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Abstract

Wind energy plays a significant role in renewable energies. The increasing demand for wind energy has caused wind
turbines (WT) to grow steadily larger, which means that the control objectives are no longer solely to maximize the
energy produced but to control mechanical loads, among other objectives actively. Model-based WT control, particularly
model predictive control (MPC), has been the focus of research for the last decades. Nevertheless, only a few practical
investigations of MPC for WTs in field tests exist.

This paper highlights some key challenges and pitfalls when applying MPC for WTs. We render these critical points based
on the experience of a recently conducted field test and discuss possible solutions for these challenges. In doing so, we
highlight the following three critical areas: Firstly, we show how the design and practical operation of an MPC system
can take into account the nonlinear properties of the WT. In particular, we address the highly varying sensitivity to the
pitch angle and the dynamic responses of the rotor speed and mechanical loads to the actuator commands over the partial
and full load ranges. Secondly, we discuss the problem of having limited computational capacities on real-time platforms,
restricting the possible complexity of the MPC algorithm. Lastly, we show how some safety aspects decisively influence
the design and operation of the control algorithm.
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Herausforderungen bei der praktischen Umsetzung von modellbasierter pradiktiven Regelung von
Windenergieanlagen

Zusammenfassung

Die Windenergie spielt bei den erneuerbaren Energien eine bedeutende Rolle. Die steigende Nachfrage nach Windenergie
hat dazu gefiihrt, dass die Windenergieanlagen (WEA) immer grofler werden, was bedeutet, dass die Regelungsziele
nicht mehr nur darin bestehen, die produzierte Energie zu maximieren, sondern unter anderem auch die mechanischen
Lasten aktiv zu regeln. Die modellbasierte WEA-Regelung, insbesondere die Modellpriadiktive Regelung (MPC), ist seit
Jahrzehnten ein Schwerpunkt der Forschung. Dennoch gibt es nur wenige praktische Untersuchungen von MPC fiir WEA
in Feldversuchen.

In diesem Beitrag werden einige zentrale Herausforderungen und Problemfelder bei der Umsetzung von MPC fiir WEA
aufgezeigt. Wir stellen wesentliche Punkte anhand der Erfahrungen aus einem kiirzlich durchgefiihrten Feldversuch dar
und diskutieren mogliche Losungen fiir diese Herausforderungen. Dabei heben wir die folgenden drei kritischen Bereiche
hervor: Erstens zeigen wir, wie das Design und der praktische Betrieb eines MPC-Systems die nichtlinearen Eigenschaften
der WEA berticksichtigen kann. Insbesondere gehen wir auf die stark variierende Sensitivitdt auf den Pitchwinkel und
die dynamischen Reaktionen der Rotordrehzahl und der mechanischen Lasten auf die Aktuatorbefehle iiber den Teil- und
Volllastbereich ein. Zweitens diskutieren wir das Problem der begrenzten Rechenkapazititen auf Echtzeitplattformen, die
die mogliche Komplexitit des MPC-Algorithmus einschrinken. Schlielich zeigen wir, wie einige Sicherheitsaspekte den

Entwurf und den Betrieb des Regelungsalgorithmus entscheidend beeinflussen.

1 Introduction

Model predictive control (MPC) for wind turbines (WT) has
been investigated for at least the past two decades. There-
fore, different MPC formulations have been investigated
and proven their benefits against conventional control and
other advanced control methods [1-4]. Nevertheless, only
a few attempts to investigate MPC for commercial WTs
in the field have been published so far (e.g. [5, 6]). In
[6] the authors evaluate trailing edge flaps with active load
reduction using a frequency-weighted MPC for a 225kW
WT, whereas [6] shows the results of a proof of concept
of a weight-scheduled MPC with active load reduction for
a 3MW WT. To the authors’ best knowledge, no further
field test results with a full-scale WT in the multi-megawatt
range using MPC are published so far.

The authors of [7-10] show standardized procedures
for applying model-based control in practical applications.
Virtual commissioning in different situations comparable
to Software-in-the-Loop (SiL)- and Hardware-in-the-Loop
(HiL)-tests are essential to reduce the commissioning time
and effort and significantly help reduce the risk of costly
damages to real machines. Albo and Falkman [7] highlight
the importance of digital twins of the controlled system
and standardized commissioning procedures. Commission-
ing software can be expensive if this process has to be
performed once for each application.

During testing and commissioning, simulation models of
the process are needed. So, the accuracy of the models is
essential not only for the control performance but also for
the commissioning of model-based controllers [8]. There-
fore, complex models should be divided into dynamic sub-

@ Springer

models, which can be identified separately. The models can
afterward be used to test the control hardware in a HiL-
structure. The control hardware is connected to a virtual
machine running on a real-time computer using the same
interfaces (Fieldbusus) as in the field [8]. Through this pro-
cedure, the simulations against the virtual machine can be
transferred very well to the real process.

In [9], Forbes et al. describe MPC’s challenges in the
field of production industries. They point out that in an
environment with MPC, the main challenges lie in main-
taining and adapting the control algorithms, which were
commissioned some time ago rather than improving the al-
gorithms. The once-developed algorithms perform well, but
usually, changing the settings requires expertise. Thus, they
propose standardization of the commissioning process.

Schramp et al. [10] highlight the savings of commission-
ing time using virtual commissioning, similar to the HilL-
and SiL-tests. They propose a dynamical 3D-Model of the
controlled system, in which the control algorithms can be
tested systematically in different use cases. In the wind en-
ergy industry, this is already standard, but it highlights the
vital role of accurate models and simulation environments
for applying these model-based algorithms.

Nevertheless, only some contributions are found in
academia and industry about the occurring challenges
when transferring a complex model-based controller for
WTs from simulation to actual application at full exper-
imental scale. Ossmann et al. [11] conducted a field test
of a model-based individual blade pitch controller (IPC)
on a utility-scale research WT. They mention the practical
hurdle, that model-based control potentially requires WTs
to be equipped with new sensors and explain the impor-
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tance of checking the consistency of the measurements.
They also present an iterative procedure of the controller
design starting with a continuous time control algorithm
over its discretization to automated code generation using
MathWorks® MATLAB® and SIMULINK® (Simulink).

The open research question is: Which obstacles arise in
the development of MPC for WTs when these algorithms
are to be evaluated in field tests? This contribution shows
some key challenges that arise on the path to applying MPC
in the field. Knowledge about these challenges is vital in
the planning process to assess the resources needed for con-
ducting field tests of MPC. After the conducted field test
with its results described in detail in [6], we address the
above-mentioned open research question with the key de-
sign decisions and their influence on the results.

The contribution is structured as follows. In Sect. 2, we
explain the dynamic model of a WT, the control system, and
its interactions with the environment. Section 3 presents the
requirements for the control system under practical inves-
tigation in the field, which arise from the WT, including
a description of the field test. Section 4 shows opportu-
nities to overcome the challenges and points out possible
adaptions of the MPC algorithm. In Sect. 5, we show par-
ticular challenges that arise when the MPC algorithm is
executed on a Programmable Logic Controller (PLC) and
embedded in the overall operational control. Here we es-
pecially point out the limitations to MPC arising from the
real-time hardware.

2 System description

Model-based control schemes require dynamic models,
which represent all relevant dominant dynamics. Concern-
ing MPC, the model’s complexity must be simple enough to
be used in real-time optimization. Therefore, these models
need to be as simple as possible and as dynamically com-
plex and accurate as necessary. The model’s complexity is
one of the first design decisions for MPC. The following
WT description is a possible solution and has been adapted
from the publications [3] and [12]. Different descriptions
can be found in [13].

2.1 Dynamic model and state estimation

The structure of the WT’s dynamic model is shown in
Fig. 1: The model consists of two linear dynamic models
for the rotational dynamics of the drive train and the fore-
aft dynamics. For simplicity, the aerodynamics are modeled
as a static map of thrust- and power coefficients, resulting
in the thrust force F: and the aerodynamic torque T, act-
ing on the rotor blades. The WT’s actuator dynamics are
modeled as an integrator for the pitch angle 9 and as a PT1
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Fig. 1 Reduced order WT model with the submodels for the actors, the
drive train, the fore-oft motion, and the aerodynamics [14]

for the generator torque T,en. The measured outputs are the
rotor speed w,o and the generator speed W, as well as the
translational tower top acceleration X;. The relative wind
speed v acting onto the WT is calculated by the abso-
lute rotor effective wind speed v, which is the last model
input, and the tower top motion x;. Measuring the exact
rotor effective wind speed is tricky. Using simple methods
of measuring behind the rotor result in high disturbances,
because of the rotor blades and the reduction of the cross-
section of the airflow around the nacelle. More complex
methods of Light Imaging, Detection and Ranging (Lidar)
systems can measure the wind speed ahead of the WT.
However, these systems are expensive and not available in
every system. Hence, the exact wind speed is considered as
unknown input and thus as a disturbance variable.

Apart from the aerodynamics, all the dynamics can be
modeled with linear time-invariant models, because inac-
curacies resulting e.g. from varying natural frequencies in
the operational region were found smaller than the estima-
tion uncertainties [14]. The model dimensions were chosen
based on proper simulation results, presented in [3, 12, 15].

We here want to focus on the calculation of the aero-
dynamic torque T, for the challenges of MPC for WTs,
ignoring dynamic inflow, which can be approximated by
adopted power coefficients cp.

Paero = OSQ” Rfotvi/indcl’ (197 Wrot s vwind) (1)

Trot = O.SQanotva,mdw;)icP (197 Wrot s vwind) 2)

The aerodynamic torque can be derived by the aerody-
namic power P, divided by the rotor speed w... Both are
calculated using the air density o, the radius R of the rotor
and the so-called power coefficient cp, which depends on
the rotor speed @, the wind speed ving, and the pitch angle
. The values of the power coefficient above cp > —0.1 are
shown in Fig. 2. The tip-speed-ratio (TSR) 4 is given as the
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Fig.2 cp-map with gradients of minimal pitch-sensitivity and nominal
pitch angle in optimal operating conditions

ratio of the tip speed of the rotor blades w,«R to the wind
speed Vyind.

A = 0o RUY g (3)

Despite the wind speed, many more states like the tower
top position or the tension of the gearbox are not measured
directly, but estimated. We propose an Extended Kalman
Filter, described in [12, 15] that uses the dynamic model and
the measurements to estimate the dynamic states used by
the MPC. The accuracy of the estimation has an important
impact on the controller performance and thus its tuning is
crucial.

2.2 Operating strategy

As shown in Fig. 1, the drive train is freely spinning. Un-
der normal operating conditions, it is accelerated by the
aerodynamic torque 7. and decelerated by the generator
torque Teen. As described in [13], most WTs have three op-
erational regions, depending on the wind speed as shown
in Fig. 3, which all needs to be considered when commis-
sioning a WT control scheme in the field.

In region I, for low wind speed above the cut-in wind
speed, the aim is to extract as much energy from the wind as
possible. From Eq. 1 follows, that the aerodynamic power
Piero 1s maximized for the maximum power coefficient cp.
This is derived by operating the WT with optimal TSR and
pitch angle. In this point, the gradient of cp towards the
pitch angle is zero (Fig. 2). Consequently, the sensitivity
of the aerodynamic torque toward the pitch angle is zero.
Thus, that the aerodynamic power hardly varies for small
variations in the pitch angle.

@ Springer
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Fig. 3 Steady power (normalized to nominal power Pnom) and pitch an-
gle curve (normalized to maximum pitch angle ¥max) over wind speed
(normalized to rated wind speed vraeed): On the primary axis, there are
the electrical (el) power output, the aerodynamic (aero) power input
without mechanical losses and theoretically (theor) achievable power
without losses for optimal tip speed ratio. On the secondary axis, we
depict the pitch angle

In region 1.5, the nominal rotor speed is reached, but
the aerodynamic power is still below the rated power Puom.
Thus, the TSR must be reduced as the wind speed increases
further. As the aerodynamic power Py, is still below the
rated power Ppom, the maximum aerodynamic power for the
allowed TSR is attempted to be used. Here, the pitch angle
must vary slightly, the sensitivity of the aerodynamic power
P.ero towards the pitch angle 9 is still zero.

When the wind speeds further increases, region II is
reached. Here the WT can produce nominal electrical power
Puom, and the pitch angle needs to reduce the aerodynamic
power Py, to stay within the operating limits of the turbine.
In this region II, the pitch sensitivity increases steadily with
increasing wind speed.

In general, the wind conditions are not steady. To ensure,
that the WT operates at approximately optimal operating
points, the WT must be operated by feedback control.

2.3 Baseline MPC

The basic idea of MPC is to quantify the requirements as
control objectives and to optimize the manipulated variables
to meet these requirements in the best possible way. Fig-
ure 4 shows the components of a reference MPC and their
interconnection for the closed-loop system. These compo-
nents are:

1. A dynamical model of the system that the MPC controls
Eq. 4: This model is used to predict the system’s dy-
namical behavior under different control actions. It con-
tains the state vector xi.; predicted from time step k
to k + i, the measurement vector y ;> the command
VeCtor Ug |k containing the sum of changes of the com-
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Fig.4 Structure of the model-based control loop consisting of an
MPC, an extended Kalman filter (EKF) and the WT [12]

mand Augi.;. The dynamic behavior is defined by the
state matrix Ay € R'**13 the input matrix By € R'3*2,
the output matrix C; € R3*!3 and the feed through ma-
trix Dy € R

Xprivik = AkXkailk + Brlpsik
Pwr i 3 Visilk = CiXkailk + Ditigsilk 4
i
Uisilk =Wk + Do Alksifk

2. The cost function J, that quantifies the control objec-
tives Eq. 5. For a reference tracking MPC, J consists
of three costs. The cost for the reference tracking error
(Yret—y), the absolute control variables u and its change
Au weighted with the diagonal weighting matrices Q, R,
S respectively.

T (Bugie) =|[yeree = yixll o,
+lJwir] | g, + [ Awie][ s, )
with ||x|| 4 = xT Ax
3. In numerical optimization, either online or offline, an op-
timal trajectory of the manipulated variables Awuy, .k is

determined in such a way that the cost function J is min-
imized Eq. 6.

Aty = argminJ (Au.ji) (6)
Auw. i
T
S.t. bin < A [x.‘Tk M,Tk All?‘qkil @)

4. The optimization Eq. 6 in general is subject to Con-
straints Eq. 7. Here the constraints are all linear and
efined by the matrix A;, and the corresponding vector
bin, which renders the quadratic optimization problem
together with the cost function Eq. 5.

To predict the dynamic behavior with Eq. 4, the MPC
needs information on the dynamic state of the WT at the
current time step k. As usually some certain states cannot

be measured completely, the control system needs a state
estimator (see Fig. 4). The combined model in Fig. 1 is non-
linear and the states can be estimated by an EKF described
in [12, 15]. Other state estimators such as unscented Kalman
filters (UKF) or moving horizon estimators (MHE) could
also be used.

3 Practical challenges

After conducting a full-scale field test [5] of an MPC imple-
mentation reported in [3, 12, 15] in July 2020, there remain
new underestimated challenges. In this field test, a Refer-
ence tracking MPC with the following basic configuration
was investigated: The Reference is adapted to using the
power curve and the estimated wind speed. To cope with
the varying sensitivities, the MPC’s gains are scheduled
over the operational region. The dynamic states including
the wind speed are derived by an EKF. The MPC was tuned
in simulations and tested in SiL. and HiL tests and commis-
sioned on a commercial PLC for the field test. The control
system was embedded into the existing automation system.
To ensure, that in cases of an unexpected error, the WT
still operates, the MPC only bypasses the state-of-the-art
controller (SAC) and the SAC can take over the control.

The following section gives a brief overview of the fun-
damental challenges.

3.1 System requirements

We focus on the requirements regarding the control system,
i.e. requirements that the control system can take into ac-
count. The overall requirement of a WT is to gain profit. As
already described in [16], electrical power output with low
power fluctuations generates profit in the electrical market.
On the other hand, downtime, and repairs are expensive and
should be avoided. Translated into control objectives, power
output must be high and uniform on the one hand and the
WT’s operation points must be gentle on the material and
minimize damaging stresses to reduce downtime and repair
costs.

Additionally, the control system must meet requirements
arising from the environment in which the WT is located.
Here the fluctuating and uncertainly measurable wind speed
challenges the control system. In addition, aging symp-
toms can reduce the power production capacity and slightly
change the dynamic behaviour. The control system must be
robust against all these uncertainties.

An implicit requirement is to keep the operation points
within certain bounds arising from the design or legal regu-
lations. These can be exemplary to keep the rotor speed, or
electrical power below certain bounds, to ensure the gen-
erator is not damaged. Legal regulations can regard sound

@ Springer



Forsch Ingenieurwes

emissions or electrical power fluctuation. Safety critical es-
sential intrinsic requirements are that the control algorithm
is stable, and the control algorithm must always be executed
in real time. Otherwise, delayed control commands could
potentially lead to instability or performance degradation.

When deciding which control method to use, it must be
analysed how the methods can face all the requirements.
This process is not the focus of this contribution. However,
how different model-based control methods can face spe-
cific requirements is reviewed in [1]. Here we recapture how
MPC can especially face the requirements and which chal-
lenges arise when it comes to its practical investigations.
We chose a reference tracking MPC algorithm with a lin-
ear-time-variant (LTV) model and adaptive weights [12],
combined with an EKF to estimate the states and the wind
speed.

3.2 Identified practical challenges

The following section shows the challenges arising from
the chosen MPC structure.

Sensitivity to pitch The manipulated variables are the pitch
angle and the generator torque. As shown in Sect. 2, the
sensitivity to the pitch is highly varying over the opera-
tion regions, but with the linear dynamic model, the MPC
does not know that the actuation of the pitch will lead to
a higher sensitivity along the prediction horizon. This chal-
lenge can be addressed using a nonlinear MPC algorithm as
shown in [2]. However, the operation of a nonlinear MPC
comes along with other challenges, because its complex-
ity is increased, and preparing this algorithm for real-time
operation in a PLC is challenging. In addition, nonlinear op-
timization problems are less accepted in the industry than
quadratic problems (QP).

With a weight Ry for the pitch actuation in u in the cost
function Eq. 5 and without a further reference in yi.r for
the pitch angle in specific operation points the linear MPC
would not actuate the pitch angle at all. We showed, that the
operation of a linear MPC with the same weights over the
whole operation range can lead to undesired behavior [12],
and adaptive weights offer an increased number of tuning
parameters, which suited for the field test.

References In the present MPC, there are references
needed. Here, the reference is determined to be the optimal
steady operation point, depending on the actual wind speed.
This reference neglects the unsteady trajectory towards this
steady operation point. As the wind speed fluctuates, also
the reference fluctuates. In the field test, the fluctuation of
the reference was identified to influence the performance
of the MPC.
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Hardware capacity To ensure that the convergence of the
online optimization is guaranteed, the sampling time was
chosen to be 0.1s. HiL-tests with a PLC' have shown that
this parameterization utilizes the PLC by about 30%. This
sampling time restricts the model depth that can be used
in the MPC in that the fastest possible dynamics that the
MPC can respond to is in the range of less than 4 Hz. The
dynamics observed in the field test suggest that this model
depth is not sufficient and effects whose natural frequency
is above 4 Hz should be considered as shown in [5].

To cope with an unexpected failure of the MPC algo-
rithm, the existing basic control was bypassed [17]. There-
fore, the measurements and command values were passed
through the (SAC). The MPC commands were checked be-
fore being passed to the actors, which led to additional
delay time. This delay, even more, reduces the maximum
natural frequencies of the system, which can be covered by
the MPC.

Model uncertainty The lower-level actuator controller, es-
pecially the generator, was identified as a relevant model
uncertainty. Until now, we assumed that the dynamics of
the generator’s underlying controller were fast enough to
be neglected in the MPC. Instead, this actuator controller
showed dynamic behavior in the frequency range of the
MPC. As it was not covered in the prediction model, this
reduced the performance of the MPC, as shown in Fig. 5
and 6. Especially overshooting of the measured values of
the generator torque was observed, resulting in the MPC
trying to compensate for the measured deflections. In ex-
treme cases, the steps of the measured generator torque
exceeded the commands by up to 25% and their absolute
values exceeded the commands by up to 5%. Figure 6 shows
the frequencies for the commanded and measured genera-
tor torque and their difference together with the 6 modeled
natural frequencies of the WT. The controller shows activi-
ties around 3.2Hz, which are not modeled. Also for higher
frequencies above 4Hz, there are activities in the lower-
level controller which cannot be addressed by the MPC.
So the assumed PT1 behavior does not cover the genera-
tor dynamics precisely enough. It is important to identify
all dynamics, which are relevant to the MPC’s prediction
model. Since this can also include lower-level controllers,
these must also be identified.

Additional uncertainty arises from differences in esti-
mated and actual states. Here we exemplarily investigate
the frequencies of the estimated wind speed in Fig. 7. Nat-
urally, there are no peaks expected in the shown frequency
range. The observed peaks result from dynamics, which are
not modeled. The observer estimates those into the wind
speed, which can be observed. The 3P periodical excitation

I PLC unit from Bachman electronics GmbH, Model MH230.
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as well as frequencies around 2.1 Hz, which arise from not
modeled for-aft modes can be clearly seen in the estimated
wind speed, but are unlikely part of the real wind speed.
But even modeled frequencies as f; the first tower fore-
aft natural frequency is seen in the estimated wind speed.
Improving the estimation requires more complex models.

Commissioning In conventional control, a few parameters
may be tuned online during the commissioning of the con-
trol system. Online tuning of the MPC is different because

15 2 25 3 35 4 45 5
Frequency in Hz

the tuning parameters of the MPC have different effects
compared to those of conventional control. As shown by
the different test stages in [17], intensive testing in simu-
lations can reduce the effort of online tuning during com-
missioning, but the toolchains for this must exist, and the
simulation environments must represent the physical WT
precisely.

4 Adaption of the MPC algorithm

To overcome the identified challenges, we here present
some solutions and further research topics to establish MPC
for WTs in the field.

4.1 Process model

Section 3 shows that the process model is important for
accurate prediction and optimization. Along with the data
from field tests, even with data from SACs, it is possible to
identify system dynamics.

Mechanics The system dynamics need to be identified to

cover the higher natural frequencies around 3.2Hz in the
rotational and around 2.1 Hz in the for-aft model and their

@ Springer



Forsch Ingenieurwes

influence for the controller performance. Therefore, not
only the separate dynamical models but also their struc-
ture should be varied in the process of model identification.
The dynamics of the flexible rotor blades and tower is mod-
eled with fixed natural frequencies and modes. Especially
the different flap-wise and edge-wise stiffness of the blades
and their varying direction due to pitch action modifies the
natural frequencies. In addition, coupled modes of fore-aft
and rotational motions are not considered in the presented
model and should be investigated. The coupled modes could
even be introduced without additional model states.

Actuators The actuators and their low-level controllers
have already been identified as the source of uncertainties.
To clarify the model for better predictions, we identify the
dynamical actor responses to command values.

4.2 MPC-formulation

After defining the algorithm formally, we now discuss how
the requirements and challenges can be met. The MPC al-
gorithm has three key advantages when controlling a WT.

1. Multiple objectives and controlled variables can be con-
sidered thoroughly in this formulation.

2. The contrary objectives can be weighted against each
other in the cost function.

3. Constraints are handled inherently.

Besides these advantages, there are still challenges when
it comes to applying MPC in the field.

Problem formulation There are several problem formula-
tions of MPC. The here used LTV MPC formulation with its
linear prediction model, the quadratic cost function, and lin-
ear or affine constraints seemed sufficient. The main uncer-
tainties arise from non-modeled dynamics, parameter un-
certainties, and fluctuating wind speed. With a well-tuned
linear MPC, this algorithm can be extended to a robust
formulation. Especially tube-based and stochastic MPC al-
lows the same number of optimization variables and slightly
more constraints.

To investigate the influence of the knowledge, especially
about the varying pitch sensitivity, the optimization problem
could be extended to be a nonlinear MPC, including the
nonlinear aerodynamic model, or in this formulation, even
the cost function could easily be adopted to include an
additional reference for the pitch angle.

The real-time capability on the available hardware must
be guaranteed, when extending the algorithm. For this pur-
pose, it should be considered, that the optimization effort
grows differently. With the nonlinear MPC in general, sev-
eral QPs have to be solved in a single time step, whereas
the other presented MPC variants solve a single QP. In
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general, the number of optimization variables increases the
optimization effort in order O = 3. The effect of the con-
straints depends on the optimization algorithm used. With
an increasing number of constraints, the online active set
QP algorithm qpOASES [18] used for the online optimiza-
tion, should be exchanged.

The cost function and reference The challenge for the refer-
ences lies predominantly in region I and L.5, because here,
the nominal power cannot be produced and the optimal op-
eration points depend on the present wind speed, which
includes uncertainties. How to optimize the transition be-
tween different stationary points through the references, es-
pecially for the rotor speed and the electrical power de-
pending on the actual wind condition, is part of the present
investigations.

Uncertainties The optimization strongly depends on the
precise prediction of future states. The MPC achieves
this only with precisely estimated states and an accurate
dynamic model. As shown these models must be further
adapted to the unmodeled but present natural frequencies.
As original equipment Manufacturers (OEM) know the WT
and its dynamics with very high accuracy, they can derive
the needed dynamic model of the WT and its parameters,
but the choice of the considered dynamics cannot be done
only with simulations. The estimation of the present states
using EKF is state-of-the-art, but estimating the effective
wind speed is challenging and harbors the source of un-
certainties. The reason why the wind speed can only be
determined under uncertainties lies in the nature of wind
and has been described further in [13]. The uncertain wind
speed leads to an optimization result that is only optimal for
a steady wind speed. Robust MPC formulations can deal
with these uncertainties [19], but therefore either the num-
ber of optimization variables or the number of constraints
must be increased significantly. The effect of the increased
optimization problem is further discussed in Sect. 5.

When MPC is applied to the physical WT, a different
source of uncertainties arises from internally controlled
components of other manufacturers. In some cases these
lower-level controllers may interfere with the MPC, lead-
ing to unexpected behaviour of the closed loop system.

Besides the challenges with the algorithm and its tuning,
further challenges arise when the algorithm is executed on
the physical controller hardware, which is used to operate
the WT.

5 Hardware

The major constraining factor for the application of MPC al-
gorithms is the capability of real-time calculations. For field
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tests, one would not want to change the whole automation
system, so the used hardware to execute the MPC algorithm
must be compatible with the existing automation system. To
compile the MPC algorithm to the real-time hardware re-
liably, toolchains like HiL-setups must be established [17].
For many hardware, there are several restrictions regarding
functionalities used for the MPC algorithm.

The computational capacity of real-time hardware like
PLCs has increased in the last few years and parallel com-
puting has found its way into PLCs so that more complex
algorithms and real-time optimization of MPC algorithms
can now be performed.

Even though the computational capacity of real-time has
increased in the last few years, still, computational capacity
is a limiting factor and the complexity of the MPC must
be adapted to it. After benchmarking MPC performance by
increasing sample rate, model depth, and complexity, those
parameters usually must be reduced for real-time execution
on commercial Hardware to still find satisfying tradeoffs.
In the present case, the hardware is limited to be compatible
with PLCs of Bachmann Electronics.

To include the MPC in the supervisory control of the
OEM, adapting the supervisory control is also one key
problem. The MPC is able to use measurements of the WT,
which are usually ignored by the SAC. New interfaces must
be implemented, and data traffic load must be considered in
its extension. Within this data, transport delays must be in-
vestigated. Here MPC holds a major advantage because the
delay can directly be considered in the prediction model.

During field tests safety against damage must be ensured.
In [5] we showed how the use of a separate PLC can ensure
safety requirements. For this purpose, the supervisory con-
trol decides which control command it uses. The MPC can
handle the commands of different controllers because it has
no internal states, and the optimization can easily be initial-
ized with the commands of the SAC. In contrast, the SAC
needs to be extended by reset routines to ensure a rapid
switch from MPC in order to handle critical system states.
Here the MPC and the SAC are connected in a row so that
all commands and measurements pass the SAC before they
are forwarded to the MPC. To adapt a structure between
supervisory control and the MPC and to reduce the overall
delay time, the two controllers could operate in parallel and
the supervisory control handles this directly.

Also operating both the MPC and the SAC on the same
PLC could decrease delays with the potential risk that flaws
in the MPC could also influence the operation of the SAC.

All the different structures require intensive testing, to
ensure safe operation during field tests. The safety of these
structures can be investigated in Hil-tests, with the draw-
back, that these tests are time-consuming. They are per-
formed on real-time hardware and therefore, they cannot
be sped up.

6 Conclusion

To conduct field tests of MPC for a WT, the control algo-
rithm must not only perform well in simulations, but real-
time hardware must execute the algorithm. We showed ma-
jor challenges of applying MPC for field tests and proposed
some opportunities to improve the algorithm. The control
algorithm must be a trade-off between a complex and ro-
bust MPC algorithm and a simple and real-time capable al-
gorithm. As modern real-time hardware has become more
powerful during the last few years, it now offers opportu-
nities to apply MPC algorithms of increasing complexity.
The accuracy of the model is crucial for the performance
and especially for linear MPC, there are operation points
around the region 1.5, where a reference for the pitch angle
is necessary even though it is a command value.

Essential steps must extend the design process of Sil-
and HiL-testing and precise model identification, because
online tuning is more difficult compared to SACs. This also
allows fast commissioning and shrinks the risk of safety
issues, as every critical scenario can be tested without the
risk of damaging the WT.

In future work, we will optimize the reference trajec-
tory to adjust to the operating point and the wind speed
dynamically. Furthermore, we include the identified actu-
ator dynamics of the generator and investigate how it is
efficiently included in the MPC algorithm. To reduce over-
all delay times, for the next field test, we use a parallel
structure of the SAC together with the MPC.

To conclude, applying MPC for WTs in the field is chal-
lenging but jet possible, and we expect further field tests of
MPC in the near future.
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