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Zusammenfassung

Die Fluoreszenzfluktuationsspektroskopie (FFS) ist ein wichtiges Werkzeug fiir die Anal-
yse biologischer Systeme auf Einzelmolekiilebene. Uber die Jahre wurden verschiedene
Methoden entwickelt, die auf dem Prinzip der FFS beruhen. Sie lassen sich grob in zwei
Kategorien einteilen. Methoden der ersten Kategorie untersuchen Fluktuationen in der
Zeitdoméne und umfassen u.a. die bekannte Fluoreszenzkorrelationsspektroskopie (FCS)
und ihre Varianten. Methoden der zweiten Kategorie analysieren Fluktuationen in der
Amplitudendoméne, wozu z.B. das photon counting histogram (PCH) gehort. In dieser
Arbeit wird eine neue Methode entwickelt, die Informationen aus beiden Doménen vereint,
die mean single-molecule rate (mSMR). Sie basiert auf Mandels Q-Parameter, der aus den
ersten beiden Kumulanten einer Fluoreszenzspur berechnet wird. Die Kumulanten kon-
nen fiir beliebige Aggregationszeiten einer Fluoreszenzspur ausgedriickt werden, wodurch
sich der Q-Parameter als zeitabhéngige Grofe ergibt. Durch eine Normierung zeigen
die Q-Parameter fiir verschiedene Aggregationszeiten eine groke Ahnlichkeit mit den Au-
tokorrelationskurven der FCS-Analyse, was eine vergleichbare Interpretation der Daten
ermoglicht. Durch die Definition der mSMR iiber Kumulanten, kénnen aber auftretende
Detektorartefakte korrigiert werden, was eine bessere Modellanpassung fiir die betroffe-
nen Zeitskalen ermoglicht.

Um die mSMR als neue Methode fiir die FFS-Analyse zu etablieren, wird sie in dieser Ar-
beit systematisch untersucht. Zunéchst werden simulierte Fluoreszenzspuren analysiert.
Es zeigt sich, dass die mSMR die Simulationsparameter auch bei Vorliegen von Rauschen
und Detektorartefakten exakt reproduzieren kann. Fiir die anschliefende Analyse von
Fluoreszenzspuren des Farbstoffs Alexa Fluor 488 kommt ein selbstgebauter konfokaler
Plate Reader zum Einsatz. Dieser fiihrt automatisch FFS-Messungen in einer 384-
Well Mikrotiterplatte durch und erlaubt dadurch schnelle und wiederholbare Messun-
gen. Bei der Analyse der Fluktuationen liefern die mSMR und die etablierte FCS ver-
gleichbare Ergebnisse. Auf kurzen Zeitskalen erbringt die mSMR aber bei Messungen
mit wenigen Photonenereignissen plausiblere Ergebnisse. Zum Schluss wird die mSMR
fiir die Analyse von DNA-Mischungen mit definierter Fragmentlingenzusammensetzung
verwendet und Kalibrierkurven erhoben. Basierend auf diesen Ergebnissen werden DNA-
Sequenzierbibliotheken charakterisiert und die Massenkonzentration, die mittlere Frag-
mentldnge sowie die Molaritat der Proben bestimmt. Dabei liefert die mSMR vergleich-
bare Ergebnisse wie das iibliche mehrstufige Verfahren aus Fluoreszenzspektroskopie und
Kapillargelelektrophorese.

Die vorliegende Arbeit zeigt, dass die mSMR eine sinnvolle Erweiterung der bisherigen
FFS-Methoden darstellt. Insbesondere fiir Messungen mit wenigen Photonenereignissen
stellt die mSMR eine robuste und zuverldssige Methode dar. Durch die Korrektur von
Detektorartefakte kann die mSMR auch Fluktuationsereignisse auf sehr kurzen Zeitskalen
auflosen und so genauere Analysen von photokinetischen Effekten ermdglichen.
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Abstract

Fluorescence fluctuation spectroscopy (FFS) is an important tool for the analysis of bi-
ological systems at the single-molecule level. FFS methods can be roughly divided into
two categories. Methods of the first category examine fluctuations in the time domain
and include the well-known fluorescence correlation spectroscopy (FCS) and its variations.
Methods of the other category analyze fluctuations in the amplitude domain and include
the photon counting histogram and related methods. In this thesis, the mean single-
molecule rate (mSMR) is introduced as a new method, which uses information from both
the time and amplitude domain. The mSMR is based on Mandel’s () parameter, which
can be calculated from the first two cumulants of a fluorescence trace. The cumulants
can be expressed for arbitrary sampling times of a fluorescence trace, which yields the Q
parameter as a sampling time-dependent quantity. By normalizing the Q parameter to
its corresponding sampling time, data curves are obtained which show great similarities
to the autocorrelation curves in FCS analysis and enable a comparable interpretation of
the data. The model definition based on cumulants allows direct correction of common
detector artefacts such as afterpulsing or dead time.

For evaluation, the mSMR is subjected to a series of systematic analyses. Firstly, it was
applied to simulated fluorescence traces since the simulation enables precisely adjustable
parameters. It was shown that the mSMR model accurately reproduces the input param-
eters of the simulation both in the absence and presence of noise and detector artefacts.
Secondly, the mSMR was used to analyze fluorescence traces of the dye Alexa Fluor 488
recorded with a home-built confocal plate reader. Our reader automatically conducts
FFS measurements in a microtiter plate, thus enabling easy and repeatable measure-
ments with low hands-on time. A visual and statistical comparison between the mSMR
and the established FCS showed that the mSMR provides generally comparable results to
the FCS method. At low excitation powers and low concentrations, however, the mSMR
provides more plausible results on short time scales. This is of particular importance
for the analysis of photokinetic effects. Thirdly, to show the relevance of the mSMR for
biological systems, measurements were performed on DNA mixtures of defined fragment
length composition. Here, too, the mSMR retrieved precise results that are in line with
theoretical expectations. Based on these findings, libraries for DNA sequencing were char-
acterized and mass concentration, mean fragment length and molarity of the libraries were
determined. In just one measurement, the mSMR could provide the same results as a
commonly used multistep procedure consisting of fluorescence spectroscopy and capillary
gel electrophoresis.

The mSMR represents a meaningful extension of previous FFS methods. The findings
of this work suggest that especially for measurements with few photon events, e.g., at
low excitation powers and concentrations, the mSMR is a robust and reliable method.
In combination with the correction of detector artefacts, the mSMR can resolve fluctua-
tion events on very short time scales and permits high-precision analyses of fluorescence
fluctuations. This provides new insights into the analysis of photokinetic effects.
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Data access

The data collected for this thesis are provided on the Fraunhofer publication server
Fordatis (https://fordatis.fraunhofer.de/)) under a Creative Commons license (CC
BY 4.0). In addition to the measurement data, the Python scripts for data analysis and
visualization as well as the compiled code of the Monte Carlo simulation engine are also
stored there.

Access is via the following digital object identifier:
http://dx.doi.org/10.24406/fordatis/187
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1 Introduction 1

1 Introduction

Studying molecules at the single-molecule level is essential for understanding biological
systems and emanates a great fascination. Natural systems are generally heterogeneous.
However, since conventional evaluation methods do not work at the single-molecule level,
ensemble averaging occurs. Hidden heterogeneities can thus not be detected. The hetero-
geneity can be spatial resulting from the interaction of the molecule with its environment.
Or it can be temporal originating from internal states and the transitions among them [T,
p. 8077]. Single-molecule detection (SMD) allows the elucidation of these processes and
leads to a deeper insight into natural systems.

Because of its high sensitivity and excellent signal-to-noise ratio, fluorescence is a good
candidate for single-molecule detection [2, p. 757]. Although single-molecule detection
in condensed matter has been demonstrated with other systems such as in helium-cooled
solids [3] or using trapped atoms [4} 5], these methods have no relevance for the analysis of
biological systems [2, p. 757| and are therefore not discussed here. The beginning of single-
molecule detection in solution was marked by the work of Rotman in 1961. He indirectly
detected single-molecule events by measuring the fluorescent reaction product of single
enzymes in tiny droplets [6]. Over a decade later, Hirschfeld succeeded in detecting single
molecules of labeled poly(ethyleneimine) bound to 7-globulin. The poly(ethyleneimine)
was labeled with 80-100 fluorescein molecules |7, [§]. The possibility to measure not only
large aggregates but single molecules in solution came within reach in the early 1980s
[9, 10] and was achieved in 1990 by detecting single rhodamine 6G molecules in a flow
[11].

Today, there is a variety of fluorescence-based methods for single-molecule detection,
which aim to reveal spatial structures and temporal dynamics of biological systems. How-
ever, the acquisition of structures and dynamics requires opposing, often mutually exclu-
sive optimization strategies [12, p. 2|. Super-resolution microscopy belongs to the first
group and seeks spatial structure information beyond the diffraction limit. In classical
light microscopy, the diffraction limit prevents the resolution of two points closer than
about 200nm to each other. The so-called Abbe’s diffraction limit, i.e., the ability to
separate two neighboring points, is given by the wavelength A of the incident light and
the numerical aperture VA of the used objective lens:

A

’=sy5a

(1.1)
Selected methods for bypassing the diffraction limit are briefly outlined below. For their
principal ideas and experiments to achieve super-resolution microscopy, the Nobel Prize
was awarded in 2014 to Betzig, Hell and Moerner [13]. In stimulated emission deple-
tion (STED), a laser beam is focused into the specimen for excitation. With a short
delay, a second ring-shaped excitation pulse suppresses fluorescence in the outer regions
of the focus so that spontaneous fluorescence light is emitted only from a central re-
gion smaller than the diffraction-limited excitation focus. Two- or three-dimensional im-
ages are generated by applying this process stepwise to cover the whole sample |14} [15].
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Other methods to enable spatial resolutions below the diffraction limit use stochastic ap-
proaches. The methods are based on the temporal separation of the emitted photons from
the excited fluorophores by repeatedly stochastically switching the fluorophores between
an activated and deactivated state during image acquisition. The stochastic blinking of
non-overlapping point spread functions (PSF) formed by the diffraction limit allows the
localization of individual fluorophores via a Gaussian fitting of the PSF. By repeating
this process thousands of times, the fluorophore localizations can be deduced from the
acquired frames and a high-resolution image is obtained [16], p. 4]. Methods using this ap-
proach are among others photoactivated localization microscopy (PALM) [17, 18], ground
state depletion (GSD) [19], stochastic optical reconstruction microscopy (STORM) [20],
direct STORM (dSTORM) [21], MINFLUX [22] or DNA-based point accumulation for
imaging in nanoscale topography (DNA-PAINT) [23].

In contrast to the previous imaging techniques, methods based on the principle of fluo-
rescence fluctuation spectroscopy (FFS) (see section have proven useful for resolving
temporal dynamics and photokinetic properties. The general strategy for FF'S is to focus
a laser on a tiny volume, select appropriate filters to block scattered light, and work with
highly diluted fluorophores. Because stochastic concentration fluctuations occur in such
a setup due to fluorescence molecules entering and leaving the tiny detection volume,
there are also fluctuations in the detected fluorescence intensity, hence the name FFS.
The fluctuation-based methods can be divided into two categories [24, p. 1883]. The first
category includes methods that analyze fluctuations in the time domain and includes the
widespread fluorescence correlation spectroscopy (FCS) (see section first described
by Magde, Elson and Webb [25, 26]. By introducing confocal optics (see section [2.2.2)),
the the signal-to-noise ratio has been substantially enhanced, pushing the detection limit
to the single-molecule level [27, 28]. Important variants of the FCS are, among oth-
ers, higher order FCS (HOFCS) [29, 30], 31], fluorescence cross-correlation spectroscopy
(FCCS) [32], 33] or fluorescence lifetime spectroscopy (FLCS) [34], 85]. In the second cat-
egory are methods that analyze fluctuations in the amplitude domain. These comprise,
besides others, the photon-counting histogram (PCH) [36], the fluorescence-intensity dis-
tribution analysis (FIDA) [37] or the fluorescence cumulant analysis (FCA) [38]. The
extension of the latter two methods to arbitrary sampling times has yielded the fluores-
cence intensity multi distribution analysis (FIMDA) [39] and time integrated fluorescence
cumulant analysis (TIFCA) [40]. All these methods except FCCS can be deployed using a
single excitation source and a single detection channel. The recently published correlated
photon-counting histogram (cPCH) tries to generalize the FFS methods in one unified
theory [4I]. It can be shown that some of the previously described methods such as FCS,
PCH, FCA, FIMDA and TIFCA can be derived from the ¢cPCH theory [4I, p. 9-11].
However, the cPCH itself requires two excitation sources and two detection channels.

In this thesis, an extension of the fluorescence cumulant analysis is presented that con-
siders information from both the time and amplitude domain. We call this model the
mean single-molecule rate (mSMR) [24]. The central quantity of the model is Mandel’s
() parameter, which can be represented by the first two cumulants of a distribution. As
shown by the work on FIMDA and TIFCA, the cumulants of a fluorescence trace can
be defined for arbitrary sampling times [39, 38, [40], which allows the Q parameter to
be expressed as a sampling time-dependent quantity. By normalizing the QQ parameter
to the sampling time, we obtain an expression that permits a comparable evaluation to
the established FCS [24, p. 1883]. The mSMR can be extended with additional terms
to describe photokinetic effects. Furthermore, the representation via cumulants allows a
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direct correction of detector artefacts on the level of the cumulants |24, p. 1885-1886].
Since the mSMR works with a single excitation source in continuous wave mode and a
single detection channel, it can be implemented in standard confocal setups.

1.1 Subject of the thesis

The overall aim of this work is to make fluorescence fluctuation experiments available to
a broader scientific community. To achieve this, two objectives will be addressed. First, a
home-built confocal plate reader is introduced (see section and used to automatically
record fluorescence fluctuation data. Thus, the reliability and single-molecule sensitivity of
the system will be evaluated. Second, a new method to analyze of fluorescence fluctuation
traces will be presented, the mean single-molecule rate (mSMR). It is subjected to a
detailed review in a three-step process.

e The analysis of the mSMR by means of simulated fluorescence traces (see chapter

).

e The comparison of the mSMR to the established FCS using a well-described dye
system (see chapter [5)).

e Measurements in a more complex biological system and analysis of the fluorescence
traces using the mSMR (see chapter [6)).

These systematic analyses should demonstrate the suitability of the methods, both on the
instrument side and on the analysis side, thus establishing the mean single-molecule rate
as an alternative framework for evaluating fluorescence fluctuations at the single-molecule
level.



4 2 Theory

2 Theory

After a brief introduction to single-molecule detection and the work’s objectives, the the-
ory chapter provides the necessary background knowledge for a deeper understanding of
the topic. It starts with a brief introduction to fluorescence, also noting quantum me-
chanical phenomena that lead to saturation effects and dye blinking. Then, the principles
of fluorescence fluctuation spectroscopy (FFS) are presented, including both diffusion as
the cause of the fluctuations and the confocal optics required for detection. This provides
the basis to understand the theory behind fluorescence correlation spectroscopy (FCS)
and its common extensions to describe the photokinetic effects of triplet state transitions
and isomerization. Subsequently, the mean single-molecule rate (mSMR) model is intro-
duced, which forms the core of this thesis. The mSMR bases on the first two sampling
time-dependent cumulants of a distribution and is extended to the photokinetic effects
of triplet state transition and isomerization. The chapter finishes with a brief review of
typical noise sources in FFS experiments.

2.1 Fluorescence

Fluorescence is the spontaneous emission of light by a molecule after it has absorbed
energy in form of light. Fluorescence can be explained using a Jabloriski diagram (see
figure . An incident photon is absorbed by a fluorophore. The energy of the photon

E 1~ SZ “) A
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Figure 2.1: Simplified Jablonski diagram showing fluorescence and phosphorescence of a fluorophore.
Reproduced and modified from [2], p. 5].

depends on its frequency v or respectively its wavelength A and is given by

he
E =vh=— 2.1
v )\ ? ( )
with 71 as Planck constant (6.626 x 1073*Js) and c¢ as speed of light (2.998 x 108 ms™').
Due to the absorbed energy, an electron is lifted from the ground singlet state Sy to an en-

ergetically higher state S, and less frequently to even higher states such as Sy. Normally,
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a vibrational relaxation (VR) from higher vibration levels to the ground vibration levels
(n = 0) takes place directly after excitation, then the electron returns from the ground
vibration level n = 0 of the higher state back to the ground state S, while radiating the
excess energy as a photon (Kasha rule). Due to heat dissipation, the emitted fluorescence
photon has a lower energy than the previously absorbed photon. This is reflected by a
redshift of the fluorescence spectrum, denoted as Stokes shift. Figure shows a typical
absorption-emission spectrum of a fluorescent dye (here Alexa Fluor 488). The shift of the
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Figure 2.2: Normalized absorption and emission spectra of an Alexa Fluor 488 measurement in water.
The excitation maximum is at 495 nm and the emission maximum at 519 nm.

emission spectrum towards longer wavelengths is clearly visible (Stokes-Shift). Another
typical property of fluorescence spectra is the reflection of the two spectra along an imag-
inary line (mirror image rule), which results from the Franck-Condon principle stating
that vibronic transitions are more likely to happen with strongly overlapping vibrational
wave functions. The fluorescence lifetime 74 of a fluorophore is usually in the range of a
few nanoseconds and depends on both its properties and the environment. An important
measure for the fluorescence capability of a fluorophore is the fluorescence quantum yield
fq. It is defined by the ratio of excited molecules Ny emitting fluorescence photons to the
total number of excited molecules Neye.

Ny

o= N

(2.2)

In addition to fluorescence, a spin reversal can occur which transfers the electron into an
overlapping triplet state (intersystem crossing). The triplet state is meta-stable. A return
to the Sy state can only occur via a quantum mechanically “forbidden” spin reversal. This
process is also accompanied by the emission of a photon (phosphorescence). A typical
lifetime of the triplet state 7,y is usually in the range of several milliseconds. Since an
excited fluorophore in the long-lived triplet state cannot undergo further fluorescence
cycles, continuous excitation repeatedly leads to phases in which no fluorescence can
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occur. This behavior is known as fluorescence blinking.
Apart from the photon emitting pathways of fluorescence and phosphorescence, transitions
can also occur without emitting a photon. The reversible case is called internal conversion
(IC), where during the transition to the ground state the energy release occurs as heat.
Because of the large energy difference between S; and Sy, this transition is unlikely. In the
irreversible case of photobleaching, the fluorophore is destroyed after excitation, thereby
losing its ability to emit photons [42], p. 2588]. Photobleaching is a dye-specific property
and is characterized by the average number of excitation-emission cycles a fluorophor
passes through until it is bleached [43, p. 830-831|, which is referred to as quantum
efficiency of photobleaching [43] p. 831]:

by = number of bleached molecules‘ (2.3)

number of absorbed photons

The probability of photobleaching is directly dependent on the duration of irradiation,
since an increasing number of excitation cycles also raises the fluorophore’s chance to
bleach [44, p. 91|[45, p. 2651]. Photobleaching occurs either in the excited singlet or
triplet state. Since the triplet state has a much longer lifetime (75 < 7,1 ), it is considered
the main cause of photobleaching [43], p. 831]. The kinetics of photobleaching for freely
diffusing fluorophores in solution follow an exponential decay [42], p. 2588|. The extent
of photobleaching depends on different conditions, such as the excitation power, the
photochemical properties of the fluorophore [45, p. 2656] or the oxygen content in the
solvent [42] p. 2594-2595]. Oxygen seems to play an ambivalent role in photobleaching.
Since oxygen is a strong triplet state quencher, it should minimize triplet state-associated
photobleaching. Conversely, reactive singlet oxygen also appears to be a principal
reactant in dye depletion [43] p. 831].

A three-level system describes the fluorescence process more precisely. As in the
description of fluorescence on the Jabtoiiski diagram, the individual photokinetic pro-
cesses occur on very different time scales. If the decay processes occur much faster than
the fluorescence process, the process can be significantly simplified. With the occupation
numbers Ny, Ny and N, of the energy states Sy, S7 and T}, we can formulate a differential
equation system [46], p. 5-7|:

q No(t) —Kexc ka Eph No(t)
a Nl (t) — kexc —(kﬁ + kisc) 0 N1 (t) . (24)
No(t) 0 Kise —kpn) \Na(t)
The stationary solution of the above system is:
N(] kﬂ + kisc
N

N1 - kexc o . (25)
N2 kexc% kﬂ + kisc + kexc(l + ﬁ)

N;/N is the fractional population of level j and N is given by N = )" N;. In single
photon excitation with a continuous laser, a linear approximation for the excitation rate
holds for small excitation intensities [43, p. 830

koxe = O Loxe. (2.6)

with o, being the absorption cross-section (cm?) and I being the intensity of the excita-
tion light (photons/cm?s). Instead of the absorption cross-section, the molar attenuation
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coefficient € also known as molar extinction coefficient is often given in literature. The
molar attenuation coefficient indicates how strongly a chemical substance attenuates at a
given wavelength. It is usually given in the unit mol 'cm~!. The attenuation coefficient
and the absorption cross-section are related via the Avogadro constant N as follows [2]
p. 59:

In (10) 10% €

~ 3.8235 x 102! ¢. 2.7
N. X € (2.7)

Oy =

If considering the mean fluorescence rate of a single molecule to be proportional to the
fluorescence rate kg and the fraction of excited population Ny /N from equation the
fluorescence rate is given by the following expression [46, p. 7

o C’kﬂ Iexc/Is
14 Q1A L/

(2.8)

The parameter C' combines all properties of the detection system such as concentration of
the dye solution and transmission losses through the measurement optics or the detector.
The parameter (@ is given by

Q=R™ (2.9)

il

with R = kis./(ka + kisc) as the triplet crossing yield. The fluorescence lifetime is 7 =
(ka + kise + ki)™t ~ kg' [A7, p. 29], and the phosphorescence lifetime is ), = k:;hl The
saturation intensity is given by [46, p. 7]

I, = by (M) _ (2.10)

oa \ 1+ 3

If a molecule is excited with the saturation intensity, the absorption rate is exactly equal
to the rate at which the molecule returns to the ground state [47, p. 32]. Fluorescence
saturation is caused by an increasing number of fluorophores in the excited state, depleting
molecules in the ground state Sy;. While it is nearly impossible to achieve pure singlet
saturation in experiments due to the very short lifetime of the excited S; state, the
longevity of the triplet state T} means that a significant saturation effect can be observed
even at low excitation powers. Figure [2.3] shows fluorescence rates of two commonly
used fluorescent dyes Alexa Fluor 488 and Fluorescein as obtained from equation for
parameters from the literature .

Table 2.1: Photokinetic parameters of Fluorescein (FITC) and Alexa Fluor 488.

Parameter Fluorescein Alexa Fluor 488
Quantum yield ¢ 0.95 [2 p. 54] 0.92 [48, p. 39|
Molar attenuation coefficient € [mol *em™!] | 77000 [48, p. 68-+72| | 73000 [48, p. 38-39)
Cross-section o, [cm?| (using equation 2.94 x 10716 2.79 x 10716
Fluorescence lifetime 74 [ns] 3.8 [48, p. 68+72] 4.1 [48, p. 38-39]
Phosphorescence rate kpp, [ps™] 0.45 |49, p. 615] 0.25 |50}, p. 66-67|
Intersystem crossing rate ki [ps™'| 5.0 [49, p. 615] 0.234 [50, p. 66-67]
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Figure 2.3: Fluorescence rates of Alexa Fluor 488 and Fluorescein for increasing excitation intensities.
Equation [2.8]is modeled with the parameters from table for an excitation wavelength of 488 nm. The
bulk parameter C' is set to C' = 0.01. A Fluorescence rates are modelled up to an excitation intensity of
40000 photons cm ™ 2s~ 1. B A close-up view of the linear functional range at excitation intensities up to
4000 photons cm ™ %s ™.

In subplot A, the theoretical curve of the Alexa Fluor 488 dye lies considerably above the
theoretical curve of the Fluorescein dye (FITC). Both dyes have almost the same fluores-
cence properties, but the Fluorescein dye shows a distinct triplet state, which causes the
observed differences. At very low excitation rates, the difference between the dyes disap-
pears and the graphs show the shape of a straight line (see subplot B). In experiments,
the aim is therefore to find a compromise between negligible fluorescence saturation and
the best signal-to-noise ratio [50, p. 13-14].

2.2 Fluorescence fluctuation spectroscopy

Fluorescence fluctuation spectroscopy (FFS) is an important technique for studying
biomolecules in solution [24, p. 1883|. The basic principle is that fluorescent or fluo-
rescently labeled molecules are excited by a laser. The laser is focused on a tiny volume.
Molecules that travel through this volume are excited and emit photons. Due to the
stochastic nature of the diffusive motion of the particles, fluorescence fluctuations occur
in the signal. A fraction of the emitted photons is captured by a sensitive detector unit.
A selection of FFS methods is briefly presented in the introduction [I}

First, the basic characterization of FFS setups is given, starting with a description of con-
centration fluctuations in small volumes and confocal optics, needed for the realization
of FFS experiments. Then, non-ideal conditions are discussed and how they affect the
models. In a further step, the diffusive transport of matter is described as a stochastic
process introducing the concept of a random walk to model this phenomenon. Also, the
special case of diffusing polymers such as nucleic acids is considered. Finally, two methods
to analyze fluctuations are presented, the fluorescence correlation spectroscopy (FCS) and
our newly developed mean single-molecule rate (mSMR).
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2.2.1 Concentration fluctuations in tiny volumes

The basic principle of fluorescence fluctuation spectroscopy is the occurrence of concen-
tration fluctuations in tiny observation volumes (~pm?). Generally, the concentration C
of a substance in a volume is given by the total number of particles Niya per total volume

‘/total'
(2.11)

In practice, the concentration is determined by averaging the measured particles in a
volume. This approximation applies to systems that are in equilibrium and contain a
sufficiently large number of molecules in the observation volume. In very small observa-
tion volumes, these requirements are no longer met and spatial, statistical fluctuations
in the number of particles occur. Figure illustrates this observation. The black dots
are randomly distributed over a surface. If this area is now gradually divided into small
subfields, differences in the number of dots in the individual subfields become more and
more apparent.

Figure 2.4: Visualization of concentration fluctuations in femtoliter volumes. While the number of
particles is relatively uniformly distributed in a large volume, significant fluctuations are evident in
smaller sub volumes. Reproduced from [51] p. 5.

The number of particles /V in a sub volume V follows a Poisson distribution with up = N,
which corresponds to the mean number of particles [52], p. 44|[36, p. 557].

P(nlp=N)=—e¢ (2.12)

An essential characteristic of Poisson distributions is that the expected value corresponds
to the variance: N = Var(N). Therefore, the relative fluctuation of the particles in a
volume is given by the following relationship [53, p. 10]:

AN  /Var(N) 1
R ey (2.13)

It becomes clear that the relative fluctuations decrease for increasing particle numbers. For
fluorescence fluctuation experiments, therefore, optical setups are required that guarantee
sufficiently small observation volumes to be able to observe sufficiently large fluctuations.
Confocal optics meet the requirements for this type of measurement.
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2.2.2 Confocal optics

The methods of fluorescence fluctuation spectroscopy require optical setups that can de-
tect single photon events. This is achieved by co-localizing the excitation and observation
volume of a focused laser spot and thus minimizing the detection volume [51], p. 16]. Due
to diffusion, fluorophores are entering and leaving the focus. Excited by the laser light,
they start to emit photons that are shifted towards longer wavelengths due to the Stokes
shift. A dichroic mirror separates the excitation light of the laser from the emitted light of
the molecules. Essential for confocal optics is a pinhole which cuts off fluorescence events
from all planes except the focal plane and thus reduces background noise. A highly sensi-
tive photodiode collects the incoming photon events. Figure[2.5{shows the schematic setup

A Detector B
SN2 Pin hole Lens
7N
Tube lens +————
Cover slip ' _

‘ ‘ ‘P Detection-
ch'hrom Laser volume
Mirror oO— 0 — e o — o

‘3 Fluorophore
Beam

Lens «————

N\
Object level

Figure 2.5: Schematic of the fluorescence fluctuation measurement principle. A A laser emits light
(blue) that falls on a dichroic mirror. The mirror directs the light through an objective onto the sample.
Fluorophores excited in the sample begin to emit photons (red). Due to the Stokes shift, the emitted light
can now pass through the dichroic mirror. A tube lens focusses the light onto a pinhole which improves
the signal-to-noise ratio by cutting off photon events from other planes. A detector counts the incident
photons. B A diffusing fluorophore enters the detection volume and is excited to fluorescence. The mean
residence time in the volume is correlated with the diffusion coefficient of the fluorophore. Reproduced
from [54, p. 4].

generally used for FFS experiments. Focussing the laser on a tiny volume, fluorescence
fluctuations occur, which are caused by concentration fluctuations. These fluctuations are
subject to FFS analysis. Since confocal optics are required to measure these fluctuations,
they will henceforth be presented.

The intensity profile of a laser near the focal point can be described by a Gauss profile in
radial direction and a Lorentz profile in the z-direction [28] p. 169].

I(z,y,2) = mi;z) exp (—2%) , (2.14)

where z, y, and z represent the three spatial directions. The waist width of the beam is
wy in the focal plane and defocuses in z-direction with

w(z) = \/w§+z2 (ni‘;o)Z (2.15)
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Figure 2.6: Excitation profile of a laser in a confocal setup. The profile is modelled via equation
with P = 10mW, A\g = 488nm, n = 1 and wo = 0.5 pm.

Figure [2.6] shows the intensity profile of equation 2.14] According to equation [2.6] the
excitation of a fluorophore is proportional to the local intensity for intensities far below
the saturation intensity. Thus, equation sufficiently describes the local excitation
of a fluorophore. For the model of a Gaussian-Lorentz profile to be considered valid,
the waist width wg of the laser needs to be significantly smaller than the radius of the
input aperture of the microscope objective used. In addition, the objective lens and the
refractive index n of the sample solvent must be compatible [55], p.11-15].

The point spread function (PSF) describes the detectability of a point source. The PSF
defines the probability with which a light quantum from a point source of the sample
reaches the detector. We start the consideration with the semi-geometrical approximation
of a luminous point in (z’,y’, z), which is defined in the focal plane (z = 0) as a small
disk with a size corresponding to the resolution Ry of the optical setup. Outside the focal
plane, the disc enlarges according to a Lorentz function.

R(z) = \/R(Q) + 22 tan?() (2.16)

The PSF can now be approximated as follows [28] p. 170].

PSF(r',r,2) = ———% =

G (2.17)

: |r'—r| V@ T2+ (g 4)?
circ ( 6] ) { #(Z) for V. +I;($(y +y) <1
0 otherwise

The disk area function circ(r) is a step function which has the value 1 for radii |r| < 1
and otherwise the value 0.

The influence of the pinhole on the image plane of the microscope can be described by
the collection efficiency function CEF(x',z). The CEF indicates the proportion of light
from a point source that passes through the pinhole [56] p. 1319-1321|. The transmission
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function of the pinhole is represented by the disk function [28, p. 170]

/ 1 for Bl <1
T(r') = circ (r_) = { oo = (2.18)

So 0 otherwise,

with sp as the radius of the pinhole. With these concepts, the CEF can be defined as
follows [57, p. 1187

1
CEF(r,z) := K/T(r’) PSF(r',r, z) d*. (2.19)

The term A = [T(r')PSF(r/,r = 0,z = 0) d* normalizes the expression. The molecule
detection efficiency (MDE) is defined as the CEF multiplied by the excitation intensity
Iexe [28, p. 171]:

MDE(z,y, z) = CEF(x,y, 2) I(x,y, 2). (2.20)

In FFS experiments, a three-dimensional Gaussian ellipsoid is usually assumed for ap-
proximating the MDE [28] p. 172-174][58, p. 2300].

_ 2(902+92) _ 222

MDE(z,y, 2) = W(r) = Wye 7 e = (2.21)

The scalar factor Wy includes the excitation intensity of the laser, the transmission loss
through the optical setup and the efficiency of the photodetector. This approximation is
justified for an appropriate choice of optical components. Normalizing equation gives

- 7&?2) _ 232

Wr)=e o e . (2.22)

Figure shows a Gaussian ellipsoid according to equation The MDE corresponds
to the observation volume in fluorescence fluctuation experiments. Particles that diffuse
through the laser profile are excited to fluoresce. According to the MDE, the emitted
photons are detected with a certain probability by the detector of the measuring appara-
tus.

2.2.3 Non-gaussian observation volume

For fluorescence fluctuation measurements, a Gauss profile is usually assumed for the
observation volume. However, it has been shown that this assumption is not tenable for
many confocal microscope systems. A non-Gaussian observation volume leads to diffi-
culties in fitting the models to the data. This is usually shown by oscillations in the fit
residuals. It is often tried to improve the fit by extending the models by introducing
exponential terms or using two-component models for a one component system. These
adjustments usually significantly improve the fit of the data. However, they do not reflect
the physics. Hess and Webb [58] have investigated these effects thoroughly. They could
show that the non-Gaussian shape of the observation volume is mainly caused by the illu-
mination of the objective and detector apertures. An overfilling of the detector aperture
(realized by a pinhole or a glass fiber in confocal setups) leads to a strong deviation from
the Gauss profil. This leads to fringes in the observation volume which are far away from
the focus of the lens and contribute to the FFS analysis. Due to their spatial expansion,
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Figure 2.7: Normalized molecular detection efficiency (MDE). The MDE is approximated by a Gaussian
ellipsoid using equation with 7o = 0.5pum and zop = 1.5 um.

they occupy a large volume and lead to much larger axial ratios than expected, up to a
divergence of the ratio to infinity. An extension of the model by the above terms then
improves the fit significantly. It should be noted that if an optical fiber is used instead
of a pinhole, it usually has a larger effective diameter than specified. Therefore, optical
fibers as confocal apertures cannot guarantee a Gaussian observation volume [58, p. 2305-
2316]. A way out is provided by non-analytical models that do not rely on a Gauss profile.
However, the calculation of these models is much more complex, which is why they are
rarely used. When using 2-photon lasers, the assumption of a Gaussian profile is usually
justified [58], p. 2311].

2.2.4 Fluorescence saturation in FFS experiments

Besides optics, photophysical quantities also have an influence on FFS experiments. Es-
pecially fluorescence saturation, which has already been presented in section needs to
be mentioned here. In the case of fluorescence saturation, the approximation of the MDE
by a Gaussian ellipsoid (see section is no longer tenable and equation needs to
be adjusted. A model for the MDE that takes saturation effects into account is given by

[59, p. 3+5]:

) W(r)
L )

ey I exc

Wsat(r) = (1 + (223>

It should be noted that numerator and denominator are represented by the same distri-
bution. This is not physically exact, but as an approximation it is well suited to describe
the experimental findings [59, p. 4. Figure shows the change in shape of the Gauss
profile along the lateral axis for different intensity ratios Ij;‘c.

It becomes clear how for increasing Ie’fc ratios the Gauss profile becomes more and more
distorted and a clear plateau is formed which leads to systematic deviations in the anal-
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Figure 2.8: Influence of fluorescence saturation on the molecular detection efficiency. Representation of
a normalized Gaussian ellipoid along the lateral axis for different excitation to saturation intensity ratios

Iej:c, Reproduced from [59] p. 4].

ysis of FFS experiments. Thereby especially the observation volume is overestimated.
To minimize the influence of fluorescence saturation in FFS experiments, the excitation
intensity should not be set too high. A measurement series with increasing excitation
intensities can be used to determine up to which power the increase in fluorescence is
linear with the excitation intensity.

2.2.5 Modelling diffusion

After a closer look at confocal optics in FFS experiments, the diffusive processes that lead
to fluctuations in the studied fluorescence signal are now described.

Molecule diffusion

As mentioned earlier, fluorescence fluctuation spectroscopy exploits concentration fluctu-
ations in a tiny observation volume to gather information about fluorescent particles in
solution. These concentration fluctuations are caused by diffusive motions of the particles
because of Brownian molecular motion. These thermal fluctuations in fluids were initially
described by Brown in 1827 in his microscopic observations of floating pollen [60]. The
following introduction to diffusion can be read in detail here [61, p. 6-18437-39]. To
start with, the Einstein diffusion equation generally describes the microscopic transfer of
matter and heat [61, p. 38|.

8tp(r,t|r0,t0) = DV2p(r,t]ro,to) (224)

where p(r, t|rg, to) is a stochastic process that describes the probability of finding a particle
with diffusion coefficient D at location r at time ¢ given that it was at location ry at time
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to. Using the following initial and boundary conditions
p(r,t — tolro, to) = d(r — o), p(|r| = oo, t[ro, to) = 0, (2.25)

we can derive the so-called Wiener process [61, p. 38]. The process, described by r(t)
for t > 0, is characterized for d dimensions by the following probability distribution [61],
p. 39]:

2
p(r. t|ro, to) = (47 D At)~% exp (—%) (2.26)

The Wiener process is a Markov process, meaning its conditional probabilities depend only
on rg and t5. Equation [2.26]is also referred to as the Green’s function. The mean squared
displacement (MSD) is an experimentally accessible measure for the spatial extent of the
diffusive motion of a particle. For the MSD, the following relationship can be derived
from the above Finstein diffusion equation [61, p. 38|

((r(t) —r(ty))*) = 2N D At, for N dimensions. (2.27)

Now, the relationship between the theoretical modeling of diffusion as a Wiener process
and the description by a discrete random process will be presented in more detail. To
simulate diffusion as a discrete process, the model of a random walk can be used. A
random walk is realized as a stochastic sequence S,,, with Sq = 0, defined by [61], p. 14]

S, = ZX,, (2.28)
t=1

X, is an independently and identically distributed random variable. In free diffusion
(without drift) there is an equal probability in all spatial directions for the particle to
move, thus the random walk is symmetric. In figure 2.9 we see the distribution of 10000
random walkers in 1D along with the probability density functions for different At.

The particles started at the origin and moved randomly stepwise forward and backward
in discrete simulated time steps. The distributions shown are snapshots after different
elapsed time intervals At. They become broader over time. For a finite volume we get
a homogeneous distribution over the whole volume in the limit. For the limiting case of
infinitely short time steps, the discrete path in time and space of the random walk becomes
a continuous wave and can be described as a Wiener process. For the one-dimensional
case, according to equation [2.26] the Wiener process is given by the following expression
[61, p. 10]

(Aw)2> (2.29)

1
t th)) = ——— _
p(wh 1|w0, 0) D AL exp< 1D At

with Aw = (w; — wy).

As we see in figure 2.9] the probability density distribution of a one-dimensional Wiener
process perfectly describes the distribution from the discrete random walk at any elapsed
time At. An exemplary random walk in 3D as part of an FFS simulation can be seen in

section [3.1] in figure [3.1]
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Figure 2.9: Random walk of diffusing particles along an axis starting at the origin. The stepwise forward
and backward motion of 10000 particles along an axis is simulated (D = 1,e = 0.1). The distribution
density is calculated for different time intervals according to equation m Based on [61, p. 10] and
complemented by the computation of a random walk.

2.2.6 Diffusion of nucleic acids

In the present work, we will also address the diffusion of nucleic acids. The nucleic acids
DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) consist of a sugar backbone of
ribose, which are linked together by a phosphodiester bond. The bases adenine, thymine
(in RNA uracil), guanine and cytosine are the actual carriers of genetic information. They
are each located on a ribose phosphate monomer and together form a nucleotide. The
sequence of the nucleotides determines the genetic code. The bases of the nucleotides
form hydrogen bonds to other bases in an aqueous environment. Adenine and thymine
(in RNA uracil) as well as guanine and cytosine preferably form hydrogen bonds to each
other. Due to this interaction, complementary nucleic acids come together on their own
and form a double strand, which in the case of double stranded DNA (dsDNA) winds
into a double helix. In the body, the much more stable double strand is the predominant
form of DNA. An important property of nucleic acids is the negative charge due to the
phosphodiester bond and the phosphate group at the 5’ end of the molecule. Because of
the formation of a double helix, double-stranded DNA is much more rigid than single-
stranded nucleic acids.

To describe the diffusive dynamics of nucleic acids satisfactorily, we need to consider this
rigidity of the polymer, which is called the persistence length. The persistence length is
particularly important when considering short nucleic acid fragments, which behave like
rods below the persistence length. At very long fragment lengths, on the other hand, they
behave like a flexible chain.
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Rod shaped

In the first case, we consider a rod-shaped polymer whose diffusion coefficient can be
described by a cylinder with thickness d and length L for 2 < L/d < 30 [62], p. 2047-2048]

AkgT L d d?
D= ith A =1In— 312 H65— — 0.100—. 2.30
Sl wi nd+03 +0.5 5L 0 OOL2 ( )

kg is the Boltzmann constant, T is the absolute temperature and 7 is the viscosity of the
solvent. This approach does not consider internal dynamics of the rods.

Ideal chain

In case of an ideally flexible polymer the Zimm model can be employed [63]. It considers
the hydrodynamic interactions of the polymer segments with each other. The moving
segment in the solvent generates a flow field, which in turn affects other segments. The
diffusion constant of the center of gravity of the polymer is given by [64] p. 17-18]

8kgT kgT

D=——F——~0.19 .
3(67T3)1/277Ree nRee

(2.31)

R.. describes the distance between the two ends of the polymer chain and is dependent
on the bending properties of the polymer, thus its persistence length [,. Considering an
ideal chain with [, < L, we obtain for the Zimm model the relation [64, p. 7-10]

Ree =\/2L1,. (2.32)

It is notable that equation of the Zimm model resembles the well-known Stokes
Einstein equation
~ keT
6T Ry

(2.33)

The diffusive behavior can be interpreted as that of a hard sphere with hydrodynamic
radius

Ree

Ry = ——
b 670.196

(2.34)

Semiflexible polymer

The diffusive behavior of biomolecules such as DNA cannot be satisfactorily described
for fragment lengths <100000bp using the Zimm model [65, p. 3|. This is due to the
relatively large persistence length of DNA, which means that bending modes must be
considered due to the stiffness of the polymer. The theory for the transition region from
the rod-shaped particle to the ideal chain was elaborated by Harnau et al. [66]. For the
diffusion coefficient, the model is described by the following expression, which contains
an integral over the parameter s representing the parameterization along the polymer:

[l e (2 )] , (239

bl g
VT L g a(s) 2a(s)

D =
3mnL




18 2 Theory

with a(s) given by

52 otherwise.

2 fi
afs) = { |s|2L, or s > Iy, (2.36)

The function a(s) describes the predictions for a random coil for spatial scales greater
than the persistence length. For smaller scales, the function shows the behavior of a rigid
rod. This transition region is in the range of several persistence lengths of the polymer.

Figure [2.10| shows a comparison between the rod model and the Zimm model with
the two cases ideal chain and semiflexible polymer. For the diffusion modeling, the
persistence length of double-stranded DNA under near-physiological salt concentrations
was approximated by [, = 51nm or 150bp [67, p. 6188|[68, p. 3607|[65, p. 3]. In fact,
the persistence length of DNA depends on a variety of factors such as ionic strength
of the solvent, temperature, presence of proteins, or solvent type. The models for the

102 - —— Rod model
Semiflexible
—— Ideal chain
o 101 -
n
a
g
=
Q
100 -
10_1 L T T T T T
10! 102 103 104 10°
L [bp]

Figure 2.10: Comparison of three models to describe the diffusion of DNA. For short fragment lengths
the rod model is a good approximation and for long fragments the ideal chain model. The semiflexible
model, on the other hand, describes the diffusion behavior over the entire fragment length distribution.
The used parameters are [, = 5lnm = 150bp and d = 2.5nm. The rod model is calculated using
equation The semiflexible chain is modeled by solving equation numerically. The Zimm model
for the ideal chain is calculated via equation

rod-like polymer and the ideal chain show different slopes. The rod model predicts higher
diffusion coefficients for short polymers, but then falls off more steeply. For the ideal
chain, we can observe an almost linear relation in the double logarithmic representation:

1
D x L, with v = 7 (2.37)

The semiflexible polymer model gives quite similar diffusion coefficients compared to the
rod model for small fragment lengths (at ~ 10bp) and approaches an ideal gaussian
chain for very large fragment lengths. It thus represents the persistence length dependent
transition between these two models.
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2.3 Fluorescence correlation spectroscopy

A proven method for the analysis of stationary fluctuations in a signal trace is autocorre-
lation. Autocorrelation is a term from stochastics and signal processing and describes the
correlation of a time series x(t) with itself shifted in time z(t + 7) [54} p. 2|. Autocorrela-
tions are calculated on series of time-dependent data to clarify non- random relationships
in time series. For example, if a fluorophore diffuses through the confocal volume, there
is a certain chance that the fluorophore will still be found in the volume at a later time.
Therefore, the correlation between the signal at time ¢ and the signal at time t + 7 will
be greater than zero. Generally, the autocorrelation r,, of a time-data sequence z(t) is

defined as
aw = (2Dt + 7)) (2.38)

The expression (...),; denotes the time average of an expression over the time variable ¢
54 p. 2|:

T—o00

(x(t)), = lim % /0 ")t (2.39)

In fluorescence correlation spectroscopy (FCS), the intensity trace I(t) is the only mea-
sured quantity and can be regarded as a stationary stochastic process. It contains all
information about the involved dynamic processes [64, p. 25-27]. For FCS, the autocor-
relation is calculated for small intensity fluctuation in the detection volume, originating
from the underlaying stochastic processes. The intensity fluctuation 0/(¢) at a certain
time is given by [53] p. 10]:

0I(t) = I(t) — (I(t)): (2.40)

By normalizing the autocorrelation to its squared mean intensity (/(¢))? and consider-
ing that the time-data sequence consists of real values, the known form of autocorrelation
is obtained [53, p. 11].

(0I(t)-6I(t+ 7))
(1(t))?

Inserting equation into equation the autocorrelation function can be trans-
formed into:

G(r) = (2.41)

(L(t) - I(t+ 7))

(I1(t)?
In this form the autocorrelation can be computed from a given fluorescence trace of a
measurement. Figure shows exemplary the fluorescence trace and the calculated
autocorrelation of an FCS experiment. In the left graph, the intensity fluctuation in the
signal during the measurement can be seen. They result from diffusion-related concen-
tration fluctuations in the detection volume and illustrate the stochastic character of the
time series. Since it is a stationary process, the mean fluorescence rate and the mean
variance in the signal do not change over time. The graph on the right shows the cal-
culated autocorrelation from the fluorescence trace. The time axis is logarithmic. For
small time shifts 7 the autocorrelation is > 0 and drops to 0 for increasing 7. The shape
of the autocorrelation curve is sigmoidal. With a suitable model, information about the
measured species in solution can be derived from the amplitude and the sigmoidal course
of the autocorrelation data.

G(r) = -~ (2.42)
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Figure 2.11: The autocorrelation reveals hidden information in fluorecence fluctuations. A Fluorescence
trace of an FFS experiment. B Autocorrelation curve from the fluorescence trace. The amplitude and
the temporal course contain information about the diffusing species.

2.3.1 Diffusion model of FCS

A suitable model is necessary to the analysis the autocorrelation curves of an FFS exper-
iment. The derivation of the analytical standard model of FCS is given, e.g., in Schwille
and Haustein [53 p. 10-18]. The standard FCS model is based on a single excitation
source in continuous wave mode and a confocal measurement setup. We start with the
measured fluorescence intensity, which depends on the geometry of the considered volume
and the fluctuations of the fluorophore concentration C(r,t) in the system [64], p. 25|:

I(t) = /V MDE(r) C/(r, £) d*r- (2.43)

Here, the fluorophore’s fluorescence properties are assumed to be constant over time. The
molecular detection efficiency MDE(r) characterizes the detection volume and combines
both the excitation laser profile I(r) and the detection geometry described by the collec-
tion efficiency function CEF(r) (see equations and [2.20). For a confocal detection
apparatus, the MDE is well approximated by a Gaussian ellipsoid [2.21] with radius 7o in
the xy-plane and extension zy in the z-direction (see section . Inserting equation
into the definition of the autocorrelation for FCS and considering the case of
one diffusing species results in [53, p. 11]

W(r)W(r') (6C(r,t)6C (', t + 7)) d®r d3

Gry DL WO W) (GO D301 4 7)) atratr -
(C [, W(x) d*r)?

For an ideal solution of freely diffusing point-like particles in an open 3D volume, the
concentration fluctuations in the system at any given time are independent and spatially

uncorrelated. In this case with diffusion coefficient D, the following expression holds [53]
p. 12]:

(5C(x,0)0C(x', 7)) = (C)(4r D7) "2 exp (_(r——r’)2> (2.45)
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The right-hand side can be identified as Green’s function in 3D [2.26, Inserting equation
into equation yields [53] p. 13]:

1 Jv [, W(r) W(r') exp (_%> d3r a3/
= (CY(Ar D 7)3 ([, W(r)d®r)? : (2.46)

Using the definition of the effective detection volume and considering the approximation
of the MDE by a Gaussian profile [2.21} we get [53, p. 13|

o (fv W(r)d®r)? _ 3/2,2

‘/eﬂ‘ = fv WZ(r)d37~ Tg%0- (247)

Vog thus depends exclusively on the waist parameters of the confocal optics. Using the
following relationship for the diffusion coefficient [53], p. 13|

T(2)
D=— 2.48
and considering the mean molecule number (N) in the effective detection volume as

(N) =(C) Ve, (2.49)

equation [2.46] can be solved analytically and gives an expression for the free diffusion of
a particle species in 3D [53], p. 13]:

1 1 1
G(r) =
N 1—|- z 7"% T
< > ™ 1+%%
! 93nc () (2.50)
= — T). .

gspc (7) is called the correlation function for free diffusion in 3D assuming a Gaussian pro-
file for the MDE. Figure 2.12 shows data series generated using equation [2.50] for varying
parameters. In a semi-logarithmic representation, the FCS curves resemble a decreasing
sigmoidal curve. Decreasing diffusion coefficients, i.e., slower diffusing molecules, shift the
FCS curves to larger shifting times 7 (subplot A). The limit value for 7 — 0 corresponds
to the reciprocal particle number <—]{[> in the effective volume. Subplot B shows this de-
pendency. For increasing mean particle numbers in the effective volume, the amplitude
of the FCS curves decreases.
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Figure 2.12: The FCS model for varying parameters. A Varying diffusion coefficients D. B Varying
mean molecule numbers in the effective detection volume (N).

2.3.2 Photokinetic effects in FCS

Diffusive processes take place on comparatively large time scales. However, there are
other photokinetic effects that can be observed on very small time scales. Frequently
occurring processes are rotational diffusion, triplet states of the fluorescent dye, as well
as isomerization effects. These short-time phenomena have an influence on the emission
characteristics of the particles under study [69, p. 174-185]. Since rotational diffusion
arises on the order of nanoseconds and cannot be resolved in our setting, it is neglected
in our studies. In contrast, triplet states and isomerization effects are not negligible and
are discussed in the following.

Triplet state effects in FCS

The probably most important photokinetic effect is the triplet decay [64, p. 30-32|. This is
caused by the long-lived triplet state (see the Jablonski diagram in figure . The tran-
sition of a fluorophore into a triplet state means that the fluorophore cannot emit photons
for a certain time. Like the translational diffusion of molecules, the change between the
singlet and triplet states leads to fluorescence fluctuations. Since these fluctuations occur
at much smaller time scales, the intensity fluctuations of diffusion and singlet-triplet tran-
sitions can be considered independent of each other [0, p. 13371|. For the observation
of the fluctuations of the relatively fast single-triplet transitions the fluorophores can be
assumed to be immobile. In contrast, for the observation of diffusive processes, caused
by the movement of the fluorophores, the singlet-triplet interactions are in a steady-state
[70, p. 13371]. The normalized diffusive triplet model is |71, p. 152]:

Ftrip -
P Terip | 2.51
T Ry, P (2.51)

gtrip(T) =1+

Fiip is the fraction of fluorophores in the dark triplet state and 7, is the triplet-state
relaxation time. Since triplet state transitions are usually much faster than the diffusive
process through the detection volume, the two processes can be linked multiplicatively.

1

G(r) = WQ?»DG(T) Gtrip (T) (2.52)
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Figure [2.13] shows the proportion of the triplet state in the FCS. In subplot A, the two
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Figure 2.13: Visualization of the triplet model in FCS analysis. A Plot of the triplet term gi, and the
diffusion term ggig. B Product of g¢ip and gqig for varying relaxation times and constant triplet fraction
Ftrip-

portions of the model are shown as individual data series. For short time intervals, the
triplet state forms a considerable part of the FCS. For longer times, the triplet fraction
drops to one. Since the complete model is a multiplication of the two terms, the triplet
fraction disappears for large 7. Subplot B shows the combined model for varying relaxation
times with constant triplet fractions. Increasing relaxation times shift the triplet fraction
of the model to larger 7. It also becomes clear that in the case of a superposition of
diffusion and triplet state, a distinction of the fractions becomes difficult. Usually, the
decay times of the triplet state are significantly smaller than the diffusion times and a good
separation of the the components is possible. In case of an overlapping of the diffusive
part and the triplet effect, the latter can be reduced by lowering the excitation intensity,
thus, facilitating the differentiation.

Isomerization effects in FCS

A widely used dye family in fluorescence measurements are cyanine dyes including the
unsymmetric cyanine dyes RiboGreen and PicoGreen which are ideally suited for the
fluorescent labeling of nucleic acids [72],[73]. Many cyanine dyes exhibit a characteristic cis-
trans isomerization in their hydrocarbon backbone, resulting in blinking upon fluorescence
emission |74, p. 290-293|. This isomerization affects the photophysical properties of the
dyes and differs significantly between different dyes |74, p. 290-293]. Thus, when working
with cyanine dyes for fluorescent labeling, this effect must be considered.

Most simply, isomerization can be regarded as a two-state system switching between a
bright and dark state. For modeling isomerization, the diffusion process can be viewed
as stationary, since it proceeds much slowler than isomerization. This allows to consider
the processes independently. With this assumption, the same expression is obtained for
a simple on/off system as for the description of the triplet state [64) p. 54-65]:

ESO —_t
Gisolt) =1+ T g P (2.53)
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Here Fi, is the fraction of fluorophores in the non-emissive dark state and 7, arises
from the sum of the switching rates k,, and k.g. Using a simple isomerization model for
fluorescence correlation spectroscopy, the blinking of GFP proteins was studied [69], as
was the cis-trans isomerization of the cyanine dye Cy5 [75]. The simplified on/off model
represents an approximation, since in the present case M fluorophores intercalate with a
DNA polymer. Such a system displays a finite birth and death process involving M + 1
states ranging from completely dark to all fluorophores emitting. Keller [64], p. 54-65] has
mathematically described such a system for fluorescence correlation spectroscopy analysis.
Even though no closed analytical expression can be given for the representation of such
a system, it consists at least of superimposed exponential functions with the eigenvalues
as decay constants.

Giso(t) = Z b exp (A1) (2.54)

In general, the binary on/off isomerization model provides a sufficiently good description
of experimental data [24], p. 1887]. Hence, it is used throughout this thesis for the analysis
of fluorescence fluctuations in DNA measurements.

2.3.3 Error estimation in FCS experiments

To accurately evaluate the FCS data, an error estimate of the FCS is needed. There are
several methods to calculate the standard deviation directly from the fluorescence trace
[76, [77]. However, the simplest option is to calculate the standard deviation from the
autocorrelated data of several measurements, or alternatively from a single measurement
that has been split into several subsamples. The FCS signal represents the correlation level
above the random background noise[76, p. 1939|. Thus, for error estimation G(7) — G
is considered and a normalized value for all data points can be defined [77, p. 2992]:

(1) — Gio
LZ 0 G; (2.55)

L is the number of averaged FCSs (single measurements or subsamples of one measure-
ment) and [ the corresponding index. The standard deviation is thus calculated as follows
[T7, p. 2992]:

)=\ T 2 (G ) (2.50

The values for G(0) and G; can be estimated from averaging multiple measurement
points for short- and long-time intervals 7 or approximated from a previous unweighted
fit. To obtain the standard error of the measurement, we divide the standard deviation
by the square root of the number of measurements.

ses(r) = 237

Since a normalized value for the calculation of the standard error is used, the result needs
to be multiplied by G(0) if non-normalized FCS data are required.

(2.57)
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2.4 The mean single-molecule rate (mSMR)

An essential part of this thesis is the development and evaluation of the mean single-
molecule rate (mSMR) for the analysis of FFS experiments that includes information
from both the time and amplitude domain. In the following, the step-by-step derivation
of the mSMR model is presented as described in Sparrenberg et al. [24].

2.4.1 Derivation of the mSMR

Probability distributions are described using different types of moments such as ordinary
moments, central moments, factorial moments as well as cumulants and factorial cumu-
lants. The ordinary moments of a probability distribution P(k) given by the quantized
photon number k are

o0

(k™) => k" P(k). (2.58)

k=0

The central moments of a discrete probability distribution are defined as follows.
(AR™) = (k= )" P(k (2.59)
k=0

with p being the expected value of the distribution. An important quantity for the
characterization of distributions is Mandel’s () parameter, which includes the first two
ordinary or central moments |78, p. 206|[36], p. 564].

(AR2) — (k) _ (%) — ()2 — (k)
(k) (k)

The QQ parameter is a measure of the deviation of a measured photon distribution from a
Poisson distribution |78, p. 206]. In case of a Poisson distribution @ = 0 is observed. Q
parameters greater than zero are referred to as super-Poissonian and Q parameters less
than zero are called sub-Poissonian [79, p. 12-13]. We study the fluorescence emission
of diffusing particles in a tiny volume (~pm?3). The detected photons of a fluorescence
emission under homogeneous excitation conditions follows a Poissonian distribution [0,
p. 441-442|[36l, p. 560]. Since the concentration fluctuations in a small volume are also
Poissonian distributed [52, p. 81-83|[36, p. 557], one would initially assume that photon
counts originating from diffusing particles also exhibit a Poisson distribution. However,
this is not the case. Diffusion causes concentration fluctuations in an inhomogeneous ex-
citation profile, which introduces intensity fluctuations. These intensity fluctuations lead
to correlations between the photon counts, resulting in a broadening of the distribution
and thus in super-Poissonian statistics [36], p. 559-560+563]. As Mandel’s Q parameter re-
flects these deviations, it is a suitable measure for the study of photon count distributions
[8T, B2]. For further analysis, we need to relate the moments of the photon distribution
to the fluorescence intensity distribution. Theoretical considerations typically use the
continuous distribution of fluorescence intensity. But even for a constant fluorescence
intensity, the number of detected photons varies within a defined counting interval. This
is due to the quantum mechanical nature of photon emission, which can be described by
a Poisson distribution, also known as shot-noise [36, p. 555-556]. Qian and Elliot have
derived expressions for the moments of the fluorescence intensity distribution in terms of

Q- (2.60)
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cumulants, which in turn are functions of the single-molecule brightness ¢ and the mean
number of molecules in the observation volume N [83] 84]. For the first to cumulants of
the intensity distribution, we get [81, p. 1957]:

k1 = (I) =yeN,

ko = (AI?) = (I?) — (I)* = v,€>N. (2.61)

The coefficient ~, is generally defined as [36] p. 565-566]
[y (PSE(r)) dr

[ PSF)dr (2:62)

T

The normalized point spread function PSF can be approximated by the profile of a
Gaussian ellipsoid, which is defined as

2 .2 2
PSF@)zema(—szgﬁ)~—25). (2.63)
This gives for the coefficient ~, the following solutions with r = 1, 2:
v =1, (2.64)
1

Yo = ok (2.65)

In the next step we can relate the intensity moments to the photon number moments.
In fact, we can express the ordinary moments of the intensity distribution as factorial
moments of the photon number distributions |76l p.1940|[81] p. 1957],

(1) = (k),
(12) = (k(k — 1)) = (k) — (k). (2.66)

Combining equations and [2.66] we can express the () parameter (equation [2.60)) in

terms of intensity cumulants.
K2
K1
This expression is valid on the condition that the sampling time 7 is significantly shorter
than the characteristic diffusion time 7 of the molecules. We will now abandon this limi-
tation and turn to the general case of arbitrary sampling rates to specify the Q parameter.
k2 (T)
k1 (T)

Q(T) = (2.68)

The sampling time-dependent first intensity cumulant x;(7") can be displayed as follows
38, p. 398440, p. 2724:

ki(T)=€eN =puT N (2.69)

with o = 7 being the count rate or single-molecule brightness rate of a molecule. The
sampling time-dependent second intensity cumulant ko(7") is defined as [38], p. 3984|[40,
p. 2724]

ko(T) = Yo pi2 T* N Taige(T). (2.70)
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The dimensionless binning function I'g;g relates the second intensity cumulant to the data
sampling time and is given by [40 p. 2722-2724|

Ty(T) = % /0 (T — 1) g(r)dr (2.71)

and includes the correlation function g(7). Assuming a Gaussian PSF', the correlation
function is specified as follows:

-1
T

gana(T) = Kl + %) | (2.72)

with the axial to lateral ratio r* = 22 /r2 of the Gaussian PSF. This is exactly the same
expression for gspg(7) as in the FCS model in section Solving equation for
gspc yields [39, p. 2860|[41, p. 11]:

8

= % \/1—|—a—|—1) forr =1,

Lanspa(T) = VIta
iﬁ artanh (‘/1_6(5(+\1/1LTI)1 ) vi+apg+1| forr>1,
(2.73)
with the dimensionless sampling time o = T'/7p and 8 = 72 = r2/22. Putting equation

2.69] [2.70] and [2.73] into equation [2.6§] yields the sampling time-dependent Q parameter.

Q3pca(T) = 2 1o T Taigspa (1) (2.74)

The above expression for the Q parameter depends solely on the single-molecule bright-
ness rate o and the mean diffusion time 1 for a given geometric parameter r. The
latter represents an instrument constant determined by calibration with a dye of known
concentration and diffusion coefficients. Figure [2.14] shows on the left side the graphs of
equation [2.74] for varying parameters. By dividing equation [2.74] by the sampling time 7T,
we display the Q parameter as a rate, called the mean single-molecule rate (mSMR).

w(T) = == = v2 po L'air3pCs (2.75)

This normalization makes the influence of the diffusion time 7 on the graphs directly
apparent, which can be inferred from the subplots on the right-hand side. In this presen-
tation, the graphs of the mSMR curves show close resemblance to the sigmoidal shapes
of fluorescence correlation spectroscopy (compare this with the curves of the FCS model
2.12). The main difference is that in mSMR the amplitude is a measure of the single-
molecule brightness rate instead of the average particle number as in FCS analysis.

The model is suitable for an experimental setup with a single excitation source and a
single detection channel. This represents an important benefit compared to the cPCH
method, which also combines information from both the time and the amplitude domain,
but relies on multiple excitation and detection channels [41].
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Figure 2.14: The mSMR model for varying parameters. A comparison of equations and of the
mSMR model. The left side shows the sample size dependent ) parameters, and the right side shows the
normalized Q parameter . The curve shapes of the normalized QQ parameter reveal a strong similarity
to the autocorrelation curves of the FCS (see . A and B Characteristic curves for varying diffusion
coefficients D. C and D Characteristic curves for varying single-molecule brightness rates pg.

2.4.2 Photokinetic effects in the mSMR

In the following, photokinetic effects will be considered for the mSMR model. As with
FCS, triplet states and isomerization effects are envisaged in more detail.

Triplet states of the mSMR

Like for FCS analysis singlet to triplet transitions of the fluorophores must be considered
for small sampling times. Again, since triplet transitions and diffusive behavior occur
on different time scales, the systems are considered decoupled. For the mSMR, we can
therefore handle the triplet term gy,(7), already known from FCS (see section [2.3.2)), in
the same way as the diffusive term gq;¢(7) by inserting it into the integral of the dimen-
sionless binning function (equation and subsequently integrating over the sampling
time [39, p. 2860]:

92 T
F‘crip(tr) - ﬁ /0' (T - T) gtrip(T) dr

__T
2 FtrithripT - (1 — eXp Trip )FtrithQrip)

— 14 =
t T2 (L= Fuy)

. (2.76)
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This results in the entire expression for the sampling time-dependent () parameter:

Q(T) = v o T Taigr(T) Teip (1), (2.77)

and accordingly for p(7'), we get by normalization to the sampling time:
i(T) = 2 pio Laig(T") Lo (T). (2.78)

Isomerization effects in the mSMR

As already seen in section , the simple isomerization model represented by an on/off
system and the triplet state model are identical. Thus, equation is simply inserted
into the binning integral 2.71] By solving this integral, we obtain the following expression
for the simple on/off isomerization model:

Fiso(jﬁ) - % /0 (T - T) giso(T) dr

T
2 -FisoTisoT - (]. - eXp*%)-FisoTizo)

=1 2.79
+ T2 (1 _ Eso) ( )

This yields for the time-dependent Q parameter the following overall expression:
Q(T) =210 T Tair(T) I'iso (1), (2.80)

and finally by normalizing to the sampling time, the mSMR model p(T") with isomerization
term is obtained:

(1) = va pro Vaige(T) Tiso (T'). (2.81)

This simplified model allows a mathematical representation in a closed form, whereas
more complex isomerization models can only be solved numerically.

After taking a closer look at the theory behind FCS and mSMR, common noise
sources, which generally affect the results of FFS analyses, are considered.

2.5 Noise sources in FFS experiments

FFS experiments involve high-precision and correspondingly sensitive measurement sys-
tems. The measurement setups and components used are not free of errors and can thus
influence the results of the analysis. In addition, further sources of noise occur which are
in the nature of the measurement method and cannot be eliminated by further technical
effort. The most common sources of noise are discussed below.

2.5.1 Detector artefacts

The breakthrough for fluorescence fluctuation examinations came in the 1990s with the
advent of highly sensitive detectors. These so-called avalanche photon diodes use the
photoelectric effect to trigger an electron avalanche and thus amplify the measurement
signal inside. Detectors operated above the breakdown voltage can detect individual
photon events. They are therefore also referred to as single-photon avalanche diodes
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(SPAD). Although modern photodiodes have made fluorescence fluctuation analyses on
the single-molecule level possible due to major improvements, the detection of single-
molecule events is less a question of sensitive detection than of background noise [47,
p. 21]. Common noise sources are detector artefacts such as afterpulsing and detector
dead time and to a small extend shot noise. The noise sources are presented in more
detail in the following sections.

Afterpulsing

Each time a signal is triggered at the photon detector of the SPAD, there is a certain
chance that another spurious event will be induced, which is called afterpulsing. The
reason for this behavior of avalanche photodiotes is due to the way the diodes work. An
incident photon causes a chain of ionizations in the detector, resulting in a breakdown
pulse at the detector output. Occasionally, some of the generated charge carriers are
temporarily retained in the junction depletion layer and later released by thermal excita-
tion. This can give rise to free charge carriers resulting in a pulse correlated to the initial
event [85, p. 2|. The probability for an afterpulsing event decreases rapidly with time
and is specific for the detector [82] p. 3536]. Typical afterpulsing probabilities are in the
order of 1% and have a nano- to microsecond delay to the previous signal [86, p. 3]. An
afterpulsing event can cause further events, which are then referred to as second, third
etc. order afterpulsing [24, p. 1886]. In fluorescence correlation spectroscopy afterpulsing
shows a strong signal increase at small 7 (<1 x 107%s). Since for most of the molecules
studied the diffusion events take place on larger time scales, afterpulsing is only a minor
problem for FCS. However, on Mandel’s Q parameter the afterpulsing has a broadening
effect [87), p. 2457] and should therefore be considered for the analysis of single-molecule
brightness.

The easiest way to eliminate afterpulsing is to install a beam splitter and to detect the
photons via two channels. Since afterpulsing is only correlated within the signal trace of
one detector, it can be completely eliminated by cross-correlation across both detector
channels.

Dead time

After each triggered electron avalanche, a SPAD needs a short time to return to its original
state, which is called detector dead time. During this time interval of typically some tens
to hundreds of nanoseconds, no further photon events can be detected and the detector
is blind for a short time [24], p. 1886]. This effect has a decreasing impact on Mandel’s Q
parameter, such that the measured Q parameter is lower than the true value [87, p. 2457].
To minimize the influence of the detector dead time, the signal intensity should be kept low
to operate the detector at low count rates (i.e., low concentration and/or low excitation
power).
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2.5.2 Other noise sources in FF'S experiments

Besides the already presented detector artefacts, there are several other noise sources that
influence FFS experiments.

Fluorescence impurities

The fluorescence of contaminants is often caused by biological sample matrices. FFS ex-
periments require high standards for the purity of the samples. Great care must therefore
be taken in the composition and processing of the samples to be measured. Thorough
cleaning of the measuring equipment is therefore also a prerequisite for reliable FF'S mea-
surements.

Scattered light

The occurrence of scattered light depends on the laser power used and is directly pro-
portional to it. Scattered light has two different mechanisms, elastic scattering (Rayleigh
scattering) and inelastic scattering (Raman scattering). Elastic scattering includes reflec-
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Figure 2.15: Fluorescence emission spectrum of Alexa Fluor 488 and Raman scattering of water. The
Raman spectrum was recorded at a wavelength of 532nm and corrected to 488 nm. For better compa-
rability, the spectra were normalized to unity. In fact, the probability to observe fluorescence photons is
several orders of magnitude higher compared to Raman scattering.

tions from excitation light and scattering from the object slide. Due to the Stokes shift
in fluorescence for the dyes used, Rayleigh scattering can be suppressed by suitable band
filters in the optics. In contrast, inelastic Raman scattering on water molecules has a sim-
ilar wavelength as the emission spectra of commonly used fluorescence dyes and cannot be
distinguished from fluorescence photons by optical filters [47, p. 21-22|. Figure shows
the fluorescence spectrum of Alexa Fluor 488 and the Raman scattering of water. The
Raman scattering was recorded at a wavelength of 532nm and corrected to 488 nm. The
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spectra were normalized to unity. With a common filter set of 535/50 for the recording of
Alexa Fluor 488 measurements, the peak of Raman scattering is located exactly in this
area. Even though the Raman signal is orders of magnitude lower than the fluorescence
signal, Raman scattering introduces another noise term into the measurement. The most
efficient method to minimize Raman scattering is to realize a small observation volume.
Since there are fewer water molecules in a small volume, the amount of Raman scattering
also decreases. In addition, the excitation intensities in the experiment should be kept as
low as possible.

Shot noise, white noise, Gaussian noise

The cause of shot noise is the discrete nature of light and electric current and is described
by a Poisson process.

: O
Poi((b), k) = e (2.82)
Poi(({b), k) returns the probability of observing k& noise photons for a given mean noise
fraction of (b) in the measurement. Shot noise becomes relevant when the finite number
of particles carrying energy becomes sufficiently small. This is the case with the detection
of photons in FFS experiments.

Uncorrelated noise generally leads to a reduction in amplitude in FCS and mSMR. This
means that in FCS the mean number of particles in the observation volume is overesti-
mated and in mSMR the single-molecule brightness rate is underestimated. Therefore,
appropriate actions must be taken to suppress the noise influence on the experiments and
to correct the remaining noise.
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3 Methods and instrumentation

After gaining insight into the theoretical concepts and models relevant for this thesis,
the methods and instruments for the practical implementation of fluorescence fluctua-
tion experiments are envisaged. First, the Monte Carlo method to generate fluorescence
fluctuations under well-defined conditions is introduced. Then, our home-built confo-
cal measurement system is presented, which is a plate reader that automatically scans
the wells of a microtiter plate and acquires the fluorescence fluctuations of the studied
samples. Finally, the processing of the fluctuation data is demonstrated including the
efficient calculation of the FCS and the mSMR from a fluorescence trace, the correction
of measurement artefacts as well as the data fitting using non-linear regression.

3.1 Monte Carlo simulation

The Monte Carlo method is a powerful tool for the simulation of fluorescence fluctuations.
As seen in section [2.2.5] the diffusive motion of particles can be realized as a random walk,
and since the emission of photons can be modeled by a Poisson process depending on the
local excitation intensity, the Monte Carlo method represents thanks to its probability-
based approach the appropriate tool for a description of these processes. The method has
been presented in Sparrenberg et al. |24 p. 1887|. For the realization of the simulation,
a cuboid volume is first defined. The side lengths correspond to 12x the length of the
axial and lateral expansions (zy and o) of the confocal observation volume. The lattice
constant € is set to 20nm. To ensure the validity of the Wiener process for describing a
random walk for diffusing species, the time slices At of the simulation are given by the
diffusion coefficient D of the fastest diffusing species in a simulation run. Through the
mean squared displacement of diffusion (see section , the time slice is given for a
three-dimensional system as follows:

62

For each time slice, a random generator decides in which of the 6 possible spatial directions
a particle moves. The mean squared displacement of each particle is determined by its
diffusion coefficient D and the time slice At. A Gaussian profile is used for the molecular
detection efficiency profile (see equation . For convenience, all optical properties
of the simulated particles (e.g. quantum efficiency, effective cross section and excitation
intensity) are summarized in the factor ¢g. Thus, we have for the local photon count rate

6(r) = ¢ PSF(x). (3.2)

The number of photons detected from an immobilized particle under constant excitation
conditions is given by a Poisson distribution [36] p. 556].

Poi(p(r), k) = %M@ (3.3)

At (3.1)
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The Poisson distribution in this form returns for each simulated particle at location r the
probability of detecting k photons. The location of each particle is then updated for each
time slice by a random motion in x, y or z direction and the associated probabilities to
detect k photons are calculated and summed over all simulated particles. The working
principle of the Monte Carlo simulation is shown in figure [3.1] In the center of the
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Figure 3.1: The working principle of the Monte Carlo simulation. The diffusion of n = 3 particles
is modeled by a random walk. The excitation is position dependent and determines the molecule’s
probability of emitting a photon.

graph, the molecular detection efficiency, modeled by a Gaussian ellipsoid, is shown as
an intensity profile. It represents the convolution of the excitation profile and confocal
optics. The diffusion of n particles is modeled by a random walk. Whenever a particle
comes close to the Gaussian ellipsoid, the probability of emitting £ photons increases as
a function of the local intensity. The emission probability is highlighted in color. The
number of emitted photons of all particles in a time slice is summed up and constitutes the
fluorescence trace of the simulation. The fluorescence trace is then evaluated in the same
way as the measured fluorescence trace of an experiment. Our simulation also allows the
modeling of detector artefacts beyond the simple study of diffusion. Thus, afterpulsing
and detector dead time can be simulated. It is also possible to superimpose Poissonian
noise to model background noise.
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3.2 The confocal plate reader

The measurement system is a home-built confocal plate reader which has been developed
by our group. Being a fully functional confocal microscope integrated into a benchtop
system, the plate reader automatically scans microtiter plates with transparent bottoms
and records the fluorescence fluctuations of the examined sample. The author was sub-
stantially involved in the development of the plate reader. We were motivated by the
circumstance that FFS systems involve high investment costs and at the same time re-
quire great technical understanding as well as a lot of manual labor for the measurement.
By the realization of a confocal microscope as a plate reader, we intend to facilitate
the implementation and conduction of FFS experiments. The plate reader and the data
processing has been presented in Sparrenberg et al. [24] p. 1887-1889].

3.2.1 Instrumentation

The confocal plate reader consists of essentially the same components as commercially
available confocal microscope used to record fluorescence fluctuations. Figure shows
a schematic illustration of the measurement system. A laser (488 nm, Laser2000, France)
serves as excitation source and is coupled into the system via a fiber. The laser beam
exits the fiber via a collimator and is attenuated by a neutral filter (not shown). This
has several reasons. Firstly, only a few pW of laser power are required for excitation.
Thus, to use the full dynamic range of the laser control, the beam must be attenuated.
Measurements have also shown that when the laser beam is coupled directly into the
optical system, mode fluctuations occur that are presumably caused by reflected light.
This effect can be eliminated by installing the neutral filter in a tilted position.

Computer
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Figure 3.2: Schematic of the confocal plate reader for the automated measurement in a microtiter plate.
The excitation laser beam is shown in blue, the collected emission light in red. Reproduced from [24]
p. 1888|.
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A dichroic mirror (LP500) serves as a bandstop filter. The laser beam is initially reflected
by the mirror and directed into a microscope objective (Neofluar, 63x, LD, NA = 0.75,
Zeiss, Germany). The objective focuses the beam through the transparent bottom of
a microtiter plate onto the sample. Theoretically, the objective lens corrects plate bot-
toms thicker than 1 mm via a correction ring. However, pre-tests have shown that it is
advantageous if the transparent bottom is as thin as possible (approximately 140pum).
Suitable materials are glass and polystyrene, whereas other materials such as cyclic olefin
copolymer (COC) could not convince. Fluorophores in the well of the microtiter plate
start emitting photons. Parts of the emitted fluorescence photons are collected by the
objective and due to the Stoks shift can now pass through the dicroitic mirror. A tube
lens (160 mm) focuses the parallel light from the measurement onto the optical fiber of
the detector. An emission filter (535/50) between the tube lens and the fiber blocks re-
maining residual excitation light from progressing. The remaining measurement signal is
then transmitted via an optical fiber (50 pm, Thorlabs, Germany) to a photodiode (PDM,
Micro Photon Devices, Italy). Due to its small diameter, the fiber also serves as a pinhole
to realize the confocal setup. A time tagger card (Time Tagger 20, Swabian Instruments,
Germany) processes the outgoing TTL signal of the photodiode. The time tagger card
assigns a time stamp to each TTL signal of the detector. The data annotated in this way
contain many zero entries and can therefore be saved very well via a sparse matrix to save
memory. The calculation of the FCS and the mSMR is done externally on the computer.
Very efficient methods can be used for the calculation, which are presented in section [3.3]

Figure 3.3: Rear and front view of the home-built confocal plate reader. All components are integrated
in a handy benchtop device. The outer shielding was dismantled for the photo shoot. Left: View of the
opened back side with the photodiodes, the excitation laser, the time tagger card, and the PCI board with
the microcontroller for controlling the components. Right: View of the microscope objective lens and
the z-drive as well as the associated controller. The optical channels are shielded from incident ambient
light. Neutral density filters, emission filters and dichroic can be exchanged via slide-in modules.

An essential difference to ordinary confocal microscopes is, besides the use of a long-
distance objective lens, which is discussed in the next paragraph, the realization as a
plate reader. The scanning of the microtiter plate is automated. An zy-table developed



3 Methods and instrumentation 37

according to our specifications (Jiike, Germany) moves along the specified wells of
the plate. At each well, an autofocus (section finds the correct z-plane for the
measurement. For this task, a voice coil drive (PI, Germany) moves the objective lens
in the z-direction step by step and to find the optimal measurement height. Then 5
measuring positions in the well are moved in succession and the measurement is carried
out. To obtain the most accurate measurements possible, all optical components in the
measuring system are shielded from the outside to prevent ambient light from entering.
The control of the hardware components is also handled by a self-written software.
This software also provides a clear interface for planning the measurement routines,
monitoring the measurement results, and visualizing the measurement data.

In the following, the long-distance objective lens (Neofluar, 63x, LD, NA = 0.75,
Zeiss, Germany) used in our setup will be briefly discussed. Usually, high aperture
immersion lenses are used for FFS experiments to collect as many photons as possible.
However, because of automation, the use of a long-distance air lens is much more
appropriate. On the one hand, the air objective allows scanning a microtiter plate well
by well without having to find technically complex solutions for immersion microscopy.
On the other hand, long distance objectives are suitable for measurements through the
transparent bottom of the microtiter plate since these objectives allow a flexible coverslip
correction and can thus be optimized for the used plate type. To estimate how much
signal is lost, a comparative calculation for a typical oil immersion objective lens and
the used long-distance objective lens will be presented in the following. The term g—é is
the proportion of a luminous sphere surface that can be imaged through the lens and is

given by the following expression:

RA fo T 12 sin(0) dp df 1 —cos(f)

RO 4A7r? N 2 (3-4)

To express equation in terms of the numerical aperture, we convert the definition of
NA =nsin(f) to 0 = arcsm(N A) and insert it into equation , which gives

RA 11— cos(arcsin(&4)

RQ 2

A typical oil immersion lens for confocal microscopy has a numerical aperture of NA = 1.4
and a refractive index for the employed oil of n = 1.518 which calculates as &4 = 0.307.
For our setup we get for NA = 0.75 and n = 1.0 a sphere coverage of RIE‘ = 0.169.
This means we capture 55.2% of the emitted photons that the high aperture 1mmersion
objective would capture, which is justifiable. In addition, the use of a long-distance lens
has already been demonstrated in other work to analyze fluorescence fluctuations [54].

(3.5)

3.2.2 Autofocus and well offset

For technical reasons, the plate reader performs the measurements through the bottom of
the microtiter plate. However, microtiter plates have a curvature of the plate bottom due
to the manufacturing process. Additionally, the position of the microtiter plate can be
shifted by a few micrometers when inserted into the system. Thus, the exact orientation of
the plate is not known at the start of the measurement and high-precision measurements
cannot be ensured. To solve this problem, the plate reader features an autofocus. Before
each measurement in a new well, the objective lens is moved in z-direction in 2 pm steps.
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At each step, the laser intensity of the scattered light is measured. When reaching the
bottom side of the plate, part of the laser light is reflected into the measuring system
giving a clear intensity peak. The software detects this peak and moves the lens to
the correct measurement position. The offset between the detected bottom of the plate
and the ideal measuring position must be determined once during the first calibration
of the system and depends mainly on the material and thickness of the microtiter plate
bottom as well as on the exact setting of the correction ring on the objective. The correct
measuring position is determined by an optimization procedure. Over a series of FFS
measurements, the offset is changed stepwise, and both the fluorescence counts and the
results of the FFS analysis are compared (see figure . The measured values change for
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Figure 3.4: The influence of the offset on the measurement results. By varying the offset distance
between plate bottom and focal plane step by step, the optimal offset ist found. The measurements are
conducted on a 1 nM Alexa Fluor 488 solution.

increasing deviations from the optimal offset. A maximum is formed for the count rates
and a minimum for the mean particle count of the FCS analysis. By varying the offset
and fitting the fluorescence rates and mean particle counts with a 2nd order polynomial,
the optimal offset for an uncalibrated measurement setup is derived.

3.2.3 Influence of temperature

In addition to the exact measurement position, temperature also has an important in-
fluence on FFS measurements. From the Stokes Einstein equation the influence of
temperature on the diffusion coefficient is evident. The temperature appears directly in
the nominator and indirectly in the viscosity of the solvent in the denominator. In liter-
ature, the diffusion coefficient is usually given for 298.15 K. For measurements in water,
the diffusion coefficient can be corrected with n.9s15x = 8.9 x 107% Pas as follows

T 71298.15 K
D(T) =D . 3.6
(T) 28R 998. 15K n(T) (3.6)

The viscosity of water n(7T") can be approximated for the entire liquid phase with an error
of < 1% via [88, p. 939]

0(T) = magz.asx X 107F = 1.0016 x 10~* Pas x 10~ 5 (3.7)
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with

A =1.37023 (T —293.15) + 8.36 x 10~* (T — 293.15)?,
B=-146.15+T.

The temperature has a considerable impact on the diffusion coefficient. E.g., Alexa Fluor
488 has a reported diffusion coefficient of Dagg 15x = 4351um? /s in water [89, p. 1442|. If
a measurement is made at 294.15 K, the diffusion coefficient reduces by about 10 % with
Dogs 15 = 389 pm? /s. Therefore, the temperature is tracked for each measurement to
correct the derived diffusion coefficients from the analysis if necessary.

3.3 Data processing

After presenting the methods used to collect fluorescence fluctuations, data processing will
be addressed. In general, large amounts of data are generated when analyzing FFS ex-
periments. This is because the original data sets must have significantly smaller sampling
times than the time intervals required for a molecule to cross the observation volume.
In experiments with sufficiently small sampling times (< 1 x 107%s), tens of millions
of data points are collected per time series, making the calculation of the models very
computation- and storage-intensive. Regarding the storage problem, the concept of sparse
matrices can be used for data processing. These are suitable for handling data sets with
many zero entries. This prerequisite is given for the data sets at hand. In a sparse matrix,
only those entries are stored which contain a non-zero value. Thus, the storage volume
can be reduced drastically. Refering to computation, we will introduce efficient algorithms
to calculate the FCS and mSMR models from FFS data.

3.3.1 Calculating the autocorrelation for FCS

Probably the most elegant way to calculate the autocorrelation of FCS is using the Wiener-
Khinchin theorem, since it reduces the computational cost enormously. Via a Fourier
transform, the fluorescence trace is transformed into the reciprocal space and can be
squared here by a simple multiplication with itself. Through the inverse Fourier transform,
the data set is transferred back again, and the calculation is completed. In the following
we will go through the necessary calculation steps. According to the Wiener-Khinchin
theorem the so-called power spectral density (PSD) is related to the autocorrelation by
its Fourier transform:

Spa(w) = /_OO Toe(T)e ™7 dr, (3.8)

[e.e]

rn(7) = — / S (W) dw. (3.9)

:% N

The PDF indicates the strength of signal variations distributed over the frequency, i.e. at
which frequencies the variations are strong and at which frequencies they are weak. The
PSD is defined as [90, p. 4]:

Saa(w) = |2(w)]%, (3.10)
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where Z(w) is the Fourier transform of x(t).

(w) = /OO r(t)e T dr = F{z(t)} (3.11)

—00

It follows:

1 [ , 1 [ ,
Tz (T) / Seee™T dw = — |2(w)[2e™7 dw. (3.12)

T or 2m J_

—00

And in short-hand notation with F for the Fourier transform and F~! for the inverse
Fourier transform, we get:

rea(T) = FH{|F{a(t)}?}. (3.13)

Finally, inserting expression into equation yields an expression for the nor-
malized autocorrelation function G(7) of a continuous intensity trace I(t) based on the
Wiener-Khinchin theorem.

_FMIFU@P)
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So far, the continuous case of the Fourier transform was considered. In real experiments,
a finite amount of discrete data occurs and the discrete Fourier transform (DFT) applies.
Highly efficient algorithms referred as fast Fourier transform (FEFT) have been developed,
which are contained in common programming libraries. The complexity scales with
O(Nlog(N)) for time-data series of length N compared to O(N?), which means the
complexity is linearly constrained [91], p. 27|. Therefore, the Wiener-Khinchin theorem
allows a very fast calculation of the FCS of a given time-data sequence.

G(7) 1 (3.14)

As a completion, a calculation of fluorescence correlations for higher orders is in-
cluded in the appendix [10.1} However, this so-called higher order FCS (HOFCS) will not
find any further use in the present thesis.

3.3.2 Calculating the mSMR

The concept for calculating the mSMR for a given fluorescence trace is based on repeated
binning, which, starting at the original sampling time T},;,, progressively aggregates the
data points to larger sampling times 7. The minimum sampling time depends on the
experimental setup and the acquisition parameters. The signal trace of length 7;,s consists
of n = Typs/Tmin entries. All integer divisors N; of n are searched to divide the signal
trace into equidistant sampling intervals. We thus obtain the possible sampling times
T; = TwinNV;. Binning is implemented using matrix multiplication, which will be illustrated
using the integer divisor N = 4 as an example. In this case, a signal trace with originally
n entries and a sampling time of e.g. Thi, = 1 x 10795 is aggregated into a signal trace of
length n/4 and a sampling time of 7' = 4 x 107%s. The original fluorescence signal trace
is given by:

a1

Foa=|1]. (3.15)
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First, the n x 1 matrix is reshaped into a n/4 x 4 matrix. For clearness, the original
indexing of the entries is preserved.

aq a9 as Qy
Frg=| : : P (3.16)

ap—3 Gp—2 0Aap-1 0apn

Then, the matrix is multiplied by a 4 x 1 all-ones matrix to get a binned n/4 x 1 matrix
with a sampling time of 4 x 107%s.

by
Fog=Fogx[l 11 "= : . (3.17)
bn/4

This process is repeated for all integer divisors of n to calculate the respective binned
fluorescence trace for all possible sampling times. For each newly binned fluorescence
trace, the associated statistical moments are calculated, yielding them as a function of
the sampling time. If the moments are calculated from real measurement data, detector
artefacts must be considered. In this case, the required correction of the moments is
computed as described in section via equations and From the moments,
the mean single-molecule rate calculates as follows:

QT) _ (k*)m(T) = (k)5 (T) = (K)u(T)

wT) = 4= = ) . (3.18)

The mSMR data points from the fluorescence trace can then be fitted by an appropriate
model to retrieve the physical parameters from the experimental data.

3.3.3 Correction of detector artefacts and background noise

As already seen in section several noise sources occur that must be considered in
FFS experiments. For a reliable evaluation of the FFS experiments, the impact of these
quantities must be minimized. But even the best conditions cannot suppress all noise
sources.

Correction of afterpulsing and detector dead time

Since afterpulsing and detector dead time influence the results of the evaluation (see
section , a reliable correction of the measurement data is desirable. The easiest way
to avoid afterpulsing is to use two detection channels in the measurement setup. Since
the afterpulsing between two detectors is completely uncorrelated, afterpulsing can be
effectively avoided [85, p. 3|. Detector dead time plays a minor role in FCS because it
occurs on nanosecond time scales that are irrelevant to the evaluation [85] p. 2|. However,
subsequent correction of detector artefacts after the measurement is difficult in FCS. With
the mSMR, however, we can correct the photocounting moments from the experiment.
Our goal is a correction term that allows to calculate the ideal moments (k™) from the
measured moments (k"),, of a fluorescence trace.

Considering the probability density function (PDF) of the incoming photons k, the dead
time affected PDF P’(k) represented by the ideal PDF P(k) and the detector dead time
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tdeaq 1s sought. The first order correction is given for the dimensionless dead time § = td%"d
by [92], p. 114]:

P'(k)=P(k)+ [k (k+1)P(k+1)—k(k—1) P(k)] (3.19)

An afterpulsing-affected PDF P*(k) represented by the ideal PDF P(k) and the after-
pulsing probability P4 can be found using an algorithm from literature [93]. Assuming
only first order afterpulsing events and P4 < 1, the expression is given by [94] p. 5]

P(k)=(1—=kPa)P(k)+ (k—1) Py P(k—1). (3.20)

The above expressions is a first order correction term, which holds for setups where only
occasionally a single incoming photon is not detected due to dead time. Discarding multi-
photon events in the same dead time interval is not considered. The same applies to
afterpulsing. Theoretically, an afterpulsing event can trigger further afterpulsing events.
However, the occurrence of afterpulsing is very rare. Since moderate photon counts are
usually encountered, neglecting higher afterpulsing terms is justified. The measured PDF
P, (k) must hold the following conditions.

Pu(k) = P'(k) for Py =0, (3.21)
Pu(k) = P*(k) for 6 =0, (3.22)

Z Pa(k) = (3.23)

These conditions are satisfied by the following expression:
Pu(k) = P'(k) + P*(k) — P(k). (3.24)
Insert equation and equation into the above expression gives [94] p. 6]:

Po(k) =P(k)+6[k(k+1)P(k+1) — k (k — 1) P(k)]
+ (k—1)Ps P(k—1) — k Py P(k). (3.25)
The corrected photon-counting moments (k™) can be obtained from the measured photon

counting moments (k"),, by inverting equation [3.26, If 6 < 1 and P4 < 1 holds, we can
make the following approximation:

P(k) =~ Py(k) + 6k (k+1) Pu(k+ 1) — k (k — 1) Pu(k)]
+ (k—1) Py Py(k — 1) — k Py Py(k),

= Pu(k) — Piy(k) — P;(k) (3.26)

with
Py (k) = 0[k(k + 1) Pu(k + 1) = k(k — 1) Pu(k)], (3.27)
Pk ) (k — )PAP (k) — kPaPy (k). (3.28)

Using the definition of the moments of a distribution, we get:

= K"P(k) =) k" (Pu(k) — Pa(k) — Pa(k))
= (K" — ()" — ((6")" e (3.29)
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Now, the first two corrected moments (k) and (k?) are obtained by inserting the definitions
and into equation and solving for n = 1 and n = 2. The solution reads [94,

p. 6]:

(k) = (k)m(1 — Pa = 8) + 6(k*)m, (3.30)
(k?) = (k*) (1 — 2P4 — 36) + 26(k*)m + (6 — Pa){k)m. (3.31)
Because of 0 = td%“d, the above expression represents a function of the sampling time T

and is therefore suitable without further adjustment for the correction of the sampling
time-dependent moments as used in the mSMR. The correction terms are valid only for
(k)6 < 1 |81, p. 1951|. Since the product of (k)¢ is constant for all sampling times
and the detector dead time is given by the apparatus, the only adjustment screw is
the mean count rate, which can be reduced experimentally most easily by low analyte
concentrations and low excitation powers.

One final note for the implementation of the correction, for large sampling times,
very large numerical values can result during the calculation of the correction. This
can lead to problems when analyzing measurements with high count rates. When
implementing the correction, therefore, care must be taken to ensure that the number
types are sufficiently large. It is recommended to use float64 types to prevent a possible
integer overflow.

3.3.4 Correction of uncorrelated background noise in FFS
experiments

Already during the design of the measurement setup and the experiments, the influence
of noise must be considered (see section [2.5.2)). Selecting suitable filter sets minimizes
the influence of scattered light, especially Rayleigh scattering from the excitation. The,
shielding the measurement system blocks ambient light, while detector coooling suppresses
white noise from the electronics. These steps significantly reduce the noise ratio in a
measurement. The remaining uncorrelated background noise, however, influences the
amplitude of FFS experiments and thus leads to an overestimation of the mean particle
count in FCS analysis and to an underestimation of the single-molecule brightness rate in
the mSMR analysis. Figure shows this effect. At small concentrations, the S/N ratio
becomes less favorable and thus the effect on the parameters more pronounced. This
effect can be minimized using the background noise (b) and the fluorescence rate of a
measurement (k),, to calculate a correction term [76], p. 1943-1944][58, p. 2304]. For FCS
analysis this term is given by

L1 (3.32)
X2 DERYE '
X0 =)

The actual corrected particle number in the observation volume is obtained using the

following relation.

(N)eorr = (N)— (3.33)

In addition to the posterior correction of the mean particle numbers, the FCS curve can
also be corrected directly. The following applies here:

1

Geonr(T) = ngiﬂ” X (3.34)
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Figure 3.5: The influence of background noise on the mean particle number and the single-molecule
brightness rate. The FCS and mSMR data are retrieved from fluorescence fluctuations of an Alexa Fluor
488 dilution series. A Uncorrected and corrected mean particle number (N) from FCS analysis. B
Uncorrected and corrected single-molecule brightness rate pg from mSMR analysis.

Analogous to the correction of the mean number of particles (IV), the single molecu-
lar brightness rate p of mSMR experiments can be corrected. In theory the following
relationship applies:

_ &)
Lo = Ny (3.35)

In the experiment, however, the measured fluorescence counts are superimposed by back-
ground noise (k) = (k) + (b). With this consideration, we adapt equation as follows

_ K =) K = (B) 5
Ho,corr = <N>c0rr - <N> X

Equation [3.36] effectively corrects pg. As for FCS, it is also possible to correct the mSMR
data points directly using

(3.36)

B\

(1) =20 e (1= 8- (337
The effect of the correction routine is also shown in figure[3.5] Using the background noise
obtained from a blank measurement, the mean particle numbers (V) can be brought into
a linear relationship. Also, the single-molecule brightness rates o can be corrected to be
almost constant over all concentration steps.
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3.4 Data fitting

Fitting a model correctly to the measured data is a critical step for analysis. If the model
can be represented in the following form, linear regression applies for analysis.

vi = Bo+ Bifi(xi) + -+ Bpfp(xi) + €, i=1,...,n, (3.38)

whereas y; is the dependent variable and f;(z;) are the regressors. The error variable
¢; adds noise to the linear system of dependent variable and regressors. Some of the
regressors f;(z;) can be non-linear functions, which is the case for a polynomial fit. In
linear regression, there is a closed-form solution for the regression coefficients [3; with
7 =0,1,...,p, which is derived via the least squares method and can be found in statistic
literature (e.g., [95, p. 311-338]). The ordinary least square method aims to minimize the
following term:

Qo B) =D & =Y (yi — ), (3.39)
i=1 =1

with g; being the empirical regression function and ¢; is given by ¢; = y; — y;. For the
minimum applies the necessary condition

9Q(Bo; b1, - - -, Bp)
9P

The solution of this problem is in matrix notation:

=0, j=0,1,....p, (3.40)

B =(X"X)"'XTy. (3.41)
with the following vectors and matrices for the n data points:

1 f1<x1) fp(ﬂfl)
1 fi(za) ... fp(ze)

X=|. " ‘ , (3.42)
1 fl(xn) e fp(xn>
n Bo €1
y=|:1.8=|:].e=]:]. (3.43)
Yn B, €n

The hat of B indicates that it is an estimator. Important assumptions for linear regression
are, besides the linear independence of the independent variables, stochastic independence
of the measurement errors, constant variances (homoscedasticity) and no correlation in
the observed variances [96], p. 148|. In case of non-constant variances (heteroscedasticity),
we can introduce a weighting matrix W with the variances in the diagonal W;; = ﬁ, for

i =1,2,...,n and the solution for the linear regression reads:
B=(XTWX) ' X"Wy. (3.44)

In practice, the variance for a measurement point is obtained by repeating the measure-
ment several times. If this is not possible, the variance can be estimated from the residuals
of a previous ordinary linear regression [97, p. 236-237|. In linear regression, the minimum
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found also represents the global minimum. Since the FFS models presented in sections
2.3 and cannot be expressed as a linear combination of 3, nonlinear regression is
needed. Since in nonlinear regression 32] from equation [3.40[ is a function of both the
independent variable and the regression coefficients, there is in general no closed form for
the best fit parameters and numerical methods are needed for solving. However, these
are prone to local minima and therefore need good estimates for the starting parameters
in the regression process. By using an iterative process, the parameters are successively

approximated.

Bj =~ 5?“ = ﬁ]’? + AB;, (3.45)

with k being the number of iterations and A3 being the shift vector. At each iteration,
the model is linearly approximated by a first-order Taylor expansion.

2 8 I3 k ¢
[z, B) = f(:p,-,,@k) + Z %(@ - 5;5) = f(xiaﬁk) + Z Jij AB; (3.46)
=0 J j=0

J is the Jacobian matriz and contains constants, independent variables, and parameters.
It therefore changes with each iteration step. The gradients and the Jacobian are related
as follows:

862‘
= —J;. 3.47
8 Bj v ( )
Linearization allows the optimization problem to be transformed into a linear system of
equations consisting of n normal equations.

(J73)88 = I'Ay (3.48)

For the case of unequal confidence observations, a diagonal weighting matrix W can be
introduced as in the case of linear regression.

(JTWI)68 = TWAy (3.49)

The most widely used method for solving this problem is the Levenberg-Marquardt al-
gorithm [98] [99]. It is characterized by the fact that it combines the gradient method
with the method of linearization of the fit function. In addition, the algorithm converges
quickly and can also overcome smaller local minima. However, in this work we will use the
trusted-region reflective algorithm [I00]. In addition to the above-mentioned advantages
of the Levenberg-Marquardt algorithm, it offers the possibility to define upper and lower
boundaries for the regression coefficients. This makes it possible to achieve better fitting
results in some cases. In case of weighted regression, the sum of the residuals exactly
matches the definition of the y? value, which is defined as

XQZZ(—yi_ﬁxi;ﬂ))ng(i—iy. (3.50)

with the gaussian error o of each data point 7. The x? can be used to make a statement
about the goodness of fit. For comparability between two models, however, it is useful to
use the reduced Chi-Square.

=X (3.51)
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with the degrees of freedom v = n — p. p is the number of free parameters 5y, 81, ..., 5,
in the mode. Ideally, for each data point 7, the squared deviation of the measurement
curve from the fit function is equal to the variance of the measurement points themselves.
This means that the squared residuals are equal to the variance, resulting in a theoretical
X2 of 1. Values of x? > 1 are an indication of incomplete modeling. Values of x? < 1
indicate overfitting of the measurement data or overestimation of the standard deviation
of the measurement [I0T], p. 1-2]. However, the interpretation of the x? is sometimes hard,
especially when the number of repetitions of the experiment is small. Even if the true
model with the true parameters of a data set is known, x? is only 1 in theory, in practice
considerable deviations from 1 will be observed, because x? itself is susceptible to noise in
the data [L0T], p. 6-8]. Finally, the reduced chi square allows only a limited statement in
nonlinear regression, because in nonlinear regression the number of degrees of freedom is
not clearly defined [I01} p. 4-5|. Nevertheless, several papers use the reduced chi square
X2 as a measure of the goodness of fit (e.g., [77, p. 2993] or [102, p. 77-79]) and we will
stick to this routine. To obtain the standard deviations for each measurement point, the
average over b measurements is calculated with the associated standard deviation. An
example of data evaluation is shown in figure [3.6] The data points were fitted with the
corresponding model. In addition to x? and R?, the residuals can be used to assess the

A 2 =1.07 B y2 = 0.48
R2 = 0.9994 R2=1.0

2 1 2 1
g g
g 01 g 01
N N
—2 4 —2
—4 —4 4
_6 T T T _6 T T | T
10 102 10° 10 102 10°
7 [s] Ts]

Figure 3.6: The fitting of FCS and mSMR curves via non-linear regression. Data retrieved from an
Alexa Fluor 488 measurement . A Results of an FCS analysis with the associated residuals of the fit in
subplot C. B Results of an mSMR analysis with the associated residuals of the fit in subplot D.
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goodness of fit. The residuals from the fits are normalized using the following equation.

(3.52)

(X; — p) is the respective residual and o is the standard deviation of the residuals. These
normalized residuals are also called Z-transformed residuals or Z-scores and are plotted
below the corresponding graphs. If no systematic deviations from the zero line are ob-
served, the model used is suitable for describing the data. In the present example, there
is no systematic deviation of the residuals from the zero line. The occurrence of larger
deviations at small time intervals is common in FFS experiments. The visual impression
of the fit together with the observation of the residuals and inconspicuous x? and R? lead
to the conclusion that the data in the present case are sufficiently well described by the
models used.
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4 The mSMR on simulated
fluorescence fluctuations

In this chapter, the mean single-molecule rate (mSMR) is subjected to an initial review for
the analysis of fluorescence fluctuations. The theoretical model of the mSMR in section
2.4 showed a comparable interpretation of the data curves to FCS analysis. In the mSMR
model, however, the amplitude describes the single-molecule brightness rate instead of the
reciprocal mean molecule number. The questition is, whether the mSMR model is also
suitable for the analysis of fluorescence fluctuations under defined conditions. For this, it
is appropriate to refer to simulated fluorescence traces. The usefulness of simulations to
study single-molecule effects has been demonstrated in several studies. Using the Monte
Carlo method, the influence of fluorescence saturation on the autocorrelation of FCS was
examined [103, [46]. Also, the effect of detector dead time on FCS was systematically stud-
ied using simulated fluorescence traces [104]. The correlated photon-counting histogram
(cPCH) model was developed and evaluated based on simulated data sets [41]. The same
applies for a recent study, where an alternative framework was presented that, inspired
by Bayesian non-parametric, requires only a few microseconds to seconds of fluorescence
fluctuation data for analysis [I05]. The examples show that the stochastic processes lead-
ing to fluorescence fluctuations are well understood, and simulation of these processes
via the Monte Carlo method can yield new insights into the underlying mechanisms. We
therefore use simulated fluorescence traces to subject the mSMR model to a systematic
analysis. Thus, parameters that are difficult to access experimentally, such as the geo-
metric ratio of the detection volume or the single-molecule brightness rate of a molecule,
can be studied. In addition, measurement artefacts occur in real experiments (see section
. The simulation allows to first analyze artefact-free fluorescence traces, then adding
individual noise components to study their influence as well as their correction. Parts of
this chapter were previously published in Sparrenberg et al. [24].

4.1 Experimental procedure

The fluorescence traces to analyze are retrieved via Monte Carlo simulation (see section
. Table shows the default values of the simulation. Fluorescence fluctuations
are simulated for 10s, with each run repeated 5 times to get better statistics. The
lateral extension of the MDE or detection volume ry remains constant in all runs,
while the axial extension may vary. The supplement varied behind some parameters
indicates that this parameter is systematically changed in this study. Generally,
only one parameter is varied at time. In some cases, however, the variation of one
parameter causes another parameter to change, e.g., a change in the diffusion coefficient
always affects the number of simulation steps for a given simulation time (see equa-
tion . Values that differ from the default values in table[4.1|are indicated in the results.



50 4 The mSMR on simulated fluorescence fluctuations

Table 4.1: General simulation parameters for the Monte Carlo experiments. The given values are default
values. The supplement (varied) indicates whether this value is subject to systematical variations. The
varied parameters are explicitly stated in the respective simulations.

Parameter Value

Numer of cycles 5

Simulation time 10s

Total steps 7500000 (varied)
Lattice - X 4.8 pm

Lattice - Y 4.8 pm

Lattice - Z 4.8 pm (varied)
MDE lateral (r¢) 0.4 pm

MDE axial (zp) 0.4 pm (varied)
Transmission 100 %

Number of molecule species | 1

Dead time Ons (varied)
Afterpulsing prob. 0% (varied)
Afterpulsing decay Ons (varied)
Shot noise 0kCps (varied)

Molecule species # 1

Molecule number 20 (varied)
Diffusion coefficient 501um? /s (varied)
Light factor 40kCps (varied)
Bleach limit Disabled

The systematic analysis of the simulated fluorescence traces is conducted in the
following three steps:

1. FCS analysis of simulated fluorescence traces

To test reliability of our simulation engine, we generate fluorescence traces and analyze
them by calculating the autocorrelation curves according to section To fit the au-
tocorrelation curves the FCS model is used [2.50] If the simulation engine works correctly,
the initial simulation parameters from the fluorescence fluctuations should be recovered.
In four simulation series the single-molecule brightness rate g, the diffusion coefficient
D, the number of simulated particles ng,, and the axial to lateral ratio r = zo/rq are
varied systematically.

2. mSMR analysis on simulated fluorescence traces

Also, the simulated fluorescence traces from the previous step are analyzed using the
mSMR method. From the fluorescence trace, mSMR curves are calculated as described in
section [3.3.2] Then, a model fit is conducted to retrieve the initial simulation parameters
from the mSMR curves.
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3. Simulation of measurement artefacts

To better understand the influence of noise on FFS experiments, several measurement
artefacts are mimicked in the simulation. First, afterpulsing events are simulated, which
can occur with a certain probability. The time offset of the spurious afterpulsing event to
the original event is modeled via an exponential probability distribution.

flz; N) = de™?® for x > 0, (4.1)

with a rate parameter of A = 0.1ps. Then, the influence of the detector dead time
is considered by implementing a filter which only accepts one photon event within a
detection window. If further photon events occur in this window, they will be ignored.
Finally, uncorrelated background noise is analyzed. The noise is modeled by Poissonian
noise (see equation superimposing the fluorescence traces of diffusing particles.

4.2 Evaluation of the simulation engine using FCS

To test the reliability of the simulation engine, we evaluate a set of generated fluorescence
fluctuations with the established fluorescence correlation spectroscopy. If the simulation
works reliably, the input parameters should be recovered. The results are illustrated
in figure 4.1 The autocorrelation curves of each five-fold parameter set are averaged
into one curve and fitted with equation 2.50] Starting with the variation of the single-
molecule rate i in subplot A, almost identical FCS curves are obtained for varying .
All curves share the same amplitude. However, slight differences in noise occur between
the FCS curves at small shifting times 7, whereas a higher single-molecule brightness rate
results in less noise in the autocorrelations. Table [4.2] contains the results from the fit
of the data with the FCS model. The diffusion times from the fit were converted to the
diffusion coefficients via equation [2.48] Despite varying single-molecule brightness rates,
the same mean particle number and same diffusion coefficient is obtained from the FCS
model in each case. This illustrates the insensitivity of the FCS method to molecular
brightness differences. However, there is less noise in the autocorrelation curves with
larger single-molecule brightness rates. This is due to more photon events in these data,
which has a favorable effect on the statistics. Overall, the model fitting results show good
agreement with the original simulation parameters within standard deviations. Subplot
B illustrates the systematic variation in diffusion coefficients. The FCS curves show the
same amplitudes, but there are clear differences in the time course. With increasing
diffusion coefficients, the FCS curves move towards shorter shifting times. Looking at
the model fitting results in table [£.2] the initial simulation parameters are recovered
by the FCS model within standard deviations. Thus, the observed shifts of the data
points along the time axis in the graphs accurately represent the changes in the diffusion
coefficients. Molecules with larger diffusion coefficients diffuse faster. So, they stay shorter
in the detection volume, which shifts the FCS curves towards smaller 7 and vice versa.
Subplot C shows the FCS curves of the systematic variation of the particle numbers in
the simulation volume. There are clear differences in the amplitudes of the curves. Small
particle numbers result in higher amplitudes, whereas large molecule numbers yield lower
amplitudes. Meanwhile, the time dependence of the curves seems to be unaffected.
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Figure 4.1: FCS results from simulated fluorescence traces. The general simulation parameters are:
ro = 0.4um, simulation time ¢ = 10s. A Varying single-molecule brightness rate pg. The other simulation
parameters are 7 = 1, D = 50m?/s and ng, = 20. B Varying diffusion coefficient D. The other
simulation parameters are r = 1, uo = 100kCps and ng,, = 20. C Varying simulated particle numbers
Nsim- The other simulation parameters are r = 1, D = 50 pm? /s and pp = 100 kCps. D Varying geometric
ratio r. The other simulation parameters are D = 50 pm? /8, o = 100kCps and ngiym = 20. The data are
normalized to unity for better comparability.

To compare the particle numbers ng, in the simulation volume with the model fitting
results (V)g, the expected mean particle numbers (N g, in the effective detection volume
must first be calculated via the following relation:

Ve
‘/;im7
whereas Vig is given by equation [2.47, In this form, the results from the model fit
and the simulation parameters can be compared in table [£.2] The results are in good
agreement with the initial simulation parameters within the standard deviations. Since
the amplitude is reciprocal to the mean number of particles, the decrease in amplitude
correctly reflects the increase in particles in the simulation. Finally, subplot D displays
the results for the simulations with varying geometric ratios of the effective detection
volume. For the simulations the lateral expansion rq was kept constant while the axial
expansion zp was increased stepwise. Since this changes the effective detection volume
and thus the amplitude of the FCS curves, the curves are normalized to make them
comparable to each other. The curve progressions for small r differ significantly, while
for larger r there is hardly any difference to see. Simulations with r = 20 were also

(N)sim = Msim (4.2)
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Table 4.2: Results of the fit of the FCS model to the FCS curves of the simulated fluorescence traces.
For the fitting parameters, the respective standard deviations are given.

Subplot A
Varied g (N )it (N )sim Dg; Dgm
40 0.062 £ 0.003  0.064 49.6 £3.1 50
60 0.065 £ 0.005  0.064 497+ 1.7 50
80 0.063 +0.003  0.064 50.14+1.9 50
100 0.063 = 0.006  0.064 50.4 + 2.7 50
Subplot B
Varied D (N )i (N )sim Ds; Dgm
50 0.063 +0.004  0.064 53.1+1.6 50
100 0.064 +0.004 0.064 100.9+5.2 100
200 0.065+0.002 0.064 201.4+59 200
400 0.064 +0.002  0.064 404.7+14.8 400
Subplot C
Varied Nsim <N>ﬁt <N>sim Dﬁt Dsim
20 0.065 +£0.001  0.064 495+ 14 50
40 0.128 £+ 0.002 0.129 49.7+1.9 50
60 0.1954+0.008  0.193 5144+1.3 50
100 0.256 +0.004  0.258 50.4 + 3.6 50
Subplot D
Varied r (Nt {N)sim Dg; Dgn
1 0.063 +0.003  0.064 50.1 4.7 50
2 0.110 £ 0.008 0.110 51.8+ 2.5 50
5 0.191 £0.004  0.193 50.2 2.7 50
10 0.254 +0.009  0.258 53.3 £ 2.7 50

carried out but cannot be distinguished from the curves with » = 10 and are therefore
not shown. The differences occur mainly around the lower part of the FCS curve in the
asymptotic approach to the baseline. However, there is also a slight change in the slopes.
The table also summarized the results of the fitting routine. Because of the model’s
low sensitivity to the geometric ratio, it is fixed during the fitting routine. Again, the
FCS results agree within standard deviations with the initial simulation parameters.

After studying the reliability of the simulation engine by analyzing the fluores-
cence traces with the well-established FCS analysis, we can focus on the evaluation of
the mSMR.
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4.3 mSMR on simulated fluorescence traces

The mSMR is introduced as a new tool to analyze fluorescence traces and to make
statements on the single-molecule level. As already mentioned in the theory section,
the interpretation of the mSMR curves and the autocorrelation curves of FCS analysis
is similar and comparisons between the FCS and mSMR models can easy be made.
We use the data set from the previous section to study the validity of the mSMR
systematically. Like the FCS, the mSMR should reliably reproduce the input parameters
of the simulation. Figure [£.2]shows the results of the mSMR analysis. The mSMR curves
of each five-fold parameter set are averaged and fitted with equation [2.75 Subplot A

04 A ¢ 1o =100kCps 40 ¢ D=50um?/s
¢ 1o =380kCps ¢ D=100um?/s
30 ¢ o =060kCps — 30 ¢ D =200pm?/s
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Figure 4.2: mSMR results from simulated fluorescence traces. The general simulation parameters are:
ro = 0.4 um, simulation time ¢ = 10s. A Varying single-molecule brightness rate po. The other simulation
parameters are r = 1, D = 50 pm?/s and ng, = 20. B Varying diffusion coefficients D. The other
simulation parameters are r = 1, yg = 100kCps and ng, = 20. C Varying simulated particle number
Nsim- The other simulation parameters are r = 1, D = 50 pm? /s and pp = 100 kCps. D Varying geometric
ratio r. The other simulation parameters are D = 50 pm?/s, pp = 100 kCps and ngim, = 20.

shows the mSMR curves for a varying single-molecule brightness rate. Clear differences
appear in the amplitudes , which seem to be proportional to the given single-molecule
brightness rates. The time dependence, on the other hand, appear to be the same for all
curves. It is noticeable that the mSMR curves show a very smooth course. The results
from the model fitting can be found in table 4.3 As with FCS, the mean diffusion
times were converted to the diffusion coefficients via equation [2.48] The fitting results
correspond to the initial parameters of the simulation within standard deviations. The
change in amplitude thus accurately reflects the respective single-molecule brightness
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Table 4.3: Results of the fit of the mSMR model to the mSMR curves of the simulated fluorescence
traces. For the fitting parameters, the respective standard deviations are given.

Subplot A
Varied o Ho fit 10, sim Dsg; Dygim
40 40.5 £ 0.6 40 49.5 £+ 3.6 50
60 60.3+t14 60 50.37 £ 1.7 50
80 79.2 +£1.83 80 50.5+1.6 50
100 984+ 2.6 100 54.2 + 3.1 50
Subplot B
Varied D Mo fit 10 sim Dy Dygim
50 99.5+48 100 53.3+2.5 50
100 98.1 +2.2 100 102.4 £+ 5.3 100
200 99.3+2.5 100 204.2 6.1 200
400 985 +23 100 406.84+16.4 400
Subplot C
Varied Ngim Mo fit 10, sim Dg Dygim
20 101.6 =34 100 4994+ 1.8 50
40 99.5+0.6 100 50.2 2.6 50
60 99.7+1.6 100 51.1+1.1 50
100 100.1 £ 3.1 100 50.5 £ 3.3 50
Subplot D
Varied r Ho fit 10, sim Dg Dyim
1 99.6 = 3.4 100 49.6 +4.4 50
2 99.4+ 3.9 100 51.4+4+24 50
5 99.7+24 100 50.6 £ 2.7 50
10 98.8 +3.3 100 52.94+ 3.2 50

rate, which confirms the visual impressions from the graph plots. Subplot B presents
the mSMR curves for varying diffusion coefficients. As in the FCS analysis in the
previous section, the curves differ only in the time scale. As with FCS, larger diffusion
coefficients lead to a shift of the curves towards smaller sampling times. The amplitudes,
however, are the same for all curves. A look at table shows that the results from
the model fit agree with the initial parameters within standard deviations. Thus, the
observations correspond to the theoretical predictions of the model. Larger diffusion
coefficients mean that the molecules are moving faster, thus having a shorter residence
time in the detection volume. This results in a shift to shorter sampling times. On the
other hand, the single-molecule brightness rates do not differ between the simulation
runs and the amplitudes should be the same, which is what we see. The results of the
varying particle numbers is depicted in subplot C. The four mSMR curves are almost
completely superimposed and show the same amplitudes and time courses. The fitting
results in table confirm this visual impression. No significant differences are observed
in the single-molecule brightness and the diffusion coefficient. Here, the complementary
behavior of the mSMR to the FCS method is evident. While the FCS reacts sensitively to
concentration changes and ignores brightness differences in the molecules, this is exactly
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the opposite with the mSMR. The results are again the same as the initial simulation
parameters within standard deviations. Finally, subfigure D depicts the mSMR data
for different geometric ratios resulting from a stepwise increase of the axial expansion
while keeping the lateral expansion constant. The curve shapes of the mSMR show the
same amplitude, whereas the time courses have small differences. These are noticeably
pronounced for small r and disappear for large r > 5. Between r = 5 and r = 10,
practically no differences can be seen. As with FCS, the dependence of the model on
r is weak for » > 5 and the model fit is therefore performed with fixed r. Table
illustrates that under this condition, the mSMR model can reliably recover the simulation
parameters within the standard deviations.

The mSMR model reliably yields the initial simulation parameters from the fluo-
rescence fluctuation data. The mSMR curves are characterized by their smooth course
and seem to be less noisy than the FCS curves.

4.4 Consideration of measurement artefacts

So far, fluorescence traces have been studied under ideal conditions. In real measurements,
however, measurement artefacts occur. The simulation engine is an ideal tool to access
these effects for a systematic study. To study the influence of noise components in more
detail and evaluate the correction terms, detector afterpulsing, detector dead time, and
uncorrelated background noise is considered.

4.4.1 Afterpulsing

To visualize the impact of afterpulsing on FFS experiments, we compute a series of
simulations with gradually increasing afterpulsing probabilities. The results of the
mSMR and FCS analyses are shown in figure [4.3] whereas the curves of each five-fold
parameter set are averaged. Subplot A shows the mSMR for varying afterpulsing
probabilities. An additional exponential decay in the mSMR curves at short sampling
times is striking. With increasing afterpulsing probabilities, this effect increases. But
even at a low afterpulsing probability of 0.5 %, a significant impact on the mSMR curves
at short sampling times is observable. For larger sampling times, the afterpulsing effect
completely disappears and the remaining characteristic curve of the mSMR is preserved.
In subplot B we can see the results of afterpulsing correction using the equations|3.30] and
.31 The mSMR curves are now in good agreement with each other. For the afterpulsing
probabilities of 0.5% and 1.0% there is practically no difference to the data without
afterpulsing. Only for afterpulsing probabilities of 1.5 % a slight overcompensation of the
mSMR curves can be seen. This shows a limitation of the correction, since only first-order
afterpulsing events are taken into account. However, the simulation also models higher
order afterpulsing events. Meaning, one afterpulsing event can cause further afterpulsing
events. However, this poses no problem in practice since modern photodetectors have
afterpulsing probabilities of < 1%, which makes higher order afterpulsing events rare.
Interestingly, the afterpulsing effect is not visible in the FCS analysis (see subplot C).
But the FCS curves are significantly noisier than the corresponding mSMR curves. This
becomes especially evident in the direct comparison between subplot B and C. Because
we expect afterpulsing is to be also an issue in the FCS analysis, the time steps in the
simulation are probably too large to resolve afterpulsing in the FCS. Therefore, we refer to



4 The mSMR on simulated fluorescence fluctuations 57

Py=0.0%
Py=05%

<S> o @

Py=0.0% Figure 4.3: The influence of afterpulsing on
Py=05% mSMR and FCS curves. The general param-
eters are: rg = zg = 0.4um, simulation time
t = 10s, single-molecule brightness rate pg =
100 kCps, diffusion coefficient D = 50 ppm?/s
and number of simulated particles N = 20. The
afterpulsing probability is varied with P4, =
0.0%, 05%, 1.0% and 1.5%. A Averaged
mSMR from five simulation runs. B Afterpuls-
ing corrected mSMR. C FCS analysis of simu-
lated fluorescence traces for comparison.

S o o @

data sets with 10x more time steps (75000000 s™! instead of 7500 000s™!) and can indeed
observe afterpulsing effects in the autocorrelation curves (see figure in the appendix).

To conclude, the correction of afterpulsing for commonly occurring probabilities
works well for the mSMR analysis. Especially for the analysis of photokinetic effects a
correction is necessary.

4.4.2 Detector dead time

For the analysis of detector dead time, fluorescence fluctuations of particles with
increasing single-molecule brightness rates are computed, while the detector dead time is
set to 100ns. For a constant particle concentration, this leads to higher photon counts
increasing the probability that photon events occur within the dead time and thus are
not counted. The averaged results of each five-fold parameter set are included in figure
4.4l In subplot A, the normalized dead time affected mSMR curves are shown. Due to
the different single-molecule brightness rates, a meaningful comparison is not possible
without normalization. So, simulations without detector dead time are also conducted
to normalize the amplitudes of the dead time affected mSMR curves. For increasing pi,
a decrease in the mSMR curves appears, especially at short sampling times. While for
small 1o, the mSMR is hardly affected, larger jy even cause a decrease of the amplitude.
Without correction, this strongly affects the evaluation of the mSMR curves. The dead
time corrected mSMR curves can be seen in subplot B. Equations [3.30] and [3.31] were
used for correction. Now, all curves form a plateau at about u(7") = 1.0kCps. However,
for the mSMR with very bright 1, we can still detect a slight downward deviation from
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the other curves. The FCS analysis of the simulated fluorescence traces is shown in
subplot C. As for the mSMR, we see an influence of the detector dead time on the data
curves. Compared to the mSMR, the deviations are significantly smaller, but they are
clearly present. In contrast to the mSMR, however, no correction is available for FCS
analysis.

The previous results proved a strong dead time effec on the mSMR curves at high
count rates. However, this can be eliminated by an appropriate correction.

4.4.3 Background noise

In this section, we subject the background noise to a more detailed analysis. For this,
the simulated fluorescence traces are overlaid with different amounts of Poissonian
noise. For better statistics, each simulation run is conducted five-fold and averaged after
analysis. The results of the analysis are illustrated in figure [£.5] The mSMR data series
for increasing background noise fractions are included in subplot A. With increasing
noise, the amplitude of the mSMR curves decreases. Without correction, this leads to
a significant underestimation of the single-molecule brightness rate. For the correction
we need to determine the background noise of the measurement. In practice, we would
perform a blank measurement for this purpose. In the present case, we know the noise
component from the simulation and can correct the mSMR directly using equation [3.37]
The results of the background noise correction are depicted in subplot B. The correction
brings the mSMR data series into precise alignment. For FCS analysis, the same effect of
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Figure 4.5: The influence of background noise on mSMR and FCS curves. The general parameters
are: 1o = zg = 0.4 um, simulation time ¢ = 10, single-molecule brightness rate pg = 100 kCps, diffusion
coefficient D = 50 pm? /s and number of simulated particles N = 20. The fluorescence traces are overlayed
by varying noise fractions of (b) = 0kCps, 1kCps, 3kCps and 7kCps. A Averaged mSMR for varying
noise fractions. B Noise corrected mSMR. C Averaged FCS for varying noise fractions. D Noise corrected
FCS.

background noise is evident in subplot C. Again, the amplitude is reduced by increasing
noise components. This leads to an overestimation of the actual number of particles in
the observation volume. The correction here is analogous to the mSMR using equation
The corrected FCS data series in subplot D also show good agreement. However,
once again, the FCS curves are significantly noisier than the mSMR curves.

The influence of background noise on the FFS analyses is evident. Without cor-
rection, we would significantly underestimate the single-molecule brightness rate in
the mSMR and significantly overestimate the mean particle number in the FCS. After
correction, comparable results are obtained. In real measurements, the background noise
can be easily determined by a blank measurement and accordingly corrected.
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4.5 Discussion

The Monte Carlo method is a powerful tool to analyze fluorescence fluctuations and
related effects. We used the Monte Carlo method to subject the mSMR model to a sys-
tematic examination. Therefore, we first evaluated our implementation of the simulation
using the established FCS method. For this, fluorescence traces with varying parameters
were generated and evaluated systematically. The molecular properties (single-molecule
brightness rate, diffusion coefficient) were changed stepwise, as well as the experimental
parameters (particle concentration, geometric ratio of the detection volume). The initial
input parameters of the simulation could be retrieved within the standard deviations.
This observation is important to be able to derive reliable statements about the mSMR
method. An important observation is that the FCS has only a low sensitivity to correctly
resolve large axial to radial ratios of the detection volume (i.e., 7 > 5). However, if the
correct geometric ratios are known, a reliable evaluation of the fluorescence fluctuations
is still possible. This has a direct implication on later measurements with the confocal
plate reader (see chapters [5| and @, which uses a long-distance objective lens. With
such an optical setup, we expect large axial to radial ratios of the detection volume.
Therefore, to ensure a reliable evaluation, the confocal plate reader must be thoroughly
calibrated to get the precise geometric proportions of the detection volume. Since it is
not practical to fit real measurement data with freely adjustable r, the geometric ratio
should be determined with a concise calibration routine. For this, fluorescent dyes with
known concentration and well described diffusion coefficients (e.g. Alexa Fluor 488) are
suitable. It is recommended to determine the device parameter r via the theoretical
effective volume as described in section . Afterwards, this value should be fixed for
the fitting routine. In addition to these practical hints, the reliability of the simulation
engine can be councluded. Thus, we can use it to conduct further studies to verify the
mSMR model. However, a healthy skepticism should always be maintained with the
results of simulations since they are merely models of reality and can therefore only
represent it to a limited extent.

After successfully verifying our implementation of the Monte Carlo method, the essential
part of this chapter comes into focus, the evaluation of the mSMR model. The mSMR
showed that it can derive the initial simulation parameters from the fluorescence
fluctuations within the standard deviations, as FCS did. Thereby, it is shown that when
varying the diffusion coefficients and geometric ratios, the resulting graphs of the FCS
and mSMR analyses display comparable progressions. In contrast, the graphs for varying
single-molecule brightness rates and particle numbers show significant differences. The
FCS can resolve subtle concentration differences via the amplitudes, while mSMR reveals
subtle differences in single-molecule brightness rates in the amplitudes. Since we expect
this observation from theory (compare figures and , we can conclude that the
mSMR model reliably describes idealized fluorescence fluctuation data. By comparing
the graphs of the two models more closely, the smoother mSMR curves compared to
FCS become apparent. Especially for fluorescence traces with few photon events, as they
occur at low concentrations or for particles with low single-molecule brightness rates,
this aspect becomes clearly visible. In addition, the mSMR curves are slightly shifted
along the time axis to longer time scales compared to FCS. Together with the smoother
curves, this could be an important advantage of the mSMR model over the FCS in the
analysis of fluorescence traces at small time scales. This becomes especially important
in the study of photokinetic effects, as they take place at very short time scales. We
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will therefore study this aspect in more detail in the following chapters [ and [6] by ex-
amining the photokinetic effects of triplet state and isomerization in real FF'S experiments.

In addition to these idealized fluorescence fluctuations, we addressed the influence
of measurement artefacts. These experiments are an excellent example of the benefits of
simulation since measurement artefacts are difficult to study systematically under real
conditions. The simulation enables to examine this aspect in more detail.

Firstly, the effect of afterpulsing is discussed. When afterpulsing is activated, the mSMR
analysis shows an additional exponential decay at very short sampling times, whereas the
data at larger sampling times are not affected. In principle, the mSMR curves could still
be evaluated by simply omitting the data at short sampling times before fitting. However,
the data at short sampling times are essential for subsequent photokinetic analyses and a
correction of afterpulsing is useful. Interestingly, no comparable effect is observed in the
FCS analysis. Since the effect of afterpulsing is described in the literature for FCS (see
among others 85, [86]), it can be assumed that FCS requires lower time resolutions to be
affected by afterpulsing. The time resolution in the simulation is based on the diffusion
properties of the simulated particles via equation and not on the time scale of the
afterpulsing. Therefore, the used time resolution in the simulation might be too large. In
fact, by reducing the time intervals in the simulation to one tenth, the afterpulsing effect
becomes also visible in the FCS analysis. Using equations and to correct the
first and second cumulants in the mSMR model, the afterpulsing effect can be eliminated
and the data can be fitted using the mSMR model. In FCS, however, afterpulsing
correction requires a time-correlated single photon counting (TCSPC) setup that records
photon lifetimes using a pulsed laser [85], 86]. When using a continues wave laser a direct
correction of the autocorrelation curves is not available.

Secondly, the effect of detector dead time is subject to discussion. The number of
photons at the detector is decisive for the strength of the effect. In principle, the count
rate can be increased via the single molecule brightness rate or the number of simulated
fluorophores. Since increasing the number of simulated fluorophores drastically increases
the computational time of the simulation, the single molecule brightness rate is changed.
Both the normalized mSMR curves and the FCS curves show are sensitive to dead time.
But the effect on the mSMR curves is much more pronounced than on the FCS curves.
Interestingly, a reduction not only on short-time scales but over the whole amplitude
arises. This leads to an underestimation of the single-molecule brightness rates in mSMR
analysis or an overestimation of the mean particle numbers in FCS analysis. Therefore,
unlike afterpulsing, detector dead time cannot be bypassed by omitting the affected data
points at short-time scales. Therefore, no meaningful evaluation is possible without a
suitable correction. For the mSMR the effect of dead time can be corrected via equations
13.30] and [3.31] However, at the largest single molecule brightness, the correction was
incomplete, and the theoretical amplitude could not be recovered. The correction is only
valid for (k)§ < 1 (see section [3.3.3)), which is no longer valid for high-count rates due
to the high single-molecule brightness rate. Thus, strict compliance with the criterion is
required, otherwise the correction itself is erroneous. This shows that already during the
experimental design the expected count rates have to be kept low, e.g. by choosing low
excitation powers and by a low number of fluorescent particles in the detection volume.
To the best of our knowledge, there is no dead time correction for FCS to date, so the
only reliable action against detector dead time in FCS measurements is to work with low
excitation powers.
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Thirdly, the influence of Poissonian background noise on the mSMR and FCS is examined.
In both cases, increasing noise leads to a reduction of the amplitudes in the models.
However, the effect of background noise can be completely corrected in both models.
The only information needed for correction is the background noise that can be acquired
in a separate blank measurement in real world applications.

In summary, the preceding experiments demonstrated some essential properties of
the mSMR model. Most importantly, the mSMR can derive the input parameters of the
simulation from the generated data sets. Thereby, the mSMR curves are smoother and
slightly shifted to larger time scales compared to FCS. Especially at short-time scales
the mSMR shows smaller variances in the data than the FCS. In addition, the ability to
correct the detector artefacts of afterpulsing and dead time at the cumulant level is an
advantage of the mSMR over the FCS and could facilitate the analysis of processes at
short-time scales. When studying photokinetic effects, this could be a decisive advantage
and make short-time processes more amenable to evaluation. Having shown that the
mSMR model allows reliable evaluations of simulated fluorescence traces, we can proceed
with measurements on real dye systems using the home-built confocal plate reader.
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5 The mSMR 1n real measurements

Up to this point, idealized simulation data were analyzed. We now want to get a step
further and consider genuine fluorescence fluctuation data. Two objectives are envisaged.
First, our home-built confocal plate reader (see section is to be evaluated and cali-
brated for the collection of FFS data. Second, the mSMR model is to be studied under
real conditions and compared to the FCS model. Thereby, we aim to make FFS analyses
available to a broader community to elucidate biological questions.

To initially establish well-defined conditions and keeping the complexity low, measure-
ments on mere dye solutions are conducted. The fluorescent dye Alexa Fluor 488 is used,
which is characterized by a large single-molecule brightness rate while showing a low
tendency to switch to the long-lived triplet state. This property mitigates the effect of
fluorescence saturation (compare figure [2.3)), allowing measurements over a wider range
of excitation powers while maintaining an approximately linear fluorescence increase. In
addition, the diffusion coefficient of Alexa Fluor 488 is well determined [89]. Because of
the aforementioned properties, Alexa Fluor 488 is well suited for the evaluation and cali-
bration of the confocal plate reader using FCS analysis. We want to shed light on whether
the confocal plate reader is capable of single-molecule detection and can automatically
achieve highly reproducible measurement results.

To evaluate the mSMR model, the previous data set is re-used to obtain a high degree of
comparability between the FCS and mSMR models. Althought, common measurement
artefacts can be corrected in simulated data sets, the performance of the correction with
real measurement data is not yet clear. Therefore, the correction of measurement arte-
facts and their successive correction is studied separately. Afterwards, the similarities
and differences between the two models are compared and discussed. This will take place
both at the level of the diffusive model and at the level of the triplet model. This allows
us to compare the processes on both long- and short-time scales and drawing conclusions
about the validity of the FCS and mSMR models to describe the photokinetic effect of
triplet transition. After the visual comparison, a statistical analysis helps to compare of
the models in greater thoroughness. It focusses on experimental conditions with low exci-
tation powers and low molecular concentrations to study the results from the fit routines
in more detail. Parts of this chapter were previously published in Sparrenberg et al. [24].

5.1 Experimental procedure

The measurements in this chapter are performed using a home-built confocal plate reader.
The plate reader automates the measurement procedure by independently approaching
the wells of a microtiter plate, finding the appropriate focal plane and performing five
measurements at adjacent locations in the well. The measurements are carried out exclu-
sively on Alexa Fluor 488 solutions. Table summarizes the measurement parameters.
Alexa Fluor 488 is diluted in ultra pure water to set up concentration steps from 0pM
to 500 pM. Then, 20 pL of each dilution step are loaded onto a 384 well microtiter plate.
The filled wells are then covered with a foil to minimize evaporation. Data collection is
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Table 5.1: Measurement parameters of Alexa Fluor 488 studies.
Sample preparation

Microtiter plate 384 well (puclear, non-binding, Greiner BioOne, Germany)
Fluorescent dye Alexa Fluor 488 (NHS ester, ThermoFisher Scientific, USA)
Solvent Water (HPLC grade, Roth, Germany)

Concentration steps | 0, 5, 10, 20, 25, 50, 100, 200, 300, 400, 500 pM
Sample volume 20 L,

Setup parameters

Measurement time 10s
Sampling time 1x107%s
Measurement repeats | 5

Laser power Varied
Excitation light 488 nm
Emission filter 535/50
Objective lens 63x/0.75 LD

performed for 10s with a sampling time of 1 ps. The excitation intensities vary between
30 pW to 140 pW and are indicated in the results.

For the latter statistical analysis of the two models, 39 adjacent wells of the microtiter
plate are prepared with 50 pM Alexa Fluor 488 solution in ultra pure water and measured
at 10, 30 and 50 pW laser power. The remaining measurement parameters are the same
as given in table [5.1]

5.2 Evaluation and calibration of the confocal plate
reader

In the following section the confocal plate reader is introduced and evaluated as a tool
for FF'S analysis.

Evaluation

Since the home-built confocal plate reader is used for all measurements on real samples,
we first need to address its suitability for collecting FFS data. For this, the plate reader
conducts measurements on Alexa Fluor 488 dilution series. Special attention is given to
the reproducibility as well as the ability to perform measurements on the single-molecule
level.

Four different excitation powers (10 W, 30 pW, 50pW and 70 pW) are used for the
measurements because of two reasons. First, this provides more measurement data for
evaluation and thus better statistics. Second, because of fluorescence saturation (see
section , suitable excitation powers must be ensured, where no deviations occur.
For evaluation, the fluorescence count rates from the measurement are first considered.
Then, the autocorrelation curves of FCS analysis are calculated according to section [3.3.1]
to analyze the mean particle counts and diffusion times. Figure [5.1] shows the results of
the measurements. In subplot A, the fluorescence count rates of the dilution series at
different excitation powers can be seen. The fluorescence counts of each dilution series



5 The mSMR in real measurements 65
60
A ¢ 0.07TmW 504 B 4 20pM
50 4 I ‘ I
_ 404 g 15 L2
£ 2 < :
30 - ©
= T 10 %
= 920 A —
<
5 -
10 -
0 0 A
0 100 200 300 400 500 104 102 10°
Concentration [pM] T [s]
0.25
90 4 4 0.07TmW D & 007mw
¢ 0.05mW 0.90 - ¢ 0.05mW
L5 ¢ 0.03mW 9 0.03mW
9 0.0lmW — 0.15 - 9 0.0lmW
= o g 7o = 0.095ms
~ . = =) J—
& 0.10 v
& 3 3
0.5 1 0.054 &
0.0 0.004—
T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Concentration [pM]

Concentration [pM]

Figure 5.1: Evaluation and calibration of the confocal plate reader using measurements on Alexa Fluor
488 dilution series. The fluorescence fluctuations are retrieved at different excitation powers and analyzed
using the FCS method. A Fluorescence counts of the measurement. The data are fitted with a straight
line f(z) = Bo + B1z. B Noise-corrected and averaged FCS curves at an excitation power of 70 pW. C
The average number of particles in the detection volume. The data are fitted with a straight line through
the origin f(z) = f1x. D Averaged mean diffusion times from the FCS analysis.

increase as a function of concentration and can be well described by a straight line.
The slopes of the straight lines are almost proportional to the excitation power. The
linear relationship in the count rates indicates that the dilution series were accurately
prepared and that further analysis is promising. Additionally, the count rates have
only small error bars, which shows the plate reader’s ability to perform measurements
automatically and reproducibly. The results of the FCS analysis of a dilution series can
be seen in subplot B. It shows exemplary FCS curves of the dilution series recorded at
70 W excitation power. The curves of the five-fold measurements of each concentration
step are averaged and corrected for background noise according to equation [3.34l The
decrease in the amplitudes for increasing concentrations can be clearly seen. At the
lowest dye concentration of 20 pM, the correlation curve still shows sufficiently small error
deviations and little noise, allowing a meaningful evaluation. The amplitude is about 17,
which corresponds to a mean particle number of ~ 0.06 in the effective detection volume.
The confocal plate reader does indeed measure fluorescence fluctuation events caused
by single molecules traversing the detection volume with high reproducibility. We now
focus on the model fit using equation 2.52] Because the exact axial to radial ratio r of
the optics is not known at this point, we must estimate it. Since, the FCS is insensitive
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to large r (see section and a divergence of r for unconstrainted fitting (see section
2.2.3) is expected, we can estimate a ratio of r = 20 without introducing large errors.
Subplot C shows the mean particle number (V) of the dilution series recorded at different
excitation powers. Only a slight increase in the mean particle numbers for increasing
excitation powers is observable and the relationship between the weighted mean particle
numbers of each dilution step and the concentration can be well described by a straight
line. Subplot D shows the mean diffusion times from the FCS analysis. The diffusion
times for all excitation powers are superimposed. Visually, no significant difference
between the measurement series can be detected and the mean diffusion times remain
nearly constant over the whole concentration range. Since the results in subplot C and
D show only minor deviations in the results, the excitation powers used are adequate for
the Alexa Fluor 488 measurements.

The confocal plate reader automatically performs FFS measurements and shows
only small deviations between the measurements for the selected excitation powers,
meanwhile exhibiting single-molecule precision. We therefore proceed with the calibration
of the measurement optics.

Calibration

The calibration of the confocal plate reader aims to determine the geometric dimensions
of the effective detection volume. This information is important for two reasons. First,
the exact volume is needed for the concentration determination of the molecule under
study. Second, the dimensions of the detection volume give a ratio r that is used in the
FCS and mSMR models.

To determine the geometrical parameters of the measurement system, we start with the
line fit in subplot C of figure[5.1] The slope provides the information required to determine
the effective detection volume of the system, which is given by:

(V)

‘/e: )
TN C

(5.1)

with N, as Avogadro constant (Ny = 6.022 x 10** mol ') and C' as sample concentration
in molar units. We reshape equation to express the effective detection volume as a
function of the slope:

(N) = (VagNa) . (5.2)

From equation , with VogNy = 4.1 x 1073 1/pmol, we get Vg = 7fl. This method
is appropriate even the geometric dimensions of the effective detection volume are
unknown, since they have no effect on the amplitude of the FCS curves. In the next step,
the geometric ratio r = f—g is determined. Since the FCS model cannot resolve r well
and since r tends to diverge during the fitting routine, the mean diffusion time is used.
For an estimated r = 20, the results in subplot D in figure give 7p = 9.7 x 1072 ms.
Alexa Fluor 488 has diffusion coefficient of 435pum?/s [89, p. 1442]. With equation
[2.48) a known lateral expension g = 0.4pm and the effective detection volume [2.47]
an axial expension of zg = 7.9 pm is calculated, yielding r = 2 = 19.8. This is close
to the originally estimated value. In case of significantly larger deviations, the above
calibration procedure must be repeated with the new estimator for r. The final results
of the calibration are summarized in table 5.2l
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Table 5.2: Calibration results

Parameter | Value
Verr 71

To 0.41m
20 7.9 pm
r 19.8

The confocal plate reader reliably and reproducibly performs measurements at the
single-molecule level. The system is calibrated and thus readily available for further
studies.

5.3 The mSMR under real measurement conditions

It is time to apply the SMR method on real fluorescence fluctuation data. Section
already showed the models suitablility for the analysis of simulated data traces. How-
ever, only artificially generated measurement artefacts are considered so far. Hence, real
measurement artefacts will be addressed in the following.

5.3.1 Detector artefacts

Using the Alexa Fluor 488 dilution series recorded at 30pW in section for the
calibration, we begin studying the measurement artefacts. From the fluorescence traces,
the mSMR is calculated according to section The data points are successively
corrected for detector dead time, afterpulsing and uncorrelated background noise, which
can be viewed in figure Subplot A displays the raw mSMR curves of the dilution
series. The amplitudes of the mSMR curves differ. For lower concentrations, the
amplitudes are significantly lower than for the higher concentrations. In addition, the
curve progressions at small sampling times differ. In contrast to the simulated data, no
clear plateau is formed for small 7. We start with the correction of the detector dead
time. The manufacturer of the detector specifies a value of 70ns for the detector dead
time. Equations [3.30] and [3.31] correct the first two moments of the photon counts for
detector dead time with t = 70ns and P4 = 0. Subplot B shows the results. The change
in the curves is subtle, since moderate laser powers and moderate concentrations are
used. Despite this, a slight exponential increase occurs in all data sets at small sampling
times. The correction illustrates the reducing effect of detector dead time on Mandel’s
Q parameter and thus on the mSMR. This leads to an underestimation of the mSMR
at high photon count rates. Both high laser powers and high concentrations worsen
the effect. For very high count rates the dead time starts to dominate and prevents,
a meaningful evaluation of the mSMR. In the next step, afterpulsing is additionally
corrected. For our detector, we estimate an afterpulsing probability of 0.6 % which is a bit
below the manufacturer’s specification (< 1%). Subplot C shows the correction results
using equation [3.30] and [3.31] with ¢ = 70ns and P4 = 0.006. Now, both afterpulsing
and dead time are corrected in the data set. A comparable increase for short sampling
times is now visible for all data series. The part of the afterpulsing that leads to an
apparent increase of the () parameter is eliminated. The remaining exponential decay at
short sampling times is caused by photokinetic effects, which were not modelled by the
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Figure 5.2: Stepwise correction of the mSMR data. Dilution series of Alexa Fluor 488 excited at 30 ptW.
A Uncorrected data from the evaluation. B Dead time corrected data. C Dead time and afterpulsing
corrected data fitted with equation D Dead time and afterpulsing corrected data with correction
of background noise using equation Data are fitted with equation

simulation engine. The data points can be accurately fitted with equation which
also includes triplet state transitions. In the last step we correct the data series for
background noise using equation [3.37] The background noise is determined by a blank
measurement giving 0.5kCps. Subplot D shows the fully corrected mSMR results. By
correcting for detector dead time, afterpulsing, and background noise, the data points of
all concentration steps are in nearly perfect alignment. The fit of the data points using
equation is also included. This result is consistent with the observations from the
previous simulations. Since the mSMR only responds to the single-molecule brightness
rate and not to the concentration.

After correction, the mSMR analysis of a Alexa Fluor 488 dilution series yields
comparable results for all concentration steps. This shows the importance to correct the
detector artefacts afterpulsing and detector dead time as well as background noise. In
practice, it is not important whether the mSMR curves are corrected for background
noise, or whether the fitting results are corrected for background noise. For better
illustration, however, a direct correction of the mSMR curves is more meaningful.
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5.3.2 Visual comparison of FCS and mSMR

The following section addresses the question of how the mSMR method performs in com-
parison to the FCS method. This is done on two levels, visually and statistically. First,
the models are compared visually, while distinguishing between the diffusive part and the
triplet part.

Diffusion model

To visually compare the diffusion models of mSMR to FCS, we use the same data set as in
section [5.2] for evaluation and calibration. The mSMR is calculated according to section
[3.3.2 on the fluorescence traces of the dilution series and the measurement artefacts are
corrected. Figure [5.3] subplot A shows the single-molecule brightness rates jo from the
mSMR analysis. A clear relation between the single molecule brightness rate and the
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Figure 5.3: The mSMR on real measurement data. For better comparability, we use the data set from
section [5.2| obtained from Alexa Fluor 488 dilution series. A The single-molecule brightness rate from
the dilution series for varying excitation powers. B The averaged single-molecule brightness rate of each
dilution series as a function of excitation power. The data are fitted with equation[5.8] C The averaged
mean particle number in the detection volume of all excitation powers from FCS analysis compared to the
mean particle number from mSMR analysis derived from single-molecule brightness rates. The straight
line fit for both data series goes through the origin. D The averaged mean diffusion times mp from FCS
analysis compared to results from mSMR, analysis for all excitation powers.

excitation power is visible. For concentrations > 50 pM almost constant single-molecule
brightness rates are received for the respective excitation power. At lower concentrations,
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however, the data are significantly noisier. To take a closer look at the relationship
between single-molecule brightness rate and excitation power, the py of each dilution
series are averaged (subplot B). g increases sublinearly as a function of excitation power.
The fluorescence model 2.8 can be used to describe the data. To apply the model, the
excitation intensity must be first converted to the excitation power. For this, we assume
a Gaussian profile for the intensity distribution in polar coordinates.

Hn@:h<é%):@$) (5.3)

with Iy being the amplitude of the internsity at the center of the beam and being z the
propagation direction of the beam along the axis. r(z) is the radius at which the intensity
decrease to % of their axial values. o = r(0) is the waist radius. r(z) is given by

m@:n)1+<ﬁ>% (5.4)

2R

2
zr = —2* is the Rayleigh range, with the wavelength X and the index of refraction n.
The integral over the cross-sectional area traversed by the laser beam gives the excitation
power. Thus, we consider the area passed through at z = 0, so that r(0) = ¢ applies.

+00 Foo
P= / I(r,0)dA = 27T/ I(r,0)rdr (5.5)
0 0

The integral can be understood as a sum of infinitesimally thin tubes. The solution gives
as an analytical expression for the relationship between the excitation power and the
excitation intensity.

P = [excﬂ-rg
2
2P
= [exc - m (56)

Inserting the derived equation [5.6|into equation from the theory section [2.1] gives:

2P

Ckﬂ re I
F(P) = 0 5.7
(F) 1+Q1+—ﬂf§t’[5 (5:7)

In this expression, with the photokinetic parameters of Alexa Fluor 488 from table [2.1|and
with the calibration results in table all quantities except the parameter C' are known.
Assuming the fluorescence rate and the single-molecule brightness rate to be proportional,
yields the following expression:

2P

C/ kﬂ 7'r7’E I
P) = 0 —. 5.8

For C" = 4.00 x 1079 kC, equation gives a good description of our data and provides a
link between theory and experiment. The results of the amplitudes of the two models are
to be compared. Since the mSMR analysis provides the single-molecule brightness rate, it
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must be converted to the average particle number in the effective detection volume. The
relation is given by:

vy =81 (5.9)
Ho 72

The average count rates (k) are depicted in figure 5.1l Because of a different definition of

the effective detection volume in the models, a scaling factor of 75 = 273/2 is needed for

comparison. Subplot C shows the mean particle numbers from FCS and mSMR analysis.

Both models give essentially the same results for (V). By fitting the data with a straight

line and calculating the standard error of the slope via

Yo (Y — yi)? 1

Tl o2 (5.10)

0B, =

the flollowing slopes and standard errors are obtained for the two models:

Bircs =410 £ 6 M,
ﬁl,mSMR =407£6 pMil.

There is no difference observable in the slopes, which initially does not allow any distinc-
tion between the models. Now the temporal changes are to be studied, i.e., the diffusion
times. The data are directly comparable and displayed in subplot D. For concentrations
> 50 pM, almost constant diffusion times can be seen. At small concentrations, fine dif-
ferences appear and the standard deviations increase. Averaged over all concentration
steps, the follwing mean diffusion time are retrieved:

7__D,FCS = 0.095 + 0.004 s,
To,msMr = 0.094 &= 0.005 ps.

Here too, no difference in the results of the mSMR and FCS analysis can be stated. The
statistical comparison in section [5.3.3] will show if this holds for a larger data set. But
before, triplet effects are visually considered.

Triplet model

To compare triplet state characteristics in the mSMR and FCS models, we take a power
series of an Alexa Fluor 488 solution of 500 pM concentration. By gradually increasing
the excitation power, the effects of the triplet state should become more apparent. The
excitation powers are 50, 60, 70, 80, 90, 100, 110, 120 ,130 and 140 pW. We evaluate the
fluorescence traces using the FCS and mSMR and perform the corrections as described in
section [5.3.1] Figure shows the results of the analysis. In subplot A displays mSMR
curves at different excitation powers. The amplitudes of the curves increase for higher
powers. To better visualize the triplet components of the curves, the mSMR curves are
divided by the diffusive part.

w(T)
Ty (T) = T (T (5.11)
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Figure 5.4: The triplet effect in real measurements. A power series is conducted on an Alexa Fluor 488
sample with 500 pM concentration. A mSMR curves for the laser powers 50 pW, 80 pW, 110 pW and
140 uW. B Division of the data series from subplot A by the diffusive term T'g;g of the mSMR model
to get the triplet term Iy, of the data. C Triplet part Fi,ip from the model fit of the FCS and mSMR
analysis. The solid line represents a fit of the mSMR results with a straight line. D Triplet decay rate
Terip from the model fit of the FCS and the mSMR analysis. The solid line indicates the weighted average
of the relaxation times from the mSMR model over all studied excitation powers.

This step yields the triplet component of the original data series, shown in subplot B.
In this representation, the increase of the triplet fractions Fi,, as a function of excita-
tion power is evident. At larger excitation powers, a fluorophore undergoes more exci-
tation/relaxation cycles, which raises the electron’s probability of transitioning from the
short-lived S state to the long-lived triplet state T) (compare figure . Subplot C
illustrates this relationship. The dark triplet fraction Fi,, and excitation power show
an almost linear relationship. For comparison, the results of the FCS analysis are also
included. Visually, there is no significant difference in the results of the two models, but
the line fit shows slight distinctions:

Fraip. vos () = 0.105 4 0.0013z,
Fiip, msmr () = 0.122 4 0.0010z.

Subplot D shows the relaxation times 7, from the triplet models. Over the examined
excitation powers, the relaxation times for the mSMR model are almost constant, whereas
the FCS model provides somewhat larger relaxation times and stronger deviations at low
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excitation powers. The weighted means and corresponding standard deviations are:

7_—trip,FCS =51%+1.3 Bs,
7_—trip,mSMR =484+0.5 ns.

The results show that the mSMR model reproduces well the photokinetic effect of the
triplet transition. Thereby, the mSMR visually exhibits good comparability to the FCS
results. For the relaxation times, the mSMR method demonstrates consistent results over
even a wider range of excitation powers.

5.3.3 Statistical comparison of FCS and mSMR

This section address the question of whether statistically robust differences can be found
between the FCS and mSMR models. The previous results in section showed
visually no differences in the diffusion model I'gigz. Whereas the triplet model I'yipin
section [5.3.2l indicated some differences. We will now examine whether these observations
stand up to statistical analysis.

The data basis for the comparison are measurements on 50 pM Alexa Fluor 488 solutions
at excitation powers of 10, 30, 50 and 70 pW. All fluorescence traces are evaluated with
the mSMR and the FCS method. The results of the five-fold measurements of each well
are averaged to get a total set of 39 data points. To begin with, the parameters are tested
for normal distribution. For this, the Z-scores are calculated using equation and a
Kolmogorov-Smirnov test for normal distribution is performed. The null hypothesis Hj is
that theobserved distributions correspond to a normal distribution (& = 0, 0 = 1). The
statistical significance is in all cases a = 0.05. To compare the mean particle numbers,
the single-molecule brightness rates py of the mSMR are first converted to the mean
particle numbers using equation . For the remaining parameters (mp, Firip, Tirip), 1O
conversion is necessary and the Z-scores can be calculated directly. All test statistics can
be found in tables and in the appendix. According to the Kolmogorov-Smirnov
test, the assumption of normally distributed papameters is justified in all cases and the
variances and means of the parameters can be further analyzed. The Brown-Forsythe
test is suitable for studying variances [I06]. It verifies whether the sample variances
differ significantly. The null hypotheis is that there is no significant difference between
the variances. To compare the mean values of the two models, Welch’s t-test is used
[107]. Unlike the standard t-test, Welch’s t-test does not require homoscedasticity and
seems to be more robust for the given issue. Again, the null hypothesis is that there is
no significant difference between the means of the models. The summarized results of
the comparison can be seen in figure [5.5] Starting with the results of the diffusive part of
the FCS and mSMR analysis, subplot A shows the mean particle numbers for different
excitation powers. There is practically no difference between the models, and for both the
variance and the mean, no statistically significant differences are found. However, a slight
increase in the mean particle number is pronounced with increasing excitation powers in
both models. A similar picture emerges for the mean diffusion times in subplot B. The
variances and the mean values do not differ significantly between the two models. Here
too, a slight increase in the mean diffusion time is observed with increasing excitation
powers. In the following, the results of the triplet part of the models will be addressed.
Subplot C shows the triplet fractions Fiip. A distinct difference between the two models
appears, with the results converging at larger excitation powers. The statistical analysis
shows a significant difference in both the variances and the means of the triplet fractions,
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Figure 5.5: Statistical comparison of the FCS and mSMR models. Measurements are conducted on
50pM Alexa Fluor 488 solutions at varying excitation powers. 39 wells are measured at 5 positions.
The variances and means of each fitting paprameter are statistically analyzed (o = 0.05). The asterix
(*) indicates significant differences in the means and () shows significant differences in the variances
between the models. A Mean particle numbers (N) of the diffusive part Tqig. B Mean diffusion times
Tp of the diffusive part I'qig. C Triplet fractions Fi,i, of the triplet part I't;ip. The line fit from figure
@ subplot C is shown. D Relaxation times 7y, of the triplet part I'yip. Also, the mean relaxation time
from figure @ subplot D is included.

which persists even at the highest excitation power studied. While the mSMR results
show a good agreement with the results from section [5.3.2] the FCS results are clearly
too high. Finally, in subplot D the relaxation times 7, from the fits are given. The
relaxation times from the FCS analysis are significantly larger for 10, 50 and 70 pW
compared to the mSMR analysis, whereas the variances only differ significantly in the
50 pW measurement. Interestingly, the relaxation times in this setting are significantly
higher than the results found in section [5.3.2 However, it can be seen that the difference
is less pronounced for the mSMR results than for the FCS results.

In addition to the accuracy of the analysis results, the performance of a method
plays an important role in practice. When computing the mSMR and FCS analyses
for statistical comparison, the calculation times were also recorded. Table shows
the summary of the computation times. In this work, the autocorrelation curves of
FCS are calculated via multiplication in Fourier space as described in section [3.3.1]
For mSMR analysis, a fluorescence trace is divided into increasing bins for which
the moments are calculated as described in section 3.3.21 The measurements in table
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Table 5.3: Computation times of the FCS and mSMR analyses.

Exc. power [pnW] | Time FCS [ms| | Time mSMR [ms]
10 1371 + 38 2444+ 14
30 1411 + 84 258 £19
20 1379 £ 54 243 £ 15
70 1383 + 26 242 + 14

[.3]show a 5.6 x speedup for our mSMR implementation compared to the FCS calculation.

In general, the two models show no significant difference in mean particle number
and mean diffusion time. However, when looking at the events at short time scales, slight
differences between the two models are noticeable. This leads to slightly higher triplet
fractions and relaxation times being obtained for the FCS model than for the mSMR
model. Another interesting aspect of the mSMR is that it is much faster to compute
than the FCS.

5.4 Discussion

The results of this chapter are discussed in more detail with respect to the initial objec-
tives: the evaluation and calibration of the confocal plate reader, and the application of
the mSMR model on real measured fluctuation data.

The results of the evaluation and calibration of the home-built confocal plate reader
reveal several important points. First, the results confirm the correct operation of the
confocal plate reader. From the small error bars of the count rates, we can deduce the
high repeatability of the system (see figure [p.1 subplot A). This is also confirmed by
the FCS analyses. After correcting for background noise, concentrations of < 200 pM
give mean particle counts of less than one in the detection volume (see figure ,
subplot B). At the same time, the autocorrelation curves show little noise under the
given experimental parameters. We can thus conclude that we are indeed analyzing
single-molecule events with the home-built confocal plate reader. Second, looking at
the results from data fitting, a straight line is given for the mean particle number of
the dilution series (see figure [5.1] subplot C). Meanwhile the mean diffusion times are
nearly constant over the whole concentration range (see figure subplot D), although
larger deviations can be observed at small concentrations. These can be attributed to
poorer statistics because of few photon events. The findings suggest that the excitation
powers used are appropriate for the study of Alexa 488. If the excitation powers were
too high, we would have expected significant deviations from the linear relationship in
the mean number of particles or from the constant level of the mean diffusion times.
Third, the calibration gives an effective detection volume of 7fl and a geometric ratio of
axial to radial extent of r = 19.8 for the used optics. These values are significantly larger
than usual for FFS experiments, where a volume of approximately 1l [53, p. 10| and a
geometric ratio of 1 < r < 10 is expected. This elongation of the detection volume can be
attributed to the long-distance objective lens (LD, 63x, NA = 0.75). For such an optic,
we would expect a prolonged extension of the observation volume in z-direction . Fourth,
the numerical apperture of the long-distance lens is lower than with commonly used
immersion objectives. In the literature, numeric appertures of >0.9 are recommended
for FFS experiments [53], p. 5]. However, the results from the calibration show that the
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confocal plate reader delivers accurate results at the single-molecule level. At the same
time, the use of the long-distance air objective offers great advantages in the automation
of the confocal plate reader, enabling the reader to scan a standard microplate with
little effort. This would not be feasible with an immersion objective. In summary, the
calibration results show that the confocal plate reader reliably enables the collection of
fluorescence fluctuation data while also allowing experiments at the single-molecule level.
After calibration, the fluorescence traces were also evaluated using the mSMR. In the
mSMR analysis, the influence of detector and measurement artefacts is evident (compare
figure 5.2). At short sampling times, afterpulsing and detector dead time overlay the
mSMR data. Detector dead time plays a minor role at the low excitation rates used
in this experiment. Afterpulsing, on the other hand, should always be considered in
the case of a single detection channel. For the practical application it is important to
see that a complete correction of the measurement artefacts is possible. In the present
case, the mSMR data could be brought into alignment for a wide concentration range.
An extension of the mSMR model to two detection channels, which should completely
supress the effect of afterpulsing [85], p. 3], is an interesting issue that should be addressed
in follow-up work.

Now the comparison of the FCS and mSMR models in real experiments are discussed.
First we focus on the diffusive part of the models. The results from the visual analysis
and the statistical analysis give a consistent picture. Visually, the mean particle numbers
(N) did not differ significantly between the models (compare figure [5.3} subplot C). This
observation is consistent with the results of the statistical analysis in section [5.3.3] which
also shows no difference in (V) between the models. The same observation applies for
the mean diffusion time 7 (see figure , subplot B). In the visual comparison of the
models, we could only detect differences between the models at very low concentrations.
The statistical comparison confirms this observation since no significant differences
between in the diffusion times could be found. Figure indicates that the mean
particle numbers and the mean diffusion times in both models slightly increase for higher
excitation powers. This effect has already been discussed in the literature and is most
likely caused by fluorescence saturation [64, p. 47-49]. Due to fluorescence saturation,
the emission intensity and excitation intensity are no longer proportional to each other,
resulting in a deviation of the molecular detection efficiency (MDE) from a Gaussian
ellipsoid (see section [2.2.4). The FCS and mSMR models assume an ideal Gaussian
profile, which means that they can no longer reliably represent the case of fluorescence
saturation, leading to the observed deviations in mean particle number and diffusion
time.

Of particular interest is the comparison of the models for the description of photokinetic
effects at short-time scales. For this, the results of the triplet models are compared. From
figure it is visually evident that for excitation powers > 50 nW the triplet fractions
Fiip are comparable for both models. This statement is not tenable at low excitation
powers. The statistical analysis showed that the mSMR model differs significantly from
the FCS both in terms of variance and mean value. At higher excitation powers, the
results of the models converge, but the differences remain statistically significant. The
results of the mSMR model in the statistical analysis can be described by the same
regression line as the Fi, data from the visual analysis (see figure , subplot C).
Moreover, the statistical analysis shows smaller variances for the mSMR model. These
findings support the strength of mSMR model to describe photokinetic effects. Looking
at the relaxation times 7y, we found a mean relaxation time for Alexa Fluor 488 of
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Teip = 4.8 & 0.5ps, which is in good agreement with literature (7, = 4.2 £ 0.8 ps)
[108, p. 10187|. For FCS analysis, we got a higher relaxation time with larger standard
deviation: 7, = 5.1 £ 1.3 ps. Interestingly, the overall relaxation times are significantly
larger in the statistical analysis than in the visual observation. Since very low concentra-
tions and excitation powers were used in the statistical analysis, these seem to have a
detrimental effect on the relaxation times. However, the relaxation times obtained from
the mSMR model are still significantly lower and therefore more plausible than for the
FCS model.

The results indicate an advantage of the mSMR model over the FCS model in the
analysis of photokinetic effects. In further work, it would certainly be interesting to
repeat the statistical analyses with additional dye systems. Here, studies on fluorescein,
rhodamine 6G, Cyb or the green fluorescent protein (GFP) are promising.

In summary, the following points can be stated. The home-built confocal plate
reader performs automated and reliable FFS measurements at the single molecule level.
It thus provides valuable support for the collection of FFS data. In addition, the FCS
and mSMR models are in good agreement and no differences could be found in the
results of the diffusive model. When comparing the results at short-time scales (i.e., the
triplet model), significant differences can be observed. Here the mSMR model gives more
plausible results, which is probably due to the correction of detector artefacts. Finally,
the mSMR curves can be computed significantly faster than the autocorrelations of FCS
(about 5.6 faster). This is a great advantage if data is analyzed over a longer period or
if shorter samplings are considered to better represent photokinetic effects.
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6 The characterization of nucleic acid
mixtures using the mSMR

In the following, the mSMR analysis is applied to a more complex biological system.
An interesting case is the characterization and quantification of DNA mixtures, since
many applications rely on accurate information about the composition of the samples
under study. For example, molecular methods such as cloning require accurate con-
centration information for high step efficiency [109]. Similarly, the analysis of cellular
expression patterns or the examination of tissue samples rely on accurate concentration
data [110, 111} 112} 113]. Of particular interest, however, is DNA sequencing using next
generation sequencing (NGS) methods. In the most widely used method, a sample is
processed over several steps to generate a NGS library, which includes fragmentizing the
sample and ligating adaptors to the 5’ and 3’ ends of the fragments. The result is called
a sequencing or NGS library. The library is loaded onto a flow chip, where each of the
fragments forms its own cluster via bridge amplification. Subsequently, stepwise sequenc-
ing of the fragments takes place using fluorescent markers labeled in four colors. The
light signal of each cluster is read out, providing parallel sequence information of the
fragments. These overlapping sequences of the fragments are then assembled into the
overall sequence during the step of sequence alignment [I14, p. 4-5|. For accurate and
cost-efficient sequencing results, precise quantification of the NGS library is necessary to
prevent suboptimal loading of the flow chip [IT5], p. 6-7]. Usually, the mass concentra-
tion is determined via fluorometry and the fragment length distribution of the library via
capillary electrophoresis. Then, the average fragment length of the sequencing library is
calculated from the fragment length distribution. From the mass concentration and the
average fragment length, the molarity of the sample can be estimated. So far, however,
no gold standard exists for the quantification of NGS libraries, so various methods are
used [115], p. 1][IT6] p. 1].

Fluorescence fluctuation spectroscopy provides a good approach for the characterization
of unknown nucleic acid mixtures. There are several fluorescent dyes that intercalate
with nucleic acids sequence-independently, enabling reliable labeling [117), p. 3015]|[118]
p. 1196]. In addition, quality control should consume as little of the precious sample
material as feasible [115] p. 5-7|, so highly dilute solutions in smallest quantities are pref-
ered. FF'S experiments require exactly these conditions to address the characterization of
nucleic acid mixtures. We will start with the analysis of DNA mixtures consisting of de-
fined DNA fragments using the mSMR method. The relationship between single-molecule
brightness rate and DNA fragment length is examined, as are diffusion properties. The
results of the diffusion properties are compared with data from the literature as well as
with a theoretical model. Since the FFS theory assumes point-like particles, but DNA
is a multi-labeled filamentous polymer, the consequence on the average particle numbers
for DNA mixtures will be analyzed in more detail and compared with the theoretically
expected concentrations. Then, photokinetic effects are considered. The influence of iso-
merization as a function of fragment length is explored, as is the distinction from the
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triplet state. Finally, the effect of photobleaching on the fluorescence intensities of the
mixtures is studied. Based on these findings, we will analyze sequencing libraries and at-
tempt to characterize these heterogeneous mixtures. Parts of this chapter were previously
published in Sparrenberg et al. [54, 24].

6.1 Experimental procedure

The characterization measurements in section of this chapter are performed on DNA
solutions of defined composition using our home-built confocal plate reader. Table [6.1
summarizes the measurement parameter. Dilution series are prepared for the following
DNA fragments: 50, 100, 200, 300, 500, 700 and 1000 bp (NoLimits, Thermofisher, USA).
As a solvent, we use 25% DMSO/75% water (v/v) to break up any tertiary structures
and prevent the formation of larger DNA aggregates. As staining solution, a mixture
of 997ul. TE buffer and 3 pL. RiboGreen (Quant-iT RiboGreen, Thermofisher, USA)
is prepared. The fluorescent dye RiboGreen intercalates with all types of nucleic acids
and convinced in preliminary experiments by featuring an excellent brightness. Prior to
measurement, DNA mixtures and staining solution are added in equal volume fractions
and allowed to equilibrate for 2h. The final concentrations after staining are 0, 8, 20, 40,
80, 120 and 160 pg/pL. 20 uL of each concentration step are loaded onto the microtiter

Table 6.1: Measurement parameters of DNA mixure studies.
Sample preparation

Microtiter plate 384 well (pclear, non-binding, Greiner BioOne, Germany)
Staining dye RiboGreen (Quant-iT RiboGreen, Thermofisher, USA)
DNA solvent 25 %DMSO/75 % water (v/v)

DNA fragments 50, 100, 200, 300, 500, 700, 1000bp (NoLimits, Ther-

mofisher, USA)
Concentration steps | 0, 8, 20, 40, 80, 120, 160 pM
Sample volume 20 pLL

Setup parameters

Measurement time 10s
Equilibration time 10s
Sampling time 1x107%s
Measurement repeats | 5

Laser power Varied
Excitation light 488 nm
Emission filter 535/50
Objective lens 63x,/0.75 LD

plate, which is then sealed with a foil to prevent evaporation. To reduce bleaching effects,
the plate reader approaches the focal plane and waits with switched-on laser for 10s
before each measurement to reach an equilibrium of unbleached to bleached particles in
the observation volume. For each run, the measurement time is 10s with a sampling
time of 1 x 107%s. Each measurement is conducted at five locations in the well. The
excitation powers used are specified separately in the results.
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For the evaluation measurements in section the same protocol as above is
used. Four externally characterized libraries (Exo, Gen, Lexl, Lex2) are analyzed
using the home-built plate reader and the mSMR method. Two libraries (Gen, Lex2)
are diluted in four steps using 25% DMSO/75% water (v/v). After adding an equal
volume of the RiboGreen staining solution, final dilutions steps of 1 : 25, 1 : 50, 1 : 100
are obtained. The other two libraries (Lexl, Exo) are diluted and stained with the
same buffers to get a final dilution of 1:20. All samples are incubated for two hours to
equilibrate. Before each measurement, the sample is irradiated in the focal plane with
switched-on laser for 10s to ensure an equilibrium of bleached and unbleached particles.
Data acquisition is for 10s with a sampling time of 1 x 107%s. Each measurement is
repeated 5 times at an excitation power of 2.5 pW.

6.2 mSMR in the analysis of nucleic acid mixtures

Fluorescence fluctuations of DNA mixtures of defined composition are analyzed consider-
ing both the comparatively long-lived diffusive parts of the mSMR model and the short-
lived photokinetic effects. Then, the findings are applied on DNA sequencing libraries to
characterize them.

6.2.1 Characterization of defined DINA mixtures

To begin with, we conduct measurements on DNA dilution series of defined fragment
length composition. To reduce photobleaching to a minimum, the fluorescence fluctu-
ations are recorded at an excitation power of 2.5uW. The derived mSMR curves are
corrected for detector artefacts as described in section [5.3.1} Figure [6.1] shows the results
of the analysis. Subplot A shows the averaged mSMR curves of the DNA dilution series
of defined composition. The curves increase in the amplitudes for larger fragment lengths
and a shift towards larger sampling times. In general, the mSMR curves look very smooth
and show little variation even for large sampling times. The data are fitted with equa-
tion including a simple on/off isomerization term. Subplot B shows the averaged
single-molecule brightness rates pg from the model fit. As already seen in subplot A, pug
increases as a function of the fragment length, which can be well described by a 2nd order
polynomial. Looking at the averaged diffusion times of the measurements in subplot C,
Tp increases for growing fragment lengths. To allow a comparison to literature, we convert
the diffusion times of the DNA mixtures into diffusion coefficients using equation [2.48|
Subplot D depicts the diffusion coefficients in a double-logarithmic representation. In a
first approach, the diffusion coefficients are described by a power law.

y(z) = By x ™ (6.1)

By taking the logarithm transforms this equation into a straight line:

log (y(z)) = log(By x xﬁl) = log (By) + B1log (x). (6.2)

The fit yields log (By) = 2.88 < [y = 765 and 5 = —0.79. Using equation to
calculate the standard error of the slope, we get 5; = —0.7940.02. A theoretical approach
to describe diffusion of DNA molecules is the semiflexible model for diffusing polymers (see
section . We estimate the viscosity of the solvent via Alexa Fluor 488 measurements.
As for the DNA mixtures, a dye solution of one part 25% DMSO/75 % water (v/v) and
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Figure 6.1: mSMR analyses on DNA solutions of defined fragment length. The used laser power is
2.5pW. A Averaged mSMR for DNA dilution series of defined composition. B Averaged corrected g
of the DNA dilution series. The data points of 100 to 1000 bp DNA fragment solutions are fitted with a
line (f(z) = By + Bz + Beax?, with By = 0.0, 81 = 0.097 and By = —2.0 x 107°). C Averaged diffusion
times 7 of the DNA dilution series. D Averaged diffusion coefficients D of the DNA dilution series in
double-logarithmic representation. The data are fitted with a power law (f(z) = By x 2”1, with By = 765
and B; = —0.79). In addition, the course of the semiflexible diffusion model is shown (parameters for
dsDNA: [, = 51lnm, d = 2.5nm, Il = 0.34nm/bp and Ap ~ 0.9 [65, p. 3]). For comparison, data from
literature are added (8 — 20bp [119, p. 2327] and 100 — 10000 bp [65], p. 3]). The diffusion coefficients
from the literature are corrected to 25 °C and adjusted to the viscosity of the solvent used.

one part TE buffer is prepared. By comparing the diffusion times to measurements in
pure water, a 1.8x increase in the diffusion time is observed. From the Stokes-Einstein
equation and equation the proportionality of viscosity and diffusion time can
be seen.

N X Tp (6.3)

Therefore, the viscosity of the solvent at 25 °C can be estimated as n = 1.8 x0.891 mPas =
1.60 mPas. This enables us to calculate the semiflexible diffusion model using the param-
eters in table [6.2] To convert between basepairs and length of the DNA molecule, the
inter-base-pair distance [ is used. For better results, a correction term Ap is introduced
as a pre-factor of equation in the literature [65] p. 3|. The graph of the semiflexible
model is added to subplot D and supplemented with diffusion coefficients for oligomers
8 —20bp [119] p. 2327] and larger fragments 100 — 10 000 bp [65], p. 3] from literature. The
diffusion coefficients are adjusted to 298 K and corrected for viscosity. The theoretical
diffusion model for semiflexible chains describes the diffusion coefficients of our diffusion



82 6 The characterization of nucleic acid mixtures using the mSMR

Table 6.2: Input parameters for the semiflexible diffusion model of dsDNA

Parameter | Value

kg 1.38064852 x 10~ ® m%kgs *K~!

T 298K

n 1.60 mPas (estimated from Alexa Fluor 488 measurements)
ly 51nm [65] p. 3]

d 2.5nm [65], p. 3]

I 0.34nm/bp [65, p. 3|

Ap 0.9 [65] p. 3]

coefficients and of the data from literature. However, it is noticeable that the slope of
our diffusion coefficients is somewhat steeper than predicted by the model and the data
from literature.

An intriguing question is whether the mSMR model can represent the number of
DNA molecules in the effective detection volume. Therefore, the brightness rates are
converted to the mean particle numbers for each concentration step of a dilution series
via equation [5.9, Figure[6.2] shows the results. In subplot A shows linear increases of the
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Figure 6.2: The relation of measured particle number to theoretical particle number in DNA solutions.
A The mean particle number retrieved from mSMR, analyses of DNA dilution series. (N) was calculated
via equation from the single-molecule brightness rates pg of the mSMR model. The data are fitted
with a line f(z) = Bo + SB1z. B Ratio w of theoretical slope (1 theo and measured slope 1 meas 0f the
DNA dilution series. The average weighted ratio of the slopes is @ = 0.442. In addition, the data can be
empirically described by a second order polynomial.

mean particle number for each DNA dilution series. The data are fitted using a straight
lines through the origin. The slopes of the lines increase for shorter fragment lengths,
which is expected since the molarity changes antiproportionally to the DNA fragment
length for a given mass concentration. To compare the measured particle numbers to
the theoretically expected particle numbers, the corresponding molecular weights are
estimated from the DNA fragment lenghts using the following relationship [120]:

MW ~ 650 g/mol x n, (6.4)
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with n being the number of base pairs of the DNA molecule. Using the Avogadro constant
and the effective detection volume, the theoretical particle number is obtained.

(N)iheo = 7o N Vir (6.5)
This relation gives the theoretical particle numbers in the effective detection volume for
each concentration step of the dilution series. Dividing the theoretical slopes i theo by
the measured slopes 1 meas Of €ach dilution series gives the ratio w. Subplot B displays w
as a function of the fragment legth. On average, the ratio is w = 0.442 and thus deviates
significantly from the expected ratio of w = 1. To describe the data more accurately,
an empirical second order polynomial is used. Although, it has no physical meaning, it
reflects well the discrepancy between measurement and theory.

In summary, DNA solutions of defined composition can be analyzed by means of
the mSMR method. Thereby, the fragment length dependent single-molecule brightness
rates and diffusion coefficients can be described via theoretical and empirical models.
When considering the DNA particle numbers in the detection volume, significant
deviations from theoretical appear. But these can be compensated for by an empirical
model for the given experimental parameters.

6.2.2 Photokinetic effects in the analysis of DNA mixtures

In the following section, short-lived photokinetic effects in DNA measurements are con-
sidered.

Isomerization

DNA fragments are labeled with numerous dye molecules along the chain. Since the dye
exhibits blinking behavior, isomerization effects occur. To study isomerization in DNA
measurements, we use the data set from the previous section. Because the measurements
were taken at only 2.5 nW, triplet state effects are neglected to focus entirely on isomeriza-
tion. Figure shows the results of the analysis. In subplot A displays the isomerization
part ['y, from the averaged mSMR curves in figure The mSMR curves are divided
by the diffusive part I'gg of the fitted model to get I'io. The time axis is scaled
to cover the region of interest. The amplitudes of the isomerization fractions decrease
significantly with increasing fragment length. Even though the model generally describes
the data well, slight variations can be seen. We will address this issue in the next section
by additionally considering triplet effects. The isomerization components Fi,, from the
model fit are shown in subplot B with their respective standard deviations. The decrease
in Fi, as a function of fragment length reminds of an exponential decay approaching a
threshold. The isomerization times Ti, can also be derived from the same model fit. By
averaging over all fragment lengths, we find a mean isomerization time of 7, = 48+ 11 ps.
F,, refers to the fraction of molecules in a dark state in the isomerization model. This
means that the molecules in the dark state cannot emit fluorescence photons. For larger
DNA fragments, the fraction of dark molecules decreases, since more blinking dyes bind to
larger fragments, and thus lower the molecule’s probability of being completely dark. Al-
though a simplified on/off isomerization model is employed, it provides a good description
of the mSMR curves at short sampling times.
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Figure 6.3: The isomerization effect in the mSMR analysis of DNA measurements. All measurements
are performed at 2.51W excitation power and analyzed using the mSMR method. A The averaged
isomerization part I'js, of the DNA dilution series. T, is obtained by dividing p(T") by the diffusive part
Fqig. B The fraction Fig, of the isomerization model, obtained by averaging the fitting results of each
dilution series. The total averaged isomerization time Tis, from the model fit is also included.

Triplet effects

So far, triplet states transitions were neglected in the analysis. To study the influence of
the triplet state on DNA measurements in more detail, we perform an excitation power
series on a 50 bp DNA mixture of 200 pg/uL. concentration. Each measurement is con-
ducted five-fold and analyzed with the mSMR method. From literature, increasing triplet
fractions are expected for higher excitation powers, while the isomerization fraction should
be unaffected [74] p. 290-293]. The following adapted mSMR model is used:

(1) = 72 pto Latigi(T') Diso (1) i (7). (6.6)

Thus, the model accounts for isomerization and triplet states as well as diffusion. Because
of the numerous parameters, such a model is difficult to fit. To reduce the degrees of
freedom, the relaxation times of the triplet model and the isomerization model in the
fitting routine are fixed. For the triplet part, 7., = 4.5ps is set, which is comparable
to the relaxation time of Alexa Fluor 488 derived in section [£.3.20 For the isomerization
part, T, = 48 1s is set, derived from the isomerization analysis in figure [6.3] subplot B.
The results of the evaluation can be seen in figure [6.4f Subplot A shows the increasing
averaged mSMR curves for the following excitation powers: 2.5, 3.0, 6.0 and 14.0 pW.
The data are fitted with the extended mSMR model [6.6, By dividing through the
diffusive part ['gig, the short-time fractions of the mSMR curves are obtained, shown
in subplot B. The increase in the amplitudes for growing excitation powers stands out.
The data are well described by the combined triplet and isomerization model. Subplot
C shows the increasing triplet fractions Fi,, as a function of excitation power, fitted
by a straight line. Even though the Fi,, data points are noisy and have large standard
deviations, the upward trend is clear. For an excitation power of 2.5pW, a triplet
fraction of Fi., ~ 0.15 is found. This proportion is substantial, so the triplet effect
should be considered in the model for DNA analyses. In subplot D, the fractions Fip
from the model fit are given. Except for low excitation powers (< 4.0pW), no trend
is observable and the data can be described by a constant line at Fis, = 0.35, which is
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Figure 6.4: Triplet and isomerisation effects in the mSMR analysis of DNA measurements. Fluorescence
fluctuationens of 50 bp DNA with a concentration of 200 pg/nL, recorded for increasing excitation powers
from 2.5 to 14.0nW. A Averaged mSMR curves with corresponding model fit. B Division of (T by the
diffusive part T'g;g, leaving the isomerization and triplet fractions of the data series. C The isolated triplet
fractions Fi,ip from the model fit. The data are fitted with a straight line. D The isolated isomerization
fractions Fis, from the model fit. The weighted average over all excitation powers is included as a solid
line.

similar to Fj,, = 0.3 from the 50 bp measurement in figure subplot B. It must be
noted, however, that even small changes in the fixed 7, and 7 in the model lead to
significant changes in the results. We must therefore be careful in the discussion and
interpretation of these results.

In summary, the mSMR model reliably describes the photokinetic effects of iso-
merization in DNA measurements at low excitation powers. At higher excitation powers,
an extended model can can be used to represent triplet states, too. But the results are
noisy and measurements at low excitation powers are recommended.

6.2.3 Photobleaching in the analysis of DNA mixtures

The results of the previous sections tell us that fluorescence fluctuation measurements on
DNA solutions should be performed at low excitation powers. In addition to increasing
triplet effects, which make model fitting difficult, fluorescence bleaching occurs in DNA
analyses at higher excitation powers. An experiment to illustrate this effect is to measure
DNA dilution series of defined fragment length composition at low and high excitation
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powers (2.5 pW and 140 pW) with and without an anti-fading agent. As antifading agent
we use 2.5 % (w/v) 1,4-diazabicyclo|2,2,2]octane (DABCO), whose efficacy as an antifade
has been demonstrated in various studies [121], 122} 123, [124]. Figure shows the results
of this experiment. In subplot A, the count rates of the dilution series without antifading
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Figure 6.5: Photobleaching in DNA dilution series. A Dilution series of defined fragment length com-
position recorded at 2.5pW. The data series are fitted with a straight line through a common y-axis
interception at concentration = 0 is 0.36+0.02. B Dilution series of the same concentration recorded with
140 uW laser power. The common y-axis intercept concentration = 0 is 27.18 4+ 2.43. C Plot of the ratio
w = B1,high/P1,1ow Of the slopes of DNA dilution series of varying fragment length recorded at high laser
powers 140 pW and low laser powers 2.5 pW. Data from measurements on dilution series with additional
2.5% (w/v) of the anti fading agent DABCO are also shown. D Plot of the ratio w = B1 nigh/51,1ow
against the mean diffusion times 7 of the DNA dilution series of defined fragment length.

agent recorded at 2.5 nW are given. The dilution series overlap within the experimental
accuracy and that there are no systematic deviations between the measurement series.
Subplot B shows the fluorescence rates of the same samples recorded at soaring laser
powers of 140 ptW. For increasing fragment sizes, the slopes of the dilution series decrease,
although the same concentrations are studied in each case. The effect becomes more
pronounced by comparing the slopes of the dilution series at low and high laser powers.
To do this, the data are fitted with a straight line and the ratio w of the slopes at high
and low excitation powers is formed.

o Bl,high,i
' ﬁl,low,i

Subplot C shows the ratio w as a function of fragment length. Starting at w = 22 for 50 bp
DNA, the ratio decreases significantly following an exponential decay and approaches a

for i = 50, 100, 200, 300, 500, 700, 1000 bp. (6.7)
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limit of ws, = 11.3. The same analysis with 2.5 % DABCO added shows a less pronounced
exponential decay and a significantly higher equilibrium level ofw,, = 19.5. Thus, the
addition of the antifading agent DABCO almost completely eliminates the difference
between the measured count rates at low and high excitation powers.

Following a more general approach to describe the data, the fragment lengths of the
solutions are replaced by the corresponding measured diffusion times 7 from the mSMR
analysis (see section . This step can be seen in subplot D. As before, the ratio of the
slopes of the fluorescence rates of the dilution series decreases with increasing diffusion
times. We use a probability-based approach to model the photobleaching as a function of
™ [47, p. 25]:

K

Ni(mp) = T

(1 — e m1m) (6.8)
Where N¢ is the average number of fluorescence photons. The parameters k¢ and ky,; are
the fluorescence rate and the bleaching rate. Setting ki, = kk—; and dividing the expression
by o gives the photon rate as a function of the diffusion time [54], p. 11]. To model the
asymptotic approximation to a non-zero limit value, a constant const is introduced, which

turns equation into [54, p. 11]:

kint

D

flm) = (1 —e™™™) 4 const (6.9)

Fitting the data with equation yields a satisfactory result (xy2> = 0.17). This
functional relation can be used to correct fluorescence count rates recorded at soar-
ing excitation powers, allowing more precise fluorescence spectroscopic measurements [54].

The measurement results prove that high excitation powers lead to an underesti-
mation of the slopes of the fluorescence count rates in the DNA dilution series. This
effect increases with larger DNA experiments. By adding the antifading agent DABCO,
this effect can be almost completely suppressed suggesting that the effect is caused by
photobleaching.

6.2.4 Characterization of natural DN A mixtures

Up to this point, all experiments were performed with DNA solutions of defined com-
position, where each solution consisted of DNA fragments of a defined length. We now
examine whether the derived models in the previous section are suitable for characterizing
DNA mixtures of unknown composition. An interesting application is a quality control of
DNA libraries for sequencing. For this, four sequencing libraries (Lex1, Gen, Lex2, Exo)
were externally characterized in the following steps:

1. The mass concentration was determined using the Qubit fluorometer (ThermoFisher

Scientific, USA)

2. The mean fragment length of the libraries was measured using the Tapestation
(Agilent, USA).

3. The average molecular weight MW of the DNA molecules in the library was ap-
proximated using equation [6.4]
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4. From the average molecular weight of the DNA molecules in the library MW and
the mass concentration ¢, the molarity M was calculated.
c

M:
MW

(6.10)

Each sequencing library was prepared and characterized five times (Gen) or eight times
(Lex1, Lex2, Exo).

In the following, we want to collect the same information in just one measure-
ment. For characterization, the four libraries are first diluted in several steps, then
labeled with an intercalating agent, and finally measured in our home-built confocal
plate reader. The fluorescence traces are analyzed via the mSMR method. We use
the findings from section to derive the required information to extract a total
of three parameters: the average fragment length of the DNA molecules, the DNA
mass concentration, and the molarity of the DNA in the mixture. The parameters are
calculated as follows:

1. Mass concentration

The mass concentration of a DNA mixture of unknown composition is determined with
two methods.
Method 1: Using the fluorescence count rate to get the mass concentration via a cal-
ibration line. The calibration line is obtained from the DNA dilution series of defined
composition (see figure , subplot A). The count rates for each concentration step i are
averaged to obtain a common calibration curve.
XN
(k)i =+ > k)i, for j = 50,100,200,300, 500,700, 1000 bp. (6.11)
j=1
Since the calibration curve shows a slight curvature, a 2nd order polynomial fit is per-
formed.

~

(k)(c) = By + Pic+ Pac® = 0.37 +0.51c — 4.2 x 10742 (6.12)

Equation [6.12] can be used to derive the mass concentration ¢ from the measured flu-
orescence count rate for unknown samples. The prerequisite is that the experimental
parameters are the same as for the calibration measurement. The physically plausible
solution for the concentration is given by

(k) = — 2 \/(5—) AR < (ey)

2 20, B2 4By

Method 2: Determining the mass concentration using the molarity and mean fragment
length of the DNA mixture.

c= MW x M'E650g/mol x n x M (6.14)

To get the mass concentration, the average fragment length n and the molarity M of
the solution are needed. These are derived in the folowing sections using equation [6.18
(method 2) for the average fragment length, and using equation [6.19 (method 2) for the
molarity.
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2. Fragment length

Both the mean single-molecule brightness rate py and the mean diffusion coefficient
can be used to estimate the mean fragment length of a DNA solution.

Method 1: Taking the single-molecule brightness rates to get the fragment length via
a calibration. Figure subplot B shows the empirical relationship between py and the
mean fragment length, given by

po(n) = Bon + B n* = 0.097n — 2.0 x 107° n?, (6.15)

which directly results in the following physically plausible solution:

b Bo\?  ho 5
n(po) = ~25, (2—51) + B, for po < 15, (6.16)

Method 2: Using the diffusion coefficient to get the fragment length via a calibration.
Figure [6.1] subplot C shows the empirical relationship between D and average fragment
length, described by the following equation:

D(n) = By x ' = 965 x n 082, (6.17)

The expression is solved for the average fragment length as follows:

n(D) = (%) g . (6.18)

3. Molarity

The molarity of the DNA mixture is determined by the mean particle number from the
mSMR analysis. Since the mean particle numbers from FCS and mSMR analysis deviate
significantly from the theoretically expected particle number (see section , it must
be corrected accordingly. The mean particle number is determined via the single-molecule
brightness rate of the mSMR using equation [5.9. The obtained mean particle numbers
are corrected using the findings illustrated in figure [6.2] subplot B.

<N>corr = <N> X w(n) (619)

Two methods are available to estimate the ratio w in equation [6.19]

Method 1: Taking the averaged ratio of w = 0.442 to correct the measured mean
particle number.

Method 2: Employing the fragment length dependent empirical model for correction
(w(n) =0.5—2.8 x 107*n + 1.6 x 107 "n?).

Having seen the methods to determine the parameters for characterization using
the calibration measurements from section [6.2.1], we will take a comparative look at the
results of this characterization
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Characterization results

The results of the one-measurement characterization of four DNA sequencing libraries
are shown in figure 6.6 In each case, the results of the external characterization are
presented in comparison to the results of the two mSMR-based evaluation methods. In
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subplot A, the determined mass concentrations of the four studied sequencing libraries
is shown. For the Lex1, Gen, and Lex 2 libraries, the mass concentrations are the same
within standard deviations for all three methods. For the Exo library, however, the
mass concentration via equation [6.13] (method 1) is clearly too low, while the results via
equation m (method 2) show a good agreement. The results of the fragment lengths in
subplot B show a comparable picture. For the three libraries Lex1, Gen and Lex2, the
methods show good agreement within standard deviations. But the determined fragment
length of Exo library according to equation (method 1) clearly deviates, whereas
the results according to equation (method 2) show good agreement with the results
of the external characterization. The determined molarities of all libraries in subplot C
agree for all methods within standard deviations.

In summary, the characterization of sequencing libraries using our home-built con-
focal plate reader and the mSMR method shows a good agreement with the externally
conducted characterization using fluorometry and capillary gel electrophoresis. Thus, the
four sequencing libraries can be characterized by a one-step measurement.
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6.3 Discussion

In this chapter, the mSMR method was used to analyze fluorescence fluctuations of a
more complex biological system. To begin with, measurements were performed on DNA
mixtures of defined composition, revealing some important aspects that we discuss in the
following.

First, the single-molecule brightness rate increases sublinearly for larger DNA fragment
lengths (see figure . Intuitively, we would expect a linear relationship between
fragment length and single-molecule brightness, since the fluorescent dye should stain all
fragment lengths with equal density as related dyes do [I17, p. 3017-3018|[118], p. 1197-
1198|. This sublinear relationship therefore has probably two causes: photobleaching and
fringe effects. Photobleaching is caused by longer dwelling times of large DNA molecules
in the detection volume. This leads to an increasing number of absorption-emission
cycles and thus a higher probability to bleach. Fringe effects occure because of the
increasing spatial extent of large diffusing DNA molecules. Unlike the assumed point-like
fluorophore in the mSMR model, parts of the labeled DNA polymer may be outside the
detection volume, reducing the number of bound fluorophores that contribute to the
total single-molecule brightness.

Second, the calculated diffusion coefficients of the DNA mixtures in figure [6.1], subplot
D agree with literature. A simple power law is suitable to describe our DNA diffusion
coefficients in the studied range, giving an exponent of 5; = —0.79 + 0.02 which is some-
what larger than a reported value of 51 = —0.72 [125], p. 1626-1627|. Using a semiflexible
chain model that takes into account the persistence length of DNA, we get comparable
results. Generally, the semiflexible model describes the data accurate. However, the
experimental findings show a somewhat steeper curve than the values from the literature
and the model predictions. This is possibly due to the addition of DMSO to the samples.
DMSO weakens hydrogenbonds, thus influencing the intramolecular interactions in the
DNA molecule. This may affect the persistence length or the hydrodynamic radius of
the DNA polymers. A repetition of the measurements in a buffer environment without
DMSO would provide clarity here but is hard to implement. Without the addition of
DMSO, large peaks occur in the fluorescence traces of the measurements, which are
presumably caused by aggregated DNA molecules, making a reliable evaluation of the
fluorescence traces difficult.

Third, we observe a discrepancy in the mean particle number between experiment and
theory (see figure . The difference is probably due to the polymeric nature of DNA.
The FFS theory assumes point-like particle. This does not hold for polymeric DNA
molecules, which are labeled with multiple fluorophores along the chain. In fact, we
observe larger deviations for larger DNA molecules. In addition, the particle number is
strongly dependent on the excitation power (data not shown). The average number of
particles is overestimated more strongly at high excitation powers than at low powers.
The dependence of the effect on excitation power and fragment size makes photobleaching
a likely cause and is discussed below. The result emphasizes the need to perform FFS
experiments on DNA mixtures at low excitation levels. For quantitative evaluations,
the experimental conditions must be kept the same to allow a correction of the particle
numbers.

Fourth, isomerization effects occur when measuring DNA mixtures. The cause of
isomerization is the staining dye RiboGreen, which is an asymmetric cyanine dye.
Cyanine dyes show a cis/trans isomerization in their molecule structure, which leads to
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a blinking of the dyes [74, p. 290-293]. We used a simple on/off isomerization model
that does not reflect nature and ignores the underlying finite birth death process but can
be specified analytically. However, the description of the data is incomplete (see figure
, which can be observed in slight variations and is probably caused by the simplified
isomerization model or triplet effects. Nevertheless, we see decreasing proportions of
dark molecules given by Fi, for increasing fragment lengths. This makes sense, since
large DNA fragments can bind more intercalator molecules, thus reducing the probability
for a complete dark state.

Fifth, we attempted to separate the photokinetic effects of isomerization and triplet
states (see figure . We performed FFS measurements on 50bp DNA at increasing
excitation powers. As with the Alexa Fluor 488 measurements in section increasing
excitation power should increase the triplet fraction, while the fraction of molecules in
the dark state due to cis-trans isomerization should remain constant [74, p. 290-293].
To keep the degrees of freedom in the model fit low, we preset the relaxation times of
the triplet and isomerization models using estimated values from the previous sections.
Although the data are noisy, an increase in the triplet fractions and a constant trend
in the isomerization fractions can be observed for increasing excitation powers. It is
noticeable that the model fit to the photokinetic components of the mSMR is very
good and there are fewer deviations than with the isomerization model alone. The
isomerization fractions Fis, of the 50bp measurements in figure [6.3] and at 2.5pW
are comparable (0.3 to 0.35). But the picture is different for triplet effects. While in
the first case triplet states were neglected, the other case gives Fi, ~ 0.15. Together
with the observation that fitting the photokinetic parts of the mSMR curves with the
simple on/off isomerization model gives an incompletely description, we can infer the
importance of triplet states in DNA measurements. However, weighing the benefits of
the extended model against the disadvantages due to the higher degrees of freedom seems
to justify the use of the simple isomerization model for describing the mSMR curves at
low excitation powers.

Sixth, an important effect in the analysis of DNA samples via FFS experiments is
photobleaching. In FFS experiments, very high excitation intensities can occur locally
[53, p. 9], which can lead to significant bleaching and thus cause measurement deviations
(increasing (), decreasing py and 7p). During our FFS experiments on DNA mixtures,
we probably encountered photobleaching at several points. Before each measurement,
the detection spot must be irradiated for 10s. Without this step, a significant drop in
the fluorescence count rate occurs in the first seconds, thus violating the requirement
of stationarity in FFS analysis. Then, the fluorescence measurements at low and high
excitation powers shows a fragment size dependent influence on the count rates (see
figure . The photobleaching probability is directly related to the number of excitation
cycles [45, p. 2655-2657| and therefore to the duration of irradiation by the excitation
light. Larger molecules diffuse slower and remain longer in the excitation volume, thus
having a higher probability to bleach. Since this effect disappears when adding the
anti-fading agent DABCO, this is a strong indication that photobleaching is indeed the
cause.

To sum up, high excitation powers are problematic for DNA measurements in many
respects. The increasing triplet fraction makes the evaluation of the mSMR curves with
the simple isomerization model difficult, stronger bleaching effects lead to deviations
in the single molecule parameters, and fluorescence saturation may also occur. For a
reliable characterization of DNA mixtures labeled with RiboGreen, it is important to
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work with minimal excitation power. An excitation power of 2.5 pW seems appropriate.
In the final section of this chapter, the previous findings were brought together to
characterize DNA mixtures of unknown composition for sequencing. Since conventional
characterization requires a multistep procedure, we want to simplify this by a one-step
FFS analysis. By using the retrieved calibration curves from DNA mixtures of defined
composition, the mass concentration, mean fragment length, and molarity of the DNA
libraries were determined. In general, the results showed good agreement with the
external characterization within the measurement uncertainties. However, for the Exo
library, too low mass concentrations and fragment lengths were observed using equations
6.13| (method 1) and (method 1). Since both methods rely on the single-molecule
brightness rate, the discrepancy might be due to insufficient staining of the DNA
fragments. The alternative methods using equations [6.14] (method 2) and (method
2), showed a good agreement with the results of the standard method, and thus seem
to be less susceptible to differences in staining. For the establishment of an assay, this
circumstance could be used as a quality check to ensure complete staining of the sample
solution. Alternatively, bypassing the brightness-based methods could significantly speed
up the measurement procedure by eliminating a long lasting incubation step after adding
the dye. This would shorten the processing time to characterize an unknown DNA
sample from over 2h to a few minutes.

In summary, the combination of our home-built confocal plate reader and the mSMR
model is suitable for the characterization of DNA mixtures. However, some aspects
have to be considered. The addition of DMSO is needed to prevents the formation
of DNA aggregates and enables reliable measurements. Also, an excitation rate of
2.5 pW minimizes photobleaching and triplet effects and allows evaluation of the mSMR
curves with a simple isomerization model. If the measurement parameters are kept
constant, calibration measurements on DNA mixtures of defined composition can be
used to characterize DNA sequencing libraries. The derived one-measurement results for
mass concentration, mean fragment length as well as molarity of the DNA libraries are
comparable to the results of an external multistep characterization.
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Fluorescence fluctuation spectroscopy (FFS) is a powerful technique for the analysis
of molecular biological systems. However, the correct conduction and evaluation of
these measurements requires a lot of experience, which is a hurdle. The present work
was intended to reduce these obstacles and therefore pursued two objectives: first, the
validation of the newly developed method the mean single-molecule rate (mSMR) for the
analysis of fluorescence fluctuations, and second, the evaluation of a home-built confocal
plate reader for automatic fluorescence measurements at the single-molecule level.
A detailed theoretical description of fluorescence fluctuation and related phenomena
provided a profound understanding and enabled to interpret and discuss the gathered
results. In addition, the methods and instruments used for the experimental realization
were introduced, featuring a simulation engine and a home-built confocal plate reader to
retrieve fluorescence fluctuation data.

We subjected the mSMR model to a three-step review and started with analyses on
fluorescence fluctuations generated by the simulation engine. This guaranteed completely
controllable conditions. The mSMR model could recover the initial simulation parameters
from the fluorescence fluctuations, illustrating the principle functionality of the mSMR
method. An essential aspect of the simulation was the controllable superposition of
afterpulsing and detector dead time as well as background noise to the data. With
suitable correction procedures, we could eliminate the artefacts, thus allowing to evaluate
the mSMR curves even at small time scales.

For the following FFS measurements, we used the home-built confocal plate reader.
Measurements on Alexa Fluor 488 dilution series demonstrated the plate reader’s
suitability to perform automated fluorescence fluctuation measurements in 384 well
microtiter plates. The subsequent analysis of the data using the established fluorescence
fluctuation spectroscopy (FCS) proved the system’s single-molecule sensitivity. Although
an unfavorable long-distance objective lens was used, the system provided reliable results
over a wide concentration range, recommending the system for further FFS measure-
ments. To continue the review, we analyzed these fluorescence fluctuation traces with
the mSMR method, too. The interesting question was how the established FCS and our
mSMR method compare. Both visually and statistically, no difference in the long-time
diffusive part of the models could be identified. The derived parameters (1p, po and (N))
did not deviate significantly. However, when considering the photokinetic effects on short
time scales, differences were found between the models. The mSMR model appears to
yield more plausible results for the description of triplet state transitions (7t and Fiip),
indicating an advantage over the FCS method. The difference is probably due to the
correction of detector artefacts, which can be done on the cumulants of the mSMR but
cannot be directly applied to the autocorrelation curves of FCS.

The final step of our review were measurements on a more complex biological system, for
which we chose DNA mixtures. Dilution series of defined fragment length composition
were systematically studied and compared to theoretical predictions. The derived
diffusion coefficients could be described by a semiflexible chain model and matched the
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theoretical expectations. On the other side, the fragment length specific single molecule
brightness rate showed an initially unexpected sublinear relationship, and the measured
mean particle number of the DNA mixtures differed significantly from the theoretical
prediction, too. These observations are probably caused by the polymeric structure
of DNA and photobleaching. Empirical calibration curves could be found to describe
both relations. The analysis of photokinetic effects in DNA measurements included
isomerization, triplet state transitions, and photobleaching. Isomerization effects caused
by the blinking of bound dye molecules can be described by a simple on/off model at low
excitation powers but are dominated by triplet effects at higher excitation powers. Since
large excitation powers lead to photobleaching, thus preventing a meaningful analysis,
low excitation powers of 2.5 nW are recommended.

The findings from the measurements on defined DNA solutions were used to characterize
four DNA sequencing libraries. We could determine the mass concentration, the average
fragment length of the library and the molarity. The results were in good agreement with
an externally perfomed characterization using a multistep process. Thus, the mSMR
seems to be a suitable one-step method to characterize DNA sequencing libraries.

To conclude, the objectives of this thesis could be achieved. First, the mSMR
could be established as a trustworthy analysis tool for fluorscence fluctuations, showing
the following advantages:

e an interpretation of the curves analogous to FCS,

e the incoperation of photokinetic effects such as triplet state transitions and isomer-
ization,

e a correction of the mSMR curves for common detector artefacts and background
noise,

e visually and statistically more precise results than FCS analysis at short-time scales,

e and the analysis of data retrieved from setups with single-excitation and single
detection channel.

Second, our developed plate reader delivered a high degree of automation and reproducibil-
ity at the single-molecule level, which facilitates the execution of FF'S measurements. The
results of this work will make future FFS experiments more feasible and therefore available
to a broader community.

7.1 Outlook

After showing the mSMR’s comparability to the established FCS method and even point-
ing out advantages at short-time scales, the focus should be on practical applications.
An interesting issue is the sequence-specific detection of DNA in a sample. Based on
single-labeled probes, the mSMR method could use in-situ hybridizations to specifically
detect sequences. This could be done using multiple probes that bind to different com-
plementary sequence segments of the target DNA. Another interesting research question
could be the study of antibody-antigen interactions or molecule-molecule interactions in
general using the mSMR method. Since the introduced confocal plate reader can screen
large parameter spaces effortlessly, exciting applications are sure to follow.
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8 Abbreviations

Abbreviation | Meaning

CEF Collection efficiency function

cPCH Correlated photon-counting histogram
DMSO Dimethyl sulfoxide

DNA Desoxyribonucleic acid

dsDNA double-stranded desoxyribonucleic acid
FCA Fluorescence cumulant analysis

FCCS Fluorescence cross-correlation spectroscopy
FCS Fluorescence correlation spectroscopy

FFS Fluorescence fluctuation spectroscopy
FIDA Fluorescnece intensity distribution analysis
FIMDA Fluorescence intensity multi distribution analysis
FITC Fluorescein isothiocyanate

FLCS Fluorescence life time spectroscopy

FRAP Fluorescence recovery after photobleaching
GFP Green fluorescent protein

HOFCS High order fluorescence correaltion spectroscopy
HPLC High performance liquid chromatography
LD Long-distance

MCS Monte Carlo simulation

MDE Molecular detection efficiency

MSD Mean squared displacement

mSMR Mean single molecule rate

MTP Microtiterplate

NA Numerical aperture

NGS Next generation sequencing

NHS N-hydroxysuccinimid

PCH Photon-counting histogram

Poi Poisson distribution

PSF Point spread function

RNA Ribonucleic acid

SMD Single-molecule detection

SPAD Single-photon avalanche diode

STED Stimulated emission depletion

TIFCA Time integrated fluorescence cumulant analysis
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10 Appendix

10.1 Generalization of the FCS calculation to higher
orders

The model of the fluorescence correlation spectroscopy (FCS) presented in section can
be extended to the general case of arbitrary higher orders. This concept of high order
fluorescence fcorrelation spectroscopy (HOFCS) was developed in a series of publications
by Palmer and Thompson [29, 30, B1]. The HOFCS was primarily developed for the
analysis of aggregation states of macromolecules. However, it could be shown that the
HOFCS is suitable for the examination of non-equilibrium states in biochemistry and by
means of simulations that the HOFCS provides a better resolution for macromolecules at
different brightness levels than the classical FCS [126]. The principle formular for HOFCS
is given by [29, p. 257-258]:

(L™ ()01 (¢ + 7))e — (OI™(8)): (01" (2))e

Gal7) = D

(10.1)

The indices m and n account for the order of the HOFCS. For an efficient calculation of
the HOFCS, we can, as for the efficient calculation of the FCS in section [3.3.1] employ the
Wiener-Khinchin theorem. First, we identify (61™(¢)01"(t+ 7)), as the actual correlation.
In this case, it can be treated as a cross-correlation r,,(7) as ™ # 2" for m # n. The
remaining terms are scalar constants. Thus, we get:

_ raylr) = (TSI (1)
Gl ) = =y

(10.2)

Analogous to the calculation of the autocorrelation r,,(7), we can use the so-called cross
spectral density (CSD) for the calculation of the cross-correlation r,,(7). Starting with
equation [3.10] it can be reshaped as follows

Saa(w) = |2 (W)[* = 2" (w)2(w) (10.3)

The asterisk * denotes the complex conjugate of = (it is = a + bi and for the complex
conjugate * = a — bi) and is important for processing Fourier transformed time series as
used in this case . The PSD can be regarded as a special case of the CSD, which is given
by

Sey(w) = ¥ (w)g(w) = F{x(t)}F{y(0)}- (10.4)
Now, the Wiener-Khinchin theorem can be applied, and we get for the correlation term

ray(r) = /_ " 5,0 dw = FHF (0} Fly(0)}). (10.5)

2 ) _
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Finally, for our HOFCS case, we simply put x = 2™ and y = 2" and we get our final
expression.

Pamgn = FH{F{a™ ()} F{z"(t)}} (10.6)

And for our application on fluorescence traces, we set z(t) = 01(t) as the fluorescence
intensity fluctuations.

Paman = FH{FH{0I™(6)} F{61"(t)} )} (10.7)

To check the plausibility of the expression for the HOFCS, consider the case for the first
order. By setting m = n = 1, equation reduces as follows:

=0
A\

Gy = (D) égl}gftwﬂ(wﬁ (10.8)
_ Z[fg))z (10.9)
1{?*{5{( ;>}f{51( 7)}} (10.10)
1{?*{{( ;if{f( 213 (10.11)
I{gé;% S (10.12)

The last expression corresponds exactly to equation [3.14]
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10.2 Additional information to the mSMR model

When calculating the diffusion term of the mSMR model using a Gaussian profile, three
terms emerge in the calculation whose equivalence is not directly obvious.

2
Fdiff,SDG(T) = __ D (27"\/ r2 —1m — 2\/ — 1 TD T + TQTD)

=1
. (r+ V=) B - 1)
(r — VT = 1)( (?C;Tf:f; 1)
(r— VT =T1)( ffff;ﬂ))
—Tln : (10.13)
(r+ V= 1)(/&E - 1)

47’7'])
=——— | rVr 17‘D—\/ 2—1)m(T + r?m)
T2/r? —1 (
/ 2
artanh (%) — artanh (ﬂ>] ) (10.14)

+ (T +m™) = T

:i<1_m

a?f
fUta) T s (JIEaB-1)
+ g e |2 B(mm—w]) 1oL

with @ = T'/mp and 8 = r2. Tt is easiest to compare mathematical terms graphically (see
figure [10.1]). The data agree within floating number precision.

1.0 A — Eq. 10.13
—— Eq. 10.14
—— Eq. 10.15
0.8 4
_0.6-
&
&
g
0.4 -
0.2 -
0.0 -
T T T T
10-° 103 10! 10!
T [s]

Figure 10.1: Visual comparison of equation |10.13|, |10.14| and |10.15| in the mSMR model.
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10.3 Supplementary information on afterpulsing in
Monte Carlo simulations

To verify whether afterpulsing effects also occur in FCS analyses of simulated fluores-
cence traces, the simulation run from section was repeated with a higher temporal
resolution of 1 x 10~7s. Figure shows the results of this run.

60 60
’. A ¢ Py=15% B ¢ Py=15%
50 1 ' 50
)
40 - 40 -
e, e,
i 30 A i 30
S s
<20 - =20 -
10 1 10 +
0 - { 0 1 4
10~ 104 102 10° 10— 1074 102 100
T Is] T s]
C ¢ P.=15% Figure 10.2: The influence of afterpulsing on
20 mSMR and FCS curves with a temporal reso-
" lution of 1 x 10~7s. The general parameters
15 1 are: rg = 29 = 0.4 um, simulation time ¢ = 10s,
~ single-molecule brightness rate pg = 100kCps,
5 10 - diffusion coefficient D = 50 pm? /s and number
of simulated particles N = 20. The afterpulsing
probability is Py = 1.5%. A Averaged mSMR
%] from five simulation runs. B Afterpulsing cor-
rected mSMR. C FCS analysis of simulated flu-
0 4 . . . orescence traces for comparison.
106 10—4 102 10°

Subplot A shows the results of the mSMR analysis. The influence of afterpulsing at short
time scales is evident. The effect is compensated by the correction of the cumulants,
so that in subplot B no afterpulsing appears. In the FCS evaluations in subplot C,
afterpulsing effects are noticeable at short time intervals for the given time resolution,
which cannot be corrected.
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10.4 Statistical measures from the comparison of FCS
and mSMR

Table 10.1: Measures of the statistical comparison of FCS and mSMR, part 1. The statistical significance
in all cases is a = 0.05

10 pW

Parameter Test Paie | Significance | Conclusion

(N) (FCS) Kolmogorow-Smirnow test | 0.891 | No Normally distributed
m (FCS) Kolmogorow-Smirnow test | 0.882 | No Normally distributed
Fiip (FCS) Kolmogorow-Smirnow test | 0.941 | No Normally distributed
Terip (FCS) Kolmogorow-Smirnow test | 0.689 | No Normally distributed
(N) (mSMR) | Kolmogorow-Smirnow test | 0.948 | No Normally distributed
™ (mSMR) Kolmogorow-Smirnow test | 0.999 | No Normally distributed
Fiip (mSMR) | Kolmogorow-Smirnow test | 0.689 | No Normally distributed
Twip (MSMR) | Kolmogorow-Smirnow test | 0.963 | No Normally distributed
(N) Brown-Forsythe test 0.766 | No Variance the same
™ Brown-Forsythe test 0.890 | No Variance the same
Fiip Brown-Forsythe test 0.005 | Yes Variance differs

Ttrip Brown-Forsythe test 0.432 | No Variance the same
(N) Welch’s t-test 0.137 | No Mean the same

™ Welch’s t-test 0.271 | No Mean the same

Fiip Welch’s t-test 0.000 | Yes Mean differs

Ttrip Welch'’s t-test 0.000 | Yes Mean differs

30 nW

Parameter Test P, awe | Significance | Conclusion

(N) (FCS) Kolmogorow-Smirnow test | 0.223 | No Normally distributed
m (FCS) Kolmogorow-Smirnow test | 0.820 | No Normally distributed
Fiip (FCS) Kolmogorow-Smirnow test | 0.793 | No Normally distributed
Tirip (FCS) Kolmogorow-Smirnow test | 0.680 | No Normally distributed
(N) (mSMR) | Kolmogorow-Smirnow test | 0.397 | No Normally distributed
m (mSMR) | Kolmogorow-Smirnow test | 0.931 | No Normally distributed
Fiip (mSMR) | Kolmogorow-Smirnow test | 0.772 | No Normally distributed
Tirip (MSMR) | Kolmogorow-Smirnow test | 0.890 | No Normally distributed
(N) Brown-Forsythe test 0.980 | No Variance the same
™ Brown-Forsythe test 0.708 | No Variance the same
Fiip Brown-Forsythe test 0.003 | Yes Variance differs

Ttrip Brown-Forsythe test 0.424 | No Variance the same
(N) Welch’s t-test 0.987 | No Mean the same

™ Welch'’s t-test 0.707 | No Mean the same

Fiip Welch’s t-test 0.000 | Yes Mean differs

Torip Welch’s t-test 0.059 | No Mean the same
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Table 10.2: Measures of the statistical comparison of FCS and mSMR, part 2. The statistical significance
in all cases is a = 0.05

50 pW

Parameter Test P ae | Significance | Conclusion

(N) (FCS) Kolmogorow-Smirnow test | 0.569 | No Normally distributed
m (FCS) Kolmogorow-Smirnow test | 0.610 | No Normally distributed
Fiip (FCS) Kolmogorow-Smirnow test | 0.857 | No Normally distributed
Tirip (FCS) Kolmogorow-Smirnow test | 0.740 | No Normally distributed
(N) (mSMR) | Kolmogorow-Smirnow test | 0.203 | No Normally distributed
™ (mSMR) Kolmogorow-Smirnow test | 0.928 | No Normally distributed
Fiip (mSMR) | Kolmogorow-Smirnow test | 0.977 | No Normally distributed
Terip (MSMR) | Kolmogorow-Smirnow test | 0.792 | No Normally distributed
(N) Brown-Forsythe test 0.759 | No Variance the same
™ Brown-Forsythe test 0.863 | No Variance the same
Fiip Brown-Forsythe test 0.000 | Yes Variance differs

Ttrip Brown-Forsythe test 0.009 | Yes Variance differs

(N) Welch’s t-test 0.910 | No Mean the same

™D Welch’s t-test 0.791 | No Mean the same

Fiip Welch’s t-test 0.000 | Yes Mean differs

Ttrip Welch’s t-test 0.031 | Yes Mean differs

70 pW

Parameter Test P awe | Significance | Conclusion

(N) (FCS) Kolmogorow-Smirnow test | 0.449 | No Normally distributed
m (FCS) Kolmogorow-Smirnow test | 0.326 | No Normally distributed
Fiip (FCS) Kolmogorow-Smirnow test | 0.478 | No Normally distributed
Tirip (FCS) Kolmogorow-Smirnow test | 0.746 | No Normally distributed
(N) (mSMR) | Kolmogorow-Smirnow test | 0.222 | No Normally distributed
m (mSMR) | Kolmogorow-Smirnow test | 0.949 | No Normally distributed
Fiip (mSMR) | Kolmogorow-Smirnow test | 0.817 | No Normally distributed
Tirip (MSMR) | Kolmogorow-Smirnow test | 0.775 | No Normally distributed
(N) Brown-Forsythe test 0.846 | No Variance the same
™ Brown-Forsythe test 0.777 | No Variance the same
Fiip Brown-Forsythe test 0.015 | Yes Variance differs

Ttrip Brown-Forsythe test 0.118 | No Variance the same
(N) Welch’s t-test 0.673 | No Mean the same

™ Welch’s t-test 0.306 | No Mean the same

Fiip Welch’s t-test 0.000 | Yes Mean differs

Ttrip Welch’s t-test 0.000 | Yes Mean differs







Acknowledgement

A dissertation does not come into being in a vacuum, but is based on preceding research
work and constant exchange. Many people therefore have their share in the successful
completion of such work. I will try to express my sincere thanks to the most important
people and apologize in advance to all those whom I have not highlighted separately. First
and foremost, my special thanks go to Dr. Benjamin Greiner for his manifold support.
This includes discussing the results, cross-checking the mathematical models, and his
constant motivation. In addition, Benny programmed significant parts of the Monte Carlo
simulation that was used for this thesis. Furthermore, I would like to thank Steffen Kriiger.
Without him, the confocal plate reader would not exist in its current form. Steffen made
the construction drawings and led the assembly of the system. He also held countless
meetings and discussions with suppliers until the necessary tolerances and specifications
were finally met. Christian Miiller assisted the process with the ordering of the device
components and the preparation of quotations. The programming of the hardware drivers
was carried out by Moritz Balg and Alexander Schuster. FErrors in the circuit board
design almost brought the two to the brink of despair. Great that you guys stuck it out!
The orchestration of the hardware components in meaningful program sequences was
programmed by Michael Fuchs. He also provided a graphical user interface to operate
the system comfortably. We spent countless hours together in the lab and debugged the
system until it ran stable. Thanks again for that! I would also like to emphasize Kristian
Berwanger. Kris not only helped a lot with the application for project funding, but also
always kept an eye on exploitation options and thus emphasized the relevance of the
research topic. He was also a reliable companion at conferences. Furthermore, my thanks
go to Prof. Dr. Harald Mathis for his support of the work as head of the BioMOS group.
Especially in the second half of the thesis I received important feedback, which allowed
me to focus the topic of my thesis. In addition, I would like to express my gratitude
to all employees of Fraunhofer FIT who have accompanied me over the past years of
my journey. Great acknowledgement goes to my first thesis advisor Prof. Dr. Ulrich
Schwaneberg head of the Department of Biotechnology at RWTH Aachen University and
my second thesis advisor Prof. Dr. Thomas Berlage head of the Department of Digital
Health at Fraunhofer FIT. Finally and perhaps most importantly, I want to point out the
invaluable support from my wife and my family that allowed me to pursue my dreams
and tackle this challenge.



	Zusammenfassung
	Abstract
	Data access
	List of Figures
	List of Tables
	Introduction
	Subject of the thesis

	Theory
	Fluorescence
	Fluorescence fluctuation spectroscopy
	Concentration fluctuations in tiny volumes
	Confocal optics
	Non-gaussian observation volume
	Fluorescence saturation in FFS experiments
	Modelling diffusion
	Diffusion of nucleic acids

	Fluorescence correlation spectroscopy
	Diffusion model of FCS
	Photokinetic effects in FCS
	Error estimation in FCS experiments

	The mean single-molecule rate (mSMR)
	Derivation of the mSMR
	Photokinetic effects in the mSMR

	Noise sources in FFS experiments
	Detector artefacts
	Other noise sources in FFS experiments


	Methods and instrumentation
	Monte Carlo simulation
	The confocal plate reader
	Instrumentation
	Autofocus and well offset
	Influence of temperature

	Data processing
	Calculating the autocorrelation for FCS
	Calculating the mSMR
	Correction of detector artefacts and background noise
	Correction of uncorrelated background noise in FFS experiments

	Data fitting

	The mSMR on simulated fluorescence fluctuations
	Experimental procedure
	Evaluation of the simulation engine using FCS
	mSMR on simulated fluorescence traces
	Consideration of measurement artefacts
	Afterpulsing
	Detector dead time
	Background noise

	Discussion

	The mSMR in real measurements
	Experimental procedure
	Evaluation and calibration of the confocal plate reader
	The mSMR under real measurement conditions
	Detector artefacts
	Visual comparison of FCS and mSMR
	Statistical comparison of FCS and mSMR

	Discussion

	The characterization of nucleic acid mixtures using the mSMR
	Experimental procedure
	mSMR in the analysis of nucleic acid mixtures
	Characterization of defined DNA mixtures
	Photokinetic effects in the analysis of DNA mixtures
	Photobleaching in the analysis of DNA mixtures
	Characterization of natural DNA mixtures

	Discussion

	Conclusion
	Outlook

	Abbreviations
	Bibliography
	Appendix
	Generalization of the FCS calculation to higher orders
	Additional information to the mSMR model
	Supplementary information on afterpulsing in Monte Carlo simulations
	Statistical measures from the comparison of FCS and mSMR


