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Abstract

Polyadic, or ‘multicast’ social interaction networks arise when one sender addresses multiple receivers
simultaneously. Available relational event models are not well suited to the analysis of polyadic interaction
networks because they specify event rates for sets of receivers as functions of dyadic covariates
associated with the sender and one receiver at a time. Relational hyperevent models (RHEM) address this
problem by specifying event rates as functions of hyperedge covariates associated with the sender and the
entire set of receivers. We illustrate the empirical value of RHEM in a comparative reanalysis of the
canonical Enron email data set.
Keywords: hypergraphs, multicast communication, point process models, relational event models, social network
analysis, technology-mediated communication

1 Introduction

Data generated by technology-mediated communication typically take the form of sequences of
time stamped interaction events involving two or more actors simultaneously. This kind of
one-to-many (or ‘multicast’) interaction is common. For instance, email users can send messages
to any number of receivers (Perry&Wolfe, 2013; Zhou et al., 2007). In this paper, we call a social
interaction process polyadic when it is characterised by events in which one ‘sender’may address
multiple ‘receivers’ simultaneously.
Data produced by time-stamped polyadic interaction processes are not unique to social network

data produced by technology-mediated interaction (e.g., email messaging) or social media (e.g.,
twitter). Polyadic interaction data are encountered frequently in empirical research across the so-
cial sciences. Examples include scientific papers citing several references (Radicchi et al., 2012),
courts judgments citing multiple legal precedents (Fowler et al., 2007), patents approved by the
patent office citing multiple prior patents (Kuhn et al., 2020; Verspagen, 2007), and infected per-
sons transmitting a virus to several others simultaneously through group contact (Colizza et al.,
2007; Hâncean et al., 2021). Face-to-face conversations where one speaker addresses multiple al-
ters simultaneously also illustrate the empirical extension of polyadic interaction processes
(Gibson, 2005). Polyadic interaction may be directed or undirected. Examples of undirected poly-
adic interaction networks include meetings attended by multiple participants (Freeman, 2003;
Lerner et al., 2021), co-authors jointly publishing a paper (Newman, 2004), coordination in
task-oriented teams (Ahmadpoor & Jones, 2019; Guimera et al., 2005; Leenders et al., 2016),
groups of countries agreeing to sign a multilateral treaty (Hollway & Koskinen, 2016;
Simmons&Hopkins, 2005), and class action lawsuits where the plaintiff is a group of people sim-
ultaneously bringing a suit to one defendant (Bronsteen & Fiss, 2002).
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Despite their obvious heterogeneity, these empirical examples share two defining features. First,
interaction among the agents takes the form of time stamped relational events—rather than rela-
tional states such as ‘being a friend of’, ‘seeking advice from’, or ‘regularly communicate with’.
Second, the stream of observed events is not generated only by dyadic interaction, but involves
multiple network nodes interacting simultaneously at single points in time. In recent years, the
availability of social interaction data sharing these features has increased significantly due to
the diffusion of computer-mediated communication and collaborative technologies, the availabil-
ity of large-scale databases, and the diffusion of automated data collection technologies (Lazer
et al., 2009). However, the availability of statistical models capable of analysing these data by le-
veraging their constitutive features has remained limited.
Relational event models (REMs) (Brandes et al., 2009; Butts, 2008; Lerner et al., 2013; Perry &

Wolfe, 2013) provide themost promising framework for the analysis of sequences of social interaction
events observed in continuous time (Bianchi & Lomi, 2022; Vu et al., 2017). Typical REM for net-
works of time stamped interaction events specify point processes whose intensities are functions of
dyadic covariates. For instance, the intensity of events from sender i to receiver j might depend on
the age or gender of i and j, on their age difference, on the frequency of previous events from i to j
or from j to i, or on previous events to or from common third actors. Extant research recognises
theproblemposedbypolyadic interactionandmulticast communication.The solution that is typically
offered involves specifying intensities for events inwhich a sender i sends amessage to a set of receivers
J = {j1, . . ., jk} (Perry&Wolfe, 2013). However, these intensities are still modelled as functions of
dyadic covariates x(i, j), j ∈ J, considering the sender and only one receiver at a time. In this way,
available models for relational events assume that the multiple dyads simultaneously produced
by a single polyadic interaction are either independent (Perry & Wolfe, 2013), or pertain to fic-
tional ‘collective’ receivers (Butts, 2008), such as the whole ‘team’ as a receiver of broadcast mes-
sages. While empirically useful, and occasionally justified, neither of these solutions is fully
satisfactory.
Recently proposed relational hyperevent models (RHEMs) (Lerner et al., 2021, 2019) general-

ise REMs by specifying the rate of interaction events from sender i to receiver set J as a function of
hyperedge covariates x(i, J)—being a function of the sender and the entire set of receivers—that
cannot necessarily be decomposed into dyadic covariates. As a concrete example, the average
number of past interactions that pairs of actors {j, j′} ⊆ J have jointly received from i can be ex-
pressed as a hyperedge covariate x(i, J)—but not as a sum of dyadic covariates x(i, j), j ∈ J.
Generalizing edges in graphs that connect exactly two nodes, hyperedges in a hypergraph can con-
nect any number of nodes (Berge, 1989). A relational hyperevent is a time stamped event indexed
by a hyperedge (Lerner et al., 2021).
While the conceptual transition from REM to RHEM may be intuitive, its analytical and

empirical implications need more complete and rigorous articulation. In this paper, our goal is
to improve our current understanding by specifying appropriate models for polyadic social inter-
action processes and then evaluating empirical differences with respect to comparable dyadic
specifications.
A model specified strictly in terms of dyadic covariates might be unable to capture higher-order

dependencies typically present in network data produced by polyadic interaction. In turn, this may
yield misleading estimates of network effects, or result in lower model fit. In this paper, we take the
view that higher-order dependencies—when present—should not merely be considered as an in-
convenient feature of the data to be, in the best cases, controlled away. Rather, we argue that
such higher-order effects provide a unique opportunity for improving our understanding of the
structure and dynamics of social interaction processes, and for developing and testing innovative
theories of social interaction.
In this paper, we intend to demonstrate how differences between REM and RHEM may

be directly relevant for empirical studies analysing polyadic social interaction processes. We
define and discuss practically relevant network effects that can be expressed in RHEMs,
but not in dyadic specifications of the event rate afforded by currently available REMs. In
the empirical part of the paper, we use the canonical Enron email data (Zhou et al., 2007) to
illustrate how to test for polyadic dependencies in empirical data. Moreover, we assess and
compare improvements in model fit implied by adding various, dyadic and hyperedge,
covariates.
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RHEM defined and discussed in this paper directly build on the work by Perry and Wolfe
(2013), as detailed below. A number of other alternative approaches have been proposed to adapt
REM to events with several receivers (or several senders). In the original statement of the model,
Butts (2008) proposes the creation of ‘virtual’ nodes to represent sets of receivers (or senders).
This approach can be appropriate for specifically chosen subsets (such as the whole team as a
receiver of broadcast messages), but representing all possible subsets by virtual nodes becomes
quickly unfeasible. Kim et al. (2018) propose the hyperedge event model for multicast events.
Their model specifies dyadic intensities, associated with one sender and one receiver, as a func-
tion of dyadic covariates. These intensities then stochastically determine the sender of the next
event and subsequently the receiver set of an interaction by that sender. Their framework does
not allow for hyperedge covariates as in RHEM.Mulder andHoff (2021) define a latent variable
model for multicast interaction. However, in their model the mean suitability score of a receiver
for messages initiated by a given sender is still a dyadic function, dependent on the sender and
one receiver at a time.
Relational hyperevent models for undirected hyperevents (e.g., meeting events) have been pro-

posed in Lerner et al. (2021). Earlier, RHEMhave beenmentioned by Lerner et al. (2019)who also
defined RHEM for directed hyperevents—but did not analyse directed RHEM in any of their em-
pirical examples. Directed RHEM have been applied to modelling contact elicitation networks by
infected persons in Hâncean et al. (2021).
We demonstrate how the computation of hyperedge covariates for RHEMs may be performed

with the open source software eventnet. The analysis of the Enron email data with RHEM is
explained in a step-by-step tutorial linked from https://github.com/juergenlerner/eventnet/wiki/,
from the data preprocessing and the computation of covariates over to model estimation in R.
Thus, the analysis reported in the empirical part of this paper is fully reproducible. The software
may be adopted in—and adapted to future empirical studies involving polyadic social interaction
processes.

2 RHEM and hyperedge covariates for multicast social interaction

2.1 Background on REM based on dyadic covariates
We start by recalling the point process models for directed interaction networks, following close-
ly the argument and the notation proposed by Perry and Wolfe (2013). We start our discussion
from their model for the more general case of relational events defined over receiver sets of ar-
bitrary size. As observed in their paper, the theoretical results on the consistency of the max-
imum partial-likelihood inference also apply to the case of polyadic (multicast) events. It may
be worth repeating that the difference between RHEM and the model from Perry and Wolfe
(2013) does not lie in the basic modelling framework, but in generalising dyadic covariates to
hyperedge covariates.
Let I be a finite set of senders and J be a finite set of receivers, not necessarily disjoint from I .

We denote elements from A = I ∪ J as actors. For a sender i ∈ I and a point in time t > 0, let
J t(i) ⊆ J denote the set of actors that could potentially receive an interaction from i at t. If
A = I = J , then it is often the case that J t(i) = I \ {i}, implying that a sender can send interaction
events to everyone but herself—that is, loops are excluded. For a sender i and receiver j, let xt(i, j)
be a p-dimensional vector of covariates and β0 a p-dimensional vector of unknown parameters.
For a sender i and a positive integer L (giving the receiver set size), the baseline intensity is denoted
by �λt(i, L).
Perry and Wolfe (2013) define a model for counting processes on R+ × I × P(J ) where the in-

tensity on (i, J), with i ∈ I and J ⊆ J , is modelled as

λt(i, J) = �λt(i, |J|) exp βT0
∑
j∈J

xt(i, j)

{ }∏
j∈J

1{j ∈ J t(i)}. (1)

Intuitively, λt(i, J)Δt is the expected number of events that i sends to the receiver set J in the time
interval [t, t + Δt). The intensity λt(i, J) is assumed to be the baseline intensity �λt(i, |J|) multiplied

with the relative rate, exp {βT0
∑

j∈J xt(i, j)}. Thus, the parameter vector β0 controls which
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covariates {xt(i, j); j ∈ J} make J a more or less likely receiver set for interaction events sent by i.
The covariates in xt(i, j) can depend on actor characteristics, such as the age of j or the age differ-
ence of i and j, but they can also depend on the history of the process. For instance, the covariates
xt(i, j) can include a count of the number of past events that i has sent to j, before t.
Importantly, the model summarised in (1) assumes that the covariate vectors {xt(i, j), j ∈ J} in-

crease or decrease the rate of events from sender i to the receiver set J independently of each other.
Equivalent to (1), we can model the intensity λt(i, J) as the baseline intensity �λt(i, |J|) multiplied
with the relative rate exp {βT0xt(i, J)}, where the covariates xt(i, J) of sender i and receiver set J
are assumed to have the specific form

xt(i, J) =
∑
j∈J

xt(i, j). (2)

The equation above implies that in the original model the suitability of j as a receiver of interaction
sent by i is assumed to be independent of the other receivers j′ ∈ J \ {j} of the same interaction—an
assumption that is challenged in our paper. Generalizing this model, RHEM allow covariates
xt(i, J) that do not necessarily decompose into a sum of dyadic covariates of the form∑

j∈J xt(i, j); compare Section 2.2.
Let (t1, i1, J1), . . ., (tn, in, Jn) be the observed sequence of polyadic interactions where (t, i, J) in-

dicates that at time t sender i interacts with receiver set J. The model from Perry andWolfe (2013),
given in (1), leads to the log partial likelihood at t evaluated at β ∈ Rp:

logLt(β) =
∑
tm≤t

βT
∑
j∈Jm

xtm (im, j) − log
∑

J∈ J tm (im )
|Jm |

( ) exp βT
∑
j∈J

xtm (im, j)

{ }⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠, (3)

where for a set X and an integer L, we write X
L

( )
= {X′ ⊆ X; |X′| = L} for the set of all subsets of

size L. Perry and Wolfe (2013) prove that, under generally accepted assumptions, parameters
maximising (3), i.e., the maximum partial-likelihood estimates (MPLE), are a consistent estimator
of β0.

2.2 Relational hyperevent model
Building on the model proposed by Perry and Wolfe (2013), the definition of RHEM for directed
polyadic interaction can be obtained by substituting xt(i, J) for

∑
j∈J xt(i, j) in (1) and (3). More

precisely, given the notation from Section 2.1, RHEM define a model for counting processes on
R+ × I × P(J ) where the intensity on (i, J), with i ∈ I and J ⊆ J , is modelled as

λt(i, J) = �λt(i, |J|) exp {βT0xt(i, J)}1{J ⊆ J t(i)}. (4)

The covariates xt(i, J) do not necessarily decompose into a sum of dyadic covariates and may de-
pend on exogenous actor-level characteristics or they can depend on the history of the process.
Examples for the former include the average age of receivers in J, the average absolute age differ-
ence between the sender i and the receivers in J, or the average absolute age difference between
pairs of receivers in J. Examples for the latter (i.e., history-dependent) covariates include the num-
ber of past interactions that i has sent to receiver set J:

#{interaction(t′, i, J)with t′ < t},

the average number of past interactions that actors j ∈ J have received from i:

∑
j∈J #{interaction(t

′, t, J′) with t′ < t ∧ j ∈ J′}

|J| ,
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or the average number of past interactions that pairs of actors {j, j′} ⊆ J have jointly received from i:

∑
{j,j′}∈ J

2

( ) #{interaction(t′, i, J′)with t′ < t ∧ j, j′ ∈ J′}

|J|
2

( ) .

Note that the first and the third of the above examples for history-dependent covariates do not admit
a decomposition of the form (2). The second of these examples for history dependent covariates ad-
mits a decomposition of the form (2) if we are willing to additionally allow multiplication of cova-
riates with a constant that depends only on the receiver set size |J|.
Let (t1, i1, J1), . . ., (tn, in, Jn) be the observed sequence of polyadic interactions. Themodel given

in (4) leads to the following log partial likelihood at t evaluated at β ∈ Rp

logLt(β) =
∑
tm≤t

βTxtm (im, Jm) − log
∑

J∈ J tm (im)
|Jm |

( ) exp {βTxtm (im, J)}
⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠. (5)

The arguments from Perry andWolfe (2013) on the consistency ofMPLE of their model also apply
to parameters maximising (5). Note that the only difference between (3) and (5) is that we allow
more general covariates.

2.3 Case control sampling
The log partial likelihood (5) can no longer be approximated by replacing the sum over all J in the

risk set J tm (im)
|Jm|

( )
with a sum over all receivers inJ tm (im), as it was the case for models specified with

dyadic covariates in Perry and Wolfe (2013). Having to sum over all subsets would lead to exces-
sive, or even intractable, computational runtime for all but the smallest J tm (im) and Jm.
Previous work on REM and RHEM for the analysis of large networks (Lerner & Lomi, 2020;

Lerner et al., 2021; Vu et al., 2015) suggested to reduce excessive computational runtime by re-
placing the risk set with a sampled risk set obtained via case control sampling (Borgan et al.,
1995; Keogh & Cox, 2014). The derivation of the partial likelihood based on sampled risk
sets (7), starting from the partial likelihood using the entire risk set (5), can actually be obtained
by adapting the general approach from Borgan et al. (1995) to our special case—and in the re-
mainder of this subsection we will only briefly indicate the relevant steps. We recall that the
main contribution of this paper are the hyperedge covariates and not the particular method
to estimate model parameters. We point out that when applying RHEM to data with a very
small number of nodes, case control sampling is not needed (Bianchi & Lomi, 2022; Lerner
& Lomi, 2022) and parameters may be estimated by maximising (5). In application settings
where the number of nodes is larger, we propose to estimate RHEM parameters by
maximising (7).
For a given positive integer k (the number of non-events per event), let R̃t(J t(i), J, k) ⊆ J t(i)

|J|
( )

be
a set of subsets of J t(i) that is sampled uniformly at random from

R ⊆
J t(i)
|J|

( )
; J ∈ R ∧ |R| = k + 1

{ }
. (6)

In other words, R̃t(J t(i), J, k) contains the observed receiver set J (the ‘case’) plus k alternative
receiver sets (the ‘controls’), sampled without replacement uniformly and independently at ran-
dom from {J′ ⊆ J t(i); |J′| = |J| ∧ J′ ≠ J}.
Adapting the general approach of Borgan et al. (1995) to our special case, we obtain a counting

process on R+ × I × P(J ) × P[P(J )], where the tuple (t, i, J, R) indicates that at time t, sender i
interacts with receiver set J andR is the set that has been sampled from (6). If πt(R|i, J) denotes the
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conditional probability that R is the sampled risk set at t, given that an event on (i, J) occurs at t,
then this counting process has intensity

λt(i, J, R) = �λt(i, |J|) exp {βT0xt(i, J)}1{J ⊆ J t(i)}πt(R|i, J).

Uniform sampling from (6) is a special case of nested case-control sampling (Borgan et al., 1995),
in particular it is πt(R|i, J) = πt(R|i, J′) for all J, J′ ∈ R, and by Borgan et al. (1995) we can estimate
parameters β̂ by maximising the log partial-likelihood function

log L̃t(β) =
∑
tm≤t

βTxtm (im, Jm) − log
∑

J∈R̃tm (J tm (im),Jm,k)

exp {βTxtm (im, J)}

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠. (7)

Borgan et al. (1995) prove conditions under which theMPLE is a consistent estimator. Estimating
parameters based on the partial likelihood (7) uses only information about the selection of receiver
sets Jm out of all sampled sets of receivers J ∈ R̃tm (J tm (im), Jm, k). On the other hand, it does not
consider information contained in the event time tm, sender im, and receiver set size |Jm|, which are
absorbed in the baseline rate �λt(i, |J|). Therefore, including covariates that are only functions of
event times, senders, or size of the receiver sets would lead to non-identifiable parameters.

2.4 Hyperedge covariates
Since hyperedge covariates xt(i, J) are defined on the entire set of receivers, a large number of struc-
turally different covariates is possible. While our list is certainly far from exhaustive, we define in
the following a collection of hyperedge covariates that are practically relevant in the empirical ana-
lysis of multicast interaction networks. We define two types of covariates: ‘attribute effects’, de-
pendent on actor-level attributes and ‘network effects’, dependent on the history of the process,
that is, on sequences of previously observed events.

2.4.1 Covariates dependent on actor-level attributes
Suppose that available data include information on one or several numeric actor-level attributes
z :A � R. Then, in general, RHEM covariates xt(i, J) based on such actor (‘node-specific’) char-
acteristics may be obtained either by functions of the values in the receiver set such as
mean{z(j); j ∈ J}, or by functions of the receivers’ values in relation to the sender’s value z(i),
such as mean{|z(j) − z(i)|; j ∈ J}. Covariates that are only functions of the sender i would lead
to a non-identifiable parameter, since their effect would be absorbed by the baseline rate �λt(i, |J|).
Concrete examples of covariates are discussed below, where we also discuss the possibility of

defining covariates based on categorical attributes. In this article, we consider only time-invariant
attributes. However, the covariates discussed below extend directly to time-varying actor-level at-
tributes by considering values at the given time t.
Receiver set average of attribute z captures a first-order effect of an attribute on receiving inter-

actions and is defined to be

rec avg zt(i, J) =
∑
j∈J

z(j)/|J|.

For example, in the empirical analysis we apply this definition to four binary attributes female,
senior, trade, and legal. The receiver set average, thus, gives the proportion of receivers that are
females, seniors, members of the ‘trade’ department, or members of the ‘legal’ department, re-
spectively. The definition also applies to non-binary numeric attributes.

Sender–receiver heterophily.We assess heterophily between senders and receivers by averaging the
absolute difference between the attribute value of the sender i and the values of the receivers j ∈ J:

send rec diff zt(i, J) =
∑
j∈J

|z(i) − z(j)|/|J|.

6 Lerner and Lomi
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For example, for the attribute femalewe obtain the fraction of receivers having the opposite gender
than the sender. If senders have a tendency to interact with similar receivers, then a higher value of
sender–receiver homophily would make an interaction on the hyperedge (i, J) less likely. Thus, in
the presence of homophily we would expect a negative parameter—a positive parameter would
point to heterophily.
In the case of a categorical attribute z, such as the attribute ‘department’, we assess sender–re-

ceiver heterophily via the fraction of receivers that have a different value than the sender:

send rec diff zt(i, J) =
∑
j∈J

1{z(i) ≠ z(j)}/|J|.

Receiver set heterophily.We assess heterophily in the receiver set by averaging the absolute differ-
ence of the attribute value between receiver pairs:

rec set diff zt(i, J) =
∑

{j,j′}∈ J
2

( ) |z(j
′) − z(j)|
|J|
2

( ) .

If senders have a tendency to interact with homogeneous receiver sets (irrespective of their own
attribute value), then a higher value of the covariate capturing receiver set homophily would
make an interaction less likely. Thus, we would expect a negative parameter in the presence of ho-
mophily; a positive parameter would point to heterophily.
For a categorical attribute z, we assess receiver set heterophily via the fraction of receiver pairs

that have a different attribute value:

rec set diff zt(i, J) =
∑

{j,j′}∈ J
2

( )1{z(j
′) ≠ z(j)}
|J|
2

( ) .

Note that receiver set heterophily is structurally different from sender–receiver heterophily
(Snijders & Lomi, 2019). Theoretically it might be the case that senders have neither a preference,
nor a reluctance to send messages to, say, receivers in their own department. Yet, in the same data
it is possible that typical receiver sets are mostly composed of members from one department. In
such a hypothetical scenario, we would not find evidence for sender–receiver homophily but we
would find evidence for receiver set homophily.

2.4.2 Network effects
In addition to covariates based on actor-level attributes, we define several covariates
expressing dependence of the intensity λt(i, J) on the history of the process. Given an observed
sequence of events generated by polyadic interaction E = {(t1, i1, J1), . . ., (tn, in, Jn)}, the
value of these covariates at time t is computed as a function of earlier events
E<t = {(tm, im, Jm) ∈ E; tm < t}.
Similar to previous work on REM and RHEM (Amati et al., 2019; Brandes et al., 2009;

Lerner et al., 2013, 2021), we let the effect of past events decay over time. More precisely,
for a given half-life period T1/2 > 0, the weight of a past event (tm, im, Jm) at current time t >
tm is defined to be w(t − tm) = exp (− (t − tm)(log 2/T1/2)). While alternatives exist to exponen-
tial decay of past events, Schecter and Quintane (2021) found it to be generally adequate.
The objective of our paper is to clarify the benefit of hyperedge covariates in comparison to
dyadic covariates. We consider issues related to the effect of elapsed time of past events as or-
thogonal to the objective of the current paper. Hyperedge covariates and dyadic covariates con-
sidered in the empirical part of this paper are defined with the same decay mechanism and the
same half-life period.

Exact repetition.An empirically plausible effect would capture relational ‘inertia’, or the tendency
of actors to continue to do what they did in the past. In fact, in many cases, it may be important to
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verify the presence of more complex mechanisms over and above the simple repetition of past be-
haviour. In polyadic interaction networks, this inertial behavioural tendency would lead to future
events that repeat the sender and the entire receiver set of past events. Such an effect can be cap-
tured by the covariate:

exact repetitiont(i, J) =
∑

(tm,im,Jm)∈E<t

w(t − tm) · 1(im = i ∧ Jm = J).

Thus, we sum the current weight over all previous events that have the same sender and exactly the
same receiver set. Exact repetition captures effects in which the same sender repeatedly addresses
the same receivers, for instance, email communication with fixed receiver lists (‘mailing lists’).

Unordered repetition.Besides exact repetition, there can be situations of interaction within a stable
group of actors with turn-taking among the senders (Gibson, 2005). Such an effect can be captured
by the covariate

unordered repetitiont(i, J) =
∑

(tm,im,Jm)∈E<t

w(t − tm) · 1({im} ∪ Jm = {i} ∪ J).

In contrast to (ordered) exact repetition, the unordered repetition effect allows that different actors
takeon the role of sender—as long as the unionof the senderwith the receiver set remains constant.A
typical example of this behaviour is email communication using a ‘reply-to-all’ functionality: a re-
ceiver of a previous message sends a message to the previous sender and to all other receivers. See
Figure 1 for an illustration of unordered repetition. In contrast to unordered repetition, exact repe-
tition would require that the future event in Figure 1 is exactly on the hyperedge (A, {B, C, D, E}),
that is, the same sender A sends another interaction to the same receiver set {B, C, D, E}.

Partial receiver set repetition. The two (exact and unordered) repetition covariates defined above
still give an incomplete picture of stability in multicast interaction events, since they require
that sets of actors involved in past and current events have to be identical. A possible event that
mostly, but not exactly, repeats the receiver set of a past event—for instance, if some new receivers
are added and/or if some previous receivers are removed—is treated identically to a possible event
with a completely disjoint receiver set. To quantify partial repetition, we define a parametric fam-
ily of covariates capturing to what extent subsets of a possible receiver set have jointly received
past events.
To shorten notation, we define the hyperedge indegree of a set of receivers J′ ⊆ J by considering

past events that have been jointly received by all members of J′—possibly together with varying

Figure 1. Stylised example illustrating unordered repetition. Left: history of a past event e1 = (t1, A, {B, C, D, E})
displayed as a grey-shaded area; dashed lines connect the sender to the receivers. Right: a candidate hyperedge h =
(C, {A, B, D, E}) for a future hyperevent. The past event e1 increases the value of unordered repetition on h at time
t > t1. In communication networks, unordered repetition could point to turn-taking among a stable set of
conversation participants.
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other receivers outside of J′:

hy deg(in)t (J′) =
∑

(tm,im,Jm)∈E<t

w(t − tm) · 1(J′ ⊆ Jm).

Partial receiver set repetition (or subset repetition among the receivers) is parametrised by a posi-
tive integer p, giving the cardinality of the subsets that repeatedly receive joint messages:

rec sub rep(p)t (i, J) =
∑
J′∈ J

p

( )hy deg(in)t (J′)
|J|
p

( ) .

For p = 1 we obtain the average indegree of individual receivers j ∈ J by considering past interac-
tions received by j, downweighted by the elapsed time. For p = 2we consider past interactions that
have been jointly received by pairs {j, j′} ⊆ J, and so on.
Partial receiver set repetition—and the related sender-specific partial receiver set repetition, de-

fined below—are illustrated in Figure 2. In the notation of that figure, if we ignore the decay over
time and if e1 is the entire history, we get for a point in time t > t1 the following values:

rec sub rep(1)t (h) = 3/4

rec sub rep(2)t (h) = 3/6

rec sub rep(3)t (h) = 1/4.

Partial receiver set repetition of order p > 3 is zero in this example.

Sender-specific partial receiver set repetition. Partial receiver set repetition defined above does not
consider whether past interactions jointly received by J′ ⊆ J originated from the same sender
i. Thus, these covariates capture partial repetition of receivers by any sender. To consider
only partial receiver set repetition by the same sender, we first define the sender-specific
hyperedge degree by:

hy degt(i, J
′) =

∑
(tm,im,Jm)∈E<t

w(t − tm) · 1(i = im ∧ J′ ⊆ Jm).

Sender-specific partial receiver set repetition (or sender-specific subset repetition in the receiver
set) is parametrised by a positive integer p, giving the cardinality of the subset that repeatedly

Figure 2. Stylised example illustrating (sender-specific) partial receiver set repetition. Left: history of a past event
e1 = (t1, A, {B, C, D, E}). Right: a candidate hyperedge h = (A, {C, D, E, F }) for a future hyperevent. Among the four
receivers in h, three have individually received the past event e1. Among the six pairs of receivers in h, three have
jointly received the past event e1. Among the four triples of receivers in h, one has jointly received the past event e1.
The past event e1 increases the value of sender-specific partial receiver set repetition of order p = 1, 2, 3 on h at
t > t1. If the sender of hwas another actorG, instead ofA, then the past eventwould still increase the value of partial
receiver set repetition, but it would not increase the value of the sender-specific variant.
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receives joint messages from the given sender i.

send rec sub rep(p)t (i, J) =
∑
J′∈ J

p

( )hy degt(i, J
′)

|J|
p

( ) .

For p = 1, we obtain the average weight of past interactions that individual actors j ∈ J received
from the given sender i, where the average is taken over all those receivers. For p = 2, we con-
sider past interactions that have been sent by i and that have been jointly received by pairs
{j, j′} ⊆ J, and so on.
In the example illustrated in Figure 2, we obtain the same values for sender-specific partial re-

ceiver set repetition as for partial receiver set repetition, since the candidate hyperedge for a future
event h = (A, {C, D, E, F}) has the same sender as the past event e1. However, another candidate
hyperedge h′ = (G, {C, D, E, F}) would have the same value as h in the partial receiver set repeti-
tion covariates but would get the value zero in the sender-specific variants.
(Sender-specific) partial receiver set repetition of order p ≥ 2may induce a clustering in the set of

actors, revealing subsets of actors that are likely to jointly receive the same interactions. Partial
receiver set repetition implies a ‘global’ clustering applying to all interactions, irrespective of their
sender. The sender-specific variants allow for different clusterings of receivers that vary with the
sender.

Past interaction among receivers.Yet another network effect in polyadic social interaction network
arises if actors send interactions to a sender of a past interaction together with a subset of the re-
ceivers of that past interaction. This is, for instance, a frequent pattern in scientific citation net-
works where a paper P cites another paper P′ and some of the references of P′. This pattern can
be captured by the following family of covariates, parametrised by a positive integer p, giving
the number of the repeated receivers of the previous event:

interact rec(p)t (i, J) =
∑

j∈J, J′∈ J\{j}
p

( )hy degt(j, J
′)

|J| · |J|−1
p

( ) .

Interaction among receivers is illustrated in Figure 3. In the notation of that figure, if we ignore the
decay over time and if e1 is the entire history, we get for a point in time t > t1 the following values:

interact rec(1)t (h) = 2/(4 · 3)
interact rec(2)t (h) = 1/(4 · 3).

Figure 3. Stylised example illustrating the covariate ‘interaction among receivers’. Left: history of a past event
e1 = (t1, A, {C, D, E}). Right: a candidate hyperedge h = (F , {A, B, C, D}) for a future hyperevent. The sender F of h
sends an interaction to the sender A of the past event e1 and to two of its receivers (C and D). The past event e1
increases the value of the covariate interaction among receivers on h at t > t1 for p = 1, 2. For p > 2 that covariate is
zero since there are no three previous receivers that receive an interaction together with the previous sender.
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Interaction among receivers of order p > 2 is zero in this example.

Reciprocation and out-in popularity.Actors often have the tendency to reply to interactions they re-
ceived in the past. Reciprocation is captured by considering interactions that the sender i of the
current interaction has received from actors j ∈ J:

recipt(i, J) =
∑
j∈J

hy degt(j, {i})/|J|.

The effect out-in popularity, arises when senders of past interactions receive future interactions
from any actor in the network—not necessarily from the receivers of the past interactions. We de-
fine the outdegree of an actor i′ ∈ A by considering past events that have been send by i′. (Note that
in contrast to the hyperedge indegree, the outdegree cannot be defined for a set of more than one
actor, since every interaction has only one sender.)

deg(out)t (i′) =
∑

(tm,im,Jm)∈E<t

w(t − tm) · 1(i′ = im).

Out-in popularity is defined by

out in popt(i, J) =
∑
j∈J

deg(out)t (j)/|J|.

Reciprocation and out-in popularity are illustrated in Figure 4. In the notation of that figure, if we
ignore the decay over time and if e1, e2 is the entire history, we get for a point in time t > t1, t2 the
following values:

recipt(h) = 1/3

out in popt(h) = 2/3.

Triadic effects. Interactions might further depend on past interactions that the sender and the re-
ceivers had with common third actors. By varying the directions of the past interactions to or from
the sender and the receivers we obtain four variants of triadic closure, denoted by transitive clos-
ure, cyclic closure, incoming balance, and outgoing balance. In the summations below, a iterates

Figure 4. Stylised example illustrating reciprocation and out-in popularity. Left: history of two past events e1 =
(t1, A, {D, E, F }) and e2 = (t2, B, {A, C}). Right: a candidate hyperedge h = (D, {A, B, C}) for a future hyperevent. The
past event e1 increases the value of the reciprocation covariate on h at t > t1, since e1 has been sent by A, a receiver
of h, among others to D, the sender of h. The past event e2 does not increase reciprocation on h—but it increases
out-in popularity on h, since e2 has been send by B, a receiver of h.
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over all actors A \ {i, j}.

transitive closuret(i, J) =
∑

j∈J, a≠i,j

min {hy degt(i, {a}), hy degt(a, {j})}
|J|

cyclic closuret(i, J) =
∑

j∈J, a≠i,j

min {hy degt(a, {i}), hy degt(j, {a})}
|J|

in balancet(i, J) =
∑

j∈J, a≠i,j

min {hy degt(a, {i}), hy degt(a, {j})}
|J|

out balancet(i, J) =
∑

j∈J, a≠i,j

min {hy degt(i, {a}), hy degt(j, {a})}
|J| .

Transitive closure and cyclic closure are illustrated in Figure 5. In the notation of that figure, if we
ignore the decay over time and if e1, e2 is the entire history, for a point in time t > t1, t2 we obtain
the following values:

transitive closuret(h) = 2/2

cyclic closuret(h) = 1/2.

Incoming balance is illustrated in Figure 6. In the notation of that figure, if we ignore the decay
over time and if e1, e2 is the entire history, for a point in time t > t1, t2 we obtain the following

Figure 5. Stylised example illustrating transitive closure and cyclic closure. Left: history of two past events e1 =
(t1, A, {B, C}) and e2 = (t2, C, {D, E}). Right: two candidate hyperedges h = (A, {D, E}) and h′ = (E, {A, F }) for future
hyperevents. The past events e1, e2 increase the value of transitive closure on h at t > t1, t2, since h transitively
closes two paths: from A over C to D and from A over C to E. The past events e1, e2 increase the value of cyclic
closure on h′ at t > t1, t2, since h′ closes a cycle from A to C to E to A.

Figure 6. Stylised example illustrating incoming balance. Left: history of two past events e1 = (t1, C, {A, B}) and
e2 = (t2, C, {D, E}). Right: a candidate hyperedge h = (A, {D, E}) for a future hyperevent. The past events e1, e2
increase the value of incoming balance on h at t > t1, t2, since the sender of h, A received a past event from C and
two receivers of h, D, and E also received a past event from the same sender C.
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value:

in balancet(h) = 2/2.

Outgoing balance is illustrated in Figure 7. In the notation of that figure, if we ignore the decay
over time and if e1, e2 is the entire history, for a point in time t > t1, t2 we obtain the following
value:

out balancet(h) = 1/2.

2.4.3 Dyadic covariates vs. hyperedge covariates
As mentioned, we denote a hyperedge covariate xt(i, J) as a dyadic covariate if it admits a decom-
position of the form xt(i, J) = C(|J|) ·∑ j∈J xt(i, j), compare (2), whereC(|J|) is amultiplicative con-
stant depending only on the size of the receiver set J. Here we discuss, which of the hyperedge
covariates defined above are dyadic covariates.
Among the covariates based on actor-level attributes, the receiver set average and sender-

receiver heterophily are dyadic covariates. In contrast, receiver set heterophily is not a dyadic co-
variate since the terms in its definition jointly consider pairs of receivers.
Neither exact repetition nor unordered repetition are dyadic covariates since the terms in their

definition jointly consider a potentially unbounded number of receivers. Partial receiver set repe-
tition of order p is a dyadic covariate for p = 1 but not for any p > 1. The same holds for sender-
specific partial receiver set repetition of order p. Interaction among receivers of order p is not a
dyadic covariate for any p ≥ 1. Note that the definition of this covariate considers subsets of
the receiver set J containing p previous receivers and one previous sender. Reciprocation, out-in
popularity, and all four triadic closure covariates are dyadic. For the latter, note that in the defin-
ition of these covariates we sum over single receivers j ∈ J, rather than over larger subsets of J.

3 Empirical analysis

3.1 Empirical setting and data
We demonstrate the empirical value of the model in an analysis of the Enron email data set—a col-
lection of corporate emails exchanged by employees of Enron Corporation that was made public
after the company filed for bankruptcy in December 2001. For additional information on the his-
tory of the data, we refer interested readers to Zhou et al. (2007). Prior empirical analyses of the
email corpus may be found in Diesner et al. (2005) and in Keila and Skillicorn (2005). To facilitate
comparability, we analyse the subset of the data cleaned and processed by Zhou et al. (2007) that
has also been used in the empirical example reported in Perry and Wolfe (2013) and that is avail-
able at https://github.com/patperry/interaction-proc/tree/master/data/enron. Analysis with the
eventnet software requires conversion of these data into a different format. The conversion
steps are explained in https://github.com/juergenlerner/eventnet/tree/master/data/enron where

Figure 7. Stylised example illustrating the outgoing balance covariate. Left: history of two past events e1 =
(t1, A, {B, C}) and e2 = (t2, E, {D, C}). Right: a candidate hyperedge h = (A, {D, E}) for a future hyperevent. The past
events e1, e2 increase the value of outgoing balance at t > t1, t2, since the sender of h, A has sent a past event to C
and one receiver of h, E has also sent a past event to C.
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the converted data are also available for download. As mentioned before, the entire analysis re-
ported in this paper is detailed in a step-by-step tutorial; see Section 4.6.
In the empirical section that follows we refer to this subset as the ‘Enron data’ or just the ‘data’.

The data comprises 21,635 emails (treated as hyperevents) among 156 Enron employees.
Additionally, we use the actor attributes, gender (female = 1, male = 0), seniority (senior = 1, jun-
ior = 0), and the categorical attribute department (taking the values ‘Legal’, ‘Trading’, and
‘Other’). None of the actor attributes changes over time and there are no missing values.
The observed emails have exactly one sender and between one and 57 receivers. About 30.7%of

the emails have more than one receiver and the average number of receivers is 1.77. The receiver
set size distribution is further detailed in Table 1. We analyse all of these emails, that is, we do not
discard emails with many receivers.
The time values of the emails in the data correspond to seconds—but time resolution is by the

minute since all given time values are divisible by 60. There are 20,994 emails (about 97%) that
have a unique time stamp, there are 305 time points at which exactly two different emails have
been sent, nine time points are shared by three emails, and there is one time point at which four
different emails have been sent. We order simultaneous emails arbitrarily. Given the high level
of time resolution and the relatively low number of simultaneous hyperevents (i.e., tied event
times), we believe that this decision is unlikely to affect our results in any meaningful way.
However, we note that established ways to deal with tied event times exist (Breslow, 1974;
Efron, 1977; Hertz-Picciotto & Rockhill, 1997; Kalbfleisch & Prentice, 1973) and are, for in-
stance, implemented in the R package survival.

3.2 Model specification and selection
The core objectives of our analysis are to understand and illustrate higher order effects in polyadic
interaction networks. We estimate two types of models, a conventional REM using only dyadic
covariates (‘dyadic model’) and RHEM (‘polyadic model’).
The dyadic model includes the covariates receiver set average for the actor-level attributes gen-

der, seniority, trading, and legal and sender–receiver heterophily for gender, seniority, and for the
categorical attribute department. The dyadic model also includes the network effects partial re-
ceiver set repetition and sender-specific partial receiver set repetition of order p = 1, reciprocation,
out-in popularity, and all four triadic closure effects.
TheRHEM includes all covariates of the dyadicmodel and in addition the covariates receiver set

heterophily for gender, seniority, and for the categorical attribute department. Moreover, the
RHEM includes exact repetition, unordered repetition, as well as (sender-specific) partial receiver
set repetition and interaction among receivers for varying values of p that have been determined in
a preliminary analysis (see below). Additionally, we specify and estimate two further variants of
the dyadic REM and two of the polyadic RHEM. These restricted models include covariates based
on actor-level attributes only, and network effects only, respectively.
Model estimation proceeds in two steps. In the first step, we apply the eventnet software

(Lerner & Lomi, 2020; Lerner et al., 2021), available at https://github.com/juergenlerner/
eventnet, to sample k non-event hyperedges associatedwith each observed hyperevent and to com-
pute (a superset of) all covariates of observed events and sampled non-events. We set the number
of non-events per event to k = 100. We initially compute (sender-specific) partial receiver set repe-
tition and interaction among receivers of order p = 1, . . ., 10. All network effects are defined with
the half-life period T1/2 set to one week. (While the decision about the half life is essentially arbi-
trary, and unrelated to the objectives of this paper, it can be expected that one week somewhat
levels out day-of-the-week effects, which are likely to be prominent in a corporate communication
network.) In the second step, we estimate parameters of models specified by varying lists of cova-
riates with the coxph function in the R package survival (Therneau, 2015; Therneau &

Table 1. Number of emails (bottom row) with given number of receivers (top row)

|J| 1 2 3 4 5 6 7 8 9 10 >10

Frequency: 14,985 2,962 1,435 873 711 180 176 61 24 29 199
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Grambsch, 2013). To assess the variation of estimates over different samples, we repeat the sam-
pling of risk sets 100 times, recomputing the covariate values each time. This gives us, for each
actual choice of the covariate vector xt, 100 different log partial-likelihood functions (7) and
100 potentially different estimated parameter vectors β̂. Since covariates modelling network ef-
fects are skewed, we transform them by x 7! ��

x
√

, but we do not standardise covariates.
To determine reasonable values of p for the covariates (sender-specific) partial receiver set repe-

tition and interaction among receivers, we incrementally add these covariates for increasing values
of p and monitor robustness of parameter estimation over different samples, as well as model fit
assessed by information criteria (AIC and BIC). We find that for a model specified with partial re-
ceiver set repetition up to order p = 4 and sender-specific partial receiver set repetition and inter-
action among receivers up to order p = 3, estimation converges for all 100 samples and model fit
measured in AIC and BIC consistently increases for growing order of these effects. In the follow-
ing, we denote this model with 28 covariates as ‘the RHEM’ (see the rightmost model in Table 3).
Among the covariates included in the RHEM, two pairs have correlation exceeding 0.9. These

are the pairs exact repetition and unordered repetition, with a correlation of 0.93, and partial re-
ceiver set repetition and sender-specific partial receiver set repetition of order p = 3, with a correl-
ation equal to 0.98. To test how findings are affected by such high correlations, we additionally fit
a reduced RHEM without unordered repetition and without sender-specific partial receiver set
repetition of order p = 3. This reduced RHEM has a lower model fit than the RHEM including
all effects (AIC = 73,286 for the reduced model and AIC = 72,919 for the largest RHEM).
Most parameters that are included in both models are not affected qualitatively in the sense
that they keep their signs and significance levels. The only exceptions are (1) out-in popularity be-
comes significantly positive in the reduced model (and is non-significant in the largest RHEM) and
(2) the parameter of exact repetition switches its sign from significantly positive to significantly
negative when we additionally include unordered repetition. We argue that this sign switch
does not point to lack of robustness in our findings—but rather to a relevant effect in multicast

Table 2. Estimated parameters of dyadic models

att (dyad) net (dyad) att+net (dyad)

rec_avg_female 0.24 (0.02)∗∗∗ 0.26 (0.02)∗∗∗

rec_avg_senior 0.71 (0.02)∗∗∗ 0.45 (0.02)∗∗∗

rec_avg_legal 1.22 (0.02)∗∗∗ 0.15 (0.03)∗∗∗

rec_avg_trading −0.61 (0.03)∗∗∗ −0.22 (0.03)∗∗∗

send_rec_diff_female −0.54 (0.02)∗∗∗ −0.24 (0.02)∗∗∗

send_rec_diff_senior −1.04 (0.02)∗∗∗ −0.49 (0.02)∗∗∗

send_rec_diff_dept −2.10 (0.02)∗∗∗ −0.88 (0.02)∗∗∗

rec_sub_rep_1 0.11 (0.01)∗∗∗ 0.04 (0.01)∗∗

send_rec_sub_rep_1 2.70 (0.02)∗∗∗ 2.54 (0.02)∗∗∗

reciprocation 1.04 (0.02)∗∗∗ 1.00 (0.02)∗∗∗

out_in_pop −0.00 (0.01) 0.01 (0.01)

in_balance 0.11 (0.01)∗∗∗ 0.10 (0.01)∗∗∗

out_balance −0.02 (0.01)∗ −0.04 (0.01)∗∗∗

transitive_closure 0.12 (0.01)∗∗∗ 0.11 (0.01)∗∗∗

cyclic_closure −0.09 (0.01)∗∗∗ −0.11 (0.01)∗∗∗

AIC 164,871.80 87,983.89 85,158.09

Num. events 21,635 21,635 21,635

Num. obs. 2,185,135 2,185,135 2,185,135

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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communication networks that can be well explained (see the discussion related with exact repeti-
tion and unordered repetition below).

4 Results and discussion

4.1 Discussion of effects
Estimated parameters and standard errors of the three models specified with dyadic covariates are
reported in Table 2, those of RHEM including dyadic and higher-order effects are reported in
Table 3. In the following, we discuss findings to highlight representative effects, or types of effects,
across all models in which the respective covariates are included. Our goal is not to discuss the
findings exhaustively, but rather to offer guidance how to interpret effects and illustrate the

Table 3. Estimated parameters of RHEM

att (rhem) net (rhem) att+net (rhem)

rec_avg_female 0.28 (0.02)∗∗∗ 0.21 (0.02)∗∗∗

rec_avg_senior 0.68 (0.02)∗∗∗ 0.32 (0.02)∗∗∗

rec_avg_legal 1.23 (0.02)∗∗∗ 0.13 (0.03)∗∗∗

rec_avg_trading −0.49 (0.03)∗∗∗ −0.11 (0.03)∗∗∗

send_rec_diff_female −0.50 (0.02)∗∗∗ −0.19 (0.02)∗∗∗

send_rec_diff_senior −0.94 (0.02)∗∗∗ −0.42 (0.02)∗∗∗

send_rec_diff_dept −1.88 (0.02)∗∗∗ −0.73 (0.02)∗∗∗

rec_set_diff_female −0.43 (0.04)∗∗∗ −0.18 (0.07)∗∗

rec_set_diff_senior −1.42 (0.04)∗∗∗ −0.65 (0.07)∗∗∗

rec_set_diff_dept −2.22 (0.04)∗∗∗ −0.99 (0.07)∗∗∗

exact_repetition −0.49 (0.06)∗∗∗ −0.37 (0.06)∗∗∗

unordered_repetition 1.04 (0.05)∗∗∗ 0.98 (0.05)∗∗∗

rec_sub_rep_1 0.07 (0.01)∗∗∗ 0.02 (0.01)

rec_sub_rep_2 0.65 (0.06)∗∗∗ 0.47 (0.06)∗∗∗

rec_sub_rep_3 2.18 (0.27)∗∗∗ 1.93 (0.26)∗∗∗

rec_sub_rep_4 6.73 (0.80)∗∗∗ 6.12 (0.79)∗∗∗

send_rec_sub_rep_1 1.99 (0.04)∗∗∗ 1.80 (0.04)∗∗∗

send_rec_sub_rep_2 5.08 (0.21)∗∗∗ 4.83 (0.21)∗∗∗

send_rec_sub_rep_3 5.15 (1.01)∗∗∗ 4.03 (0.92)∗∗∗

reciprocation 0.65 (0.03)∗∗∗ 0.63 (0.03)∗∗∗

out_in_pop −0.01 (0.01) 0.01 (0.01)

interact_rec_1 2.89 (0.09)∗∗∗ 2.67 (0.09)∗∗∗

interact_rec_2 7.30 (0.88)∗∗∗ 6.93 (0.87)∗∗∗

interact_rec_3 34.90 (5.15)∗∗∗ 32.74 (5.21)∗∗∗

in_balance 0.08 (0.01)∗∗∗ 0.08 (0.01)∗∗∗

out_balance −0.09 (0.01)∗∗∗ −0.10 (0.01)∗∗∗

transitive_closure 0.06 (0.01)∗∗∗ 0.05 (0.01)∗∗∗

cyclic_closure −0.04 (0.01)∗∗ −0.05 (0.01)∗∗∗

AIC 159,300.98 75,196.57 72,919.66

Num. events 21,635 21,635 21,635

Num. obs. 2,185,135 2,185,135 2,185,135

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.
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additional results that RHEMmake possible, and the new questions they afford. Even though we
fitted models to 100 different samples, the reported parameters have been estimated from one ar-
bitrarily selected single sample. Indeed, we believe that this situation is more representative for em-
pirical studies than results derived from repeated sampling. We report summary statistics of the
distribution of parameters over 100 samples in Appendix A. We emphasise that dyadic REM
and RHEM are estimated on the same sample; the only difference is the effects included in the em-
pirical model specifications.

Effects of actor-level attributes
The attribute distribution in receiver sets is captured by the four covariates measuring receiver set
averages (rec_avg_z). All four models including attribute effects agree that receiver sets have an
over-representation of females, seniors, and members of the legal department and an under-
representation of members of the trading department (recall that the base, or reference, depart-
ment is ‘other’). Parameters of covariates assessing the difference in attribute values between
the sender and the receivers consistently reveal that senders tend to write messages to receivers
of the same gender, seniority, and department. On top of this ‘sender–receiver homophily’, the
two RHEM containing attribute effects reveal that receiver sets tend to be homogeneous with re-
spect to gender, seniority, and department (negative parameters of the ‘receiver set difference’ co-
variates). We observe that without any exception effect sizes of covariates based on attributes
become smaller when we additionally control for network effects. Moreover, typically—but not
without exception—sizes of attribute effects are stronger in the dyadic models than in the
RHEM. Intuitively, these results reveal a possible tendency to over-estimate the effects of actor-
specific attributes in models that do not control for network effects, or that do not control for
higher-order effects, respectively.

Exact repetition and unordered repetition
In the RHEM, the parameter associated with unordered repetition is significantly positive and that
of exact repetition is significantly negative. These two effects have to be interpreted jointly—as we
illustrate building on the example from Figure 1. Assume that at t1 actor A sends an email to
{B, C, D, E} and consider two alternative hyperedges h = (C, {A, B, D, E}) and h′ =
(A, {B, C, D, E}) at a later point in time t > t1. The past email e1 = (t1, A, {B, C, D, E}) increases
the value of exact repetition and it increases the value of unordered repetition on h′ at t. The joint
effect of these two covariates is positive (since unordered repetition has a larger parameter than the
absolute value of the negative repetition parameter). Thus, the past event e1 = (t1, A, {B, C, D, E})
makes a repeated email from A to {B, C, D, E} at t > t1 more likely. However, an event at t on hy-
peredge h, that is, sent from C to {A, B, D, E} would be even more likely than an email from A to
{B, C, D, E}. This is because the past email e1 = (t1, A, {B, C, D, E}) increases the value of un-
ordered repetition on h at t (having a positive effect) but it does not increase the value of repetition
(which would have had a negative effect).
Thus, while conversations within fixed lists of actors (e.g., A, B, C, D, E in the example from

Figure 1) are overrepresented, it is more likely that a future email within the same fixed set of actors
will have a sender different from that of the preceding email. This points to a form of ‘turn-taking’
(Gibson, 2005) within fixed conversation groups. We note that it would not be possible to express
these effects exclusively with dyadic covariates.
Exact repetition and unordered repetition express a form of behavioural inertia, indicating that

actors tend to repeat what they did in the past.

(Sender-specific) partial receiver set repetition and interaction among receivers
In the RHEM almost all covariates expressing subset repetition in the receiver set (with
order p = 1, 2, 3, 4), all covariates for sender-specific subset repetition in the receiver set
(with order p = 1, 2, 3), and interaction among receivers have a significantly positive effect.
(Sender-specific) receiver subset repetition of order one are dyadic effects and thus are also in-
cluded in the dyadic model, where they are associated with positive parameters.
All three types of effects can be interpreted in defining a similarity (or suitability) measure on sets

of actors based on past interaction, which in turn tends to increase the rate of future interactions
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send by actor i to receiver set J. Specifically, partial receiver set repetition considers J as a suitable
receiver set to the extent that subsets J′ ⊆ J have already received common interactions; sender-
specific partial receiver set repetition considers the hyperedge (i, J) as suitable for the next inter-
action to the extent that subsets J′ ⊆ J have already received common interactions from the sender
i; the interaction among receivers effect considers J as a suitable receiver set to the extent that sub-
sets J′ ⊆ J have already received common interactions from a sender i′ ∈ J \ J′. In all three types of
effects, the order of the effect corresponds to the size of the subsets J′.
The findings demonstrate that repetition from the same sender to the same receivers (possibly

within a larger and varying set of yet other receivers) is not a purely dyadic phenomenon.
Rather, if two (or three or four) actors have already jointly received an email, then they are
more likely to do so again. This points to a clustering of the set of all possible receivers into subsets
that are likely to receive the same emails.We find evidence for a ‘global’ clustering (that is, one that
applies to the average sender) and for a sender-specific clustering (so that one sender can structure
the space of receivers in a different way than another sender).

Reciprocation and out-in popularity
A tendency to reciprocate interaction is found in all four models containing this effect. Thus, re-
ceivers of past interaction have the tendency to send interaction to the sender of that past inter-
action. Beyond that effect, all four models agree that there is no evidence for out-in popularity.
This latter effect tests whether those actors who have sent out more interaction in the past are like-
ly to receivemore future interaction—from anyone in the network, that is, not necessarily from the
receivers of the past interaction.

Triadic effects
The triadic effects can be included in the dyadic model and in the RHEM. All four models agree
that there is a tendency for transitive closure but a tendency against cyclic closure. Together these
two findings are compatible with the ‘hierarchical’ interpretation that messages tend to go from
higher status to lower status actors (Lerner & Lomi, 2017). Note that these findings are equally
compatible with the interpretation that messages tend to go ‘upward’ in the hierarchy. We also
find that two actors who have received (possibly different) messages from the same third actor (in-
coming balance) aremore likely to interact themselves but two actors who have both sentmessages
to the same third actor (outgoing balance) are less likely to interact themselves.

4.2 Contribution of individual covariates to the log-likelihood
In Table 4, we list improvements in log likelihood of the 28 models specified with exactly one cova-
riate over the null model (i.e., the model with no covariates). We also report the contribution of in-
dividual covariates in the full model bymeasuring improvements of the full model (i.e., the ‘RHEM’

with 28 covariates) over the 28 models obtained by dropping exactly one covariate. These latter
measurements indicate how much each individual covariate contributes over the 27 others.
We find that sender-specific partial receiver set repetition of order one (which is a dyadic cova-

riate) is the strongest individual effect, closely followed by unordered repetition and exact repeti-
tion (both of which are non-dyadic hyperedge covariates). The covariates based on actor-level
attributes imply much lower contributions to the log likelihood than the network effects.
Looking at the contributions of single effects on top of all other 27 covariates (rightmost column)
we find—with exception of the strongest effect—a remarkably different order. However, the se-
cond strongest effect, sender-specific partial receiver set repetition of order two, is again a non-
dyadic hyperedge effect. We conclude that the contributions of some of the higher-order effects
are roughly comparable to those of the strongest dyadic effects.

4.3 Evidence of higher-order effects
Overall, we find strong evidence of the presence of higher-order effects in the data. Covariates that
go beyond purely dyadic effects have been found to be significantly predictive of future event dis-
tributions. Moreover, as shown above, the contributions of some higher-order effects to the log
likelihood have similar magnitudes as the strongest dyadic covariates.
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As outlined above, we contend that such interdependence between different receivers should not
be considered as an annoyance to be controlled away—but rather as an opportunity to develop and
test additional theories about the structure of polyadic interaction networks. Some of the higher-
order effects are highly relevant for empirical studies. Homophily in the receiver set, exact repetition
and unordered repetition, and (sender-specific) partial receiver-set repetition of order p ≥ 2 all have
relevant implications for the structure and dynamics of polyadic interaction networks.

4.4 Qualitative differences between RHEM and dyadic models
In most cases, parameters of covariates that have been included in dyadic models and in RHEM
are estimated to have the same sign and significance levels. However, in most cases the absolute
values of these parameters are considerably smaller in the RHEM than in the dyadic models.
This may suggest that failure to control for higher-order effects could lead to an overestimation
of effect sizes. In our empirical analysis, the dyadic models suggested that partial receiver set repe-
tition of order one is significantly positive, while the largest RHEM found the same effect to be not
significant.

Table 4. Improvement in log-likelihood resulting from individual covariates

Over null model In full model

send_rec_sub_rep_1 53,649.62 1,247.12

unordered_repetition 47,906.19 173.16

exact_repetition 44,603.05 19.00

reciprocation 36,047.57 169.54

send_rec_sub_rep_2 22,539.50 530.31

transitive_closure 20,468.45 10.09

out_balance 18,562.00 57.88

rec_sub_rep_2 18,444.34 25.76

cyclic_closure 17,300.53 6.30

in_balance 16,599.53 43.17

rec_sub_rep_1 16,274.49 1.46

interact_rec_1 15,086.75 433.19

rec_sub_rep_3 13,251.15 24.83

send_rec_sub_rep_3 13,089.58 13.23

send_rec_diff_dept 11,048.89 524.04

interact_rec_2 10,794.70 46.04

out_in_pop 10,294.25 0.07

rec_sub_rep_4 8,382.27 34.92

interact_rec_3 6,614.91 28.90

rec_avg_legal 5,599.23 7.55

rec_set_diff_dept 2,430.60 103.30

send_rec_diff_senior 2,250.83 183.04

rec_avg_trading 1,955.37 8.20

rec_set_diff_senior 1,071.38 43.45

rec_avg_senior 1,001.24 92.09

send_rec_diff_female 779.91 33.37

rec_avg_female 461.45 38.04

rec_set_diff_female 70.88 3.37
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4.5 Model fit of RHEM and dyadic model
Regarding model fit, measured with information criteria (AIC), we find two patterns. First, net-
work effects improve the model fit muchmore than attribute effects and the joint models including
attribute and network effects have the best fit in the family of dyadic models and in RHEMs.
Second, RHEM fit the data better than the corresponding dyadic models. We find that the
RHEMpurely specified with network effects ‘net (rhem)’ already has a better fit than the full dyad-
ic model ‘att+net (dyad)’.

4.6 Replicability
The analysis is explained in a tutorial linked from https://github.com/juergenlerner/eventnet/
wiki/, from the data preprocessing and the computation of covariates over to model estimation
in R. Thus, the analysis reported in this paper is fully replicable and the tutorial points out some
model variations that might be relevant in various application scenarios. The software may be
freely adopted in—and adapted to future empirical studies involving polyadic social interaction
processes.

5 Conclusion

The objectives of our paper are to introduce, analyse, and illustrate hyperedge covariates for poly-
adic interaction networks and to compare RHEM, including higher-order effects, with REM spe-
cified exclusively in terms of dyadic covariates. In our illustrative empirical analysis of the Enron
email data, we find consistent evidence for the significance and importance of higher-order effects
captured by hyperedge covariates that jointly consider receiver sets of size larger than one. Failure
to control for such higher-order dependencies can also affect estimated parameters of dyadic co-
variates, although, in our analysis, this change seems to affect mostly parameter sizes (and occa-
sionally also their significance levels), but inmost cases does not switch the direction of effects (i.e.,
parameter signs).
The results we reported suggest that researchers interested in analysing polyadic interaction net-

works should not restrict their models to dyadic specifications. From a high-level perspective, the
step from models for multicast networks specified via dyadic covariates (Perry &Wolfe, 2013) to
RHEM is relatively intuitive. However, hyperedge covariates provide a much richer set of possible
effects and considerably increase the fit of models for the given empirical data.
These results strengthen our view that higher-order effects should not be considered merely as

an annoyance that has to be controlled for—but rather as an opportunity to develop and test add-
itional theories about the structure and dynamics of social interaction and communication net-
works. Some of the effects that we have documented could not have been discovered or tested
with available models purely specified via dyadic covariates. Concretely, this includes findings
on unordered repetition (pointing to turn-taking within a fixed list of conversation
participants), partial receiver set repetition (related with a clustering of the actors into groups
that are likely receivers of a joint message), and sender-specific partial receiver set repetition
(pointing to patterns in which different senders cluster the actors into potentially different groups).
We point out that average hyperedge sizes in the Enron email data are still rather small: 70% of

the emails have exactly one receiver and the average number of receivers is 1.77. In other empirical
settings, for instance, coauthorship networks (Newman, 2004), hyperevents are typically much
larger. For example, in the coauthorship networks considered in Lerner et al. (2019), the average
number of authors per paper is close to eight and some events have size up to 100. As another ex-
ample, in the meeting events extracted from contact diaries analysed in Lerner et al. (2021), the
average number of participants per meeting is 4.4. With larger hyperevents, it is typically possible
to include subset repetition covariates of higher order.
Our primary goal in this paper was to establish hyperedge covariates and compare RHEM to

dyadic models, rather than elaborate new parameter estimation techniques. To deal with the ex-
ponential size of the risk set, we proposed case-control sampling—which is a readily available and
well-established technique in the analysis of rare events (Borgan et al., 1995; Keogh&Cox, 2014).
Hyperevents could indeed be considered as rare events since a randomly selected subset of actors is
very unlikely to experience even one common event. However, case-control sampling, in which we
uniformly sample from the risk set, revealed some limitations, mostly due to the fact that some
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higher-order covariates are very sparse in the risk set. In turn, most sampled non-events did not
provide any information on those covariates which increased the necessary sample size. A more
efficient sampling scheme could be stratified sampling, where, for instance, one could include as
strata non-events that are non-zero in some subset repetition covariates. Another possibility would
be Markov-chain Monte Carlo (MCMC) methods which do not sample uniformly from the
(stratified or unstratified) risk set but sample proportionally to the conditional event probability
of subsets. The additional cost of MCMC methods, however, is that sampling is no longer inde-
pendent of model parameters.
We point out that, even if we do not include subset repetition covariates of order five or higher,

our models do not preclude hyperevents of that size. The reason for this is that subset repetition
covariates are nested within each other: whenever a past event implies a non-zero value in subset
repetition of order p, then it necessarily implies non-zero values in subset repetition of lower order
p′ < p; compare the examples given in Section 2.4.2.
Besides improved parameter estimation techniques for RHEM,we consider the further develop-

ment of other RHEM covariates as a promising direction for future work. As we have discussed,
the collection of hyperedge covariates proposed in this paper is far from exhausting the

Table A1. Summary statistics (quantiles at probabilities 0.0, 0.025, 0.5, 0.975, 1.0) of RHEM parameters over 100
samples

0% 2.5% 50% 97.5% 100%

rec_avg_female 0.183 0.196 0.212 0.230 0.236

rec_avg_senior 0.322 0.327 0.339 0.354 0.358

rec_avg_legal 0.105 0.111 0.131 0.153 0.165

rec_avg_trading −0.124 −0.122 −0.108 −0.092 −0.089

send_rec_diff_female −0.203 −0.200 −0.185 −0.172 −0.166

send_rec_diff_senior −0.440 −0.433 −0.420 −0.409 −0.407

send_rec_diff_dept −0.753 −0.751 −0.737 −0.724 −0.717

rec_set_diff_female −0.286 −0.259 −0.203 −0.133 −0.091

rec_set_diff_senior −0.754 −0.743 −0.687 −0.640 −0.613

rec_set_diff_dept −1.072 −1.056 −0.987 −0.929 −0.903

exact_repetition −0.517 −0.490 −0.428 −0.377 −0.361

unoredered_repetition 0.962 0.970 1.019 1.076 1.087

rec_sub_rep_1 0.020 0.022 0.028 0.036 0.038

rec_sub_rep_2 0.321 0.374 0.468 0.564 0.580

rec_sub_rep_3 1.258 1.358 1.868 2.347 2.588

rec_sub_rep_4 3.047 3.270 4.943 7.006 8.248

send_rec_sub_rep_1 1.765 1.775 1.807 1.841 1.850

send_rec_sub_rep_2 4.078 4.502 5.173 6.083 6.269

send_rec_sub_rep_3 3.615 4.133 8.764 15.288 16.344

reciprocation 0.555 0.576 0.607 0.640 0.652

out_in_pop −0.002 0.001 0.010 0.018 0.019

interact_rec_1 2.365 2.401 2.599 2.798 2.866

interact_rec_2 4.325 5.322 7.851 10.518 10.962

interact_rec_3 3.922 10.185 22.745 33.437 36.689

in_balance 0.051 0.057 0.068 0.076 0.078

out_balance −0.125 −0.123 −0.111 −0.098 −0.093

transitive_closure 0.045 0.048 0.057 0.073 0.073

cyclic_closure −0.061 −0.057 −0.042 −0.025 −0.022
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possibilities. Developing further effects that are relevant for given application scenarios will fur-
ther increase the empirical extension and generality of RHEM.
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The empirical data analysed in this work are linked from https://github.com/juergenlerner/
eventnet/wiki/Directed-RHEM-for-multicast-interaction-(tutorial), along with pointers to the
used software, scripts, and a step-by-step tutorial.

Appendix. Variation across samples

We repeated parameter estimation on 100 different samples of non-events associated with each
observed event. In Table A1, we report summary statistics of RHEM parameters over these 100
samples and in Table A2 we report summaries of parameters of the dyadic REM. We can observe
that the distributions of parameters capturing (sender-specific) subset repetition and interaction
among receivers have a dispersion that is increasing with the order of these covariates. This can
be explained by the fact that these covariates are increasingly sparse among the non-events, that
is, most randomly sampled non-events assume the value zero on these higher-order statistics. As
indicated in the conclusion, this sparsity implies the need for a large sample size when parameters
are estimated via case-control sampling—but could possibly be reduced by other parameter esti-
mation techniques (for instance, via stratified sampling or MCMC methods). However, even the
distributions of these parameters consistently do not cross zero. Parameter distributions of most
other effects show less relative variability.

Table A2. Summary statistics (quantiles at probabilities 0.0, 0.025, 0.5, 0.975, 1.0) of dyadic REM parameters over
100 samples

0% 2.5% 50% 97.5% 100%

rec_avg_female 0.224 0.237 0.254 0.275 0.280

rec_avg_senior 0.448 0.457 0.468 0.485 0.489

rec_avg_legal 0.119 0.129 0.151 0.174 0.182

rec_avg_trading −0.240 −0.237 −0.221 −0.202 −0.197

send_rec_diff_female −0.252 −0.251 −0.234 −0.220 −0.215

send_rec_diff_senior −0.512 −0.504 −0.491 −0.479 −0.476

send_rec_diff_dept −0.909 −0.905 −0.892 −0.878 −0.867

rec_sub_rep_1 0.036 0.037 0.044 0.052 0.054

send_rec_sub_rep_1 2.505 2.508 2.530 2.547 2.555

reciprocation 0.976 0.985 1.007 1.034 1.042

out_in_pop 0.008 0.011 0.018 0.026 0.028

in_balance 0.081 0.088 0.098 0.105 0.110

out_balance −0.059 −0.059 −0.048 −0.037 −0.032

transitive_closure 0.102 0.105 0.116 0.127 0.134

cyclic_closure −0.126 −0.122 −0.107 −0.094 −0.086
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