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Abstract

Simulation models of the tooth contact can provide valuable information of the gearbox operational behavior for deviated
gears. It is therefore possible to gather geometry and deviation information of the two gears in contact and then estimate
how they will perform in the assembled unit before even mounting them. This procedure could save time and costs
used to disassemble gear boxes which fail the end of line tests because of acoustic reasons. The major challenge using
sophisticated simulation models, which can describe the tooth contact is the tremendous amount of calculation time they
need to produce suit-able results. In a productive gearbox manufacturing process this time is just not available. Therefore,
a method to predict the operational behavior faster, than with the current used simulation models is needed. Firstly the size
of the problem is downsized by introducing the sum deviation surface. It allows to reduce the number of necessary input
parameters for a gear topography description to eighteen factors. With the help of that sum deviation surface, 3000 variants
within a given variation space are calculated. The resulting training dataset is used to develop a deep neural network
meta-model of the gear contact, which can predict the characteristics of the transmission error under load. With the help
of that meta-model, the excitation of a gear pair can be predicted faster than real-time.

Modellbasierte Vorhersage von Drehfehlerkennwerten basierend auf verallgemeinerten
Topografieabweichungen

Zusammenfassung

Simulationsmodelle des Zahnkontakts konnen wertvolle Informationen iiber das Betriebsverhalten eines Getriebes mit ab-
weichungsbehafteten Zahnriddern liefern. Es ist daher moglich mit Informationen iiber die Geometrie und die Abweichung
der beiden sich berithrenden Zahnriader abzuschitzen, wie sie sich die montierten Getriebe verhalten werden, bevor sie
iiberhaupt montiert werden. Dieses Verfahren kann Zeit und Kosten fiir die Demontage von Getrieben einsparen, die aus
akustischen Griinden die End-of-Line-Tests nicht bestehen. Die grofite Herausforderung bei der Verwendung von hochent-
wickelten Simulationsmodellen, die den Zahnkontakt fiir eine solche Vorhersage ausreichend genug beschreiben konnen, ist
die enorme Rechenzeit, die sie benétigen, um nutzbare Ergebnisse zu erzielen. In einem produktiven Getriebeherstellungs-
prozess ist diese Zeit nicht verfiigbar. Daher wird eine Methode benétigt, die das Betriebsverhalten schneller vorhersagt,
als mit den derzeit verwendeten Simulationsmodellen. Dazu wird zuerst die Grofe des Problems durch die Einfiihrung
einer Summenabweichungsflache verkleinert. Diese erlaubt es, die Anzahl der notwendigen Eingangsparameter fiir eine
Getriebetopographiebeschreibung auf achtzehn Werte zu reduzieren. Mit Hilfe der Summenabweichungsfliche werden
3000 Varianten innerhalb eines vorgegebenen Variationsraums berechnet. Der resultierende Trainingsdatensatz wird ver-
wendet, um ein tiefes neuronales Netz des Zahnkontaktes zu entwickeln, dass die Eigenschaften des Drehfehlers unter
Last vorhersagen kann. Mit Hilfe dieses Metamodells kann die Anregung durch ein Abweichungsbehaftetes Zahnradpaar
schneller als in Echtzeit vorhergesagt werden.
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1 Introduction and motivation

Tooth contact analysis is an integral part of the gear design
process. With the help of simulation tools like ZAKO3D
it is possible to calculate the excitation caused by a tooth
contact [1]. Usually, the load-free transmission error (TE)
or the TE under load is used for this purpose. However,
the calculation with the tooth contact analysis ZAKO3D al-
lows only a quasi-static consideration of the excitation. In
order to better assess the behavior in the overall system, it is
therefore necessary to perform a dynamic simulation. How-
ever, the main disadvantage of such dynamic simulations is
the much longer computing time compared to quasi-static
tooth contact analyses due to the high computational effort.

In the context of measures such as the increase in re-
source efficiency and due to the rising demands of end cus-
tomers, the pressure on gearbox manufacturers to produce
fewer rejects is growing, while at the same time placing
higher demands on the quality of the gearboxes. To ensure
that an assembled gearbox meets the acoustic requirements,
end-of-line tests are carried out on the finished units [2].
If an anomaly is detected, the unit must be disassembled
and overhauled as far as possible or is otherwise scrapped.
A significant advantage would be if assemblies relevant
for the acoustic behavior, such as the tooth meshes, could
already be examined for their excitation behavior before
assembly.

Theoretically, this would be possible by simulating the
acoustic behavior of the gearbox in a dynamic model, as
it is used today in the gear design process, with the real
topographies of the gears to be installed. Exemplary work
shows that these models have a high agreement with reality
[3-5]. The essential problem here is the calculation time
of these dynamic models, which prevents a process-time
parallel calculation.

To solve this challenge, it is therefore necessary to create
a possibility to predict the excitation behavior of the system
much faster. One approach, which needs to be investigated
for this purpose, is the formation of substitute models that
allow considerably faster calculation of the target values.
It is relevant that a description of the tooth flanks is used
that is as exact as possible in order to be able to determine
a realistic assessment of the excitation behavior that arises
from the two wheels in the tooth mesh.

2 State of the art

A classical way to optimize the calculation speed of com-
plex simulation models is the usage of meta models. The
neural network is the one, which will later be used, there-
fore the state of the art of this article deals with neural
networks and their basic properties. In addition, the adjust-
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ment possibilities, with which the properties of the network
can be adapted, are discussed.

2.1 Neuronal networks

Neural networks have already been used for some time for
the classification of acoustic questions [6]. In the context
of gears, neural networks are used, among other things,
for classification in the area of condition monitoring. Here
they are used to monitor output variables of sensors and to
detect deviations that indicate a change in the condition of
the gearbox [7-10].

Another use of neural networks for gear modeling is
described by CABRERA CANO. In his work, a system
of rigid differential equations describing a gearbox in one
dimension is set up with the help of a neural network. In
this way, the behavior of the original simulation model can
be reproduced. The trained neural network is faster than the
original simulation model by a factor of ten [11].

BAXMANN undertakes first attempts to calculate pa-
rameters describing the application behavior by optimizing
the selection of the micro geometry of a bevel gear. He
can prove that neural networks are in principle suitable to
simulate the behavior of a gearpair and thus accelerate the
calculation of the parameters by a factor of 2 [12].

Basic functions of neural networks A neural network is out-
wardly a function that calculates output variables y based
on input parameters X. It can thus be described as f(X) =
. At first glance, it does not differ from a conventional
function. The main difference between the neural network
and a normal function, on the other hand, is that in a nor-
mal function the algorithm for transforming the input pa-
rameters into the output variables must be known. A neural
network, on the other hand, receives a set of different input
parameters with the corresponding output parameters and
learns the relationships between them itself. Subsequently,
previously unknown input parameters can be transformed
into the correct output variables. The main advantage of
a neural network compared to a normal function is therefore
that it becomes possible to model correlations for which no
algorithmic correlation can otherwise be found [13].

The schematic structure of a neural network is shown
in Fig. 1. The basic building block of a neural network
is a neuron, see the left side of Fig. 1. A neuron re-
ceives n input parameters, each of which is multiplied by
the weights w. These weighted input parameters are then
summed together with the constant value b and given as
input to an activation function, which calculates the output
of this one neuron.

The structure of the network itself again consists of sev-
eral neurons in one layer. These adjacent neurons together
form a layer. Several layers one after the other result in the
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structure of the entire network, see center of Fig. 1. The
last layer is called the output layer, the layer of the input
parameters is called the input layer, and all other layers
in between are called hidden layers. Neural networks with
multiple hidden layers are therefore also referred to as deep
neural networks, abbreviated DNN in the following [13].

DNN are characterized by various properties. These have
a significant influence on the performance and quality of
the calculation performed with the DNN. One important
property is the number of layers, see Fig. 1. The lower the
number of layers, the lower the computational effort of the
DNN. However, the accuracy with which the input parame-
ters can be classified decreases. In addition, further settings
are possible. The setting of the learning rate describes in
principle how fast the DNN converges. A low learning rate
leads to low convergence. However, if the learning rate is
set too high, the solution may end up fuzzy and the model
may no longer converge. The batch size indicates with how
many data points of all available variants the algorithm is
trained simultaneously. A size of n=32 has established it-
self as the standard value. If the value is chosen too large,
the model may not be able to approximate new data. The
number of epochs indicates how often the algorithm trains
with the entire data set. The larger the number of epochs,
the more accurate the DNN can become, but the longer the
training takes [14].

The number of neurons per layer becomes clear from
Fig. 1. The required number of neurons depends mainly on
the number of input parameters and output parameters as
well as on the number of layers. A too small number of neu-
rons leads to the fact that the model cannot be approximated
correctly, whereas a too large number of neurons leads to
a high variance of the results and bad model performance
[15].

Another possibility for optimization when using DNN is
the normalization of the input data. The normalization of all
input data to a value range from zero to one increases the
performance, because the activation functions are designed
for this value range [14].

Activation function An activation function is the function
of a neuron that calculates the output quantity from the
weighted input parameters. There are a large number of dif-
ferent functions, which are better or worse suited depending
on the application. Since each neuron has its own activa-
tion function, different activation functions can be used in
a neural network. If the activation functions are nonlinear
functions, then already two hidden layers are sufficient to
approximate any function, if the number of neurons per
layer can be chosen large enough accordingly [13]. Infor-
mation regarding the various activation functions can be
found in [13, 16].

2.2 Conclusion of the state of the art

Up to now, neural networks have been used in the field of
gear technology mainly as a decision-making aid for classi-
fication problems. Here, the networks are used to infer dam-
age in the gearbox on the basis of recorded data. In addition,
there are already first successful attempts to model the be-
havior of gearbox defects using neural networks. However,
these models are still one-dimensional models that do not
calculate acoustic parameters.

3 Objective and approach

The objective is to determine the characteristic values of the
TE of a deviated gear pair orders of magnitude faster than
is possible with a conventional ZAKO3D calculation under
load. Therefore, a model is to be developed that is capable
of doing this. The method to be developed for calculating
the characteristic values of the TE with this model is shown
in Fig. 2. It is assumed that each of the two wheels is
provided with a deviation. In a first step, these two deviation
surfaces (DS) of wheel 1 and wheel 2 are combined to
a sum deviation surface (£ DS). Thus, a substitute tooth
contact is created in which only one wheel is provided with
deviations and the other wheel has an ideal involute. In
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Fig.2 Calculation method of the
TE parameters and procedure for
model construction
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a second step, the parameters p; are derived from the = DS.
These parameters should be able to describe the = DS as
accurately as possible by using as few of them as possible.
In a third step, the parameters p; are given as inputs to the
model, which then returns the TE characteristics.

Corresponding to the individual steps of the method for
calculating the TE characteristic values for two gears with
deviations, the procedure for achieving this goal can also
be divided into several sub-steps. In a first sub-step, the
2 DS must be established. For this purpose, a procedure
is worked out with which the various individual topogra-
phies can be offset. In a second step a substitute surface is
searched, which describes the 2 DS using as few param-
eters as possible. BRIMMERS points out that radial basis
functions are best suited for a description of a topological
modification of a gear [17]. For the gear geometry and mod-
ification chosen there, a resolution of five points in width
direction and three points in height direction was chosen
[17]. It is examined whether this resolution is also suitable
for the gear and deviations used here.

In a third step, the actual model for calculation is devel-
oped. As an approach, a model is to be used that can be
trained based on a data set and is then able to predict param-
eter variants that were not part of the training data set with
sufficient accuracy. Therefore, first the training data set has
to be created. For this purpose a pool of variants is gener-
ated. These are not combined fully factorial in the variation
space, but distributed with the help of another experimen-
tal design, so that fewer variants are needed to cover the
complete variation space. With each variant of this vari-
ant pool a ZAKO3D calculation under load is performed.
For the thus calculated TE, the TE characteristic values
are subsequently calculated. For each calculated variant of
the pool, in addition to the parameters p; as input of the
model, the TE characteristic values as output of the model
are also known now. The data set created in this way is
examined for suitable modeling types using the program
NOESIS OPTIMUS. The most promising modeling type
is then implemented and tested with variants that are not
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part of the data pool. Different settings of the metamod-
eling methodology will be investigated. It is worked out
whether the surrogate model is suitable in principle for the
description of the problem.

4 Calculation of the characteristic
transmission error values

This chapter describes how the parameters for describing
the deviation of the gear are derived and how the associated
TE characteristic values are calculated. The investigation
is based on the gear of the first stage of the Demonstra-
tor Gearbox developed within the scope of the Gear Re-
search Circle project Concept development for a practical
Demonstrator Gearbox for high-speed applications of the
WZL Gear Research Circle. The gearbox is exemplary for
a transmission of an electrified passenger car with a drive
torque of M= 120Nm at the input shaft. The gear data of
the first stage are shown in Table 1.

4.1 Introduction and parameterization of the sum
deviation surface

If a gear is measured, a DS results for the flank. For each
measuring point, the deviation of the real flank from the
theoretical involute is specified [18]. The = DS is intended
to represent the combined deviation of the wheel and pin-
ion by combining the two individual DSs. The advantage of
combining the deviations of both contact partners to a com-
mon sum deviation surface is that only one of the two gears
has to be provided with a deviation in the simulation. The

Table 1 Gear data of stage 1 of the Demonstrator Gearbox

21/22 23/87 p 24.2°

bi/b2 27 mm/23 mm Xel/Xe2 0.33166/0.55906
My 1.421 mm dai/da2 40.6 mm/137.9mm
an 20°
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other wheel can be modeled with ideal involute. This re-
duces the number of necessary parameters for the substitute
model by half, since only one deviation surface has to be
described and not two. The accuracy of this method de-
pends on the amount of the displacement of the contact
line under load.

The X DS generated in this way is to be approximated by
radial basis functions (RBF). BRIMMERS had found them
to be suitable for this purpose [17]. In order to determine
the optimal number of necessary supporting points of the
RBF in tooth width (Nz) and height (Ns) direction, differ-
ent resolutions are investigated. For this purpose, analytical
combinations of the different standardized tooth flank mod-
ifications are created in a first step [19]. The variation range
of the individual modification amounts is listed on the left
side of Fig. 3.

The DS are then approximated by RBF with a different
number of supporting points in height and width direction.
The number of grid points is varied from two to ten. In
the bottom center of Fig. 3, an analytical DS and the cor-
responding DS approximated by RBF are shown as exam-
ples. The difference between the two DSs is examined at
10,000 uniformly distributed points. For the accuracy of the
approximation, the R? coefficient of determination known
from statistics can be calculated and used for the evalua-
tion. In the work of BRIMMERS this value is also used
to determine the necessary degree of a surface polynomial
for the approximation of the surface [17]. 1000 different
variants are compared, which are generated with the Latin
hypercube function of the Python package PYDOE in the
given limits of the target modifications.

The evaluation of the R? value for these 1000 variants
is shown on the right side of Fig. 3. The first diagram
shows the mean R? value for all variants as a function of
the supporting points of the RBF in the height direction (Ns)
and width direction (Nz). It can be seen that in the width
direction, no further improvement of the R? value can be

achieved from a number of Nz=3 and in height direction
from a number of Ns=6 grid points.

4.2 Design of experiments

In order to build a learning model or a model converging
against real behavior (regression), there must be examples
available for the range in which the model should function.
The boundaries of this space are shown on the left side of
Fig. 3. In the optimal case, all variants are evenly distributed
in the space to be developed. A Latin hypercupe experimen-
tal design is used for this. The variant space, which provides
the basis for the testing of the different models in the fur-
ther course, is computed from 3000 variants. The library
PYDOE is used to create the test plan [20].

4.3 Calculation of the characteristic values

For the variants defined in Chap. 4.2, ZAKO3D (see
Chap. 1) calculations are performed and single-number
characteristic values are calculated from the values of
TE. In this specific ZAKO3D simulation, the surrounding
structure is not considered. The used characteristic values
are:

Crest factor

RMS value

Fluctuation width

Skewness

Kurtosis

Correlation with negative and positive parabola and
straight line

Gear mesh orders

o Normalized gear mesh orders

The calculation and application of these characteristic
values for TE is described by WILLECKE [21]. The TE,
which is used as a basis for the calculation of the charac-
teristic values, usually has a constant component. For the
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calculation of some characteristic values, such as the RMS
value or the fluctuation width, this constant component is
eliminated before the calculation of the characteristic value.
Thus, only the fluctuation component that also leads to an
acoustic excitation of the structure is considered. The cal-
culated characteristic values are stored together with the
corresponding parameters p; for all variants in a common
HDFS5 file. This format allows a fast and efficient data ac-
cess for programs in different programming languages [22].

5 Development of the model for prediction
of the characteristic acoustic values

This chapter describes how a model for the prediction of
the characteristic values is selected and further investigated.
For this purpose, a preselection within different model-
ing approaches is carried out with the program NOESIS
OPTIMUS. The most promising modeling approach is then
built as a model in the programming language PYTHON.
Here, properties of the model will be further investigated.
The functionality of the model is verified with another test
data set, which does not originate from the data set used
for the development of the model. The test data set consists
of 480 variants, which were created analogously with the
procedure described in Chap. 4.2.

5.1 Training of the different models

The data set generated in Chap. 4.3 is used as a basis to
test different modeling approaches and to select a suitable
approach for the application. To avoid having to implement,
train and test each approach individually, the commercial
software OPTIMUS from the manufacturer NOESIS is used
to generate an initial overview. Here, the data set can be
loaded and then a large number of models can be tested
automatically. The R? value is used to evaluate how well
the respective model is suited to represent the data set. For
this purpose OPTIMUS performs a cross-validation with
the data set. Since the training and evaluation of the large
number of models requires some time, only the fluctuation
width and the first tooth mesh order were used as result
parameters in the first step. The results of the calculation
are shown in Table 2.

5.2 Selection of the best model and implementation
in PYTHON

The R? in Table 2 indicates the lowest error for the deep
neural networks (DNN). Therefore, these will be further in-
vestigated in the following. The settings used by OPTIMUS
are: Normalization of the input data, a group size of 32, an
epoch count of 100, a layer count of 3 with 64 neurons
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per layer, and a learning rate of 0.001 (see Sect. 2.1 for an
explanation of the settings).

The model, which is used for the further investigations, is
built up in PYTHON based on the library KERAS as part
of the total library TENSORFLOW [16, 23]. The library
KERAS is chosen for the implementation and the construc-
tion of the model, because powerful DNN can be built with
it and the complexity and the extent of the modeling can be
increased granularly [16].

The construction and training of the model is divided
into several sections. In the first step, the data must be
prepared for training the model. DNN work most efficiently
if the data to be processed are normalized, see Chap. 2.1.
The normalization of the data set is done with the library
SCIKIT-LEARN [24].

In the second step, the structure of the model is de-
fined. First, the input layer is defined. The model should
work with a fixed number of input parameters (the ng= 18
grid points, see Chap. 4.1). Afterwards additional hidden
layers are added to the model. These hidden layers are
mainly characterized by their neuron number and the acti-
vation function of the contained neurons. Different topolo-
gies and hyper-parameters were tested here. The results are
described in Chap. 5.3. The last layer added is the output
layer. This receives as many neurons as output variables to
be computed. After the topology of the network is defined,
the model is compiled. Here the learning rate and the loss
function are defined. A variation of the learning rate shows
that a higher value than 0.001 leads to a slightly accelerated
learning process, but the achieved loss value is higher at the
end. Thus, 0.001 is used as the learning rate. A square error
function is used as the loss function, since this is a regres-
sion problem and not a classification problem.

The third step is the training of the model. The training
data set used for this is described in Chap. 4.2. A group size
of 32 is chosen, because the state of the art recommends it,
see Chap. 2.1. The training is always performed in blocks
of 1000 epochs each, called “training unit” in the following.
Afterwards, the result of the loss function is considered and,
if necessary, the next 1000 epochs are trained. One “training
unit” takes about 40s. The number of necessary “training
units” varies depending on the topology of the DNN.

5.3 Variation of the topology and the
hyperparameters of the network

The DNN is investigated by examining the influence of the
number of hidden layers, the number of neurons per layer
and the activation functions used. As a first step, the settings
from NOESIS OPTIMUS are used. Since it could not be
determined which activation function is used by OPTIMUS,
different activation functions are tested here. In Fig. 4 the
ratio between the predicted and the actually calculated value
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Table2 Comparison of the model approaches in NOESIS OPTIMUS

Modelling Strategy R ross Modelling Strategy R2ross
Deep neural networks 0.9348 Random Forrest Regression 0.5994
Radial basis functions 0.8613 Taylor-Polynom 0.572
Kriging 0.835 Optimale Response Surface Modelling 0.4979
Shallow neural networks 0.6899 Akaike information Criterion 0.2664
Relevance Vector Regression 0.6121

is shown on the left side for the two characteristic values
fluctuation width and first tooth meshing order. The RMS
value as well as the parabolic correlations and the skewness
behave similarly, but are not shown here for reasons of
space.

The training data set itself is shown on the left. In
a perfect prediction, all points, each representing a variant,
would lie on the line of origin in the middle. This is not
the case. To better visualize the deviation of the prediction
from the ideal result, a regression line is placed through
the points, highlighting the deviation from the original line.
In the middle of Fig. 4, the same characteristic values and
the same model are shown. Here, however, not the training
data set but the test data set was predicted.

It can be seen that the deviations between the actual val-
ues and the predicted values are increasing. On the right
side, a prediction of the training data set is shown again.
Here, however, the activation function in the model has been
changed from Softmax to Softplus. The prediction accuracy
of the characteristic values of the test data set is already
better with this activation function than the prediction of
the characteristic values of the training data set with the
Softmax activation function. In addition to the softmax and
softplus activation functions, elu, relu and tanh functions
were also tested. However, these showed a lower quality of
prediction. After the softplus activation function was deter-
mined to be promising for the application, the number of
neurons per layer is varied.

The result of varying the number of neurons is shown in
Fig. 5. It can be seen that a higher number of neurons pro-

Fig.4 Influence of the activation
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duces a significant improvement in the prediction quality.
Likewise, no deterioration due to an overfit can be detected.
In the area of the low amplitudes of the first tooth mesh-
ing order, outliers can still be seen. The reason for this
could be that there are not enough examples of geometry
in the training data set that produce a very low first tooth
meshing order. This is also supported by the fact that only
very few points in the test data set have such a low first
tooth meshing order. Both training data set and test data set
should in principle have a similar frequency distribution in
the boundaries of the variant space.

In the following, it will therefore be test whether a net-
work with more neurons and layers can in principle predict
the training data set better than a network with fewer neu-
rons and layers if the training is sufficiently long. In Fig. 6,
the upper diagrams in the left and middle columns show
the self-prediction of the training data set.

It was trained with a factor ten low learning rate (0.0001
instead of 0.001) until the loss value did not change. No dif-
ferences can be seen between the two networks in the self-
prediction. However, the network with two hidden layers
and 64 neurons per layer trained significantly longer than
the network with three hidden layers and 256 neurons per
layer.

The prediction of the test data set in the lower two dia-
grams shows an improvement in the mapping when exam-
ined closely. Likewise, for the network with two hidden lay-
ers and 64 neurons, an overfit already occurs. On the right
side of Fig. 6, the model is shown in a state in which it has
been trained only up to a loss value L=0.0085. The “trained
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out” version on the left shows a loss value of L=0.0005. It
can be seen here that despite the higher loss value, the test
data set is better predicted, i.e. there is less overfit.

For the network with three hidden layers and 256 neu-
rons, an overfit could in principle already be present. How-
ever, the test data set still shows a better prediction accuracy
than the other two models.

The advantage of calculating the excitation with the
DNN can be illustrated by an example. For a deviation
surface from the micro geometry C,=7um, Cye=35pum,
Cp=Tpm, Cyp=5pm, Coa=5pum, sCoa=0.9 the characteris-
tic values of the total angular misalignment are determined
with ZAKO3D and with the DNN. ZAKO3D calculates
f,1=0.098 um for the first tooth meshing order. The DNN
calculates f,;=0.099um. The value range in the vari-
ant space for the first tooth meshing order extends from
f,1=0.003 um to f,;=0.521 um. A deviation of Af,;=1nm
in the prediction is therefore to be regarded as small. How-
ever, relevant differences occur in the calculation duration.
While ZAKO3D needs t;=551s to perform the simula-
tion the DNN has the result after t,=0.026s and is thus
21,192 times faster. Since the calculation of the DNN can
be parallelized better than parallel running ZAKO3D cal-
culations, even higher speed advantages can be achieved

@ Springer

on a computer with a 12 core CPU with a large number
of calculations. For example, the DNN computes the 480
variants of the test data set with t;=0.038s ~ 1,000,000
times faster than ZAKO3D with t;=10h. This speed ad-
vantage allows the user new application areas of tooth
contact analysis. It would thus be possible to simulative
pair all wheels with all pinions for a production lot and thus
calculate the pairing setup that ensures the best excitation
behavior. In this way, the optimum can be extracted from
existing resources. Since the original ZAKO3D simulation
model had been validated with real measurements and the
DNN predicts the same results as the original model, it can
be assumed, that the results of the DNN also match the
measurements.

6 Summary and outlook

The aim of the work was to determine the characteris-
tic values of the transmission error (TE) of a gear pair
with deviation faster than it is possible with a conventional
ZAKO3D calculation under load. To achieve that goal a sur-
rogate modelling approach was chosen. Therefore a training
dataset of 3000 topographies was created and calculated in
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ZAKO3D. Characteristic values were determined from the
calculated TE. Analogously a test dataset of 480 variants
was formed. Several surrogate modelling strategies where
tested with NOESIS OPTIMUS. The most promising ap-
proach, a Deep Neural Network, was built in PYTHON
with KERAS as part of TENSORFLOW. For this network,
different hyperparameters were tested and the effects on the
predictability of the test data set were investigated. It was
shown that characteristic values such as the first gear mesh
order, the fluctuation width and the RMS value can be pre-
dicted well with deep neural networks. It is thus possible to
determine characteristic values of the TE under load with
sufficient accuracy in a few milliseconds.

During the optimization of the deep neural networks it
was found that a higher number of variants and in partic-
ular a higher number of variants in certain value ranges
could further increase the prediction quality of the meta
model. Therefore, it should be investigated whether neural
networks with even higher prediction quality can be gener-
ated with a higher number of variants.

Furthermore, only quasi-statically calculated TEs were
investigated in this work. Therefore, it should be investi-
gated whether the method of the parameterized sum de-
viation surface as input variable for a meta-model could
also be successfully applied in combination with dynamics
models.

Due to the speed advantage achieved in quasi-static tooth
contact analysis, the developed method could already be
used in industrial production. A live quasi-static check of
the excitation behavior of the gears to be installed could be
carried out. Likewise, the optimum pairings could be found
for a larger quantity of gears and pinions.
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