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Kurzfassung

Moderne Supercomputersysteme haben eine verteilte und heterogene Struktur, die
verschiedene Recheneinheiten wie CPUs, GPUs und andere Beschleuniger umfasst.
Die Parallel Pattern Language (PPL) erméglicht die hardwareunabhéngige Program-
mierung solcher Systeme mit parallelen Mustern und generiert global optimierten
Code unter Verwendung des Roofline Leistungsmodells. Diese Arbeit zielt darauf
ab, die PPL zu erweitern, um Vektorbeschleuniger (VB) zu unterstiitzen, welche
eine hohere Energieeffizienz als die gingigsten Recheneinheiten bieten. Das Roofline
Modell wird erweitert, indem die besonderen architektonischen Merkmale von VBs
berticksichtigt werden, wodurch eine Genauigkeit von ~80% bis 99% erreicht wird.
Die PPL-Komponenten werden hinsichtlich der notwendigen Anderungen fiir die VB-
Codegenerierung analysiert. Die Generierung von funktionalem Code erfordert nur
begrenzte Anderungen an der Codegeneratorkomponente. Die Steigerung der Effizienz
von Datentransfers in diesem Code erfordert Anderungen an der Frontendsprache
und der Intermediate Representation. Diese Vorschlage werden zum Teil in einem
Proof-of-Concept umgesetzt, das in der Lage ist, funktionalen und korrekten Code fiir
VBs zu erzeugen. Dieser Code wird evaluiert, um mogliche Leistungsverbesserungen
zu ermitteln.

Stichworter: HPC, Vector Engine, Codegenerierung, Parallele Muster, Leistungs-
modell






Abstract

Modern supercomputer systems have a distributed and heterogeneous structure that
incorporates various compute units such as CPUs, GPUs, and other accelerators. The
Parallel Pattern Language (PPL) enables the hardware-independent programming
of such systems with parallel patterns and generates globally optimized code using
the Roofline performance model. This thesis aims to extend the PPL to support
Vector Accelerators (VAs), which offer a higher energy efficiency than the most
common compute units. The Roofline model is extended by considering the special
architectural features of VAs, which achieves an accuracy of ~80% to 99%. The
PPL components are analyzed regarding the necessary modifications for VA code
generation. Generating functional code requires limited changes to the code generator
component. Increasing the efficiency of data transfers in this code necessitates
changes to the frontend language and intermediate representation. These proposals
are partially implemented in a proof-of-concept that is capabable of generating
functional and correct code for VAs. This code is evaluated to identify potential
performance improvements.

Keywords: HPC, Vector Engine, Code Generation, Parallel Patterns, Performance
Model
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1 Introduction

The performance of the most powerful supercomputer systems continues to increase
despite the slowdown of Moore’s Law [85]. The exascale era in HPC has arrived with
supercomputers like Frontier [74], JUPITER [30], and Aurora [9]. Such supercomputer
clusters are facing new challenges due to rising energy prices. The growing gap
between compute and memory performance reduces the energy efficiency of memory
bound codes on the most common hardware, i.e., CPUs und GPUs. A solution to
this problem can be alternative architectures realized as specialized accelerators.
Vector Accelerators (VAs), in the form of NEC Vector Engines (VEs) are such an
alternative due to their higher energy efficiency [47].

Todays supercomputer clusters have a distributed and heterogeneous structure. A
large number of individual nodes, that contain various compute units, are connected
to form a single system. Optimizing applications on such systems requires a detailed
understanding of the structure and used hardware. Such applications are often
not fully optimized because application developers are experts in their own field of
research and rarely in HPC. Even for HPC experts, learning the system structure and
programming models is a complex and time consuming task. The unique structure of
each cluster also limits the portability of applications. A solution to these problems
can be the automatic generation of optimized code.

The Parallel Pattern Language (PPL) is being developed to offer such a solution.
Currently in a prototype development stage, it is a component based source-to-source
compiler, where applications are developed in a parallel pattern based Domain Specific
Language (DSL). This enables a hardware-independent expression of parallelism.
From this code, an intermediate representation [83] is generated in the form of an
Abstract Pattern Tree (APT), on which a global optimization [96] [95] 61] is then
applied. Several algorithmic efficiencies are used to account for a given system
structure. The choice of the hardware on which an application is to be executed in
whole or in part is based on a performance model. Based on this decision, optimized
source code is then generated [82]. The performance model and code generator
component support CPUs and NVIDA GPUs with their respective execution and
programming models.

The general goal of this thesis is to lay the foundations for the generation of code
for VEs by the PPL. A static performance model for VEs is developed as the first
step. It has to consider the special architectural features of VEs. For example, the
performance of an algorithm directly depends on its vectorizability. Another major
characteristic is the memory hierarchy with a single cache level between registers and
main memory. The validity of the model model is examined with several benchmarks
that are partially based on real-world algorithms.
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As the second step of the foundational work, code generation for VEs is investigated
in the context of the PPL. General objectives are specified and requirements for the
individual PPL components are defined. Suggestions for the implementation, which
consider the distinct programming and execution model of VEs, are given in the
context of this definition.

The code generation proposals are partially implemented in a proof-of-concept
extension of the PPL that can serve as a foundation for subsequent work. The
generated code for VEs is evaluated in terms of correctness and performance. It is
compared with handwritten VE code, as well as generated code for CPUs and GPUs.
Conclusions are drawn on optimization potential in the new implementation and the
PPL in general.

The validation of the performance model is performed with several benchmarks.
These are K-Means clustering (K-Means), K-Nearest neighbors (NN), a Jacobi solver,
and a linear shifter. With the exception of the latter, all benchmarks are based
on real-world algorithms and thus enable a realistic assessment of the performance
model. The assumptions made in the model about the memory architecture of VEs
are investigated with the STREAM benchmark [57]. The NN benchmark is further
used to evaluate the proof-of-concept code generator.

The main contributions of this thesis are:

o The definition and validation of a static performance model for VEs.

o The design of code generation for VEs in the PPL by specifiying requirements
and proposing implementation approaches.

o The partial implementation and subsequent evaluation of the specified code
generator.

The thesis is structured as follows. Chapter [2| provides an overview of related
work. Chapter [3| introduces the relevant concepts and foundations. These are the
Roofline performance model, parallel patterns, the PPL project, Vector Processors
(VPs), and the used benchmarks. Chapter {4| presents and validates the developed
performance model. The chapter further describes how the model can be integrated
into the PPL. The specifications and requirements for the PPL to generate code for
VEs are described in Chapter [5} Additionally, a proof-of-concept implementation is
presented and evaluated. Chapter [6] concludes this thesis by summarizing the results
and giving an outlook on possible future work.



2 Related Work

There exists a wide range of literature on performance modeling. Not only are there
many different performance models, but also extensions of these for new applications.
Automated code analysis tools utilize these models for hardware-specific performance
predictions. Automatic code generation is also a subject of research, for example
in conjunction with code optimization techniques. All of this is discussed in this
chapter and the main differences to this work are highlighted.

2.1 Performance Models

Algorithm performance on specific hardware can be abstractly modeled. Such
performance models are broadly divided into two categories: static and dynamic.
Static models only consider information that is available before a program is executed.
Dynamic models use information obtained through the execution of a program for
more accurate performance predictions. Both are frequently extended to include
new hardware architectures. This work extends the scope of hardware architectures
covered by static models with a new extension of the Roofline model for Vector
Processors (VPs) in general and the NEC SX-Aurora TSUBASA Vector Engine (VE)

in particular.

2.1.1 Roofline Model

The Roofline performance model [100] statically provides an upper bound on the
floating-point performance of a computational kernel on a given architecture. The
model is widely used, as can be seen by the plethora of published literature [104] [52]
20), 34], some of which is presented in this section.

Many extensions have been developed because the original model is designed for
regular CPU architectures and does not consider special architectural features. Ilic
et al. [42] extend the model by considering the entire memory hierarchy of modern
CPUs because the original model only considers the main memory. Their model has
an upper bound for each level of the memory hierarchy, which they term a cache-
aware Roofline model. An extension used in various publications [53], 48] 103, [104]
considers the different peak performance levels achievable on modern processors in a
hierarchical model. They provide multiple upper bounds, e.g., for half, single, double
precision, and more. The result of both cache-aware and hierarchical Roofline models
is a comprehensive abstraction of the system architecture, which enables a detailed
static analysis of computational kernels. With regard to the vector architecture
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used in this thesis, the Roofline model represents a suitable option for performance
modeling. This is because, like other architectures, they are primarily designed for
floating-point performance and have a comparable memory structure. The cache-
aware Roofline model is used as a starting point, as it incorporates the memory
hierarchy consisting of main memory and cache. The concept of multiple compute
roofs is also applied, using the vector length as the key factor for the achievable
performance.

Both the original and some of the extended Roofline models have been adapted to
other architectures. However, to the best of the author’s knowledge, no extension
specifically exists for vector architectures. Lopes et al. [52] explore the performance,
power consumption, and energy efficiency limits of computational kernels on GPUs
by adapting the cache-aware Roofline model. Another extension for GPUs replaces
the floating-point operation-based approach with an instruction-based model to gain
deeper insights into performance limits [23, 24]. To model Field Programmable
Gate Array (FPGA) performance, Da Silva et al. [20] incorporate results from high-
level synthesis tools. Siracusa et al. [88] use a similar approach where the Roofline
model guides an automatic design optimizer to improve the performance of HPC
applications on FPGAs. Extensions also exist for other architectures, such as mobile
Systems on a Chip (SoCs) [36] and compute nodes with heterogeneous memory [21].
Choi et al. [16] show that the Roofline model is also useful in modeling the energy
consumption of algorithms. All these works consider the unique characteristics of the
respective hardware in the Roofline analysis and equation. This work applies this
approach to VEs with the vector length and effective memory bandwidth extensions.

Cabezas and Pischel [13] further develop the Roofline model by including an
extended set of hardware-related bottlenecks. They also describe a tool that ana-
lyzes a given computational kernel using an execution model with directed acyclic
graphs, which is similar to the Abstract Pattern Tree (APT) of the Parallel Pattern
Language (PPL). The Roofline model and its extensions have also proven useful
in dynamic performance analysis, providing an easy-to-understand visualization of
the theoretically achievable and practically achieved performance. A well-known
example of a dynamic analysis tool that utilizes the Roofline model is Intel Advisor
[87]. Koskela et al. [48] describe it as an integrated approach that considers cache
awareness, cache blocking, and different peak performance levels. Marques et al. [53]
evaluate Intel Advisor and its use of the Roofline model. Since the PPL performs a
fully automated static analysis, the previously mentioned approaches are not pursued
in this work.

2.1.2 Other Models and Usage

The Execution-Cache-Memory (ECM) model, proposed by Treibig and Hager [94], is
based on the same fundamental idea of Roofline that the runtime of computational
kernels is either determined by the peak compute power or the data transfer time. It
requires an analysis of the entire cache and memory hierarchy of modern microar-
chitectures. The model has been applied and evaluated on various architectures
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and systems in a series of publications [33, 10T, 89, 39, [38] 40] by authors from the
University of Erlangen-Nuremberg and associated institutions. It is not used in this
work based on an evaluation of the advantages and disadvantages in comparison to
the Roofline model. This discussion can be found in Section 1.1

The previously mentioned models are specialized for predicting the runtime time of
algorithms on a single compute unit. Modern systems use a large number of different
compute units in parallel, e.g., multiple CPU sockets and accelerators distributed
among nodes in a cluster. Communication and network latency must be considered
to model the execution of programs on multiple nodes. Culler et al. [I9] introduced
the LogP model in 1993, where they factor in communication latency, overhead,
bandwidth, and the number of processing units. Similar to the Roofline model,
several extensions and refinements have been proposed. LogGP [6] incorporates the
impact of long messages into the model to better capture the benefits of large data
transfers. LogCA [7] models the impact and speedup that accelerators can have on a
system. An introduction of these models into the PPL for modeling network costs
was already proposed and to some extent implemented in previous work [95]. As a
result, a sufficient modeling is already achieved, making it unnecessary to extend it
in this work.

Performance models have proven useful in automated static code analysis, where
they can be used to improve performance predictions and find potential bottlenecks.
A number of frameworks have been developed for this purpose. A recent example
is Kerncraft, presented by Hammer et al. [34] in 2015. It focuses on the memory
hierarchy and uses both the Roofline and ECM models in combination with a code
analyzer. Another tool for static performance analysis and modeling is MIRA [59]. It
has some internal similarities to Kerncraft, but focuses on compute, i.e. floating-point,
performance and bottlenecks. The methods of these frameworks are not applied to
the PPL code analysis in this work, since the performance modeling already achieves
a satisfactory accuracy with the existing code analysis. Beyond Kerncraft and MIRA,
there are more analysis frameworks, some of which also include dynamic or hybrid
approaches. Examples include MAQAO [25], Empirical Roofline Toolkit [51], ExaSat
[97], and PBound [63].

2.2 Code Generation

The current field of code generation for VPs and VEs encompasses only a limited
amount of literature. The NEC compiler [69] supports C, C++ and Fortran compilation
to machine code for VEs. The LLVM compiler also provides such functionality [49]
and further supports OpenMP offloading to VEs [17, [I8]. As in the PPL [83],
both generate an intermediate representation from the source code. Unlike in
the PPL, binary machine code is generated instead of new source code. In this
work, an extension of the PPL to generate source code for VEs is designed and
partially implemented. A comparable approach that generates VE source code is not
known to the author. The code generator implementation of the PPL presented by
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Schmitz [82] is extended in this work. The PPL utilizes a source-to-source approach,
from a Domain Specific Language (DSL) based on parallel patterns to parallelized
C++ code. A comparable pattern-based development tool is presented by Modak et al.
[62]. Reiche et al. [79] present another approach that utilizes a DSL for hardware
accelerator code generation. Only NVIDIA GPUs can be used as offload targets in
the existing PPL implementation. This is achieved by generating parallel CUDA
code. In this work, the existing code generator is extended for VEs by using VEDA

[68] instead of the CUDA library. VEDA is only used in a limited number of works
[11], 98]
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This chapter presents the relevant technical background to this thesis in five separate
sections. Section explains the Roofline model and its usage. Section then
introduces the concept of parallel patterns. Section describes the Parallel Pattern
Language (PPL), its concept and core components. Vector Accelerators (VAs) are
described in Section by introducing the general concept and special features
of Vector Processors (VPs). The section further presents and describes the used
hardware architecture and its most important features. An overview of the used
benchmarks is given in Section These are relevant for the model validation in
Section and performance evaluation of the proof-of-concept in Section

3.1 Roofline Model

Static performance models are used to estimate the performance of an algorithm
before it is executed. They have a simplified view of hardware and code properties,
but capture the most important factors influencing performance. This performance is
typically defined as the number of floating-point operations per second. The expected
runtime can be calculated if it is known how many such operations an algorithm will
perform.

The Roofline model [I00] statically provides an upper performance bound for
a computational kernel on a given hardware. It incorporates the main code and
hardware characteristics in its calculation. In this work, the cache-aware Roofline
model [42] is used as a starting point to consider the entire memory hierarchy of
the modeled architecture. An important advantage of the Roofline model is the
possibility of visualizing the achieved performance in relation to the performance
bounds.

An architecture is characterized in the Roofline model by its peak performance
Ppeak in floating-point operations per second (Flop/s) and the peak memory band-
width § in bytes per second (Byte/s). The cache-aware Roofline model [42] makes
a distinction between f,,.,, for the main memory, and S..cpe, for the cache. A
computational kernel is represented by its operational intensity I, i.e., the number of
bytes transferred per floating-point operation. These variables are listed in Table
for a better overview. The formula of the Roofline model to calculate the upper
performance bound 7 is defined as

m = min(Ppeak, I - ). (3.1)
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Variable Description Unit
T Attainable performance GFlop/s
Ppeak  Peak hardware performance GFlop/s
1 Operational intensity Flop/Byte

16 Peak memory bandwidth GByte/s

Table 3.1: A description of the key variables used in the Roofline model and their
units of measurement.

/, /,
1024 A / /

512 A

128

64 -

Performance (GFlop/s)

32 A

16 19.2 GFlop/s

0.0078125 0.03125 0.125 0.5 2 8 32 128
Operational Intensity

Figure 3.1: A sample visualization for the cache-aware Roofline model. Peak perfor-
mance, main memory bandwidth, and L3 cache bandwidth are given as
performance bounds. An algorithm with an operational intensity of 0.25
is fitted into these.

The cache-aware Roofline model is now explained in more detail with an example.
Assume that a sample algorithm with an operational intensity of 0.25 is to be
executed on an architecture with a peak performance of 1024 GFlop/s, 76.8 GByte/s
main memory bandwidth, and 2 TByte/s L3 cache bandwidth. Other cache levels
are omitted. This data is visualized in Figure [3.1 where the x-axis represents the
operational intensity and the y-axis represents the achievable performance of the
algorithm. It can be seen that the algorithm is memory or cache bound, therefore
a distinction between the two must be made. The performance can reach 19.2
GFlop/s in case of memory boundness and 512 GFlop/s if it is cache bound. An
implementation that does not achieve these values can be further optimized.
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EEEEEEEN -

Reduce pattern

i Output data

Figure 3.2: The Reduce parallel pattern that combines partial results in the form of
a tree. Based on [5§].

3.2 Parallel Patterns

Software design patterns are generalized and reusable solutions for frequently oc-
curring problems in software development. Parallel patterns [56], 58] describe such
solutions for the concurrency domain of algorithms. Two parallel patterns are
presented as an example in the following.

The Map pattern describes the independent application of a specific operation
to the elements of a dataset. In practice, this means the implementation of a loop
without dependencies between the iterations. The lack of dependencies allows an
arbitrary level of parallelization to take place.

Another example is the Reduce pattern, which reduces a dataset into a single
result by combining partial results. The pattern is often used to calculate the sum,
minimum or maximum of the values of a dataset. Figure |3.2 provides a visualization
of this pattern. It shows the input data which is combined step by step in the
form of a tree to create a single output element. Parallelization can be achieved by
assigning each combination of partial results to one thread. The degree of achievable
parallelism is equal to the number of combinations per reduction step and decreases
in each. The first step in the figure encompasses four combinations to reduce the
eight input elements to four, which allows the use of four threads. This number
is halved in the second step, where only two combinations take place. The final
reduction to the single output element can then only be performed by a single thread.

3.3 Parallel Pattern Language

The PPL [61], 83, [96], 82] is a framework and toolchain for the efficient development
of parallel programs for heterogeneous architectures. This section introduces the
concept of global optimization and gives an overview over the toolchain components.
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The descriptions are partially based on and inspired by previous work [12].

3.3.1 Global Optimization

The performance of an algorithm can be optimized on instruction, routine (local)
and algorithm (global) levels. Both instruction and local level optimizations are
already performed by hardware, compilers and with parallel programming models
such as OpenMP [75]. The PPL builds on this and performs a global optimization
in the context of execution on heterogeneous and distributed systems [95]. A global
optimization considers the entire structure of an algorithm, to improve, for example,
the overall parallelizability. For this purpose, larger structural elements, such as
functions or parallel patterns, may be reordered, splitted or fused. This is accom-
plished in the PPL by representing the algorithmic structure in an Abstract Pattern
Tree (APT) [61] where the nodes represent the parallel patterns and structures. The
control and dataflow dependencies are represented by child nodes. Based on the
APT, the global optimization is performed in three steps. Each step maximizes a
well-defined algorithmic efficiency:

« Synchronization: Execute as many nodes, i.e. patterns, in parallel as possible.
o Inter-processor dataflow: Runtime minimal mapping of nodes to processors.

 Intra-processor dataflow: Runtime minimal mapping of tasks to the cores of a
processor.

The global optimization is statically applied, which means that it relies entirely
on the structural information obtained from the APT. No dynamic, i.e. runtime
information about the actual computation is considered.

A set of global steps GSTEP can be obtained from the APT, where each represents
a set of tasks, i.e. parallel patterns, that can be executed in parallel. The optimization
based on the synchronization efficiency is hardware independent and seeks to minimize
the total number of GSTEP while maximizing the number of tasks within each. This
efficiency therefore represents the structural parallelism of the program.

For the inter-processor dataflow efficiency, the set of tasks within a GSTEP is
mapped to the target architecture, described by a set of processors. The objective is
a runtime-minimal mapping of tasks to processors. A processor is a homogeneous
set of cores with a locally shared cache, such as a single CPU in a multiprocessor
system or a streaming multiprocessor of a GPU. The optimization considers the
execution cost of a task and the network cost of the necessary data transfers in
order to statically model the runtime. The execution costs are based on the Roofline
performance model [I00], while the network costs are based on the LogP model [6].

Optimization on the basis of the intra-processor dataflow efficiency is performed by
the code generator component. It optimizes the allocation of tasks to the individual
cores of a processor by parallelizing with PThreads [71].

10



3.3 Parallel Pattern Language

Parallel Pattern Language Hardware Language

Cluster Model

Abstract Pattern Tree

Optimization
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(O  Intermediate Representation
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Figure 3.3: The toolchain components and workflow of the PPL. Taken from [83].

3.3.2 Toolchain Overview

The PPL implementation [83] is a component-based toolchain in which some parts
are interchangeable. It acts as a source-to-source compiler to increase application
portability and let regular compilers perform additional, i.e. instruction and local,
optimizations. An overview of the components and workflow can be found in
Figure

The central component is the optimizer, which performs the previously described
global optimization. The optimization requires two input parameters, an APT and a
hardware description. The APT is generated from source code in a Domain Specific
Language (DSL). This simplifies the description of parallel patterns and thus also
the generation of the APT. The description of the hardware on which a code is to be
executed is given by a cluster model. It is generated from the JSON based Hardware
Language (HL). The DSL and HL are the frontend to the developer. The result of
the global optimization is a modified structure of the APT and a mapping to the
given hardware. This information is stored in an Abstract Mapping Tree (AMT),
in which the nodes now also model the execution on devices like GPUs and the
necessary data transfers.

The information in the AMT is used by a code generator [82] that generates
optimized and parallelized code for the respective target architectures. C++ code is
generated to enable further optimization at instruction and local level by compilers.
The generator also optimizes at the local level by parallelizing with PThreads for
CPUs and CUDA for GPUs. The generated code uses MPI to address distributed
memory in a heterogeneous system. A static Makefile is generated for the compilation
on the target system.
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Of these components, APT, cluster model, and AMT are part of the intermediate
representation and are non-interchangeable. The frontend language, HL, optimizer,
and code generator are freely interchangeable. For example, a new code generator
supporting a different target architecture can be used instead of the current one by
using the AMT as an interface.

3.4 Vector Accelerators

Flynn’s taxonomy [26] distinguishes between several methods of executing instruc-
tions on data. Basic CPUs execute one instruction on one data element. This is
referred to as Single Instruction Single Data (SISD). However, other methods can
be used to improve performance. VPs use a technique called Single Instruction
Multiple Data (SIMD). In this method, an instruction is executed on a group of data
elements, called a vector. This, when supported by a memory system with sufficient
bandwidth, can dramatically increase performance [31] while maintaining a similar
power requirement [47, [1l, [32]. SIMD is especially beneficial in multimedia [86, [5]
and scientific applications [90, 35, B9] where only a few instructions are executed
on a large amount of data. This section elaborates on the concept of VPs, their
differences to CPUs and GPUs, and provides a description of the VP used in this
thesis.

3.4.1 Vector Processors

VPs have many distinctive features that separate them from other types of processors
that might also implement SIMD. VPs usually utilize much longer vectors than
regular CPUs with SIMD, thus processing more elements per instruction. Another
difference is that VPs feature a fully variable vector length, meaning that a vector
can take any length up to the architectural limit. Branching, i.e. conditional code,
can slow down the pipelining of instructions, especially in the case of incorrect
branch prediction. This is mitigated in VPs with predication [41 [78], where all
possible branch paths are executed, but only on the vector elements for which the
conditions are actually met. This is accomplished by using a mask vector register
that contains the boolean values for each vector element and applying it to the
conditional instruction. In Flynn’s taxonomy, a CPU that implements predication
is called associative [27]. To further improve performance, vector chaining [37, 93]
is implemented. With this method, the results of one instruction are directly fed
back into the execution units without additional memory references, which reduce
performance.

Modern CPUs use instruction pipelining, where instructions are executed in several
substeps. VPs apply this concept to the data itself. Figure illustrates this concept.
The left side shows how CPUs with short vectors process data; in this case with a
vector length of four. The right side shows how VPs process data. Their vectors are
much longer, 32 elements in this example, and are only partially processed in each
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Figure 3.4: Vector Processors feature larger vector registers than CPUs with SIMD
capabilities.

cycle. Meaning that a single instruction is executed over multiple cycles, eight in this
case. This reduces the load and latency of the instruction fetch and decode units. In
addition, implicit loops can be formed, reducing the number of instructions and thus
increasing memory efficiency. The (main) advantage of VPs over traditional CPUs
and GPUs is a higher compute and energy efficiency, particularly for memory-bound
codes [47].

Vector Accelerators are a special form of VPs. They are no longer the main
execution unit of the system, but instead act as a co-processor. An x86 CPU acts as
the main processor. VAs today take the form of a VP on a PCle expansion card.
Therefore, they experience the bottleneck of the PCle bus to the host CPU and main
memory, which can significantly slow down execution. For this reason VAs usually
feature a dedicated high-speed memory subsystem.

3.4.2 Comparison to CPUs and GPUs

There are many differences between CPUs, GPUs and VPs, in particular in the
way they implement SIMD. In the following, these differences are discussed with an
emphasis on VPs.

CPU SIMD

Almost all modern CPUs support some form of SIMD. The most recent implementa-
tion in Intel and AMD x86 CPUs is called Advanced Vector Extensions (AVX) and
can process up to 512 bits of data in a single Instruction [80]. This is not a long
vector in comparison to VPs, where vector lengths have reached 16384 bits. While
VPs feature a fully variable vector length, most SIMD implementations support only
some fixed vector lengths, such as the powers of two between one and the maximum
vector length. A difference between VPs and CPUs that is no longer present in
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AVX-512 and ARM SVE2 [I0] is predication, where masking vectors are applied
to conditional instructions. Vector chaining, on the other hand, is missing in both
AVX-512 and ARM SVE2. The results of an instruction are always written back
to memory. In addition, widely used CPU architectures do not currently feature
the form of data pipelining present in VPs. Which means that a new instruction is
executed in each cycle, imposing a higher load and latency on the instruction fetch
and decode units. CPU SIMD also consumes more power and thus generates more
heat than normal instructions. As a result, Intel processors, for example, usually
reduce their clock frequency when using all AVX units [84].

Because of the variety of available x86-extensions, programmers have to optimize
their applications specifically for each target architecture and product generation.
The use of architecture-specific intrinsics is one method of accomplishing this. This
workload also increases over time, since many users are still operating processors
with older extensions while new ones are frequently added.

GPU SIMT

GPUs implement a different form of SIMD, Single Instruction Multiple Threads
(SIMT), by combining SIMD with multithreading [58]. A modern GPU has several
thousand cores, each with its own Arithmetic Logic Units (ALUs), data caches,
and register files. These cores execute instructions in groups called warps. The
instruction is passed to a warp by a dedicated unit with a single instruction cache,
instruction decoder, and program counter. Although all cores in a warp execute
the same instruction, they do so on different data sets. The purpose of SIMT is to
limit the overhead of fetching and decoding instructions [81]. To achieve non-scalar
execution, VPs have large cores with many compute units. The GPU approach
achieves this by synchronizing many small scalar cores. Similar to VPs, GPUs are
specialized for high data throughput. One drawback of the SIMT approach is poor
branching performance since all threads in a group must execute all branch paths,
just masked for the various conditional instructions [77]. Afanasyev et al. [3] provide
a more detailed comparison between the principles of vector processing and SIMT.

3.4.3 Practical Requirements

SIMD in general and VPs in particular place special demands on compute kernels in
order to achieve high performance and to use the given resources efficiently. Such a
kernel must not only be parallelizable, but also vectorizable. That is, several data
elements must be processable with the same instruction. The code complexity must
also be minimized, especially for branching, in order to guarantee efficient execution.
However, a vectorizable kernel does not guarantee good vectorization, as is visible
in the case of K-Means clustering: In the algorithm of Lloyd [50], the vector length
is equal to the dimensionality of the data set. This makes vectorization inefficient
for small dimensionality, i.e. short vectors. This is because the initialization time
of the vector pipeline exceeds the time savings from vectorization. Accordingly, the

14



3.4 Vector Accelerators

HBM2 ' — HBM2
] ]
[ n b COTE JCOre L o [
® ®
HBM2 | | -] U | HBM2
— —
— = -
] ]

Figure 3.5: Overview of the SX-Aurora Type 10B Vector Processor.

input data must also be taken into account when evaluating the vectorizability of an
algorithm.

3.4.4 NEC SX-Aurora

The SX-Aurora TSUBASA is a Vector Accelerator (also called Vector Engine (VE))
manufactured by NEC and intended to be used as a PCle co-processor [67]. It is
the successor to the SX-ACE and was presented in 2018 [102]. The architecture
has its roots in the early 1980s and has been continuously developed ever since [28].
The SX-Aurora is the first VP sold as a dedicated accelerator card rather than in a
complete supercomputer system. Real world applications include weather forecasting
[43], sea state prediction for militaries [76], page rank algorithms [4], and other
memory-intensive applications. This section provides a detailed description of the
architecture, performance, system integration and other features of the VE.

Architecture & Performance

The specific SX-Aurora model used in this work is the Type 10B [65] with 8 cores
clocked at 1.4GHz. Figure gives an overview of the architecture. All cores
share 16 MB of Last Level Cache (LLC). The processor is connected to six High
Bandwidth Memory (HBM) modules with a capacity of 48 GB and a total bandwidth
of 1.229 TByte/s. Each core has a maximum bandwidth of 409.6 GByte/s to the
main memory and 3 TByte/s to the LLC. Table provides a summary of its most
important hardware properties relevant for this thesis.

Each core consists of three main components, a Scalar Processing Unit (SPU),
a Vector Processing Unit (VPU), and a memory subsystem. All relevant compute
capability is provided by the VPU, while the SPU is designed to provide basic
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VE Type 10B
Core Count 8

Clock Speed 1.4 GHz
Vector Length 256

Peak DP Performance 2.15 TFlop/s
Main Memory Size 48 GB

Main Mamory Bandwidth 1.229 TByte/s
LLC Size 16 MB

LLC Bandwidth 3 TByte/s

Table 3.2: The relevant hardware properties of the VE used in this thesis.

functionalities comparable to those of a CPU. A VPU hosts 64 vector registers,
each with 256 entries and a width of 8 Byte, resulting in a vector length of 256
double elements. In comparison, the most recent SIMD implementations of Intel
and AMD processors, e.g. AVX-512 [80], only have a vector length of 8 elements
and are missing a deep pipeline. The compute capability of the VPU is provided by
32 parallel vector pipelines, each containing three Fused Multiply-Add (FMA) units,
one Division/Square-Root (DIV/SQRT) unit and two ALUs. This results in a single
VPU containing 96 FMA units, 32 DIV/SQRT units and 64 ALUs. All execution
units are pipelined for higher efficiency. Meaning that, because there are 32 parallel
vector pipelines per VPU, one vector instruction with a length of 256 is completed
in 8 cycles.

The theoretical peak performance of the VE is determined by the number of cores
and their number of execution units. Since each core features 96 FMA units, which
achieve the highest performance compared to the other units, and each FMA unit
executes two operation per cycle, the whole core can process 192 double elements per
cycle. At the peak frequency of 1.4GHz, each core can achieve a peak double precision
performance of 268.8 GFlop/s. The entire 8-core system can achieve 2.15 TFlop/s
for double precision and 4.3 TFlop/s for single precision. In contrast, modern GPUs
from NVIDIA, such as the V100 can achieve 7.066 TFlop/s for double precision
and 14.13 TFlop/s for single precision [73], 02]. Besides the V100, which intended
for data centers, consumer options can also outperform the VE in single precision
performance. An example is the AMD Radeon RX6800 with 16.17 TFlop/s [2, [91].

An important metric for assessing the actual efficiency of hardware is machine
balance. It is defined as the read and written bytes per (double precision) floating-
point operation. This value has decreased in the the last decades [55], which means
that fewer memory accesses are possible today than previously when reaching peak
performance. Compute kernels that do not meet this requirement will therefore
waste some of the potential peak performance and execute with lower efficiency. A
higher machine balance means an increased efficiency. Table lists the machine
balance of various processing units, of which the SX-Aurora has the highest. This
higher efficiency is also observed in practice [47].
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Device Double Precision Memory Machine Balance
Performance Bandwidth (Byte/Flop)
(GFlop/s) (GByte/s)

NEC SX-Aurora 2150 1229 0.572
Type 10B

AMD Radeon 1010 512 0.507
RX6800

NVIDIA V100 7066 900 0.127

Intel Xeon 1612.8 128 0.079

Platinum 8160

Table 3.3: The machine balance of various processing units. Based on [65], 2, O1], [73],
92, [44].
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Figure 3.6: Sample cluster architecture with two nodes containing VEs that are
connected by InfiniBand.

System Integration

The SX-Aurora Vector Engine is a PCle add-in card and functions similarly to a
GPU with some important differences. A VE combines vector processing with x86
architecture and programming paradigms. While a GPU has frequent data transfers
between it and the host system, the VE typically only transfers data at the beginning
and end of a program, or when using system calls [70]. This, along with the large
main memory, avoids the PCle bottleneck. Modern GPUs are programmed with
specialized languages or APIs. Examples include CUDA [72], OpenGL [45], Vulkan
[46] and DirectX [60]. In contrast, a VE executes standard C, C++ or Fortran code,
which simplifies the development process. VE code is compiled by a proprietary
compiler from NEC [64], which vectorizes and parallelizes the code automatically and
further supports OpenMP and MPI. Due to these properties, VE programs behave
similarly to any other Linux program and can use almost any Linux system call.
These system calls are managed by the Vector Engine Operating System (VEOS) on
the host CPU, called Vector Host (VH).
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Since the SX-Aurora is designed to be used in supercomputer systems rather than
personal computers or servers, it supports cross-card communication. In practice,
this means that several VEs are connected via the PCle Bus of a system. They
are usually grouped together via a PCle switch. An InfiniBand network can be
used for additional connections to other nodes. Figure shows an example of a
cluster architecture. This sample architecture consists of a file system node and two
identical compute nodes. These are connected by an InfiniBand network through a
Host Channel Adapter (HCA). The compute nodes have eight VEs grouped using
two PCle switches connected to the CPU and the InfiniBand network.

Execution Models

VEs support several methods of executing programs [29, 66]. The first is native
compilation and execution, which is done with the NEC compiler. Native execution
offers the advantage of a coherent code and thus improved readability. Disadvantages
are the possibly low performance of scalar code sections, I/O functions, and system
calls. To address these disadvantages, other execution models are also supported.

An alternative to native code is offloading from the CPU to the accelerator. In
this case, only the compute kernels that are specifically suited for VPs would be
executed on the SX-Aurora. All other code remains on the main CPU of the system,
which might result in runtime savings. Offloading code requires an interface to the
VE in the form of either OpenMP offloading or VEDA (Vector Engine Driver API)
[68]. OpenMP offloading is already implemented for GPUs [8, 22]. On the VE, it
is currently only supported with an extension to LLVM, which is presented and
evaluated by Cramer et al. [I7, [I8]. VEDA, on the other hand, is usable in common
compilers as an includable library. It offers a variety of commands that provide
greater control and flexibility than OpenMP offloading. It is also possible to offload
parts of a program from the VE to the vector host. This is especially useful if host
functions like system calls are rarely used.

This thesis uses both native compilation and VEDA to port validation benchmarks,
while the presented code generation is entirely based on VEDA.

3.5 Benchmarks

In this thesis, several benchmarks are used, some of which are based on algorithms
that are used in real-world applications. They possess different performance bounds,
parallelizability, and vectorizability. The latter is particularly important with regard
to the investigated vector architecture

The first algorithm is a K-Means clustering (K-Means) that is based on Lloyd’s
algorithm [50], and part of the Rodinia benchmark suite [I4} 15]. It has a high degree
of data parallelism, while still being memory bound. The algorithm partitions the
data points on an n-dimensional grid such that each data point is assigned to the
nearest of k clusters. These clusters are moved to the center of their partitioning.
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This procedure is repeated in several iterations to find an optimal clustering. The
vector length that can be achieved is equal to the dimensions of the grid and the
data points.

The second used algorithm is K-Nearest neighbors (NN). Like K-Means, it can also
be effectively parallelized and is memory bound. The used implementation is also
part of the Rodinia benchmark suite. The algorithm finds the k nearest neighbors of
an input point in a dataset. Unlike K-Means, this does not require multiple iterations
but only needs to be performed once. Vectorizability in this algorithm does not
depend on the dimensionality of the dataset, but only on the actual code design. In
this implementation, a high degree of vectorization is possible.

A Jacobi solver is used, to cover cache bound algorithms. This algorithm changes
array elements in a certain pattern, which is called a stencil. The exact pattern
is based on the Jacobi method, which approximately solves a system of equations.
Nested loops and branches permit only a partial vectorization, but that still results
in significant performance improvements.

A new algorithm is implemented in order to investigate compute bound problems.
It is a linear shift of a dataset by adding a fixed value to each data element. This
shift can be performed in an arbitrary number of iterations to allow for a runtime
that can be accurately examined. The algorithm is highly parallelizable over the
iterations. A high degree of vectorization of the shift operations is possible.

The exact selection of these algorithms is based on various aspects. They have to
cover the relevant cases in the Roofline and developed performance model. That is,
compute, main memory, and cache boundedness. The code complexity also plays a
role in the selection. It has to be relatively low in order to guarantee portability to
VEs as well as ease of investigation within the time frame of this work. Table
gives an overview of the data used for the Roofline model.

Algorithm Boundness Loads + Flops Operational
Stores Intensity [
K-Means Memory 23 8 0.0435
clustering
K-Nearest Memory 3 6 0.25
neighbors
Jacobi solver Cache 9 6 0.0833

Table 3.4: Operational details of the memory and cache bound benchmark algorithms.

The STREAM benchmark [57] is used for additional validation. It measures the
real achievable memory bandwidth of a hardware configuration with the help of
four different kernels. By processing large arrays, these kernels minimize cache
effects, which would distort the performance profile of the main memory. The
original benchmark is modified to allow control of the vector length. This allows the
relationship between vector length and memory bandwidth to be investigated. Thus,
the assumptions made in the developed model can be analyzed.
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Extending the Parallel Pattern Language (PPL) for Vector Engines (VEs) requires
foundational work. The first step is the development of a performance model in
order to predict the performance of an algorithm on VEs. The main constraint
for this model in the context of the PPL is a static usability, based on hardware
and code properties. A high accuracy for a wide range of algorithms must also be
achieved. Section[d.I|presents a newly developed model that meets these requirements.
Especially the accuracy is validated in Section using the benchmarks introduced
in Section [3.5] Section then investigates how the model can be integrated into the
PPL. A discussion on the results and proposals of this chapter follows in Section [4.4]

4.1 Proposed Model

This section introduces the developed performance model, which is composed of two
newly developed extensions to the cache-aware Roofline model [I00} 42]. Using it
as the base model has a number of advantages that are outlined in Section [4.1.1}
Section and Section then present the developed extensions.

4.1.1 Concept

Modeling the performance of algorithms on VEs does not require the development of
a new model. Rather, existing models can be used and extended to cover the special
characteristics and behaviors of VEs. There are two main requirements for such a
model:

1. Static computability, based on code and hardware characteristics.

2. Accurate performance prediction for algorithms with different types of perfor-
mance limitations.

Two models that meet these requirements are the Roofline [I00] and ECM [94]
models.

While both fulfill the aforementioned requirements, they achieve them with different
methods. The cache-aware Roofline model [42] is chosen as the base model due
to the following reasons: First, the performance modeling using both code and
hardware properties only requires calculation with a single, simple formula (see
Equation and Table . Meanwhile, the ECM model requires the calculation
of overlap and the use of more hardware properties, which might not be known for
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a given architecture. For instance, the required cycles per data transfer, especially
between the individual memory levels, are not entirely known for the proprietary
SX-Aurora architecture. The second reason is that the Roofline formula can be
quickly extended by adding new code or hardware factors. The relative complexity
of the ECM model inhibits such extensibility. The third advantage of the Roofline
model is its ease of visualization, which allows a programmer to quickly assess how
much performance potential a code has. By using the cache-aware Roofline model,
the entire architecture of the SX-Aurora is covered. Memory, cache and compute
bound codes can be modeled.

4.1.2 Vector Length

The actual vector length in a computational kernel is crucial for the achievable
performance on Vector Processors (VPs). For example, with a real vector length
of 128 elements, only half of the available performance can be achieved on the
SX-Aurora. The vector length should be integrated as a factor in the performance
model to model this code characteristic. No version of the Roofline model published
so far is specialized for VPs and considers the vector length as a key performance
factor.
The vector length
V= Ureal (41)

'Umaz

is thus integrated into the Roofline Model as an additional factor, where 0 < v,y <
Umae holds. Here v, is the real vector length within an algorithm and v,,,, is
the maximum vector length supported by the architecture. On the SX-Aurora
Umaz ‘= 256 applies.

By adding the vectorization factor, the Roofline formula takes the form of

7 = min(Ppeak, I - 5) - V. (4.2)

The original components of the formula (Ppeak, I, and () remain in their original
form. The formula applies to both Sygs, the main memory bandwidth, and £;.¢,
the cache bandwidth. The multiplication with V' ensures that the performance
modeling for compute, memory, and cache bound codes depends on the vector length.
The resulting performance scaling can be depicted within the established Roofline
visualization, for which Section provides an example. Figure [4.1] shows this
exemplarily for the real vector lengths 256, 128, 64 and 1, where 256 is the upper
and 1 the lower performance bound. However, any value between 1 and 256 can be
used. The use of B¢ is omitted for visual clarity. A new roof arises for each vector
length.

The described extension maintains the Roofline model as a statically computable
performance model. The information about the real vector length can be obtained
with different (static) methods. For example, in K-Means clustering (K-Means), the
vector length depends on the dimensionality of the dataset, while in other algorithms,
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Figure 4.1: Performance roofs for different vector lengths on the SX-Aurora.

an analysis of the compute kernel is required. Consequently, static computation is
possible in the context of the PPL toolchain.

4.1.3 Effective Memory Bandwidth

The initial validation of the newly added vectorization factor finds that it is not
sufficiently accurate in modeling the behavior of the SX-Aurora in every case. In
these measurements, some algorithms show higher performance than predicted by
the model. This behavior is directly related to the vector length. For long vectors,
the measured values are close to those predicted by the model. In contrast, for short
vectors, the achieved performance is noticeably higher than predicted. To explain this
discrepancy, the following hypothesis is put forward: The shorter the vector length,
the higher the memory bandwidth achievable due to caching and prefetching effects..
The validity of this hypothesis cannot be investigated further due to the proprietary
nature of the SX architecture and the lack of response to contact attempts with
NEC. However, a second extension based on the hypothesis is added to increase the
accuracy of the vector length extended Roofline model on the SX-Aurora.

This is achieved by addressing the memory bandwidth. Sggy is to be scaled
non-linearly based on the vector length. The extension does not apply to B¢,
since the mentioned discrepancies are not observed for cache-bound algorithms. This
might be because cache effects are more pronounced when the main memory is used.
The modified Roofline formula should still be easy to use, i.e. it should allow a
straightforward performance calculation without requiring new variables. The exact
formula is acquired by curve fitting to the benchmark performance. As a result, a
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Figure 4.2: The memory bandwidths of an SX-Aurora as a function of vector length
as calculated by the developed performance model.

new scaling factor
1
X =100 In(— 4.3
n() (13)

is introduced. This is added to the existing memory bandwidth. The Roofline
formula for memory-bound algorithms thus takes the form of

7 = min(Ppeak, I - (Bupu + X)) - V. (4.4)

This achieves a non-linear scaling of the memory bandwidth. Figure provides a
visualization of the resulting differences in achievable bandwidth on an SX-Aurora
as a function of the vector length. The cache bandwidth is represented by the blue
line. The dotted orange line is the non-linearly scaled bandwidth, while the solid
orange line is the originally assumed bandwidth. The distance between the two lines
decreases as the vector length increases.

This second extension still allows a static performance prediction. In contrast to
the first extension, no further analysis of the code is required. Only the distinction
whether a code is bound by main memory or cache bandwidth becomes important.
However, this is already necessary in the original cache-aware model.

4.2 Validation

An important requirement for any performance model is its accuracy when applied
to real algorithms. Although such models have a simplified view of hardware and
code properties, they capture the most important factors influencing performance.
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The previously presented model is examined in this section in terms of its accuracy.
For this purpose, the used setup and methodology are presented in Section [4.2.1]
This is followed by the presentation and analysis of the results in Section [£.2.2]

4.2.1 Setup and Methodology

The extended model is validated using the benchmarks presented in Section [3.5]
These cover all relevant cases, i.e. compute, memory, and cache boundness. The mean
runtime of the compute kernels of the algorithms is measured over ten executions.
It is converted into the performance in GFlop/s using the arithmetic and memory
operation count from Table 3.4 An exception here is the STREAM benchmark,
for which the memory bandwidth is calculated. Since the vector length is central
to the extended model, the performance of each algorithm is examined for vector
lengths between one and 256 elements. In order to reduce the time required for data
collection while maintaining the same validity, the vector length only assumes powers
of two in this range. The exact measurement results can be found in Tables
and [A.2]

In K-Means, the positions for five clusters are searched. In this algorithm, the
vector length is equal to the dimensionality of the dataset. For this reason, a separate
dataset is used for each vector length. To limit the runtime, the number of data
points depends on the vector length. For a vector length of one or two, each dataset
contains ten million elements. For all other lengths, it contains one million elements.
In K-Nearest neighbors (NN), the £ = 50 nearest neighbors are searched in a data
set containing 32768 points. Only the kernel calculating the distances is considered
in the performance measurement. The Jacobi solver is executed on a 32768 by 32786
matrix in 50 iterations. In the compute bound linear shift kernel, the data set consists
of six arrays, each with a length of 256, which are used in 50 billion iterations. The
STREAM benchmark uses a data set with 100 million elements. Consequently, a
single double array of this length consumes 800 MByte, which prevents cache effects.

All algorithms are executed on the nca0l node of the RWTH cluster. On this node,
only the Type 10B Vector Engine is relevant for the measurements. Sections that
are executed on the CPU, such as file I/O, do not affect the runtime measurements.
The code is compiled with the NEC compiler [69] version 3.5.1. Correctness of the
results is confirmed by a comparison with the results of the original code for CPUs.

4.2.2 Results

The two investigated memory bound algorithms show distinct performance profiles.
The average runtime standard deviation is 0.000015% for K-Means and 0.00347%
for NN. The performance of K-Means is closer to the model than that of NN. As
seen in Figure [4.3a] K-Means is very close to the scaled bandwidth model for all
vector lengths. In contrast, the performance observed in NN (Figure is higher
than predicted by the scaled model for short vectors, up to length 16. This might be
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Figure 4.3: The model in relation to the performance of the memory bound bench-
marks.

caused by unexpectedly strong cache effects. For all longer vectors, the performance
is lower than predicted.

The accuracy of the model across all vector lengths and both algorithms is 86.7%.
A breakdown across the individual vector lengths can be found in Figure It
also shows that the performance of K-Means is closer to the predicted performance,
with an average accuracy of 95.9%, than that of NN with 77.5%. Figure also
depicts how the measured and predicted performance of NN converge up to vector
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Figure 4.4: The performance model predictions in relation to the observed perfor-
mance of the cache bound benchmarks.

length 16 and then diverge again beyond that. K-Means remains much closer to the
model over all vector lengths. The performance measured by the Jacobi solver is
higher than the performance predictions of the model, which results in an average
accuracy of 77.3%. Figure visualizes this fact. A more detailed overview on
the accuracy is provided by Figure [£.4b] Both figures show that the predicted and
observed performance almost match at the maximum vector length of 256. This
behavior can be explained by register effects that might increase the performance
for shorter vectors. The average standard deviation is 0.00135%. In the case of the
compute bound algorithm, the model has an average accuracy of 98.7%. An overview
of the accuracy across the different vector lengths is provided by Figure [4.5] The
average standard deviation is 0.017%.

The STREAM benchmark is used to investigate the hypothesis of the non-linearly
scaling memory bandwidth. Namely, whether it can actually be observed in practice.
The measurement results are shown in Figure [£.6] where a large discrepancy between
the measured and predicted values can be seen. For example, the Copy kernel
at a vector length of 32 elements achieves a bandwidth of 498.58 GByte/s. The
bandwidth-scaled model predicts 217.52 GByte/s, which is less than half of the
observed value. A specific reason for these remarkable differences could not be
identified. The benchmark is not cache bound, since all used arrays are too large to
fit into the cache. This is proven by the profiling tools of the SX-Aurora which show
a cache hit ratio of less than 0.1%.
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4.3 PPL Integration

The Roofline model, including its cache-aware form, is a static performance model.
The addition of the vector length does not change this. It can, for example, be
determined by the used data set, a factor which is statically known in the PPL, or
with other code properties like statically defined loop ranges. Although it is possible
to determine the actual vector length at runtime, this should be done by static code
analysis in the context of PPL.

Statically finding the vector length in a given code section is a two-step process.
The first step is to determine the loops that will be vectorized by the NEC compiler.
However, not only individual loops but also nested loops can be vectorized. There
are two cases of nested loops. The first are the tightly nested loops where multiple
loops can be merged together to form a single vectorizable loop. Tightly nested loops
only have instructions in the innermost loop. The other loops that are not tightly
nested might not be vectorized together. Instead, only the innermost loop may be
vectorizable. An exerpt from the kernel of an n-dimensional K-Means clustering in
Listing serves as an example. Here, the two loops are not tightly nested and
only the innermost, that iterates over nfeatures, can be vectorized. Thus, in this
case the actual vector length is equal to min (256, nfeatures). It should be noted that
nfeatures is the dimensionality of the dataset and therefore statically available.

Other factors that can inhibit vectorization of any loop are data dependencies,
non-standard function calls, branches (except in the case of min, max, com-
pression, expansion, and search), data transfers, I/O operations, and array
initializations. These general restrictions can be used to find the loop that will
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Listing 4.1: An exerpt from K-Means clustering that assigns a datapoints to clusters.

1 for (int j = 0; j < nclusters; ++j) {

2 float dist = 0.0;

3 for (int k = 0; k < nfeatures; ++k){

4 dist += (feature[i][k]-clusters([jl[k]) * (featurel[i] [k]-
clusters[j][k]);

5 }

6 if (dist < min_dist) {

7 min_dist = dist;

8 index = j;

9 +

0 7}

be vectorized. The second step of the analysis then finds the vector length inside
this loop. After performing this analysis, the real vector length is determined and
can be used in the model. This further means that integrating the model with this
extension into the PPL is possible.

The second extension also preserves the performance model as a static analysis.
The importance of the distinction between main memory and cache bound algorithms
increases. This distinction must be made statically in the PPL and is based on
the analysis of the variables used in an algorithm. If the memory requirements are
smaller than the cache size, then the algorithm is cache bound. This condition can
be used in the PPL, since both variable types and array sizes are defined statically,
and thus the required memory space can be calculated. In the case of the SX-Aurora,
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these variables must require less than 16 MB of memory in total. This limit can also
be derived in the PPL from the cache size that is defined in the Hardware Language
(HL). The model can therefore also be used with this extension in the PPL.

It is observed that some algorithms behave cache bound, although they should not
be according to the common definition. An example is the Jacobi solver used in the
validation where a variable does not fit in the cache, but a cache bound performance
is observed. This variable can assume any size without affecting the performance.
For this reason, the following proposal is made for the PPL to distinguish between
cache and main memory boundness: An algorithm is cache bound if the memory
requirements of all variables used in the compute kernel is less than the cache size. A
single variable may be excluded from this calculation. This proposal is a simplistic
solution to a problem that requires a more complex analysis of cache bounds. This
simplicity may lead to incorrect decisions for some algorithms. But especially for the
given example, does it model the performance correctly.

4.4 Discussion

Two main requirements were set for the model in Section [1.1.1] First, it must remain
a static model to enable the integration into the PPL. Second, it should achieve a
high accuracy for algorithms with different performance constraints. Both conditions
are fulfilled by the developed model.

Proposals for the integration of the model into the PPL are made in Section [4.3]
The accuracy of the proposed code analysis in determining the vectorization can
only be approximated. The most important factor is the thoroughness of the
implementation. However, the main constraints and influences on vectorization are
considered in the proposed approach. The suggestion at the end of the Section to
ignore a variable in the distinction between memory and cache boudness can be
criticized. It draws general conclusions from the observation of a single algorithm. A
more detailed analysis would be necessary to determine the underlying causes, which
was not possible in the scope of this work. It nevertheless models the Jacobi solver
accurately enough to serve as a general performance indicator, and can therefore be
considered an acceptable interim solution.

The validation shows that the second condition is also satisfied. For all algorithms,
the performance prediction achieves an accuracy comparable to other models [40), [54].
The accuracy for K-Means and the linear shift is noteworthy with 95.9% and 98.7%,
respectively. For NN, a lower accuracy of 77.5% is achieved. The performance for
longer vectors is lower than expected, suggesting the influence of additional factors
that are not considered in the model. One possibility is the interaction of the different
compute units in a Vector Processing Unit (VPU). The NN algorithm uses both the
Fused Multiply-Add (FMA) and the Division/Square-Root (DIV/SQRT) units. This
might lead to a bottleneck since there are 3 FMA units and only one DIV/SQRT
unit per VPU. The mismatch between the number of FMA units, Arithmetic Logic
Units (ALUs), and DIV/SQRT units and their performance is not considered in the
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model. The dependence of the performance on the used computing unit could be
integrated into the model to improve the accuracy. This increases the complexity of
the model and thus the complexity of the required code analysis. The investigation
of the cache bound algorithm shows an accuracy similar to NN with 77.3%. The
performance is higher than predicted for all vector lengths except 256. This indicates
unexpected side effects, such as variables remaining in the registers. The fact that
a variable does not fit in the cache, but the algorithm behaves cache bound, also
supports this assumption.

The STREAM benchmark measures a significantly higher memory bandwidth than
assumed in the model, which challenges its validity. A possible explanation is the
simplicity of the four kernels of the benchmark, in the sense that no bottlenecks occur
in the pipeline and that prefetching may have been used to achieve the observed
bandwidth. This simplicity could also ensure that the memory controllers act partially
independent of the actual vector length and thus achieve a higher performance. Since
the architecture is proprietary and attempts to contact NEC via the SX-Aurora
forum remain unanswered, a final answer cannot be given. However, the discrepancy
observed in the STREAM benchmark only occurs there. More complex algorithms
that are closer to real-world applications, like the other benchmarks, do not exhibit
it.

For benchmarks that are close to real-world algorithms, the model shows an
accuracy sufficient to act as a general performance indicator. In some cases, it models
the performance very accurately. Since the STREAM benchmark is not close to
reality, the model can be classified as valid. Section shows that an integration of
the model into the PPL can be achieved. This requires the development of new code
analysis features that determine the vectorized code section and the actual vector
length. The accuracy of the proposed analysis method is limited by the fact that it
is performed statically. It also heavily depends on the exact implementation since
many aspects of the compiler have to be taken into account. The proposed method
can be improved in the future. For example, the vectorizer from compilers like LLVM
or even the NEC compiler can be used. This requires developing a suitable interface
or analyzing the assembler code. The NEC compiler informs the user on which code
sections were parallelized and vectorized. However, this method would constitute a
major departure from the current principles of the PPL, which only analyzes the
frontend code. Instead, the relevant code would have to be generated, compiled
and then analyzed ahead of the optimization step. This would not only greatly
increase the complexity, but presumably also the runtime of the toolchain. The
approach proposed in this thesis thus represents a sound balance between accuracy
and complexity.

The usability of the model is not limited to VEs, because by considering the vector
length, VPs can be modeled in general. The second extension, i.e. the modified
bandwidth scaling, is, however, specifically tailored to the available VE. Only the
first extension should be used when applying the model to other VPs. If similar
observations can be made for the bandwidth, the second extension may also be
adapted.
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This chapter addresses the generation of code for Vector Engines (VEs) in the
context of the Parallel Pattern Language (PPL). For this purpose, the various
components of the toolchain need to be extended. First, Section defines the
overall goals of the extension. Section then further specifies these in the context
of a requirement analysis. A possible realization of the code generator extension is
described in Section [5.3] A considerable part of the requirements is implemented
in a proof-of-concept. The resulting changes are presented in Section and
subsequently evaluated in Section [5.5] Finally, the results of this chapter are
discussed in Section [5.6l

5.1 Goals

The overall goal is to automatically generate globally optimized code for VEs. For
this purpose the PPL shall be extended. The exact subgoals of this extension are
based on both the already existing features of the PPL and on special functionalities
that VEs provide. Thus, the following goals are derived:

o Generation of correct and performant code for one or more VEs in a heteroge-
neous system.

o Code that is offloaded to VEs must have at least the already existing GPU
offloading features of the PPL:

— Synchronization of an arbitrary subset of devices with each other.

— Data transfers between an arbitrary pair of devices.
e The optimizer should make use of the previously presented performance model.
« Utilization of the special programming and execution model of VEs.

With the realization of these goals, an extended PPL will be able to generate code
for VEs and utilize them in an optimal way. Having at least the GPU offloading
functionalities ensures that interdependent computations do not cause data races
and further allows flexible data transfers when necessary. The integration of the
performance model ensures that VEs are only used if they can provide the best
performance among the given compute units, considering the necessary data transfers.
VEs may have a different execution model than CPUs and GPUs (see Section [3.4.4)),
which must be properly taken into account in the code generation process.
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5.2 Requirements

In this section, individual components of the PPL are examined for required changes
with respect to the previously defined goals. These changes are defined as specific
requirements and possibilities for the implementation are discussed. Reasons why
some components do not need to be changed are also given.

5.2.1 Frontend Language

The PPL frontend language already offers extensive possibilities for implementing
parallel algorithms through the use of parallel patterns. However, the frontend
language and its translation into standard C++ code has shortcomings with respect to
the execution model of VEs. This becomes apparent when considering the realization
of parallel patterns within iterator loops. This is illustrated by the example in
Listing It shows such an iterator loop containing four calls to the same map
pattern with different variables.

Listing 5.1: The iterator loop of the Jacobi solver.

for var Int i = 0; i < 25; i++ {
x1 = iterate<<<>>>(A,bl,x0)
x0 = iterate<<<>>>(A,bl,x1)
yl = iterate<<<>>>(A,b2,y0)
yO = iterate<<<>>>(A,b2,y1l)

When applied to the example, the current implementation of the code generator
removes the loop entirely and instead generates 100 individual ofloaded GPU kernels
with their associated data transfers. This is due to the constraints imposed by linear
programs within the optimizer. Although this approach is not ideal for GPUs, it
corresponds in part to the CUDA execution model. In contrast to the model of VEs,
it performs considerably more data transfers. As noted in Section VEs use as
few data transfers as possible. An offloaded kernel should run as long as possible and
data transfers should only occur at the start and the end of the execution. Ideally, the
presented code example would be completely offloaded such that the entire iteration
process would take place on the VE. However, the currently generated code does
not do this and thus uses VEs inefficiently. The following four different approaches
present solutions for this problem:

1. Keeping the current methodology.

2. Introduction of a dedicated offload function to the frontend language and a
node to the intermediate representation.

3. Introduction of a special iterator loop with a corresponding node that shall be
offloaded but not be executed in parallel.
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4. Automatic detection of iterator loops that would not be parallelized and their
subsequent offloading.

It should also be noted that these changes are only required for VEs. A conditional
code processing and optimization is therefore required. The proposed approaches
are now discussed by analyzing their advantages and disadvantages.

Approach 1

Keeping the current methodology offers the advantage of reduced programming
effort during the PPL extension. Furthermore, in contrast to approaches 2 and 3,
no algorithms that are already implemented in the frontend language need to be
modified. However as previously mentioned, this approach has disadvantages with
respect to VEs. Optimal performance of a program cannot be achieved in this way
due to the different execution model and the inefficiencies introduced by the PCle
bottleneck and driver overheads.

Approach 2

With the introduction of a dedicated offload function and accompanying node in the
Abstract Pattern Tree (APT) and Abstract Mapping Tree (AMT), the programmer
can explicitly request the use of a VE, GPU or other offloading device. However,
this does not fit the programming model of the PPL, in which the programmer does
not have to choose the execution device. Instead, this choice is made automatically
by the optimizer, which ideally finds a mapping that maximizes performance. In
addition, not all code is optimal for both VEs and GPU at the same time and
could thus possibly decrease performance if it is offloaded to the wrong device. This
function would also require the definition of both the input and output variables.
However, this requires further changes to the code processing, since currently only a
single variable can be used as output.

Approach 3

The drawbacks from the previous approaches can be overcome by introducing iterator
loops. When translating the code into the APT, the iterator loop, which is initially
part of a sequential node, can be split off from it into an iterator node. For this
purpose, both the APT and the AMT would have to be extended. The optimizer
can completely offload this node to it, if a VE in the cluster is the optimal choice.
However, the currently implemented methodology can be kept if a GPU or CPU
is chosen. In addition, the programmer does not have to define on which device a
code section will be executed and can leave this decision to the toolchain. Another
advantage is the relatively simple integration into the PPL. However, an adaptation
of already existing PPL programs is necessary. Listing applies this approach to
the previous example.
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Listing 5.2: The Jacobi example with an iterator loop.

iteratorFor var Int i = 0; i < 25; i++ {
x1 = iterate<<<>>>(A,bl1,x0)
x0 = iterate<<<>>>(A,bl,x1)
yl = iterate<<<>>>(A,b2,y0)
y0 = iterate<<<>>>(A,b2,y1)
}
Approach 4

The automatic detection and offloading of an iterator loop is an advanced form of
approach 3. It would require similar extensions of the APT and AMT and would
offer the same advantages. It would also still be neccessary to combine different calls
to patterns into a single node that would be offloaded to VEs. Changes to existing
programs in the frontend language would not be required. The integration into
the toolchain, especially in the form of the recognition of an iterator loop, presents
a greater challenge than approach 3. But this is mitigated by the fact that the
toolchain already analyzes the code for loops that can be unrolled. This feature can
be extended to recognize iterator loops. In total, this approach requires a significant
implementation effort.

Proposal

In conclusion, approach 3 offers the greatest advantages with the fewest disadvantages.
By introducing an iterator loop and accompanying node, the current programming
model of the PPL is retained while a flexible assignment to devices is made possible.
The introduction of the new node must not only be done in the APT, but also in
the AMT. The required changes to already ported algorithms does not represent a
large burden. Approach 4 can be a future goal, despite requiring significantly greater
programming effort, as no changes to existing programs would be needed.

5.2.2 Hardware Language and Cluster Model

The Hardware Language (HL) offers a flexible way to represent different clusters
and devices by using JSON. Devices such as CPUs and GPUs are modeled within
two files. The first one models the device with its higher-level technical data, e.g.
the bandwidth and size of the main memory. The first file contains a reference to
the second that represents a cache group within the device. This pattern is kept
for VEs. The example in Listing shows how an SX-Aurora Type 10B can be
represented as a device using the technical data from Section [(3.4.4, A VE only
requires a single cache group since the Last Level Cache (LLC) is shared by all 8
cores. This cache group is modeled as shown in Listing [5.4] It should be noted that
the latency of the main memory and cache of the SX-Aurora are unknown. Due to
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the similar architecture of VEs to CPUs and GPUs, the attributes should be set to
comparable values, as it is done in the examples. All relevant technical data of VEs
can be mapped in the HL without structural changes. Consequently, no significant
changes are required to the cluster model, which is generated from the HL without
any transformations.

Listing 5.3: Modeling a VE as a device in the HL.

1 {
2 "type": "VE",
3 "latency": "42.38",
4 "bandwidth": "1229000.0",
5 "max-bandwidth": "1229000.0",
6 "size": "48000.0",
7 "cache-group": [
8 {
9 "identifier": "1",
10 "template": "ve_group.json"
11 }
12 ]
13 }
Listing 5.4: Modeling the cache group of a VE in the HL.
1 1
2 "cores": "8",
3 "frequency": "1400",
4 "arithmetic-units": "96",
5 "vectorization": "256",
6 "caches": [
7 {
8 "latency": "20.95",
9 "bandwidth": "300000.0",
10 "size": "16"
11 }
12 ]
13 3

5.2.3 Optimizer

Using the current performance model of the PPL for VEs is not an optimal approach.
To effectively consider VEs and their performance, the previously defined performance
model must be integrated into the optimizer. To this end, two new code analysis
features must be develoepd. The first is a vector length estimator, which receives a
code segment to be analyzed as an input, finds the vectorized portion, and returns
the estimated vector length. The second determines whether a compute kernel is
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main memory or cache bound. An implementation can reuse the data size analysis
from the network cost estimator. The exact methodologies for both analyses are
defined in Section 4.3

Section introduces new iterator nodes in the APT and AMT, which the
optimizer must be able to recognize. It must also be able to either move the entire
iterator node to a VE, leave it on the CPU, or move the associated parallel pattern
calls to GPUs. It therefore has to distinguish between all three cases and calculate
which is the optimal choice. It also has to take into account that in the case of VEs,
usually only two data transfers are required, none in the case of CPUs, but many in
the case of GPUs.

5.2.4 Abstract Mapping Tree

The AMT is the main abstraction level between the input code, provided cluster, and
the generated code. Unlike the APT, it also models the mapping of parallel patterns
to execution devices. The nodes of the AMT can be divided into four categories.
Serial, function, call, and data control nodes. To ensure a correct mapping of
patterns to VEs and subsequent code generation, new nodes have to be introduced
in these categories. Especially the call and data control nodes must be extended.

There are currently five types of parallel call nodes. Parallel calls, serialized
parallel calls, reduction parallel calls, and fused parallel calls, which are all executed
on the CPU. The fifth type of nodes are the GPU parallel calls. As proposed by
Schmitz [82], a new kind of node should be introduced to model parallel calls on
other devices, in this case VEs. This node will have close similarities to the GPU
parallel calls and would be called a VE parallel call. However, due to the differences
in the architecture of GPUs and VEs, it is no longer necessary to merge multiple
parallel patterns into one.

There are two types of data control nodes. Only the data movement nodes,
which define a set of source and destination placements, are relevant for VEs. Since
the current implementation only assumes GPUs as offloading devices, it must be
extended to also consider VEs. An implementation can be similar to the current for
GPUs, since no structural differences need to be taken into account. As a result of
this and the previous extension, a successful mapping to VE will be possible.

However, both the changes to the call and the data control categories are not
sufficient with respect to the VE execution model. The proposal made in Section[5.2.1]
in the form of an iterator loop node should also be integrated into the AMT. This
node can be categorized as a serial node and has parallel functions or calls as
children. With this node, either the whole iterator or only its children are mapped
to devices. An illustration of the different mapping possibilities of this node is given
by Figure [5.1] It is based on the previously presented code example in Listing

The implementation of the AMT in the PPL is not only limited to the tree
structure but each node also includes a visitor pattern. This leads to an extension of
the nodes with interfaces to simplify the traversal for visitors. This especially eases
the code generation, which is realized by such a visitor. These interfaces must also
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main

Serial:Iterator

|Map:iterate| |Map:iterate| |Map:iterate| |Map:iterate|

(a) AMT with the iterator node assigned to a CPU.

main
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|VEMap:iterate| |VEMap:iterate| |VEMap:iterate| |VEMap:iterate|

(b) AMT with the iterator node assigned to a VE.

main

Serial:Iterator

|GPUMap:iterate| |GPUMap:iterate| |GPUMap:iterate| |GPUMap:iterate|

(¢) AMT with the iterator node assigned to a GPU.
(O Executed with one thread O Executed on the GPU

(O Parallel APT node (O Executed on the VE

Figure 5.1: AMT definitions based on the code in Listing for CPUs, GPUs, and
VEs.

be defined in the newly added nodes for VEs and the iterator. By meeting all of
these requirements, all previously defined goals are realized, effectively extending a
core component of the PPL for VEs.

5.3 Code Generator Component

The code generator implemented by Schmitz [82] holds a key position in the extension
of the PPL for VEs. With the PPLs source-to-source approach, C++ code is generated
instead of binary machine code. Due to the complexity and size of the generator
implementation as well as the special requirements of VEs, a number of aspects have
to be considered. These are investigated and discussed in this section, especially
with regard to previously proposed goals and changes.
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5.3.1 Programming and Execution Model

As described in Section the execution model of VEs is considerably different
from that of GPUs. It is partially covered by the newly introduced iterator loop and
node, but changes to the code generator are still required. In the VE programming
model, programs can either be natively compiled or partially ofloaded using VEDA
[68]. The PPL implementation should use the latter approach, since mixed execution
of CPU, GPU, and VE code would otherwise not be possible. In addition, VEDA is
very similar to CUDA, simplifying the implementation process. As a result of this
decision, a number of changes to the generator are required.

In the VEDA programming model, two file types are used. The first is executed on
the host device, is responsible for data transfers and device management, and loads
and uses the VEDA library. This file is compiled with a standard C/C++ compiler.
The second file type is executed on the device itself, contains the relevant code
sections and is compiled by the NEC compiler. Here the main difference between
GPU and VE code can be observed. Namely, a larger code section can be executed
efficiently on VEs than on GPUs. This is especially important to note in the case
of iterator loops. Modifications to the Makefile are necessary to include the VEDA
library and to process code files with two different compilers. Both the VEDA library
and NEC compiler are proprietary software that are usually only available on devices
with VEs. Therefore the modifications should only be made when VEs will be used.
Whether code should be executed on VEs can be directly derived from the AMT
and the particular configuration of the Makefile can be made dependent on this.

Both CUDA and VEDA minimize data transfers, which results in differences in
loops iterating over arrays compared to CPU code. Listing gives an example in
which a loop iterates over a subset of an array.

Listing 5.5: Example of a for loop that iterates over a subset of an array.

int arr [4096];
for(int i = 1024; i < 2048; ++i)A{

}

If this example would be executed on a GPU or VE, only the subset of the array
relevant to the loop would be allocated on and transferred to the device. Therefore,
the range of the loop on the device starts at zero and extends to the length of the
partial array. Listing shows how the previous example would look in this case.

Listing 5.6: How the example in Listing Iﬁ might look when executed on a device.

int device_arr [1024];
//data transfer to device
for(int i = 0; i < 1024; ++i){

}

//data transfer from device

S U W N =
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The current implementation of device pooling can be reused for VEs. This means
that a single management thread is created for each VE. Due to this and the great
similarities of VEDA to CUDA in terms of data transfers, the control of different
devices can remain identical. Together with the separation of host and device code,
MPI can be used in its present manner. The PPL will therefore still be able to
execute programs that use VEs in a heterogeneous environment.

VEDA only provides data transfer functionality and not the possibility to parallelize
code. This is instead achieved with the NEC compiler through explicit instructions.
Deviating from the previous parallelization model of the PPL, OpenMP is typically
used for this on VEs. This results in the introduction of OpenMP pragmas and data
management clauses into the device code and Makefile. Because the use of OpenMP
is limited to the device code file, there are no side effects for the rest of the code.

5.3.2 Parallel Patterns

A mandatory requirement for the extended PPL is the generation of code representing
the parallel patterns for VEs. The current implementation of the PPL generates
two types of parallel code. One is parallelized C++ code for CPUs and the other is a
CUDA based GPU kernel. No third type is required to support VEs. This is due to
the use of standard C, C++, and Fortran code by VEs. Consequently, the currently
generated kernel code for CPUs can also be used for VEs. Some adjustments are
needed due to the different architecture and programming model of CPUs. The
necessary modifications have been examined in the previous sections and will now
be illustrated with code examples.

To summarize, the three main differences between CPU and VE code are use of
OpenMP, embedding in the device file, and modified loop ranges. These
differences only result in marginal changes to the code. To illustrate this, the code
generated for a map pattern as it occurs in the K-Nearest neighbors (NN) algorithm
is examined. Listing lists generated CPU code. The PPL generates it in this
form, except for small adjustments made for better readability. 48 threads are used
to parallelize the algorithm. The depicted loop is executed on the 48th thread and
processes the corresponding part of the input arrays. This is caused by the use of
the PThreads library and is described in more detail by Schmitz [82].

Listing 5.7: A loop representing the 48th part of a NN kernel parallelized with 48

threads.
1 for (size_t INDEX = 31333318; INDEX < 31333318 + 666682; ++INDEX)
{
2 dists [INDEX] = sqrt((lon[INDEX] - target_lon) * (lon[INDEX] -

target_lon) + (lat[INDEX] - target_lat) * (lat[INDEX] -
target_lat));

The code shown in Listing demonstrates how the same parallelized algorithm is
implemented for a VE. Since OpenMP is used instead of PThreads, splitting and
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manually distributing the loop is no longer necessary. Instead, this is achieved by
OpenMP pragmas and clauses.

Listing 5.8: The parallelized NN kernel as it is implemented for VEs.

1 #pragma omp parallel for shared(lat, lon, dists) schedule(static)

for (size_t INDEX = 0; INDEX < 32000000; ++INDEX) {

3 dists [INDEX] = sqrt((lon[INDEX] - target_lon[0]) * (lon[INDEX
] - target_lon[0]) + (lat[INDEX] - target_lat[0]) * (latl[
INDEX] - target_lat[0]));

[\

The minor differences between CPU and VE code, as shown in the examples,
suggest that when the code generator is extended, a significant part of the current
implementation can likely be reused with only a few adjustments. As a result, the
implementation effort will be reduced.

These compute kernels can also be executed on multiple systems with distributed
memory by using MPI. It acts as a wrapper for the individual code sections and en-
sures execution on the intended system. This approach does not require modifications,
since the introduction of VE offloading takes place within these wrappers.

5.3.3 Visitor

The generator implementation utilizes the visitor pattern of the AMT nodes. Because
new nodes are introduced, there must also be handler functions for each new node.
Many of these nodes can be implemented by reusing previously defined functions
for GPUs or CPUs. The data movement nodes can be designed like GPU nodes,
with the main difference being the use of VEDA instead of CUDA. However, for
the parallel call nodes, parts of both the CPU and GPU implementations can be
reused. The reason for this is that within an offloaded function, the surrounding
data movements and initializations are similar to GPUs, while the kernel itself is
similar to CPUs.

5.3.4 lterator Node

The proposal to add an iterator node to the APT and AMT also has consequences
for the code generator. The current issue is that loops similar to those in Listing
generate unneccesary data transfers. In addition, they also generate many individual
kernels, in this case 100, instead of just four, which can cause a large compilation
overhead. These problems are solved with the introduction of the iterator node
that is completely offloaded to VEs. However, this necessitates an entirely new
implementation for processing the different variants of the iterator node and their
associated code generation. For VEs this requires a new form of offloaded wrapper
function. It would contain the necessary data transfers, iterator loops, and function
calls.
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5.4 Implementation

As part of this thesis, the PPL toolchain is extended to generate code for VEs. This
extension is based on the current state of development of the PPL, as described
in Section Although the implementation does not yet meet all goals and
requirements due to time constraints, a significant portion is realized. It therefore
represents a proof-of-concept that generates functioning code for VEs and is intended
to serve as a foundation for the future realization of the other goals. This section
presents the most relevant changes undertaken, while also describing which features
are not realized, and the challenges encountered during the implementation.

5.4.1 Optimizer

The optimizer is the first part of the PPL where significant changes are made. These
enable the use of VEs as offload devices. The base implementation from Schmitz
[82] does not consider offload devices generically, but relies explicitly on GPUs. The
implementation is extended to also include VEs. Consequently, an assignment to
VEs can now also take place. The code analysis features mentioned in Section
are not implemented, due to time constraints.

5.4.2 AMT

The changes to the AMT ensure that the nodes associated with the device mapping
are generated. As a result, a number of new nodes are introduced, and existing
nodes are modified. The newly introduced nodes cover allocation, deallocation, data
movement, and parallel call mappings. These model data transfers as well as parallel
execution on VEs. All are based on pre-existing GPU nodes. However, these changes
are not sufficient to actually perform the data transfer and parallel code generation.
This also requires an extension of the mapping generator associated with the AMT.
It processes the mapping generated by the optimizer and creates the corresponding
data transfer nodes for devices. Since this process is not designed generically, it is
necessary to explicitly add VEs as a possible offload target. The visitor associated
with the code generator can only initiate the generation of the correct code through
this change.

Existing nodes are also modified because of the introduction of the new nodes and
the fact that previously the only offloading devices were GPUs. For example, the
possibility to execute on VEs is added to the nodes belonging to parallel patterns. In
addition, the associated data transfers are included. The necessity of these changes
is brought about by the tight coupling of nodes in the current implementation.

It is important to mention that the iterator node proposed in Section is
not yet implemented. While it is necessary to guarantee performant use of VEs in
the future, it is not requried in order to generate functioning code. It is therefore
currently still a problem that in cases of iterator loops calling parallel patterns,
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unnecessarily many data transfers and kernels are generated. The generated code is
nevertheless functional.

5.4.3 Code Generator

The most important element for the generation of functioning VE code is the code
generator itself. All other implemented changes had the goal of enabling it to perform
this task. The code generator extension is based on the requirements and proposed
solutions outlined in Section [5.3] There are key commonalities between GPU and
VE code as well as between CPU and VE code. Thus, parts of the current generator
implementation are used as a starting point.

Device Pool

Section shows that the current device pool implementation is applicable to VEs.
It is currently implemented within CUDA based library files. These are adapted
by using VEDA functions instead of CUDA. The generated code is thus able to
initialize, synchronize, and release an arbitrary number of VEs. Unlike the CUDA
implementation, different contexts are created for each device. These apply locally to
the thread associated with the device and work is executed within these. Furthermore,

by setting an environment variable, it is ensured that all cores on the VEs are utilized
by OpenMP.

Data Transfers

For the data transfer between host and GPU, two library files are generated, which
contain wrapper functions for the corresponding CUDA functions. This concept
is also used for the VEDA implementation. In combination with the device pool
implementation it is possible to allocate and transfer data separately for each device.
The usage within the main code file is as shown in Listing [5.9

Listing 5.9: Allocation and subsequent transfer of data from the host to a VE.

VEDAdeviceptr Offload_Data_1;
auto f_alloc_ 1 = [&] () {
veda_alloc_wrapper (40ffload_Data_1, sizeof (float) * 1000);

};
getVEPool () ->at (0) .addWork (f_alloc_1);
auto f_movement_1 = [&] () {
veda_host2device_wrapper (0ffload_Data_1, &data, sizeof (float)
* 1000) ;

N OO WD

oo

i
9 getVEPool ()->at(0).addWork (f_movement_1);

In this example, a VEDAdeviceptr is created. It stores the device memory address
of the data allocated with veda_alloc_wrapper. The veda_host2device_wrapper
function transfers the data stored in the data array to this memory address. All
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used VEDA functions apply an asynchronous data transfer approach. This can
theoretically reduce transfer times. Both instructions are assigned to the device
managing thread by means of lambda functions. After their execution, the data
array is available and usable on the device.

The execution of device code is started on the host side. This part is stored in a
host library file, to allow reusability and to increase readability. The host library
contains wrapper functions which have a number of tasks. An example for their

design is given in Listing |5.10]

Listing 5.10: Preparation of the execution of a function on a VE.

1 void veda_wrapper_1(VEDAdeviceptr data) {

2 VEDAmodule mod;

3 vedaModuleLoad (&mod, "veda_lib_device.vso");

4 VEDAfunction func;

5 vedaModuleGetFunction (&func, mod, "kernel_veda_1");
6 VEDAargs args;

7 vedaArgsCreate (&args) ;

8 vedaArgsSetVPtr (args, O, data);

9 vedalLlaunchKernelEx (func, 0, args, 1, 0);

10 %}

First, the device code file is loaded and the required function is defined. Then, the
arguments for this function are set. These are the data required in the function in
the form of a VEDAdeviceptr. Lastly, the function is executed.

Kernel and Patterns

The kernel that is executed on the device side accepts the input data mentioned in
the previous section. However, since these are not the data itself, but only a pointer
to the location of the data, they still need to be processed for use as an ordinary
array. As shown in Listing [5.11] this is done using the vedaMemPtr function.

Listing 5.11: The device code of an algorithm. It includes the processing of input
pointers as well as a parallelized for loop.
extern "C" void kernel_veda_1(VEDAdeviceptr Offload_Data_1) {

float* data;
vedaMemPtr ((void**) &data, Offload_Data_1);

for (size_t INDEX = 0; INDEX < 1000; ++INDEX) {

1
2
3
4
5 #pragma omp parallel for shared(data)
6
7
8 }

9

3

This function is part of the veda_device library and converts the given memory
address into a usable array. This is followed by the actual execution of the compute
kernel. These kernels are the transformed parallel patterns. The map pattern is
ported for VEs in this work. OpenMP is used for parallelization. To prevent data
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races, shared arrays must always be set as shared. This is done for all input data
in the current implementation. This is due to the lack of analysis tools in the PPL
to determine which data is actually shared. This results in an overhead for the
synchronization of threads, which reduces the achievable performance. In order to
use VEs optimally, such an analysis tool still has to be developed and integrated into
the PPL.

Within the device code, in addition to the generated kernels, other functions
are also implemented. They are also part of the CUDA library files and contain,
among other things, the code for reductions and data management on the GPU. By
implementing them in the device code, native compilation and execution is enabled.
The addition of OpenMP clauses to the reductions also effectively parallelized them.

During the implementation process, it became apparent that the current implemen-
tation of nested patterns is not applicable or portable to VEs. For example, a nested
pattern is a sequential call within a map pattern, as can be seen in Listing [5.12] In

Listing 5.12: An excerpt from the PPL code for K-Means clustering, which contains
a nested pattern.

map determine_centroids ([[Float]]points, [[Float]]centroids) :[Int]
assignment {

assignment [INDEX] = assign_centroid(points[INDEX], centroidsl[
INDEX])
}
seq assign_centroid ([Float]point, [Float]centroid):Int{
}

the current version of the PPL this sequential function is inlined. The problem with
the generated code is that lambda functions are not used for data transfer to devices
as before. Instead, a transfer function is called within the device code. However, this
approach is not applicable for VEs. They cannot use these transfer functions within
the device code and instead have to transfer data by VEDA calls on the host side.
The required changes are out of the scope of this thesis.

5.5 Evaluation

Due to the extension undertaken in the previous section, the PPL is now partially
capable of generating functioning code for VEs. The quality of this code can be
assessed in different ways. Maintainability and reusability are important factors, but
cannot be quantified easily or quickly. Performance and correctness can be examined
far better in the context of this work, given the time constraints. Therefore, the code
generator developed in this thesis is evaluated based on these two criteria.
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5.5.1 Setup and Methodology

As stated in Section [5.4] the presented PPL extension is capable of generating code
for simple map patterns. The NN benchmark fulfills this limitation. It serves as a
benchmark whose performance is subsequently assessed. In all test configurations,
the algorithm uses the same data set and configuration with 32 million data points
and 5000 neighbors, respectively. The data collection is done on one VE, purely on
CPUs and on one GPU. Additionally, the performance data for VEs is contrasted
by a handwritten and manually optimized code. Both VE codes are executed on
the nca0l node of the RWTH cluster using a single device. Only the used VEs
in form of the SX-Aurora Type 10B is relevant for this measurement. The CPU
code is executed on a node of the CLAIX-2018 cluster. These are equipped with
two 24-core Intel Xeon Platinum 8160 processors [44]. The GPU code is executed
on the CLAIX-2018-GPU cluster with the same CPU and using a single NVIDIA
V100 [73, 92]. The generated code is compiled using gee 11.2.0, the NVIDIA CUDA
compiler 11.6.2, and version 3.5.1 of the NEC compiler. The collected data comprises
the total runtime, excluding file I/O, and the time required by the compute kernel.
This enables the identification of the overhead caused by data transfers. For the
CPU measurement, it must be noted that the runtime for each thread is measured
seperately and only the longest one is taken as the result. This is justified by the
barrier synchronization, which blocks the execution until all threads have finished
their task. The correctness of the generated code is assessed by comparing the results
of the different versions of the algorithm. The results obtained from the original
PPL are assumed to be correct, since they were validated by Schmitz [82]. Overall,
this analysis provides a comprehensive picture of the presented implementation.

5.5.2 Results

This section first examines the kernel runtime and subsequently the total runtime.
Figure shows the measured runtimes of the different architectures. A detailed
overview of the values can be found in Table[A.3l The measured values show a wide
range, except on the GPU. It can be clearly seen that GPUs also offer the highest
performance, with handwritten VE code in second place. The generated VE takes
the most time, with the CPU being faster. The average runtime of the generated VE
code is about ten times longer compared to the handwritten code. The two kernels
differ only in a few aspects. First, unlike the handwritten kernel, the generated kernel
shares all variables between the OpenMP threads. This may cause a synchronization
overhead and result in a lower performance. Secondly, the two target variables in
the generated code are arrays, of which the first element is always used. This might
be optimized differently by the compiler and cause the lower performance.

By examining the total runtime, an overview of the overheads introduced by data
transfers can be acquired. Figure presents the total runtimes measured on the
different architectures without file I/O. The handwritten code has the lowest runtime.
This is expected, since it was already shown that the generated code contains many
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Figure 5.2: Kernel runtime of the NN algorithm on different architectures.

overheads which negatively influence the performance [82]. It can also be observed
that the data transfers required for GPUs and VEs cause an increase in overall
runtime for the generated code. Thus, the CPU is actually the optimal hardware
choice. The influence of the time spent in the kernels is negligible, since it only
represents a very small fraction of the total runtime. It is noticeable that the total
runtime of the generated VE code is significantly larger than that of the handwritten
code. Since both use the VEDA library, this can only be attributed to the overheads
caused by the thread pool implementation.

5.6 Discussion

In this chapter, the feasibility of generating code for VEs within the framework of
the PPL was investigated. The necessary changes were identified and suggestions for
their implementation were given. These proposals follow a conservative approach
with respect to the type of offloading support. Instead of enabling generic offloading,
the current principle of explicit offloading was retained. This reduces the required
development effort. Nevertheless, a generic approach to offloading would have
advantages that are missing in the proposed implementation. With generic hardware
support, only changes to the code generator would be required when introducing
support for new devices. In the long-term, this would reduce the programming effort
because it frees developers from working on the other core components such as the
optimizer. This approach was not pursued, as it would require major changes and
significant rewrites of the optimizer and AMT. There are also no current plans to
extend the PPL to other hardware. Instead, the development focus is on improving
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Figure 5.3: Full runtime of the NN algorithm on different architectures.

the performance of the generated code, tool usability, and bugfixing.

A consequence of the explicit offload support of VEs is the introduction of the
iterator loops and nodes. It is a workaround of the previous limitations to comply
with the VE programming model. It can also be used for GPUs in the future to
reduce the necessary data transfers for them as well. However, the implementation
could be incompatible with linear programs as the optimization model.

Some of the proposals for the extension were implemented as a proof-of-concept,
that constitutes a first step and foundation for future development. The performance
evaluation has shown that the achieved performance was far below its potential.
This contrast became clear by comparison with the handwritten code. This code
had a significantly lower runtime for the compute kernel as well as for the whole
program. These differences are explained by the device pool implementation, since
both codes use the same VEDA library commands. Improving the performance of
the generated code, including for CPUs and GPUs, requires a significant overhaul of
the way threads and devices are managed. This could also mean a departure from the
use of PThreads. Overall, this would be a large, long-term project. Improvements
are not only needed in the device pool. While the kernel does not have a significant
impact on the total runtime in the test case, an improvement is desirable, especially
in the case of larger kernels with longer runtimes. The handwritten code shows
that such an improvement is possible, but it requires a more detailed bottleneck
analysis. The proof-of-concept accomplished its overall goals. It showed that the
generated code is correct and highlighted the potential for improvement in terms of
performance.
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6 Conclusion and Future Work

The first main contribution of this thesis is the development of a static performance
model for Vector Engines (VEs). It extends the cache-aware Roofline model [100),
42] and therefore considers the main code and hardware properties that affect
performance. The extensions incorporate the actual vector length and a modified
main memory bandwidth scaling into the model. This covers the special hardware
properties of VEs.

Benchmarks with different performance bounds are used to verify the model. The
STREAM benchmark [57] exhibited an unexpected performance profile, which may
have been caused by the simplicity of the benchmark kernels. The other benchmarks,
which are largely based on real world algorithms, did not exhibit this characteristic.
A high accuracy of approximately 99% is observed for compute bound algorithms.
The accuracy for memory and cache bound algorithms ranges from about 80% to
96% due to untraceable memory optimizations by the hardware.

The second main contribution of this work is the design of code generation for VEs
within the framework of the Parallel Pattern Language (PPL) [61]. Efficient data
transfers within the constraints of the current implementation require changes to the
frontend language and intermediate representation. This can be accomplished by
introducing a dedicated iterator loop in the frontend language and new nodes in the
Abstract Pattern Tree (APT) and Abstract Mapping Tree (AMT). Additional nodes
also have to be introduced there to model a mapping to VEs. No modifications are
needed in the Hardware Language (HL) and cluster model because they are already
able to accurately represent VEs. New code analysis features need to be developed
for the performance model in order to determine the vectorized loop, vector length,
and exact memory constraint of an algorithm. The code generator should use VEDA
[68] instead of CUDA for data transfers and device management. The compute
kernels generated from parallel patterns should be parallelized with OpenMP.

A proof-of-concept based on the code generator design was developed and extends
the PPL. Functioning and correct VE code can be generated for simple map patterns.
Altough the performance of the generated code showed a significant slowdown when
compared to handwritten and manually optimized VE code, the main causes could
be identified. These are primarily the thread pool implementation and the current
OpenMP variable scoping.

Future work might improve the accuracy of the model by cooperating with NEC.
This might lead to an improved reflection of the hardware influence in the model.
However, even a purely analytical examination of the architecture, without help from
NEC, can lead to important insights. For example, the interaction of the different
compute units of a Vector Processing Unit (VPU) can be investigated. It is also
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generally important to understand why an algorithm can behave cache bound when
it should not, namely when a single variable is larger than the cache. An analysis of
the STREAM benchmark performance profile is another way to better understand
how the performance is influenced by the architecture. A more detailed curve fitting
based on additional bechmarks might be performed instead of a deep hardware
examination. The benchmarks must first be ported to VE code and subsequently
measured in terms of performance. This process can either be performed manually
or with the help of Machine Learning (ML).

The designed code generation and accompanying changes to the PPL should
be implemented in future work by building on the existing proof-of-concept. The
dedicated iterator loop is not needed if an automated recognition is performed instead.
Future work can also implement more efficient data transfers to GPUs by using the
iterator loop. Alleviating the bottleneck caused by suboptimal OpenMP variable
scoping requires a new code analysis feature to determine a correct and optimal
scoping. The current thread pool implementation needs to be improved to achieve a
higher performance on all target architectures.
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Vector length K-Means K-Nearest Jacobi solver Linear shift
clustering neighbors

1 0.278 2.671 1.25 8.537
2 0.529 5.283 2.527 17.088
4 1.103 8.614 5.103 33.712
8 2.119 15.064 9.944 67.275
16 4.13 25.378 19.864 135.936
32 7.231 40.414 39.774 274.69
64 14.009 65.824 83.515 542.485
128 28.317 124.178 147.46 1110.605
256 54.873 233.105 252.31 2147.929

Table A.1: Performance (GFlop/s) of the computing benchmarks on a VE for each

vector length.

Algorithm Copy Scale Add Triad
1 22.054 21.122 28.558 28.104
2 46.363 47.293 51.764 51.234
4 98.089 99.214 104.789 104.488
8 190.387 187.875 200.151 199.088
16 316.039 309.794 334.686 328.248
32 454.464 457.768 489.848 498.578
64 818.145 792.340 905.15 931.257
128 1029.355 1029.626 1005.496 1015.327
256 1015.584 1014.573 1010.534 1010.923

Table A.2: Performance (GByte/s) of the STREAM benchmarks on a VE for each

vector length.
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A Measurement Results

Type CPU GPU VE Handwritten
VE

Mean runtime 0.030304s 0.002765s 0.060351s 0.006688s
Min runtime 0.011922s 0.002048s 0.016963s 0.000805s
Max runtime 0.059449s 0.003072s 0.080488s 0.030247s

Runtime 0.0134s 0.0005s 0.0172s 0.0118s

standard

deviation

Table A.3: Measurement results of generated code on various architectures. The
generated code is the K-Nearest neighbors algorithm.

o4



Bibliography

1]

A. A. Abbo, R. P. Kleihorst, V. Choudhary, and L. Sevat. Power Consump-
tion of Performance-scaled SIMD Processors. In International Workshop on
Power and Timing Modeling, Optimization and Simulation, pages 532-540.
Springer, 2004. doi:10.1007/978-3-540-30205-6_ 55.

Advanced Micro Devices Inc. AMD Radeon™ RX 6800 Graphics Card.
https://www.amd.com/en/products/graphics/amd-radeon-rx-6800. Ac-
cessed: 30.11.2022.

I. V. Afanasyev, V. V. Voevodin, V. V. Voevodin, K. Komatsu, and
H. Kobayashi. Analysis of Relationship between SIMD-Processing Fea-
tures used in NVIDIA GPUs and NEC SX-Aurora TSUBASA Vector Processors.
In International Conference on Parallel Computing Technologies, pages 125-1309.
Springer, 2019. doi:10.1007/978-3-030-25636-4_ 10.

I. V. Afanasyev, V. V. Voevodin, V. V. Voevodin, K. Komatsu, H. Kobayashi,
et al. Developing Efficient Implementations of Shortest Paths and Page Rank Al-
gorithms for NEC SX-Aurora TSUBASA Architecture. Lobachevskii Journal
of Mathematics, 40(11):1753-1762, 2019. doi:10.1134/51995080219110039.

S. M. Al-sudany, A. S. Al-Araji, and B. M. Saeed. Architecture and Advan-
tages of SIMD in Multimedia Applications. Journal of Xi’an University of
Architecture & Technology, 12:1452-1459.

A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incor-
porating Long Messages into the LogP Model-—One Step Closer Towards a Re-
alistic Model for Parallel Computation. In Proceedings of the seventh annual
ACM symposium on Parallel algorithms and architectures, pages 95-105, 1995.
doi:10.1145/215399.215427.

M. S. B. Altaf and D. A. Wood. LogCA: A Performance Codel for Hard-
ware Accelerators. IEEE Computer Architecture Letters, 14(2):132-135, 2014.
doii10.1109/LCA.2014.2360182.

S. F. Antao, A. Bataev, A. C. Jacob, G.-T. Bercea, A. E. Eichenberger,
G. Rokos, M. Martineau, T. Jin, G. Ozen, Z. Sura, et al. Offloading Sup-
port for OpenMP in Clang and LLVM. In 2016 Third Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages 1-11. IEEE, 2016.
doi:10.1109/LLVM-HPC.2016.006.

95


https://doi.org/10.1007/978-3-540-30205-6_55
https://www.amd.com/en/products/graphics/amd-radeon-rx-6800
https://doi.org/10.1007/978-3-030-25636-4_10
https://doi.org/10.1134/S1995080219110039
https://doi.org/10.1145/215399.215427
https://doi.org/10.1109/LCA.2014.2360182
https://doi.org/10.1109/LLVM-HPC.2016.006

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

o6

Argonne Leadership Computing Facility. Aurora. https://www.alcf.anl.
gov/aurora. Accessed: 6.01.2023.

ARM. SVE2 Architecture Fundamentals. https://developer.arm.
com/documentation/102340/0001/SVE2-architecture-fundamentals. Ac-
cessed: 30.11.2022.

K. S. Brose. Comparing and Modelling the Performance of Different ML Frame-
works and Hardware Accelerators in a Coupled OpenFoam+ML Application.
Master’s thesis, Chair for High Performance Computing, RWTH Aachen Uni-
versity, 2022.

S. Burak. Application of a Parallel Pattern Language to LULESH. Master’s
thesis, Chair for High Performance Computing, RWTH Aachen University,
2022.

V. C. Cabezas and M. Piischel. Extending the Roofline Model: Bottleneck Anal-
ysis with Microarchitectural Constraints. In 2014 IEEE International Sym-
posium on Workload Characterization (IISWC), pages 222-231. IEEE, 2014.
doi:10.1109/1ISWC.2014.6983061.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Computing. In 2009 IEEE

international symposium on workload characterization (IISWC), pages 44-54.
IEEE, 2009. doii10.1109/I1ISWC.2009.5306797.

S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron. A Characterization of the Rodinia Benchmark Suite with Com-
parison to Contemporary CMP Workloads. In IEEFE International Sympo-
stum on Workload Characterization (IISWC’10), pages 1-11. IEEE, 2010.
doi:10.1109/1ISWC.2010.5650274.

J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A Roofline Model of Energy.
In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, pages 661-672. IEEE, 2013. doi:10.1109/IPDPS.2013.77.

T. Cramer, M. Roémmer, B. Kosmynin, E. Focht, and M. S. Miiller.
OpenMP Target Device Offloading for the SX-Aurora TSUBASA Vector Engine.
In International Conference on Parallel Processing and Applied Mathematics,
pages 237-249. Springer, 2019. doi;10.1007/978-3-030-43229-4 21,

T. Cramer, B. Kosmynin, S. Moll, M. Rommer, E. Focht, and M. S. Miiller. Eval-
uating the Performance of OpenMP Offloading on the NEC SX-Aurora TSUB-

ASA Vector Engine. Supercomputing Frontiers and Innovations, 8(2):59-74,
2021. doii10.14529/jsfi210204.


https://www.alcf.anl.gov/aurora
https://www.alcf.anl.gov/aurora
https://developer.arm.com/documentation/102340/0001/SVE2-architecture-fundamentals
https://developer.arm.com/documentation/102340/0001/SVE2-architecture-fundamentals
https://doi.org/10.1109/IISWC.2014.6983061
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2010.5650274
https://doi.org/10.1109/IPDPS.2013.77
https://doi.org/10.1007/978-3-030-43229-4_21
https://doi.org/10.14529/jsfi210204

[19]

[20]

[22]

23]

Bibliography

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-
ramonian, and T. Von Eicken. LogP: Towards a Realistic Model of Par-
allel Computation. In Proceedings of the fourth ACM SIGPLAN sympo-

sium on Principles and practice of parallel programming, pages 1-12, 1993.
doi:10.1145/155332.155333.

B. Da Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi. Performance Mod-
eling for FPGAs: Extending the Roofline Model with High-level Synthe-
sis Tools. International Journal of Reconfigurable Computing, 2013, 2013.
doi:10.1155/2013/428078.

N. Denoyelle, B. Goglin, A. Ilic, E. Jeannot, and L. Sousa. Modeling Large Com-
pute Nodes with Heterogeneous Memories with Cache-aware Roofline Model.
In International Workshop on Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computer Systems, pages 91-113. Springer, 2017.
doi:10.1007/978-3-319-72971-8 5.

J. M. Diaz, S. Pophale, K. Friedline, O. Hernandez, D. E. Bernholdt, and
S. Chandrasekaran. Evaluating Support for OpenMP Offload Features. In Pro-
ceedings of the 47th International Conference on Parallel Processing Companion,
pages 1-10, 2018. doii10.1145/3229710.3229717.

N. Ding and S. Williams. An Instruction Roofline Model for GPUs.
In 2019 IEEE/ACM Performance Modeling, Benchmarking and Simula-
tion of High Performance Computer Systems (PMBS), pages 7-18, 2019.
doi:10.1109/PMBS49563.2019.00007.

N. Ding, M. Awan, and S. Williams. Instruction Roofline: An Insightful Vi-
sual Performance Model for GPUs. Concurrency and Computation: Practice
and Ezperience, 34(20):6591, 2022. doi:10.1002/cpe.6591.

L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, W. Jalby,
et al. MAQAO: Modular Assembler Quality Analyzer and Optimizer for Ita-
nium 2. In The 4th Workshop on EPIC architectures and compiler technology,
San Jose, volume 200, 2005.

M. J. Flynn. Very High-speed Computing Systems. Proceedings of the IEEFE,
54(12):1901-1909, 1966. doi:10.1109/PROC.1966.5273.

M. J. Flynn. Some Computer Organizations and their Effectiveness. IEEE trans-
actions on computers, 100(9):948-960, 1972. doi:10.1109/TC.1972.5009071.

E. Focht. Vector Evolution: The Path to the NEC SX-Aurora TSUBASA, 2
2019.

E. Focht. VE Offloading. https://blog.rwth-aachen.de/hpc_
import_20210107/attachments/46401154/50790468.pdf, 2019. Accessed:
30.11.2022.

o7


https://doi.org/10.1145/155332.155333
https://doi.org/10.1155/2013/428078
https://doi.org/10.1007/978-3-319-72971-8_5
https://doi.org/10.1145/3229710.3229717
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1002/cpe.6591
https://doi.org/10.1109/PROC.1966.5273
https://doi.org/10.1109/TC.1972.5009071
https://blog.rwth-aachen.de/hpc_import_20210107/attachments/46401154/50790468.pdf
https://blog.rwth-aachen.de/hpc_import_20210107/attachments/46401154/50790468.pdf

Bibliography

[30]

[31]

[32]

[35]

[36]

[37]

[38]

o8

Forschungszentrum Jiilich. First European Exascale Supercomputer Coming
to Jilich. https://www.fz-juelich.de/en/news/archive/press-release/
2022/first-european-exascale-supercomputer-coming-to-julich,
2022. Accessed: 29.12.2022.

B. Furht, editor. SIMD (Single Instruction Multiple Data Processing), pages 817—
819. Springer US, Boston, MA, 2008. ISBN 978-0-387-78414-4. doi:10.1007/978-
0-387-78414-4 220. URL https://doi.org/10.1007/978-0-387-78414-4
220.

A. Guermouche and A.-C. Orgerie. Experimental Analysis of Vectorized In-
structions Impact on Energy and Power Consumption under Thermal De-
sign Power constraints. Research Report 2, Télécom Sud Paris, 2019. URL
https://hal.archives-ouvertes.fr/hal-02167083.

G. Hager, J. Treibig, J. Habich, and G. Wellein. Exploring Perfor-
mance and Power Properties of Modern Multi-core Chips via Simple Ma-
chine Models. Concurrency and computation: practice and experience, 28(2):
189-210, 2016. doi:10.1002/cpe.3180.

J. Hammer, G. Hager, J. Eitzinger, and G. Wellein. Automatic Loop Ker-
nel Analysis and Performance Modeling with Kerncraft. In Proceedings of
the 6th International Workshop on Performance Modeling, Benchmarking,
and Stmulation of High Performance Computing Systems, pages 1-11, 2015.
doii10.1145/2832087.2832092.

M. Hassaballah, S. Omran, and Y. B. Mahdy. A Review of SIMD Multime-
dia Extensions and their usage in Scientific and Engineering Applications. The
Computer Journal, 51(6):630-649, 2008. doi:10.1093/comjnl/bxm099.

M. Hill and V. J. Reddi. Gables: A Roofline Model for Mobile SoCs. In 2019
IEEFE International Symposium on High Performance Computer Architecture
(HPCA ), pages 317-330. IEEE, 2019. doi:10.1109/HPCA.2019.00047.

M. D. Hill, M. D. Hill, N. P. Jouppi, N. P. Jouppi, and G. S. Sohi. Read-
ings in Computer Architecture. Gulf Professional Publishing, 2000.

J. Hofmann and D. Fey. An ECM-based Energy-efficiency Optimization Ap-
proach for Bandwidth-limited Streaming Kernels on Recent Intel Xeon Proces-
sors. In 2016 4th International Workshop on Energy Efficient Supercomputing
(E25C), pages 31-38. IEEE, 2016. doi:10.1109/E25C.2016.010.

J. Hofmann, D. Fey, M. Riedmann, J. Eitzinger, G. Hager, and G. Wellein.
Performance Analysis of the Kahan-enhanced Scalar Product on Current Multi-
core and Many-core Processors. Concurrency and Computation: Practice and
Ezperience, 29(9):e3921, 2017. doi;10.1002/cpe.3921.


https://www.fz-juelich.de/en/news/archive/press-release/2022/first-european-exascale-supercomputer-coming-to-julich
https://www.fz-juelich.de/en/news/archive/press-release/2022/first-european-exascale-supercomputer-coming-to-julich
https://doi.org/10.1007/978-0-387-78414-4_220
https://doi.org/10.1007/978-0-387-78414-4_220
https://doi.org/10.1007/978-0-387-78414-4_220
https://doi.org/10.1007/978-0-387-78414-4_220
https://hal.archives-ouvertes.fr/hal-02167083
https://doi.org/10.1002/cpe.3180
https://doi.org/10.1145/2832087.2832092
https://doi.org/10.1093/comjnl/bxm099
https://doi.org/10.1109/HPCA.2019.00047
https://doi.org/10.1109/E2SC.2016.010
https://doi.org/10.1002/cpe.3921

[40]

[41]

[42]

[48]

Bibliography

J. Hofmann, G. Hager, and D. Fey. On the Accuracy and Usefulness of An-
alytic Energy Models for Contemporary Multicore Processors. In Interna-

tional conference on high performance computing, pages 22-43. Springer, 2018.
doi:10.1007/978-3-319-92040-5_ 2.

P. Y. Hsu and E. S. Davidson. Highly Concurrent Scalar Process-
ing. ACM SIGARCH Computer Architecture News, 14(2):386-395, 1986.
doii10.1145/17356.17401.

A. Tlic, F. Pratas, and L. Sousa. Cache-aware roofline model: Upgrading the loft.
IEEE Computer Architecture Letters, 13(1):21-24, 2013. doi:10.1109/L-
CA.2013.6.

T. Imai. NEC Earth Simulator and the SX-Aurora TSUBASA. In Operating
Systems for Supercomputers and High Performance Computing, pages 139-160.
Springer, 2019. doi:10.1007/978-981-13-6624-6_ 9.

Intel Corporation. Intel® Xeon® Platinum 8160 Processor.
https://www.intel.com/content/www/us/en/products/sku/120501/
intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz/
specifications.html. Accessed: 15.12.2022.

Khronos Group. OpenGL - The Industry Standard for High Performance
Graphics. https://www.opengl.org/, . Accessed: 10.01.2023.

Khronos Group. Vulkan API. https://www.vulkan.org/, . Accessed:
10.01.2023.

K. Komatsu, A. Onodera, E. Focht, S. Fujimoto, Y. Isobe, S. Momose, M. Sato,
and H. Kobayashi. Performance and Power Analysis of a Vector Comput-

ing System. Supercomputing Frontiers and Innovations, 8(2):75-94, 2021.
doi:10.14529 /3sf1210205.

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry,
7. Zhao, R. Gayatri, H. Shan, L. Oliker, et al. A Novel Multi-level Inte-
grated Roofline Model Approach for Performance Characterization. In Interna-

tional Conference on High Performance Computing, pages 226-245. Springer,
2018. doi:10.1007/978-3-319-92040-5_ 12.

M. Larabel. LLVM Now Has "Official" Support For Targeting NEC’s Vector
Engine (VE). https://www.phoronix.com/news/LLVM-NEC-VE-Official,
2021.

S. Lloyd. Least Squares Quantization in PCM. [IEFEFE transactions on informa-
tion theory, 28(2):129-137, 1982. doi;10.1109/TTT.1982.1056489.

29


https://doi.org/10.1007/978-3-319-92040-5_2
https://doi.org/10.1145/17356.17401
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1109/L-CA.2013.6
https://doi.org/10.1007/978-981-13-6624-6_9
https://www.intel.com/content/www/us/en/products/sku/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz/specifications.html
https://www.opengl.org/
https://www.vulkan.org/
https://doi.org/10.14529/jsfi210205
https://doi.org/10.1007/978-3-319-92040-5_12
https://www.phoronix.com/news/LLVM-NEC-VE-Official
https://doi.org/10.1109/TIT.1982.1056489

Bibliography

[51]

[52]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

60

Y. J. Lo, S. Williams, B. V. Straalen, T. J. Ligocki, M. J. Cordery, N. J. Wright,
M. W. Hall, and L. Oliker. Roofline Model Toolkit: A Practical Tool for Archi-
tectural and Program Analysis. In International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computer Sys-
tems, pages 129-148. Springer, 2014. doi:10.1007/978-3-319-17248-4 7.

A. Lopes, F. Pratas, L. Sousa, and A. Ilic. Exploring GPU Perfor-
mance, Power and Energy-efficiency Bounds with Cache-aware Roofline Mod-
eling. 1In 2017 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), pages 259-268. IEEE, 2017.
doi:10.1109/ISPASS.2017.7975297.

D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and Z. A.
Matveev. Performance Analysis with Cache-aware Roofline Model in Intel Ad-

visor. In 2017 International Conference on High Performance Computing €
Simulation (HPCS), pages 898-907. IEEE, 2017. doi:10.1109/HPCS.2017.150.

D. Marques, A. Ilic, and L. Sousa. Mansard Roofline Model: Reinforcing the Ac-
curacy of the Roofs. ACM Transactions on Modeling and Performance Evalu-
ation of Computing Systems, 6(2):1-23, 2021. doi:10.1145/3475866.

R. Mathur, H. Matsuoka, O. Watanabe, A. Musa, R. Egawa, and H. Kobayashi.
A Memory-Efficient Implementation of a Plasmonics Simulation Applica-

tion on SX-ACE. International Journal of Networking and Computing, 6
(2):243-262, 2016.

T. G. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Program-
ming. Pearson Education, 2004.

J. D. McCalpin et al. Memory bandwidth and machine balance in cur-
rent high performance computers. IEEFE computer society technical committee
on computer architecture (TCCA) newsletter, 2(19-25), 1995.

M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming: Pat-
terns for Efficient Computation. Elsevier, 2012.

K. Meng and B. Norris. Mira: A Framework for Static Performance Analysis.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER),
pages 103-113. IEEE, 2017. doi:10.1109/CLUSTER.2017.43.

Microsoft Corporation. DirectX graphics and gaming. https://learn.
microsoft.com/en-us/windows/win32/directx. Accessed: 10.01.2023.

J. Miller, L. Triumper, C. Terboven, and M. S. Miller. A Theoreti-
cal Model for Global Optimization of Parallel Algorithms. Mathematics, 9(14):
1685, 2021. doi:10.3390 /math9141685.


https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1109/ISPASS.2017.7975297
https://doi.org/10.1109/HPCS.2017.150
https://doi.org/10.1145/3475866
https://doi.org/10.1109/CLUSTER.2017.43
https://learn.microsoft.com/en-us/windows/win32/directx
https://learn.microsoft.com/en-us/windows/win32/directx
https://doi.org/10.3390/math9141685

Bibliography

[62] V. D. Modak, D. D. Langan, and T. F. Hain. A Pattern-based De-
velopment Tool for Mobile Agents. In Proceedings of the 36th SIGCSE

technical symposium on Computer science education, pages 72-75, 2005.
doi:10.1145/1047344.1047382.

[63] S. H. K. Narayanan, B. Norris, and P. D. Hovland. Generating Per-
formance Bounds from Source Code. 1In 2010 39th International Con-
ference on Parallel Processing Workshops, pages 197-206. IEEE, 2010.
doi:10.1109/ICPPW.2010.37.

[64] NEC Corporation. Programming Languages and Compilers. https://www.nec!
com/en/global/solutions/hpc/sx/tools.html, . Accessed: 30.11.2022.

[65] NEC Corporation. NEC Vector Engine Models. https://www.nec.com/en/
global/solutions/hpc/sx/vector_engine.html, . Accessed: 30.11.2022.

[66] NEC Corporation. SX-Aurora TSUBASA Offloading Frameworks. https:
//www.nec.com/en/global/solutions/hpc/articles/tech07.html, . Ac-
cessed: 30.11.2022.

[67] NEC Corporation. NEC SX-Aurora TSUBASA - Vector Engine. https://wuw!
nec.com/en/global/solutions/hpc/sx/vector_engine.html, . Accessed:
29.12.2022.

[68] NEC Corporation. VEDA (VE Driver API). https://github.com/
SX-Aurora/vedal, . Accessed: 30.11.2022.

[69] NEC Corporation.  SX-Aurora TSUBASA C/C++ Compiler User’s
Guide. https://sxauroratsubasa.sakura.ne.jp/documents/sdk/pdfs/
g2afOle-C++UsersGuide-028.pdf, 2018, 2022. Accessed: 05.12.2022.

[70] NEC Corporation. SX-Aurora Architecture Deep Dive. https:
//blog.rwth-aachen.de/hpc_import 20210107/attachments/46401154/
50790460 .pdf}, 2019. Accessed: 30.11.2022.

[71] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads programming-a POSIX stan-
dard for better multiprocessing, volume 19. O’reilly Sebastopol, CA, USA,
1996.

[72] NVIDIA Corporation. CUDA Toolkit Documentation v12.0. https://docs!
nvidia.com/cuda/, . Accessed: 10.01.2023.

[73] NVIDIA Corporation. NVIDIA V100 TENSOR CORE GPU. https://wuw!
nvidia.com/en-us/data-center/v100/, . Accessed: 30.11.2022.

[74] Oak Ridge National Laboratory.  Frontier supercomputer debuts as
world’s fastest, breaking exascale barrier. https://www.ornl.gov/news/

frontier-supercomputer-debuts-worlds-fastest-breaking—exascale-barrier,
2022. Accessed: 29.12.2022.

61


https://doi.org/10.1145/1047344.1047382
https://doi.org/10.1109/ICPPW.2010.37
https://www.nec.com/en/global/solutions/hpc/sx/tools.html
https://www.nec.com/en/global/solutions/hpc/sx/tools.html
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://www.nec.com/en/global/solutions/hpc/articles/tech07.html
https://www.nec.com/en/global/solutions/hpc/articles/tech07.html
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://github.com/SX-Aurora/veda
https://github.com/SX-Aurora/veda
https://sxauroratsubasa.sakura.ne.jp/documents/sdk/pdfs/g2af01e-C++UsersGuide-028.pdf
https://sxauroratsubasa.sakura.ne.jp/documents/sdk/pdfs/g2af01e-C++UsersGuide-028.pdf
https://blog.rwth-aachen.de/hpc_import_20210107/attachments/46401154/50790460.pdf
https://blog.rwth-aachen.de/hpc_import_20210107/attachments/46401154/50790460.pdf
https://blog.rwth-aachen.de/hpc_import_20210107/attachments/46401154/50790460.pdf
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier

Bibliography

[75] OpenMP Architecture Review Board. OpenMP 5.2 Specification. https://www.
openmp . org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf,
11 2021. Accessed: 08.12.2022.

[76] U. Paul and T. Gunkel. 45 Jahre Seegangsmodellvorhersagen im Geoinforma-
tionsdienst der Bundeswehr fiir die Deutsche Marine im Einsatz. 2021. ISSN
1865-6978.

[77] M. Pharr and R. Fernando. GPU Gems 2: Programming Techniques for High-
performance Graphics and General-purpose Computation. Addison-Wesley
Professional, 2005.

[78] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. The Cydra 5 Departmen-
tal Supercomputer: Design Philosophies, Decisions, and Trade-offs. Computer,
22(1):12-35, 1989. doi:10.1109/2.19820.

[79] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich. Code Gener-
ation from a Domain-specific Language for C-based HLS of Hardware Ac-
celerators. In 2014 international conference on hardware/software code-
sign and system synthesis (CODES+ 1SSS), pages 1-10. IEEE, 2014.
doii10.1145/2656075.2656081.

[80] J. R. Reinders. Intel® AVX-512 Instructions. https://www.
intel.com/content/www/us/en/developer/articles/technical/
intel-avx-512-instructions.html, 2013. Accessed: 30.11.2022.

[81] S. Rul, H. Vandierendonck, J. D’Haene, and K. De Bosschere. An Experimen-
tal Study on Performance Portability of OpenCL Kernels. In 2010 Symposium
on Application Accelerators in High Performance Computing (SAAHPC’10),
2010.

[82] A. Schmitz. Hpc code generation for parallel pattern based algorithms on hetero-
geneous architectures. Master’s thesis, Chair for High Performance Computing,
RWTH Aachen University, 2021.

[83] A. Schmitz, J. Miller, L. Triimper, and M. S. Miiller. PPIR: Parallel Pattern In-
termediate Representation. In 2021 IEEE/ACM International Workshop on
Hierarchical Parallelism for Exascale Computing (HiPar), pages 30-40. IEEE,
2021. doi:10.1109/HiPar54615.2021.00009.

[84] R. Schone, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg. En-
ergy Efficiency Features of the Intel Skylake-SP Processor and their Im-
pact on Performance. In 2019 International Conference on High Per-
formance Computing & Simulation (HPCS), pages 399-406. IEEE, 2019.
doi:10.1109/HPCS48598.2019.9188239.

62


https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1109/2.19820
https://doi.org/10.1145/2656075.2656081
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://doi.org/10.1109/HiPar54615.2021.00009
https://doi.org/10.1109/HPCS48598.2019.9188239

[85]

[86]

[89]

[90]

[91]

[92]

[93]

[94]

Bibliography

Semiconductor Industry Association. 2015 International Technology Roadmap
for Semiconductors (ITRS). http://www.semiconductors.org/resources/

2015-international-technology-roadmap-for-semiconductors-itrs/,
2015. Accessed: 5.01.2023.

A. Shahbahrami, B. Juurlink, and S. Vassiliadis. A Comparison between Proces-
sor Architectures for Multimedia Applications. In Proc. 15th Annual Workshop
on Circuits, System and Signal Processing (ProRISC 2004), the Netherlands,
pages 138-152, 2004.

A. M. Shinsel. Intel® Advisor Roofline. https://www.intel.com/content/
www/us/en/developer/articles/guide/intel-advisor-roofline.html,
2017. Accessed: 12.12.2022.

M. Siracusa, E. Del Sozzo, M. Rabozzi, L. Di Tucci, S. Williams, D. Sciuto, and
M. D. Santambrogio. A Comprehensive Methodology to Optimize FPGA De-
signs via the Roofline Model. IEEE Transactions on Computers, 71(8):1903—
1915, 2021. doi:10.1109/TC.2021.3111761.

H. Stengel, J. Treibig, G. Hager, and G. Wellein. Quantifying Performance Bot-
tlenecks of Stencil Computations using the Execution-Cache-Memory Model. In
Proceedings of the 29th ACM on International Conference on Supercomputing,
pages 207-216, 2015. doi:10.1145/2751205.2751240.

D. Talla, L. K. John, V. Lapinskii, and B. L. Evans. Evaluating Signal Pro-
cessing and Multimedia Applications on SIMD, VLIW and Superscalar Archi-

tectures. In Proceedings 2000 International Conference on Computer Design,
pages 163-172. IEEE, 2000. doi:10.1109/1CCD.2000.878283.

techpowerup.com. AMD Radeon RX 6800. https://www.techpowerup.com/
gpu-specs/radeon-rx-6800.c3713, . Accessed: 15.12.2022.

techpowerup.com.  NVIDIA Tesla V100 PCle 32 GB. https://www.
techpowerup. com/gpu-specs/tesla-v100-pcie-32-gb.c3184, . Accessed:
15.12.2022.

M. O. Tokhi, M. A. Hossain, and M. H. Shaheed. Parallel Computing for Real-
time Signal Processing and Control. Springer Science & Business Media, 2003.

J. Treibig and G. Hager. Introducing a Performance Model for Bandwidth-
limited Loop Kernels. In International Conference on Parallel Processing and
Applied Mathematics, pages 615-624. Springer, 2009. doi:10.1007/978-3-642-
14390-8  64.

L. Triimper. Global optimization of parallel pattern-based algorithms for hetero-
geneous architectures. Master’s thesis, Chair for High Performance Computing,
RWTH Aachen University, 2020.

63


http://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
http://www.semiconductors.org/resources/2015-international-technology-roadmap-for-semiconductors-itrs/
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html
https://doi.org/10.1109/TC.2021.3111761
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1109/ICCD.2000.878283
https://www.techpowerup.com/gpu-specs/radeon-rx-6800.c3713
https://www.techpowerup.com/gpu-specs/radeon-rx-6800.c3713
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184
https://doi.org/10.1007/978-3-642-14390-8_64
https://doi.org/10.1007/978-3-642-14390-8_64

Bibliography

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

64

L. Trtmper, J. Miller, C. Terboven, and M. S. Miiller. Automatic Map-
ping of Parallel Pattern-based Algorithms on Heterogeneous Architectures. In

International Conference on Architecture of Computing Systems, pages 53—67.
Springer, 2021. doi:10.1007/978-3-030-81682-7 4.

D. Unat, C. Chan, W. Zhang, S. Williams, J. Bachan, J. Bell, and J. Shalf.
ExaSAT: An Exascale Co-design Tool for Performance Modeling. The Interna-

tional Journal of High Performance Computing Applications, 29(2):209-232,
2015. doi:10.1177/1094342014568690.

N. Weber. SOL: Reducing the Maintenance Overhead for Integrating Hard-
ware Support into Al Frameworks. arXiv preprint arXiv:2205.10357, 2022.
doi:10.48550 /arXiv.2205.10357.

N. B. Wilding, A. Trew, K. Hawick, and G. Pawley. Scientific Model-
ing with Massively Parallel SIMD Computers. Proceedings of the IEEE, 79(4):
574-585, 1991. doi:10.1109/5.92050.

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual

performance model for multicore architectures. Communications of the ACM,
52(4):65-76, 2009. doi:10.1145/1498765.1498785.

M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein. Chip-
level and Multi-node Analysis of Energy-optimized Lattice Boltzmann CFD Sim-
ulations. Concurrency and Computation: Practice and Experience, 28(7):
2295-2315, 2016. doi:10.1002/cpe.3489.

Y. Yamada and S. Momose. Vector Engine Processor of NEC’s Brand-new Su-
percomputer SX-Aurora TSUBASA. In Proceedings of A Symposium on High
Performance Chips, Hot Chips, volume 30, pages 19-21, 2018.

C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen,
B. Cook, D. Doerfler, L. Oliker, et al. An Empirical Roofline Methodol-
ogy for Quantitatively Assessing Performance Portability. In 2018 IEEE/ACM

International Workshop on Performance, Portability and Productivity in HPC
(PSHPC), pages 14-23. IEEE, 2018. doi:10.1109/P3HPC.2018.00005.

C. Yang, T. Kurth, and S. Williams. Hierarchical Roofline analy-
sis for GPUs: Accelerating performance optimization for the NERSC-9 Perl-
mutter system. Concurrency and Computation: Practice and Experience, 32
(20):e5547, 2020. doi:10.1002/cpe.5547.


https://doi.org/10.1007/978-3-030-81682-7_4
https://doi.org/10.1177/1094342014568690
https://doi.org/10.48550/arXiv.2205.10357
https://doi.org/10.1109/5.92050
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1002/cpe.3489
https://doi.org/10.1109/P3HPC.2018.00005
https://doi.org/10.1002/cpe.5547

List of Abbreviations

ALU
AMT
APT
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DIV/SQRT
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FPGA
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HCA
HL
K-Means
LLC
ML
NN
PPL
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SIMT
SISD
SoC
SPU
VA
VE
VEOS
VH
VP
VPU

Arithmetic Logic Unit

Abstract Mapping Tree
Abstract Pattern Tree
Advanced Vector Extensions
Division/Square-Root

Domain Specific Language
Execution-Cache-Memory

Fused Multiply-Add

Field Programmable Gate Array
High Bandwidth Memory

Host Channel Adapter
Hardware Language

K-Means clustering

Last Level Cache

Machine Learning

K-Nearest neighbors

Parallel Pattern Language
Single Instruction Multiple Data
Single Instruction Multiple Threads
Single Instruction Single Data
System on a Chip

Scalar Processing Unit

Vector Accelerator

Vector Engine

Vector Engine Operating System
Vector Host

Vector Processor

Vector Processing Unit
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