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A novel anisotropic stress-driven model for bioengineered tissues
accounting for remodeling and reorientation based on homeostatic
surfaces
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A co-rotated formulation of the intermediate configuration is derived in a thermodynamically consistent manner. As a result
of this formulation, algorithmic differentiation (AD) and the equations of the material model can be combined directly, i.e.,
the equations can be implemented into the AD tool and the corresponding derivatives can be calculated using AD. This is
not possible when the equations are given in terms of the intermediate configuration, since the multiplicative decomposition
suffers from an inherent rotational non-uniqueness. Moreover, a novel stress-driven kinematic growth model is presented
that takes homeostasis and fiber reorientation into account and is based on the co-rotated formulation. A numerical example
reveals the promising potential of both the co-rotated formulation and the stress-driven growth model.
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1 Introduction

In the last decades, the modeling of finite inelastic material behavior has become more and more advanced. In this regard,
the multiplicative decomposition of the deformation gradient has emerged as an extremely powerful continuum mechanical
approach. This approach is used in various disciplines reaching from elasto-plasticity coupled with damage (e.g. [1]) to the
modeling of soft tissues’ growth and remodeling (e.g. [2]). To tackle the challenging and error-prone numerical implementa-
tion of such models, AD has proven to be a handy tool, which unfortunately cannot be easily combined with models based on
the multiplicative decomposition. The reason lies in the involved rotational non-uniqueness of the decomposition.

One of the currently most challenging tasks of material modeling is the simulation of soft biological tissues. Soft tissues
are known to seek for a certain state of homeostasis (see e.g. [3]). In order to achieve this state, which is characterized by
a preferred stress state to be reached throughout the tissue, the tissue growths and remodels itself until this state is reached.
In the literature, different approaches exist to describe these phenomena, for instance, constraint mixture approaches. In this
regard, [4] recently published an approach based on so-called homeostatic surfaces. These surfaces prescribe the preferred
state in the principal stress space, such that growth and remodeling is considered in a smeared and phenomenological sense
until the current stress state coincides with the surface. Additionally, soft tissue are able to remodel collagen fibers — often
referred to as reorientation — in order to increase their mechanical resistance to changing loading conditions.

Within this contribution, a novel co-rotated formulation of the intermediate configuration is presented at first. This con-
figuration is unique, but shares the same physical interpretation with the intermediate one. Hence, contrary to equations
stated with respect to the intermediate configuration, material model equations in the co-rotated configuration can be directly
implemented into an AD tool. This enables an efficient and easy numerical implementation of a wide class of materials.

Second, a new stress-driven growth and remodeling model is discussed. Its theoretical backbone is the co-rotated interme-
diate configuration. Furthermore, the approach of homeostatic surfaces is followed and the preferred stress state is prescribed
in terms of the overall Cauchy stress in the principal stress state. Here, the hypothesis of tensile homeostasis is followed.
Moreover, reorientation of collagen fibers is taken into account such that these fibers align with the principal tensile direction.

Section 2 presents the co-rotated formulation, and further, discusses the influence of structural tensors. Subsequently, in
Section 3, a novel stress-driven growth and remodeling model is developed. Further, the evolution equations of the different
inelastic phenomena are discussed. Finally, the models is investigated in a three-dimensional setting in Section 4.

2 Co-rotational formulation of the intermediate configuration

Within this contribution, the well-established multiplicative decomposition of the deformation gradient F' into its elastic F
and growth-related part F, is employed (see [5]). For the time being, the Helmholtz free energy 1) is assumed to be a scalar-
valued isotropic function of the elastic Cauchy-Green tensor C, = F!F, = F,;7CF, ! with C := F"F and some
structural tensor M = F, M Fl/tr(CyM) with C, := F,] F; and M being a (symmetric) structural tensor in the reference
configuration. Its purpose is to take into account the orientation of the fibers. The mapping of M from the reference to the
intermediate configuration is chosen in line with [6].
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Unfortunately, the multiplicative decomposition of F' suffers from an inherent non-uniqueness, i.e.
F=F.F,=F.Q"QF,=FF;, Q¢<S0(3) (1)

is an equivalent decomposition as well. Due to this non-uniqueness, neither C, nor M can be determined, and thus, also
Y = Y(C,, M ) cannot be calculated!. Hence, it is not straightforward to implement the material model’s equations derived
with respect to the intermediate configuration directly into an AD tool. To solve this, additional pull-back operations of all
constitutively dependent variables are necessary (cf. [7]). However, besides the additional effort, the thermodynamic driving
forces might lose their physical meaning as well as their symmetry properties.

Therefore, the aim is to present a co-rotated formulation of the intermediate configuration in the following. Contrary to
the latter, this co-rotated configuration is uniquely defined, but at the same time has the same physical interpretation as the
intermediate configuration. Further, all symmetry properties are preserved. To begin with, using the polar decomposition
F, = R,U, with R, € SO(3), it can be seen that only the rotation tensor R, is affected by the non-uniqueness, while
the growth-related stretch tensor U, is uniquely defined. Thus, the co-rotated quantities C, := RZ;CeRg =U, c U, !

and M = REM R, = U,MU,/tr(Cy;M) are introduced. Since these quantities are similar with their intermediate
counterparts, the same Helmholtz free energy can be used, i.e. 1) = ¢(C., M) = ¢(C., M). Inserting this Helmholtz free

energy into the Clausius-Planck inequality fd') +1/28: C >0, the following state law for the second Piola-Kirchhoff stress
S as well as the thermodynamic driving forces are obtained
oY oY . _ _ - -

G0 - = Oy
S=2U," =10, >=2C.—~, MN=2—-M-2_——-:(MoM), T=%-1I 2
el aC. ot ™ ~2gpr - M M) @
where the relative stress T is conjugated to Dg = sym(UgU . ). Furthermore, the conjugated driving forces in the latter
equation can be considered the co-rotated quantities of their intermediate counterparts, e.g. 3 = RI(2C.(0¢/0C.))R,. 1t

should be mentioned that the driving force associated with M is unique as well and can also be computed using AD. However,
since this driving force is not needed in the model presented hereafter, it is omitted at this point.

Since all quantities in Equation (2) are uniquely defined as well, all of them can be implemented into an AD tool without
further pull-back operations. Moreover, all derivatives of the Helmholtz free energy can be calculated using AD, which is
considered a major advantage, since these might be challenging when computed ‘by hand’. With this framework of a co-
rotated intermediate configuration at hand, the following Section 3 considers a novel stress-driven kinematic growth model,
which is based on the proposed co-rotated framework, and thus, fully implemented using AD.

Note on numerical implementation. Since an AD tool is utilized for the numerical implementation, only some scalar-
valued inelastic potentials as well as the Helmholtz free energy need to be prescribed. All derivatives appeared so far are
uniquely defined, and thus, can be calculated by AD. The same holds for the derivatives of the material model proposed
hereafter. For the time discretized evolution equation of Dg, an exponential integrator scheme similar to [7] is utilized. Thus,
an efficient and flexible implementation of the overall model is enabled.

3 Stress-driven growth model

This sections deals with a novel stress-driven growth and remodeling model for soft tissues as well as the reorientation of
collagen fibers in a stress-driven manner. In this regards, soft tissues are considered in a smeared sense. Hence, for modeling
growth and remodeling, two parallel decomposition of the deformation gradient into ‘matrix’ (m) and ‘fibers’ (f) parts are
utilized, i.e.

F=F, F, =F.,F,. 3

Direction-independent constituents such as elastin are summarized within the first decomposition, while the second decom-
position accounts for direction-dependent constituents like collagen. The Helmholtz free energy is assumed to be additively
decomposed, i.e. Y = ¥, (C, ) + f(Ce . M) where the contribution of the ‘matrix’ is given by t,,, and 1 + accounts for
the ‘fibers’ contribution. Moreover, the structural tensor in the reference configuration is defined by M = n ® n with n
being the structural vector in the reference configuration, which is parallel to the (major) collagen direction. Similar to the
procedure described in the previous section, and as a result of the parallel decomposition in Equation (3), the driving forces

and the second Piola-Kirchhoff stress read

oY o _ - o _ - O _
S=2U,'——U,'+2U, ' —U, ', T,=2C, =, T;=2C, ———-TI 4
e, 9 9C., ' mac,, = 7 T oC,, @
with C,, = U‘mlCUgj Land C,, = U, 1CU !. The stretch tensors Uy, and Uy, result from the polar decompositions
of Fy,  and F,,, respectively. Moreover, 1t is 1mp0rtant to note that both T,,, and I‘f are symmetric (cf. [8]). It remains to

choose suitable evolution equations for growth and remodeling as well as fiber reorientation, which will be presented in the
following.

1 Since 4 is an isotropic function, changing the arguments ¢» = # (C, C,, M) allows to determine 1 depending on referential quantities (cf. [7]).
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3.1 Evolution equations

Soft biological tissues are known to prefer a state of homeostasis, i.e. a homeostatic stress is tried to reach throughout the
whole tissue. Within this contribution, the approach suggested in [4] for modeling growth and remodeling is followed. A
so-called ‘homeostatic surface’ in the principal stress space similar to plasticity is introduced, which describes the preferred
or homeostatic stress. Due to growth and remodeling, the tissues seeks to achieve this preferred state. The direction of growth
may be described in an associative way by taking the derivative of the homeostatic surface with respect to the thermodynamic
driving forces.

Besides growth and remodeling, collagen fibers are produced and absorbed by cells in order to optimally carry mechanical
loading. In a smeared sense, this can be described by a reorientation of the structural vector associated with the direction of
collagen fibers. Here, it is assumed that an optimal state is reached when the structural vector is collinear with the eigenvector
associated with the principal eigenvalue of Cauchy’s stress tensor o0 = 1/J 7 = 1/J FSFT. In the latter equation, J is the
determinate of F' and 7 the Kirchhoff stress tensor.

Growth and remodeling. The homeostatic surface proposed herein is assumed to be a scalar-valued isotropic function of
the overall Cauchy stress o. To account for the hypothesis of tensile homeostasis, i.e. a tensile stress state is preferred (cf. [3]),
the following smoothed Rankine-like surface is introduced

b =tr(o)++/tr(o2)+8—20hm )

where o, is the homeostatic stress and [ is a stress-like parameter for shifting the surface in the principal stress space.

Further, having in mind that 7 = 2 (Fem (0v/oC., ) FL + F., (81/}/8Cef)FgJ:) with C,,, = FL F, and C., =
Fg; F, ., the following relation is important to note
T=F (U, 0,U, ! + U, (0;+ MU, ) . ©6)

The term in brackets is generally non-symmetric, but shares the same eigenvalues with 7. Hence, the following evolu-

. . . . . . . — — : -1 — —
tion equations for the co-rotated symmetric parts of the inelastic velocity gradients Dy = := sym (Ugm Ugm> and Dy, =

sym (Ug‘f U g_fl) are introduced

_ . 00 0P _ . 0D 0P
ng:va]-_‘rn/”af"m,”’ Dgf—“Yaf\f/HaffH- @)

In the latter equations, + is a kind of growth multiplier that describes the rate of growth and remodeling. The multiplier is
determined by a Perzyna-type law (see [9]): ¥ = 1/9(®/2 0hom ). Here, 7 is the growth and remodeling time.

Reorientation. As mentioned above, fiber reorientation is considered in a stress-driven manner. Therefore, a physically
reasonable evolution equation of the structural vector is stated in the current configuration. More precisely, an optimal state is
reached if the structural vector in the current configuration is parallel to Cauchy’s principal eigenvector. Unfortunately, in this
case objective rates must be taken into account. To avoid this issue, the polar decomposition F = RU with R € SO(3) is
employed. Based on this decomposition, the so-called co-rotated Cauchy stress R” o R as well as the (normalized) stretched
structural vector n’ := (1/v/n - C - n) Un are introduced. Noteworthy, it can be shown that an optimal state is also reached
if the principal eigenvector of the co-rotated Cauchy stress and n’ are collinear. It should be noted that it is assumed that the
collagen fibers always align with the principal tensile direction. In the case of a fully compressive state, no reorientation takes
place.

The evolution equation is chosen in line with [10]

=T (n' xng) xn/ 8)
2T

with the reorientation time 7. Note that the latter equation can be reformulated in terms of a skew-symmetric tensor contracted
with n’. Hence, if an exponential integrator scheme is utilized for the time discretized evolution equation, this can be solved
in closed-form using Rodrigues’ formula. Further, n; is the principal eigenvector of Cauchy’s stress tensor.

3.2 Specific choices for energy terms

For studying the material model’s response, the following Helmholtz free energy terms are chosen. For the ‘matrix’ part, a
compressible Neo-Hookean energy is used

_ _ A _ _
G = 5 (10 (Ce,,) = 3= In(det (Ce,,))) + = (det (Ce,) =1 —In (det (Ce, ) ©)
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while the energy for the ‘fibers’ part is in line with [11]

K _ —
vy = 27[(12 (exp (Ka(tr (Ce, M) —1)%) —1). 1o

In the latter, the Macaulay brackets are used, since collagen fibers are assumed to be not able to carry compressive loadings.
The material parameters are fi,,, A, K1 and K.

4 Numerical example

In this contribution, the boundary value problem considered is chosen in accordance with the example presented e.g. in [12].
The corresponding geometry as well as the loading applied are illustrated in Figure 1. Here, the radial displacement loading
is described by wu,(z) = 0.3 sin(7/4 z) [mm] such that the maximum displacement is 0.3 [mm]. Both the top and bottom
surfaces are considered clamped.

The material parameters are either taken from the literature [12] or arbitrarily chosen: A,, = 4.285 [MPa], u,, = 1.071
[MPa], K7 = 2.0 [MPa], K3 = 1.0 [-], 0hom = 1.0 [MPa], n = 10.0 [h], # = 0.1 [MPa], 7 = 10.0 [h]. The initial collagen
fiber directions are randomly chosen per element. Furthermore, a reduced integrated finite element formulation with a single
Gaussian point per element [13] is utilized for discretization to avoid locking effects.

The loading is increased in a monotonic way within the first hour, i.e. the load is linearly increased until the maximum
displacement of 0.3 [mm)] is reached at ¢ = 1 [h]. Subsequently, the loading is hold constant until the end of the simulation.
Furthermore, the force-time curve obtained throughout the simulation up to ¢ = 40 [h] is shown in Figure 2. As can be seen,
due to growth and remodeling as well as fiber reorientation, a tensile state is observed at the beginning, while a compressive
state is reached in the longitudinal direction at the end. Moreover, since the slope is decreasing at the end, it can concluded
that a state of homeostasis is reached. In order to give a better understanding of the processes, Figure 3 provides the contour
plots of the Cauchy stress in longitudinal direction o, and the value of the growth multiplier 7. Noteworthy, the multiplier is
always non-zero if the current stress state does not lie on the homeostatic surface, i.e. homeostasis is not reached.

- |
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4 = | | Li’ 0.2
I 2
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Fig. 1: Geometry and boundary value problem. The ge- Time ¢ [h]
ometry and loading are axisymmetric with z being the Fig. 2: Force-time curve at the top surface (z = 4
axis of symmetry. The displacement in radial direction [mm]). Within the first hour, the sine-shaped load-
is sine-shaped. For meshing, 4 elements in thickness di- ing is linearly increased and then hold constant
rection, 16 elements over the height and 32 elements in throughout the rest of the simulation.

circumferential direction are used.

At the beginning (¢ = 1 [h]), the fibers are randomly orientated. Further, the stress state is far from lying on the chosen
homeostatic, since the rate of - is relatively high and mainly depends on the over- and under-stress, respectively. With time,
the collagen fibers orient themselves towards the principal tensile direction of stress, which is the circumferential one. At the
end of the simulation, nearly all fibers are aligned with this particular direction.

Since the rate of growth and remodeling is highest in the middle of the specimen, growth and remodeling are most pro-
nounced in this region. However, at the end of the simulation homeostasis is reached throughout the whole specimen. Sim-
ilarly, stress is initially quite heterogeneous in the longitudinal direction, but becomes more homogeneous as homeostasis is
reached and collagen fibers are aligned in circumferential direction.

In summary, it can be concluded that the model is able to provide plausible results in terms of homeostasis and fiber
reorientation for complex loading scenarios.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com

85US017 SUOILLIOD 3RO 3(cfedl|dde au Aq pausenob afe Saplie YO ‘88N JO S9IN 10} Areiq 1 BUIIUO AB|IM UO (SUORIPUOD-pUR-SUIBY WD A8 | M ARRIq U1 |UO//SHNY) SUORIPUOD PUe SWiB | 38U} 885 *[£202/S0/ST] Uo Arelqiauljuo A3|IM ‘8U3011g1gINYISUOOH euyey Yy Ag ST0002202 Wured/Z00T 0T/I0p/uod" A ImAfeiq jpul|uoj/sdny ol pepeojumoq ‘T ‘€202 ‘T90LLTIT



PAMM - Proc. Appl. Math. Mech. 22:1 (2022) S5of5

-0.47 0.0

-0.082 0.0 0.11 g [1/h]

Fig. 3: Top: Cauchy stress o in longitudinal (z) direction at different time steps. Further, the reorientation of collagen fibers is visualized.
Bottom: Growth multiplier  at different time steps. A zero value corresponds to a stress state lying on the homeostatic surface.

5 Conclusion and outlook

This work has addressed both a novel co-rotated formulation of the intermediate configuration and a stress-driven growth
model based on this formulation. The former is extremely advantageous when it comes to the application of AD tools for the
implementation of material models based on the multiplicative decomposition of the deformation gradient.

The soft tissue material model derived from the latter takes into account both reorientation of collagen fibers and homeosta-
sis. The latter is described by homeostatic surfaces. These surfaces are similar to yield criteria in plasticity, i.e. they describe
a surface in the principal stress state. Contrary to plasticity, growth and remodeling always takes place until the current stress
state lies on this surface. Here, a surface in terms of the overall Cauchy stress was chosen for this purpose.

Collagen fibers are assumed to align with the principal eigenvector of the Cauchy stress tensor. To avoid objective rates of
the corresponding evolution equation, a polar decomposition of the deformation gradient was used.

Finally, the material model was examined on the basis of a structural example. It was shown that both the state of home-
ostasis and an orientation of the fibers in the main tensile direction can be simulated. Future work should focus on the
determination of the homeostatic area, as well as the comparison with experiments.
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