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The aim of this contribution is to present up-to-date tables, which summarize the state-of-the-art relations for 
annular flow velocities, flow rates and flow forces in Newtonian, stationary incompressible Couette- and 
Poiseuille-flows, considering concentric and eccentric annuli together with limiting cases for small gaps. These 
analytical relations can then be applied to custom system simulation components and look-up tables for entire 
system simulations. Tailor-made simulation components (digital twins) containing analytical formulae are easily 
shared between customers and vendors, enhancing cross-entrepreneurial product optimization. All presented 
formulae are derived from the 3D Navier-Stokes equations and the high accuracy of the analytical formulae are 
validated with 3D CFD-simulations for selected representative cases.  
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1 Introduction 

Computational power has increased significantly in the last couple of years and fluid dynamic problems can now 
be solved directly by numerically integrating the Navier-Stokes equations. However, when modelling fluid power 
systems such as hydraulic valves, transmission systems, artificial hearts or the human brain, a direct 3D-modelling 
of all relevant physical effects and operating points is still too difficult and time-consuming. In these situations, 
system simulation software is often used, which solves simplified 0D- and 1D-models. The various components 
utilized there are often based on analytical relationships between input and output quantities. In times of 
connectivity and I4.0, a cross-entrepreneurial product optimization realized e.g. by exchanging system simulation 
components (digital twins) is fundamental. Popular system simulation tools are for instance Simcenter Amesim, 
ANSYS Twin Builder, Dymola, DSHPlus, GT-SUITE or OpenModelica.  

For reliable results, it is important that the appropriate analytical relationships are implemented in the system 
simulation software. However, in literature and software alike, these relationships may vary and it is not clear at 
all which versions are the appropriate ones. Depending on the edition of classical fluid power text books such as 
Matthies and Renius [15], Findeisen [4], Blackburn et al. [2] or Khaimovich [8] one can find different exponents 
or radii in the formulae for e.g. flow rates or fluid forces, which may or may not or depend on further parameters 
like eccentricity.  

The analytical relations we focus on in this work are the flow rates and flow forces in concentric and eccentric 
annular flow domains. Annular flow between two cylinders is of interest when modelling electro-hydraulic valve 
systems, where the annular flow describes the internal leakage between bushing and spool or the fluid flow caused 
by electric actuation between armature and polecap. Another example, in this case related to hemodynamics, is the 
flow of cerebrospinal fluid in periarterial spaces (Tithoff et al. [24]). In all these applications, both the flow rates 
and forces that act on the inner ‘cylinder’ (armature, spool or penetrating artery in Figure 1) are relevant (Lauer-
Baré et al [13], Secomb [23] ). In another application, Secomb and El-Kareh [22] showed a case where 
hemodynamic annular flow occurs in arteries due to aggregated red-cells that represent a moving ‘core’. 

The 13th International Fluid Power Conference, 13. IFK, June 13-15, 2022, Aachen, GermanyThe 13th International Fluid Power Conference, 13. IFK, June 13-15, 2022, Aachen, Germany

866866



The 13th International Fluid Power Conference, 13. IFK, March 21-23, 2022, Aachen, Germany 

 

Figure 1: Annular flow applications; electrohydraulic valve from Hilite1 (left) and arteries surrounded by 
periarterial spaces in the human brain (right, image taken from Tithoff et al. [24]) 

From the fluid mechanical perspective, the equations that govern the velocity distribution of oil or blood in the 
cases mentioned above are given by the Navier-Stokes equations. In many applications though it suffices to 
consider the related incompressible, steady state version. The flow rate and flow force formulae found in current 
literature vary between different authors and it is not clear at all which version is correct, when they apply and 
how they are related to the governing Navier-Stokes system. 

The strategy to obtain correct flow forces and flow rates in this work consists in solving the corresponding Stokes 
problem analytically in a 2D annular domain (Figure 2) for the axial fluid velocity and then compute flow forces 
and flow rates via analytical postprocessing. That is the main content of the following sections. In flows through 
annular domains, often the axial fluid velocity component dominates and as explained in Lauer-Baré et al [13], 
White [25], in this case the steady-state incompressible Navier-Stokes system can be simplified to obtain the 
steady-state Stokes equation. 

 

Figure 2: 2D annular flow domain obtained as cross-section of two eccentrically mounted cylinders (here 
armature and polecap are used, compare with left part of Figure 1) 

The Stokes equation in annular domains as depicted in Figure 2 supplemented by boundary conditions for a moving 
inner cylinder reads as follows: 

−𝜇𝜇∆𝑢𝑢 = ∆𝑝𝑝
𝑙𝑙  for 𝑅𝑅1 < √𝑥𝑥2 + (𝑦𝑦 + 𝑏𝑏)2 and √𝑥𝑥2 + 𝑦𝑦2 < 𝑅𝑅2 (1) 

𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 0 for √𝑥𝑥2 + 𝑦𝑦2 = 𝑅𝑅2  

𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 𝑢𝑢𝐴𝐴 for  √𝑥𝑥2 + (𝑦𝑦 + 𝑏𝑏)2 = 𝑅𝑅1  

                                                           
1 https://www.hilite.com/en/company 
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Here, 𝑏𝑏 is the absolute eccentricity and 𝑅𝑅1, 𝑅𝑅2 denote the radius of inner and outer cylinder respectively. The 
moving inner cylinder drags the fluid with it and leads to a fixed fluid velocity of 𝑢𝑢𝐴𝐴 across its surface.  

It is reminded that the system (1) describes Couette-flow when ∆𝑝𝑝 = 0 and 𝑢𝑢𝐴𝐴 ≠ 0, Poiseuille-flow when ∆𝑝𝑝 ≠ 0 
and 𝑢𝑢𝐴𝐴 = 0 and Couette-Poiseuille flow when ∆𝑝𝑝 ≠ 0 and 𝑢𝑢𝐴𝐴 ≠ 0. Since (1) is a linear problem, Couette-Poiseuille 
flow can be obtained by superposing Couette- and Poiseuille-flow.  𝑙𝑙 denotes the length of the cylinders, ∆𝑝𝑝 the 
pressure drop and 𝜇𝜇 the dynamic viscosity of the fluid. 

The ultimate aim of this contribution is to present up-to-date tables, which summarize the state-of-the-art of 
Newtonian, stationary, incompressible annular flow velocities, flow rates and flow forces that act on the surface 
of the inner cylinders (for example on armature, spool, or arteries). This includes Couette- and Poiseuille-flow, 
concentric and eccentric annuli as well as limiting cases for small gaps. 

 

2 Previous Works and Methods 

In order to solve (1) for the velocity and perform corresponding postprocessing, results from Piercy et al [20], 
White [25], Lauer-Baré et al. [13] and Lauer-Baré and Gaertig [14] are summarized and extended. The methods 
used for these kinds of problems in the state-of-the-art literature are briefly referenced as well. 

In the concentric case, it is a standard approach to express the problem in radial coordinates (see e.g. White [25] 
or Landau and Lifshitz [11]) and to seek the velocity distribution in the form of 

𝑢𝑢(𝑟𝑟) = 𝑐𝑐1 ∙ 𝑟𝑟2 + 𝑐𝑐2 ∙ ln 𝑟𝑟 + 𝑐𝑐3 (2) 

The eccentric case on the other hand is not as straightforward. There it is common to transform the eccentric 
annulus given in standard x-y Cartesian coordinates to a simpler domain with conformal mappings (see Lauer-
Baré and Gaertig [14]), i.e. holomorphic functions in the complex plane. The map can be specified by using two 
new coordinates ξ, η, together with instructions on how to transform between these two systems via 𝑤𝑤(𝑥𝑥 + 𝑖𝑖𝑖𝑖) =
𝜉𝜉 + 𝑖𝑖𝑖𝑖. The problem is then solved more easily in the new coordinates ξ, η in the simple domain (typically called 
the w-plane) and then transformed back to the original domain. One big advantage of conformal mappings is that 
they preserve harmonic functions. There is no trade-off between a simpler domain but a more complicated 
differential equation to solve; harmonic functions in one domain remain harmonic in the other domain as well. 
Piercy et al. [20] transformed an eccentric annulus to a rectangle in order to solve the corresponding Poiseuille-
problem.  

Recently, Lauer-Baré and Gaertig [14] extended Piercy’s result to Couette-flow, too. Additionally, Lauer-Baré 
and Gaertig [14] solved the Couette-flow problem in an eccentric annulus by mapping the eccentric annulus to a 
concentric annulus2 (Figure 3a).  Lauer-Baré and Gaertig [14] used slightly adapted transformations from Piercy 
et al. [20] and Brown and Churchill [3] (Figure 3b). With the abbreviation 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 the transformation to the 
concentric annulus reads as 𝑤𝑤(𝑥𝑥 + 𝑖𝑖𝑖𝑖) = (𝑧𝑧 + 𝑖𝑖𝑖𝑖)/(𝑎𝑎𝑎𝑎 + 𝑖𝑖) and the conformal map to the rectangle is given by 
𝑤𝑤(𝑥𝑥 + 𝑖𝑖𝑖𝑖) = 2 ∙ arctan ((𝑧𝑧 + 𝛾𝛾𝛾𝛾)/𝑐𝑐); the constants are specified in the following sections.3 A similar 
transformation as in Piercy et al [20] was used in Secomb and El-Kareh [22], where the velocity, flow rate and 
flow force of the eccentric Couette-flow are computed. Conformal mappings where also used recently with SymPy 
in the context of potential flow in Grm [5]. 

                                                           
2 https://www.youtube.com/watch?v=P5ybpjv2uDA 
3 For an animation showing the unfolding of an eccentric annulus to a rectangle, see 
https://github.com/zolabar/ConformalMappingSympy 
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Figure 3: Flow domain in the w-plane after mapping the eccentric annulus of Figure 2 to a concentric annulus 
(a) and to a rectangle (b); the colours indicate how inner and outer boundaries are mapped onto the simpler 
domain (compare with Figure 2)  

An implementation and 1D-visualization of Piercy’s Poiseuille-flow velocity was presented by Kolitawong and 
Giacomin [9]. Lauer-Baré and Gaertig [14] visualized Piercy’s Poiseuille-flow velocity and the corresponding 
Couette-flow velocity in 2D. As we know from Piercy et al. [20], once having found the velocity in such a way, 
the analytical computation of the flow force is easy. Not as simple as that however is the calculation of the 
corresponding flow rate, since this involves transforming integrals. In order to derive the limiting flow rates and 
flow forces for small gaps, Taylor expansions are used (see White [25] and Lauer-Baré et al [13]).  Most of these 
expansions can be carried out with the help of the open-source computer algebra system (CAS) SymPy (Meurer 
et al [16] and Lauer-Baré and Gaertig [14])4. Finally, in order to approximate eccentric flow rates and flow forces 
by concentric flow rates and flow forces, Taylor expansions in the relative eccentricity are discussed. For selected 
cases, velocities and forces are compared to the corresponding results obtained from 3D Finite Volume Methods 
(using ANSYS CFX), which were used to solve the full set of Navier-Stokes equations. 

 

3 Results 

Before the velocities and their derived postprocessing expressions like flow rates and forces are stated, a comment 
on the existence and uniqueness of the velocities, i.e. solutions to (1) is in order. The system (1) has a unique 
solution, as proved by Ladyzhenskaya [10], hence all solution to (1) are identical when expressed in the same 
coordinates, once the boundary conditions are fixed.  The different conformal mappings to the transformed w-
plane, that by Ladyzhenskaya [10] all lead to the identical solution in the original z-plane, can be interactively 
visualized with the open-source software conformalMaps, e. g. via the Binder Project (see Project Jupyter et al. 
[7], Lauer-Baré and Aditya [12]). 

3.1 Concentric annulus 

3.1.1 Couette Flow 

In the concentric case, that is 𝑏𝑏 = 0 in (1) and Figure 2, the velocity of the Couette-flow is given by 

𝑢𝑢𝐶𝐶𝐶𝐶(𝑟𝑟) = 𝑢𝑢𝐴𝐴
ln(𝑟𝑟/𝑅𝑅2)
ln(𝑅𝑅1/𝑅𝑅2)

 
(3) 

The flow rate can be obtained by integration of the velocity distribution over the flow area 

                                                           
4 https://github.com/zolabar/ConformalMappingSympy 

a) b) 
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𝑄𝑄𝐶𝐶𝐶𝐶 = ∫ ∫ 𝑢𝑢𝐶𝐶𝐶𝐶(𝑟𝑟)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑢𝑢𝐴𝐴𝜋𝜋 ∙ ((𝑅𝑅2
2 − 𝑅𝑅1

2)
2 𝑙𝑙𝑙𝑙(𝑅𝑅2 𝑅𝑅1)⁄ − 𝑅𝑅1

2)
𝑅𝑅2

𝑅𝑅1

2𝜋𝜋

0

 
(4) 

The flow force can then be obtained by integrating the shear stress corresponding to (3) over the surface of the 
inner cylinder 

𝐹𝐹𝐶𝐶𝐶𝐶 = ∫ ∫ (𝜇𝜇𝑟𝑟 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢𝐶𝐶𝐶𝐶(𝑟𝑟))

𝑟𝑟=𝑅𝑅1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑙𝑙

0

2𝜋𝜋

0
= −𝑢𝑢𝐴𝐴

2𝜋𝜋𝑙𝑙𝜇𝜇
𝑙𝑙𝑙𝑙(𝑅𝑅2 𝑅𝑅1⁄ ) 

(5) 

A Taylor expansion of (4) in the gap 𝛿𝛿 = 𝑅𝑅2−𝑅𝑅1 around 𝛿𝛿 = 0 yields the flow rate for small gaps. The idea of 
these expansions is to compute all derivatives symbolically, either with SymPy or by hand, and to derive the limits, 
when the respective small parameter (gap or eccentricity) tends to zero. After substituting 𝑅𝑅2 by 𝑅𝑅1 + 𝛿𝛿  in (4) and 
considering 𝑄𝑄𝐶𝐶𝐶𝐶  as a function of 𝛿𝛿, the formula of the series for (4) is given by 

𝑄𝑄𝐶𝐶𝐶𝐶 = 𝑄𝑄𝐶𝐶𝐶𝐶 (𝛿𝛿 = 0) + 𝜕𝜕𝑄𝑄𝐶𝐶𝐶𝐶 (𝛿𝛿 = 0)
𝜕𝜕𝜕𝜕 𝛿𝛿 + 1

2
𝜕𝜕2𝑄𝑄𝐶𝐶𝐶𝐶 (𝛿𝛿 = 0)

𝜕𝜕𝛿𝛿2 𝛿𝛿2 + 𝑂𝑂(𝛿𝛿3) 
(5.1) 

The coefficients of this truncated power series are computed with SymPy and the final result is given by 

𝑄𝑄𝐶𝐶𝐶𝐶 = 𝑢𝑢𝐴𝐴𝜋𝜋𝑅𝑅1𝛿𝛿 + 𝑢𝑢𝐴𝐴𝜋𝜋𝑅𝑅1
6 𝛿𝛿2 − 𝜋𝜋𝑢𝑢𝐴𝐴

180𝜋𝜋𝑅𝑅1
𝛿𝛿4 + 𝑂𝑂(𝛿𝛿5) 

(6) 

The constant, zeroth order term of (5.1) is zero and the leading term of (5.1) is the first order term 𝑢𝑢𝐴𝐴𝜋𝜋𝑅𝑅1𝛿𝛿. Hence, 
(6) can be approximated for small gaps as 

𝑄𝑄𝐶𝐶𝐶𝐶 ≈ 𝑢𝑢𝐴𝐴𝜋𝜋𝑅𝑅1𝛿𝛿 (7) 

In addition, for small gaps a Taylor expansion of the denominator in (5) around 𝛿𝛿 = 0 and a subsequent long 
division leads to a truncated Laurent series for the corresponding flow force 

𝐹𝐹𝐶𝐶𝐶𝐶 = −𝑢𝑢𝐴𝐴2𝜋𝜋𝑅𝑅1𝑙𝑙𝜇𝜇𝛿𝛿−1 − 𝑢𝑢𝐴𝐴𝑙𝑙𝜋𝜋𝜋𝜋 + 𝑢𝑢𝐴𝐴𝑙𝑙𝜋𝜋𝜋𝜋
6𝑅𝑅1

𝛿𝛿 + 𝑂𝑂(𝛿𝛿2) 
(8) 

Hence for small gaps this can be approximated by 

𝐹𝐹𝐶𝐶𝐶𝐶 ≈= −𝑢𝑢𝐴𝐴2𝜋𝜋𝑅𝑅1𝑙𝑙𝜇𝜇𝛿𝛿−1 (9) 

 

3.1.2 Poiseuille Flow 

In the concentric case, that is 𝑏𝑏 = 0 in (1) and Figure 2, the velocity of the Poiseuille-flow is given by  

𝑢𝑢𝑃𝑃𝑃𝑃(𝑟𝑟) = ∆𝑝𝑝
4𝜇𝜇𝜇𝜇 (𝑅𝑅2

2 − 𝑟𝑟2 − (𝑅𝑅2
2 − 𝑅𝑅1

2) 𝑙𝑙𝑙𝑙(𝑅𝑅2 𝑟𝑟⁄ )
𝑙𝑙𝑙𝑙(𝑅𝑅2 𝑅𝑅1⁄ )) 

(10) 

The flow rate can be obtained by integration of (10) over the flow domain (Piercy et al [20] and White [25])  

𝑄𝑄𝑃𝑃𝑃𝑃 = ∫ ∫ 𝑢𝑢𝑃𝑃𝑃𝑃(𝑟𝑟)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜋𝜋 ∙ ∆𝑝𝑝
8 ∙ 𝜇𝜇 ∙ 𝑙𝑙 (𝑅𝑅2

4  − 𝑅𝑅1
4 − (𝑅𝑅2

2  − 𝑅𝑅1
2)2

ln(𝑅𝑅2 𝑅𝑅1⁄ ) )
𝑅𝑅2

𝑅𝑅1

2𝜋𝜋

0

 
(11) 

The flow force can then be obtained by integration of the shear stress corresponding to (10) over the surface of the 
inner cylinder (see Bird et al. [1]) 

𝐹𝐹𝑃𝑃𝑃𝑃 = ∫ ∫ (𝜇𝜇𝑟𝑟 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢𝑃𝑃𝑃𝑃(𝑟𝑟))

𝑟𝑟=𝑅𝑅1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑙𝑙

0

2𝜋𝜋

0
= −𝜋𝜋∆𝑝𝑝 (𝑅𝑅1

2 −
(𝑅𝑅2

2 − 𝑅𝑅1
2)

2 ln(𝑅𝑅2 𝑅𝑅1⁄ )) 
(12) 
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A Taylor expansion of (11) around 𝛿𝛿 = 0 yields the flow rate for small gaps 

𝑄𝑄𝑃𝑃𝑃𝑃 = 𝜋𝜋 ∙ ∆𝑝𝑝 ∙ 𝑅𝑅1
6 ∙ 𝜇𝜇 ∙ 𝑙𝑙 ∙ (𝛿𝛿3 + 𝛿𝛿4

2 ∙ 𝑅𝑅1
+ 𝛿𝛿5

60 ∙ 𝑅𝑅1
2) + 𝑂𝑂(𝛿𝛿6) 

(13) 

Hence for small gaps it is 

𝑄𝑄𝑃𝑃𝑃𝑃 ≈ 𝜋𝜋 ∙ ∆𝑝𝑝 ∙ 𝑅𝑅1
6 ∙ 𝜇𝜇 ∙ 𝑙𝑙 ∙ 𝛿𝛿3 

(14) 

Similarly, a Taylor expansion of (12) around 𝛿𝛿 = 0 yields the flow rate for small gaps 

𝐹𝐹𝑃𝑃𝑃𝑃 = ∆𝑝𝑝𝜋𝜋𝑅𝑅1𝛿𝛿 + ∆𝑝𝑝𝜋𝜋
6 𝛿𝛿2 − ∆𝑝𝑝𝜋𝜋

180 ∙ 𝑅𝑅1
2 𝛿𝛿4 + 𝑂𝑂(𝛿𝛿5) 

(15) 

Hence for small gaps it is 

𝐹𝐹𝑃𝑃𝑃𝑃 ≈ ∆𝑝𝑝𝜋𝜋𝑅𝑅1𝛿𝛿 (16) 

 

3.2 Eccentric annulus 

3.2.1 Couette Flow 

In the eccentric case, that is 𝑏𝑏 > 0 in (1) and Figure 2, the velocity of the Couette-flow velocity can be obtained 
by solving the Stokes equation in the w-plane (see Lauer-Baré and Gaertig [14] for details). When the eccentric 
annulus is transformed into a rectangle (see right part of Figure 3), as done by Piercy et al. [20] for the Poiseuille-
flow, one can extend Piercy’s result to Couette-flow as described by Secomb and El-Kareh [22], and the velocity 
is given by the simple relationship 

𝑢𝑢𝐶𝐶𝐶𝐶(𝜉𝜉, 𝜂𝜂) = 𝑢𝑢𝐴𝐴
𝜂𝜂 − 𝛼𝛼
𝛽𝛽 − 𝛼𝛼 (17) 

where 

𝜉𝜉 = −arctan2(2𝑐𝑐𝑐𝑐, 𝑐𝑐2 − 𝑥𝑥2 − (𝛾𝛾 + 𝑦𝑦)2) (18) 

𝜂𝜂 = 1
2 ln (𝑥𝑥2 + (𝑦𝑦 + 𝛾𝛾 + 𝑐𝑐)2

𝑥𝑥2 + (𝑦𝑦 + 𝛾𝛾 − 𝑐𝑐)2) 
 

and where the various constants are defined by 

𝑐𝑐 = √𝐺𝐺2 − 𝑅𝑅2
2,    𝐺𝐺 = 1 2𝑏𝑏⁄ ∙ (𝑅𝑅2

2 − 𝑅𝑅1
2 + 𝑏𝑏2),  

 
 𝛼𝛼 = 1 2⁄ ∙ ln[(𝐺𝐺 + 𝑐𝑐) (𝐺𝐺 − 𝑐𝑐)⁄ ] ,   𝛽𝛽 =  1 2⁄ ∙ ln[(𝐺𝐺 − 𝑏𝑏 + 𝑐𝑐) (𝐺𝐺 − 𝑏𝑏 − 𝑐𝑐)⁄ ] ,  𝛾𝛾 = 𝑐𝑐 ∙ coth (𝛼𝛼) 
 

(19) 

Alternatively to Secomb and El-Kareh [22], the velocity can be expressed in a different way, when transforming 
the eccentric annulus into a concentric annulus (see left part of Figure 3 and Lauer-Baré and Gaertig [14] for 
details). Then, the velocity reads as  

𝑢𝑢𝐶𝐶𝐶𝐶(𝜌𝜌) = 𝑢𝑢𝐴𝐴
ln(𝜌𝜌)
ln(𝑅𝑅) 

(21) 

where 𝜌𝜌 = √𝜉𝜉2 + 𝜂𝜂2 and 

𝜉𝜉 = 𝑎𝑎𝑥𝑥2 + (𝑅𝑅2 + 𝑎𝑎𝑎𝑎)(𝑅𝑅2𝑎𝑎 + 𝑦𝑦)
𝑎𝑎2𝑥𝑥2 + (𝑅𝑅2 + 𝑎𝑎𝑎𝑎)2  

(22) 
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𝜂𝜂 = 𝑥𝑥(−𝑅𝑅2 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎(𝑅𝑅2𝑎𝑎 + 𝑦𝑦))
𝑎𝑎2𝑥𝑥2 + (𝑅𝑅2 + 𝑎𝑎𝑎𝑎)2  

 

and the constants a and R are given by 

𝑎𝑎 =

𝑅𝑅2 (√(1 − (− 𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

)
2

) (1 − (𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

)
2

) + (− 𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

) (𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

) + 1)

2𝑏𝑏

𝑅𝑅 =

𝑅𝑅2 (√(1 − (− 𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

)
2

) (1 − (𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

)
2

) − (− 𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

) (𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

) − 1)

2𝑅𝑅1                   

 

(23) 

As already briefly mentioned in the beginning of Section 3, by Ladyzhenska’s [10] theorems the relations (17) and 
(21) lead to the identical solution when expressed in the same coordinate system, i.e. the original flow domain. 
The flow rate was obtained by Secomb and El-Kareh [22] and reads as  

𝑄𝑄𝐶𝐶𝐶𝐶 = −𝜋𝜋𝑢𝑢𝐴𝐴 (𝑅𝑅1
2 − 𝑏𝑏𝑏𝑏

𝛽𝛽 − 𝛼𝛼) 
(24) 

The flow force can be obtained by integration in the w-plane. The force obtained from (17) reads as 

𝐹𝐹𝐶𝐶𝐶𝐶 = −2𝜋𝜋 𝑢𝑢𝐴𝐴𝑙𝑙𝜇𝜇
𝛽𝛽 − 𝛼𝛼 

(25) 

while the corresponding force obtained from (21) is given by 

𝐹𝐹𝐶𝐶𝐶𝐶 = − 𝑢𝑢𝑅𝑅2𝜋𝜋𝜋𝜋𝜋𝜋
ln(𝑐𝑐𝐹𝐹 ∙ 𝑅𝑅2 𝑅𝑅1⁄ ) 

(26) 

Here the various constants are defined as 

𝑐𝑐𝐹𝐹 = 1
2 − 1

2 𝑐𝑐1𝑐𝑐2 + 1
2 √(1 − 𝑐𝑐12)(1 − 𝑐𝑐22)                 

 

𝑐𝑐1 = 𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2

𝑐𝑐2 = − 𝑅𝑅1
𝑅𝑅2

+ 𝑏𝑏
𝑅𝑅2                   

 

 

 

In the eccentric case both force formulae (25) and (26) are of course identical, however (26) has the advantage, 
that it is also defined for the concentric case (𝑏𝑏 = 0), therefore we recommend using that relation. As in the sections 
before, Taylor expansions can be carried out with respect to gap size and relative eccentricity. Combining these 
results from Lauer-Baré et al [13] and the flow rate (24) from Secomb and El-Kareh [22], one obtains 

𝑄𝑄𝐶𝐶𝐶𝐶 ≈ 𝑄𝑄𝐶𝐶𝐶𝐶(1 + 𝑎𝑎(𝜅𝜅)𝜀𝜀2) (27) 

where 𝜅𝜅 =  𝑅𝑅1/𝑅𝑅2  is the ratio of inner to outer radius and 

𝑎𝑎(𝜅𝜅) = −(1 − 𝜅𝜅) (1 − 𝜅𝜅2) + ln(𝜅𝜅) (1 + 𝜅𝜅2)

2 (𝜅𝜅2 + (1 − 𝜅𝜅2)
2 ln(𝜅𝜅) ) ln2(𝜅𝜅) (1 + 𝜅𝜅)

 
 

For small gaps, this can be further simplified by combing a result from Lauer-Baré et al [13] and relation (7) 

𝑄𝑄𝐶𝐶𝐶𝐶 ≈ 𝑢𝑢𝐴𝐴𝜋𝜋𝜋𝜋1𝛿𝛿 (1 +
(1 − 𝜅𝜅)

6 𝜀𝜀2) 
(28) 
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3.2.2 Poiseuille Flow 

In the eccentric case, that is 𝑏𝑏 > 0 in (1) and Figure 2, the velocity of the Poiseuille-flow reads as 

𝑢𝑢𝑃𝑃𝑃𝑃 = 𝑐𝑐2∆𝑝𝑝
4𝑙𝑙𝜇𝜇 (𝛹𝛹 − − cos(𝜉𝜉) + cosh (𝜂𝜂)

cos(𝜉𝜉) + cosh (𝜂𝜂) ) 
(29) 

where 𝜉𝜉, 𝜂𝜂  are the new coordinates from (18) and  𝑐𝑐 is a constant from (19). Furthermore, 𝛹𝛹 is a harmonic function 
introduced by Piercy et al. [20] and is given by  

𝛹𝛹 = 4 ∙ 𝛹𝛹1 + 4 ∙ 𝐴𝐴 ∙ 𝜂𝜂 + 4 ∙ 𝐵𝐵 (30) 

with  

𝛹𝛹1 = ∑
(−1)𝑘𝑘(𝑠𝑠1 + 𝑠𝑠2)cos (𝑘𝑘𝜉𝜉)

sinh (𝑘𝑘(𝛽𝛽 − 𝛼𝛼))

∞

𝑘𝑘=1
 

(31) 

and  

𝑠𝑠1 = 𝑒𝑒−𝑘𝑘𝛽𝛽sinh (𝑘𝑘(𝜂𝜂 − 𝛼𝛼))coth (𝛽𝛽) (32) 

𝑠𝑠2 = −𝑒𝑒𝑘𝑘𝛼𝛼sinh (𝑘𝑘(𝜂𝜂 − 𝛽𝛽))coth (𝛼𝛼)  

as well as 

𝐴𝐴 = coth(𝛽𝛽) − coth (𝛼𝛼)
2(𝛽𝛽 − 𝛼𝛼)  

(33) 

𝐵𝐵 = −𝛽𝛽(1 − 2coth (𝛽𝛽)) + 𝛼𝛼(1 − 2coth (𝛼𝛼))
4(𝛽𝛽 − 𝛼𝛼)  

 

The formulae above are implemented and documented in interactive Jupyter notebooks that can be found on the 
public github repository ConformalMappingSympy5. The interested reader can use these notebooks to evaluate 
and visualize (29) and various other quantities. 

The flow rate can again be obtained by integration of the velocity profile and is given by Piercy et al [20] via 

𝑄𝑄𝑃𝑃𝑃𝑃 = 𝜋𝜋 ∙ ∆𝑝𝑝
8 ∙ 𝜇𝜇 ∙ 𝑙𝑙 (𝑅𝑅2

4  − 𝑅𝑅1
4 − 4𝑏𝑏2𝑐𝑐2

𝛽𝛽 − 𝛼𝛼 − 8𝑏𝑏2𝑐𝑐2 ∑ 𝑘𝑘𝑒𝑒(−𝑘𝑘(𝛽𝛽+𝛼𝛼))

sinh(𝑘𝑘(𝛽𝛽 − 𝛼𝛼))

∞

𝑘𝑘=1
) 

(34) 

The flow force can then be calculated by integration in the w-plane (see Piercy et al. [20] for details) and the 
resulting force then reads as 

𝐹𝐹𝑃𝑃𝑃𝑃 = −𝜋𝜋∆𝑝𝑝 (𝑅𝑅1
2 − 𝑏𝑏𝑏𝑏

𝛽𝛽 − 𝛼𝛼) 
(35) 

The flow rate from (31) can be approximated by the concentric flow rate via (see Piercy et al. [20] for details) 

𝑄𝑄𝑃𝑃𝑃𝑃 ≈ 𝑄𝑄𝑐𝑐(1 + 1.5𝜀𝜀2) (36) 

where 𝜀𝜀 = 𝑏𝑏/𝛿𝛿 denotes the relative eccentricity. Piercy et al. [20] already remarked that (36) is only valid for ratios 
𝜅𝜅 =  𝑅𝑅1 𝑅𝑅2⁄ > 0.6. The authors of the current contribution think, that a factor that depends on the ratio 𝜅𝜅 and 
generalizes the constant term of 1.5 in relation (36) could be found by a Taylor expansion of (34) in the relative 
eccentricity 𝜀𝜀 around 𝜀𝜀 = 0, as done in Lauer-Baré et al. [13] for the corresponding flow forces. As far as we 
know, such a result for the flow forces has not been published yet. Using (14) for small gaps, (36) can be further 
simplified to 

                                                           
5 https://github.com/zolabar/ConformalMappingSympy 
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𝑄𝑄𝑃𝑃𝑃𝑃 ≈ 𝜋𝜋 ∙ ∆𝑝𝑝 ∙ 𝑅𝑅1
6 ∙ 𝜇𝜇 ∙ 𝑙𝑙 ∙ 𝛿𝛿3(1 + 1.5𝜀𝜀2) (37) 

As mentioned above, the eccentric flow force can be approximated by a series expansion and by using the 
concentric flow force. The result is given by 

𝐹𝐹𝑃𝑃𝑃𝑃 ≈ 𝐹𝐹𝑃𝑃𝑃𝑃(1 + 𝑎𝑎(𝜅𝜅)𝜀𝜀2) (38) 

where 

𝑎𝑎(𝜅𝜅) = −(1 − 𝜅𝜅) (1 − 𝜅𝜅2) + ln(𝜅𝜅) (1 + 𝜅𝜅2)

2 (𝜅𝜅2 + (1 − 𝜅𝜅2)
2 ln(𝜅𝜅) ) ln2(𝜅𝜅) (1 + 𝜅𝜅)

 
 

This formula was obtained via a Taylor expansion of (35) in the relative eccentricity 𝜀𝜀 around 𝜀𝜀 = 0. The 
corresponding flow force relation analogous to equation (36) for the flow rate is given by 

𝐹𝐹𝑃𝑃𝑃𝑃 ≈ 𝐹𝐹𝑃𝑃𝑃𝑃 (1 +
(1 − 𝜅𝜅)

6 𝜀𝜀2) 
(39) 

This relation is also valid for ratios 𝜅𝜅 =  𝑅𝑅1 𝑅𝑅2⁄ > 0.6, similar to relation (36). These results were obtained in 
Lauer-Baré et al. [13], too. Finally, in analogy to (37), (39) can be further simplified for small gaps to 

𝐹𝐹𝑃𝑃𝑃𝑃 ≈ ∆𝑝𝑝𝑝𝑝𝑅𝑅1𝛿𝛿 (1 +
(1 − 𝜅𝜅)

6 𝜀𝜀2) 
(40) 

3.2.3 Visualization of the analytically obtained fluid velocities 

In order to highlight some qualitative effects on the velocity distribution, an example for a combined Couette-
Poiseuille flow velocity distribution is shown in the following Figure 4. 

 

Figure 4: Example of a Couette-Poiseuille flow velocity profile by superposing (17) and (26) within a rectangle 
in the w-plane (a) and in the corresponding original eccentric annulus in the z-plane (b) 

For this example, an outer radius of 7.6 mm, an inner radius of 5 mm, an eccentricity of 50%, a prescribed velocity 
of the inner cylinder of -0.4 m/s and a pressure drop of 5 Pa were used.6 Further, an overlap of 1.55 mm and a 
viscosity of 10 mPas is used. One clearly sees, that the boundary conditions are satisfied. On the inner boundary 
of the eccentric annulus (Figure 4b) the velocity is non-zero and on the outer boundary it vanishes. Furthermore, 
in the interior the fluid disproportionally pours through the large gap, as already remarked in Piercy et al [20] and 
White [25]. The same behaviour is seen in Figure 4a in the equivalent rectangle in the w-plane. The boundary 

                                                           
6 Replicable at https://mybinder.org/ with https://github.com/zolabar/ConformalMappingSympy 
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correspondence is illustrated in Figure 2 and Figure 3b, i.e. the top of the rectangle corresponds to the inner 
boundary of the annulus and the bottom of the rectangle corresponds to the outer boundary of the annulus. 

3.2.4 CFD results 

The following diagrams show the high quality of the analytical approximations (velocity and flow force) when 
compared to CFD-results.  

 

Figure 5: Eccentric Couette flow velocity (𝜀𝜀 = 0.5) across the large gap of the annulus (left) and flow force over 
relative eccentricity (right), 3D numerical and 2D analytical results (from Lauer-Baré and Gaertig [14]) 

 

Figure 6: Eccentric Poiseuille flow velocity (𝜀𝜀 = 0.2) across larger and smaller gap of the annulus (left) and 
flow force over relative eccentricity, 3D numerical and 2D analytical results 

Figure 5 shows eccentric Couette flow velocity (left) across the large gap for an eccentricity of 𝜀𝜀 = 0.5 and flow 
force over relative eccentricity (right); for more details see Lauer-Baré and Gaertig [14]). Figure 6 shows 
corresponding graphs for eccentric Poiseuille flow. Figure 6 (left) shows Poiseuille velocities across the small and 
large gap, that correspond to an eccentricity of 𝜀𝜀 = 0.2 in Figure 6 (right). These results and the numerical details 
are more thoroughly discussed in Lauer-Baré et al. [13]. One can see, that eccentricity reduces the absolute value 
of the flow force in case of Poiseuille-flow (Figure 6 (right)), while in the case of Couette-flow, the flow force is 
increased by eccentricity (Figure 5 (right)). It is also remarked, that in Poiseuille-flow the flow force acts in flow 
direction while in Couette-flow the flow force acts against the direction of the fluid flow. The high quality of the 
analytical solutions for the cross-sectional Stokes problem is due to the fact, that in the considered cases the axial 
component of the velocity is so dominant that the contribution of the nonlinear convective terms in the original 
Navier-Stokes equations is irrelevant (Lauer-Baré et al. [13]). Therefore, the 3D Navier-Stokes equations are 
approximated sufficiently well by the 2D Stokes equation (1). In Lauer-Baré et al. [13] it is conjectured, that a 
relevant a-priori indicator for the suitability of the Stokes equation is the ratio 𝛿𝛿/𝑙𝑙. The smaller this ratio, the more 
axial the flow and hence the better the Navier-Stokes system is approximated by the Stokes equation. In Figure 5 
this ratio is 0.008 and in Figure 6 it is 0.026. However, as far as the authors know a rigorous study of the influence 
of the parameter 𝛿𝛿/𝑙𝑙 in annular flow has not yet been carried out in the state-of-the-art literature. As suggested in 
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Lauer-Baré et al. [13], a proper analysis of the parameter 𝛿𝛿/𝑙𝑙 using asymptotic expansions as in Panasenko and 
Pileckas [17] could be the content of future work. 

3.3 Summary 

This section contains the main message and result of this contribution. A tabularized systematic overview on 
analytical approximations of annular flow velocities, flow rates and flow forces for concentric and eccentric 
Couette- and Poiseuille-flow. The content of the following tables refers to the corresponding equations of the 
previous sections. Table 1 lists the available formulae for the velocities, Table 2 lists the available formulae for 
the flow rates and Table 3 lists the available formulae for the flow forces. 

 

Velocity Concentric Eccentric 

Couette (3) (17) or (21) 

Poiseuille (10) (29) 

Table 1: Annular flow velocities  

 

Flow rate Concentric Eccentric Concentric and 
small gap 

Eccentric and 
small gap 

Couette (4) (24) (7) (28) 

Poiseuille (11) (33) (14) (37) 

Table 2: Annular flow rates 

 

Flow force Concentric Eccentric Concentric and 
small gap 

Eccentric and 
small gap 

Couette (5) (25) or (26) (9) Not available 

Poiseuille (12) (35) (16) (40) 

Table 3: Annular flow forces 

Before closing this article with discussion and conclusions, some comments are in order. In our tables the 
approximation of the eccentric Couette-flow force by the concentric flow force is missing. This is due to fact, that 
the flow force formula (26) is defined for the concentric case as well, hence there is no need for a separate 
approximation of the eccentric flow force by the corresponding concentric contribution as in (38). We also want 
to stress, that the factor “1.5” in (37) (and in (36) as well) is not obtained by a Taylor expansion in the relative 
eccentricity and the general expression, corresponding to the factor 𝑎𝑎(𝜅𝜅) in (27) or (38), is still unknown to fluid 
power science. Finally, we want to remark that in the case of Poiseuille-flow eccentricity increases the magnitude 
of the flow rate and reduces the magnitude of the flow force, while in the case of Couette-flow it is vice versa. 

4 Discussion and Conclusion 

This contribution showed that Newtonian, stationary, incompressible annular flow can be described in high quality 
by the 2D-Stokes equation, formulated in the cross section, when the ratio of annular gap to cylinder length is 
negligible. However, when instead of fluids like oil, water or blood, low-viscosity gases like hydrogen are 
considered (e.g. for application in FCEVs), more differentiated a priori estimates will be necessary. In these cases, 
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it could be possible to combine the ratio of annular gap to cylinder length with the viscosity of the gas into one 
single formula.  

Well-known and recently presented analytical solutions of the Stokes equation are presented in a systematic way, 
considering concentric and eccentric annuli for Couette- and Poiseuille-flow. Further, the corresponding flow rates 
and flow forces are presented. The flow rates and forces are also derived for the limiting case of small gaps. 
Additionally, some of the flow rates and flow forces are approximated by their concentric counterparts, which are 
corrected by an auxiliary term in the squared relative eccentricity. The high quality of these analytical 
approximations was illustrated via comparisons with corresponding results obtained from a numerical solution of 
the 3D Navier-Stokes equations, computed with the commercial Finite Volume Method software ANSYS CFX. 
The obtained results can be used to generate look-up-tables for system simulations of fluid power systems by 
simulation engineers or can also be implemented directly into the system simulation software by developers. 
Further, design engineers can use these formulae during the design process, prior to detailed simulations. Finally, 
these results may be extended to non-steady cases following Pasquini et al [14] and Pasquini [15], to thermal flow 
following Shah and London [21] or to non-Newtonian fluids, as in Kolitawong and Giacomin [9].  

The increasing demand on battery cooling fluid power applications may foster the interest in annular flow that 
considers thermal effects as presented in Shah and London [21]. One example of such systems are thermal 
expansion valves7 as developed by Hilite International.  

The quality and use cases of the presented analytical formulae, as well as the indicated perspectives, show that 
analytical formulae are still relevant and useful in times of wide use of numerical and machine learning techniques. 
Further, the implementation and visualization of analytical approaches gets easier with the use of open-source or 
commercial CAS such as SymPy, Maple, Mathematica or Singular (see Hauck et al. [6]), combined with interactive 
plotting possibilities, as for example provided by the open source Python package Plotly. The authors thus 
conclude, that analytical approaches also have a great potential for the future. 

 

Nomenclature 

Variable Description Unit 

𝑢𝑢 Axial flow velocity [m/s] 

𝑢𝑢𝐶𝐶𝐶𝐶  Axial flow velocity of concentric Couette flow [m/s] 

𝑢𝑢𝐶𝐶𝐶𝐶 Axial flow velocity of eccentric Couette flow [m/s] 

𝑢𝑢𝑃𝑃𝑃𝑃 Axial flow velocity of concentric Poiseuille flow [m/s] 

𝑢𝑢𝑃𝑃𝑃𝑃 Axial flow velocity of eccentric Poiseuille flow [m/s] 

𝑄𝑄𝐶𝐶𝐶𝐶  Flow rate of concentric Couette flow [l/min] 

𝑄𝑄𝐶𝐶𝐶𝐶  Flow rate of eccentric Couette flow [l/min] 

𝑄𝑄𝑃𝑃𝑃𝑃  Flow rate of concentric Poiseuille flow [l/min] 

𝑄𝑄𝑃𝑃𝑃𝑃  Flow rate of eccentric Poiseuille flow [l/min] 

𝐹𝐹𝐶𝐶𝐶𝐶  Flow force acting on inner cylinder in concentric Couette flow [N] 

𝐹𝐹𝐶𝐶𝐶𝐶  Flow force acting on inner cylinder in eccentric Couette flow [N] 

𝐹𝐹𝑃𝑃𝑃𝑃  Flow force acting on inner cylinder in concentric Poiseuille flow [N] 

                                                           
7 https://www.hilite.com/en/products/thermal-management/components-for-coolants 
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𝐹𝐹𝑃𝑃𝑃𝑃  Flow force acting on inner cylinder in eccentric Poiseuille flow [N] 

𝑅𝑅1 Denotes the radius of the inner cylinder [mm] 

𝑅𝑅2 Denotes the radius of the outer cylinder [mm] 

𝛿𝛿 = 𝑅𝑅2-𝑅𝑅1 Denotes the annular gap or clearance between the cylinders [mm] 

𝑏𝑏 Denotes the absolute eccentricity (shift) of the inner cylinder [mm] 

𝜀𝜀 = 𝑏𝑏 𝛿𝛿⁄  Denotes the relative eccentricity of the inner cylinder [-] 

𝜅𝜅 = 𝑅𝑅1/𝑅𝑅2 Denotes the ratio of inner to outer radius [-] 

𝑙𝑙 Denotes the length of the cylinders [mm] 

∆𝑝𝑝   Denotes the pressure drop [bar] 

𝜇𝜇 Denotes the dynamic viscosity of the fluid [mPas] 
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