
On-the-Fly Data Race Detection
for MPI RMA Programs with MUST

Simon Schwitanski∗, Joachim Jenke∗, Felix Tomski∗, Christian Terboven∗ and Matthias S. Müller∗
∗Chair for High Performance Computing, IT Center

RWTH Aachen University, Aachen, Germany
{schwitanski, jenke, tomski, terboven, mueller}@itc.rwth-aachen.de

Abstract—MPI Remote Memory Access (RMA) provides a one-
sided communication model for MPI applications. Ensuring con-
sistency between RMA operations with synchronization calls is a
key requirement when writing correct RMA codes. Wrong API
usage may lead to concurrent modifications of the same memory
location without proper synchronization resulting in data races
across processes. Due to their non-deterministic nature, such data
races are hard to detect. This paper presents MUST-RMA, an
on-the-fly data race detector for MPI RMA applications. MUST-
RMA uses a race detection model based on happened-before
and consistency analysis. It combines the MPI correctness tool
MUST with the race detector ThreadSanitizer to detect races
across processes in RMA applications. A classification quality
study on MUST-RMA with different test cases shows a precision
and recall of 0.95. An overhead study on a stencil and a matrix
transpose kernel shows runtime slowdowns of 3x to 20x for up
to 192 processes.

Index Terms—MPI RMA, correctness, data race, MUST

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is the de-facto
standard for distributed-memory programming in HPC. Its
traditional message-passing communication model is two-
sided: To exchange data, both the sending and the receiving
process have to actively call MPI functions (send/recv). In MPI
Remote Memory Access (RMA) [1, §12], also called one-
sided communication, only one of the processes is actively
involved in the communication: A process can access the
memory of other processes remotely using read, write, and
update calls. MPI RMA communication calls map directly
to the Remote Direct Memory Access (RDMA) functionality
provided by network interconnects as InfiniBand and can
therefore offer a performance advantage over two-sided MPI
communication [2].

In MPI RMA, the developer has to ensure consistency of
remote memory operations explicitly with specific synchro-
nization calls. The wrong usage of such calls might result in
concurrent modifications of the same memory location leading
to undefined behavior of the program as shown in Figure 1.
We call that situation a data race across processes. Since such
data races behave non-deterministically, they are often difficult
to detect without tool support.

On-the-fly data race detectors like ThreadSanitizer [3] are
commonly used tools for shared-memory programs to find
races at runtime. Translating the detection concepts of those
on-the-fly race detectors to data races across processes in

RMA programs is, however, difficult since (1) the distributed-
memory environment makes the exchange of analysis data
more challenging, (2) capturing the causality of events in MPI
processes is complex, and (3) the consistency semantics of
MPI RMA is more complex than of shared-memory models.
A potential race detection tool has to consider all these points
to be correct and scalable.

In this paper, we present MUST-RMA, an on-the-fly race
detector for MPI RMA programs, which uses the analysis
infrastructure of the MUST correctness checking tool [4] in
combination with the shared-memory race detector Thread-
Sanitizer. MUST-RMA intercepts all MPI calls of an appli-
cation to detect the so-called concurrent regions of remote
memory accesses that represent the execution timeframe in
which a memory access of an MPI RMA operation can take
place. The information on the concurrent regions is then
annotated in the shared-memory race detector ThreadSanitizer
which performs the actual race detection.

We make the following contributions:

• A classification of data races for MPI RMA programs
that distinguishes local buffer races and remote races,

• a race detection model for MPI RMA programs that
detects the concurrent regions of RMA operations based
on happened-before and consistency analysis, and

• a prototype implementation of our tool MUST-RMA that
implements the race detection model by combining the
analysis capabilities of MUST and ThreadSanitizer.

The paper is structured as follows: In Section II, we give
an introduction to the MPI RMA programming model. In Sec-
tion III, we present a classification of data races in MPI RMA.
Section IV presents the race detection model. In Section V, we

P0 (origin) P1 (target)

win location X
Barrier Barrier
Win lock(P1)
...
buf = 42 ...
Put(&buf,P1,X) X = 1
... ...
Win unlock(P1)
Barrier Barrier

Fig. 1. Data race across processes in MPI RMA: P0 performs a remote write
to location X using an MPI Put call that is concurrent to the X = 1 instruction
at P1. The value of the variable X is undefined due to a data race.

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. (DOI: 10.1109/Correctness56720.2022.00009)

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

describe the functionality of our analysis tool MUST-RMA and
evaluate its classification quality and overhead in Section VI.
Finally, we discuss related works on RMA race detection in
Section VII and conclude the paper in Section VIII.

II. MPI REMOTE MEMORY ACCESS

This section recaps the most important concepts of MPI
Remote Memory Access (RMA) [1, §12]. Following the MPI
terminology, we denote the process issuing the actual com-
munication operation as origin, while we denote the process
whose memory is accessed as target.

A. Windows

Before other processes can access any memory remotely,
a process has to expose the desired memory region to be
accessed from remote in a window. The window creation
itself is done in a collective call (e.g., MPI Win create),
whereby each process specifies the memory region it wants
to expose. MPI returns an opaque window object that can be
used in subsequent RMA communication and synchronization
calls. When all RMA communication is completed, a call to
MPI Win free frees the window.

B. Communication Calls

MPI RMA specifies three different variants of communi-
cation calls: Put calls read data from a given buffer at the
origin and perform a remote write at the target. Get calls
read data from the target remotely and write the result into
a given buffer. Accumulate calls update a value at the target
using a given update operation and guarantee atomicity at the
granularity of the predefined datatype [1, §12.7.1]. All RMA
communication calls are non-blocking, an RMA operation has
to be completed with a synchronization call, as discussed in
the next section.

C. Synchronization Calls and Completion Semantics

Before the origin can issue any RMA communication call,
it first has to open an access epoch to an RMA window
with an RMA synchronization call. Then, multiple RMA
communication calls may follow. Finally, the epoch is com-
pleted with another synchronization call which enforces the
completion of all RMA operations previously issued in that
epoch. RMA distinguishes origin completion meaning that
the local communication buffer at the origin can be reused
and target completion meaning that the effect of the RMA
operation is guaranteed to be visible at the target. RMA
provides three kinds of synchronization mechanisms (fences,
post-start-complete-wait, locks) as visualized in Figure 2 that
can be categorized into two classes of synchronization, active
target and passive target.

In active target synchronization, both origin and target
are involved in ensuring completion. Corresponding to the
access epoch at the origin, the target starts and ends an
exposure epoch with synchronization calls. While the access
epoch represents the period in which the origin issues RMA
operations, the exposure epoch is the period at the target in

P0 P1 P2

fence fence fence

fence fence fence

fence fence fence

put
get

put
put

(a) Fences (active)

P0 P1

start(P1)
post(P0)

complete(P1)

put

get

wait(P0)

(b) PSCW (active)

P0 P1

lock(P1)

put

get

unlock(P1)

(c) Locks (passive)

Fig. 2. RMA synchronization modes as defined in [1, §12].

which the RMA operations issued by the origin take place.
Closing an access epoch implies origin completion while
closing a matching exposure epoch implies target completion.
MPI RMA defines two active target synchronization methods:

1) Fences: Processes synchronize collectively using the call
MPI Win fence on the window. The call opens an access
epoch at the origin and a matching exposure epoch at the
target. Another call to that function implies the origin and
target completion of all RMA operations issued in that epoch.
Simultaneously, it opens the subsequent access and exposure
epoch.

2) Post-Start-Complete-Wait (PSCW): A generalized vari-
ant of active target synchronization: The calls MPI Win start
and MPI Win complete open and close an access epoch at
the origin. The calls MPI Win post and MPI Win wait open
and close an exposure epoch at the target. PSCW allows
for fine-grained completion control compared to the bulk
synchronization of fences.

In passive target synchronization, only the origin is involved
in the RMA completion, and no exposure epochs are defined.
The target does not have to invoke any synchronization call.
The origin uses MPI Win lock and MPI Win unlock to open
and close an access epoch, respectively. Closing an access
epoch with MPI Win unlock implies both origin and target
completion. Locks can be exclusive or shared and provide
synchronized access to the RMA windows. MPI additionally
offers MPI Win flush to ensure operation completion with-
out unlocking the window. Further, MPI Win lock all and
MPI Win unlock all enable access to the RMA window on
all processes using a shared lock. Multiple processes may call
it concurrently and can then issue RMA operations to all other
processes. This lock-all model is closest to other PGAS models
as OpenSHMEM [5].

D. Memory Models

MPI RMA provides two kinds of memory models, the
separate and the unified model. The separate memory model
introduced in MPI-2 assumes a system where coherence
between a private and a public window copy has to be es-
tablished manually through additional RMA calls. In contrast,
the unified model introduced in MPI-3 assumes a hardware-
based coherence model. In this paper, we focus on the unified
memory model.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

III. RACES IN MPI RMA

In MPI RMA, origin and target completion must be ensured
by using RMA synchronization calls to avoid data races
with local memory accesses or other RMA operations. We
distinguish two kinds of races: The local buffer race refers to
a local conflict at the origin with other local memory accesses.
The remote race is a conflict situation across processes, i.e.,
a remote access at the target conflicts with either (1) a local
access at the target or (2) another remote access. This section
discusses both race classes and follows the RMA semantics
defined in [1, §12.7].

A. Local Buffer Races

For each RMA communication call, the user has to specify
at the origin a local buffer from which the data to be trans-
mitted is read in the case of put and accumulate operations
or in which the resulting data is written in the case of get
operations. After issuing an RMA communication call, a
process should not do any write access to the local buffer in
the case of put or accumulate operations and should not access
the local buffer at all in the case of get operations until the
corresponding operation is origin-completed. Otherwise, the
behavior of the application is undefined [1, §12.7]. Figure 3
shows two examples of such buffer races. Conflicts can occur
either between the buffer access and (1) a local memory access
or (2) a buffer access from another RMA call that uses the
same local buffer. Such a local buffer race occurs at the origin
process that issues the RMA communication call. Local buffer
races are not limited to RMA but are also possible in other
non-blocking MPI calls that require a local buffer, e.g., non-
blocking communication or non-blocking collectives.

B. Remote Races

Conflicts between a remote access at the target with other
local or remote memory accesses are the second class of
races. The RMA compatibility matrix depicted in Table I
shows which kinds of operations at the target are valid to
be performed concurrently to the same memory location
and which are in conflict. Performing at least two of such
conflicting memory operations concurrently without proper
synchronization will lead to a remote race: Get operations
trigger a remote read at the target; thus, a concurrent load
access at the target to the same location is safe, while a
concurrent store access will lead to a race. Similarly, put and

P0 (origin) P1 (target)

Barrier Barrier

Win lock(P1)
buf = 42
Put(&buf,P1,) ...
buf += 1
Win unlock(P1)

Barrier Barrier

(a) Between put and local update

P0 (origin) P1 (target)

Win fence Win fence

...
buf = 42
Put(&buf,P1,) ...
Get(&buf,P1,)
...

Win fence Win fence

(b) Between put and get

Fig. 3. Local buffer race examples. Conflicting statements are bold.

TABLE I
COMPATIBILITY OF RMA OPERATIONS AT THE TARGET TO THE SAME

MEMORY LOCATION, ADAPTED FROM [6]

Load Store Get Put Acc
Load – – safe conflict conflict
Store – – conflict conflict conflict
Get safe conflict safe conflict conflict
Put conflict conflict conflict conflict conflict
Acc conflict conflict conflict conflict safe*

*when adhering to the atomicity semantics of MPI RMA

accumulate operations trigger a remote write or update and
thus any local memory access at the target will be in conflict.
Multiple get operations to the same target location are safe,
while any other combination of RMA operations to the same
target location leads to a conflict. The only exception is the use
of accumulate operations that follows the atomicity semantics
as defined in the MPI standard [1, §12.7.1].

Figure 4 shows different examples of remote races. While
in Figure 4a and Figure 4b, a remote access conflicts with a
local memory operation at the target, in Figure 4c, two remote
accesses conflict at the target memory location without the
target being involved at all. Due to the complexity of the RMA
model, there are many other kinds of access patterns leading
to race situations that are not depicted here.

C. Benign Races

Not all remote races in MPI RMA lead to undefined behav-
ior [1, §12.7]. For example, reading locally from a memory
location (polling of a state change of a memory location) that
is concurrently accessed by a remote write or update is valid.
Still, there is no guarantee on the ordering or atomicity of
the accesses. Depending on the semantics of the program, a
race might therefore be benign. But since this is a question
of program semantics, we do not distinguish between benign
and malicious races in our race detection.

P0 (origin) P1 (target)

win location X
Barrier Barrier
Win lock(P1)
...
buf = 42 ...
Put(&buf,P1,X) X = 1
... ...
Win unlock(P1)
Barrier Barrier

(a) Between put and local store

P0 (origin) P1 (target)

win location X
Win start(P1)

Win post(P0)
...
Get(&buf,P1,X) ...
... X = 1

...
Win complete(P1)

Win wait(P0)

(b) Between get and local store

P0 (origin) P1 (target) P2 (origin)

win location X
Barrier Barrier Barrier
Win lock(P1,shared) Win lock(P1,shared)
...
buf = 42 buf = 1
MPI Put(&buf,P1,X) ... MPI Put(&buf,P1,X)
...
Win unlock(P1) Win unlock(P1)
Barrier Barrier Barrier

(c) Between two put calls from different origin processes

Fig. 4. Remote race examples. Conflicting statements are bold.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

IV. RACE DETECTION MODEL

Reasoning on data races in MPI RMA requires capturing
(1) the completion semantics of RMA operations with the
consistency relation co−→ and (2) the process synchronization
of MPI processes with the happened-before relation hb−→. In
this section, we describe how to use those two relations to
determine the so-called concurrent regions of RMA operations
that represent the execution timeframe in which the access of
an RMA operation can take place. The notion of a concurrent
region of RMA operations was introduced by [7] but has not
been formalized so far using the co−→ and hb−→ relation to reason
on data races. For simplicity, we assume in this section that
all RMA operations use the same window object.

A. Formal Semantics of MPI RMA

The formal semantics of MPI RMA has been defined
in [2] in detail. Assuming N processes P0, . . . PN−1, we
interpret the program execution as set of ordered events
Ei := {ei0, ei1, . . . } for each process Pi. The set of all events
is E := E0 ∪ · · · ∪ EN−1. Events might be local memory
accesses, MPI RMA calls, or any MPI synchronization call.

To detect data races between the different memory accesses
and RMA operations, capturing the consistency relation co−→
and happened-before relation hb−→ is required. The consistency
relation co−→ captures the visibility of memory accesses: If
a

co−→ b, then the effect of a is guaranteed to be visible to
b. In particular, if event a is an MPI RMA operation, then
a

co−→ b means that the memory access of a is guaranteed to be
finished before b in terms of MPI RMA completion semantics.
The happened-before relation hb−→ is a partial order capturing
the causality of events in a program execution and is defined
as follows:

Definition 1 (adapted from [8]). The happened-before order
hb−→⊆ E × E is the smallest transitive relation satisfying the

following two conditions:

1) If a, b ∈ E occur in the same process Pi and a is before
b in program order, then a

hb−→ b.
2) If a is a signal event and b is the corresponding wait

event, then a
hb−→ b.

The second condition captures all kinds of synchronization
between processes, in our case, using MPI send/recv calls or
collective synchronization with barriers. If both a ̸hb−→ b and
b ̸hb−→ a, then we call a and b concurrent, because no execution
order is guaranteed.

Based on the co−→ and hb−→ relation, we derive the consistent
happened-before relation cohb−−−→ as defined by [2]:

a
cohb−−−→ b := a

co−→ b ∧ a
hb−→ b

Formally, a data race is present in an RMA program execution
if for two conflicting (remote) memory access events a and b,
it is a ̸cohb−−−→ b and b ̸cohb−−−→ a. For simplicity, we also write
a ||cohb b.

B. Vector Clocks

To capture the hb−→ relation between the different events, we
rely on vector clocks [8]. Each process Pi manages a vector
clock Vi ∈ NN where each value Vi[j] represents the logical
timestamp that process Pi stores for process Pj .

Definition 2 (adapted from [8]). Let P0, . . . , PN−1 denote the
processes of a distributed computation. The vector clock Vi of
a process Pi is maintained according to the following rules:
(1) Initially, Vi[k] := 0 for k = 0, . . . , N − 1.
(2) On each internal event e, process Pi increments Vi as

follows: Vi[i] := Vi[i] + 1.
(3) On a signal event s, Pi updates Vi as in (2) and sends

its vector clock to the waiting process Pj .
(4) On a wait event w, Pi updates Vi as in (2), waits for

a matching vector V (w) and updates its current Vi as
follows: Vi := max{Vi, V (w)}.

We did an in-depth classification of all synchronization
concepts present in MPI and how they map to the vector clock
exchange in [9]. For an event e ∈ Ei, we denote with V (e)
the vector clock Vi that process Pi had immediately after it
executed event e.

C. Identifying Concurrency of RMA Operations

Each RMA operation issues (1) the local buffer access,
which is locally concurrent with other events in a certain
execution timeframe at the origin, and (2) the remote access,
which is concurrent with other events in a certain execution
timeframe at the target. We identify the execution timeframes
of those accesses, i.e., the earliest and latest possible point in
time when it might happen, by introducing the concept of a
concurrent region: A concurrent region of an RMA operation
r ∈ E is a tuple (s, t) of events s, t ∈ Ei at a given process Pi.
The events s and t denote the start and end of the concurrent
access. For all events e taking place between s and t on Pi,
there is no cohb−−−→ ordering with RMA operation r:

∀e ∈ Ei : s
hb−→ e

hb−→ t =⇒ r ||cohb e

Each RMA operation has a concurrent region at the origin
for the local buffer access and another concurrent region at
the target for the remote access. In the following, we describe
how to derive those concurrent regions.

D. Concurrent Region of Local Buffer Accesses

To detect local buffer races, the concurrent regions of local
buffer accesses have to be identified. For that, the issued MPI
RMA calls are analyzed: The buffer access can take place
at earliest with the RMA call itself and at latest with the
matching RMA synchronization call that guarantees origin
completion. Other memory accesses in conflict with that local
buffer access taking place during the concurrent region will
therefore lead to a data race.

Figure 5a shows an example with a put call issued at the
origin using the local buffer buf. Due to RMA completion
semantics, the concurrent region of the put operation in event

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

P0

Barrier a

Lock(P1) b

buf = 42 c

Put(&buf,P1,) d

buf += 1 e

Unlock(P1) f

Barrier g

read
buf

(a) Concurrent region of put

P0

Barrier a

Lock(P1) b

buf = 42 c

Put(&buf,P1,) d

Get(&buf,P1,) e

Unlock(P1) f

Barrier g

write
buf

read
buf

(b) Concurrent region of put and get

Fig. 5. Concurrent regions of local buffer accesses.

d is (d, f). It starts with the put call itself and ends with
the unlock call. The local buffer buf is modified during the
concurrent region in event e. Since the local buffer access in
event d is not guaranteed to be finished before event e and
vice-versa, it holds d ̸co−→ e and e ̸co−→ d, so d ||cohb e. Thus,
there is a local buffer race at process P0. Similarly, Figure 5b
shows a put call with a get call conflicting at the origin. Both
use the same local buffer and their concurrent regions (d, f)
and (e, f) are overlapping, so d ||cohb e implies a local buffer
race at process P0.

E. Concurrent Region of Remote Accesses

Detecting an RMA call’s concurrent region at the target
requires understanding both consistency and process synchro-
nization. Intuitively, the remote access of an RMA operation
issued at the origin Po to target Pt can occur from Pt’s point
of view at earliest after the latest preceding synchronization
event where Pt signaled to Po. We name that event last signal
and derive it based on the vector clocks:

Definition 3 (Last Signal). Let a ∈ Eo be an event at Po. The
last signal of Pt to Po before a, denoted as LSt→o(a), is the
event b ∈ Et where V (a)[t] = V (b)[t].

After target completion has been ensured at the origin, we
have to find the latest point in time when target completion
will be guaranteed in the view of the target. We define the next
wait as the earliest subsequent synchronization event where Pt

has to wait for Po:

Definition 4 (Next Wait). Let a ∈ Eo be an event at Po. The
next wait of Pt for Po after a, denoted as NWt→o(a), is the
event b ∈ Et where
(1) V (b)[o] ≥ V (a)[o], and
(2) V (b)[t] ≤ V (b′)[t] ∀ b′ with V (b′)[o] ≥ V (a)[o].

Let a ∈ Eo be any RMA call issued at the origin process
Po to target process Pt and let c ∈ Eo be the corresponding
RMA synchronization call issued at process Po guaranteeing
target completion. Then, the concurrent region of the remote
access at Pt is (LSt→o(a), NWt→o(c)).

Figure 6 shows the vector clocks and the concurrent region
for the race example from Figure 4a. Event d at P0 starts
the put operation. The earliest point in time when the remote
write might occur from perspective of P1 is immediately

P0 P1

Barrier [1,1] a u [1,1] Barrier

Lock(P1) [2,1] b

buf = 42 [3,1] c

Put(&buf,P1,X) [4,1] d v [1,2] X = 1

Unlock(P1) [5,1] e

Barrier [6,3] f w [6,3] Barrier

hb

hb

(last signal before d)

(next wait after e)

write
X

Fig. 6. Concurrent region of remote access with passive target communication
and barrier synchronization.

after the barrier in event u, because LS1→0(d) = u. Target
completion is guaranteed with the unlock call in event e and
NW1→0(e) = w, so the remote write will occur at latest from
perspective of P1 when it finishes the barrier in event w. The
concurrent region of the put operation at target P1 is (u,w).
The conflicting local access X=1 in event v is not ordered
regarding the remote access, so d ||cohb v results in a race.

Figure 7 shows an example using active target communica-
tion with fences that is race-free. Processes P0 and P1 first
synchronize with a fence which implicitly provides barrier
synchronization. This will open a new access epoch at P0 and
an exposure epoch at P1. Before P0 issues the put operation
in d, it waits for a message from P1 in a recv call in b which
is correspondingly reflected in the vector clock. For the put
operation in event d, the last signal from P1 is the send call,
i.e., LS1→0(d) = w. The next fence call in events e and x
provides target completion and synchronization, therefore, it
is NW1→0(e) = x. The concurrent region is (w, x), therefore,
the conflicting access X=1 in event v is consistent happened-
before-related, i.e., v cohb−−−→ d, so there is no race.

F. Limitations

The concurrent region is sometimes not enough to correctly
detect races because two origin processes could synchronize
externally the access to the same target, e.g., via exclusive
locks on a window. From the target’s point of view, however,
the concurrent regions of those two memory accesses are over-
lapping and thus a race. Considering the example in Figure 4c,
replacing the shared locks with exclusive locks would fix the

P0 P1

Fence [1,1] a u [1,1] Fence

v [1,2] X = 1

w [1,3] Send(P0)

Recv(P1) [2,3] b

buf = 42 [3,3] c

Put(&buf,P1,X) [4,3] d

Fence [5,4] e x [5,4] Fence

hb

hb

hb (last signal before d)

(next wait after e)

write
X

Fig. 7. Concurrent region of remote access using active target synchronization.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

data race, but the concurrent regions of the two put calls
would nevertheless be overlapping. In our implementation, we
account for that where possible, e.g., by checking whether two
conflicting RMA operations are protected via exclusive locks.

V. IMPLEMENTING A RACE DETECTOR

We implemented the race detection model in the on-the-
fly race detector MUST-RMA that we present in this section.
It combines the MPI correctness tool MUST and the shared-
memory race detector ThreadSanitizer to find RMA races.

A. MUST

MUST (Marmot Umpire Scalable Tool) [4] is an event-
based runtime correctness checking utility for MPI applica-
tions. It detects MPI programming mistakes such as wrong
parameters, resource leaks, deadlocks, type matching errors,
and overlaps in communication buffers. MUST instruments
MPI calls with PnMPI [10] and uses the communication and
tool infrastructure provided by the Generic Tools Infrastructure
(GTI) [11]. GTI is a scalable framework for event-based
parallel analysis tools. It can spawn additional tool processes
or threads along with the actual MPI application to offload
analysis computations. Analysis algorithms may run locally
in the application or on a separate tool thread or tool process.
The tool developer has to specify communication channels
between the application process and the tool infrastructure.
For that, different communication strategies (blocking or non-
blocking exchange of analysis data) can be used.

For our RMA race analysis, we use one tool thread per
application process in which we do all required analyses to
determine the concurrent regions.

B. ThreadSanitizer

ThreadSanitizer (TSan) [3] is a dynamic data race detector
for shared-memory programs using compile-time instrumen-
tation relying on LLVM. TSan instruments memory accesses,
memory allocation routines, and synchronization primitives
to analyze for data races at program runtime. To store the
current state of a memory location, each application memory
location is mapped to a corresponding shadow memory cell.
On every memory access, the state of a shadow memory cell is
updated according to a state machine and checked for a race.
The race detection itself relies on happened-before analysis
based on vector clocks. TSan tracks synchronization primitives
of libpthread and C++ threading natively. Through dynamic
annotations [12], TSan can be made aware of any kind of
thread synchronization by calling the functions HappensBefore
and HappensAfter at runtime. A pair of those two calls at
different threads establishes a happened-before relationship
between those threads.

In recent versions, TSan supports fibers [13] to capture
concurrency within a thread itself. Fibers can be dynamically
annotated with API calls during execution. This makes it
possible to create fibers as additional concurrent execution
units in TSan’s race detection model. In our RMA analysis,
we use the fiber API to annotate concurrent regions.

Application Thread A0

Application
. . .

MPI Put
Store X
. . .

PnMPI
MPI
Calls

Thread-
Sanitizer

Local Memory
Accesses

Race
Report

GTI

MPI
Library

Tool Thread T0

GTI

Vector Clock
Analysis

RMA Op
State Tracking

Concurrent Region
Analysis

R
em

ote
Tool

T
hreads

T
1 ,...,T

N
−

1
Exchange

Vector
Clocks

Exchange
RMA
Ops

Annotate
Concurrent Regions

Race
Report

Fig. 8. Analysis workflow of MUST-RMA showing the analysis components
for application thread A0 and tool thread T0.

We decided to rely on TSan instead of doing the actual
race analysis directly in MUST since TSan is a mature and
efficient tool for that. Further, since TSan already tracks thread
synchronization, an extension to races in hybrid models as
MPI+OpenMP in the future will be more straightforward.

C. Analysis Workflow

In the following, we assume that the application runs single-
threaded with N processes. After compiling the application
with TSan instrumentation, the actual analysis run can start:
MUST spawns a tool thread within each application process
that does all analyses and TSan annotations.

The on-the-fly analysis workflow for an RMA application is
depicted in Figure 8 for application thread A0 and tool thread
T0. During application execution, local memory accesses are
tracked and processed by TSan. The MPI calls are intercepted
by MUST via PnMPI and passed via GTI to the tool thread
T0. The tool thread itself uses two analysis modules, (1) the
vector clock module, which analyzes all MPI calls related
to process synchronization (hb−→) and (2) the RMA operation
state tracking, which analyzes all MPI RMA communication
and synchronization calls (co−→). The analysis data of process
synchronization and RMA operation consistency is exchanged
with the responsible remote tool threads. The tool threads
send the analysis data (vector clocks, RMA communication
and synchronization calls) in a non-blocking fashion (where
possible) via GTI to the destination tool threads. All tool
threads periodically poll for incoming analysis information,
so they will eventually receive the analysis data from other
tool threads and process it.

Based on the information of process synchronization and
RMA operation consistency, the concurrent region analysis
module derives the concurrent regions according to the race
detection model described in Section IV. When the tool thread
detects the end of an RMA operation’s concurrent region, its
memory access is annotated to TSan as concurrent memory
access in a fiber. TSan will check each annotated RMA
memory access for races with (1) local memory accesses and
(2) other annotated RMA memory accesses. In case of a race,
it outputs a race report. The race report shows a stack trace
with the source code locations of the two conflicting accesses.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

D. Concurrent Regions as Fibers

The tool thread annotates concurrent regions as fibers using
TSan’s annotation API. During application execution, every
MPI call that could be start of a concurrent region (RMA
calls and any MPI synchronization call) is annotated by calling
HappensBefore(sc). This instructs TSan to store the current
synchronization state with a given identifier sc and allows
later to roll back the synchronization state to that point in time.
When the tool thread detects the end of a concurrent region of
an RMA operation, it (1) switches in TSan to a new fiber and
(2) calls HappensAfter(sc) which sets the synchronization
state of the fiber as if it ran at the start of the concurrent region
with the identifier sc. Thus, TSan treats memory accesses
annotated within the fiber as if they were done immediately
at the start of the concurrent region. Then, the memory access
of the RMA operation is annotated to the fiber. If there is an
RMA race with other concurrent memory accesses, TSan will
detect it. After the memory access annotation, the concurrent
region is ended by switching back to the main thread. Thus,
upcoming recorded memory accesses will not be in conflict
with the accesses annotated in the concurrent region.

Fibers are dynamically created when they are needed to
annotate concurrent regions. The RMA analysis reuses fibers
to save resources: RMA operations from the same origin will
be annotated using the same fiber. The downside is that remote
races at a target due to multiple conflicting RMA operations
from the same origin cannot be detected by TSan as they will
be annotated to the same fiber. For that case, our RMA analysis
checks for conflicts between remote accesses from the same
origin directly in the concurrent region analysis.

VI. EVALUATION

We evaluated both the classification quality and the over-
head of MUST-RMA. The results are presented in this section.

A. Experiment Setup

We ran all measurements on the CLAIX18 [14] cluster,
which consists of 1,200 nodes connected via Intel Omni-Path.
Each node has 48 cores (two Intel Skylake Platinum 8160
processors) with SMT disabled and 192 GB of main memory.
The benchmarks were compiled and instrumented with the
Clang 12 compiler and run with Intel MPI 2018.

B. Classification Quality

To test the classification quality of MUST-RMA, we de-
veloped a microbenchmark suite consisting of small code
examples with and without races. The test cases cover all three
RMA synchronization modes (fences, PSCW, passive target)
and different combinations of races between RMA calls and
local memory accesses. In total, we analyzed 33 test cases
with local buffer races and remote races. Roughly half of the
test cases contains a race, while the other half does not. The
MPI Bugs Initiative (MBI) [15] provides 48 RMA race test
cases, where the local concurrency class covers local buffer
races, and the global concurrency class covers remote races.

TABLE II
CLASSIFICATION QUALITY BENCHMARK RESULTS

Test Case Class Total TP FP TN FN P R

Own Tests - Local Buffer Race 10 5 0 5 0 1.00 1.00
Own Tests - Remote Race 23 14 1 7 1 0.93 0.93

MBI - Local Concurrency 36 18 0 18 0 1.00 1.00
MBI - Global Concurrency 12 12 0 0 0 1.00 1.00

Table II shows the results of running all test cases with
MUST-RMA. We classify results as correct alerts (true pos-
itives, TP), false alerts (false positives, FP), error-free (true
negatives, TN), and omission (false negatives, FN). Per class
of test cases, we calculated the precision P = TP

TP+FP and
recall R = TP

TP+FN . The classification quality of MUST-RMA
is promising: It could classify all RMA test cases from MBI
correctly. In our own test suite, besides one FP and one FN, it
classified all other cases correctly, leading to a total precision
and recall of 0.95. For all correct alerts (TP), MUST-RMA
reported the correct source code location of the data race.

1) False Positives: The false alert (FP) in our test suite is
a limitation of the concurrent region approach as discussed
in Section IV-F: The failing test case uses three processes,
where two origin processes modify the same remote memory
location of another target process. The two origin processes,
however, synchronize themselves externally (without the target
being involved) via send/recv calls, so there is no conflict at
the target. Still, the target is not aware of that. Thus, MUST-
RMA falsely detects a race in this case. To avoid the false
alert, it would have to do further analyses on the vector clocks
of the origin processes. Other false alerts might occur in
happened-before analysis when a tool does not understand all
kinds of process synchronization (collectives, send/recv pairs).
MUST-RMA can track most MPI process synchronization
through its vector clock analysis. For a discussion on supported
synchronization patterns, we refer to [9].

2) False Negatives: As with every race detector using
happened-before analysis, MUST-RMA might miss races if a
non-deterministic interleaving of synchronization calls makes
the race unobservable. Thus, for multiple executions of the
same program, it might be that the race is observed and
reported in some runs, while in others it is missed. We included
such a test case with a race in our test suite that is missed (FN).

C. Overhead

We evaluated the overhead of MUST-RMA with the RMA
variants of the Stencil and Transpose kernels from the Parallel
Research Kernels suite [16]. The Stencil kernel implements a
5-point stencil operation on a 2D square grid and uses RMA
put calls with fence synchronization for the halo exchange.
The Transpose kernel transposes a square matrix where each
process is assigned a block of columns of the original matrix.
Each process transposes its assigned block of columns locally
and puts the required blocks to the other processes using
passive target synchronization with MPI Win lock all, and

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

48 96 192
0

5

10

15

20

Processes

Sl
ow

do
w

n
Stencil Kernel

48 96 192
0

2

4

6

8

Processes

Sl
ow

do
w

n

Transpose Kernel

Baseline ThreadSanitizer MUST-RMA

0

0.2

0.4

0.6

0.8

Ti
m

e
pe

r
It

er
at

io
n

[s
]

0

0.2

0.4

0.6

0.8

Ti
m

e
pe

r
It

er
at

io
n

[s
]

Time per Iteration [s]

Fig. 9. Slowdown of average iteration time for the Stencil and Transpose
kernel. 24 cores per node are used for the application. For the MUST-RMA
run, we used the remaining 24 spare cores per node for the tool threads.

MPI Win flush calls. Both kernels are memory-bound and
perform many RMA calls, so they are good candidates to
evaluate the efficiency of MUST-RMA in worst-case scenarios.

The kernels were executed in three variants: (1) baseline
without any instrumentation, (2) with TSan instrumentation
only, and (3) with MUST-RMA (TSan + MUST analysis). We
used 24 application processes per node with spread pinning.
In the runs with MUST-RMA, we used the spare 24 cores of
each node for the tool threads. The Stencil kernel was executed
with 400 iterations and a matrix dimension of 20,000, while
the Transpose kernel was executed with 400 iterations and a
matrix dimension of 15,360.

Figure 9 shows the slowdown of the average iteration time
compared to the baseline run for the ThreadSanitizer-only and
MUST-RMA variant. The run with TSan has a slowdown of
roughly 15x for the Stencil kernel and 4x for the Transpose
kernel. Since the Stencil kernel has to read for each matrix
element the neighboring elements, the higher TSan overhead
due to the higher number of memory accesses is expected.
Running with MUST-RMA increases the slowdown to 17x -
20x for the Stencil and 4x - 7x for the Transpose kernel. The
slowdown expectedly increases with the number of processes,
as (1) the total number of RMA calls of different processes
to be exchanged by MUST-RMA increases and (2) the size of
the vector clocks increases with the number of processes.

For a correctness checking tool, we believe that the overhead
of MUST-RMA is reasonable. In future extensions, the TSan
overhead can be significantly reduced by (1) performing static
analysis to only instrument memory accesses relevant for the
RMA race detection or (2) modifying TSan to ignore memory
accesses at runtime that are not part of window memory.

VII. RELATED WORK

Most of existing MPI correctness checking tools [4], [17]–
[19] focus on MPI two-sided communication only. MPI RMA
race detection has been the subject of research in a few
publications: The approach in [20] detects races on-the-fly
between RMA operations by managing the state of the RMA
window locations in a mirror window as shadow memory.
The approach can only detect races between RMA operations,
not races with local memory accesses. MC-Checker [7] is

a dynamic data race detector for MPI RMA programs. It
traverses post-mortem the DAG of recorded memory accesses
and synchronization events to detect the concurrent regions of
RMA operations. MC-CChecker [21] improves the scalability
of MC-Checker and reduces the number of false positives by
using encoded vector clocks for the happened-before analysis.
MC-Checker and MC-CChecker do post-mortem analyses,
whereas MUST-RMA detects races at runtime. The approach
in [22] performs an on-the-fly race analysis with binary search
trees. Similar to our approach, it uses tool threads to transmit
information about ongoing RMA calls and checks for over-
lapping memory accesses. The approach is limited to RMA
programs which open and close RMA epochs collectively,
i.e., all processes call Win lock/unlock all or Win fence
collectively. In our approach, we also consider fine-grained
epoch synchronization via exclusive locks, Win flush calls
and synchronization through MPI Send/Recv pairs.

Nasty-MPI [23] intercepts RMA communication calls on-
the-fly and intentionally delays them to force synchronization
errors that would not be observed in a usual execution. The
tool itself, however, does not detect synchronization errors.

VIII. CONCLUSION

In this paper, we presented new concepts to detect data races
in MPI RMA programs. Such data races can occur due to
wrong usage of MPI RMA synchronization calls. We defined
a race detection model that tracks MPI RMA operations’
happened-before and consistency relation to determine their
concurrent regions. Based on the race detection model, we
have developed MUST-RMA, an on-the-fly race detector for
MPI RMA programs combining the correctness checking tool
MUST and the shared-memory race detector ThreadSanitizer.
MUST-RMA shows a strong classification quality: It classifies
all RMA race test cases of the MPI Bugs Initiative correctly
and achieves in our own test suite a precision and recall of
0.95. The slowdown on a stencil and a matrix transpose kernel
is 3x to 20x for up to 192 processes, where a significant portion
is due to the memory tracing of ThreadSanitizer.

In future work, we will employ static analysis techniques
to only instrument the memory accesses with ThreadSani-
tizer that could conflict with RMA operations to reduce the
runtime overhead. This includes an evaluation of larger test
cases with real-world HPC applications. Further, MUST-RMA
provides only basic support for the detection of conflicts
due to the wrong alignment in atomic operations through
MPI Accumulate calls, which we plan to extend soon. Al-
though we tested only single-threaded MPI programs with
MUST-RMA, we believe that an extension to hybrid pro-
gramming models such as MPI+OpenMP is possible without
much effort. Further, the race detection model itself is not
limited to MPI RMA, so we are working on support of further
one-sided communication models, e.g., PGAS models like
OpenSHMEM, in future extensions.

The source code of MUST-RMA and evaluation results are
available at https://doi.org/10.5281/zenodo.7129346.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

REFERENCES

[1] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard Version 4.0.” http://mpi-forum.org/docs/mpi-4.0/mpi40-report.
pdf, 2021. [online; accessed 12-October-2022].

[2] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and
K. Underwood, “Remote Memory Access Programming in MPI-3,” ACM
Transactions on Parallel Computing, vol. 2, pp. 9:1–9:26, June 2015.

[3] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov, “Dy-
namic Race Detection with LLVM Compiler,” in Runtime Verification,
vol. 7186, pp. 110–114, Springer, 2012. Series Title: Lecture Notes in
Computer Science.

[4] T. Hilbrich, M. Schulz, B. R. Supinski, and M. S. Müller, “MUST: A
Scalable Approach to Runtime Error Detection in MPI Programs,” in
Proceedings of the 3rd International Workshop on Parallel Tools for
High Performance Computing, pp. 53–66, Springer, 2009.

[5] “OpenSHMEM: Application Programming Interface Version 1.5.” http://
openshmem.org/site/sites/default/site files/OpenSHMEM-1.5.pdf, 2020.
[online; accessed 12-October-2022].

[6] P. Balaji, W. Gropp, T. Hoefler, and R. Thakur, “Advanced
MPI Programming.” https://web.cels.anl.gov/∼thakur/sc16-mpi-tutorial/
slides.pdf. [online; accessed 12-October-2022].

[7] Z. Chen, J. Dinan, Z. Tang, P. Balaji, H. Zhong, J. Wei, T. Huang,
and F. Qin, “MC-Checker: Detecting Memory Consistency Errors in
MPI One-sided Applications,” in Proceedings of the 2014 International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’14, pp. 499–510, IEEE, 2014.

[8] R. Schwarz and F. Mattern, “Detecting causal relationships in distributed
computations: In search of the holy grail,” Distributed Computing, vol. 7,
pp. 149–174, Mar. 1994.

[9] S. Schwitanski, F. Tomski, J. Protze, C. Terboven, and M. S. Müller, “An
On-the-Fly Method to Exchange Vector Clocks in Distributed-Memory
Programs,” in 2022 International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 530–540, IEEE, 2022.

[10] M. Schulz and B. R. De Supinski, “PnMPI tools: A whole lot greater
than the sum of their parts,” in Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, SC ’07, pp. 30:1–30:10, ACM, 2007.

[11] T. Hilbrich, M. S. Müller, B. R. De Supinski, M. Schulz, and W. E.
Nagel, “GTI: A Generic Tools Infrastructure for Event-Based Tools in
Parallel Systems,” in Proceedings of the 26th International Parallel and
Distributed Processing Symposium, IPDPS ’12, pp. 1364–1375, IEEE,
2012.

[12] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race
Detection in Practice,” in Proceedings of the Workshop on Binary
Instrumentation and Applications, WBIA ’09, pp. 62–71, ACM, 2009.

[13] “Fiber support for thread sanitizer.” https://reviews.llvm.org/D54889.
[online; accessed 12-October-2022].

[14] “CLAIX18: RWTH Compute Cluster.” https://hpc.rwth-aachen.de/
claix18. [online; accessed 12-October-2022].

[15] M. Laurent, E. Saillard, and M. Quinson, “The MPI Bugs Initiative: a
Framework for MPI Verification Tools Evaluation,” in 2021 IEEE/ACM
5th International Workshop on Software Correctness for HPC Applica-
tions (Correctness), pp. 1–9, 11 2021.

[16] R. F. Van der Wijngaart and T. G. Mattson, “The Parallel Research Ker-
nels,” in 2014 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6, IEEE, 2014.

[17] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M. Kirby, “ISP:
a tool for model checking MPI programs,” ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 285–286, 2008.

[18] S. F. Siegel and T. K. Zirkel, “TASS: The Toolkit for Accurate Scientific
Software,” Mathematics in Computer Science, vol. 5, no. 4, pp. 395–426,
2011.

[19] “Intel Trace Analyzer and Collector.” https://software.intel.com/content/
www/us/en/develop/tools/oneapi/components/trace-analyzer.html. [on-
line; accessed 12-October-2022].

[20] M. Y. Park and S. H. Chung, “Detecting Race Conditions in One-
Sided Communication of MPI Programs,” in Proceedings of the 2009
8th IEEE/ACIS International Conference on Computer and Information
Science, ICIS ’09, pp. 867–872, IEEE, 2009.

[21] T.-D. Diep, K. Fürlinger, and N. Thoai, “MC-CChecker: A Clock-Based
Approach to Detect Memory Consistency Errors in MPI One-Sided
Applications,” in Proceedings of the 25th European MPI Users’ Group
Meeting, EuroMPI’18, ACM, 2018.

[22] T. C. Aitkaci, M. Sergent, E. Saillard, D. Barthou, and G. Papauré,
“Dynamic Data Race Detection for MPI-RMA Programs,” in EuroMPI
’21 - European MPI Users’ Group Meeting, Sept. 2021.

[23] R. Kowalewski and K. Fürlinger, Nasty-MPI: Debugging Synchroniza-
tion Errors in MPI-3 One-Sided Applications, pp. 51–62. Cham:
Springer, Aug. 2016.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

http://mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.5.pdf
https://web.cels.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf
https://web.cels.anl.gov/~thakur/sc16-mpi-tutorial/slides.pdf
https://reviews.llvm.org/D54889
https://hpc.rwth-aachen.de/claix18
https://hpc.rwth-aachen.de/claix18
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/trace-analyzer.html
https://doi.org/10.1109/Correctness56720.2022.00009

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

ARTIFACT DESCRIPTION

This artifact description explains how to reproduce the
classification quality and the overhead evaluation results. In
the following, we assume that $ROOT is the root folder of the
supplemental repository / unpacked files. The required source
code is available at https://doi.org/10.5281/zenodo.7129346.

A. Software Requirements

The following software packages are needed to reproduce
the results:

• Clang compiler (preferably in version 12.0.1)
• MPI library with support for at least MPI 3.0 (preferably

Intel MPI or MPICH)
• CMake in version 3.20 or newer
• libxml2 parser (libxml2-dev)
• Python 3

The classification quality benchmarks in addition need:
• LLVM lit in version 14.0.0 (available via PyPI)
• FileCheck binary (distributed with LLVM)

The overhead evaluation in addition needs:
• JUBE benchmarking environment in version 2.4.2 or

newer (http://www.fz-juelich.de/jsc/jube)
• Slurm scheduler to submit the batch scripts

B. Classification Quality Benchmarks

To simplify the reproduction of the classification quality
benchmarks, we provide a Dockerfile that provides the re-
quired software environment to build and run MUST-RMA
with the benchmarks. If instead a cluster environment is used,
the following Docker build and run steps can be skipped.

Build the docker image with tag must-rma, adjust permis-
sions for the must rma subfolder to match with the container
user, and run the produced docker image with the MUST
source code mounted as volume:

cd $ROOT
docker build docker -t must-rma
chown -R 1000:1000 ./must_rma
docker run --rm -it \

-v $(pwd)/must_rma:/must_rma must-rma /bin/bash

Change to the must rma directory. Install MUST-RMA by
using the provided install script build must.sh:

$ cd $ROOT/must_rma
$./build_must.sh

Build and installation path can be set within the script. In
the following, we assume that MUST-RMA was built in the
folder $BUILD and installed in $INSTALL.

Change into the $BUILD directory and run the tests:

$ cd $BUILD
$ lit -j 1 tests/OneSidedChecks/ | tee test_output.log

This runs all 81 test cases and outputs the results (number of
passed and failed tests). Passed tests are marked as PASS, failed
tests with FAIL or XFAIL. The number of workers (parameter

-j) can be increased, however spawning too many workers
might lead to failed test cases if there are not enough cores
available to run the tests.

To produce the result table (Table II), we provide a Python
script that parses the test output.log file. Change back to
the classification quality folder and pass the test output
log file to the script:

$ cd $ROOT/classification_quality
$ python3 generate_classification_quality_table.py \

$BUILD/test_output.log

To run tests on own applications / binaries, MUST-RMA
can be run with:

$ $INSTALL/bin/mustrun --must:distributed \
--must:tsan --must:rma \
-np <number of processes> <binary>

C. Overhead Evaluation

The overhead evaluation is specific to the CLAIX cluster,
so running the benchmarks in another environment will need
manual adaptations. We provide a JUBE configuration to make
reproducibility easier. Important parameter sets within the
JUBE configuration (prk rma.xml) to consider:

• prk kernel args pset: number of iterations and grid
size to be used in the kernels

• prk system pset: system configuration, e.g., number of
nodes to be used

After configuring all required parameters, the benchmarks
can be run with

$ cd $ROOT/overhead_measurement
$ jube run prk_rma.xml -t kernel_name

where kernel name can be stencil or transpose.
The JUBE configuration (1) builds MUST-RMA, (2) builds

the chosen kernel with and without TSan instrumentation, (3)
submits a Slurm job with the requested number of nodes that
runs the three different configurations (plain, tsan, must-rma).
After the Slurm jobs have finished, the results can be retrieved
with

$ cd $ROOT/overhead_measurement
$ jube result -a bench_run --id <id of JUBE run>

This prints out the results (average iteration time per second
per configuration) of Figure 9 as a table.

The results of the measurements presented in the paper are
available at $ROOT/overhead results.

Simon Schwitanski, Joachim Jenke, Felix Tomski, Christian Terboven, Matthias S. Müller:
On-the-Fly Data Race Detection for MPI RMA Programs with MUST.

2022 IEEE/ACM Sixth International Workshop on Software Correctness for HPC Applications (Correctness), IEEE, pp. 27-36
DOI: 10.1109/Correctness56720.2022.00009

http://www.fz-juelich.de/jsc/jube

	Introduction
	MPI Remote Memory Access
	Windows
	Communication Calls
	Synchronization Calls and Completion Semantics
	Fences
	Post-Start-Complete-Wait (PSCW)

	Memory Models

	Races in MPI RMA
	Local Buffer Races
	Remote Races
	Benign Races

	Race Detection Model
	Formal Semantics of MPI RMA
	Vector Clocks
	Identifying Concurrency of RMA Operations
	Concurrent Region of Local Buffer Accesses
	Concurrent Region of Remote Accesses
	Limitations

	Implementing a Race Detector
	MUST
	ThreadSanitizer
	Analysis Workflow
	Concurrent Regions as Fibers

	Evaluation
	Experiment Setup
	Classification Quality
	False Positives
	False Negatives

	Overhead

	Related Work
	Conclusion
	References
	Software Requirements
	Classification Quality Benchmarks
	Overhead Evaluation

