
Diese Arbeit wurde vorgelegt am
Lehrstuhl für Hochleistungsrechnen (Informatik 12), IT Center.

Evaluierung einer alternativen
Kostenfortpflanzung im

Delay-Kostenmodell von Scalasca

Evaluating an alternative cost-propagation in the
delay-cost model of Scalasca

Masterarbeit

Dominik Viehhauser
Matrikelnummer: 354322

Aachen, den 21. März 2023

Communicated by Prof. Matthias S. Müller

Erstgutachter: Prof. Dr. rer. nat. Matthias Müller (’)
Zweitgutachter: Prof. Dr. rer. nat. Felix Wolf (*)
Betreuer: Marc-André Hermanns, Dr. rer. nat. (’)

(’) Lehrstuhl für Hochleistungsrechnen, RWTH Aachen University
IT Center, RWTH Aachen University

(*) Lehrstuhl für Parallele Programmierung, TU Darmstadt

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften
entnommen sind, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder
ähnlicher Form noch nicht als Prüfungsarbeit eingereicht worden.

Aachen, den 21. März 2023

Kurzfassung
Die fortschreitende Entwicklung moderner HPC-Systeme erhöht den Bedarf an opti-
mierten Anwendungen, um den wissenschaftlichen Erkenntnisgewinn pro verbrauch-
ter Core-Stunde zu maximieren. Werkzeuge zur Leistungsanalyse ermöglichen es
Anwendungsprogrammierern, die Leistung und Ressourcennutzung zu untersuchen,
um Optimierungspotenziale aufzudecken. Es gibt eine Vielzahl von Werkzeugen, die
verschiedene Programmiermodelle unterstützen und unterschiedliche Ansätze für die
Analyse verfolgen. Die Scalasca Trace Tools sind eine Toolchain zur Leistungsanaly-
se, die Wartezustände identifiziert, die durch Kommunikations- und Synchronisati-
onsungleichgewichte in parallelen Anwendungen verursacht werden. Sie analysieren
Trace-Daten mit Hilfe eines Replay-basierten Post-Mortem-Trace-Analysators und
sind in der Lage, die Ursachen von Delays zu identifizieren. Diese Delay-Analyse
stützt sich auf ein Delay-Kostenmodell, dass die Verteilung der gemessenen Warte-
zeit vornimmt. In dieser Arbeit wurde ein alternatives Delay-Kostenmodell unter-
sucht, dass sich auf die Kostenfortpflanzung der Wartezeit fokussiert, und wurde mit
dem bisherigen Delay-Kostenmodell anhand mehrerer Anwendungen verglichen. Das
vorgeschlagene Modell wurde definiert, implementiert und die theoretischen Unter-
schiede zum derzeitigen Modell wurden untersucht. Die Auswertung ergab, dass das
Modell zwar keine neuen Ursachen aufdeckt, aber die Mehrdeutigkeit der Analyseer-
gebnisse durch eine stärkere Differenzierung zwischen verschiedenen Wartezuständen
potenziell verringert.

Stichwörter: HPC, MPI, OpenMP, Trace-basierte Performance Analyse, Delay
Analyse, Scalasca

v

Abstract
The ongoing development of modern HPC systems increases the need for optimized
applications in order to maximize the gained science per consumed core-hour. Per-
formance analysis tools enable application programmers to investigate performance
and resource usage helping to expose optimization potential. A variety of tools is
available, supporting different programming models and taking different approaches
on their analysis. The Scalasca Trace Tools are a performance analysis toolchain
that targets wait states caused by communication and synchronization imbalances
in parallel applications. They analyze event traces by using a replay-based post-
mortem trace analyzer and are capable of identifying root-causes of delays. This
delay analysis relies on a delay-cost model that performs the distribution of mea-
sured waiting time. This thesis examined an alternative delay-cost model focusing
on waiting time propagation and compared it to the previous delay-cost model us-
ing multiple applications. The proposed model was defined, implemented and the
theoretical capabilities were explored. The evaluation showed that while the model
did not uncover new root-causes, it potentially reduces the ambiguity of the analysis
results by providing a stronger differentiation between different wait states.

Keywords: HPC, MPI, OpenMP, Trace-based performance analysis, delay anal-
ysis, Scalasca

vii

Contents

List of Figures xi

List of Tables xiii

1. Introduction 1

2. Background 5
2.1. Parallel paradigms . 5

2.1.1. Message Passing Interface (MPI) 5
2.1.2. OpenMP . 6

2.2. Performance analysis . 6
2.2.1. Data collection . 7
2.2.2. Processing of measurement data 8
2.2.3. Analyzing collected data . 8

2.3. The Scalasca Trace Tools . 9
2.3.1. Definitions . 9
2.3.2. The parallel trace analyzer . 11
2.3.3. The current delay-cost model 14

2.4. Summary . 17

3. An alternative delay-cost model for Scalasca 19
3.1. Weaknesses of the current delay-cost model 19
3.2. The idea behind the alternative model 21
3.3. Deriving the model . 22

3.3.1. Formal definition of the alternative model 22
3.3.2. Proving the amount of distributed waiting time 25

3.4. Comparison with the current model 27
3.4.1. Case 1: wait𝑡 ≥ 𝛾rem

short . 27
3.4.2. Case 2: wait𝑡 < 𝛾rem

short . 29
3.5. Implementation and correctness checking of the alternative model . . 32

3.5.1. Correctness of calculations in the absence of propagated time . 33
3.5.2. Correct behavior in Case 1 . 33
3.5.3. Correct behavior in Case 2.1 35
3.5.4. Correct behavior in Case 2.2 36

3.6. Summary . 37

ix

Contents

4. Evaluation 39
4.1. NPB BT . 39

4.1.1. MPI only . 40
4.1.2. Hybrid . 42

4.2. Sweep3D . 45
4.3. SMG2000 . 48
4.4. TeaLeaf . 49
4.5. Summary . 51

5. Conclusion 53

A. Measurement data 55
A.1. Data used for calculation of the averaged reports 55

Bibliography 57

x

List of Figures

2.1. Examples for different wait state patterns. 11
2.2. The five replay steps for wait state and delay detection. 13
2.3. Timeline diagram visualizing the current delay-cost distribution. . . . 16

3.1. Timeline diagram from Figure 2.3 with annotated delays and wait-
state types. 20

3.2. Timeline diagram from Figure 3.1 adopted to the new model of dis-
tribution. 22

3.3. Timeline diagram for case 1. 28
3.4. Timeline diagram for case 2.1. 30
3.5. Timeline diagram for case 2.2. 31
3.6. Timeline diagram template for all MPI wait states. 33
3.7. Timeline diagrams of the test case for case 1. 34
3.8. Screenshots of the trace analysis in VAMPIR and Cube of the test

case for case 1. 35
3.9. Timeline diagrams of the test case for case 2.1. 36
3.10. Timeline diagrams of the test case for case 2.2. 36

4.1. Screenshot from the Cube-GUI for the BT benchmark. 40
4.2. Aggregated delay costs of both models for the BT benchmark. 41
4.3. Delay costs for both models for the BT benchmark. 41
4.4. Screenshot from the Cube-GUI comparing the means of the reference

model(left) with the alternative model(right) for the BT-MZ bench-
mark. 42

4.5. Delay costs of both models aggregated by location for the BT-MZ
benchmark. 43

4.6. Delay costs of both models aggregated by callpath for the BT-MZ
benchmark. 44

4.7. Delay costs of both models aggregated by location and sorted based
on the location order of the reference model. 44

4.8. Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for Sweep3D. 45

4.9. Delay cost of both models aggregated by rank for Sweep3D. 46
4.10. Delay costs of both models aggregated by callpath for Sweep3D. . . . 46
4.11. Delay costs for Sweep3D aggregated by rank. 47
4.12. Fractions of total delay costs for Sweep3D aggreagted by rank. 47

xi

List of Figures

4.13. Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for SMG2000. 48

4.14. Aggregated delay costs of both models for SMG2000. 49
4.15. Delay costs of both models aggregated by rank and sorted in descend-

ing order for SMG2000. 49
4.16. Screenshot from the Cube-GUI comparing the means of the reference

model(left) with the alternative model(right) for TeaLeaf. 50
4.17. Delay costs of both models for TeaLeaf. 50

xii

List of Tables
3.1. Comparison of the delay-cost calculation for the current and proposed

alternative delay-cost model for wait𝑡 ≥ 𝛾rem
short. 29

3.2. Comparison of the delay-cost calculation for the current and proposed
alternative delay-cost model for 𝛾rem

short = wait𝑡 + comp𝑡. 30
3.3. Comparison of the delay-cost calculation for the current and proposed

alternative delay-cost model for 𝛾rem
short < wait𝑡 + comp𝑡. 32

A.1. Total runtime and delay-costs for all measurements runs performed
on each benchmark. 55

A.2. Deviations of delay-costs from average for minimum and maximum
for each benchmark. 55

xiii

1. Introduction
With the first exascale system being on the Top500 list of supercomputers in June
2022 [4], a new era of computation has begun for High Performance Computing
(HPC). While exascale level hardware enables new kinds of scientific computations,
like the simulation of neutrinos in a higher dimensional space [38], it adds an addi-
tional layer of complexity to HPC. Even before the existence of exascale systems,
HPC platforms grew more diverse through the usage of different architectures. By
using both distributed and shared memory, applications can be parallelized more ef-
ficiently, while adding a complexity layer through the necessary communication and
synchronization. The Message Passing Interface (MPI) [25] represents the standard
for distributed memory parallelism by enabling inter-process communication and
synchronization. Open Multi-Processing (OpenMP) [12] on the other hand offers
the usage of shared memory by making use of multi-threading. It is also possible to
use both models together in a hybrid approach to enable even more parallelism for
suitable applications. In the last years, supercomputers used to integrate more and
more accelerator devices into the systems to provide the necessary computing power
for specialized task. These devices are accessed by programming models like the
Compute Unified Device Architecture (CUDA) [23] or the Open Computing Lan-
guage (OpenCL) [28]. While CUDA targets more towards general purpose GPUs,
OpenCL enables the use of FPGAs in the context of HPC [28]. This heterogeneity in
platform architectures makes it difficult to engineer optimized applications for those
systems. As the used hardware and software depends on the manufactures and use-
cases of HPC clusters and a variety of parallel programming models is available, it
is a challenge to provide applications that perform well on most systems. The high
degree of parallelism enables the computation of many different scientific problems,
but also introduces communication and synchronizations calls that scale with the
number of cores and nodes available in a system. This results in complex commu-
nication and synchronization patterns, that can impact the overall performance by
delaying processes and cause wait states that results in unproductive occupation of
hardware resources. This kind of performance degrading behavior has to be targeted
for optimization to enable higher performance of a HPC application, as a priority
target is to achieve more science per used core-hour.

In order to optimize HPC applications, performance analysis tools are used to mea-
sure, analyze and present performance data in text form or through visual repre-
sentations. They enable the detection of performance impacting factors like e.g.,
communication imbalances, wait states, or inefficient resource usage. Measurement
data is commonly either collected through sampling or instrumentation. Sampling

1

1. Introduction

uses recurring triggers like a timer, to gather measurement data at a certain point of
execution and is used in tools like HPCToolkit [5]. Which metrics can be measured
depends on the used tools and libraries. PAPI [26] is a library that provides access
to hardware performance counters that enable to record performance metrics like
e.g., energy consumption. Instrumentation uses additional tools like Extrae [27] or
Score-P [7] to inject special triggers into an applications source code to enable mea-
surements tied to the execution of events. In contrast to sampling this ensures that
all occurrences of an event type are captured and recordable. The collected data
then needs to be processed to provide insights about the performance behavior of an
application. Profiling uses the recorded data to provide a statistical overview about
a programs performance by summarizing the measurement data for certain metrics.
Tools that support profiling are e.g., IntelVTune [31], PerfExpert [11], TAU [33],
HPCToolkit, and Scalasca [17]. Another way for data processing is trace-based
analysis. Tracing accepts the overhead of capturing complete events to provide a
different perspective on the application’s behavior by recording the events occurring
during runtime and writing them into a trace file. Tracing retains the order of events
provided by timestamps and allows to examine the program behavior by reconstruct-
ing the execution based on the recorded events. Well-known tools using tracing are
e.g., VAMPIR [29], PARAVER [30], TAU, HPCToolkit and Scalasca. These tools
can be classified as on-line or post-mortem depending on when the data-processing
is performed. On-line tools provide live insights during an application’s runtime.
Periscope [18] is an on-line performance analysis tool, but has already been discon-
tinued for several years at the point of writing. Post-mortem analysis is performed
after the application terminated and is the base of most trace-based tools, as they
depend on the full event-trace before they can perform their analysis. Other note-
worthy tools are e.g., Gauge [13], which is used for the analysis of I/O performance
of parallel applications, and Patha [37] which targets big-data applications on HPC
systems and provides execution time and data dependency analysis, that are not
relevant for this thesis.

The Scalasca analysis toolset provides tools for performance analysis and diagnosis
in HPC applications [17]. It is able to identify communication and synchronization
imbalances and detects wait states as well as delays that impact performance and is
also able to calculate the critical path of an application. Scalasca aims for high scal-
ability by using a parallel replay of recorded trace-files. It currently supports serial,
MPI, OpenMP and hybrid executions, and the support for additional locations like
accelerators is planned for the future. Scalasca’s analyzer features a delay detection
algorithm that assigns waiting-time to wait states to determine candidates for root-
causes. These can then be targeted by a user to optimize the programs behavior. In
order to perform this root-cause analysis, a delay-cost model is used that was first
introduced by Boehme in [8]. The model takes direct and propagated waiting time
and distributes it onto the identified wait states to calculate the root-causes. This
model was later extended by Hermanns [20] to also be applicable to one-sided MPI
communication by providing a cost model that covers this type of wait states.

2

Scalasca’s delay analysis was successfully used in the past to optimize various HPC
applications [19]. As delays can also cause wait states indirectly through propagation
effects, waiting time is transported backwards in the timeline and assigned to the
causes. The current delay-cost model uses a proportional assignment of the waiting
time that depends on the length of process-local wait states and computations. With
the currently used model, it occurs that wait states are not always fully covered by
assigned waiting time due to the proportional distribution that is applied if excess
computation is measured in the local profiles. This may lead to an under represen-
tation of the propagation effects and can potentially provide misleading results by
highlighting intermediary operations that are only considered to be delays, because
they were caused by other wait states through propagation. In order to examine
whether a focus on propagated waiting time provides a more unambiguous view
upon an applications performance, this thesis proposes and evaluates an alternative
delay-cost model. The proposed model uses a different approach to distribute the
waiting time and prefers wait states during the distribution steps. Moving the cost
from intermediary communication or synchronization wait states more towards the
end of a delay chain, could result in a more precise determination of the root-causes
and therefore the possible impact on optimization potential. It will be evaluated if
this model provides new insights in contrast to the current model and if it could
be an adequate replacement for the current model, a meaningful extension or if it
provides no additional information about the root-causes or even fails to detect pre-
viously detected root causes.

This thesis will be structured as follows: Section 2 covers the required background
information about performance analysis and the basic functionality and workflow of
Scalasca. Section 3 will start by examining the potential weaknesses of the current
model and presents the idea of the alternative model. This section also covers the
formal definition of the proposed model, the theoretically expected changes during
calculation and the implementation into Scalasca. The previously made assump-
tions are then tested and evaluated by using multiple benchmarks on the CLAIX18
HPC cluster of the RWTH Aachen University in comparison to the current model
in Section 4. This thesis closes with a conclusion about the tested model and if it
should be integrated into the Scalasca toolset in the future in Section 5.

3

2. Background

2.1. Parallel paradigms

To be able to understand the wait-state patterns that can be detected during wait
state and delay analysis, it is necessary to be familiar with the standard concepts of
parallel programming that can cause these patterns.

2.1.1. Message Passing Interface (MPI)

The Message Passing Interface (MPI) [25], is a message passing standard used for
inter-process communication in HPC and frequently used for inter-node parallelism
in large-scale HPC systems. In the context of MPI, processes are ordered into
groups in which they are addressed by a unique identifier called a rank. These
groups can be part of one or more communicator objects which provide a distinct
communication context for the group members. On initialization, MPI creates one
default communicator which covers the group of all processes that were started
by a single job. This communicator can then be used to derive communicator
objects for subgroups. An MPI operation consists of four stages, Initialization,
Starting, Completion and Freeing. A blocking operation combines all four stages
in a single procedure call, while a non-blocking operation separates the first two
stages from the rest. During blocking procedures, a process may have to wait for a
specific remote action, such as a receive operation waiting for the corresponding send
operation to start. If these actions are not started simultaneously on the involved
processes, waiting time can occur. MPI supports three communication paradigms:
(1) point-to-point communication, (2) collective communication, and (3) one-sided
communication. The latter will be mentioned briefly but is not relevant for this
thesis, as the integration of their support in Scalasca is not yet complete.

Point-to-point communication

Point-to-point operations involve a pair of processes. These pairs consist of one
sender and one receiver and participate together in a message exchange. Depending
whether this exchange is performed in synchronous or asynchronous manor, waiting
time can occur if one process arrives earlier at the communication point than the
other.

5

2. Background

Collective communication

A collective operation is performed over a communicator object and involves all
processes in the associated group. The barrier is a synchronization construct that
ensures that all processes of the targeted group have reached a common point in the
execution before continuing. MPI offers different types of data exchange patterns
that fall into this category. These patterns can be classified according to the number
of sender and receiver processes: (1) 1×N, (2) N×1, and (3) N×N. In an 1×N
operation, one process acts as the sender, while all other processes take the role of
the receiver. An example for such an operation is the broadcast. It involves one
process that sends its data to all other processes of the used communicator. A similar
operation is the scatter, where one process divides its data among all processes. An
N×1 operation is defined analogously, but all process send a message to the same
process. The N×1 operations can be considered as the opposing operations to the
N×1 patterns. Examples are the reduce, which aggregates all data onto a process,
and the gather, which collects the data from all processes on a single process. An
N×N operation involves a complete message exchange between all participating
processes. The N×N patterns are mostly variants of the already mentioned patterns,
but involve all processes as sender and receiver. This includes operations like e.g.,
all-reduce, all-gather and all-scatter.

One-sided communication

A one-sided operation does not require an active communication partner and allows
operations like e.g., pushing a message to another process. The origin rank defines
all parameters of the communication and uses a remote memory buffer provided by
the target rank.

2.1.2. OpenMP
Open Multi-Processing (OpenMP) [12] targets parallelism on node-level by making
use of threading and shared-memory. It is an API that allows multi-threading of
applications by introducing compiler directives into the applications source code to
enable code generation for parallel code. It features parallel structures and commu-
nication over shared-memory. Therefore a process is divided into multiple threads
that share the resources allocated to the parent process. On large-scale HPC clus-
ters it is often used in combination with MPI for a hybrid model execution. In this
case MPI spawns multiple processes that in turn spawn multiple threads themselves,
allowing a more fine granular distribution of the workload.

2.2. Performance analysis
The process of performance analysis can be separated into different phases: (1) data
collection, (2) processing, and (3) analysis. Each phase can be realized via different

6

2.2. Performance analysis

techniques that differ in their capabilities and approaches.

2.2.1. Data collection
Before performance analysis can be conducted, measurement data has to be col-
lected. Depending on the amount of detail that is required and the available re-
sources, different approaches can be used. Sampling uses recurring triggers, e.g.,
probing every X milliseconds, to measure performance metrics in the application,
which provides a statistical overview of the events [5]. More frequent sampling pro-
vides more data points while potentially increasing the runtime or resource usage of
the analysis. In contrast to sampling, instrumentation uses triggers on the events
itself instead of time-based samples [5] and adds the possibility to record more de-
tailed traces. While the systematical error caused by sampling is influenced via
the sampling rate, tracing introduces overhead on each instrumented call. When
using instrumentation it is necessary to instrument the analyzed application before-
hand using specialized tools, shortly known as instrumentors. Examples are the
integrated instrumentor in the analysis toolkit TAU [33] and the stand-alone instru-
mentor Score-P [7]. The latter is used to generate traces for tools like Scalasca and
VAMPIR.

Score-P

Biersdorf et al. [7] developed Score-P as an instrumentor that that provides mea-
surement data compatible with a variety of tools, therefore reducing the number
of measurement runs needed when working with multiple tools. Score-P was de-
veloped to provide data compatible with Periscope [18], VAMPIR [29], TAU [33]
and Scalasca [17]. The instrumentor can be used for C/C++ and Fortran code
and provides performance metrics like execution time, communication metrics and
hardware performance counters [7]. It supports serial execution and parallel exe-
cution using MPI, OpenMP or a hybrid approach. The kind of instrumentation
performed depends on the used paradigms, but gets automatically detected when
the instrumentation process is invoked by prefixing the compiler and linker calls
with the Score-P instrumentor command. Instrumentation is possible on compiler
level, through special libraries or manually using predefined macros. To allow the
instrumentation of OpenMP code an integration of the Opari2 [7] library is included.
Score-P supports profiling and tracing and the output format of the data depends on
the targeted analysis tool. When used with Periscope, no data is explicitly stored,
as it is provided through a runtime interface which enables on-line analysis. For
post-mortem analysis, the file format depends on whether profiling or tracing mode
is enabled. The profiling mode will produce a profile in the CUBE4 format [32] that
can be examined with its report explorer. In tracing mode, Score-P will write the
recorded event data into an OTF2 trace file which is compatible with VAMPIR and
Scalasca.

7

2. Background

2.2.2. Processing of measurement data
Once data has been collected, it needs to be processed to enable analysis. The
data processing for performance analysis can be generally divided into profiling and
tracing. Profiling provides summarized information about an analyzed application
and is able to include various performance metrics. Libraries like PAPI [26] provide
access to hardware performance counters to record those metrics during application
runtime. In contrast to that, during tracing each individual measurement record
is saved to a so-called trace file that eventually provides a detailed chronological
record of the application behavior. As trace files are used to record temporal infor-
mation about occurred events, it is able to provide a more in-depth analysis of the
applications performance by being able to recreate the programs event history [14].

OTF 2

How the event data is represented in a trace file and later accessed during analysis
depends on the used trace format. The Open Trace Format 2 [14] was developed
by Eschweiler et al. to join the existing Open Trace Format [22] used by VAMPIR,
with the EPILOG [35] trace format used by Scalasca, to provide a trace format
that is usable by both tools. This allows a single measurement run to be used
for multiple analysis tools. Highly parallel applications use many processes and
threads, that all trigger events that will be recorded in the trace file, resulting in
large traces. To achieve scalability, the size of the trace file has to be manageable
to not heavily impact the analysis performance. Therefore the location local trace
data from locations like processes or threads is stored separately for each location.
To avoid storing redundant information that is identical for all locations, the file
structure aims to provide such information on a global level, resulting in less memory
usage of the local trace files. OTF2 employs an anchor file that is used to manage
the whole trace with stored meta data. The aforementioned information that is
identical among locations is stored in the global definition file. Definitions that
only apply to a single location are stored in the local definition file, which also
contains mapping data between local and global definitions. The trace data itself
is stored location-locally in the local trace file and contains all events recorded for
that location.

2.2.3. Analyzing collected data
Once performance data is collected, it can be analyzed to provide insights into the
measured application’s performance. The analysis can be classified by the time
it is performed. On-line analysis provides results during the application’s runtime
and uses data that has already been recorded and processed. This is employed
in tools like Periscope [18]. The second approach is called post-mortem analysis
and is performed after the measured application has completed its execution. This
assures that all data has been collected and enables more complex analysis types

8

2.3. The Scalasca Trace Tools

that require certain dependencies in the measured data. An example for this is the
detailed analysis of event traces for the effects of imbalances that can be propagated
through the execution, influencing operations at a later points in time. Examples
for performance analysis tools that employ post-mortem analysis are VAMPIR [29]
and Scalasca [17].

2.3. The Scalasca Trace Tools
The Scalasca Trace Tools form a scalable parallel performance analysis toolset for
wait state and delay analysis of parallel applications written in C++ [17]. It is
able to analyze C/C++ and Fortran applications supporting the MPI, OpenMP
or hybrid MPI+OpenMP paradigms besides serial execution. Scalasca performs
trace-profiling—a trace-based post-mortem analysis aggregating analysis results in
a performance profile—and supports various analysis targets, such as wait states,
delays or the critical path. Scalasca identifies wait states and writes them into
a CUBE profile that can be examined using the CubeGUI [24]. This thesis will
focus on the delay detection of Scalasca’s trace analyzer after a brief introduction
of Scalasca’s functionalities. Scalasca employs a replay-based post-mortem trace
analyzer which processes OTF2 trace files recorded from a previously instrumented
application run. As a post-mortem analyzer, the analysis is performed after the
runtime of the examined application, which allows the use of event trace records
to be used for in-depth analysis. The replay-based approach employs a parallel
analysis over the entire trace file replaying the synchronization and communication
operations that occurred during the application runtime. These operations are re-
executed using similar constructs to allow the wait-state analysis on the information
stored in the trace file.

2.3.1. Definitions
Before explaining the parallel analyzer itself, certain definitions need to be made.
In the scope of Scalasca, the analyzed target patterns are defined and categorized.

Wait states

In Scalasca, wait states are defined as the intervals in which a process experiences
waiting time [8]. The impact of a wait state is described by a numerical value
according to the waiting time. Furthermore, they can be classified according to
their cause by other processes or their position in a series of influencing operations.
The impact of a wait state is either direct or indirect. A direct wait state is directly
caused from excess computation on the direct communication partner for the waiting
communication or synchronization operation. A wait state is called indirect if it was
caused by another wait state and is therefore caused by propagation. This leads to
the classification of wait states according to their position in the execution. The

9

2. Background

last process in a series of influencing operations is defined as a terminating wait
state as it caused no additional wait states. All other wait states that caused a wait
state are defined as propagating wait states, causing further waiting time on another
processes.

Delay

In Scalasca, an activity which causes a late arrival of the process at a point of
communication or synchronization, is called a delay [8]. As a delay can cause in-
direct wait states, all operations that are influenced in some way, are from then
on considered to be on its so called delay-chain. To determine which delay is the
root cause of a delay-chain, Scalasca uses delay costs. The delay costs are used to
assign the impact on the caused wait states among the delays. It is divided into
short-term costs, which describe the proportion of caused direct wait states, and
long-term costs, which describe the proportion of caused indirect wait states. A
detailed explanation of the current delay-cost model follows later on.

Syncpoints and Synchronization Intervals

In order to identify delays, wait states and waiting time, Scalasca uses timestamps to
calculate whether an operation acts as delay, and therefore causes waiting time. Op-
erations where one process waits for another are considered as syncpoints [8]. During
the execution of highly parallel applications, many communication and synchroniza-
tion operations are executed across different sets of processes. This includes both
MPI point-to-point and collective operations as well as OpenMP synchronizations
like barriers. Each operation can introduce new waiting time for other processes
or threads that are involved in future synchronization with the affected processes.
As the event happening at a syncpoint involves more than one process, the late ar-
rival of one or more processes can cause waiting time for other involved processes or
threads, creating complex dependencies between different syncpoints. To quantize
the intervals where waiting time is caused, that can possibly interfere with future
computation, Scalasca operates on synchronization intervals. These intervals are de-
fined to cover all computation and communication that occurs between two directly
succeeding syncpoints that involve the same group of processes [8].

Wait-state patterns

In order to classify the occurred waiting time, several basic wait-state patterns are
defined. These patterns represent general patterns of synchronization that can oc-
cur during different communication operations. As Scalasca supports both MPI
and OpenMP, different patterns for both paradigms are defined [17]. Figure 2.1
shows timeline diagrams of some common wait-state patterns. A timeline diagram
consists of multiple processes along the y-axis with their computation over time-
units along the x-axis. A white semicircle denotes an enter event on that process,
while a black semicircle denotes an exit event. These represent events recorded in

10

2.3. The Scalasca Trace Tools

time

p
ro
ce
ss
es A

B

0 1 2 3

Send

Receive

Waiting time

(a) Late-Sender

time

p
ro
ce
ss
es A

B

0 1 2 3

Send

Receive

Waiting time

(b) Late-Receiver
time

p
ro
ce
ss
es A

B

C

0 1 2 3 4

All-to-all

All-to-all

All-to-all

Waiting time

(c) Wait-at-NxN

Figure 2.1.: Examples for different types of point-to-point and collective wait states
supported by Scalasca. Inspired by [17].

a trace, while the arrows denote the direction of communication that was recorded.
For point-to-point communication in MPI, the supported wait-state patterns are
Late-Sender Figure 2.1a and Late-Receiver Figure 2.1b. In case of the Late-Sender
pattern, process A enters its MPI-Receive operation on timestep 0 before the cor-
responding message is sent. The corresponding send operation from Process B is
sens on timestep 2. Therefore A has to wait two time units for the message, expe-
riencing two units of waiting time. Because the waiting time occurred due to the
sender of the message arriving late, this type of wait-state pattern is called Late-
Sender. The Late-Receiver depicted in Figure 2.1b is defined accordingly, but with
switched operations. For collective communication, Wait-at-Barrier, Early-Reduce,
Late-Broadcast and Wait-at-N×N are defined. The Wait-at-N×N pattern depicted
in Figure 2.1c is an example for a collective wait state and could be caused by oper-
ations like a MPI-All-to-all, where every process sends data to every other process.
For collective communication every process participating in the communication has
to perform the operation before it is complete. Therefore the process that arrives
last delays the completion. Depending on the specific operation executed, it either
impacts the root rank in 1×N or N×1 communication or all participating ranks in
N×N operations. In the latter case, the overall waiting time associated with the
pattern is the sum of waiting times occurring on all rank during this pattern. In
the example of Figure 2.1c this would result in A and B contributing two units of
waiting time each, resulting in a total of four time units being attributed to pro-
cess C that arrived last at the operation. Note, that patterns like Wait-at-N×N
can be caused by different collective operations like e.g., an MPI-All-reduce or an
MPI-All-gather. The pattern for the OpenMP barrier is similar to the pattern of
the MPI barrier where processes are substituted by threads accordingly. The sec-
ond supported OpenMP pattern are the thread-idleness costs which is classified as
a collective communication pattern.

2.3.2. The parallel trace analyzer
The “scalable optimization utility” or short SCOUT, is the parallel trace analyzer
that is part of Scalasca [39]. In its current state it is able to perform both the wait
state and delay detection and is also capable of calculating the critical path. As

11

2. Background

the core of this thesis is related to the delay detection, the critical path detection
is not covered in detail in this thesis but was also implemented by Boehme in [9]
alongside Scalasca’s current delay detection. The critical path of an application
is the longest path of execution without wait states [8]. Therefore optimizing the
critical path results in reducing the length of that path and therefore reducing the
overall runtime of the application. Scalasca’s critical path detection is performed
alongside with the delay detection and uses the previously identified syncpoints to
backtrack the critical path through the trace file.

PEARL

Besides a scalable trace format, it also requires a scalable interface for accessing
the trace data to be able to analyze large scale applications. The Event Analysis
and Recognition Library (EARL) is a C++ library that provides a serial interface
to a single trace file [34]. The PEARL library is a parallelized replacement by
Geimer et al. [15] of EARL. PEARL was developed to add scalability to the interface
by working on multiple local trace files instead of a single file. Divided in global
definitions and local traces, PEARL uses a similar structure to OTF2, which makes
them a suitable combination for the use in Scalasca.

The global definitions are accessed and processed by each process. Each local
trace is processed on a separate process, providing a similar execution structure
to the actual runtime of the analyzed application. PEARL also provides a certain
degree of timestamp correction for incoherences in event timestamps caused by un-
synchronized clocks across nodes, using linear interpolation when reading a local
trace file. For each executed trace, PEARL provides access to individual events and
their respective attributes. PEARL provides a 1:1 mapping of its classes to OTF2
records. That is, for each supported OTF2 record it defines its own C++ class
to represent it. These events can be coupled with callback functions that will be
executed when the respective event is processed during the analysis. These callback
functions allow to perform specific tasks for different events and are used to enable
the wait state and delay detection.

Parallel replay

When loading a trace file, each process of the analyzer is assigned to the trace file
that was recorded on a mapped process during the original applications runtime.
To be able to detect wait states and calculate delay-costs, data exchange between
the processes is required. SCOUT gathers the information it needs for the analysis
by replaying the communication operations using similar constructs. At any point
where communication is recorded during application measurement, the communica-
tion event is leveraged to exchange data during the analysis instead of the original
message sent by the application. This allows SCOUT to transfer any data and in-
formation that is needed during the analysis between the processes. The most basic
usage of these transfers are the exchanges of enter and exit timestamps of opera-

12

2.3. The Scalasca Trace Tools

Wait-state
detection
(late sender,
collectives)

(1)

Wait-state
detection

(late receiver)
Syncpoint
forwarding
(late sender)

(2)

Syncpoint
forwarding
(late receiver)

(3)

Delay-cost
calculation

(4)

Wait-state
classification

(5)

Figure 2.2.: The five replay steps for wait state and delay detection, including mul-
tiple forward (blue boxes) and backward (red boxes) replays. Modified
from [8].

tions. This allows to determine whether a process had to wait in the execution and
which type of wait state occurred. If the enter timestamp of a send operation lies
behind the enter timestamp of the corresponding receive operation, a Late-Sender
wait state occurred and the difference between both timestamps can be defined as
the time the receiving process spent waiting. In order to detect all of the mentioned
wait states and for the delay detection later on, SCOUT has to perform both for-
ward and backward replays of the trace file. In a backward replay the trace file is
analyzed from the end to the beginning while the roles of sender and receiver are
reversed for each syncpoint.

Figure Figure 2.2 shows those five steps. Blue boxes denote a forward replay
step, while red boxes denote backward replays. For each wait state it is necessary
to first detect the wait state itself as described before and then annotate all ranks
that participated in the operation with the ranks of the other participants. These
two steps have to be performed in opposite directions to prepare all processes to
compute or receive the necessary information. That is why the wait state detection
for Late-Sender and the collective wait states are performed in the first forward
replay in phase 1, while the corresponding syncpoint forwarding, which performs the
preparation, is performed in the next phase where the Late-Sender wait states are
processed during the backward replay in phase 2. Some wait-state patterns like the
Late-Receiver are only detectable in a backward replay and are therefore performed
in replay phase 2. In the case of a Late-Receiver wait state, the rank that caused
the waiting time performs the send operation. As data can only be exchanged in
the direction of the communication and the data of the victim has to be transferred
towards the cause, it can only be performed in a backward phase where the send
directions are reversed and allow that transfer. The third replay phase is then again
a forward replay for the corresponding syncpoint forwarding. The last two phases of
the analysis consist of a second backward and a third forward replay. These steps are
needed for the actual delay analysis as the caused waiting time is only measurable
after the delay occurred. To assign this costs to the causing delay, the information
about the wait state has to flow backward in time, making a backward replay most
suitable for this task. After the completed analysis and wait-state classification,
SCOUT writes a report in CUBE format that can then be examined in the report
explorer provided by the CubeGUI [32].

13

2. Background

2.3.3. The current delay-cost model
In order to find the root-causes of wait states, which are delays, the caused waiting
time has to be distributed among the processes and computational routines that
caused that waiting time. Scalasca’s delay analyzer uses a delay-cost model to
determine how the waiting time is distributed. The current model was introduced
by Boehme in [8]. The formulas used in this section use the notation that was later
introduced in the algorithmic description of the model in [9]. All calculations are
executed in the fourth replay phase of the analyzer during a backward replay. Due to
the backward direction, all sender and receiver relations are reversed while the trace
is processed from the latest timestep to the earliest. Therefore the calculation starts
at the latest terminal wait state and moves towards the root-cause of a callpath.
The calculations are performed on each local trace resulting in local results for
each syncpoint that are then exchanged through the corresponding communication
operations. The delay-cost calculation and distribution is described in the following
as published in [9]. At this point it will not be differentiated between MPI or
OpenMP syncpoints as the used formulas are equivalent and only differ in how they
are technically implemented inside the source code.

The model

For all syncpoints S the corresponding synchronization interval 𝐼𝑆 is determined
using the preceding syncpoint with the same ranks. A so called mini-profile 𝑝local

is calculated for each callpath c in the synchronization interval. It includes the
runtime of each computation that was performed. The formal definition of the
profile computation is provided in Equation (2.1).

𝑝local[𝑐] = runtimelocal(𝑐) − waitlocal(𝑐), ∀𝑐 ∈ 𝐼𝑆 (2.1)

The calculation of the delay costs is performed on the process that caused a
wait state. Therefore each rank that participated at a certain syncpoint sends its
previously calculated mini-profile to the causing process alongside with short and
long-term delay-costs. Short-term costs correspond to direct waiting time and exist
for every interval that experienced some waiting time. They are denoted as 𝛾short.
The long-term delay costs 𝛾long represent propagated waiting time caused by indirect
wait states. The causing rank receives the profile and the delay costs and stores them
in the form of 𝑋rem, where rem corresponds to the remote rank that sent the data.
E.g., 𝛾𝐴

short corresponds to the short-term costs received from rank A. Waiting time
can be either distributed onto computational routines or other wait states. Before
the costs can be calculated, it has to be determined how much excess computation
occurred for each routine. Therefore a difference profile Δ𝑝 is calculated as defined
in Equation (2.2), using the previously received mini-profile from the remote ranks
and the local profile of the current rank.

Δ𝑝[𝑐] = max(𝑝local[𝑐] − 𝑝remote[𝑐], 0), ∀𝑐 ∈ 𝐼𝑆 (2.2)

14

2.3. The Scalasca Trace Tools

A routine only appears in the difference profile, if the runtime on the causing
rank is higher than on the delayed rank. It is assumed that if the runtime is higher
on a delayed rank, the corresponding calculation on the delaying rank could not
have caused the waiting time and is therefore set to zero in the difference profile.
The current rank is now able to calculate and distribute the delay costs. The cost
model by Boehme uses a proportional assignment of the delay costs represented by a
scaling factor s, whose calculation is defined by Equation (2.3). The sum operations
on the profiles and wait states add up the entries for all callpaths and synchronzation
intervals.

𝑠 = 1
𝑆𝑢𝑚(Δ𝑝) + 𝑆𝑢𝑚(wait(𝐼𝑆)) (2.3)

This scaling factor distributes the delay costs onto computation and waiting time
proportionally to the amount of total computation and waiting time on the current
rank. The delay costs are divided into local short-term and local long-term costs
and the remaining delay costs are propagated further as propagated delay costs.
The local short-term costs are calculated according to Equation (2.4). The received
remote short-term costs are scaled using the scaling factor s and assigned to each
computational routine in the difference profile according to their contribution.

Del.short[𝑐] = 𝑠 · 𝛾rem
short · Δ𝑝[𝑐] (2.4)

The local long-term costs are calculated analogously(Equation (2.5)), but instead
distributes the costs that were propagated from another rank.

Del.long[𝑐] = 𝑠 · 𝛾rem
long · Δ𝑝[𝑐] (2.5)

Waiting time that was not assigned to a computation is assumed to be caused
by a wait state on another rank and is therefore propagated further and will be
distributed on another rank. Equation (2.6) covers this calculation as it distributes
the remaining short and long-term costs to the local wait state. This propagated
costs will be send to the next rank in the chain as long-term costs 𝛾rem

long.

𝛾long[𝑤] = 𝑠 · (𝛾rem
short + 𝛾rem

long) · wait(𝑤) (2.6)

This calculation will repeat on each propagating wait state until the beginning of
the trace file is reached. At the end of the analysis, every unit of waiting time is
assigned to some computation. As it is shown in [8] that the distributed costs equal
the overall waiting time, the proof is omitted in this thesis. The analysis provides the
information how much delay costs were assigned to each computation. The results
of the delay analysis have to be interpreted by the user as the resulting report only
shows how the costs were distributed and does not provide direct information what
behavior caused the wait states. The computational routine with the highest delay
cost, caused the largest amount of waiting time, either directly or indirectly, and
should be examined for optimization potential.

15

2. Background

Example

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7 8

γB
short = 2

γB
long = 0.67

pB = {f : 1, R1 : 1}

γC
short = 1

pC = {f : 2, g : 2}

R1 R2

R3

f g

f f

f f g

S3

S1

S2

∆p = {R2 : 1}
s = 1/(Sum(∆p) + wait(R2)) = 1/3

Del.short = s · γC
short · ∆p = {R2 : 0.33}

γlong[R2] = s · γC
short · wait(R2) = 0.67

∆p = {f : 1, g : 2}
s = 1/(Sum(∆p)) = 1/3

Del.short = s · γB
short · ∆p

= {f : 0.67, g : 1.33}
Del.long = s · γB

long · ∆p

= {f : 0.22, g : 0.44}

Synchronization interval (A,B)

Synchronization interval (B,C)

Figure 2.3.: Timeline diagram with 3 processes. Process B and C both experience
one late sender wait state that was caused by process A.

Figure 2.3 shows a timeline diagram with an example calculation on three pro-
cesses A, B and C using the current delay-cost model. Exchanged data is displayed
in dashed boxed, while the calculations are written between the two communication
partners. As the delay analysis follows the backward direction, the analysis starts
on the last receive operation 𝑅3 on C. The local profile of C is calculated according
to Equation (2.1) and covers two time units of execution time for routine f and two
time units for routine g. Together with the short-term costs 𝛾C

short = 1, as C waited
for one time unit, it is send to B along the reversed communication direction. The
dashed arrows indicate the direction of the data exchange during analysis, whereas
the solid arrows indicate the direction in which the communication was recorded. B
performs the delay-cost calculation for the synchronization interval (B,C) by first
calculating the difference profile from Equation (2.2). B and C both executed f for
two time units, so f will not be included in the difference profile. Therefore the only
operation appearing in the profile is 𝑅2. The scaling factor is calculated as 1

3(see
Equation (2.3)) and is then used to calculate the local short-term delay cost(see
Equation (2.4)) of Del.short = {𝑅2 : 0.33}. The remaining short-term cost are as-

16

2.4. Summary

signed to the wait state and therefore 𝛾long[𝑅2] = 0.67(Equation (2.6)) is propagated
to process A as the long-term cost of B, 𝛾B

long. The profile 𝑝𝐵, and the costs 𝛾B
short

and 𝛾B
long are send to A, which calculates the delay costs for the interval (A,B). As

the routine f was executed longer on A than on B, the difference profile includes
one remaining unit of execution time for f. As g was only executed on A is entire
computation time is included in the profile. A did not experience any waiting time,
which leads to the scaling factor being calculated just from the total computation
time of Δ𝑝. As no wait state exists on A, nothing will be propagated any further.
This leads to a final local short-term delay cost of 𝛾A

short = 2 and a local long-term
delay cost of 𝛾A

short = 0.66. While the total costs are preserved, rounding errors in
the floating point calculations lead to small deviations as seen for 𝛾A

short. At this
point the total waiting time of 3 units was distributed among the different delays.
Interpreting the results, computation f can be identified as the root-cause for the
wait states that occurred in this example.

2.4. Summary
Most HPC applications rely on certain programming models to enable efficient par-
allelism. Therefore, the two standards MPI and OpenMP were introduced to enable
inter-process and thread-based parallelism. This chapter provided an introduction
to performance analysis and explored the different techniques like, e.g., sampling/in-
strumentation, profiling/tracing and on-line/post-mortem analysis. It later focused
on the Scalasca Trace Tools and provided the applying definitions for wait states,
delays, wait-state patterns and points of synchronization. The parallel trace an-
alyzer uses a replay-based approach and provides a scalable analysis of trace files
for wait-state patterns and their root-causes. The underlying and currently used
delay-cost model was explained to provide a basis for the following proposal of an
alternative delay-cost model.

17

3. An alternative delay-cost model
for Scalasca

This chapter covers the alternative delay-cost model that is proposed in this thesis.
It will be explained why an alternative model could be beneficial for Scalasca’s delay
analysis by exposing the weakness of the current delay-cost model. Once it is clear
what can be improved, the idea of the alternative is explained, followed by a proof
of correctness and a theoretical overview about the calculation capabilities. The last
section of the chapter covers the implementation and the tests that were performed
to ensure a correct implementation of the model.

3.1. Weaknesses of the current delay-cost model
The first problem arises not from the model itself, but is created when using a
timeline diagram to illustrate the classification into direct and indirect wait states.
Figure 3.1 shows a slightly modified version of the timeline diagram from Figure 2.3,
including small changes of the computations on B and C. Instead of the delay-cost
calculation it is annotated with the delays and occurring wait-state types. According
to the definition of delays in Scalasca, delays equal intentional excess computation
that causes waiting time on another process. That causes the two units of compu-
tation of routine g on process A to be considered a delay. This delay causes a direct
wait state in the receive operation 𝑅2 on process B, where a late sender wait state
occurred. As a propagation effect the receive operation becomes a delay itself, de-
laying the receive operation on process C. The receive operation gets further delayed
by the execution of routine g. Relying purely on the visual representation suggests
that the wait state on C is only comprised of a direct wait state. When applying the
current delay-cost model on this example, the distribution on B results in locally
distributed costs of Delshort = {𝑅2 : 0.6, 𝑔 : 1.2} and propagated costs of 𝛾long = 1.2.
Therefore, 40% of the waiting time was distributed onto wait states, indicating that
the wait state on C was caused, at least to some extend, by propagation effects of
other wait states. While visual representations of mathematical models are often
susceptible to some deviation, the visualization used so far does completely disguise
the indirect wait state in situations similar to the chosen example. This creates
the necessity of adjusting the timeline-diagrams at some point. In the scope of this
thesis, only a proposition for an alternative visualization will be made, when intro-
ducing the idea of the alternative model, as it is not affected by the delay-cost model
itself.

19

3. An alternative delay-cost model for Scalasca

time
p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7 8

R1 R2

R3

f g

f g

f f

S3

S1

S2

Delay

Direct wait state Delay

Direct wait state

Figure 3.1.: Timeline diagram from Figure 2.3 with annotated delays and wait-state
types.

The current model contains two possible weaknesses. The first weakness refers
to the assumption of proportionally distributing the waiting time purely based on
the amount of local waiting time and excess computation. By always taking the
excess amount of computation into account while a local wait state is present, it is
implicitly assumed that the excess computation would occur even if the wait state
would not be present. Predicting the effects of propagation is not feasible in large-
scale applications due to the frequent use of synchronization constructs. Thus it
should be assumed that while a local wait state is present, the possibility exists
that the excess computation only acts as a delay, because the process experienced
waiting time on itself. It is still possible that the delay would occur anyway even
if the process did not wait in the same synchronization interval. As it depends
solely on the application, it is hard to judge if a delay is caused by propagation,
or is always present due to missing load-balancing. The current model made one
possible assumption about this behavior and settled with a proportional distribution
to achieve a trade-off between those cases. But the possibility exists, that preferring
wait states in delay-cost distribution provides a better highlighting for root-causes
of propagation chains. This is the core behavior that will be addressed by the
alternative model.

The second weakness regards the calculated difference profile. Assume that the
application depicted in Figure 3.1 involves operations on matrices. In order to par-
allelize the calculations, the computation is split into an operation f for the lower
triangular matrix and another operation g performing the calculations on the up-
per triangular matrix. Both functions perform their intended computations in the
same synchronization interval. While they are algorithmically executed at the same
time, they are recorded as different events, because they call different functions.
The difference profile used in the delay model is used to prevent computations to
be considered delays, if a routine with the same name was executed on the commu-
nication partner. In the mentioned scenario f and g do not fulfill this requirement
and are considered as two different tasks. This results in the distribution of local
delay-costs to g, whereas it should be treated equally to f from the algorithmic per-
spective. If the delay-cost model had considered them to be the same computation,
the only delay on B would have been the computational fraction of 𝑅2. In this

20

3.2. The idea behind the alternative model

case a higher value of 𝛾long = 2 would be assigned to the wait state indicating wait
state propagation. It has to be mentioned, that the analysis itself is not able to
determine whether multiple routines should be considered as equal when they use
different function signatures. Therefore, this problem is more related to the imple-
mentation of the analyzed application, than Scalasca’s delay-cost model, but may
be partly mitigated by the lower amount of distributed delay costs on intermediary
computations.

3.2. The idea behind the alternative model
The previous section covered the possible weaknesses of the current delay-cost model
using Figure 3.1. The proportional assignment of delay-costs only considers the dif-
ference profile of the computation and the local waiting time. This may not cover the
importance of propagated costs enough. In large-scale parallel applications commu-
nication between threads and processes plays an important role for the calculations.
Therefore, it is hard to provide optimal balancing of the workload per process and
thread which leads to wait states. It only takes a few dependent calculations for
a wait state to interfere heavily through propagation effects. Even with the use
of delay analysis approaches like the one used by Scalasca, it is not trivial to de-
tect which computations have the largest effect on the experienced waiting time.
Highlighting the root-cause of a propagation chain provides a promising approach
to eliminate most of the wait states caused by propagation. With this in mind,
the alternative model proposed in this thesis tries to shift the focus even more on
this root-causes to reduce the costs distributed onto intermediate delays caused by
propagation. Distributing the waiting time on fewer routines could provide a better
overview about the delays that caused the most wait states.

To achieve a stronger highlighting on delays that propagate a lot, wait states have
to be preferred during delay cost assignment, allowing differences in the calculated
profiles, as long as the waiting time was not directly caused by the computation.

Figure 3.2 revisits the example from Figure 3.1, but with some changes. It
is changed how indirect wait states can be detected visually through the visual
representation. Instead of annotating the wait states underneath a direct wait state
to be indirect, the effect of the direct wait state on B gets shifted to the start of
the wait state on C. This is visualized by the red arrows and results in marking
the first two time units of the wait state on C as indirect. The remaining waiting
time is considered to be caused by the routines 𝑅3 and g and is therefore marked
as direct. This way, the waiting time is first assigned to the wait state on B. Only
waiting time that exceeded the length of the local wait state is distributed among the
computations proportionally to their length in comparison to the sum of the local
computing time. If waiting time gets assigned to local routines, therefore depends
on the amount of waiting time that a process receives. As long as the wait states are
not completely satisfied, all waiting time is propagated, as the model assumes that

21

3. An alternative delay-cost model for Scalasca

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7 8

R1 R2

R3

f g

f g

f f

S3

S1

S2

Delay

Direct wait state
Delay

Indirect wait state
Direct wait state

Figure 3.2.: Timeline diagram from Figure 3.1 adopted to the new model of distri-
bution, classifying two thirds of the wait state on C as an indirect wait
state.

the local wait state was entirely caused by propagation effects. Only if the received
waiting time is larger than the local wait state, it can safely be assumed that some
fraction was indeed caused by direct effects.

3.3. Deriving the model
The idea from the previous section will now be transformed into mathematical for-
mulas that will cover the exact behavior of the proposed model. It will then be
checked for certain properties and will be compared with the current delay-cost
model by using examples that cover the possible occurring scenarios.

3.3.1. Formal definition of the alternative model
The definition starts with the introduction of two abbreviations covering the sums of
the difference profile and the total waiting time of a callpath. The sum of execution
times of all callpaths contained in the difference profile Δ𝑝 is written as computation
time comp𝑡, as defined in Equation (3.1).

comp𝑡 =
∑︁
𝑐∈𝐼𝑆

Δ𝑝[𝑐] (3.1)

Analogously, the total waiting time is written as wait𝑡 to provide better readability
of the following formulas, as defined in Equation (3.2).

wait𝑡 =
∑︁

𝑤∈𝐼𝑆

wait(𝑤) (3.2)

In Equation (3.3) the amount of waiting time that is assigned to the wait states
of a remote process is defined. If the received short-term waiting time 𝛾rem

short is less
or equal to the length of the local wait states wait𝑡, the complete short-term waiting

22

3.3. Deriving the model

time is assigned to the wait states. In the case that 𝛾rem
short is larger than wait𝑡, the

amount of assigned time equals the length of the wait states. This ensures that the
wait states are preferably covered before computation is considered.

𝛾rem
wait = min(wait𝑡, 𝛾rem

short) (3.3)

The amount of waiting time assigned to computation is defined in Equation (3.4).
It depends on whether or not the difference between the incoming short-term waiting
time 𝛾rem

short and the total length of all local wait states wait𝑡 is a positive value. In this
case the incoming waiting time exceeds the local wait states and waiting time has to
be assigned to computational routines. Otherwise the waiting time was completely
used for the local wait states.

𝛾rem
comp = max(0, 𝛾rem

short − wait𝑡) (3.4)

The current model uses a single scaling factor to perform the waiting time distri-
bution. In order to cover the special behavior in the alternative model, two separate
scaling factors have to be used to allow correct distribution. 𝑠comp is defined as the
inverse of comp𝑡 and is used to scale the waiting time assigned to the computation,
as defined in Equation (3.5).

𝑠comp = 1
comp𝑡

(3.5)

Analogously, 𝑠wait is defined to be used to scale the waiting time assigned to the
local wait states.

𝑠wait = 1
wait𝑡

(3.6)

The formula used to calculate the local short-term delay costs Delshort, Equa-
tion (3.7), differs to the current formula in the used scaling factor and receives a
different input of waiting time by using 𝛾rem

comp instead of 𝛾rem
short. The incoming short-

term waiting time 𝛾rem
comp is scaled according to the amount of waiting time that

exceeded the local wait states by 𝑠comp. Delshort is greater zero iff comp𝑡 is greater
zero, resulting in a distribution onto computation if there was enough waiting time
to be distributed on the wait states first.

Delshort[𝑐] = 𝛾rem
comp · 𝑠comp · Δ𝑝[𝑐] (3.7)

Lemma 1. For all callpaths 𝑐 in a synchronization interval the following holds:∑︀
𝑐∈𝐼𝑆

Delshort[𝑐] = 𝛾rem
comp

23

3. An alternative delay-cost model for Scalasca

Proof. ∑︁
𝑐∈𝐼𝑆

Delshort[𝑐] =
∑︁
𝑐∈𝐼𝑆

(𝛾rem
comp · 𝑠comp · Δ𝑝[𝑐])

= 𝛾rem
comp · 𝑠comp ·

∑︁
𝑐∈𝐼𝑆

Δ𝑝[𝑐]

Equation (3.1)= 𝛾rem
comp · 𝑠comp · comp𝑡

Equation (3.5)= 𝛾rem
comp · 1

comp𝑡

· comp𝑡

= 𝛾rem
comp

The calculation of the local long-term delay cost requires a different modification
(Equation (3.8)). While it uses the same scaling factor as the short-term costs, the
incoming value of 𝛾rem

long requires additional scaling. It is necessary to determine the
fraction of long-term costs that is assigned to computation and the fraction that
will be propagated. This is achieved by dividing the time assigned to computation
𝛾rem

comp by the total incoming short-term waiting time 𝛾rem
short.

Dellong[𝑐] = 𝛾rem
long ·

𝛾rem
comp

𝛾rem
short

· 𝑠comp · Δ𝑝[𝑐] (3.8)

Lemma 2. For all callpaths 𝑐 in a synchronization interval the following holds:∑︀
𝑐∈𝐼𝑆

Dellong[𝑐] = 𝛾rem
long · 𝛾rem

comp
𝛾rem

short

Proof.
∑︁
𝑐∈𝐼𝑆

Dellong[𝑐] =
∑︁
𝑐∈𝐼𝑆

(𝛾rem
long ·

𝛾rem
comp

𝛾rem
short

· 𝑠comp · Δ𝑝[𝑐])

= 𝛾rem
long ·

𝛾rem
comp

𝛾rem
short

· 𝑠comp ·
∑︁
𝑐∈𝐼𝑆

Δ𝑝[𝑐]

Equation (3.1)= 𝛾rem
long ·

𝛾rem
comp

𝛾rem
short

· 𝑠comp · comp𝑡

Equation (3.5)= 𝛾rem
long ·

𝛾rem
comp

𝛾rem
short

· 1
comp𝑡

· comp𝑡

= 𝛾rem
long ·

𝛾rem
comp

𝛾rem
short

The calculation of the propagated cost 𝛾long[𝑤] is defined in Equation (3.9) and is
performed for each wait state that occurred in the currently processed synchroniza-
tion interval. It consists of the fraction of short-term waiting time that was already
hold back to be assigned to the wait states by calculating 𝛾rem

wait and the remaining
long-term waiting time that was not already distributed in Equation (3.8). It is later
shown that 𝛾rem

comp + 𝛾rem
wait = 𝛾rem

short holds. This implies that by multiplying 𝛾rem
long with

𝛾rem
wait

𝛾rem
short

the remaining amount of long-term waiting time is considered for propagating

24

3.3. Deriving the model

cost calculation. The summed fractions need to be scaled using 𝑠wait to consider if
there was enough waiting time to completely satisfy the wait states. The scaled sum
is then multiplied with each wait state to finish the calculation of the propagated
delay-cost per wait state.

𝛾long[𝑤] = (𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

) · 𝑠wait · wait(𝑤) (3.9)

Lemma 3. For all callpaths 𝑐 in a synchronization interval holds: ∑︀
𝑤∈𝐼𝑆

𝛾long[𝑤] =
𝛾rem

wait + 𝛾rem
long · 𝛾rem

wait
𝛾rem

short

Proof.

∑︁
𝑤∈𝐼𝑆

𝛾long[𝑤] =
∑︁

𝑤∈𝐼𝑆

((𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

) · 𝑠wait · wait(𝑤))

= (𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

) · 𝑠wait ·
∑︁

𝑤∈𝐼𝑆

wait(𝑤)

Equation (3.2)= (𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

) · 𝑠wait · wait𝑡

Equation (3.6)= (𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

) · 1
wait𝑡

· wait𝑡

= 𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

3.3.2. Proving the amount of distributed waiting time

With the model being defined, it remains to show that the formulas defined above
result in the correct total amount of waiting time that gets distributed. Waiting time
is only considered distributed if it was assigned as local delay costs to computational
routine. Propagated waiting time is used to transfer waiting time to another process
to consider indirect causes of wait states and is not counted towards the distributed
time until it was used in a local delay-cost calculation. Therefore, it has to been
shown that despite the possibility that not the entire waiting time is distributed on
a certain rank, the total amount is still correct once all calculations are complete.

Lemma 4. The short-term costs received by a process is fully divided into a local
and propagation fraction, because 𝛾𝑟𝑒𝑚

𝑐𝑜𝑚𝑝 + 𝛾𝑟𝑒𝑚
𝑤𝑎𝑖𝑡 = 𝛾𝑟𝑒𝑚

𝑠ℎ𝑜𝑟𝑡 holds.

First it will be shown that Lemma 4 holds, by resolving the minimum and maxi-
mum operations.

25

3. An alternative delay-cost model for Scalasca

Proof.

𝛾rem
comp + 𝛾rem

wait = max(0, 𝛾rem
short − wait𝑡) + min(wait𝑡, 𝛾rem

short)
𝑖𝑓(𝛾rem

short > wait𝑡) :
⇔ max(0, 𝛾rem

short − wait𝑡) = 𝛾rem
short − wait𝑡

⇔ min(wait𝑡, 𝛾rem
short) = wait𝑡

⇒ 𝛾rem
short − wait𝑡 + wait𝑡 = 𝛾rem

short

𝑖𝑓(𝛾rem
short ≤ wait𝑡) :

⇔ max(0, 𝛾rem
short − wait𝑡) = 0

⇔ min(wait𝑡, 𝛾rem
short) = 𝛾rem

short

⇒ 0 + 𝛾rem
short = 𝛾rem

short

Theorem 5. All costs received in a step are fully distributed, as 𝛾rem
short + 𝛾rem

long =∑︀
𝑐∈𝐼𝑆

(Delshort[𝑐] + Dellong[𝑐]) + ∑︀
𝑤∈𝐼𝑆

𝛾long[𝑤] holds.

Lemma 1-4 combined lead to the prove of the theorem above, that the sum of
propagated and locally distributed waiting time equals the sum of received short
and long-term waiting time.

Proof.

=
∑︁
𝑐∈𝐼𝑆

Delshort[𝑐] +
∑︁
𝑐∈𝐼𝑆

Dellong[𝑐] +
∑︁

𝑤∈𝐼𝑆

𝛾long[𝑤]

Lemma 1= 𝛾rem
comp +

∑︁
𝑐∈𝐼𝑆

Dellong[𝑐] +
∑︁

𝑤∈𝐼𝑆

𝛾long[𝑤]

Lemma 2= 𝛾rem
comp + 𝛾rem

long ·
𝛾rem

comp

𝛾rem
short

+
∑︁

𝑤∈𝐼𝑆

𝛾long[𝑤]

Lemma 3= 𝛾rem
comp + 𝛾rem

long ·
𝛾rem

comp

𝛾rem
short

+ 𝛾rem
wait + 𝛾rem

long · 𝛾rem
wait

𝛾rem
short

= 𝛾rem
comp + 𝛾rem

wait + 𝛾rem
long · (

𝛾rem
comp

𝛾rem
short

+ 𝛾rem
wait

𝛾rem
short

)

= 𝛾rem
comp + 𝛾rem

wait + 𝛾rem
long · (

𝛾rem
comp + 𝛾rem

wait

𝛾rem
short

)

Lemma 4= 𝛾rem
short + 𝛾rem

long · (𝛾rem
short

𝛾rem
short

)

= 𝛾rem
short + 𝛾rem

long

It was shown that each distribution step preserves the amount of waiting time and
no costs are lost or additionally generated. It remains to show that the propagated
costs are assigned at some point, resulting in a finished distribution of the delay-
costs.

26

3.4. Comparison with the current model

Theorem 6. All costs are assigned, as 𝛾rem
short +𝛾rem

long = ∑︀
𝑐∈𝐼𝑆

(Delshort[𝑐]+Dellong[𝑐])+∑︀
𝑤∈𝐼𝑆

𝛾long[𝑤] holds for ∑︀
𝑤∈𝐼𝑆

𝛾longlocal [𝑤] = 0.

As there can not be any circulatory dependencies between wait states due to the
measured applications runtime being finite and the fact that all events occur in a
continuous manor, there exists a synchronization interval that contains a delay, but
not a local wait state. So, it has to be proven that this last step distributes all
incoming costs and does not declare anything as propagated cost.

Proof. As no local wait state exists, wait𝑡 = 0 holds, and therefore
𝛾rem

wait = min(𝑤𝑎𝑖𝑡𝑡, 𝛾rem
short) = min(0, 𝛾rem

short) = 0.
It also holds that 𝛾rem

short = ∑︀ Δ𝑝 = 𝑐𝑜𝑚𝑝𝑡, as all short-term costs are caused by
delays. This leads to 𝛾rem

comp = max(0, 𝛾rem
short − wait𝑡) = max(0, comp𝑡) = comp𝑡. The

only relevant scaling factor at this point is 𝑠comp = 1
comp𝑡

. This leads to the entire
short-term costs being distributed as local delay-costs, as 𝑠comp · 𝛾rem

comp = 1.
The long-term waiting time is entirely distributed as local delay-costs, because
𝛾rem

comp = 𝛾rem
short and therefore 𝛾rem

comp
𝛾rem

comp
= 1. Also no fraction of the long-term wait-

ing time is propagated, because 𝛾rem
wait = 0 and therefore 𝛾rem

wait
𝛾rem

comp
= 0.

This results in a complete distribution of the entire received waiting-time on the
earliest delaying process.

Since it is proven that each distribution step contains the total amount of received
costs and all propagated costs are distributed at some point, the proposed model
performs a complete distribution of the waiting time.

3.4. Comparison with the current model
Before looking into a comparison of real-world applications, it will be shown that
a theoretically difference exists between the calculated outcome of both models.
Equation (3.4) is critical to the behavior of the model. It provides two possible
outcomes. If the length of the local wait states wait𝑡 on a process is larger or equal
to the incoming waiting time 𝛾rem

short, nothing is attributed towards computation and
𝛾comp = 0 holds. In case that the total waiting time is smaller than the incoming
waiting time, the amount of waiting time assigned to computation equals the dif-
ference between the incoming short-term waiting time and the length of the wait
state, comp𝑡 − 𝛾rem

short.

3.4.1. Case 1: wait𝑡 ≥ 𝛾rem
short

Figure 3.3 illustrates the calculation for the first case. It depicts the same timeline
diagram as Figure 2.3, but uses the alternative model for the calculations. Starting
at the latest syncpoint, process C sends the direct waiting time from 𝑅3 via 𝛾C

short =
1 along with the mini-profile 𝑝𝐶 = {𝑓 : 2, 𝑔 : 2} to the delaying process B. The
calculated difference profile on B is unchanged, as no changes were made to its

27

3. An alternative delay-cost model for Scalasca

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7 8

γB
short = 2

γB
long = 1

pB = {f : 1, R1 : 1}

γC
short = 1

pC = {f : 2, g : 2}

R1 R2

R3

f g

f f

f f g

S3

S1

S2

∆p = {R2 : 1}
γC
comp = 0

γC
wait = 1

scomp = 1
swait = 0.5

γlong[R3] = 1

∆p = {f : 1, g : 2}
γB
comp = 2

γB
wait = 0

scomp = 1/3
swait = 0

Del.short = {f : 0.67, g : 1.33}
Del.long = {f : 0.33, g : 0.67}

Synchronization interval (A,B)

Synchronization interval (B,C)

Figure 3.3.: The short-term waiting time from C is less or equal to the length of the
wait state on B, preventing attribution to the local computation of B.

calculation. It then calculates the fractions for computation and wait states. As
wait𝑡 is larger than 𝛾C

short, Equation (3.4) evaluates to zero, leading to 𝛾C
comp = 0.

Equation (3.3) is then used to calculate 𝛾C
wait and evaluates to 𝛾C

wait = 1. As the
waiting time sent by process A is less than the length of the wait state on B, the
model assumes that the whole waiting time was caused by propagation. In the next
step, the process calculates the scaling factors. Because 𝑠comp is only used for the
calculation of local delay cost and 𝛾C

comp = 0, it is not required on B. The scaling
factor for the waiting time 𝑠wait is calculated as the inverse of the total waiting
time wait𝑡 according to Equation (3.8). 𝑅2 is delayed by two time units, therefore
the scaling factor is 𝑠wait = 0.5. The last step on B involves the calculation of
the propagated waiting time as defined in Equation (3.9). With B being the first
calculating process, no long-term waiting time exists at this point. The propagated
waiting time is therefore calculated from 𝛾C

wait = 1, the scaling factor 𝑠wait = 0.5, and
wait(𝑅3) = 2 which results in 𝛾long[𝑅3] = 1. Therefore, all incoming waiting time
is propagated further back to A. The communication at the syncpoint from 𝑅2 and
𝑆2 is used to retrieve the waiting time and mini-profile from B. A first calculates
𝛾B

comp = 2 and 𝛾B
wait = 0. The scaling factors are calculated to be 𝑠comp = 1

3 and
𝑠wait = 0, because there is no wait state on process A. Using Equation (3.7), the
local short-term delay cost are calculated to be Delshort = {𝑓 : 0.67, 𝑔 : 1.33} using
the previously calculated values. Analogously, Equation (3.8) is used to calculate
the local long-term delay cost of Dellong = {𝑓 : 0.33, 𝑔 : 0.67}.

For easier comparison of the results for both models, Table 3.1 shows the local and

28

3.4. Comparison with the current model

Process Current model Alternative model
A B A B

Delshort 𝑓 : 0.67, 𝑔 : 1.33 𝑅2 : 0.33 𝑓 : 0.67, 𝑔 : 1.33 0
Dellong 𝑓 : 0.22, 𝑔 : 0.44 0 𝑓 : 0.33, 𝑔 : 0.67 0
𝛾long 0 𝑅2 : 0.67 0 𝑅2 : 1

Table 3.1.: Comparison of the delay-cost calculation for the current and proposed
alternative delay-cost model for wait𝑡 ≥ 𝛾rem

short.

propagated waiting times on each process. As intended by the alternative model,
the propagation on B was increased in comparison to the current delay-cost model.
This resulted in an increase of the assigned local long-term delay cost on A and
removed all local delay cost from B. Therefore, B is no longer considered a cause
for wait states as the whole waiting-time was legitimately caused by the delay on
A.

3.4.2. Case 2: wait𝑡 < 𝛾rem
short

If a process receives waiting time 𝛾rem
short that exceeds the lengths of its own wait states

wait𝑡, the remaining portion will be distributed onto the computations contained in
the difference profile of the current synchronization interval. Therefore, two sub-
cases are possible. Either the waiting time received from a remote process 𝛾rem

short
equals the sum of the length of the local wait states and the local computation or it
is less then the sum. It is not possible that the waiting time received from a process
can exceed this sum, as the amount of waiting time a process experiences, correlates
with the length of the direct and indirect effects of the delaying process. This also
holds for collective communication where the assigned delay costs were received from
multiple communication partners, as each delayed process is considered separately.
The next two cases use the conditions of the example that was used to explain the
weaknesses in Section 3.1.

Case 2.1: 𝛾rem
short = wait𝑡 + comp𝑡

The first sub-case occurs, if the sum of length of local wait state wait𝑡 and the
computation time comp𝑡 is equal to the incoming short-term waiting time. To cover
this situation, Figure 3.4 shows the timeline diagram from Figure 3.1, but the
operations represented on B and C now use the same function signature. This
causes the computation to not be included in the difference profile as both processes
spend the same time in the computation. Process B receives 𝛾C

short = 3 from C at
the first syncpoint. It then computes 𝛾C

comp = 1 and 𝛾C
wait = 2 followed by the scaling

factors 𝑠comp = 1 and 𝑠wait = 0.5. This leads to the distribution of local short-term
delay cost of Delshort = {𝑓 : 1}. The remaining waiting time is propagated towards

29

3. An alternative delay-cost model for Scalasca

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7 8

γB
short = 2

γB
long = 2

pB = {f : 1, R1 : 1}

γC
short = 3

pC = {f : 2}

R1 R2

R3

f g

f f

f f

S3

S1

S2

∆p = {R2 : 1}
γC
comp = 1

γC
wait = 2

scomp = 1
swait = 0.5

Del.short = {R2 : 1}
γlong[R2] = 2

∆p = {f : 1, g : 2}
γB
comp = 2

γB
wait = 0

scomp = 1/3
swait = 0

Del.short = {f : 0.67, g : 1.33}
Del.long = {f : 0.67, g : 1.33}

Synchronization interval (A,B)

Synchronization interval (B,C)

Figure 3.4.: The short-term waiting time exceeds the length of the local wait state
on B, which leads to a propagation equal to the wait state and a distri-
bution of the remaining time unit to the computational routine.

process A with 𝛾long[𝑅2] = 2. A receives 𝛾B
short = 2 and 𝛾B

long = 2 as waiting time
from B through the syncpoint at 𝑆2. Using this values and the difference profile, A
is able to compute Delshort = {𝑓 : 0.67, 𝑔 : 1.33} and Dellong = {𝑓 : 0.67, 𝑔 : 1.33} as
the final delay cost distribution.

In order to allow a comparison between both models on this example, Table 3.2
contains the results for both models on this example. The calculations are performed
as defined in Section 2.3.3.

Process Current model Alternative model
A B A B

Delshort 𝑓 : 0.67, 𝑔 : 1.33 𝑅2 : 1 𝑓 : 0.67, 𝑔 : 1.33 𝑅2 : 1
Dellong 𝑓 : 0.67, 𝑔 : 1.33 0 𝑓 : 0.67, 𝑔 : 1.33 0
𝛾long 0 𝑅2 : 2 0 𝑅2 : 2

Table 3.2.: Comparison of the delay-cost calculation for the current and proposed
alternative delay-cost model for 𝛾rem

short = wait𝑡 + comp𝑡.

Comparing the results of the delay cost calculations shows that in this case both
models end up with the same results. This shows that it is theoretically possible to
get the same analysis results using any of the two models. Therefore, it could be

30

3.4. Comparison with the current model

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7 8

γB
short = 2

γB
long = 2

pB = {f : 1, R1 : 1}

γC
short = 3

pC = {f : 2}

R1 R2

R3

f g

f g

f f

S3

S1

S2

∆p = {R2 : 1, g : 2}
γC
comp = 1

γC
wait = 2

scomp = 1/3
swait = 0.5

Del.short = {f : 0.33, g : 0.67}
γlong[R3] = 2

∆p = {f : 1, g : 2}
γB
comp = 2

γB
wait = 0

scomp = 1/3
swait = 0

Del.short = {f : 0.67, g : 1.33}
Del.long = {f : 0.67, g : 1.33}

Synchronization interval (A,B)

Synchronization interval (B,C)

Figure 3.5.: The short-term waiting time exceeds the length of the local wait state
on B, but is not sufficient to cover all local routines, leading to a pro-
portional assignment for computations.

hard to predict whether the alternative model provides any new insights when used
on real-world applications, but as it requires exact equality even minor inaccuracies
lead to this case not being triggered making it very unlikely to occur in real-world
applications. This will be examined on several using several examples later on in
the evaluating section of this thesis.

Case 2.2: 𝛾rem
short < wait𝑡 + comp𝑡

If the short-term costs suffices to cover all local wait states, but the remaining
waiting time is less than there is computation, the amount of locally assigned delay-
cost differs between both models. Again, the example from Section 3.1 is used for
demonstration purposes and is depicted in Figure 3.5 in the adjusted form, alongside
the calculations using the alternative model.

The operations on B and C are again considered to be recognized as different
computations. The three units of waiting time that are send to B are first considered
for the local wait state. This leaves one unit to be distributed onto the computations.
Therefore, one third of the remaining waiting time is attributed to the computational
part of 𝑅2, while two thirds are assigned to g. As this distribution is done only
proportionally to the total local computation time and not proportional over the
sum of computation time and wait state like the current model, both models differ
in their results. Table 3.3 shows the results for this example using both models,
omitting the detailed calculation for briefness sake.

31

3. An alternative delay-cost model for Scalasca

Process Current model Alternative model
A B A B

Delshort 𝑓 : 0.67, 𝑔 : 1.33 𝑅2 : 0.6, 𝑔 : 1.2 𝑓 : 0.67, 𝑔 : 1.33 𝑓 : 0.33, 𝑔 : 0.67
Dellong 𝑓 : 0.4, 𝑔 : 0.8 0 𝑓 : 0.67, 𝑔 : 1.33 0
𝛾long 0 𝑅2 : 1.2 0 𝑅2 : 2

Table 3.3.: Comparison of the delay-cost calculation for the current and proposed
alternative delay-cost model for 𝛾rem

short < wait𝑡 + comp𝑡.

3.5. Implementation and correctness checking of the
alternative model

The proposed alternative model was implemented in Scalasca in the scope of this
thesis. The implementation is based on a development version based on Scalasca
2.6.0 (master@5a35cf70). All previously available functionalities where retained by
adjusting every currently supported wait state pattern to follow the new delay-cost
model. This also included minor adjustments in the calculations for the classification
of propagating/terminal and direct/indirect wait states as it is also based on the
delay-cost calculation.

To ensure that the measurement differences of both models used for evaluation are
only caused by the changed distribution of the waiting time and not by side effects,
several correctness checks were performed. The Scalasca testsuite is designed to be
used to check that the calculated results do not change when Scalasca is updated to
a newer version. This is done by using a reference solution and comparing it to the
results of several benchmark test cases. Because the goal of the proposed model is to
change the calculations, the testsuite reports test failures when comparing against
the reference version. By removing the test cases for the delay-cost metrics it was
ensured, that if an error is reported it is not directly related to the changes in the
delay cost. After this modification, no errors occurred indicating no side effects
caused by the new implementation.

To ensure correct behavior of the delay-cost calculation for all supported patterns,
several test cases were written and executed to check the behavior of the implemen-
tation. All test cases are written in C and where compiled using the Intel MPI C
compiler, prefixed with the Score-P instrumentor. Test cases were constructed for
all MPI point-to-point(late sender and late receiver) and collective patterns(barrier,
1×N, N×1, N×N), the OpenMP barrier and hybrid executions of MPI point-to-
point and collective patterns combined with an OpenMP barrier. Each pattern was
tested with four different cases: (1) minimal execution with 2 processes to test be-
havior in the absence of propagation, (2) incoming waiting time smaller than local
wait states(Case 1: Section 3.4.1), (3) incoming waiting time equal to sum of local
wait states and computations(Case 2.1: Section 3.4.2), and (4) incoming waiting

32

3.5. Implementation and correctness checking of the alternative model

time

p
ro
ce
ss
es A

B

0 1 2

X1

f X1

Synchronization interval (A,B)

Figure 3.6.: Timeline diagram of two process providing a template for all MPI wait
states, where X equals the corresponding operations.

time greater than local wait states, but smaller than sum of local wait states and
computation(Case 2.2: Section 3.4.2).

However, OpenMP could only be tested for (1) and the hybrid execution, due to
technical limitations of Scalasca.

3.5.1. Correctness of calculations in the absence of propagated
time

The first batch of tests is designed to check the behavior of the implementation,
when no waiting time is propagated. This should ensure that the calculations are
correct, even if no long-term costs are received, to show that the model still works
if only short-term costs are distributed.

Figure 3.6 shows a template for all tests that where build for this case, based
on a two process execution. The placeholder operations X are replaced by the
corresponding operations for a specific test, i.e., in the case of a late sender, X
on process A equals the send operation, while X on process B equals the receive
operation. The arrow depicts the communication direction for the point-to-point
patterns. In case of the collective operations no such direction exist, as the costs
are sent towards the process that arrived at last. All test cases where analyzed
using the implemented alternative delay-cost model and correctly assigned the one
unit of waiting time. This was the only non-hybrid test case, that could be test
for OpenMP, as propagation between barrier wait states is only possible in nested
OpenMP parallelism, which is not yet supported by Scalasca. For OpenMP A
in Figure 3.6 the computation f was placed inside a “single” directive, to ensure
execution on only on thread without introducing an implicit barrier. In total seven
test cases were constructed and executed for this case, two for the point-to-point
patterns, four for the collective patterns and one for OpenMP.

3.5.2. Correct behavior in Case 1
For this and the following cases, all tests were executed by a Scalasca build using
the current delay-cost model and a Scalasca build using the implementation of the
alternative delay-cost model. If in a synchronization interval the incoming short-
term waiting time is less than the length of the wait state, both models results

33

3. An alternative delay-cost model for Scalasca

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6

X1 X2

X3

f g

g

f

X3

X1

X2

Synchronization interval (A,B)

Synchronization interval (B,C)

(a) Template structure of the test cases for
case 1 using placeholder operations X.

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6

X2

X3

f g

f g

f f

Synchronization interval (A,B)

Synchronization interval (B,C)

(b) Template structure adjusted to compen-
sate the short completion times of com-
munication operations.

Figure 3.7.: Timeline diagrams of the test case for case 1.

in different distributions like it was explained for case 1 in Section 3.4.1. The
difficulty in writing the test cases arises from the assumption made by the timeline
diagram, that the communication and synchronization calls take at least one time
unit to complete. This deviates from behavior of the implemented test cases. If no
wait states occur, an operation like a MPI-Send only needs a few microseconds to
be completed. This leads to a difference in the delay costs between the execution
planned in a timeline diagram and the implemented test case. However, this behavior
can be mitigated by adding dummy operations that fill-up the time not spent by the
communication calls. Figure 3.7a shows the planned program to test the correctness
for case 1. Again these figures use placeholders 𝑋𝑖 for the operations, as all patterns
can be tested by just exchanging the used MPI operation. The wait state on C is
smaller than the wait state on B, representing the case where the incoming short-
term waiting time does not suffice to fill the local wait state completely. Figure 3.7b
provides a visualization of the adapted test case from Figure 3.7a to match the
desired behavior in the execution. All computation fractions of MPI operations
were replaced by adding or extending computation time equal to the time that is
expected to be required for the operations to be performed in theory.

To ensure correctness, it is tested that the theoretically expected values for both
models match the results of the execution. In this case, the current delay-cost model
will assign delay-costs to the computation g on B, while the alternative model is
expected to only assign delay-costs to the wait state, and therefore propagate it
further to A. The trace-file visualizer VAMPIR was used to ensure coherency be-
tween the programmed and recorded test case. Figure 3.8a shows a screenshot of
the trace recorded during the execution of the test case for the late sender pattern.
The overhead at the beginning can be ignored, as it is caused by the initialization
of MPI and is present on all processes. The MPI-Finalize at the end on process A
can also be ignored as it has no impact on the calculations. When comparing Fig-
ure 3.8a to the expected behavior from Figure 3.7b, the similarity is sufficient to
allow reasoning about the correctness. Figure 3.8b shows a screenshot from the

34

3.5. Implementation and correctness checking of the alternative model

(a) Trace file of the late sender test case for
case 1, visualized in VAMPIR.

(b) Analysis report in the Cube report ex-
plorer showing the delay-cost distribu-
tion for the late-sender test case for case
1.

Figure 3.8.: Screenshots of the trace analysis in VAMPIR and Cube of the test case
for case 1.

Cube report explorer that includes the assigned delay-costs for the late sender test
case. The structure of the analysis report is explained later in the evaluation chapter
in detail. For now, it is just used to grant a short insight in the cost distribution for
the test cases. The left side shows the distribution for the current model, showing
the splitting of the waiting time from the last receive operation into long and short-
term costs. The right side shows the distribution for the alternative model. In this
case the long-term costs are approximately one time unit proving the expected full
propagation of the waiting time from process C.

All other patterns were tested using the same methodology and provided the
expected results. The structure of the computations is slightly different in the hybrid
test cases, as these also involve OpenMP threads. In order to test the calculation
of long-term OpenMP barrier delay costs, it was necessary to use MPI operations
on the master thread through the funnelled communication pattern. This allows
MPI operations exclusively on the master thread of an OpenMP parallel region. In
order to cover all patterns, this case required a total of nine test cases. Two for
point-to-point, four for collective and three for the hybrid patterns.

3.5.3. Correct behavior in Case 2.1
The third batch of test cases cover case 2.1 from Section 3.4.2. The used methodol-
ogy is equal to the one used for case 1. In order to test the desired behavior of the
alternative model, a test cases, shown in Figure 3.9a was constructed that meets
the requirements for this case. This requires the direct waiting time experienced by
process C in the synchronization interval (B,C) to be equal to the sum of the length
of all local wait states on B and the computation included in the difference profile
in the same synchronization interval. As both processes performed computations in
form of routine f, the difference profile only includes two time units for that routine
on B. Again, the adjusted version of this program is presented in Figure 3.9b.

The amount of performed test cases is equal to the previous case. Using the
explained test case correctness could be proven for all cases except the hybrid variant
using the funnelled communication. In this case it was not possible to exactly align
the lengths of the routines, resulting in a small deviation between the expected
and observed behavior. As far as it can be judged, this is not caused by a faulty

35

3. An alternative delay-cost model for Scalasca

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7

X1 X2

X3

f g

f

f

X3

X1

X2

Synchronization interval (A,B)

Synchronization interval (B,C)

(a) Template structure of the test cases for
case 2.1 using placeholder operations X.

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7

X2

X3

f g

f f

f f

Synchronization interval (A,B)

Synchronization interval (B,C)

(b) Template structure adjusted to compen-
sate the short completion times of com-
munication operations.

Figure 3.9.: Timeline diagrams of the test case for case 2.1.

implementation of the alternative model, and is most likely to be caused by small
fluctuations in the execution on the difference threads. As this case requires exact
equality of the incoming waiting time and the amount that is distributed locally, it is
not possible to check this case as long as this fluctuations can not be compensated.
Since none of the benchmarks that are used in the evaluation of this thesis uses
funnelled communication, the lack of a proofed correctness for this test cases is not
critical.

3.5.4. Correct behavior in Case 2.2
The last batch of test cases concern case 2.2 as covered in Section 3.4.2. Performing
the same steps as for the previous two cases, this case involves the incoming waiting
time to be larger than the local wait state, but smaller than the sum of the local wait
states and the computations from the difference profile as shown in Figure 3.10a.
The adjusted version can be found in Figure 3.10b.

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7

X1 X2

X3

f g

g

f

X3

X1

X2

Synchronization interval (A,B)

Synchronization interval (B,C)

(a) Template structure of the test cases for
case 2.2 using placeholder operations X.

time

p
ro
ce
ss
es A

B

C

0 1 2 3 4 5 6 7

X2

X3

f g

f g

f f

Synchronization interval (A,B)

Synchronization interval (B,C)

(b) Template structure adjusted to compen-
sate the short completion times of com-
munication operations.

Figure 3.10.: Timeline diagrams of the test case for case 2.2.

For this case correctness could be observed for all patterns, including a total of
nine test cases covering this behavior.

36

3.6. Summary

3.6. Summary
At this point it was explained why an alternative delay-cost model may provide
new insights into Scalasca’s performance analysis. The weak-points of the current
model were considered in the design of the alternative model. The provided formulas
provide a full and sound model as shown the by given proofs. The alternative model
was implemented for evaluation purposes and provides correct results in synthetic
test cases. This leads to an examination of the alternative model’s potential using
real-world applications in the following evaluation.

37

4. Evaluation

The previous chapter covered the alternative model and provided an implementation
that was checked for correctness on synthetic test cases and made certain predictions
about its behavior. These are investigated in this chapter by using the model on real-
world applications and comparing it to the analysis results provided by the previous
delay-cost model. In the scope of this evaluation, the current delay-cost model is
referred to as the “reference” model, while the proposed model is referred to as the
“alternative” model. All experiments were performed on the c18m partition of the
CLAIX18 supercomputer of the RWTH Aachen University. The partition features
around 1250 nodes with two sockets per node, equipped with 24-core processors
resulting in a total of 48 cores per node, supported by 192 GB of RAM [1]. All runs
were either configured to fill up all cores of the used nodes, or run exclusively on the
given nodes if the benchmark configuration did not allow an usage of all cores per
node. A total of five different experiments were performed by using four different
benchmarks: (1) the BT benchmark from the NAS Parallel Benchmarks(NPB) [2]
in both a pure MPI and a hybrid MPI+OpenMP experiment, (2) Sweep3D [21],
(3) SMG2000 [16], and (4) TeaLeaf [3]

All of them were already analyzed by a version of Scalasca at some point [16] [36].
Each experiment used five trace files that were recorded by different executions of
the corresponding benchmark, using the same configuration and inputs. These trace
files were analyzed by both models and the resulting CUBE reports were aggregated
to compute the mean for all metrics for both models, resulting in one averaged report
per model and benchmark.

4.1. NPB BT

The NPB Block Tri-diagonal(BT) solver is one of the pseudo applications contained
in the NPB [2] and is written in Fortran. It solves three sets of uncoupled systems
of equations in three dimensions that result from a discretization of the Navier-
Stokes equations [6]. The chosen problem size “D” performs 250 time-steps and
was executed with 144 processes for the pure MPI version or 24 processes with 6
threads each for the hybrid version, which is known as the multi-zone variant of the
benchmark. This number of processes was chosen, because the benchmark requires
a quadratic number of processes and it completely fills up three nodes on CLAIX18.
All runs were executed and measured with NPB version 3.3.

39

4. Evaluation

4.1.1. MPI only
As a first step it will be investigated how the alternative model changes the analysis
results when being executed on the same traces.

Figure 4.1.: Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for the BT benchmark,
showing a transition from short-term to long-term costs for the delay
costs metric.

Figure 4.1 shows a screenshot from the Cube-GUI that shows the metric tree
for both analyses. The values on the left side show the reference model, while the
right side refers to the alternative model. The metrics can be divided into delay
costs, which are further split into point-to-point and collective patterns, and the
classifications into propagating/terminal wait states and direct/indirect wait states.
Comparing the delay costs of both models shows a general trend of a redistribution
of short-term cost to long-term cost. In total 1731.95 s of delay costs were measured
by the reference model and 1732.06 s by the alternative model. The slight deviation
in total delay costs is most likely caused by rounding errors due to floating-point
arithmetic. In case of the late-sender wait state, which caused a majority of the
total delay costs, approximately 30% of the short-term costs assigned by the refer-
ence model were instead considered long-term cost by the alternative model. Similar
behavior can be observed for the remaining patterns. This trend corresponds to the
expected behavior that was theoreticized in the previous chapter and reflects the
increased priority of intermediate wait states. Besides the delay costs, the classifi-
cation of wait states now also relies on the calculations from the alternative delay-
cost model. The alternative model classifies more wait states as propagating, which
matches the desire for a better mapping of costs for increased delay-cost propagation
and therefore reducing the amount of waiting time assigned to terminal wait states.
Furthermore, the increased propagation results in classifying more wait states as
indirect, which is caused by the higher priority of wait states.

40

4.1. NPB BT

To check whether the alternative distribution provides different insights into the
behavior of the benchmark, the next step involves comparing the distribution of the
delay costs among ranks and callpaths.

 0

 20

 40

 60

 80

 100

de
la

y
co

st
 [s

]

rank

Reference
Alternative

(a) Aggregated by rank.

 0

 50

 100

 150

 200

 250

 300

 350

de
la

y
co

st
 [s

]

callpath

Reference
Alternative

(b) Aggregated by callpath.

Figure 4.2.: Aggregated delay costs of both models for the BT benchmark show a
stronger highlighting of previous maxima.

Figure 4.2a shows the delay costs per rank. A red bar tip indicated that the
assigned cost was higher in the reference model, a blue bar shows higher cost in the
alternative model and a purple bar shows the value of the respective other model.
It is visible that the ranks with the highest delay cost in the reference model got
even more delay costs through the alternative model. At the same time nearly
all smaller ranks lost assigned cost, creating a larger gap between the largest and
smallest ranks. This leads to a stronger consolidation of costs on the maxima and
strengthens the statements of the reference model, as both models have the same
largest ranks, providing a clearer classification of the most probable root cause. A

 0

 20

 40

 60

 80

 100

de
la

y
co

st
 [s

]

rank

Reference
Alternative

(a) Sorted based on severity in the reference
model.

 0

 20

 40

 60

 80

 100

fr
ac

tio
n

of
 to

ta
l d

el
ay

 c
os

t [
%

]

callpath/rank

Reference (per rank)
Alternative (per rank)

Reference (per callpath)
Alternative (per callpath)

(b) Visualizing the fractions of total delay
costs sorted independently by severity
for each model.

Figure 4.3.: Aggregating the delay costs of both models by rank and sorting them
in descending order results in a stronger delimitation from the maxima
for the BT benchmark.

41

4. Evaluation

similar behavior can be seen in Figure 4.2b, where the delay costs are aggregated in
order of severity for each callpath that was measured in the trace. The delimitation
of ranks with high delay costs from ranks with lower delay costs is better visualized
in Figure 4.3a. The ranks are sorted by the amount of assigned delay costs in
the reference model, visualizing which ranks are promoted through the alternative
model. Wait states with low delay costs are most likely propagating and loose delay
cost in the alternative delay-cost model. Following the pareto principle, Figure 4.3b
visualizes how many ranks/callpaths are required to reach a certain fraction of the
total delay cost. Therefore each dataset was sorted independently by the amount of
delay costs. For both, ranks and callpaths, the alternative model shows a steeper
incline, corresponding to the stronger consolidation of costs on ranks starting a cost
propagation chain.

4.1.2. Hybrid
The hybrid version of the BT benchmark is officially known as the multi-zone (MZ)
version of the benchmark and allows the use of multiple parallel programming models
simultaneously. For this experiment the hybrid MPI+OpenMP execution uses the
same problem size as the MPI only experiment, but with an adjusted distribution
across processes and threads like mentioned earlier.

Figure 4.4.: Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for the BT-MZ bench-
mark.

This variant of the benchmark shows similar behavior as the MPI only variant,
showing an overall redistribution of delay-costs from short-term to long-term, as
shown in Figure 4.4. It is visible that the majority of costs is caused by OpenMP
patterns. As already mentioned in the section about the capabilities of the delay-cost
models, the idleness delay-costs are calculated separately and are not affected by the

42

4.1. NPB BT

changes. The small observable difference in long-term costs is most likely caused by
non-determinism in this calculation, as the threads add their costs in an arbitrary
order, making the sum susceptible to rounding errors. The changes in the wait-state
classification are also similar to the previously observed changes, with a most notably
reclassification of direct wait states, resulting in a larger gap between the amount
of direct and indirect waiting time. As this experiment includes both processes and
threads, they will be referred to as locations if no further differentiation is required.
In comparison to the pure MPI variant, the multi-zone experiment yields different
results in the delay-cost distribution across locations.

 0

 50

 100

 150

 200

de
la

y
co

st
 [s

]

process

Reference
Alternative

(a) All threads of the processes considered
separately. (Large peaks correspond to
main threads of a process).

 0

 50

 100

 150

 200

 250

 300

 350

 400

de
la

y
co

st
 [s

]

thread

Reference
Alternative

(b) All threads of a process are aggregated
together.

Figure 4.5.: Delay costs of both models aggregated by location show a significant
increase for one process for the BT-MZ benchmark.

While it is still visible in Figure 4.5a that both models assign the highest costs to
the same location and the alternative model assigns more costs to this location, the
other locations with high costs became smaller. An exception to this is the location
right beside the maximum, which experienced a significant boost in delay-costs.
The figure suggests that the multi-zone variant leads to an increase of delay-costs
through the alternative model on the threads with the smallest assigned costs in
the reference runs. The observed behavior is caused by a redistribution of the
computational load as an effect of the division of each process into six threads.
For a cleaner representation, all threads belonging to the same process are merged
together in Figure 4.5b. This representation changes the previously made statement,
that the threads with the smallest severity were assigned higher values by using the
alternative model. Therefore the following figures will continue to use the merged
threads.

Further difficulties in evaluating the analysis results for this benchmark arise when
viewing the delay-cost distribution across callpaths in Figure 4.6. Three callpaths
contain the majority of the delay-costs. These are the parallel regions for each
dimensional direction computed by the benchmark. The detailed structure is masked
by the parallel region and is not visible to Scalasca’s analyzer. This does not allow

43

4. Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800
de

la
y

co
st

 [s
]

callpath

Reference
Alternative

Figure 4.6.: Delay costs of both models aggregated by callpath for the BT-MZ bench-
mark.

further investigation of the cost distribution, and while the overall costs of these
regions are smaller when using the alternative model, it could still have the predicted
effects on the sub-routines.

 0

 50

 100

 150

 200

 250

 300

de
la

y
co

st
 [s

]

location

Reference
Alternative

Figure 4.7.: Delay costs of both models aggregated by location and sorted based on
the location order of the reference model.

Sorting the ranks by the amount of delay costs assigned by the reference model, as
depicted in Figure 4.7, shows a significant increase for the largest root-cause, creating
a larger difference between the top-two candidates. As the detailed structure of
the delay-costs per callpath can not be investigated, a comparison between the
distribution per location and per callpath is not suitable.

44

4.2. Sweep3D

4.2. Sweep3D
The Sweep3D benchmark solves a particle transport problem in three-dimensional
space [21]. The domain resembles a cube and the calculations causing a diagonal
wavefront passing through the domain. The benchmark, which is written in For-
tran77, uses only MPI for parallelization and was used in version 2.2b. The number
of processes is required to be a power of two and was therefore chosen as 256, because
the problem works best on quadratic domains. The problem size on the x and y
axis were set to 2048 to achieve a reasonable runtime and use most of the available
memory. As the chosen number of processes is not perfectly distributable across
full nodes on CLAIX18, it was ensured that the corresponding jobs were executed
on exclusive nodes to prevent influences by other applications running on the same
nodes.

Figure 4.8.: Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for Sweep3D.

The analysis results shown in Figure 4.8 provide a similar view onto the cost re-
distribution like the BT MPI variant, further confirming the expected behavior of
the implemented model.
The aggregated delay costs across ranks in Figure 4.9 also show similar patterns for
the alternative model by further increasing delay-costs on ranks that were already
among the top contributors in the analysis of the reference model. The exception
are two ranks on the right edge of the plot, that loose some notable costs. The
overview about cost distribution per callpath in Figure 4.10 includes one callpath
that contributes nearly the entire waiting time. This callpath received some addi-
tional cost in comparison to the reference model. The zoomed views of the bars
show, that the callpath with the second highest waiting time looses delay costs in
the alternative model, which mainly shifted towards the largest callpath.
Sorting the aggregated delay-costs by rank, as shown in Figure 4.11 underlines the

45

4. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160
de

la
y

co
st

 [s
]

rank

Reference
Alternative

Figure 4.9.: Delay cost of both models aggregated by rank for Sweep3D.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

de
la

y
co

st
 [s

]

callpath

Reference
Alternative

 7000
 7100
 7200
 7300
 7400
 7500

 40
 60
 80

 100
 120
 140

Figure 4.10.: Delay costs of both models aggregated by callpath for Sweep3D.

46

4.2. Sweep3D

 0

 20

 40

 60

 80

 100

 120

 140

 160
de

la
y

co
st

 [s
]

rank

Reference
Alternative

Figure 4.11.: Delay costs for Sweep3D of both models aggregated by rank and sorted
based on the severity in the reference model, indicating an increase on
the ranks with high delay costs.

 0

 20

 40

 60

 80

 100

fr
ac

tio
n

of
 to

ta
l d

el
ay

 c
os

t [
%

]

callpath/rank

Reference (per rank)
Alternative (per rank)

Reference (per callpath)
Alternative (per callpath)

 99
 99.2
 99.4
 99.6
 99.8
 100

Figure 4.12.: Visualizing the fractions of total delay costs aggregated by rank of both
models sorted by severity for each model.

47

4. Evaluation

previous statements, but reveals a bit more fluctuations on medium to large severities
(on the left), where a notable shift among some ranks can be observed. Examining
the pareto principle for Sweep3D in Figure 4.12 shows only minor differences for
the per rank plot in favor of the alternative model. The difference per callpath is
stronger, but lies primarily in the center, which argues against a notable increase in
significance for the largest callpath.

4.3. SMG2000
The SMG2000 benchmark is a parallel semicoarsening multigrid solver for linear
systems [10] and features a lot of MPI communication [16]. This makes it suit-
able to investigate the effects on delay-cost propagation, as lots of communication
potentially creates many synchronization point, which increase the potential for
propagation. It was executed with 96 MPI processes filling two nodes of CLAIX18.

Figure 4.13.: Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for SMG2000.

Figure 4.13 contains the analysis results for both models. The behavior is again
similar to the previously investigated MPI examples.
The delay-cost aggregation per rank in Figure 4.14a confirms the previous hypothesis
that delay costs shift from short-term to long-term costs. As SMG2000 features more
than 1800 different callpaths, Figure 4.14b only contains callpaths with more than
1 s delay-cost. This modification was made, as the majority of callpaths only caused
minor amounts of waiting time and the top contributors caused much more waiting
time. Two callpaths in particular caused large amounts of waiting time and get even
more costs assigned in the alternative delay-cost model.
The changes per rank are much weaker than the increases observed for the BT
benchmark, as seen in Figure 4.15a. Figure 4.15b supports that statement by

48

4.4. TeaLeaf

 0

 5

 10

 15

 20
de

la
y

co
st

 [s
]

rank

Reference
Alternative

(a) Aggregated by ranks.

 0

 10

 20

 30

 40

 50

 60

 70

de
la

y
co

st
 [s

]

callpath

Reference
Alternative

(b) Aggregated by callpath.

Figure 4.14.: Aggregated delay costs of both models for SMG2000.

 0

 5

 10

 15

 20

de
la

y
co

st
 [s

]

rank

Reference
Alternative

(a) Sorted based on the rank order of the
reference model.

 0

 20

 40

 60

 80

 100

fr
ac

tio
n

of
 to

ta
l d

el
ay

 c
os

t [
%

]

callpath/rank

Reference (per rank)
Alternative (per rank)

Reference (per callpath)
Alternative (per callpath)

(b) Visualizing the fractions of total de-
lay costs sorted independently for each
model.

Figure 4.15.: Delay costs of both models aggregated by rank and sorted in descend-
ing order for SMG2000.

showing an overlap of the lines for the aggregation per rank, while the sum for the
callpaths shows a steeper incline for the alternative model.

4.4. TeaLeaf
TeaLeaf is an application that solves the linear heat conduction equation on a spa-
tially decomposed regularly grid [3]. The benchmark computes two kernels and uses
a hybrid MPI+OpenMP model. The traces for this benchmark were recorded for
an execution on 96 cores, divided into 16 processes with 6 threads each.

The comparison between both the analyses of both models in Figure 4.16 shows
only minor changes that are insignificant compared to the OpenMP idleness costs.
As there are no notable wait states that are influenced by changes in the delay-cost
model, the analysis yields similar results for both models.
Also no changes in distribution across location (Figure 4.17a) or across callpath
(Figure 4.17b) can be observed. The visualization of delay costs across callpaths

49

4. Evaluation

Figure 4.16.: Screenshot from the Cube-GUI comparing the means of the reference
model(left) with the alternative model(right) for TeaLeaf.

 0

 2

 4

 6

 8

 10

 12

de
la

y
co

st
 [s

]

rank

Reference
Alternative

(a) Aggregated by location (threads merged
for same process).

 0

 10

 20

 30

 40

 50

 60

 70

 80

de
la

y
co

st
 [s

]

callpath

Reference
Alternative

(b) Aggregated by callpath (all paths with
costs <1 omitted).

Figure 4.17.: Delay costs of both models for TeaLeaf.

has been cut down to only include values larger or equal to one. This decision was
made, because values below that threshold would not be observable in the plot, as
the two callpaths with the highest delay costs have much higher values exceeding
the other callpaths by a factor from 10 to 100. leaving only the two kernels of the
benchmark as relevant computations. The analysis of OpenMP patterns in Scalasca
currently misses certain functionalities and therefore does not allow an in-depth
comparison of both models for applications that suffer mainly from OpenMP wait
states.

50

4.5. Summary

4.5. Summary
Comparing the analysis results of both model implementations yielded one general
trend. In the proposed model, delay-costs tend to propagate more, indicating that
for the investigated applications the waiting time present within a synchronization
interval was penalized less than it should have (not all waiting time capable of
propagating was actually allowed to propagate by the reference model). This also
led to an even stronger consolidation of delay costs to single contributors. Also a
reduction of delay costs could be observed for smaller wait states in the majority
of the conducted experiments, most probably indicating wait states that previously
got a higher amount of direct waiting time assigned, showing effects of the increases
propagation priority. In real-world scenarios this could help to void ambiguous
interpretations when multiple high delay cost wait states are present. Furthermore,
no miss-classifications by the alternative delay-cost model were observed, leaving no
obvious negative arguments against the alternative model. As both models showed
the same trends, it can be assumed that the delay-cost model that is currently used
in Scalasca is already working well for the identification of culprits and optimization
potential.

51

5. Conclusion
Identifying imbalances and their root-causes in the communication and synchroniza-
tion performed in parallel applications is the first step to optimize performance of
an application. Scalasca’s trace-based analyzer identifies common wait state pat-
terns and uses the measured waiting time to expose their root-causes. The current
delay-cost model used by the analyzer assigns cost to intermediate wait states and
computations only proportional to their length. This thesis explored, whether an
alternative delay-cost model that prioritizes cost assignment to intermediate wait
states within a synchronization interval over local delays, can provide new insights
into the analysis of applications that were already analyzed by Scalasca in the past.
This is done, such that local delays are only penalized when the aggregated interme-
diate waiting time alone is less than the waiting time experienced at the end of the
corresponding synchronization interval. Therefore the alternative model was defined
and implemented in Scalasca. Synthetic tests were used to verify the correctness of
the implementation, followed by an in-depth analysis of the results provided by the
alternative model. The overall results showed a stronger consolidation of delay costs
on wait states that were already the largest wait states, when analyzed by Scalasca’s
current model. This could provide a more unambiguous way for the user to identify
the most severe root-cause for the largest optimization potential. While the alterna-
tive implementation did not uncover additional root-causes it still managed to verify
the ones found by the current model, indicating that the current model already iden-
tified the main culprits even when it tends to spread costs across more individual
delays. This makes the alternative delay-cost model a suitable extension. However,
both models should be used together on more real-world applications to verify the
findings of this thesis for a wider range of applications. If the observed effects prove
to help users in the process of optimization, the proposed model could be considered
to replace the model used so far, as no downsides could be observed. Until this point
is reached, using both models side-by-side may help to fully identify the potential
of analyzed applications. Once Scalasca supports additional wait state patterns and
more types of locations like, e.g., GPUs, both models should be reevaluated to check
for differences that remain hidden with the current functionalities.

53

A. Measurement data

A.1. Data used for calculation of the averaged
reports

Run 1 2 3 4 5
Runtime[s] Delay cost[s] Runtime[s] Delay cost[s] Runtime[s] Delay cost[s] Runtime[s] Delay cost[s] Runtime[s] Delay cost[s]

BT (MPI) 31333 1735 31503 1670 31291 1514 31452 2109 31361 1630
BT-MZ 19906 3134 19733 2925 19629 2814 19661 2838 19637 2818
Sweep3D 41910 7557 41686 7563 41572 7573 41684 7537 41640 7448
SMG2000 3662 369 3626 382 3609 363 3644 417 3667 413
TeaLeaf 130 111 95 78 97 80 94 78 105 87

Table A.1.: Total runtime and delay-costs for all measurement runs performed on
each benchmark, that were later aggregated to provide averaged results,
rounded up to integers. No differentiation between the models is nesces-
sary, as the total delay-costs are not influenced by the models.

Avg.[s] Min[s] Max[s] Diff from
Min to Avg.[s]

Diff from
Min to Avg.[%]

Diff from
Avg. to Max[s]

Diff from
Avg. to Max[%]

BT (MPI) 1731.6 1514 2109 -217.6 -13 377.4 22
BT-MZ 2905.6 2814 3134 -91.6 -3 228.4 8
Sweep3D 7535.6 7448 7573 -87.6 -1 37.4 0.5
SMG2000 388.8 363 417 -74.2 -19 28.2 8
TeaLeaf 86.8 78 111 -8.5 -10 24.5 28

Table A.2.: Deviations of the minimum and maximum delay-cost values from the
averaged reports for all performed benchmark runs. Values for min and
max are rounded to integers. No differentiation between the models is
nescessary, as the total delay-costs are not influenced by the models.

55

Bibliography
[1] Claix18 hardware. https://help.itc.rwth-aachen.de/en/service/

rhr4fjjutttf/article/e018f684c5624ae6b9bf7f0994d399f2/. Accessed:
2023-02-14.

[2] NAS parallel benchmarks. https://www.nas.nasa.gov/software/npb.html.
Accessed: 2023-02-14.

[3] Tealeaf. https://uk-mac.github.io/TeaLeaf/. Accessed: 2023-02-14.

[4] Top 500 list of supercomputers. https://top500.org. Accessed: 2022-11-21.

[5] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized
parallel programs. Concurrency and Computation: Practice and Experience,
22(6):685–701, 2010.

[6] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and M. Yarrow.
The NAS parallel benchmarks 2.0. Technical report, Technical Report NAS-
95-020, NASA Ames Research Center, 1995.

[7] S. Biersdorf, C. Bischof, K. Diethelm, D. Eschweiler, M. Gerndt, A. Knüpfer,
D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, et al. Score-P: A unified
performance measurement system for petascale applications. In Competence in
High Performance Computing 2010, pages 85–97. Springer, 2011.

[8] D. Böhme. Characterizing Load and Communication Imbalance in Parallel
Applications, volume 23. Forschungszentrum Jülich, 2014.

[9] D. Böhme, M. Geimer, L. Arnold, F. Voigtlaender, and F. Wolf. Identifying the
root causes of wait states in large-scale parallel applications. ACM Transactions
on Parallel Computing (TOPC), 3(2):1–24, 2016.

[10] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid
on distributed memory machines. SIAM Journal on Scientific Computing,
21(5):1823–1834, 2000.

[11] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne. Perfexpert: An easy-to-use performance diagnosis tool for hpc
applications. In SC’10: Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
pages 1–11. IEEE, 2010.

57

https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/article/e018f684c5624ae6b9bf7f0994d399f2/
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/article/e018f684c5624ae6b9bf7f0994d399f2/
https://www.nas.nasa.gov/software/npb.html
https://uk-mac.github.io/TeaLeaf/
https://top500.org

Bibliography

[12] L. Dagum and R. Menon. OpenMP: An industry standard API for shared-
memory programming. IEEE computational science and engineering, 5(1):46–
55, 1998.

[13] E. Del Rosario, M. Currier, M. Isakov, S. Madireddy, P. Balaprakash, P. Carns,
R. B. Ross, K. Harms, S. Snyder, and M. A. Kinsy. Gauge: An interactive
data-driven visualization tool for HPC application I/O performance analy-
sis. In 2020 IEEE/ACM Fifth International Parallel Data Systems Workshop
(PDSW), pages 15–21. IEEE, 2020.

[14] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf.
Open trace format 2: The next generation of scalable trace formats and sup-
port libraries. In Applications, Tools and Techniques on the Road to Exascale
Computing, pages 481–490. IOS Press, 2012.

[15] M. Geimer, F. Wolf, A. Knüpfer, B. Mohr, and B. J. Wylie. A parallel trace-
data interface for scalable performance analysis. In International Workshop on
Applied Parallel Computing, pages 398–408. Springer, 2006.

[16] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr.
The Scalasca performance toolset architecture. Concurrency and computation:
Practice and experience, 22(6):702–719, 2010.

[17] M. Geimer, F. Wolf, B. J. Wylie, and B. Mohr. A scalable tool architecture for
diagnosing wait states in massively parallel applications. Parallel Computing,
35(7):375–388, 2009.

[18] M. Gerndt, K. Fürlinger, and E. Kereku. Periscope: Advanced Techniques for
Performance Analysis. In ParCo, pages 15–26, 2005.

[19] M. Harlacher, A. Calotoiu, J. Dennis, and F. Wolf. Analysing the scalability of
climate codes using new features of scalasca. In Proc. of the John von Neumann
Institute for Computing (NIC) Symposium, pages 343–352, 2016.

[20] M.-A. Hermanns. Understanding the Formation of Wait States in One-Sided
Communication. PhD thesis, Dissertation, RWTH Aachen University, 2017,
2018.

[21] A. Hoisie, O. Lubeck, and H. Wasserman. Performance analysis of wavefront
algorithms on very-large scale distributed systems. In Workshop on Wide Area
Networks and High Performance Computing, pages 171–187. Springer, 2007.

[22] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel. Introducing the
open trace format (OTF). In Computational Science–ICCS 2006: 6th Inter-
national Conference, Reading, UK, May 28-31, 2006. Proceedings, Part II 6,
pages 526–533. Springer, 2006.

58

Bibliography

[23] D. Luebke. CUDA: Scalable parallel programming for high-performance sci-
entific computing. In 2008 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 836–838. IEEE, 2008.

[24] G. Mao, D. Böhme, M.-A. Hermanns, M. Geimer, D. Lorenz, and F. Wolf.
Catching idlers with ease: A lightweight wait-state profiler for MPI programs.
In Proceedings of the 21st European MPI Users’ Group Meeting, pages 103–108,
2014.

[25] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.0, June 2021.

[26] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface to
hardware performance counters. In Proceedings of the Department of Defense
HPCMP Users Group Conference, volume 710. Citeseer, 1999.

[27] A. Munera, S. Royuela, G. Llort, E. Mercadal, F. Wartel, and E. Quiñones. Ex-
periences on the characterization of parallel applications in embedded systems
with extrae/paraver. In 49th International Conference on Parallel Processing-
ICPP, pages 1–11, 2020.

[28] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno. Efficient FPGA imple-
mentation of OpenCL high-performance computing applications via high-level
synthesis. IEEE access : practical innovations, open solutions, 5:2747–2762,
2017.

[29] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAM-
PIR: Visualization and analysis of MPI resources. 1996.

[30] V. Pillet, J. Labarta, T. Cortes, and S. Girona. Paraver: A tool to visualize and
analyze parallel code. In Proceedings of WoTUG-18: Transputer and Occam
Developments, volume 44, pages 17–31. Citeseer, 1995.

[31] J. Reinders. VTune Performance Analyzer Essentials, volume 9. Intel Press
Santa Clara, 2005.

[32] P. Saviankou, M. Knobloch, A. Visser, and B. Mohr. Cube v4: From perfor-
mance report explorer to performance analysis tool. Procedia Computer Science,
51:1343–1352, June 2015.

[33] S. S. Shende and A. D. Malony. The TAU parallel performance system. The
International Journal of High Performance Computing Applications, 20(2):287–
311, 2006.

[34] F. Wolf and B. Mohr. EARL—A programmable and extensible toolkit for ana-
lyzing event traces of message passing programs. In International Conference on
High-Performance Computing and Networking, pages 503–512. Springer, 1999.

59

Bibliography

[35] F. Wolf and B. Mohr. EPILOG Binary Trace-Data Format (Version 1.1). Tech-
nical Report ZAM-IB-2004-06, Forschungszentrum, Zentralinstitut für Ange-
wandte Mathematik, Jülich, 2004.

[36] B. J. Wylie, D. Böhme, B. Mohr, Z. Szebenyi, and F. Wolf. Performance
analysis of Sweep3D on Blue Gene/P with the Scalasca toolset. In 2010 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), pages 1–8. IEEE, 2010.

[37] W. Yoo, M. Koo, Y. Cao, A. Sim, P. Nugent, and K. Wu. Patha: Perfor-
mance analysis tool for hpc applications. In 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC), pages 1–
8. IEEE, 2015.

[38] K. Yoshikawa, S. Tanaka, and N. Yoshida. A 400 trillion-grid Vlasov simulation
on Fugaku supercomputer: Large-scale distribution of cosmic relic neutrinos in
a six-dimensional phase space. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–
11, 2021.

[39] I. Zhukov and B. J. Wylie. Assessing measurement and analysis performance
and scalability of scalasca 2.0. In European Conference on Parallel Processing,
pages 627–636. Springer, 2013.

60

	Titelseite
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Parallel paradigms
	2.1.1 Message Passing Interface (MPI)
	2.1.2 OpenMP

	2.2 Performance analysis
	2.2.1 Data collection
	2.2.2 Processing of measurement data
	2.2.3 Analyzing collected data

	2.3 The Scalasca Trace Tools
	2.3.1 Definitions
	2.3.2 The parallel trace analyzer
	2.3.3 The current delay-cost model

	2.4 Summary

	3 An alternative delay-cost model for Scalasca
	3.1 Weaknesses of the current delay-cost model
	3.2 The idea behind the alternative model
	3.3 Deriving the model
	3.3.1 Formal definition of the alternative model
	3.3.2 Proving the amount of distributed waiting time

	3.4 Comparison with the current model
	3.4.1 Case 1: waitt remshort
	3.4.2 Case 2: waitt < remshort

	3.5 Implementation and correctness checking of the alternative model
	3.5.1 Correctness of calculations in the absence of propagated time
	3.5.2 Correct behavior in Case 1
	3.5.3 Correct behavior in Case 2.1
	3.5.4 Correct behavior in Case 2.2

	3.6 Summary

	4 Evaluation
	4.1 NPB BT
	4.1.1 MPI only
	4.1.2 Hybrid

	4.2 Sweep3D
	4.3 SMG2000
	4.4 TeaLeaf
	4.5 Summary

	5 Conclusion
	A Measurement data
	A.1 Data used for calculation of the averaged reports

	Bibliography

