]
states the ratio d = dVdis∕dVref of the incremental dissolved volume dVdis to the volume of the corresponding reference
volume dVref (see Figure 3). Hence, the rate of the dissolution level yields the relation

̇d dVref = d ̇V dis (5)

where it is assumed that dVref is constant over time. In the formulation, we employ a modified version of Faraday’s law
of electrolysis to correlate the dissolved volume with the passing electric charges.4 Using the material parameter 𝜈dis that
represents the dissolved volume per electric charge, and the activation function  as well as the time derivative of the
incremental electric charge d ̇Q, the time derivative of the incrementally dissolved volume reads

d ̇V dis = 𝜈dis  d ̇Q. (6)

Moreover, we consider the definition of the activation function

 (x, t) =

{
1, contact metal-electrolyte
0, else

(7)

that depends on the position x and time t and indicates whether the material has contact with the electrolyte which is a
requirement for the chemical reaction. Further, the connection between the time derivative of the incremental electric
charge d ̇Q and the incremental electric current dI is given as

d ̇Q = dI, (8)

where dI(j, d) depends on the electric current density j and the dissolution level d. In general, the electric current I passing
through a surface segment S is computed from j (see e.g. Reference 29) by

I =
∫S

j ⋅ n dA (9)

and defines the number of electric charges Q that move through S per unit time. For the specific function of dI(j, d) the
reader is kindly referred to Reference 21. With Equation (8), we accordingly rewrite Equation (5) to

̇d dVref = 𝜈dis  (x, t) dI(j, d). (10)

Finally, we define the effective material parameters. Previously, the volume average of metal and electrolyte properties
(Figure 4A) was considered to read

(•)p = (1 − d) (•)ME + d (•)EL
. (11)
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6 VAN DER VELDEN et al.

(A) (B)

F I G U R E 4 Parallel (A) and series connection (B): Depending on the rule of mixture, different electrical circuits for a horizontal
electric current density j passing between the electrodes through the electrical resistances RME and REL are considered.

This constitutes a parallel connection for the rule of mixture. Motivated by the analogy of electrical circuits (Figure 4),
this work additionally considers a series connection (Figure 4B) for the rule of mixture between metal and electrolyte:

(•)s =
[
(1 − d) ∕ (•)ME + d ∕ (•)EL ]−1 (12)

In Section 6.1, the influence of the rule of mixture on the dissolved volume is studied.

4 NUMERICAL ASPECTS

For the time and spatial discretization, we employ the backward Euler method and the finite element method, respectively.
For detailed information on the latter, the reader is kindly referred to References 30 and 31. The time discretization
yields

̇E = En+1 − En

Δt
(13)

where (•)n+1 and (•)n denote the values of the current and the previous time step.

4.1 Linearization

Considering the time discretization of Equation (13), we linearize the weak form in Equation (4) with respect to the
primary variable vn+1. For the later presented simulation of the ECM process, we neglect the contribution from g

̃j
in Equation (4), since we focus in this work on prescribing Dirichlet boundary conditions and apply solely zero flux
conditions. Then, the linearization of gv about a known state

(
vn+1

)
reads

Lgv = gv
(

vn+1, 𝛿v
)
+ Δvgv

(
vn+1, 𝛿v, Δvn+1

) !
= 0 ∀ 𝛿v (14)

and with

En+1(𝛼) = E
(

vn+1
)
+ 𝛼 ΔE (Δvn+1) (15)

the Gâteaux-derivative is computed by
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VAN DER VELDEN et al. 7

Δvgv =
d

d𝛼

[
−
∫Ω

(
𝜖0 𝜖r ̇En+1(𝛼) + kE En+1(𝛼)

)
⋅ grad (𝛿v) dV

]

𝛼=0

=
[
−
∫Ω

(
𝜖0 𝜖r

𝜕

̇En+1(𝛼)
𝜕𝛼

+ kE
𝜕En+1(𝛼)
𝜕𝛼

)
⋅ grad (𝛿v) dV

]

𝛼=0

= −
∫Ω

(
𝜖0 𝜖r

1
Δt
+ kE

)
ΔE ⋅ grad (𝛿v) dV (16)

where the simplifications for the permittivity and conductivity tensors as well as a general rule of mixture (•) ∶= (•) (dn)
with a staggered treatment of the dissolution level d are already considered.

4.2 Finite element discretization

Thereafter, the problem is discretized in space using the finite element method. First, the domain Ω is approximated by
nel finite elements

Ω ≈ Ωh =
nel⋃

e=1
Ωe
. (17)

Then, the electric potential v and its variation 𝛿v are approximated by tri-linear shape functions stored in the shape
function row vector Ne

v

(𝛿)v (x) ≈ (𝛿)ve (x) = Ne
v (x) (𝛿)ve

, x ∈ Ωe (18)

and their gradients accordingly by the corresponding derivatives of the shape functions stored in the matrix of the spatial
derivatives Be

v

grad ((𝛿)v (x)) ≈ grad((𝛿)v (x))e = Be
v (x) (𝛿)ve

, x ∈ Ωe
. (19)

where (𝛿)ve denote the column vectors of the nodal values of the finite element e. The interpolations (Equations 18 and
19) are inserted into the linearization (Equation 14) and added over all elements yielding

nel∑

e=1
𝛿veT {[

ce
vv + ke

vv
]
Δve

n+1
}
=

nel∑

e=1
− 𝛿veT {

re
v
}

(20)

with the element matrices ce
vv and ke

vv and the element residual vector re
v:

ce
vv =

∫Ωe
BeT

v

(
𝜖0𝜖r

1
Δt

)e
Be

v dV e (21)

ke
vv =

∫Ωe
BeT

v

(
kE

)e
Be

v dV e (22)

re
v =
∫Ωe

BeT
v

(
𝜖0𝜖r ̇E + kEE

)e
dV e (23)

The formulation is implemented into the finite element software FEAP.32 The activation function  (Equation 7) is
incorporated into the solution algorithm by an update procedure at the end of every time step. When a finite element
dissolves completely, it triggers the update procedure and activates all adjacent metal elements that have a shared surface
with the dissolved element. The cut-off volume Vco, which was investigated in Reference 21, denotes the theoretically
dissolved volume in an integration point that is neglected when dn+1 > 1 is reset to dn+1 = 1. In the present formulation,
Vco is allocated to the activated elements. Thereby, the formulation allows for the use of larger time steps and, hence,
reduces computation time.
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8 VAN DER VELDEN et al.

(A) (B)

F I G U R E 5 Illustration of method A. The cathode moves towards the anode from time t0 to time t1. The electric potential v is fixed at one
node within the cathode and the cathode feed is modeled by assigning each element within the cathode an infinite electric conductivity kCAT

E .
Exemplarily, the electric conductivity in a horizontal line of elements is shown at t0 and t1 and a black dot denotes a fixed degree of freedom.

5 CATHODE MODELING

The driving force of the electric current is the potential difference Δv which is applied between cathode and anode. The
domain of the cathode is characterized by the property v = 0. To describe moving cathode geometries with arbitrary
shapes, the model has to account for the time varying Dirichlet boundary conditions ṽ(t), i.e. to prescribe a zero electric
potential on the surface and within the tool’s geometry. Here, it is particularly advantageous that the new modeling
approach does not require any mesh adaptation during the simulation despite the time dependent boundary conditions.

5.1 Method A

Two different methods are employed to model the aforementioned condition. In the first, method A, the electric conduc-
tivities of the finite elements within the cathode are modified and the corresponding values are set numerically to infinity
(Figure 5). The electric resistance of these elements is numerically zero and no change of the electric potential can be
observed within the cathode. Thus, the equipotential line with v = 0 coincides with the cathode’s surface as long as the
electric potential v is prescribed at one point within the cathode. The advantage of method A is the straightforward imple-
mentation, since no modification of the global system of equations is required. This approach is inspired by Reference 16
who assign to each element a different material type depending on its classification as tool, workpiece or electrolyte.

5.2 Method B

In the second, method B, a zero electric potential is applied directly on all nodes within the cathode (Figure 6). To account
for the cathode feed, this approach requires an adaptation and a renumbering of the global system of equations in every
time step. However, this procedure is computationally still beneficial, since the number of degrees of freedom reduces
for regular cathode geometries steadily throughout the simulation when the number of fixed degrees of freedom inside
the cathode increases. Furthermore, method B allows for the investigation of special cathode shapes, e.g. electrochemical
wirecutting where the zero electric potential is defined only in the thin wire domain.

5.3 Effective material parameters

Both models follow the conceptual approach of the dissolution model and work for a constant finite element mesh.
Naturally, the cathode’s surface does not necessarily coincide with the finite elements’ edges. Thus, elements exist that
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VAN DER VELDEN et al. 9

(A) (B)

F I G U R E 6 Illustration of method B. The cathode moves towards the anode from time t0 to time t1. The electric potential v is fixed at all
nodes within the cathode and the cathode feed is modeled by assigning additional Dirichlet boundary conditions. A black dot denotes a fixed
degree of freedom.

F I G U R E 7 A finite element that is partially cathode and partially electrolyte. Vcat defines the finite element’s volume inside the
cathode and the orange line surrounds the cathode’s surface.

are partially electrolyte and partially cathode (see Figure 7). Analogously to the dissolution level d, we define the cathode
ratio

𝜆cat =
Vcat

Vel
(24)

that states the volume of the cathode in a finite element Vcat compared to the total volume of this element Vel. The
polyeder’s volume Vcat is computed via tetrahedralization using a Delaunay triangulation algorithm developed by Ref-
erence 33. Moreover, following the definition of Equations (11) and (12), we define the effective material parameters of
partial cathode elements for a parallel connection as

(•)p = (1 − 𝜆cat) (•)EL + 𝜆cat (•)CAT (25)

and for a series connection respectively as

(•)s =
[
(1 − 𝜆cat) ∕ (•)EL + 𝜆cat ∕ (•)CAT ]−1 (26)

where (•)EL again denotes the material parameters of the electrolyte and (•)CAT those of the cathode.
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10 VAN DER VELDEN et al.

F I G U R E 8 Basic geometries used for the cathode assembly: Plane, cone, ellipsoid and paraboloids.

F I G U R E 9 Illustration of a cathode assembly by conjunction (intersection) and disjunction (union). The subsets S1 and S2 are obtained
by the conjunction of set A and B and set C and D, respectively. The disjunction of all subsets (S1 ∪ S2) yields the total cathode geometry. A
conjunction of set A, B, C and D without the definition of subsets would yield a different cathode geometry (A ∩ B ∩ C ∩ D ≠ S1 ∪ S2).

The mathematical description of the cathode geometry follows set theory. Figure 8 shows different basic geome-
tries that can be combined by conjunction in subsets. These subsets are combined by disjunction to obtain the total
cathode geometry (see Figure 9). This two step procedure is necessary to fulfill the distributive property of dis-
junctions over conjunctions. The position vector which is inherent in each geometry models the cathode feed by
incrementally updating its coordinates in every time step. The implementation features also additional options like
the rotation of a geometry or the consideration of either the enclosed volume of a geometry or the volume outside of
a geometry.

In a previous work, the theorem of intersecting lines served to model the cathode feed by a simplified approach. How-
ever, this procedure was restricted to processes with planar cathodes where the initial working gap width coincided with
the gap width of the dynamic equilibrium state for a given feed rate. The new methodology allows for the investigation
of arbitrary processes with varying process parameters as shown in Section 6.

Figure 10, finally, provides the resulting set of equations for the presented model.
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VAN DER VELDEN et al. 11

F I G U R E 10 Resulting set of equations for the moving boundary value problem.

T A B L E 2 Material parameters and physical constants

Symbol Unit Value

kCAT
E [A∕(V m)] 1.000 × 1012

kEL
E [A∕(V m)] 1.600 × 101

kME
E [A∕(V m)] 4.625 × 106

𝜖

CAT
r [−] 1.000 × 100

𝜖

EL
r [−] 8.000 × 101

𝜖

ME
r [−] 1.000 × 100

𝜖0 [A s∕(V m)] 8.854 × 10−12

𝜈dis [m3∕(A s)] 1.000 × 10−11

6 NUMERICAL EXAMPLES

In this section, we employ the previously developed methodology to model the cathode feed in different applications.
Furthermore, we compare the runtimes of method A and B. Analytical and experimental reference solutions serve to
validate the methodology’s performance and accuracy. Finally, we investigate an electrochemical blade manufacturing
process. The presented model has been implemented in a three-dimensional finite-element formulation. For simplic-
ity, only quasi two-dimensional examples have been investigated that were discretized by one element in thickness
direction.

The material parameters employed in the simulations stem from Table 2, if not explicitly stated otherwise, and were
selected with the help of the subproject F03 of the transregional Collaborative Research Center 136 “Process Signatures”
and in line with the first example of Reference 21*† . For simplicity, we consider only isothermal problems with a constant
temperature of 50◦C.
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12 VAN DER VELDEN et al.

6.1 Planar cathode - analytical validation

In the first example, we discuss a planar cathode (see Figure 11) with an analytical reference solution analogously to
Reference 21. The dimensions read l = h = 1 mm with a thickness of 0.1 mm and a constant feed rate of ẋca = 0.01 mm∕s
is employed with a potential difference of Δv = 20 V.

At the beginning, we utilize an initial working gap width of sinit = 0.32 mm that equals the gap width of the dissolution
process in the dynamic equilibrium state (cf. Reference 4). Figure 12 shows the comparison of the parallel (Equations 11
and 25) the series connection (Equations 12 and 26). The dissolved volume of the finite element simulation after 60 s,
which is normalized with respect to the analytical solution, is given for different time increments and element densities.
Structured meshes are employed.

Although the results of the parallel connection converge against the analytical solution for fine meshes, they still show
an error of +1.8 % for the finest discretization. The electric resistance of a dissolving element is underestimated by the
parallel connection in this application, since the electric charges do not necessarily pass the electrolyte resistance in these
elements (cf. Figure 4). Thereby, the electric current and the dissolved volume are overestimated by the model. The series

(A) (B)

F I G U R E 11 Geometry and moving boundary value problem for a planar cathode.

F I G U R E 12 Comparison of the dissolved volume at t = 60 s of the finite element simulation and the analytical solution for the parallel
and series connection with structured meshes for different element densities per mm2. The simulations with method A and B yield the same
results.
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VAN DER VELDEN et al. 13

F I G U R E 13 Comparison of the runtime of method A and B. Structured meshes are employed with the series connection and a time
increment of Δt = 10−1 s.

(A) (B) (C)

(D) (E) (F)

F I G U R E 14 The dissolution level d and the cathode ratio 𝜆cat for distorted meshes at t = 60 s. The time increment reads Δt = 10−3 s
and the series connection as well as method B are employed. The vertical blue line provides the anode’s surface according to the analytical
reference solution. The vertical black line indicates the cathode surface’s position and the black arrow gives the direction of the cathode feed.

connection, however, yields the correct solution regardless of the time step size and element density. Moreover, method
A and B yield identical results.

Next, the runtime of method A and B are compared in Figure 13. The coarser meshes, which have fewer degrees
of freedom compared to the fine meshes, yield similar runtimes for both methods. Nevertheless for the finest mesh,
method B is 18.5 % faster, since the reduction of the size of the global system of equations yields a significant impact on
the computational efficiency. Afterwards, we investigate this example using vertically and horizontally distorted meshes
which stem from Reference 21. Figure 14 shows the results for the series connection and method B with Δt = 10−3 s.
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14 VAN DER VELDEN et al.

F I G U R E 15 Comparison of the dissolved volume at t = 60 s of the finite element simulation using method B and the analytical
solution for the parallel and series connection with vertically distorted meshes.

F I G U R E 16 Comparison of the dissolved volume at t = 60 s of the finite element simulation using method B and the analytical
solution for the parallel and series connection with horizontally distorted meshes.

For the most severe distortions, the dissolved volume is underestimated in the simulation (mesh 10 ↓ 80: −6.5 %, mesh
80 → 10: −9.3 %). However, the results improve for moderate distortions (mesh 20 ↓ 80: −5.1 %, mesh 80 → 20: −3.9 %)
and converge towards the analytical solution for minor distortions (mesh 40 ↓ 80: −0.8 %, mesh 80 → 40: −1.2 %).

Figures 15 and 16 show the comparison of the parallel and series connection for different time step sizes. Both rules of
mixture yield for all meshes already with the second largest time increment a stable solution that changes only marginally
with a further reduction of the time increment. The parallel connection yields for the fine meshes withΔt = 1 s a solution
close to the analytical result. However, this is not the model’s final outcome, since convergence with respect to the time
step size is not yet obtained. In the end, the dissolved volume is overestimated by the parallel connection for the different
configurations and it yields also for minor distortions still an error of +4.5 % (mesh 40 ↓ 80) and +4.2 % (mesh 40 → 80).
Based on these results, the remaining examples utilize the series connection as rule of mixture.

To demonstrate the flexibility of the new approach, Figure 17 shows the evolution of the working gap width s during
the machining process with a constant feed rate ẋca = 0.015 mm∕s and varying initial widths sinit. All graphs concur at
the analytical solution of s = 0.213 mm and confirm the correct operation of the method, since the convergence of the
gap widths requires the exact modeling of the cathode.
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VAN DER VELDEN et al. 15

F I G U R E 17 Investigation of the evolution of the working gap width s for different initial widths sinit. The feed rate is constant at
ẋca = 0.015 mm∕s, Δt = 0.1 s and method B is employed.

F I G U R E 18 Investigation of the evolution of the working gap width s for different feed rates ẋca. The initial width is sinit = 0.4 mm,
Δt = 0.1 s and method B is employed.

Furthermore, Figure 18 shows the evolution of the gap width s for the same initial value sinit but different feed rates
ẋca. For a higher feed rate, the gap width decreases (cf. Reference 4) until it reaches the dynamic equilibrium state (ẋca =
0.010 − 0.020 mm∕s). For a lower feed rate, the working gap widens (ẋca = 0.005 mm∕s). This study again confirms the
versatility of the new framework.

6.2 Parabolic cathode - Hardisty and Mileham34

In the second example, we consider a parabolically shaped cathode (Figure 19) which has formerly been studied by Refer-
ence 34. The material parameters read kME

E = 6.670 × 106 A∕(V m), kEL
E = 15 A∕(V m) and 𝜈dis = 3.696 × 10−11 m3∕(As).

The cathode moves with a constant feed rate ẋca = 0.0145 mm∕s towards the anode with Δt = 0.34483 s yielding a dis-
placement of 0.005 mm per time step and a total displacement of 2.5 mm after 500 time steps. The geometric dimensions
are l = 2 mm, h1 = 3 mm, h2 = 1.5 mm, s = 0.5 mm with a thickness of 0.5 mm. The parabola is defined by the function
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16 VAN DER VELDEN et al.

(A) (B)

F I G U R E 19 Geometry and moving boundary value problem for a parabolic cathode (cf. Reference 34).

F I G U R E 20 The dissolved volume over time computed with method B for different mesh densities. The graphs are normalized to the
solution of the finest mesh with Δt = 0.34483 s. The black box indicates the point of comparison in Figure 21.

f (x) = 0.375 x2 + 3.5 and the potential difference isΔv = 10 V. Due to symmetry, only the left part x ∈ [−2, 0] is simulated.
We use structured meshes with finite element (el.) discretizations from 5 × 5 el.∕mm2 to 40 × 40 el.∕mm2.

Figure 20 shows the dissolved volume over time for the different mesh densities normalized to the solution of the
finest mesh with V ref.

dis = 0.775 mm3. The curves agree well and mesh convergence is proven.
In Figure 21, we compare the shape of the anode at the end of the simulation for different mesh discretiza-

tions. With finer discretizations, the surface profile becomes smoother. Nevertheless, already the coarsest discretization
allows for an accurate prediction of the final work piece shape. The working gap width at the axis of symmetry at
the end of the simulation is s = 0.345 mm and agrees with the reference solution of Reference 34 of sref. = 0.35 mm.
These results confirm the model’s capabilities to accurately predict the shape of the machined workpiece using coarse
meshes.
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VAN DER VELDEN et al. 17

(A) (B)

(C) (D)

F I G U R E 21 Zoom to the tool tip at the end of the simulation: The dissolution level d and the cathode ratio 𝜆cat show mesh
convergence from coarse (Figure 21A to fine mesh discretizations (Figure 21D).

F I G U R E 22 Comparison of the runtime of method A and B. Structured meshes are employed in the simulation with Δt = 0.34483 s.

Furthermore, the runtime of method A and B are compared in this example for different element densities in Figure 22.
For coarse meshes, both methods yield similar runtimes (5 × 5 el.∕mm2, 10 × 10 el.∕mm2). But already for the second
finest mesh (20 × 20 el.∕mm2), method B is with 20.8 % significantly faster than method A. For the finest mesh (40 ×
40 el.∕mm2), the savings in computation time are 47.1 %.

Moreover, Figure 23 shows the evolution of the dissolution level d, the electric potential v and the electric current
density j of the problem for two intermediate and the final configuration. Inside the cathode, the electric potential is
v = 0 V and inside the anode v ≈ 10 V with a transition zone in the electrolyte. The electric current density initially
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18 VAN DER VELDEN et al.

F I G U R E 23 Evolution of the dissolution level d, the electric potential v and the norm of the electric current density ||j|| for the
parabolic cathode at time steps 100, 250 and 500. Due to varying dissolution levels and cathode ratios in adjacent elements, the visualization
of the electric current density may yield minor non-uniformities on the surface of the anode and cathode.
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VAN DER VELDEN et al. 19

F I G U R E 24 Influence of specimen’s length in x-direction on final surface shape. The white line shows the final surface of the
specimen with a length of 2 l. The contour plot shows the surface of the specimen with a length of 10 l in the range of x ≈ ± 3 l.

(A) (B)

F I G U R E 25 Geometry and moving boundary value problem for a wire tool (cf. Reference 36).

concentrates in the middle of the specimen leading to a pronounced material removal in this region. With progressing
cathode feed, the electric current density’s focus widens mapping a parabolic shape onto the anode.

As discussed in Reference 34 and derived in Reference 35, a parabolic tool yields a parabolic workpiece. In the current
example, a flattening of the workpiece’s surface at the outer egdes is observed. The electric field lines are passing per-
pendicular to the anode’s surface. Here, a zero horizontal flux is prescribed by the Neumann boundary conditions at the
outer edge, which, therefore, leads to the flattening of the surface profile in this domain. Figure 24 shows the machined
profile of the specimen with a total length of 10 l. The specimen’s extension releases the zero flux condition at x = ± l and
avoids the pronounced flattening at this position.

6.3 Wire cathode - Sharma et al.36

In the third example, a wire electrochemical machining application is investigated (Figure 25) and the results are
compared with the experiments and simulations of Reference 36. The geometric dimensions read l1 = 700 μm, l2 =
50 μm, h = 200 μm, s = 10 μm, r = 15 μm with a thickness of 100 μm. The feed rate is ẋca = 4 μm/s, the potential
difference Δv = 6 V and the electric conductivity kEL

E = 1.71 A∕(V m). We set 𝜈dis = 1.09 × 10−11 m3∕(As) and Δt =
0.1 s. This example necessitates the use of method B to apply the cathode condition ṽca = 0 V only locally within
the wire.
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20 VAN DER VELDEN et al.

F I G U R E 26 Mesh for wire tool example (19995 elements). The orange box indicates the image section investigated in Figure 27.

Figure 26 shows the mesh employed in the simulation which possesses strong refinement in the region of the kerf.
Moreover, the orange box in Figure 26 shows the image section of Figure 27 where the initial phase of the dissolution
process is studied. Here, the dissolution level d and the norm of the electric current density ||j|| are given. Initially, the
electric current density exhibits its maximum in horizontal direction, thereby, inducing the highest material removal at
this position. Afterwards, the electric current density’s scope becomes larger which causes a widening of the kerf. After
25 s, the distribution of the electric current density between wire and work piece remains approximately constant and
yields a clean cut.

Figure 28 shows the final shape of the specimen after a machining time of 150 s. Measuring the kerf width at
x = 400 μm yields a width of 118.73 μm which is in the range between 110.08 μm (experimental kerf width) and
124.27 μm (simulated kerf width) of Reference 36.

The simulation required 10 h 21 min and, thus, was faster than the simulation with the fine discretization of
Reference 36 whose code was implemented in MATLAB (R2016a) and required 16 h 03 min. Further speedups are
realized by considering an additional moving anode boundary condition. This prescribes ṽan = 6 V in the region
50 μm below the work piece’s initial surface and moves horizontally with the cathode’s feed rate (Figure 29). The
introduction of an additional anode boundary condition to reduce the number of free degrees of freedom was
motivated by the assumption that the drop of the electric potential in the workpiece is almost negligible due to
the metal’s high electric conductivity compared to the electrolyte’s relatively low conductivity. Hereby, the compu-
tation time is reduced by 59 % to 4 h 28 min and is even faster than the simulation with the coarse discretiza-
tion of Reference 36 with 6 h 19 min. In this example, prescribing additional anode boundary conditions appar-
ently yields a significant speedup with respect to the computation time without having an influence on the kerf’s
final shape. This procedure is, however, not applicable to all boundary value problems and should be applied
carefully.

6.4 Complex cathode - blade machining

Inspired by e.g. References 37, 38 or 39, we study in this example a blade machining process with a complex cathode
geometry, where two tools move towards an enclosed workpiece.

The material parameters stem from Table 2 and the geometric dimensions (in [mm]) read l1 = 4.5, s1 = 1.5, l2 = 10,
s2 = 0.35, l3 = 5.65, h = 25 with a thickness of 0.2 (Figure 30). Moreover, the following circles define the cathode’s sur-
face with r1 = 0.5 (center: 4 | 0.551), r2 = 2 (center: 4.5 | 3), r9 = 0.49 (center: 16.840 | 0.551). Additionally, the following
ellipses complete the surface with r3 = 2.8, r4 = 14 (center: 1.56 | 13.9, rotation: 𝛼1 = 5.44 ◦), r5 = 11.25, r6 = 4.5 (center:
16.05 | 13.75, rotation: 𝛼2 = 11.5 ◦) and r7 = 7.5, r8 = 4.5 (center: 16.35 | 8.5).

The feed rate is ẋca = 0.01 mm∕s and the potential difference Δv = 20 V with ṽan = 20 V which is prescribed in the
region x ∈ [11.5, 12] and y ∈ [3, 20]. The time increment reads Δt = 2 s and method B is utilized.
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VAN DER VELDEN et al. 21

F I G U R E 27 Evolution of the dissolution level d and the norm of the electric current density ||j||, where the white lines show the
orientation of the electric field, for the wire tool. Zoom to the right edge of the specimen at time 0 s, 5 s, 15 s and 25 s.
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22 VAN DER VELDEN et al.

F I G U R E 28 Final shape of the specimen after machining with the wire tool after a machining time of 150 s.

(A) (B)

F I G U R E 29 Illustration of an additional anode boundary condition 50 μm below the workpiece’s surface that moves horizontally with
the cathode’s feed rate ẋca. In the shaded area, the electric potential ṽan is universally applied.

(A) (B)

F I G U R E 30 Geometry and moving boundary value problem with complex cathode shape.
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VAN DER VELDEN et al. 23

F I G U R E 31 Evolution of the dissolution level d and the norm of the electric current density ||j|| for a complex cathode at times 200 s,
400 s and 580 s.

In Figure 31, the evolution of the dissolution level d and the norm of the electric current density ||j|| is presented for two
intermediate and the final configuration. Due to the initially small working gap width at the top and bottom region of the
specimen, we observe a pronounced material removal in these sections. With increasing machining time, the workpiece
continuously dissolves also in the middle of the specimen (time 400 s) until finally the mapping of the cathode’s shape
onto the workpiece is completed (time 580 s).

The simulation required a computation time of 2 h 6 min and, thus, confirms the method’s ability to model complex
dissolution processes with good efficiency.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7190 by R
w

th A
achen H

ochschulbibliothe, W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 VAN DER VELDEN et al.

7 CONCLUSION

In this paper, a novel methodology to model the cathode feed in the moving boundary value problem of electrochemical
machining was presented. Two approaches are investigated to describe the cathode. In method A, which is character-
ized by a simple and robust implementation, the electric conductivities of cathode elements are modified. In method B,
Dirichlet boundary conditions are applied on all nodes within the cathode and, hence, facilitate considerable speedups.
Elements on the cathode’s surface are described by effective material parameters. The model’s accuracy is confirmed by
analytical as well as experimental and numerical reference solutions from the literature. Moreover, low runtimes allow
for the efficient investigation of complex shapes.

The presented model formulation focuses on the efficient description of the cathode feed in ECM simulations.
Currently, it considers only certain aspects of the multiphysical process. Thus, further work includes the modeling of
multiphase materials (cf. References 40, 41) and the formation of oxide layers (e.g. Reference 42) to incorporate the
polarization voltage. Moreover, a formulation of the dissolution model in the gradient enhanced framework, which was
introduced by References 43-45 and applied in e.g. References 46,47 can be investigated. Additionally, the numerical
efficiency could be further improved by advanced finite element technology using reduced integration methods (cf. Refer-
ences 48,49), where the material law is only evaluated in a single integration point, see e.g. Reference 50 for the treatment
of the electric current density with reduced integration. Also the extension to an induced anisotropic electric conductivity
formulation due to oxide layers in analogy to anisotropic damage formulations (cf. References 51-53) promises a worth-
while modification. Furthermore, the consideration of mass transfer, hydrogen generation and fluid mechanical effects
following References 54-56 would yield a valuable model extension.

Finally, a transfer of the modeling technique to laserchemical machining (LCM, e.g. Reference 57) is aspired, which
requires to adapt the evolution equation of the dissolution level from an electrically to a thermally based formulation.58
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ENDNOTES
∗Due to the lack of experimental data, the values of 𝜖CAT

r and 𝜖ME
r were chosen arbitrarily and have to be determined experimentally in future

works.
†Please note that in Reference 21, the values of 𝜖EL

r and 𝜖ME
r were inadvertently interchanged.
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APPENDIX A

A.1 Derivation of the weak form
We start from the local form of the balance equation, Equation (1-1),

𝜌̇E + div (j) = 0

where we insert Gauss’ law of electrostatics with 𝜌E = div (D) = div (𝜖0 𝝐r E) into 𝜌̇E leading to

div
(
𝜖0 𝝐r ̇E + kE E

)
= 0. (A1)

This equation is multiplied by the test function 𝛿v, which is 0 on Γv and otherwise arbitrary and which can also be
interpreted as variation of v, and is then integrated over the domain Ω

∫Ω
div

(
𝜖0 𝝐r ̇E + kE E

)
𝛿v dV = 0. (A2)

Next, the integration by parts is considered with div (b) a = −b ⋅ grad (a) + div (b a) leading to

−
∫Ω

(
𝜖0 𝝐r ̇E + kE E

)
⋅ grad (𝛿v) dV +

∫Ω
div

((
𝜖0 𝝐r ̇E + kE E

)
𝛿v
)

dV = 0. (A3)
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Then, we apply the divergence theorem and obtain

−
∫Ω

(
𝜖0 𝝐r ̇E + kE E

)
⋅ grad (𝛿v) dV +

∫Γj

(
𝜖0 𝝐r ̇E + kE E

)
⋅ n 𝛿v dA

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ g
̃j

= 0, (A4)

where the surface integral is abbreviated by g
̃j, thus, leading to the weak form of Equation (4)

gv ∶= −
∫Ω

(
𝜖0 𝝐r ̇E + kE E

)
⋅ grad (𝛿v) dV + g

̃j.
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