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Abstract

Recently, there has been a resurgence of interest in materials with unusual elec-
tronic properties such as strong nonlinearity, hysteresis, and memory. This in-
terest is due in part to the end of Moore scaling as well as the emergence of
novel computing architectures. Currently, computational performance is lim-
ited by the memory bottleneck, as physical memory is not fast or large enough
to feed the central processing unit (CPU) pipeline. One alternative is to intro-
duce a new tier of memory that must be substantially faster and more scal-
able than existing Flash storage. Another approach is to develop schemes that
take advantage of in-memory computation, as in the brain-inspired concepts
of neuromorphic computing (NC). To reach their full potential, each of these
strategies rely on the ability of new classes of memory technologies to exploit
physical mechanisms yet to be fully harnessed on an industrial level.

This dissertation contains an investigation of two such nascent nano-
technologies in the category of resistive switching (RS). The first, redox-based
resistive random access memory (ReRAM), is capable of mimicking biological
synapses by allowing storage of large numbers of interconnected and
continuously adaptable resistance values. The second technology is based on
Cr-doped V2O3, a correlated-electron material for which electronic control
of Mott insulator-to-metal transitions potentially offers a fast and durable
way to emulate certain dynamical behaviors of neurons. Here, we apply
reimagined methods and analysis of electrical measurement to these synaptic
and neuronal devices. The newly acquired data sheds further light on the
nature of the resistance transitions and is used to design physically validated
device models for embedding in large-scale neuromorphic simulations.

The measurement circuitry developed here addresses long-standing chal-
lenges in the external stabilization of device test structures, and allows (I, V)
switching curves to be captured eight orders of magnitude faster than with
commercially available equipment while causing significantly less electrical
stress to the measured devices. Applying the measurement system, we intro-
duce a new stochastic device model for solid-state synapses that is trained on a
mass quantity of statistical measurement data of ReRAM. This model enables
extremely fast (> 108 OPS) and accurate simulations of large synaptic arrays
(> 109 cells) and provides a powerful new tool for statistical analysis of resis-
tive switching data. Next, we identify an electro-thermal mechanism behind
the negative differential resistance (NDR) and excitable dynamics observed in
(V1−xCrx)2O3 nanodevices. We show fast volatile switching (< 10 ns), high
switching endurance (> 1012 cycles), and favorable scaling characteristics in
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this promising Mott insulating material. A coexisting non-volatile (NV) mech-
anism is investigated and the conditional occurrence of filamentation in the de-
vices is linked to circuit instabilities, with wider implications for NV switching
in other RS materials. The (V1−xCrx)2O3 study culminates in a physical model
that covers the scaling behavior and threshold adaptability, and is closely fit to
observed oscillatory data.
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Kurzfassung

In jüngster Zeit hat das Interesse an Materialien mit ungewöhnlichen elek-
tronischen Eigenschaften wie starker Nichtlinearität, Hysterese und Speicher-
fähigkeit wieder zugenommen. Dieses Interesse ist zum Teil auf das Ende
der Moore’schen Skalierung sowie auf die Entwicklung neuartiger Comput-
erarchitekturen zurückzuführen. Derzeit wird die Rechenleistung durch den
Speicherengpass begrenzt, da der physische Speicher nicht schnell oder groß
genug ist, um die Pipeline der Zentraleinheit (CPU) zu speisen. Eine Alter-
native ist die Einführung einer neuen Speicherebene, die wesentlich schneller
und skalierbarer sein muss als der vorhandene Flash-Speicher. Ein anderer
Ansatz besteht darin, Systeme zu entwickeln, die die Vorteile des In-Memory-
Computings nutzen, wie bei den vom Gehirn inspirierten Konzepten des neu-
romorphen Computings (NC). Um ihr volles Potenzial auszuschöpfen, ist jede
dieser Strategien auf die Fähigkeit neuer Klassen von Speichertechnologien
angewiesen, physikalische Mechanismen auszunutzen, die auf industrieller
Ebene noch nicht vollständig genutzt werden.

In dieser Dissertation werden zwei solcher aufstrebenden Nanotechnolo-
gien in der Kategorie des resistiven Schaltens (RS) untersucht. Die erste
Technologie, der redoxbasierte resistive Direktzugriffsspeicher (ReRAM), ist
in der Lage, biologische Synapsen zu imitieren, indem er die Speicherung
einer großen Anzahl vernetzter und kontinuierlich anpassbarer Wider-
standswerte ermöglicht. Die zweite Technologie basiert auf Cr-dotiertem
V2O3, einem Material mit korrelierten Elektronen, bei dem die elektronis-
che Kontrolle von Mott-Isolator-zu-Metall-Übergängen eine schnelle und
dauerhafte Möglichkeit zur Nachahmung des dynamischen Verhaltens
von Neuronen bieten könnte. Hier wenden wir neuartige Methoden und
Analysen elektrischer Messungen auf diese synaptischen und neuronalen
Bauteile an. Die neu gewonnenen Daten werfen ein weiteres Licht auf die
Natur der Widerstandsübergänge und werden verwendet, um physikalisch
validierte Bauteilmodelle für die Einbettung in groß angelegte neuromorphe
Simulationen zu entwerfen.

Die hier entwickelte Messschaltung löst die seit langem bestehenden
Probleme bei der externen Stabilisierung von Teststrukturen und ermöglicht
die Erfassung von (I, V)-Schaltkurven um acht Größenordnungen schneller
als mit handelsüblichen Geräten, wobei die gemessenen Bauteile deutlich
weniger elektrisch beansprucht werden. Mittels Anwendung des Messsys-
tems stellen wir ein neues stochastisches Modell für Festkörpersynapsen
vor, das auf einer großen Menge statistischer Messdaten von ReRAM
trainiert wurde. Dieses Modell ermöglicht extrem schnelle (> 108 OPS) und
genaue Simulationen von großen synaptischen Arrays (> 109 Zellen) und
bietet ein leistungsfähiges neues Werkzeug für die statistische Analyse von
resistiven Schaltdaten. Danach identifizieren wir einen elektrothermischen
Mechanismus hinter dem negativen differentiellen Widerstand und der
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neuronalen Dynamik, die in (V1−xCrx)2O3-Nanobauteilen beobachtet
werden. Wir zeigen schnelle flüchtige Schaltvorgänge (< 10 ns), hohe
Schaltausdauer (> 1012 Zyklen) und günstige Skalierungseigenschaften
in diesem vielversprechenden Mott-Isolatormaterial. Ein koexistierender
nicht-flüchtiger Mechanismus wird untersucht und das bedingte Auftreten
von Filamentierung in den Bauelementen wird mit Schaltungsinstabilitäten in
Verbindung gebracht, was weitreichende Auswirkungen auf nicht-flüchtiges
Schalten in anderen RS-Materialien hat. Aus der (V1−xCrx)2O3-Studie
resultiert ein physikalisches Modell, welches das Skalierungsverhalten und
die Anpassungsfähigkeit des Schwellenwerts abdeckt und eng mit den
beobachteten oszillierenden Daten übereinstimmt.
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Introduction

For over 75 years, the notion of a “computer” has been largely synonymous
with the general purpose digital architecture attributed to the Hungarian-
American polymath, John von Neumann [1]. Miniaturization, integration, and
optimization of semiconductor-based electronic devices has since propelled
the advancement of computer hardware in this classic architecture to the
incredible level of today. However, fundamental inefficiencies of the von
Neumann paradigm are becoming relevant for modern workloads, as a
larger share of the available energy is spent shuttling data back and forth
between storage and locations where it can be processed [2, 3]. Despite
the overwhelming success of the technological strategy of recent decades,
physical and economic constraints are making the same approach increasingly
challenging to follow into the future [4].

Along with the rise of machine learning (ML), modern trends in comput-
ing have likewise emphasized neuromorphic architectures that implement
brain-inspired algorithms directly on the hardware level [5–7]. These ap-
proaches, through in-memory computation and massive parallelism, excel in
new classes of computational problems and offer promising advantages with
respect to power consumption and error resiliency. While complementary
metal-oxide-semiconductor (CMOS)-based neuromorphic computing (NC)
implementations have made substantial progress recently [8, 9], new materials
and physical mechanisms may ultimately provide better opportunities for
energy efficiency and scaling [7, 10–15].

A functionality sought after in NC applications is an ability to mimic the
biological building blocks of the brain; neurons and the synaptic connections
between them. To cover different electronic aspects of this behavior, many
schemes make use of resistive switching (RS), which refers to a broad class
of related phenomena wherein the resistance of two-terminal devices can be
controlled via electrical stimuli [16]. Several solid-state memory technologies
in this category, such as phase-change memory (PCM), magnetic random ac-
cess memory (MRAM), resistive RAM (ReRAM), and correlated electron RAM
(CeRAM), are emerging as candidate components, each exploiting different
material properties [11, 17–19].

Among the device candidates, ReRAM is attractive for its simplicity of ma-
terials and device structure, providing the necessary CMOS compatibility and
scalability [20]. ReRAMs, also controversially called memristors [21–31], are
essentially two-terminal nanoscale electrochemical cells, whose variable resis-
tance state is based on manipulation of the point-defect configuration in an
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Figure 1: In loose analogy to biological synapses, two-terminal
solid-state nanodevices such as ReRAM can store the strength
of network connections as electrical resistance states. The de-
vices, consisting simply of patterned metal-insulator-metal mate-
rial stacks, have an adjustable resistance level determined by the

ionic configuration inside the insulating layer.

oxide material (depicted in Fig. 1). This redox-based switching mechanism is
intrinsically analog, allowing a range of stable resistance levels to be stored
and adjusted through application of bipolar voltage stimuli. However, vari-
ous non-idealities such as stochasticity, nonlinearity, and noise are prominent
features of these devices that, for better or for worse, critically impact the per-
formance of systems composed of them [32, 33].

Another promising possibility currently being explored is to use electron-
ically controlled insulator-to-metal transitions (IMTs) arising due to electron-
electron correlation effects [34]. Cr-doped V2O3 is a well-known example of
a Mott insulating material supporting a particular kind of IMT called a Mott
transition, which could prove to be a robust basis for future volatile or non-
volatile memories [35]. At the same time, similar volatile switching phenom-
ena commonly occur in nanodevices due to electro-thermal feedback effects,
which involve either simple thermal activation, temperature-induced IMTs, or
both [36, 37]. These types of devices continue to attract attention due to their
interesting dynamical behavior in circuits [38–40]. The effects, which include
spiking and oscillations, are viewed increasingly in the context of neural net-
works [41, 42].

This dissertation addresses remaining challenges in electrical characteri-
zation and modeling of synaptic and neuronal devices, as required by next
generation memory and computing architectures. It is divided into four chap-
ters. We begin in Chapter 1 by providing background information on selected
volatile and non-volatile RS phenomena while introducing important concepts
in electrical measurements that pertain generally to the rest of the work.
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Emerging devices are based on only partially understood mechanisms, and
may exhibit strong non-linearity, negative differential resistance (NDR), oscil-
lations, stochasticity, and memory effects. In assessing the electrical capabili-
ties of RS devices, it is important to consider not only the device material prop-
erties but also the effects of feedback, instability, excess electrical stress, and the
general role of the driving circuitry on measurement data. Chapter 2 describes
the design of two new measurement circuits specialized in characterization of
RS. We demonstrate extraction of important statistical information from mass
collection of (I, V) cycles at eight orders of magnitude faster rates than possi-
ble using commercially available equipment. This is done while also capturing
important transient events during switching, which usually escape detection.
The developed circuits are then employed for electrical measurements in the
rest of the work.

Modern ML models have reached an astonishingly large and ever-
increasing size, with recent examples exceeding a hundred billion weights [43].
Before comparable hardware implementations based on solid-state memories
can become a reality, large-scale network designs need to first be evaluated
by computer simulations. Training, validation, and optimization of such
networks involves a huge number of simulated devices, voltage pulses, and
current readouts. Within this process, it is important to accurately consider
the constraints of the underlying hardware in detail. Therefore, lightweight,
fast, and accurate stochastic simulations of the individual synaptic devices are
a key requirement. In Chapter 3, we present a new data-driven approach for
modeling large collections of stochastic synapses. We created a hierarchical
statistical model based on vector autoregression and probability density trans-
formation, which replicates the measured stochastic behavior of memory cells
very closely. We provide high-performance, parallelized implementations for
both CPUs and GPUs and demonstrate simulation of over one billion cells
simultaneously with throughputs exceeding one hundred million weight
updates per second.

In Chapter 4, nano-devices based on the Mott-insulating material
(V1−xCrx)2O3 are investigated. The electronic structure of the material is
probed with synchrotron X-ray measurements, and the electrical operation of
corresponding nano-patterned devices is extensively characterized. Among
the results are a volatile NDR effect with below ten nanosecond switching
speeds, endurance over a trillion cycles, and oscillatory modes in the tens
and hundreds of megahertz range [44, 45]. The device operation clearly
involves an electro-thermal mechanism as a volatile precursor to a separate
non-volatile switching mechanism, which is likely of nano-ionic origin. New
insights are inferred from careful electrical measurements of the various states
that can be set up in the devices by using current-limiting feedback. These
insights address the question of how the conductivity inside the switching
material is spatially redistributed as a result of NV switching operations,
and specifically how the degree of filamentation is connected to the material
properties and to the measurement conditions. Finally, physics-based
differential equation models are developed to fit the measured dependence
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of time, temperature, and length scale on device operation, which enable
simulations of neuromorphic systems based on these devices [46].
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Chapter 1

Fundamentals

This chapter introduces the different memory technologies studied in this dis-
sertation, mainly in the context of electrical measurement; the principal exper-
imental tool used in the work. Section 1.1 first covers ReRAM based on the
electro-migration of oxygen vacancies, and Section 1.2 discusses the correlated
electron material (V1−xCrx)2O3. Section 1.3 is concerned with the challenges
in electrical measurement of these devices and how they relate to current prac-
tices. Finally, in Section 1.4 we take a step back to look at the ubiquitous effect
of device Joule heating, providing illustrative examples useful for understand-
ing simple measurement situations where coupling with the impedance of an
external measurement circuit has unexpected consequences.

1.1 Redox-based resistive switching mechanisms

All insulating layers suffer a loss of their insulating properties if a sufficient
voltage is forced across them for a sufficient amount of time. The mechanisms
of this so-called dielectric breakdown effect are various [47], but commonly
involve an instability where the driving force of the physical processes respon-
sible for the increasing material conductivity is subject to positive feedback.
This runaway process can rapidly lead to structural or chemical changes in
the insulator, eventually forming a conductive pathway through the material
which may persist long after the electrical stimulus is removed.

Left unimpeded, the destructive effects of breakdown are considered an
irreversible phenomenon, leaving no possibility to recover an insulating state.
This breakdown effect has been thoroughly investigated in the field of oxide
reliability, where its role in the failure of thin gate oxides make it an effect
to be avoided. However, the field of resistive switching (RS) takes a different
perspective on the same class of effects. The basic objective of RS is to interrupt
the process before it causes permanent and irreversible damage to the material,
so that the device resistance state can be repeatedly and reliably modulated
by applying voltage signals with alternating polarity, duration, or amplitude.
Provided that such devices can be (re)programmed to stable resistance levels,
they can then be employed as binary or multi-level non-volatile memories, or
as weights in an artificial neural network.
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Non-volatile RS effects occur in a wilderness of different materials, and
essentially every thin insulating layer between two electrodes can show per-
sistant and reversible resistance transitions. This amusingly includes beer,
whiskey, bananas, honey, leaves, and milk [48–52]. Broadly speaking, a class of
RS can be distinguished by the involvement of mobile defects in the material
that locally increase its conductivity. Different spatial configurations of the de-
fects with different total resistance levels can be set up through migration of the
defects under the applied field as well as temperature and/or concentration
gradients. A detailed classification of these effects has been made according to
the insulating and electrode materials used and to the type of defects responsi-
ble for the switching effect [16], though the switching mechanisms and modes
are not all mutually exclusive and can occur under different types of electrical
control and in statistically overlapping regimes [53–56].

Figure 1.1: Resistance states in VCM-based ReRAM devices
depend on the configuration of oxygen vacancy defects (drawn
as orange circles) in the oxide layer. Application of voltage pulses
can produce new states, which exhibit a probabilistic dependence
on past states, leading to long-range correlations. Starting with
effectively infinite state possibilities (represented by the three
cell states on the left) an applied voltage pulse brings about a
set of transition probabilities to many possible subsequent states

(right).

For the specific case of the valence change mechanism (VCM) that is em-
ployed in the ReRAM investigated in this work, the non-volatile effect is me-
diated by oxygen vacancy defects in a binary transition metal oxide (TMO)



1.1. Redox-based resistive switching mechanisms 7

resistive layer, which act as mobile electron donors to increase the local ma-
terial conductivity [20]. The oxygen vacancies, either already present in the
deposited oxide (e.g. TaOx or HfOx) or generated through redox reactions at
the oxide/electrode interface, then drift under the applied electric field, with
their mobility activated by Joule heating. Under a constant applied voltage, a
rising concentration of oxygen vacancies locally increases the driving force for
their production and/or migration (namely, the electric field and temperature),
causing the defects to assemble and form one or more filamentary conductive
paths through the film [57–60].

The basic requirement for an electronic device serving as an artificial
synapse is to moderate the flow of electrical signals through connections in
a network. Left undisturbed, the device ideally maintains a fixed weight,
or dependence between the voltage across the two device terminals, V, and
the resulting current through the device. Further, for learning there must
be some means of affecting the weight in a durable way. Bipolar ReRAMs
have an adjustable (potentially nonlinear) and non-volatile resistance state,
which is based on the size and shape of a conducting filament that partially
or fully bridges the insulating gap of the oxide material. Simplistically, when
V exceeds certain threshold levels, the resistance state begins to transition
toward lower or higher values depending on the voltage polarity, which
corresponds to growth and shrinkage of the conducting filament. When
the filament only partially bridges the insulating gap, conduction may be
limited for example by tunneling through a Schottky barrier of a material
interface, leading to a relatively high resistance levels [20, 61]. As the filament
grows and gradually bridges the gap, the resistance decreases as conduction
transitions towards the ohmic type.

There are a number of technologically promising features of VCM-based
ReRAMs that make them attractive for next generation memory and comput-
ing architectures [12]. The simple device structure can be fabricated using
a wide variety of CMOS-compatible materials [62, 63]. ReRAMs also have
good write endurance [64], support high read/write speeds [65–68], and have
strong potential for 3D integration [69]. Importantly, the effect can be scaled to
nanometer dimensions as only a small number of ions need to participate in
the switching process in principle [70–72].

However, several drawbacks currently stand in the way of widespread ap-
plication of these devices. These stem from the fact that filamentary states in
the material are electrically delicate, prone to instability, and the transitions be-
tween the states are strongly stochastic (see Fig. 1.1). Therefore, a central chal-
lenge for ReRAM devices is dealing with the intrinsically random nature of
their switching processes, which leads to large variability in the programmed
resistance states and switching parameters [73, 74]. Achieving an acceptable
level of control of ReRAM devices will require an in-depth understanding of
the statistical processes at play, as well as an optimization of the active materi-
als together with the control circuitry.
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1.2 Correlated electrons and the vanadium oxide
system

Mott insulators, named after the 1977 Nobel leureate Sir Nevill Francis Mott,
are a class of materials with unusual electronic properties arising due to strong
electron-electron correlation effects. Simplistic models used to calculate the
electronic band structure of these materials neglect the electron-electron inter-
actions and predict a conductive ground state. However, an insulating state in
fact arises because, essentially, Coloumb repulsion suppresses the transfer of
electrons from one atomic site to another. This phenomenon is treated approx-
imately in the single band Hubbard model, where a Hamiltonian describes a
competition between the forces of kinetic energy and the on-site repulsive po-
tential [75]. In Mott insulators, the electron correlation effect causes a splitting
of the electron bands as shown qualitatively in Fig. 1.2 [76].

Figure 1.2: In the Hubbard model, half-filled conduction bands
are split into upper and lower Hubbard bands due to electron-
electron interactions. Depending on the balance between the
bandwidth and the Hubbard energy, U, the material may be in

a Mott insulating state.

Mott materials are good insulators, yet they are precariously close to being
conductors. Insulator to metal transitions (IMTs) can be induced by various
physical stimuli such as temperature, pressure, or doping [77]. It was recently
shown that Mott insulators subjected to electric pulses can undergo an IMT
linked with the creation of a conducting filamentary path [78]. This raises
fundamental research questions about whether these transitions can be har-
nessed to create new scalable device technologies: are they suitable materials
for memory, selectors, or neuromorphic elements [79]?

The binary vanadium-oxide system has been intensely studied since the
early beginnings of condensed matter physics. It known to exist in over 20
different stable phases, many with IMT behavior due to correlated electron ef-
fects [80, 81]. The sesquioxide system (V2O3) is a famous example of a material



1.2. Correlated electrons and the vanadium oxide system 9

with a canonical Mott IMT that can be driven by pressure or doping, as shown
in the phase diagram of Fig. 1.3. Under ambient conditions, V2O3 is a corre-
lated metal, but substitution of a few percent of the V sites with Cr biases the
material in a Mott insulating state. IMTs have been observed in (V1−xCrx)2O3
thin films, where they are known to depend very sensitively on the stoichiom-
etry, phase, and strain conditions [82–86]. Application of short electric pulses
to the material can also induce an isostructural IMT, which is a possible basis
for volatile or non-volatile memory applications [34, 35, 87]. Due to the ad-
vanced lithography nodes, very thin functional layers below 10 nm are a key
requirement for all of these envisioned applications. At such small thicknesses,
stoichiometry and phase purity become increasingly difficult to characterize,
and the interface of the oxide with the substrate plays an important role which
can serve either to facilitate or hinder the Mott transition behavior.

Figure 1.3: Phase diagram of (V1−xCrx)2O3 vs. concentration
of the Cr dopant (x), pressure and temperature. Doping brings
the correlated metal into an insulating state, which can theo-
retically be switched back to the metallic state using an applied
voltage. Pressure and doping are shown as having equivalent ef-
fects on the phase, though this has been refuted [88]. Data was

extracted from [89].

In Chapter 4, the electronic structure of (V1−xCrx)2O3 films as thin as 5 nm
is probed by X-ray absorption spectroscopy and switching behavior in corre-
sponding high-quality nanodevices are scrutinized through different kinds of
electrical measurements.



10 Chapter 1. Fundamentals

1.3 Electrical measurements of resistive switching

An electrical measurement records the response (i.e. the current and/or volt-
age at specific nodes/branches) of a particular driving circuit when a test de-
vice is connected at its measurement terminals. In the case of RS, the stochas-
tic two-terminal devices are elements of the circuit that simultaneously mea-
sures and controls them. Resistance transitions in RS materials can occur on
timescales below 1 ns [66–68], but the nanoscale material volumes involved
cannot normally survive prolonged exposure to the voltage required to initi-
ate the transition, as the current density quickly reaches levels that can cause
irreversible damage [90]. To prevent this and to keep the process in a reversible
regime, a strategy is necessary to limit the duration and amplitude of voltage
applied to the active part of the device during switching.

A challenging aspect of electrical characterization of RS devices is that
measurements depend not only on the materials and structures used in device
fabrication, but are also sensitively dependent, often in unexpected ways, on
the measurement circuitry used. Generally, this is a consequence of coupling
between the ultra-fast physical dynamics of the device under test (DUT) and
the frequency-dependent feedback of the external driving circuit. Together,
these coupled dynamics determine the current and voltage trajectories expe-
rienced by the DUT through time during its resistance transitions. Parasitics
in the system have a large influence because they can store and release en-
ergy comparable to, or in excess of, what is needed to induce switching in
the nano-scale material volumes. Thus, electrical measurements often do not
probe device characteristics directly, and easily overlooked details of the test
system, such as the model number of an instrument or the stray capacitance
introduced by a short length of coaxial cable, can have an important impact on
switching data [91–94].

Another fundamental challenge in using electrical measurement as an ex-
perimental technique relates to a concept known in control theory as observ-
ability [95]. Device stochasticity and path-dependence originate from nano-
ionic processes which occupy an extremely high-dimensional physical state
space, but these internal states are difficult to infer using the few output signals
available for electrical measurement. In other words, currents and voltages are
a very indirect probe of what is really happening inside of the device, and the
resulting data is therefore subject to many conflicting interpretations. On top of
this, electrical instrumentation is technically complicated, and there are many
sub-optimal ways to measure that still produce (I, V) data in a similar format.
This data tends to be detached from critically relevant measurement details,
which further impairs the chance for a productive interpretation.

Notwithstanding a diversity of experimental possibilities to address this
seemingly bleak situation, reported RS electrical measurements overwhelm-
ingly fall into the two categories represented in Fig. 1.4. To a large extent, these
techniques were inherited from existing standards, methods, and equipment
used in optimization of semiconductor devices, without specific adaptation to
the unique challenges faced by RS devices [96–99].
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Figure 1.4: Conventional electrical measurements of RS devices
largely fall into two rigid categories. Voltage driving signals are
applied directly to the DUT and are either (A) square pulse
waveforms on short timescales or (B) (quasistatic) sweeps at

very low frequency.

Quasistatic (I, V) loops are a measurement where resistance switching
is induced by an applied voltage that is continuously ramped at low speed
(∼1 V/s) between positive and negative values. The device current at each
point of the sweep is sampled, and can be plotted against the applied voltage
as shown schematically in Fig. 1.5. Such (I, V) loops are rich in information,
and important features such as the (I, V) non-linearity, voltage and current
switching thresholds, and details of the transition behavior can be extracted
from each cycle. With very few exceptions [100, 101], sweeping (I, V)
measurements are performed using commercial source measure units (SMUs),
which can be contained inside instruments called semiconductor parameter
analyzers (SPAs). These instruments, while offering extremely high resolution
and dynamic range, rely on signal averaging on the scale of the power line
frequency (50 Hz or 60 Hz) and are therefore limited to very slow measure-
ment sweep and sample rates. In addition to making experiments involving
more than a few hundred switching cycles impractical, this long timescale is
6 to 9 orders of magnitude larger than those relevant for applications, which
puts excessive electrical stress on these highly time-dependent devices [102].

Sweeping (I, V) loop measurements are only generally possible with the
use of a feedback mechanism to prevent runaway destruction of the RS de-
vice. However, externally implemented current limiting such as the current
compliance (CC) function of commercial SMUs and SPAs are known to permit
large current overshoots during resistance transitions in the time before CC is
eventually enforced (shown in the test measurements of Fig. 1.6). These over-
shoots can lead to catastrophic damage to cells [103, 104] (see Fig. 1.7) and can
otherwise strongly influence the measurements [105, 106]. At the same time,
overshooting transients can not be recorded by the instrument itself because
of its low bandwidth and sampling rate, and resistance cycling may procede
while leaving no direct evidence of poor control in the experimental data.

Overshoots are only one manifestation of the deficiency of SMUs when
applied to switching devices, as the instrument designs do not anticipate fast
changes in a two-terminal conductance which is driven by the measurement
voltage itself. Even using the appropriate (voltage/current) sourcing mode,
the instrument can return spurious data as it induces oscillations in NDR
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Figure 1.5: Schematic diagram of a single bipolar ReRAM
(I, V) loop cycle. A voltage applied to the active electrode is
swept in order to induce resistance switching while simultane-
ously measuring the device current. A feedback system interrupts
runaway breakdown during the SET transition by attempting to
enforce a current limitation (compliance). Important switching
parameters such as threshold voltages and nonlinear resistance
states can be extracted from (I, V) loop measurements, which
show significant statistical variation both between devices and

between cycles.

devices that it does not have the measurement bandwidth to resolve, as
demonstrated in Fig. 1.8. This stability issue can arise when cells are driven
by an ideal source with too high output capacitance, following the general
mechanism to be described in Section 1.4.3, and also pointed out recently
by Brown et al. [99]. However, the actual situation is far more fraught. To
measure RS with an SMU is to investigate incompletely understood switching
mechanisms by driving the cells with a slow, proprietary feedback circuit
with an unpredictable dynamical response; conditions quite unlike any that
would be produced in any integrated system of interest. Even in the subset
of cases where instability is thought not to play an important role, the sheer
uncertainty introduced by the misapplication of these machines makes them
counter-productive to use for switching experiments, and doing so can cause
long lasting damage to the understanding of RS effects.

Patterning RS devices directly on MOS transistors can provide superior
current limiting and stability, but the required integration limits the materi-
als available and necessitates long fabrication cycle times [105, 107, 108]. A
simpler approach from the point of view of fabrication is to integrate fixed re-
sistors on the chip in series with the devices [90, 100, 109, 110, 260]. However,
the large linear feedback introduced by this relatively inflexible method signif-
icantly affects the switching behavior [111, 112], and can push the operating
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voltage outside of a practical range. On the other hand, attempts to control
RS using external current-limiting components such as resistors [90, 103–105,
110, 113–121] or transistors [91, 92, 122–125] struggle with issues related to the
parasitic capacitance, among other shortcomings. In Chapter 2, we address
these measurement challenges with two new experimental setups, which use
external circuitry to measure (I, V) traces at high frequency using arbitrary
waveforms while minimizing unwanted overshoots.
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Figure 1.6: Current overshoot transients delivered to surface
mount resistors by Keithley SMUs, set to source 1 V, as mea-
sured by an oscilloscope. At time t = 0 the DUT resistance
was suddenly switched from an initially high resistance (HRS)
to a lower resistance (LRS) via a low capacitance relay. (A)
Model 2410 with CC level set to Icc = 100 µA while switching
from 1 MΩ to 1 kΩ. The current limiting feedback is unrespon-
sive for 2.5 ms after switching; a very long duration relative to
ReRAM switching times. The test resistor is also subjected to
a large oscillatory current that includes reverse polarities. Model
2636B SMU shows an improved but still inadequate response
when switching from an HRS of 43 kΩ, (B) with the LRS fixed
to 1 kΩ and varying Icc, and (C) with Icc fixed to 100 µA while
varying the LRS. These overshoots are invisible in the data re-
turned by the SMUs, because their duration is far lower than the
averaging period for a single measurement sample. No matter
the CC setting, the transients are identical for at least 1 µs be-
cause the initial spikes are delivered directly by the coaxial cable.
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Figure 1.7: Damage induced by current overshoots in 100 nm
crossbar structures with 30 nm Pt top and bottom electrodes
and a 100 nm VOx switching layer. The initial structure be-
fore measurement is shown in (A). Device (B) was subjected to
a voltage sweep by an SMU with a 15 µA current compliance
setting. Device (C), protected by a 10 kΩ external series resis-
tor, was swept similarly, but was still damaged by the capacitive
discharge of an interconnecting 20 cm coaxial cable. Although
the cells are visibly destroyed, both nevertheless continued to
show measurable RS behavior as a conducting path still existed

through what remained of the oxide material.

Figure 1.8: Source measure units (SMUs) cannot reliably mea-
sure NDR of either S- or N-type, as demonstrated in (A) an S-
type (V0.85Cr0.15)2O3 nanodevice (500×500×30 nm3) and (B)
an N-type 3I306E Ga-As tunnel diode. In both cases, oscillations
are induced and the averaged curves returned by the SMU are

inaccurate and potentially misleading.
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1.4 The electro-thermal switching mechanism

When electrical current flows through a resistive medium, Joule heating al-
ways results; this is a basic consequence of work done on the charge distri-
bution by the Lorentz force. At the same time, it is also common for a ma-
terial’s conductivity to be strongly affected by heating. For semiconductors,
the conductivity usually increases through thermal activation of charge carri-
ers over a band gap or over trap barriers [126, 127]. Surprisingly, these two
properties alone can lead to highly unintuitive behavior in circuits built with
electro-thermal components [128, 129]. Even in relatively simple circuits, the
dynamics are coupled such that under different conditions they can exhibit
bifurcations, oscillation, and chaos [99, 130, 131].

Due to its general ubiquity in nanodevices, it is important to first consider
the effect of thermal feedback in isolation. Therefore, this section gives a con-
ceptual framework for understanding electrical measurements of two-terminal
devices that have a large temperature dependence of their conductance. Using
suitable simplifications, a relatively tractable analysis serves as a good proto-
type for surveying the variety of dynamics that can occur. This straightforward
example also provides an essential base layer for understanding the behavior
of more complex devices, for which such thermal effects are often strongly in-
volved [132, 133]. In particular, this section provides the context in which the
various results of Chapter 4 can be best interpreted.

1.4.1 Thermistor dynamics

To introduce a deliberately minimal example, suppose two metallic electrodes
make contact with a uniform cuboid of semiconducting material on oppos-
ing faces. Assume uniform electric field lines perpendicular to the electrode
planes and that the temperature T inside the cell volume is always uniformly
distributed. Suppose the medium has thermally activated charge carriers such
that the total device conductance follows a voltage-independent Arrhenius
equation,

G =
I
V

= A exp
(
−Eb

kBT

)
, (1.1)

where I and V are the device current and voltage drop, A is a pre-exponential
current constant, Eb is the activation energy barrier, kB is the Boltzmann con-
stant.

The device heating rate can be calculated as a balance between the power
generated by Joule heating and that lost to the cell surroundings by conductive
heat transfer. Assuming a constant lumped heat capacity Cth of the cell, we
have

Cth
dT
dt

= Pin − Pout. (1.2)
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The Joule heating term is a product of the instantaneous device current and
voltage difference across its electrodes,

Pin = IV, (1.3)

and Newton’s law of cooling can be applied to approximate the rate of heat
conduction out of the cell boundaries as

Pout =
T − T0

Rth
. (1.4)

Here, the cooling rate is simply proportional to the difference between the cell
temperature and the ambient level T0. The thermal resistance Rth quantifies
the thermal contact with the cell environment and depends on the cell size as
well as the surrounding materials.

A convenient property of the conduction Eq. 1.1 is that any possible non-
zero (I, V) condition unambiguously identifies the temperature state of the
cell. This allows equations 1.1–1.4 to be combined in order to express the tem-
perature dynamics as a single ordinary differential equation (ODE) in terms of
only the electrically observable variables I and V,

dT
dt

=
1

Cth

[
IV +

1
Rth

(
Eb

kB log
( I

AV
) + T0

)]
. (1.5)

A visualization of this unwieldy equation (Fig. 1.9) is a useful step toward
a qualitative understanding of its dynamical behavior. For the sake of con-
creteness, values for a hypothetical nano-scaled cell are assigned to the model
parameters, following the reasoning in Appendix A.

The first task in analyzing any dynamical system is to identify the condi-
tions under which the state variables do not change in time. In the case of this
first-order system, parameter and variable values consistent with the condition
dT/dt = 0 K/s are called the fixed points of the model. Referring to Fig. 1.9, we
see that for a given set of parameters, a projection of dT/dt on the (I, V)-plane
shows a smooth continuous curve of fixed points that separate two regions of
net heating (dT/dt > 0 K/s) to the right and cooling (dT/dt < 0 K/s) to the
left. This curve can be understood as the set of (I, V) points for which the
input power equals the power lost to the cell surroundings, such that its tem-
perature remains stationary. As the distance of an (I, V) point from the curve
increases, the disparity between the input and output power grows, which
leads to larger rates of heating or cooling. Along the curve, the steady-state
temperature is continuously elevated above the ambient level in proportion to
the total input power, with

Tfixed = T0 + Rth IV. (1.6)

The fixed point curve is an important characteristic of the thermistor whose
shape depends on a balance of electrical and thermal factors. A particularly
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Figure 1.9: A projection of thermistor fixed points (dT/dt =
0 K/s) on an (I, V)-plane show a continuous curve with S-type
NDR. (A) Solutions are visualized as the intersections of like-
colored lines. Lines radiating from the origin represent the con-
duction Eq. 1.1 and lines of constant power show the correspond-
ing conditions for thermal equilibrium Pin = Pout(T). (B) The
rate of change of the thermistor temperature depends on the in-
stantaneous voltage and current through the device with respect
to the NDR curve. On the left of the curve there is net cooling,
on the right there is net heating, and the cooling/heating rate

increases rapidly with the distance to the curve.

consequential feature that can arise here is NDR, or a negative value of dV/dI
somewhere along the curve. In this case, the set of (I, V) fixed points can also
be called the NDR curve of the cell. Unfortunately, substitution of Tfixed into
a conduction equation with an Arrhenius-like temperature dependence (e.g.
Eq. 1.1), tends not to have an analytical solution for V(I), but NDR curves
can still be treated numerically and graphically. Regions of NDR can appear
and disappear as the model parameters vary. The general topology of this
can be seen by extending fixed point projection into a third dimension in the
vicinity of an (I, V)-plane with NDR. For example, as the ambient temperature
T0 varies, the fixed points lie on a continuous, multivalued surface reminiscent
of the cusp geometry studied in catastrophe theory (Fig. 1.10) [134].

Although its temperature and therefore its conductivity can change signif-
icantly under external bias, the thermistor returns to its original temperature
state (T = T0) after a period of time without bias. Therefore, in a memory con-
text it can be referred to as a volatile switching device; resistance state changes
are temporary and the device does not retain any memory of past states after
power is removed for a sufficient amount of time.
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Figure 1.10: Projection of the thermistor fixed point manifold
(dT/dt = 0 K/s) in the 3D space of voltage, current, and am-
bient temperature T0, shown from three separate points of view.
The surface color corresponds to the internal cell temperature
T. The black path shows transitions in the stable points of the
system when the voltage is viewed as a swept control variable
at room temperature. For high enough values of T0, the NDR

disappears.

1.4.2 The geometry of volatile switching

The discussion leading up to the differential equation Eq. 1.5 considers only
the internal properties of a thermistor device. However, the NDR curve alone
does not tell us what happens in a measurement of the device, nor whether
any of the NDR points will necessarily be observed. In order to talk about a
measurement, we first need to specify the external circuit that drives it. Math-
ematically, this may require adding extra equations to the system that act as
constraints or add additional dynamical state variables. An analysis of mea-
surable behavior and types of control then centers around an understanding
of stability of the overall circuit.

For the purposes of this discussion, we confine our attention to an external
measurement circuit containing an external series resistance and a (parasitic)
parallel capacitance. We will also consider the effect of internal resistances,
which are often an unintentional side effect of fabrication, coming from the
electrode leads for instance, but can also be a deliberate part of the cell design.
The connection of the considered circuit components is shown in the schematic
of Fig. 1.11. Variations of the component values in this circuit encompass many
common measurement configurations, both ideal and practical. For example,
when Cp = 0 pF, limiting cases include ideal voltage sourcing (Rs,ext → 0 Ω)
and current sourcing (Rs,ext → ∞ Ω). In practice, a non-negligible value of Cp
is present, and its consequences will also be discussed. Although capacitances
between the internal nodes of the circuit may also be present, they are typically
much smaller in suitably designed nano-scale test structures than the external
value due to the probing interconnect (femtofarads vs. picofarads), and will be
neglected here for simplicity.
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Figure 1.11: Generic form of the measurement circuit under
consideration, split into sections that are external and internal to
the test chip. Internal resistances may be present in series and in
parallel with an electro-thermally active volume. A time varying
voltage source drives the measurement and an ideal ammeter

samples the current on the return path.

Two-dimensional plots of data are arguably the most important tool in the
scientific arsenal for augmenting human intelligence. As such, electrical mea-
surement data are commonly represented on plots of important variable pairs
such as current vs. voltage. However, there are several different voltages and
currents that appear in a measurement circuit which could be potentially mea-
sured and plotted, and the form of the (I, V) curves are meaningfully different
depending on which I and V are selected, as well as on the methods used for
their measurement. Furthermore, it is not always practical to make a direct
measurement of the most relevant voltage/current for a given analysis, which
affects the way the data should be interpreted. Therefore, to avoid ambigu-
ity, (I, V) plots always need to be given in context of a circuit diagram that
clearly identifies the locations of the measured signals. In the present case,
for non-negligible internal resistance values, the measurable device voltage Vd
and current Id are different from the variables V and I in the equations of the
preceeding discussion, which are replaced in the circuit schematic by V → Vint
and I → Iint. These internal values are those across the active volume of the
cell which drive possible resistance transitions, but are not measured directly.

In this simplified case where there are no internal reactive components, the
voltages and currents in question are related by the linear transformation[

Vd
Id

]
=

[
1 Rs,int
1

Rp,int

(
1 + Rs,int

Rp,int

)] [Vint
Iint

]
. (1.7)

Importantly, this transformation affects the shape of NDR curves from the
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point of view of the external measurement circuit, as shown in Fig. 1.12. There-
fore, the values of the internal resistances can determine whether and in which
range NDR appears, and is also one of several ways for the curve to return to
positive differential resistance (PDR) after an intermediate region of NDR.

Figure 1.12: (A) Internal (Iint, Vint) characteristics are lin-
early transformed into (B) external (Id, Vd) characteristics by
measurement through internal resistances. This has important
implications for the stability of the overall circuit because it
distorts the external view of NDR curves. The plotted NDR
data is the simulated steady-state of a thermistor volume with

Rs,int = 1.2 kΩ, Rp,int = 20 kΩ.

As for the influence of Rs,ext, consider first the case where Cp=0 pF. Here,
any measurable switching trajectory (Id, Vd vs. t) is constrained by a one di-
mensional “load line”, fixed by the values of Rs,ext and the applied voltage
Va:

Vd = Va − IdRs,ext. (1.8)

The space representing each possible state of a dynamical system is called its
phase space. Although the cell temperature T is the sole physical state vari-
able of this system, a segment of the load line can also be viewed as a proxy
phase space, due to a one-to-one correspondence with T. The load line can
have up to three intersections with the (Id, Vd) NDR curve, which define the
remaining, discrete fixed points of the overall circuit (dId/dt = 0 A/s and
dVd/dt = 0 V/s). In the autonomous case (Va constant in time), (Id, Vd) will
move along the load line from the initial condition toward one of the stable
fixed points, corresponding to a final steady-state cell temperature. However,
in loose analogy with the Newtonion situation of a ball on a hilly landscape,
not all of the NDR intersections are stable fixed points (see Fig. 1.13). Near any
fixed point, the heating and cooling rates are relatively slow, and stability is
determined by whether or not the circuit restores the temperature to the fixed
point level after an inevitable perturbation.
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Figure 1.13: A visualization of the load-line dynamics in a
thermistor measurement with negligible capacitance, Cp. Each
arrow represents a duration of 0.8 ns, following the load lines
colored according to different applied voltages Va, for three dif-
ferent values of external series resistance Rs,ext. Depending on
Rs,ext, the NDR curve is divided into monostable and bistable
ranges with respect to Va. For low Rs,ext, the dotted portion of
the NDR curve is unstable, and for high Rs,ext, the entire NDR

curve is stable.

Translating this to a specific measurement context, suppose a room tem-
perature cell is characterized by applying a square voltage waveform (Heav-
iside function) to its electrodes. The corresponding measurement trajectory
begins at the intersection of the load line with the isothermal device (Id, Vd)
curve evaluated at T0 = 300 K, and moves along the load line toward the first
intersection with the NDR curve, where it eventually settles (see Fig. 1.14).
Different speeds along this path are possible, which can be understood with
reference to the NDR curve and the external load characteristic. For (Id, Vd)
values lying nearby the stationary points, particularly near the “knee” of NDR
onset, the rate of change of the temperature is low because a large fraction of
the input power is dissipated to the external environment. Therefore, if the
load line travels nearby the thermal equilibrium points of the NDR curve, the
result will be a long delay as the applied power does not lead to rapid tempera-
ture increase of the cell. On the other hand, a larger series resistance combined
with a larger applied voltage allows the switching trajectory to avoid these
near-equilibrium values, and reach the same final state in a shorter time and
potentially with lower total input energy [45].

There is a temptation to associate a time constant with heating processes,
as the familiar scenario of heating a lumped-capacitance object with a constant
power source admits exponential solutions for the temperature vs. time. How-
ever, this is very untrue in the case where the rate of heating is coupled to the
temperature through the thermally activated conduction mechanism. Accord-
ing to the model, all heating rates are proportional to the cell heat capacity, but
orders of magnitude different switching timescales can be induced in the same
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Figure 1.14: Time-dependent (Id, Vd) trajectories following
ideal voltage pulses with different amplitudes (color), with the
cell initially at ambient temperature (T = T0). Using two slightly
different series resistances (Rs,ext = 200 Ω above, and Rs,ext =
500 Ω below), the trajectories eventually reach the same final
points of the NDR curve, but at different speeds. The farther the
load line lies from the NDR curve, the faster the heating process.
Delay-before-transition behavior is caused by load lines that first

pass nearby, and then away from the NDR curve.

cell even in a narrow range of applied voltage. The thermistor temperature
vs. time is not exponential in general and can show a long initial delay before
eventual transition to the final high temperature state. These delays are caused
by inefficient heating due to a switching trajectory passing nearby a condition
of thermal equilibrium, where the cell is forced to spend long periods of time
at elevated temperature while losing energy to its surroundings. Therefore,
the delay is not an inescapable fact of the device heating process, but is due to
a constraint imposed by the external driving circuit.

Measurements using a continuously swept voltage source are also com-
mon and important to consider. Again assuming negligible Cp, using high
enough Rs,ext means that every point of intersection of the (time dependent)
load line and NDR curve is a stable fixed point and therefore the NDR curve
can be entirely measured using a slow enough sweep. The condition for a com-
plete, stable characterization of the NDR curve is that the external resistance is
equal to or larger than the maximum amount of NDR along the curve,

Rs,ext ≥ max
(
−dVd

dId

)
, (1.9)
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or equivalently that NDR does not appear when plotted on the (Id, Va)-plane.

Using lower series resistance than the condition of Eq. 1.9 leads to a differ-
ent type of behavior in a sweeping measurement (see Fig. 1.15). At two sepa-
rate points during the sweep, where the NDR slope crosses the value of−Rs,ext,
there are abrupt changes in the stability of the system (bistable→monostable).
As Va is swept, a previously stable fixed point is annihilated (along with an
unstable one) as the load line suddenly ceases to intercept the NDR curve at
those points. If the annihilated fixed point was the previous operating point,
the system transitions along the load line, forced into regions of relatively high
heating/cooling rates. In dynamical systems theory, this well-known behavior
is called a saddle-node bifurcation [135]. Following the bifurcation, the system
may settle at a new and potentially distant operating point; but if there are
no remaining fixed points, runaway heating can lead to a cascade of increas-
ingly destructive effects, eventually causing an irreversible breakdown of the
cell [90, 120].

In a measurement, a saddle-node bifurcation effectively means that at
a certain threshold level of Va, a rapid and sometimes dramatic jump in Id
and/or Vd (with dVd/dId = −Rs,ext) will be recorded as the stability landscape
of the system suddenly changes with the biasing level. The common name
given to measurements of these reversible jumps during slow voltage sweeps
is threshold switching (TS). This term is usually used in context of memory
selector devices, which are needed to avoid sneak paths in resistive crossbar
arrays [136–139].

Although thermistors are not internally bistable devices, bistability ap-
pears as a property of certain circuit configurations. Nevertheless, the termi-
nology “threshold switch” is commonly applied to such devices, even though
the device alone is not truly a switch [40, 140–142]. A typical mental abstraction
is that the TS device has two distinct resistance states; starting in its high resis-
tance state (HRS), it transitions at a certain speed into its low resistance state
(LRS) after it sees its “threshold” voltage, and when the voltage is reduced
below its “hold” voltage it transitions back to its original HRS. However, in
light of the present discussion, we recognize that this is not a complete picture
for a thermistor-type switch. In fact, the device temperature continuously in-
creases along its NDR curve, which can potentially be divided into stable and
unstable regions depending on the load presented by the external measure-
ment/driving circuit. The “HRS” and “LRS” here are not static device states
but are two stable segments of the continuous NDR curve, and the so-called
threshold and hold (Id, Vd) points occur due to saddle-node bifurcations dur-
ing sweeping. In each case, the locations of these thresholds can be predicted
from the shape of the device NDR curve and the load characteristic, but neither
switching speeds nor the threshold current densities and electric fields can be
directly interpreted as a property of the device materials alone [143].
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Figure 1.15: Simulated (Id, Vd) trajectories for a thermistor
driven by a sine waveform Va(t) with different frequencies and
using three different external series resistances Rs,ext. For low
Rs,ext and low driving frequency, the system suddenly transitions
along the respective load lines at the saddle-node bifurcation
points. For high Rs,ext, the entire NDR curve can be traced
out at low frequency. Higher frequencies push the cell further
out of equilibrium due to thermal inertia, which widens a rate-
dependent hysteresis in the trajectories. Load line slopes (gray)

are plotted in the background for reference.

1.4.3 Oscillations and excitability

Finally, consider the case where Cp > 0 pF and is large enough to significantly
affect the dynamics of the system. The load line constraint of Eq. 1.8 in this
case is replaced by a differential equation that describes the charging of the
capacitive Vd node,

Cp
dVd

dt
=

Va −Vd

Rs,ext
− Id. (1.10)

With the introduction of this equation, we now have a second-order (or planar)
dynamical system, and we can consider the (Id, Vd)-plane as a proxy phase
space, because (Id, Vd) identifies both the charge on the capacitor and the cell
temperature state. The load line is still relevant as it becomes the condition
where dVd/dt = 0 V/s, which can also be called the Vd-nullcline. Therefore,
the fixed points of the system (dId/dt = 0 A/s and dVd/dt = 0 V/s) are not
modified by the presence of Cp. However, the increased dimensionality in-
troduces further possibilities for stability/instability of these fixed points [135,
144]. In particular, excitable and oscillatory modes exist depending on the par-
ticular biasing conditions and the value of Cp, as shown in Fig. 1.16. Operating
in the oscillatory mode, the circuit is classified as a Pearson-Anson relaxation
oscillator [145].

The oscillation behavior in this system can be understood as the alternating
movement of energy between the reservoirs of cell temperature and the capac-
itor charge. After the bias Va is initially turned on, the parallel capacitance
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starts charging through the external series resistance. Eventually the device
current and voltage are large enough to cross a spiking threshold and initiate
thermal runaway in the thermistor material. As the device resistance rapidly
drops, the capacitor discharges and delivers additional energy to the cell, rais-
ing its temperature well above the fixed-point level. Following the discharge,
the elevated temperature cannot be maintained because of the current limiting
feedback of the series resistance. By the time the temperature reduces back to
the fixed-point level, the capacitor has lost too much charge to sustain it, so the
device continues to cool down before the cycle repeats and approaches a limit
cycle.

Sustained oscillation can only occur when the system is biased inside of
(Id, Vd) range with NDR [146, 147]. Another necessary condition for oscilla-
tion is that the electrical capacitance must be large enough relative to the ther-
mal capacitance, in order for its discharge to elevate the device temperature
to a level high enough above the steady-state temperature set by the series re-
sistance and applied voltage. The exact biasing range where oscillations arise
depends on the value of Cp, as shown in Fig. 1.17. There are at least two im-
portant timescales involved in the oscillations that affect the frequency. The
relaxation time or refractory period is determined by electrical RC charging
(R = Rd||Rs, C = Cp), and the duration of the falling edge of the spike is
limited by the thermal discharge time RthCth of the device.

In computational neuroscience, simple dynamical models are used to
mimic the evolution of the neuron membrane potential, with the Hodgkin-
Huxley model being the most famous example [148, 149]. Excitability in
these systems is associated with quiescent points lying near bifurcations, with
different types of bifurcations giving rise to various types of spiking and
bursting patterns thought to be connected to the computational properties of
neurons [150–152]. Simple circuits including a thermistor-like component,
such as the one considered here, can be shown to be topologically equivalent to
simplified planar neuron models such as the FitzHugh-Nagumo model [153,
154], and are thus capable of generating same set of spiking bursting patterns
when biased in specific ways. This correspondence is responsible for the
interest in using thermal feedback circuits as artifical neurons in NC.
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Figure 1.16: Phase portraits for a thermistor in a circuit with
parallel capacitanc and external series resistance Rs,ext = 4 kΩ,
under six different biasing conditions. Left and right columns
show the effect of increasing Va and Cp, respectively. The red
and blue lines are the Vd- and Id-nullclines, respectively, and
the multicolored (according to T) line is the NDR curve, or T-
nullcline. Lime-green lines bound the phase space (due to the
internal resistances), and the black curve shows the trajectory
with initial condition T = 300 K and Vd = 0 V. For a range of

conditions, the trajectories are oscillatory.
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Figure 1.17: Simulated oscillatory limit cycles in dependence
of the biasing level Va and the parallel capacitance Cp, with
Rs,ext = 10 kΩ. (A) NDR curve with limit cycles occuring in a
subrange of operating points when Cp = 0.35 pF. Peak-to-peak
current amplitude (B) and frequency (C) vary with Cp and the
fixed-point current. Crossing the discernable boundary between

non-oscillation and oscillation is called a Hopf-bifurcation.
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1.4.4 Field effects

This section has explained a range of volatile switching phenomena in devices
with temperature dependent conductivity while assuming linear voltage de-
pendence of the current. The exponential temperature term in the conduction
mechanism is all that is necessary to see these effects, which can also be ob-
served in commercial temperature sensing devices (see Appendix B). In this
case, the device is called a thermistor and any observed (Id, Vd) non-linearity
must be caused by device heating. However, most if not all scaled cells show a
non-linear voltage dependence due to various other impacts of the high elec-
tric fields produced across the short insulating gaps.

Along these lines, a distinction was already pointed out in the 1960s
and 1970s between thermistor and electro-thermal action [155–158]. More
modern works considering nanodevices for technological applications usually
employ electro-thermal models with non-linear voltage dependence, where
Poole-Frenkel-type conduction is an especially popular assumption [37, 159,
160]. If the voltage dependence is monotonic and does not introduce further
relevant state variables to the system, it can be considered a point of detail
useful for matching measurement data, but it does not fundamentally change
the thermal character of the system.

The conditions for NDR in a simplified electro-thermal case were discussed
over 60 years ago by Burgess [155], and were more recently elaborated by Gib-
son [161]. Among the results is that, mathematically, the temperature depen-
dence of conductivity need only increase more than linearly for NDR to appear
at some current level. However, additional physical effects such as ionic migra-
tion, phase transitions, crystallization, and melting are simultaneously possi-
ble, and are similarly capable of inducing resistance transitions in the material.
These different possible effects act in parallel and can come into play before or
after the thermal NDR onset point, depending on the material, the timescale,
and other factors. Whether the presence of electro-thermal effects are decisive
in the overall observed switching process, merely incidental, or something in
between, can only be evaluated with an understanding of the various conse-
quences of thermal feedback covered here.
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Chapter 2

Electrical measurement setup

This chapter is partially based on Ref. [162] and Ref. [163], and was reproduced with
the permission of AIP Publishing.

2.1 Digital potentiometer stabilization circuit

Electrical measurements of patterned devices are inevitably carried out in the
presence of resistance in series with the active material volume of the cell. This
series resistance, commonly of unknown value [164, 165], may originate from
a combination of the electrode leads, inactive layers of the material stack, or
the triode region of a series FET current limiter. Internal and external series re-
sistance adds current-voltage feedback to the system that affects stability and
influences the operational behavior in important ways. Modification of switch-
ing speeds, threshold voltage/currents, and the range of achievable resistance
states have all been observed and discussed theoretically [45, 100, 109, 111, 112,
166].

A series resistance is often deliberately placed to play the necessary role
of an energy limiting mechanism , where its value can mean the difference
between a functioning and non-functioning device. As an experimental tech-
nique, it is useful to be able to place different resistance values in series with
the device under test (DUT) to examine the effect on switching processes. An
important advantage of this simple two element series configuration (2R) is
that the circuit response is easily predictable through load line analysis in the
ideal case, and is also straightforward to model analytically in the presence of
commonly encountered parasitics.

Another advantage of the 2R configuration is ease of implementation rela-
tive to integration of active FET devices on a test chip, with the latter requiring
substantial fabrication cycle time. However, integrating calibrated series re-
sistances is inflexible because each cell is attached to a single static resistance
value that cannot be changed or removed. Scenarios often arise that give good
reason to alter or remove the series resistance in situ. Notably, devices possess-
ing steady states with S-type or N-type NDR each have different criteria for
stable characterization, and both types are commonly present in the SET and
RESET processes of ReRAM, respectively. This imposes different requirements
for the series resistance value even within a single switching cycle.
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Cp

Id

DUTVd

Rs

Va(t)

Figure 2.1: A simple circuit configuration for device character-
ization uses a waveform generator and an external resistance in
series with the DUT. In practice, the effect of the parasitic ca-
pacitance in parallel with the device requires careful attention.

Where an adjustable series resistance is required, it must be implemented
externally to the wafer. The main practical challenge associated with this is
that parasitic capacitance Cp at the node shared with the DUT is highly detri-
mental and difficult to avoid (Fig. 2.1). This stray capacitance slows down the
dynamic response of the circuit, degrading the ability to control and to mea-
sure the voltage and current experienced by the active cell volume versus time.
Coupled with rapid conductance transitions of the DUT, harmful overshoot
transients are generated that strongly impact the observed switching behavior
and can cause irreversible damage [90, 103, 105, 120].

While singular through-hole resistors are a common external solution,
their use entails manually switching between resistance values where
required. However, the stochastic nature of resistive switching cells is
such that they benefit greatly from a statistical treatment using automated
measurements with programmable parameters. In this section we present
an external circuit design providing an adjustable linear series resistance for
flexible wafer-level device characterization. The circuit, based on a digital
potentiometer (digipot) chip, is remotely programmable over USB between
528 resistance levels. Importantly, the voltage signal at the low-capacitance
DUT node is directly amplified for synchronous measurement with the
DUT current with a bandwidth over 200 MHz. We demonstrate the circuit
operation for automated characterization of NDR devices and for resistance
cycling of bipolar ReRAM cells with high speed voltage sweeps.

2.1.1 Design principles

Applying Kirchhoff’s current law, the dynamical equation governing the time
evolution of the device voltage in the circuit of Figure 2.1 is

Cp
dVd(t)

dt
=

Va(t)−Vd(t)
Rs

− Id(t, . . .), (2.1)
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where t is time and Id in general depends on Vd and other internal state vari-
ables of the DUT. Possible steady state solutions lie on the Vd-nullcline,

Vd = Va − IdRs, (2.2)

also known in static analysis as the load line. For fast conductance switching
events that are common in the targeted material systems, transient deviations
from the load line occur as seen in the simplified situation of Fig. 2.2. During
such transients, the excess energy delivered to the DUT due to capacitive dis-
charge is significant and can strongly influence the end result of the switching
process.

Figure 2.2: Simulations (using Eq. 2.1) of Id, Vd transients
following a rapid resistance transition of the DUT with Va = 2 V
and different values of Cp. Subplot (A) shows Id vs. t while (B)
shows Id vs. Vd of the same simulations. The DUT resistance
value is assumed to change exponentially in time from a high
resistance state (HRS) of 50 kΩ to a low resistance state (LRS)
of 2 kΩ with time constant 1 ns. During and following the
transition, the device is subjected to excess currents relative to
the load line, an effect which is reduced by using lower Cp values.

While the potential for overshooting transients is unavoidable in the con-
text of a passive feedback arrangement, it is important to control them to the
extent possible and to accurately measure them when they occur. The only
way that overshoots can be reduced in the discussed configuration is by min-
imizing the value of Cp. Practically this means that a coaxial cable, acting ap-
proximately as a parasitic capacitance of 100 pF/m, cannot be used to connect
Rs to the DUT. The series resistance should rather be placed as close as possi-
ble to the DUT, with the components carefully selected and the printed circuit
board (PCB) layout designed for low contribution to the total Cp.

High fidelity current measurements can be achieved by amplification of
the voltage across a ground referenced shunt termination following transmis-
sion over a coaxial line. Using this type of current measurement, positioning
the DUT (rather than Rs) adjacent to the shunt is generally preferable because
it avoids low pass filtering of the Id signal. This allows measurement of Id at
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a high bandwidth that is independent of both Rs and the resistance state of
the device. Experiments that prioritize application of high frequency voltage
signals to the DUT may benefit from connecting Rs in the opposite orienta-
tion, but the voltage transfer function in this alternate configuration can distort
wideband signals.

With prior knowledge of Rs, Eq. 2.2 is often used to calculate the Vd from a
measurement of Id and Va, but there are several drawbacks associated with this
method. One is the inaccuracy that comes from neglecting the capacitive cur-
rents of the left-hand side of Eq. 2.1. Another problem is measurement noise
introduced by the IdRs term, as the small Id signal with high relative error is
multiplied by a potentially large Rs value. It is therefore strongly advanta-
geous to directly amplify the voltage at the DUT electrode rather than attempt
to calculate it from other measured signals.

Following from these considerations, the basic intended configuration of
external instruments and the designed circuit is shown in Fig 2.3. If sampling
the current with a bare (50 Ω) oscilloscope input does not provide sufficient
resolution, additional voltage amplification should be placed at the termina-
tion, and several output stages can be beneficial for dynamic range. Note that
the length of the coaxial lines for DUT voltage and current sampling should be
matched so that post-processing is not needed for high speed signal synchro-
nization.

DUT

Oscilloscope

50Ω 50Ω

Digipot
Circuit

Vout

AWG
50Ω

PC

Figure 2.3: Schematic depiction of the overall measurement
setup. An arbitrary waveform generator (AWG) produces the
driving signal Va(t), and the resulting current is sampled after
the right electrode via the 50 Ω shunt of the oscilloscope input.
A second oscilloscope channel simultaneously captures the am-
plified voltage at the left electrode. A ground jumper provides
a low inductance return path and reduces RF interference. All

instruments are under computer control.

2.1.2 Implementation

A commercial integrated circuit (IC), the DS1808 digipot from Maxim Inte-
grated, was chosen as the central component to control the series resistance Rs.
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It contains two separate potentiometers internally, each consisting of a chain
of 32 resistors whose junctions can be connected to a “wiper” output via a set
of CMOS transmission gates (analog switches). For each potentiometer, there
are 32 available resistance settings spaced logarithmically (piecewise) from ap-
proximately 300 Ω to 45 kΩ. According to the published specifications, the
DS1808 has a maximum parasitic capacitance of 10 pF and a maximum volt-
age range of ±12 V [167].

To increase the coverage of Rs values, the PCB is routed in a way that al-
lows connection of both potentiometers either in series or in parallel by con-
necting or opening solder jumper pads. While a connection to a single poten-
tiometer remains possible, the number of unique settings is increased to 528 be-
tween 600 Ω− 90 kΩ for the series combination and between 150 Ω− 22.5 kΩ
for the parallel combination. Because the individual digipots do not provide a
resistance setting below 300 Ω, a reed switch was also included on the PCB to
add an option to short the input directly to the output.

For amplification of the output voltage, the THS3091 current-feedback op-
erational amplifier from Texas Instruments was used in a non-inverting con-
figuration. This device features low distortion, low noise, a bandwidth of
210 MHz, and a slew rate of 7300 V/µs while adding only 0.1 pF parasitic
capacitance [168].

All on-board settings are controlled via an Atmega32u4 microcontroller
programmed as a USB serial interface to the PC. Control of the Rs value is
accessible using any programming language able to open a serial COM con-
nection to the microcontroller. This is done by sending a simple command
composed of three integer values corresponding to the wiper positions and
the state of the bypass relay. The total time from issuing a serial command to
Rs reaching a new value is limited by USB / I2C communication, and is typ-
ically less than 300 µs. The overall circuit design is visualized in the a block
diagram of Fig 2.4, and a corresponding fabricated PCB is pictured in Fig. 2.5.

Further details regarding the digipot circuit implementation were recorded
in the thesis of Wichmann [169].
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Figure 2.4: Simplified schematic of the digipot measurement
circuit. An Atmega32u4 microcontroller USB-serial interface
communicates to the DS1808 digipot via an I2C bus. A SPDT
reed relay can be actuated in order to bypass the digipot and
make a direct connection between input and output. The voltage
at the output is amplified by a THS3091 non-inverting follower.
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Figure 2.5: A photograph of the probing PCB contacting a
test chip. A non-coaxial BeCu probe tip is soldered directly to
the output of the main PCB (red), which uses SMA connectors
for additional input and output signals. An elevated PCB (blue)
contains the microcontroller USB interface (Adafruit ItsyBitsy
32u4). A square PCB module (green) functions as a low noise
dual voltage regulator providing ± 12 V to the system. The right

probe is directly connected to a 50 Ω oscilloscope input.
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2.1.3 Measurement demonstrations

In quasistatic measurements of classical NDR materials using a series resis-
tance, saddle-node bifurcations can occur that separate the NDR characteristic
into stable and unstable regions. The range of the unstable region is deter-
mined by the value of the series resistor, with the bifurcations occurring where
the derivative of the NDR curve voltage with respect to current crosses −Rs.
While sweeping voltage, sudden current jumps are observed for sufficiently
low values of Rs in S-type NDR (Fig. 2.6[A]) and for sufficiently high values of
Rs in N-type NDR (Fig. 2.6[B]). Thus, an adaptable Rs value allows control of
the conditions under which each of these characteristic curves, which contain
important information, can be measured.

Figure 2.6: Voltage sweeping measurements of NDR devices
using different resistance settings. (A) 90×500×500 nm3 S-type
VCrOx device [44], stabilized for Rs > 400 Ω. (B) N-type Ga-As

tunnel diode 3I306E, stabilized for Rs = 0 Ω.

Where the material mechanism of NDR is dynamic and reversible, the
presence of Cp makes the measurement circuit prone to transient oscillations,
and stable oscillatory limit cycles can also occur. In these cases, the presented
circuit is able to capture high speed transients for accurate projection onto the
(Id, Vd)-plane (Fig. 2.7). This data is useful for device modeling and circuit
simulations, each relevant for example in present investigations of coupled os-
cillatory devices in neuromorphic systems.

In ReRAM devices, NDR behavior is mediated by a combination of Joule
heating and migration of point defects in the oxide material that locally in-
crease its conductivity [20]. Altering the Rs value allows these transitions to be
probed in different ways, as seen in the example measurements of Fig. 2.8. In
analogy to the NDR measurements of Fig. 2.6, a fixed value of Rs can result in
sudden and unstable transitions for one or both of the SET or RESET processes.
By switching the value of Rs during the measurement (Fig. 2.8[C]) it is shown
that runaway load line transitions can be suppressed by appropriate selection
of the external feedback.
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Figure 2.7: Oscillations (57 MHz) occurring in a
30×250×250 nm S-type VCrOx NDR device [44] following a
square voltage pulse Va = 0 V → 2.5 V using Rs = 1083 Ω.
With the line color mapped to time of measurement, (A) shows
Id vs t of the transient, and (B) shows the trajectory of the same

data on the (Id, Vd)-plane.

Figure 2.8: Cycling measurements of a 100 nm ReRAM de-
vice [163] using bipolar triangular voltage sweeps, each lasting
1 ms. Each subplot contains 20 consecutive switching cycles
differentiated by color. The value of added series resistance is
indicated by the dashed lines with gradient R-1

s , and rapid load
line jumps are indicated with arrows. Transition behavior differs
considerably when using (A) 2.4 kΩ, (B) 0 Ω, and C 11 kΩ for
negative polarity (SET) and 0 Ω for positive polarity (RESET).
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2.2 Current limiting amplifier

Resistive switching devices face significant challenges related to control of del-
icate filamentary states in the oxide material. As a device switches, its rapid
conductivity change is involved in a positive feedback process that would lead
to runaway destruction of the cell without current, voltage, or energy limita-
tion. Typically, cells are directly patterned on MOS transistors to limit the cur-
rent, but this approach is very restrictive as the necessary integration limits the
materials available as well as the fabrication cycle time.

In this section we propose an external circuit to cycle resistive memory
cells, capturing the full transfer curves while driving the cells in such a way
to suppress runaway transitions. Using this circuit, we demonstrate the acqui-
sition of 107 (I, V) loops per second without using on-wafer current limiting
transistors. This setup brings voltage sweeping measurements to a relevant
timescale for applications, and enables many new experimental possibilities
for device evaluation in a statistical context.

2.2.1 Design principles

For the purpose of rapidly testing devices with minimal nano-fabrication
overhead, compatibility with isolated two-terminal structures is necessary
and should be provided by an external current limiting amplifier (CLA)
circuit placed in series with the device under test (DUT) in a setup similar
to that shown in Fig. 2.9. When the series combination is driven by a
voltage waveform, the circuit should provide a variable current limit in the
approximate range 10 µA to 1 mA in the forward polarity (SET direction).
Because of the self-limiting nature of the RESET process under voltage control,
current should flow through the circuit unimpeded in the reverse polarity
(RESET direction).

To avoid any influence of the circuit on the switching process before the
current limit is reached, the circuit should present a negligible impedance for
all currents below the limit. Only once the DUT current reaches the limit, the
circuit should rapidly transition into a current source behavior to terminate the
runaway switching process. In other words, the circuit should ideally present
a frequency independent (I, V) characteristic as shown in Fig. 2.10(A) in series
with the device. The circuit should be highly stable for a variety of loads, and
its design should be as simple as possible in order to easily distinguish the role
of the DUT in measurements of the overall electrical response.

Crucially, any overshoot above the current limit following a SET transi-
tion should be suppressed as much as possible. Because such overshoots are
caused by the stray capacitance at the terminal of the current limiting circuit,
this capacitance is considered a critical design parameter to be minimized. It is
therefore not an option to connect the CLA to the DUT over a length of coaxial
cable, as this would present an effective capacitance of 100 pF/m. To reduce
this capacitance, the probing circuit needs to be mounted as close as possible
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Figure 2.9: Schematic of a measurement setup using the cur-
rent limiting amplifier circuit. A two channel arbitrary waveform
generator (AWG) applies a driving signal to the DUT as well as
a signal (VC) to control the value of the forward current limit.
An oscilloscope measures simultaneous samples of the voltage at
both electrodes, as well as the device current. A jumper con-
nects the ground planes of the left and right probes to reduce

interference and inductance in the signal path.

to the DUT, and a short unshielded probe needle should be mounted directly
to its circuit board.

In this type of measurement setup, two important bandwidths can be dis-
tinguished. The first is the bandwidth of the application of voltage signals
to the DUT, and the second is the bandwidth of the measurement of current
through the DUT. Simplistic external current limiting approaches using a se-
ries resistor or a common-source FET have the side effect of forming a low
pass filter that limits one of these bandwidths depending on which side of the
DUT the current limiter is positioned. In such setups, the limited bandwidth
also depends on the resistance state of the DUT and on the current limit used.
These bandwidth limiting effects should be circumvented in the CLA design.
For all current limit settings and DUT states, the bandwidth of voltage appli-
cation should be limited only by the AWG (100 MHz) and the DUT parasitics.
The bandwidth of the low-noise current measurement should be large enough
to accomodate the detection of rapid switching events with a rise time below
100 ns.
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Figure 2.10: The current limiting (I, V) characteristic intended
to be placed in series with the DUT. In the ideal case (A), the
differential resistance is zero below the adjustable current limit
(here 200 µA), and infinite above. An approximation of the ideal
characteristic (B) can be realized using a common-base amplifier

with voltage and current bias.

2.2.2 Implementation

The fundamental idea behind the presented circuit design is to use a single
bipolar junction transistor (BJT) (I, V) characteristic to implement the desired
current limiting response while also providing transimpedance amplification
of the DUT current. Packaged discrete BJTs for radio frequency applications
are available with very low parasitic capacitance, making them highly suitable
here for use in the input stage. The common-base (CB) amplifier configuration
is of particular interest as a high-bandwidth current buffer, featuring a low in-
put impedance and small feedback capacitance that does not suffer from the
Miller effect. With voltage and current biasing, a CB amplifier can closely ap-
proximate the targetted current limiting (I, V) characteristic shown in Fig. 2.10.
A simplified schematic of the input stage used to accomplish this is shown in
Fig. 2.11.

The basic operation of this input stage is straightforward to analyze. Ap-
plying Kirchhoff’s current law at the input node, it can be seen that whenever
the DUT current Id is less than the bias current Ibias, the BJT emitter current IE
is positive and transistor will be in forward-active mode. In this mode, with an
appropriate setting of Vbias ≈ 0.7 V, the input voltage will be held close to 0 V
due to the high forward transconductance of the BJT. Thus, for either positive
or negative voltages applied to the DUT, the input stage effectively presents a
low impedance to ground as long as Id < Ibias. As Id approaches Ibias, the BJT
enters cut-off mode, where its effect in the circuit can be ignored and the input
behaves as a current source with Id = Ibias.

Ideally, the voltage bias Vbias should be chosen so that the input current is
zero for an input voltage of zero (such that the curve of Fig. 2.10 intersects the
origin). Considering an approximated Ebers-Moll model of the BJT, it follows
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Figure 2.11: A simplified diagram of a circuit implementing
unipolar current limiting and transimpedance amplification. The
value of the forward current limit is set by Ibias, and the input
voltage is approximately 0 V for input currents below this limit.

that

Vbias = −nVT log
(

Ibias

Is
+ 1
)

, (2.3)

where Is is the saturation current of the base-emitter junction, VT ≈ 26 mV is
the thermal voltage, and n is the diode ideality factor. The output of this stage
then gives an amplified voltage signal Vout that is linearly related to the input
current

Id = Ibias −
(

1 + β

β

)(
VCC −Vout

RC

)
, (2.4)

where β is the forward common-emitter current gain of the NPN transistor.

A full circuit diagram expanding on this concept is given in Fig. 2.13, with
a prototype PCB layout also pictured in Fig. 2.12. Here, Q1 is the CB amplifier
corresponding to that depicted in Fig. 2.11, and a nearly ideal voltage con-
trolled current source is realized by the emitter degenerated cascode amplifier
formed by Q2, Q3, and R2. The dependence of the current limit Ibias on the
control voltage Vc, which is approximately linear for Ibias > 100 µA, is cali-
brated for Vc values between −10 V and −1 V by an SMU measurement. The
Vc signal is then generated according to interpolation of the calibration table at
the desired Ibias values.

Further circuitry in Fig. 2.13 is included to null voltage offsets and condi-
tion the output signals for transmission to 50 Ω oscilloscope inputs. Accord-
ing to Eq. 2.3, the ideal value of Vbias depends slightly on the value of Ibias.
Therefore, simply using a constant value of Vbias would create offset voltages
at the input terminal on the order of 10 − 100 mV as Ibias is varied. To au-
tomatically compensate this effect, a reference path R3, Q4, Q5, Q6, R4 mirrors
the components R1, Q1, Q2, Q3, R2, and is used to actively zero the input offset
for all values of Ibias via OPA277. This same structure also generates a refer-
ence voltage for a differential measurement performed by AD8130, producing
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a low-offset output signal Iout proportional to the input current. A voltage
follower (THS3091) with very low input capacitance (0.1 pF) is also placed di-
rectly at the input node, providing a simultaneous measurement of the DUT
voltage drop.

Figure 2.12: A photograph of the probing circuit board con-
tacting a prototype ReRAM device. Left and right probes are
mounted on independent micropositioners (ground jumper not

pictured).



2.2. Current limiting amplifier 45
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Figure 2.13: Full schematic for the current limiting prob-
ing circuit. All BJT devices are ON Semiconductor part no.
NSVF5501SKT3G. Transistors Q1-Q3 perform the current limit-
ing function, with the current limit controlled by the input signal
Vc. Regulated power supplies providing ±10 V and +6 V are not

shown.
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2.2.3 Measurement demonstrations

Overshoot characterization

Current overshoots accompanying sudden negative resistance transitions are
suppressed in this measurement scheme by minimizing the capacitance at the
input node of the CLA. This is done by careful selection of the input transis-
tors and by avoiding proximity of input traces to the ground plane. However,
the parasitic capacitance cannot be fully eliminated and the potential to cre-
ate overshoots inevitably remains. Since overshoot transients tend to play a
critical role in switching behavior in practice, it is important for them to be
characterized and modeled.

In general, the time-dependent (I, V) trajectory of a current overshoot is
not solely a characteristic of the measurement setup, but is determined by
the coupled dynamics of the DUT conductance and the driving circuitry. The
duration and amplitude of the overshoot therefore depends on the type and
history of the RS cell being measured, and is not easily reproducible. To mea-
sure the overshoot characteristic in a standardized way, a test sample designed
to imitate the resistive switching action was constructed using surface mount
components. A mechanical reed relay in series with a 1.2 kΩ and in parallel
with 100 kΩ was found to be well suited for this purpose, providing a control-
lable sub-nanosecond transition between two discrete resistance levels with
negligible parasitic effects.

With the reed switch connected in the position of the DUT and biased by
1 V, the current transient following a resistance transition was measured across
a 50 Ω scope shunt with 350 MHz bandwidth (Fig. 2.14). Close agreement of
the transient was found with the solution of a differential equation describing
the charging of the CLA input node,

Cp
dVd

dt
= Ibias

[
1− exp

(
Vd −Va

VT

)]
− Vd

Rd
, (2.5)

where Cp = 5.7 pF is the parasitic capacitance at the input, Vd is the DUT volt-
age drop, Va is the applied voltage, and Rd is the DUT resistance (here assumed
a step function in time). Note that Cp includes the self-capacitance of the mea-
sured cell, which is approximately 0.5 pF for the reed relay circuit. This should
be taken into consideration in the memory cell design itself, where thin dielec-
tric layers and large contact pads or device areas can contribute significantly
to the total Cp, which intrinsically degrades the overshoot performance. Given
the single parameter Cp, the simple model of Eq. 2.5 is expected to accurately
characterize the transient response of the CLA circuit, and should be incorpo-
rated with a physical device model to properly model the complete coupled
system during a measurement.

For comparison, the current overshoot transient induced using a modern
SMU was measured under identical conditions. For the first 1 µs after the resis-
tance transition, the transient begins with the discharge of a 1 m coaxial cable
that was used to connect the instrument. Between 1 to 10 µs, a proprietary
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Figure 2.14: Current overshoot characterization using a reed
relay to abruptly switch from 100 kΩ to 1.2 kΩ at time 1 ns
with 1 V applied and with a current limit of 100 µA. Under these
conditions, the CLA returned to the current limit in ∼20 ns,
whereas a commercial SMU produced a more complex overshoot

response lasting several microseconds.

feedback circuit is engaged and produces a long unpredictable current excur-
sion before undershooting and eventually settling to the programmed current
compliance level. Relative to this, the overshoot duration is reduced in the
CLA measurement by over two orders of magnitude.

As a separate demonstration, we compare the CLA and SMU overshoots
during the electroforming operation using a ReRAM device with material
stack (bottom to top) Pt(20 nm)/TaO(20 nm)/TaOx(5 nm)/Pt(20 nm) and
lateral dimensions 100 nm× 100 nm. The forming operation was used because
of the similar starting device states and because the device is particularly
vulnerable to overshoots during forming, due to the high voltage initial
condition and the rapid runaway mechanism. The final state that a formed
device arrives in is correlated with the overshoot transient, and in particular
the resistance level and the first RESET characteristic are affected [105].

The devices were formed with the CLA and SMU with current limit set to
300 µA, using voltage sweeps on a similar timescale, 0.1 s and 1 s respectively.
The current transients during forming event were each sampled using an os-
cilloscope with sample rate 625 MHz. The results, plotted in Fig. 2.15, show
overshoot transients similar in character to those recorded for the reed relay
switching. The SMU overshoot had over 100× longer duration, reached over
2× higher current levels, and resulted in a dramatically different formed state
(∼ 1.5 kΩ) compared to the CLA-formed device (∼ 3.2 kΩ). The SMU-formed
cell, which was subjected to a current of 5 mA during the forming overshoot,
required a large RESET current above 2 mA. The CLA-formed cell required a
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much lower RESET current, approximately equal to the current limit setting.
In the CLA measurement, the overshoot lasted under 10 ns, and yet was still
responsible for the entirety of the resistive switching during forming. That is,
the entire switching trajectory from the initial (pristine) to the final (formed)
state occured above the current limit, with the excess current coming directly
from the ∼6 pF parasitic capacitance.

Figure 2.15: A comparison of a ReRAM forming operation us-
ing the CLA circuit and an SMU with current compliance. (A)
shows the measured quasistatic (I, V) loops for the initial form-
ing step (invalid transition datapoints removed) followed by a first
RESET, and (B) shows the current vs. time during the forming
events. The SMU controlled overshoot lasted over 100× longer
and had over 2× higher amplitude than the CLA overshoot, with

corresponding consequences for the formed states.

High frequency ReRAM cycling

To demonstrate the basic RS cycling operation using the external CLA circuit,
we tested the ReRAM device with the CLA input connected to the top (active)
electrode. The current limit was set to 300 µA and a triangular voltage sig-
nal with period 10 µs and amplitude 1.5 V was applied to the DUT bottom
(ohmic) electrode using a Rigol DG5102 AWG. The applied voltage and the
amplified current signal were sampled at 1.25 GS/s using a Picoscope 6403D
deep-storage oscilloscope. In a single measurement lasting only one second,
105 full (I, V) loops were successfully collected, each containing 1,564 8-bit
(I, V) samples (Fig. 2.16). It is furthermore possible to collect millions of such
cycles in a practical amount of time by collating multiple measurement shots,
creating powerful datasets for statistical evaluation of RS devices.
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Figure 2.16: A measurement of 105 consecutive (I, V) loops
collected in one second with the CLA circuit using a triangular
voltage excitation and a 300 µA current limit. Data is smoothed
by a 15 sample moving average, and every 100th cycle is plotted
on a linear current scale (top) and log scale (bottom). To con-
form to plotting convention with respect to polarity, the applied

voltage is defined as the negative of the AWG voltage.

Hybrid sourcing

Beyond the voltage-controlled cycling scheme just demonstrated, there are ad-
ditional operating modes supported by the CLA circuit that are also useful for
characterization of devices with NDR in their switching characteristics.

It is quite common for bipolar ReRAMs to exhibit S-type NDR for the SET
polarity as well as N-type NDR for the RESET polarity. These different kinds
of NDR are also referred to as current controlled and voltage controlled types,
respectively, as these sourcing modes can support single-valued stable states
in each case. In practice, a compromise can be made by driving both SET and
RESET transitions through a series resistance. However, measurement circuits
that put a large resistance in series with the DUT are widely acknowledged
to cause an unnecessary acceleration of induced RESET processes due to pos-
itive feedback, which has been referred to as “the voltage divider effect” [111,
114]. Because of this, a hypothetical attempt to drive a RESET process using
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a current source, which has an infinite Thévenin equivalent series resistance,
would tend to cause a runaway RESET and result in a poorly controlled tran-
sition and/or destruction of the device [170]. Accordingly, current sourcing
during a RESET operation is never done in practice. On the other hand, using
a voltage source to drive a SET process is a directly analogous scenario but is
a completely standard procedure.

Figure 2.17: Control waveforms and the resulting (I, V) mea-
surements of a 100 nm ReRAM cell in two different schemes. In a
more conventional scheme, (A) shows a periodic signal control-
ling the device voltage while the current limit is set to a DC level
(500 µA). This results in the device electrodes seeing the full
control voltage waveform up until the current limit, producing
rapid runaway SET transitions (B). In a new scheme for collec-
tion hybrid (I, V) loops, synchronized I and V control waveforms
(C) avoid runaway transitions for both SET and RESET, allow-

ing gradual control of both resistance transitions (D).

While practical details may justify the eventual use of direct voltage con-
trol in certain applications, much understanding can nevertheless be gained
by using alternate characterizations. An obvious objective is to control each
transition in the most gradual way possible while collecting detailed informa-
tion each cycle. In light of the dual-NDR nature of ReRAM, an advantage of
the CLA design is that by using suitably synchronized AWG control signals,
a seamless transition between the two different sourcing modes can be con-
trolled at high speed. This enables continuous collection of what we will call
“hybrid” (I, V) loops, which are demonstrated in Fig. 2.17.

Experimental SET transitions measured under external voltage control are
commonly observed to occur suddenly, taking place over a short duration that
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can be well below 1 ns [68]. Unless overdriven, these rapid transitions occur
only after a much longer stochastic delay [171]. This behavior, which makes
the SET transition difficult to predict and to control, is particular to the kind of
sourcing used. By instead sweeping through the SET transition with a low ca-
pacitance current source, we demonstrate that intermediate states can be stable
over relatively long durations (Fig. 2.18), which allows a continuum of resis-
tance states to be more reliably programmed in both polarities.

Figure 2.18: Demonstration of gradual SET switching in-
duced by hybrid-sourced (I, V) loops, continuously collected on a
timescale of 1 ms per cycle. A single loop is shown in (A) with an
identification of the source types used for each polarity. Super-
posed sweeps using progressively higher maximum current levels
is shown in (B), with an inset displaying the resultant LRS values

after each sweep.

Cycling with in-situ overshoot sampling

Even a carefully minimized parasitic capacitance still has the potential to play
a dominant role in switching processes, or at least to have important effects
on the tails of the switching parameter distributions. RF measurements have
shown SET switching using energies of only ∼100 fJ [65], while a capacitance
of just 1 pF discharged from 1.5 V to 1 V during a SET transition releases an
additional Cp(∆Vd)

2/2 = 625 fJ into the cell. Despite this situation, mea-
surements are almost never set up to record overshoot transients as part of
a current-limited ReRAM cycling procedure. Several one-off measurements
have shown current vs. time traces for individual switching events [91, 94,
103, 119], but the switching trajectories (actual device current and device volt-
age vs. time) during overshoot are not shown, and statistically significant mea-
surements have not yet been reported.

Measuring the full device (Id, Vd, t) trajectories with high bandwidth dur-
ing switching is a direct way to quantify and to study the impact of over-
shoot transients, and more generally to inform the design of control systems



52 Chapter 2. Electrical measurement setup

for ReRAM. The ability to record these trajectories while also using the CLA
limiting function benefits from reconfiguring the CLA as a source-side cur-
rent limiter. In the original configuration, the CLA and AWG are positioned
on opposite sides of the DUT, and currents from the parasitic capacitance are
not amplified because they flow outside of the measurement path. Positioning
both the CLA and AWG on the same side of the DUT opens up the counter
electrode for a separate current measurement over a terminated, ground ref-
erenced transmission line that can detect the DUT current at the full scope
bandwidth (350 MHz). This small modification is realized by using the AWG
voltage source channel to drive the non-inverting input of the OPA277 instead
of the DUT counter electrode, and is also advantageous because Vout gives a
more direct reading of the device voltage than in the original configuration.

Full switching trajectory measurements are demonstrated for a forming
event in Fig. 2.19 and for an individual switching cycle in Fig. 2.20. Each of
these reveal aspects of the switching process that are often misrepresented by
conventional measurements. These examples also highlight that, even with
a minimized parasitic capacitance, scenarios exist where the majority of SET
switching occurs during a short nanosecond-scale transient that vastly exceeds
the CLA current bias. These overshoots should not be interpreted as a failure
of the control circuitry, but rather as an inevitability of external measurements
of RS that should not escape detection. Relative to commercial solutions cur-
rently in widespread (mis)use, this configuration not only improves the control
situation by orders of magnitude, but also makes the remaining non-idealities
visible. This provides new opportunities to evaluate a larger class of device de-
signs that would not necessarily survive switching under SMU control, while
monitoring the actual voltages and currents seen by the device at high speed
during the entire process. Therefore, the implications of control non-idealities
can be studied directly, for essentially the first time.

With this setup, it is possible to measure current limited (Id, Vd, t) loops
at extremely high speed. In Fig. 2.21 we demonstrate 1 MHz and 10 MHz
cycling rates, where up to 106 full loops were captured in a single continuous
100 ms measurement shot. To our knowledge, this is a faster cycling rate than
any sweeping measurement previously reported, even those using integrated
FETs [100, 101]. Interestingly, highly uniform switching characteristics were
measured at the short 100 ns per cycle timescale, which could be due to the
overdrive used in the measurement but could also indicate that faster cycling
is beneficial for switching uniformity.

The huge amount of cycling data produced in a short time frame enables
many new experimental possibilities for device evaluation in a statistical con-
text and at a timescale relevant for applications. Parameters such as switching
thresholds and resistance levels can be extracted from each of the full (Id, Vd, t)
loops, as shown in Fig. 2.22. Here, RHRS is the resistance of the HRS, Vset is
the SET threshold voltage, Imax is the maximum recorded current in the SET
transient, RLRS is the resistance of the LRS, and Ireset is the current at the begin-
ning of the RESET. Due to large number of samples, the overall distributions
of these parameters are clearly resolved, and are seen in this example to be
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Figure 2.19: Electroforming and the following RESET process
induced with a 100 µs triangular voltage sweep and a 200 µA
CLA current bias. Device voltage and device current were each
continuously sampled at 1.25 GHz. (A) Overshoot appears dis-
proportionately large when plotted on the (I, V)-plane, but lasts
only 5 ns or 0.005% of the total sweep duration. (B) The to-
tal area under the I vs. t curve during overshoot is consistent
with the model of Eq. 2.5. (C) Spiking features are resolved
during the first RESET which would not be visible in a standard
quasistatic (DC) measurement. The spikes contain meaningful
information, and could hypothetically be caused by a successive

rupturing of a multi-filamentary formed state.

asymmetric and non-gaussian. Viewing the data on such a scale reveals that it
is far from independently and identically distributed (i.i.d.) and is highly auto-
and cross-correlated. Scatter plots of the switching parameters vs. past values
(Fig. 2.23) reveal interesting inter-dependencies. In this particular dataset, the
HRS is only very weakly correlated with with values of past and future param-
eters, while the other parameters show strong non-linear dependencies. One
chain of correlations here that can be reasonably interpreted as causal is a high
switching voltage → a high overshoot current → a low LRS → a high reset
current. A statistical dataset of this type is analyzed further and used as input
to a new device model described in Chapter 3.
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Figure 2.20: A single (Id, Vd, t) switching cycle displaying a
particularly large overshoot, measured with a 1 ms triangular
voltage sweep and a 200 µA CLA current bias. Color is a mea-
sure of the cartesian distance between consecutive datapoints on
the plot, giving an indication of the speed along the measured
trajectory. The action of the control circuit during overshoot
is visualized by the voltage null-cline (load characteristic of the
CLA). The inset shows the time dependence of the current dur-

ing overshoot.
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Figure 2.21: Demonstrations of continuous, mass collection of
(Id, Vd, t) loops with CLA current control. (A) 105 loops cap-
tured in 100 ms (1 µs per cycle) with Ibias = 300 µA and (B) 106

loops captured in 100 ms (100 ns per cycle) with Ibias = 500 µA.
The left frames show the projection of 300 consecutive loops on
the (Id, Vd)-plane, and the right show the time dependence of
the Id and Vd signals. These traces show that even for cycles
with period 100 ns, the current limiting function is still opera-
tional and acts to control the amount of resistive switching. The
role of the short overshoot transients above Ibias is also clarified.
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Figure 2.22: Switching parameter time series extracted from
a segment of data (30k loops) from the measurement shown
in 2.21(A). Each datapoint corresponds to a full (Id, Vd, t) loop.
Total histograms are shown on the right of each frame. The data
are strongly auto- and cross-correlated and are asymmetrically

distributed.
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Figure 2.23: Scatter plots (off-diagonal subplots) and his-
tograms (diagonal subplots) of switching parameters from a
segment of data (30k loops) from the measurement shown
in 2.21(A). Each parameter is compared with future and past
values of each other parameter. The Spearman correlation coef-
ficients for each parameter pair are marked on the top right of

each subplot.
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2.3 Discussion

In this chapter, two custom circuit designs were introduced that represent a
significant step forward for external measurement of RS devices, relative to
commercially available solutions. Both circuits function to stabilize or inter-
rupt resistance transitions by a variable and programmable amount, and they
both allow measurements at high speed using arbitrary waveforms. They
provide the current-voltage feedback necessary to characterize NDR devices,
while giving direct, high-speed measurements of both the device voltage and
current vs. time, the significance of which has been commonly overlooked.
Each circuit is deliberately designed to have a well understood electrical re-
sponse, which is a basic requirement if one hopes to characterize or accurately
simulate switching processes. Although there are certain overlapping applica-
tions, the two circuits are not redundant; they each provide different types of
control.

The main advantage of a measurement using the digipot circuit is simplic-
ity. A linear series resistance can be freely chosen within a certain range, there
is only one AWG channel to control, and no non-linear calibration is involved.
It should be used in cases when the impact of a linear load is of specific in-
terest, or where the linearity simplifies data analysis. Besides some intrinsic
downsides of measuring with an external series resistor, a limitation of the
digipot circuit is that swapping the resistor value takes a certain amount of
time (∼100 µs), so measurements that require series resistance alterations need
to incorporate this delay (though simple bipolar SET/RESET applications can
use a diode in parallel with the digipot resistance [172]). Another limitation
is on the bandwidth of voltage signal application to the device, as the digipot
transfer function is well approximated as a first order RC filter. However, the
bandwidth is above 10 MHz for a typical (lightly loaded) measurement, and
in worst-case scenario still approaches 1 MHz, which is usually adequate. To
maximize the bandwidth, one can choose the minimum amount of loading
that will permit the intended measurement, set for example by the maximum
expected value of NDR in the device at the frequency in question. Note that
this filtering effect does not impact the bandwidth of the current measurement,
which is limited instead by the 50 Ω oscilloscope channel (350 MHz here).

On the other hand, the action of the CLA is comparable to a standard lab
bench power supply with its separate current and voltage dials (which rep-
resent limiting values), but with the dials replaced by high speed arbitrary
waveforms. To accomplish this hybrid voltage-current sourcing function con-
tinuously at high speed and with very low parasitic capacitance, we use the
(I, V) characteristic of a single BJT device in CB configuration. This effec-
tively presents a non-linear load that transitions from very low resistance to
very high resistance at the desired current level. The transition is not infinitely
sharp, but is limited by the thermal voltage VT and is the sharpest possible for a
semiconductor device. This highly stable configuration lets us apply voltages
to the DUT with much higher bandwidth than when using an external series
resistor or FET device. The on-board current amplifier on the CLA achieves
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a higher signal to noise ratio (SNR) than a 50 Ω shunt measurement, but as a
trade-off the current measurement bandwidth of the specified setup is limited
to around 10 MHz. There is room to improve this bandwidth by using alter-
nate amplifying components, or by separately measuring the current on the
opposite side of the device, as also demonstrated in this chapter.
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Chapter 3

Fast stochastic modeling of synaptic
arrays

Content in this chapter was adaptated from Ref. [173], licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)

Traditionally, electronic device modeling begins with a physical descrip-
tion of the materials and processes involved. In the case of ReRAM, the phys-
ical situation is immensely complicated with many degrees of freedom, and
accurate modeling is a wide-scale and ongoing research undertaking. Efforts
in this direction are motivated by advancing an understanding of physical
and chemical dependencies that can in principle inform design choices on
physically justified grounds. In the past decade, many different computa-
tional techniques have been employed to furnish device models, from ab ini-
tio density-functional theory (DFT), molecular dynamics (MD), kinetic Monte
Carlo (KMC), finite element method (FEM), as well as ordinary differential
equation (ODE) and differential algebraic equation (DAE) solvers [174–178].
The resulting models exist on a spectrum of physical abstraction, such that
the cost of increasing computational speed is generally a trade-off in physical
accuracy and detail [179].

Device models that naturally encompass stochasticity do so at the cost of
complexity needed to compute the physical scenario in high detail. For exam-
ple, atomistic KMC simulates switching processes with atomic precision and
is inherently stochastic but requires hours of computation per cycle even for
small individual cell volumes (e.g., 5×5×5 nm3 [180]). At the other end of
the spectrum, dynamic models based on numerical solutions of ODE/DAE
systems are designed to run significantly faster while sometimes aiming to re-
main physically realistic. However, their higher speed invariably comes at the
cost of approximations, simplifications, and omissions of physical reality. Typ-
ically, device operation is distilled to a dynamical description of one or two
state variables, such as a conducting filament length, radius, or a defect con-
centration.

Due in part to ambiguity in their high dimensional parameter space, a
given ODE/DAE model encompasses a diverse range of possible cell behav-
iors and has the flexibility to approximately match measurement data [181,

https://creativecommons.org/licenses/by/4.0/
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182]. However, fitting the model to data is commonly an ad-hoc, manual,
and/or unspecified procedure. Having dispensed with the atomistic sources
of variability, ODE/DAE models are fully deterministic by default. Where
stochasticity is required, it is accounted for by injecting noise into the state
variables or parameters of the model [183–185]. Due to the unique experimen-
tal challenges posed by electrical measurement of ReRAM, the data used for
fitting is not necessarily statistically sufficient nor measured under relevant
electrical conditions and timescales. While these models can be tuned by hand
to roughly match the dispersion observed in a measurement [186, 187], they
generally fail to accurately reproduce the complex statistical properties of ac-
tual devices.

The main purpose of ODE/DAE device models is to be computationally
efficient enough to support circuit simulation. Still, nonlinear solvers require
many finely spaced timesteps and a considerable amount of total time to com-
pute dynamical trajectories. Although they have been successfully used to
demonstrate small scale circuitry such as logic elements and small crossbar
arrays [188–191], benchmarks or indications of run time for ODE/DAE-based
simulations have so far not been supplied. Except for extremely small ML
model sizes on the order of 103 weights or below, demonstrations of network
performance are expected to remain computationally intractable via conven-
tional circuit simulation.

In this chapter, we address these device modeling challenges with a new
type of generative model for arrays of artificial synapses. The main objec-
tive of the model is to accurately reproduce the statistical properties of fab-
ricated devices while remaining computationally lightweight. Starting with
newly available electrical measurement data as an input, this phenomenolog-
ical model is systematically fit using a well defined statistical regression anal-
ysis. The exclusive use of easily computable analytical expressions provides
close quantitative agreement with relevant experimental observation. Taking
advantage of parallel resources on a modern CPU and GPU, we demonstrate
the ability to simulate hundreds of millions of synaptic connections with over
108 weight updates per second. With its high throughput and low memory
footprint, the model can be usefully employed to simulate large arrays of solid-
state synapses for investigation of emerging NC concepts on a large scale.

3.1 Methods

In designing a stochastic model for synaptic arrays, we place high priority on
speed and fitting accuracy. One of the beginning assumptions is that in every
possible device state, the device current (I) can be represented by a linear mix-
ture of two fixed polynomials in the applied voltage (V). These two polynomi-
als, which are each estimated from a fit to measurement data, can be thought
of as limiting cases for the highest possible high resistance state, IHHRS(V),
and lowest possible low resistance state, ILLRS(V). The device current in all
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possible resistance states is then given by

I(r, V) = rIHHRS(V) + (1− r)ILLRS(V), (3.1)

conveniently reducing the description of the conduction in the material to a
single state variable 0 < r < 1. This set of functions can be efficiently evaluated
by Horner’s algorithm and serve as a close enough approximation to the true
non-linear conduction behavior for our purposes.

In ReRAM, the overall resistance state as well as the transition behavior is
affected by a vast number of different possible configurations of ionic defects
in the material, giving rise to the observed stochastic behavior and history de-
pendence. Rather than attempting to describe the ionic transport physically,
we turn instead to measurement data to directly provide the necessary statis-
tical information. A discrete multivariate stochastic process based on a struc-
tural vector autoregression (SVAR) model is fit to the data and used to generate
latent variables that guide the state evolution of simulated memory cells. As
a cell is exposed to voltage signals, new terms of the SVAR model are real-
ized by a sum of easily computable linear transformations of past states and
pseudorandom vectors.

As an overview, the experimental and simulation approach that will be
elaborated in this section can be shortly summarized as follows:

1. A fabricated ReRAM cell is experimentally driven through a large num-
ber of resistance cycles by applying a continuous periodic voltage signal
while measuring the resulting current.

2. A time series of feature vectors, xn, composed of resistance values and
switching threshold voltages, is extracted from each of the measured cy-
cles.

3. A discrete stochastic process, x∗n, is constructed to enable generation of
simulated feature vectors that reproduce the measured distributions as
well as the long range correlation structure of xn.

4. An array of simulated cells are instantiated according to independent
realizations of x∗n to represent cycle-to-cycle variations, together with a
random scaling vector sm to represent device-to-device variations.

5. Two programming methods are exposed for each cell; one to apply volt-
ages and another to make realistic current readouts. Applied voltages
above the generated thresholds alter the device state, following an em-
pirical structure which encodes the resistance transition behavior and al-
lows access to a range of resistance states. Each voltage driven resistance
cycle triggers the generation of new stochastic terms from x∗n, which gov-
ern the progression to future states.
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3.1.1 Data collection

For the purposes of stochastic modeling, electrical measurement data is
needed that capture relevant information about the internal state of a
memory cell and its variation cycle-to-cycle (CtC) and device-to-device (DtD).
However, ReRAM measurements performed at operational speed typically
make exclusive use of rectangular voltage pulse sequences, which yield very
little useful state information. On the other hand, measurements applying
continuously swept voltage signals while sampling the resulting current are
more suitable because much more information is collected each cycle, such as
switching threshold voltages, current-voltage nonlinearity, resistance states,
and transition behavior.

Conventionally, measurements employing voltage sweeps are carried out
using the source measure units (SMUs) of commercial semiconductor parame-
ter analyzers (SPAs). However, SMUs make heavy use of averaging to mea-
sure noisy signals at high resolution and thus sample too slowly to collect
cycling data in a meaningful quantity. Furthermore, because two-terminal
switching devices are prone to electrical instability and runaway transitions,
voltage sweeping measurements usually require integrated current limiting
transistors to avoid destruction or rapid degradation of the cell. This presents
a significant fabrication overhead and limits the materials available for study.
In light of these challenges, the input data for the present stochastic model
was acquired using a custom measurement technique, introduced in detail in
Section 2.2. The setup uses an external current-limiting amplifier circuit to al-
low for collection of sweeping measurements at over six orders of magnitude
higher speeds than SMUs, while also eliminating the cumbersome requirement
of on-chip current limiting.

The ReRAM cell used for measurement of cycling statistics was integrated
in the back end of line of a 130 nm CMOS process, between M4 and M5 alu-
minum metal lines (Fig. 3.1). On M4, a damascene TiN via followed by a pat-
terned TiN bottom electrode were processed, forming the inert electrode of the
device. The memory stack was then deposited. First, 10 nm HfO2 deposited
by atomic layer deposition (using HfCl4 and H2O precursors) acts as the resis-
tive switching layer [64]. Then, a 20 nm Ti scavenging layer was deposited by
physical vapor deposition, allowing creation of oxygen vacancies within the
HfO2 during the memory operation. A 100 nm TiN top layer was used to cap
the device. Deep ultraviolet photolithography and dry etching were used to
pattern the memory dot, defining the active area. A SiN capping layer was
used to isolate the memory from adjacent cells. Top vias were then opened by
photolithography and dry etching in order to contact the memory dots. Finally,
aluminum M5 was deposited and patterned to complete the process flow.

The measured device was electrically isolated with contact pads leading
directly to the top and bottom device electrodes, with no access transistor or
added series resistance. Using a fixed 100 µA current limit in the SET polarity,
the pristine cell was electroformed by application of 100 µs duration triangu-
lar pulses with incrementally increasing amplitude until a current jump was
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recorded near 3 V. For all subsequent cycling, a 1.5 V amplitude 10 kHz trian-
gular waveform was applied. The cell was first exercised for 2.4× 106 cycles
before 106 additional cycles were collected for analysis. Current (I) and volt-
age (V) waveforms were simultaneously recorded with 8-bit resolution and
with a sample rate of 1,042 samples per cycle. The measured current array
was smoothed with a moving average filter to improve the quality of the raw
data before further analysis. An adaptive rectangular window size was used
to preserve current steps in the signal, with the maximum window size of 25
samples gradually reducing to a minimum of 3 samples at the pre-detected
locations of SET transitions of each cycle. After smoothing, the contiguous I
and V waveforms were split into indexable cycles at most positive value of the
periodic applied voltage (see Fig. 3.2[A]).

Figure 3.1: Scanning electron micrographs of the ReRAM cell
design used for electrical measurement. (A) shows a cross-section
of the cell, and (B) shows a zoom-in of the resistive memory

between metalization layers M4 and M5.

Each cycle exhibits the following temporal sequence of states and events:
a high resistance state (HRS), a transition (SET) out of the HRS into the follow-
ing low resistance state (LRS), and finally another transition (RESET) into the
next HRS. Current vs. voltage (I, V) plots for a subset of the collected cycles are
shown in Fig. 3.2(B), which highlights the significant stochastic CtC variations.
The observed characteristics are typical for ReRAM subjected to voltage con-
trolled sweeps — on average, there is relatively higher voltage non-linearity
in the HRS than in the LRS, and the SET transitions are abrupt with respect to
the applied voltage, while the RESET transitions proceed relatively gradually
over a voltage range of approximately 700 mV.
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Figure 3.2: (A) The measured time dependence of I and V
waveforms resulting from the ReRAM cycling experiment and
used as input to the stochastic model. The waveforms are divided
into 106 indexed cycles, the first three of which are shown. From
this dataset, the periodic temporal sequence of the states and
events of each cycle (HRSn, SETn, LRSn, RESETn) is extracted
and subject to statistical modeling. (B) An I vs. V plot for 300 of
the 106 measured cycles, showing significant statistical variation.
The black arrowed path indicates the temporal direction of the
measurement, following the average of 104 (I, V) curves whose

SET voltage was within one percentile of the median.
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3.1.2 Feature extraction

The full I, V cycling measurement just described consists of over 16 GB of nu-
merical data and would not be practical to model on a point-by-point basis.
Therefore, we aim to compress the dataset while retaining enough informa-
tion such that the full (I, V) characteristics can be approximately reconstructed
from the compressed representation. Accordingly, the full dataset is reduced
to a vector time series of distinguishing features of each cycle. Four scalar fea-
tures were chosen for extraction: the value of the HRS, RH[Ω], the SET thresh-
old voltage, VS[V], the value of the LRS, RL[Ω], and the RESET voltage, VR[V].
We denote the series as

xn =


RH,n
VS,n
RL,n
VR,n

 =


RH
VS
RL
VR


n

, (3.2)

where n = {1, 2, . . . , 106} is the set of cycle indices. The feature vector ele-
ments, whose precise definition follows, are chronologically ordered from top
to bottom as they occur in the measurement dataset.

The SET voltage VS, or the voltage where the cell resistance abruptly de-
creases, is extracted from each cycle as the absolute value of the linearly in-
terpolated V corresponding to the first level crossing of I = −50 µA. The
RESET voltage VR, defined as the voltage where the reset process begins, is
determined from the I datapoints by peak detection using simple comparison
of neighboring samples. Here, only the increasing section of the voltage sweep
with V > 0 is considered. The voltage corresponding to the first encountered
peak with prominence ≥ 5 µA is taken as the RESET voltage. If no peak satis-
fies this criterion, the peak with maximum prominence is taken instead.

The device current for any static state is approximated in our model as a
polynomial function of the applied voltage. The values of RH and RL are like-
wise extracted from least squares polynomial fits to appropriate subsets of the
measured (I, V) data of each cycle. The HRS is fit with a 5th degree polynomial
on the decreasing V sweep in the variable range VS + 0.1 V ≤ V ≤ 1.5 V and
−25 µA ≤ I ≤ 80 µA, and the LRS is fit with a 3rd degree polynomial on the
increasing part of the V sweep in the range −0.7 V ≤ V ≤ VR − 0.05 V and
−80 µA ≤ I ≤ 120 µA. The fits are constrained such that the 0th degree coef-
ficient equals 0 A, and the 1st degree coefficient is ≥1 nA/V. The values of RH
and RL are then defined as the static resistance of the respective polynomials
at a fixed voltage V0 = 200 mV.

An overview of the result of this feature extraction is given in Fig. 3.3. The
106 cycles proceeded without significant long-term drift from the overall mean
value,
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x̄n =


166.5 kΩ

0.85 V
8.2 kΩ
0.72 V

 , (3.3)

but with significant variations in each feature between cycles. A prominent
characteristic of this data is that it is strongly correlated over long cycle ranges,
as quantified in Fig. 3.11. The asymmetric marginal distributions for each of
the features were very well resolved due to the large number of samples, and
they did not accurately converge to any analytical probability density function
(PDF) in common use, including the normal and log-normal.

Figure 3.3: A view of the feature vector time series extracted
from each of 106 measured (I, V) cycles. Each feature, which
represents either a resistance state or a switching voltage, has its

marginal histogram shown on the right.

3.1.3 Stochastic modeling

This section will introduce the statistical methods used to model the internal
states of an array of synaptic ReRAM devices, including CtC and DtD variabil-
ity effects. The handling of voltages applied to the cells as well as the simu-
lation of realistic readouts of the resistance states will also be established. To
help orient the reader, the overall structure of the generative model that will
be described is provided in advance in Fig. 3.4.
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a Σ γ A B Ci Vmax p Vread ∆ f Imin Imax nbits

ŝm

Γ-1 sm

ϵn x̂∗n Γ-1 x∗n

y∗m,n

r

Va

Iread σI

IADC

∀m ∈ {1, . . . , M}
∀n ∈ {1, . . . , N}

n 7→ {n + 1, . . . , n + p}

a Scale factor for Σ ŝm N (0, aΣ) sample
Σ Device covariance Γ-1 Inverse normalizing map
γ Coefficients for Γ-1 sm Device scale vector
A SVAR contemp. parameters ϵn White noise vector
B SVAR noise amplitudes x̂∗n SVAR process
Ci SVAR lag parameters x∗n Median cycling process
Vmax Max. voltage applied y∗m,n Device cycling process
p HHRS, LLRS coefficients r Device state variable
Vread Readout voltage Va Applied voltage pulse(s)
∆ f Readout bandwidth Iread Readout current (noiseless)
Imin Min. current of ADC σI Readout noise amplitude
Imax Max. current of ADC IADC ADC readout
nbits Number of ADC bits

Constant node

Stochastic node

Deterministic node

Observed node

Function

Plate

0D

1D

2D

3D

Figure 3.4: Graphical model depicting the relationships between
all parameters and latent variables involved in the stochastic
synapse model. Plate notation is used to represent N switching
cycles of M devices, each yielding an observed readout current.
The dotted recurrent arrow denotes a connection to each of the
p following frames, as needed by the history dependent stochas-

tic process.

Cycle-to-cycle variations

In seeking to represent the input time series xn with a stochastic process, our
main goals are to recreate the marginal distributions as well as the correlation
structure of its vector components. To achieve the first goal with high gener-
ality, we use an approach based on transformation of the measured densities
to and from the standard normal distribution N (0, 1). This way, a single pro-
cess can be used to achieve any set of marginals presented by the input data,
with the relatively unrestrictive requirement that this base process generates
normal marginals. Notationally, we define and apply an invertible, smooth
mapping Γ : R4 → R4 that normalizes the marginal distributions of the vector
components,

xn =


RH
VS
RL
VR


n

Γ−→


R̂H
V̂S
R̂L
V̂R


n

= x̂n, (3.4)

where a hatted variable signifies that it is distributed as N (0, 1). We then con-
struct a base process x̂∗n whose marginals are normal, and finally transform
its output back to the original data distributions via the inverse map Γ-1. The
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overall process x∗n is thus defined,

x̂∗n =


R̂∗H
V̂∗S
R̂∗L
V̂∗R


n

Γ
-1

−→


R∗H
V∗S
R∗L
V∗R


n

= x∗n, (3.5)

where a star indicates a generated random variable to distinguish from vari-
ables originating from measurement data.

This type of density transformation procedure is a widely used technique
for working with arbitrary distributions, which finds application in a variety
of fields and can be constructed in many different ways [192, 193]. While
the transformation is trivially derived in the case where the target quantile
function and its inverse are each analytically defined, we do not make this as-
sumption in the present scenario. A simple numerical method in this case is
a so-called quantile transform, where the input and output quantile functions
are each discretely sampled and the transformation is defined through a direct
map between bins or through interpolation. The main requirement for Γ in our
model, however, is that its inverse (Eq. 3.5) is easy to evaluate without causing
cache misses due to memory access, thus it is preferable to avoid referencing
and interpolation of large look-up tables. The forward transformation (Eq. 3.4),
on the other hand, only needs to be computed once for model fitting and is not
used for the generating process. We therefore define Γ-1 as essentially a quan-
tile transform, operating on each feature independently, that is evaluated from
a fit of the quantiles to a specific analytic function. Namely,

Γ
-1(x̂n) = exp


γ1(R̂H,n)

γ2(V̂S,n)

γ3(R̂L,n)

γ4(V̂R,n)

 = xn, (3.6)

where γ1-γ4 are each 5th degree polynomials, and the exponential function
is applied element-wise. The coefficients of the polynomials are fit to stan-
dard normal quantiles vs. those of the respective (log) features, sampled at
500 equally spaced values between 0.01 and 0.99. The fitted polynomials are
checked for monotonicity within four standard deviations above and below
zero, and the forward transformation,

Γ(xn) =


γ-1

1 (log RH,n)
γ-1

2 (log VS,n)
γ-1

3 (log RL,n)
γ-1

4 (log VR,n)

 = x̂n, (3.7)

is computed using numerical inverse of the γ polynomials. A visualization of
the function Γ as well as the marginal histograms corresponding to input series
xn and output series x̂n, are shown in Fig. 3.5.
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With the input measurement data transformed into a normalized vector
time series x̂n, a suitable stochastic process will be chosen for fitting. This pro-
cess should serve as a useful approximation to the true physical mechanisms
that generated the data, capturing the long-range correlation structure of the
observed features. Time series analysis is broadly used across scientific and en-
gineering domains, but despite its applicability to the rich statistical behavior
displayed by resistive switching devices, device models have not yet widely
employed dependent stochastic processes. Many models and analyses assume
for convenience that features are independently and identically distributed
according to a normal or lognormal PDF [183, 194]. However, there is not
a strong theoretical basis for this assumption in a highly nonlinear and path-
dependent system based on continuous evolution of conducting filaments. De-
pendent stochastic processes, on the other hand, more appropriately allow for
a description of the dependence of future states on past states.

Simple models in the category of Markov chains have been considered
as generating processes for memory cells. A rudimentary example is a
1-dimensional random walk process, where each future state is computed as a
random additive perturbation on the previous state [185]. While random walk
represents a reasonable short range approximation, it has the well known
property that the expected absolute distance between the initial value and the
Nth value is proportional to

√
N for large N, causing the process to eventually

drift to unphysical values without the use of artificial constraints.

Autoregressive (AR) models are simple univariate processes sharing some
characteristics of random walk, but based additionally on a deterministic lin-
ear dependence on past observations. Each new term of an AR(p) (AR of order
p) model is computed by linear combinations of p previous (lagged) values
together with a noise term, producing processes that are wide-sense stationary
and mean-reverting within suitable parameter ranges [195, 196]. The few times
they have appeared in the literature, low order models like AR(1) and AR(2)
were used to describe state variables independently (e.g. a sequence of high
and/or low resistance states) [197, 198]. Here we pursue a more comprehen-
sive statistical description of the interrelations between the different variables
contained in the vectors x̂n which takes into account long range correlations
p≫ 1. This is enabled by using a VAR(p) model (vector AR of order p), which
is the multivariate counterpart of the AR model applicable to discrete vector
time series [195, 196].

We adopt a structural VAR (SVAR) formulation of the model, which is
a factorization that makes the relationships between the contemporaneous
(same index) variables explicit. The model has the form

Ax̂∗n =
p

∑
i=1

Ci x̂∗n−i + Bϵn, (3.8)

where A, B, and Ci are 4 × 4 matrices of model parameters, and ϵn is a 4-
dimensional standard white noise process. With this formulation we impose
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a general structure of causal ordering for the generated random variables con-
sistent with the chronological chain of measurement events. Within this struc-
ture, each variable may have a causal and deterministic effect on all future
variables within range p, as visualized by the graph of Fig. 3.6. The size of
these effects are all subject to fitting via the coefficients of the model. Con-
straints on the structural parameters,

A =


1 0 0 0

A21 1 0 0
A31 A32 1 0
A41 A42 A43 1

 , B =


B11 0 0 0
0 B22 0 0
0 0 B33 0
0 0 0 B44

 (3.9)

enforce the desired causal structure while assuming an uncorrelated noise
driving process. Model fitting was performed using the Python statsmodels
package [199], wherein a VAR(p) model is first fit by ordinary least squares
regression, and a maximum likelihood estimate is then used to determine the
structural decomposition.
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Figure 3.5: Visualization of the invertible normalizing transfor-
mation Γ that is applied to the measured feature vectors before
fitting with a base stochastic process. The left column shows
the marginal PDFs of the vector time series xn extracted from
measurement. The center column shows the input and output
quantile-quantile plots with the fitted log-polynomial function
used to transform the distributions (here, Q denotes the quan-
tile function of its argument). The right column is the result of
applying Γ to the input data, producing x̂n whose elements are

normally distributed.
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R̂∗H,n−1

V̂∗S,n−1
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Figure 3.6: A weighted graph displaying the causal structure
of the utilized SVAR(p) process, showing the nearest temporal
contributions to realizations of the random vector x̂∗n. Arrow
weights show the model parameters contained in A, B and the
upper triangular part of C1 when fit with p = 100. The actual
SVAR(p) model uses many more connections (16p + 10) than
shown, so that each variable is impacted by all past values of all

other variables within cycle range p.
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Device-to-device variations

So far, we have only considered the statistical modeling of the cycling pro-
cess of a single memory cell. However, the purpose of the presented model
is to simultaneously simulate a large number of cells in a network. Individ-
ual memory devices on a wafer generally show statistical variations, mainly
arising due to defects and non-uniformities in fabrication [74, 200]. These DtD
variations depend strongly on the particular lithography processes and mate-
rials used. They can also originate from intrinsic factors and are influenced
by conditions during the electroforming of each cell [201, 202]. Because of the
potential positive or negative impact on network performance [200, 203], it is
important for the model to account for the DtD variability.

The electrical effect of device variability is modeled with each cell using
a modification of the same underlying SVAR cycling process. Device-specific
processes are defined as members of a parametric family of processes, all based
on element-wise scaling of x∗n, where the scaling factors are themselves random
vectors. The specific process is denoted

y∗m,n = sm ⊙ x∗n, (3.10)

where m = {1, 2, . . . , M} is the device index, ⊙ is the Hadamard (element-
wise) product, and sm are 4× 1 random vectors drawn from a fixed distribu-
tion at cell initialization.

The distribution of sm is chosen so that the features of the median cycles
of different devices are distributed and correlated in the same way as the mea-
sured cycling data xn. This choice reflects that the covariations of switching
features DtD arise in the same physical system with causes and effects that are
comparable to those of the CtC variations. To this end, random vectors ŝm are
drawn from a multivariate normal (MVN) distribution and Γ-1 is then reused
to map them to the measured CtC distribution,

sm = Γ
-1(ŝm)⊘ Γ

-1(0), where ŝm ∼ N (0, aΣ). (3.11)

Here, the denominator of the Hadamard division (⊘) sets the median scale
vector to the identity, Σ = cov(x̂n) is the sample covariance of the normalized
measurement data, and a is a free scalar parameter providing adaptability to
different DtD covariance levels. A robust determination of a requires measure-
ment of many switching cycles across a large number of devices of interest.
Values in the range a ∈ [1, 1.5] approximately correspond to published DtD
measurement samples [74, 200], but improved processing and electroforming
procedures may justify the use of a < 1.

Control logic

As components of a network, each simulated cell possesses a resistance state
that encodes the weight of a connection. Voltage pulses directly applied to
the cells are used to produce resistance state transitions to update the weights.
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In this model, applied voltage pulses are distinguished only by a scalar am-
plitude Va, whether they are in fact square waveforms or they have a more
complex shape of an action potential. The duration of the pulses is assumed
to be appropriately matched to the experimental timescale, such that a sim-
ulated voltage pulse of a given amplitude produces an effect comparable to
the experimental voltage sweep at the instant it reaches that same amplitude.
Possible state modifications in response to an input pulse is computed with re-
spect to I, V sweeps that are reconstructed from each stochastic feature vector
generated for each cycle as illustrated in Fig 3.7.

Figure 3.7: Conduction polynomials and threshold voltages al-
low reconstruction of (I, V) cycles from generated feature vec-
tors. Simulated resistance switching is such that the conduction
state I(r, V) induced by an applied voltage Va intersects the re-
constructed cycle at V = Va. For visual simplicity, the cycle

shown begins and ends in the same HRS (RH,n = RH,n+1).

As previously specified in Eq. 3.1, every possible electrical state of a device
is assumed to correspond to a polynomial I(V) dependence parameterized
by a state variable r. It is straightforward to calculate that the state variable
for a curve passing through an arbitrary (I, V) point is uniquely given by the
function

r(I, V) =
ILLRS(V)− I

ILLRS(V)− IHHRS(V)
. (3.12)

Therefore the state variable corresponding to any static resistance level R (eval-
uated at V0) can be calculated using

r(R) =
ILLRS(V0)−V0R-1

ILLRS(V0)− IHHRS(V0)
. (3.13)
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The I(V) curves for the electrical states corresponding to each cycle’s HRS
and LRS, hereafter called IHRS,n(V) and ILRS,n(V), are defined according to
equations (3.1) and (3.13) such that their static resistance equals the respective
value of R∗H,n and R∗L,n.

Transitions between the HRS and LRS states in response to an applied
pulse amplitude Va follow an empirically motivated structure, represented by
the flow chart of Fig. 3.8. The SET transition for the nth cycle HRSn → LRSn
may occur for negative voltage polarities and follows a simple threshold be-
havior, fully and instantaneously transitioning the first time a voltage pulse
with amplitude Va ≤ V∗S,n is applied. In contrast, the RESET transition LRSn
→ HRSn+1 occurs gradually in the positive polarity with increasing Va in the
range V∗R,n < Va ≤ Vmax, where Vmax = 1.5 V is the maximum voltage ap-
plied in the voltage sweeping measurement. A transition curve IRESET,n(V) is
defined to connect the (I, V) points of the two limiting states where the RE-
SET transition begins and ends. The functional form of the transition curve is
chosen to be the parabola with boundary conditions

IRESET,n(V∗R,n) = ILRS,n(V∗R,n) (3.14)
IRESET,n(Vmax) = IHRS,n+1(Vmax) (3.15)

dIRESET,n

dV

∣∣∣∣
V=Vmax

= 0. (3.16)

When a voltage pulse in the RESET range is applied, an intermediate resis-
tance state (IRS) results which is calculated with reference to the transition
curve such that I(r, Va) = IRESET,n(Va). Additional RESET pulses with larger
amplitudes may be applied to incrementally increase the cell resistance, with
HRSn+1 being reached only if Va ≥ Vmax, after which no further RESET switch-
ing is possible for the nth cycle. After either partial or full RESET, the resistance
may only decrease again by entering the following LRSn+1 with a voltage pulse
meeting the SET criterion Va ≤ V∗S,n+1.
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Figure 3.8: Logical flow chart showing how applied voltage
pulses affect the state of each cell during simulation. Follow-
ing the experimental observations, SET processes always oc-
cur abruptly below a threshold voltage, while partial switching
is induced for a range of RESET voltages, with intermediate
states bounded for cycle n by resistance values between RL,n
and RH,n+1. As resistance cycling progresses, later terms of the
stochastic driving process are used for limiting resistance states
and threshold voltages. Pulse amplitudes not producing a state

change are efficiently disregarded.

Readout

Simulated current measurements (readouts) for each individual cell can be
generated given an arbitrary readout voltage input Vread. The noise-free
current level simply corresponds to evaluation of I(r, Vread) for each cell. In
any real system, however, current readouts are accompanied by measurement
noise, which may impact system performance and even present a fundamental
bottleneck. Furthermore, in digital systems current readouts are converted to
finite resolution by analog to digital converters (ADCs). Due to constraints
of power consumption and chip area, ADC resolution is often limited such
that digitization is the dominant contributor to the total noise [204]. Many
additional noise sources can be considered, such as the Johnson-Nyquist and
shot noise, which represent a lower bound of the noise amplitude impacting
all systems.

To account for measurement noise, each individual current readout in-
cludes an additive noise contribution drawn from a normal distribution. The
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noise amplitude is approximated from the Nyquist and Schottky formulas,

σI =

√
4kBTIread∆ f

Vread
+ 2qIread∆ f , (3.17)

where ∆ f is the noise equivalent bandwidth, kB is the Boltzmann constant,
T = 300 K is the temperature, q is the electron charge, Iread is the noiseless
current readout, and Vread is the voltage used for readout. The total current
is then ideally digitized with an adjustable resolution nbits between adjustable
minimum Imin and maximum Imax current levels.

3.1.4 Program implementation

To facilitate investigations of neuromorphic systems, model implementations
designed to simulate arrays of devices were developed in the Julia program-
ming language. Julia is a modern high-level language that is focused on perfor-
mance and provides an advanced ML and scientific computing ecosystem. Ju-
lia programs compile to efficient native code for many platforms via the LLVM
compiler infrastructure, and a cursory analysis indicated that single threaded
CPU performance of a Julia implementation is up to 5,000 times faster than a
Python implementation. Furthermore, as modern computational resources are
highly parallel, Julia’s support for CPU multi-threading and GPU program-
ming through CUDA.jl [205] is an important advantage.

All model parameters corresponding to the characterized device character-
ized in this work, including different possible SVAR model orders, p ∈ [1, 200],
are stored in a binary file which is read in by the program at startup. Each in-
stantiated cell stores state information and p cycles of history using primarily
32-bit floating point numbers. The total memory footprint grows linearly with
the chosen model order and is approximately 16p + 56 bytes per cell. A re-
duced form VAR process is used to compute realizations of x∗n, which are lazily
evaluated along with the parabolic transition polynomials if and when they are
needed. The majority of the necessary runtime computations are formulated
as matrix multiplications, which are heavily optimized operations across many
different contexts.

The present release contains two model implementations in order to suit a
wide variety of computing platforms and use cases [206]. The first is a CPU op-
timized version wherein the cells of an array are individually addressable for
read/write operations. These operations are naturally parallelized for multi-
core processors by partitioning the cells and assigning each partition to inde-
pendent threads of execution. The second implementation is a GPU acceler-
ated version compatible with CUDA capable GPUs. This version uses a vec-
torized data structure and parallel array abstractions to take advantage of the
implicit parallelism programming model of CUDA.jl. Here, all defined cells
are always accessed simultaneously, with each read/write operation employ-
ing optimized linear algebra GPU kernels. While the GPU implementation
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integrates well with other ML components residing in GPU shared memory
and achieves higher throughput per cell for large parallel operations, the CPU
implementation obtains higher update rates for sparse operations commonly
encountered in large-scale models [207, 208].

3.2 Simulation results

As shown visually in the scatterplot of Fig. 3.9, the stochastic process x∗n gen-
erates data that closely resemble the measurement data xn. The generated dis-
tributions match the empirical distributions so closely that it is difficult to vi-
sualize their difference. The Wasserstein metric is a distance function defined
between probability distributions that can be used to quantify a small discrep-
ancy [209]. The first Wasserstein distance was calculated element-wise and
averaged across 100 realizations of x∗n with length 106. The result,

W1(xn, x∗n) =


5146 Ω
937 µV
20 Ω

356 µV

 , (3.18)

is much smaller than the mean feature vector, x̄n (Eq. 3.3), and independent of
the chosen model order. This shows that the goal of reproducing the measure-
ment distributions is well achieved for the input dataset by using the described
method of probability density transformation.

Simulations of full (I, V) cycling measurements (Fig. 3.10[A]) show close
similarity with the measurement data of Fig. 3.2. Multi-resistance-level capa-
bility is also demonstrated by a similar simulation involving partial RESET
operations by changing the maximum voltage applied (Fig. 3.10[B]). The de-
pendence of the resulting HRS value on the applied voltage reproduces a non-
linear characteristic comparable to experimental findings [210, 211].

While a full structural analysis of the fitted SVAR(p) model parameters
(A, B, Ci) will not be presented here, a few aspects are worthy of note. For the
fit corresponding to the particular device and measurement described here,
the white noise terms are by far the dominant contributors to all four modeled
features. The contemporaneous terms (A) and first order (C1) terms are the
next most significant, which indicates that the most recent cell history is most
relevant for generating the proceeding states. Nevertheless, input data cor-
relations persist for many cycles, and the generating process x∗n successfully
reproduces the overall correlation structure of the data up to at least p cycle
lags, as shown in detail in Fig. 3.11.

Although no physical effects were explicitly put into the model definition,
it is important to recognize that they are quantitatively captured and put into
a useful statistical context by the SVAR model fitting procedure. The model
weights contained in A, B, and Ci quantify deterministic relationships between
past and future variables even in the presence of large random fluctuations. As
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Figure 3.9: Comparison of feature time series extracted from
measurement data and those generated by the SVAR-based
model. The compared features converge to effectively equiva-
lent distributions and the short-range behavior is qualitatively

similar across thousands of cycles.

seen in the graph of Fig. 3.6, the four strongest coefficients in the fitted model
correspond to the relationships

R̂∗H,n
0.111−−−→ V̂∗S,n, (3.19)

V̂∗S,n
−0.139−−−→ R̂∗L,n, (3.20)

R̂∗L,n−1
0.153−−−→ R̂∗L,n, (3.21)

R̂∗L,n
0.180−−−→ V̂∗R,n. (3.22)

Comparable relationships between switching variables have been identi-
fied and discussed in physics-based models and simulations as well as in ex-
perimental studies involving various materials [107, 114, 212–216]. According
to relation 3.19, larger starting HRS values tend to contribute to a higher SET
voltage, which is a well known effect due to a reduced driving force for ionic
motion at a given applied voltage, as a larger HRS gives both reduced power
dissipation as well as a reduced electric field in a thicker insulating gap. The
subsequent LRS is strongly affected by the SET voltage (relation 3.20). This can
be attributed to the runaway nature of the SET transition and a higher voltage
initial condition, and is also connected with the dynamics of the current limit-
ing circuitry [163]. The LRS value is also strongly correlated with the value of
the previous LRS (relation 3.21), because of the influence of the residual fila-
mentary structure from the previous cycle [217]. Lastly, relation 3.22 indicates
that higher LRS values tend to have larger reset voltages, which has to do with
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Figure 3.10: Two example simulations involving repeated cy-
cling of a single device. Voltage pulse sequences were applied
with varying amplitude following a triangular envelope, and the
(I, V) characteristic of the each cycle is plotted in a different
color. Subplot (A) shows 300 consecutive cycles between the
full voltage range ±1.5 V, with a readout performed after every
pulse (inset). Subplot (B) demonstrates multilevel capability
with 300 cycles between -1.5 V and maximum voltage that in-
creases each cycle, from 0.7 V to 1.5 V. Readouts following each
cycle are shown in the inset. In each case, readouts were sim-
ulated using a fixed Vread = 200 mV, including noise and 4-bit

quantization between Imin = 0 µA and Imax = 40 µA.

a balance of factors influencing filament dissolution, including temperature
and drift. This balance depends on the cell materials, operating regime, and
internal series resistance [218].
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Figure 3.11: Auto- and cross-correlations of the normalized fea-
ture vector components, showing the Pearson coefficients ρX,Y
of the variables specified in the subplot columns X and rows Y as
a function of lag l. Row variables are lagged with respect to col-
umn variables, as denoted by the lag operators LX. A comparison
between measurement data and data generated from SVAR(30)
shows extremely close agreement up to cycle range 30. For lags
larger than the chosen model order, some of the correlations of

x̂∗ decay more quickly than x̂.

3.3 Benchmarks

As a benchmark of the throughput of write operations, repeated resistance cy-
cling was induced on arrays of simulated cells under varying conditions. In
each case, voltage pulse sequences to be applied to all defined cells were gen-
erated prior to the benchmarks, consisting of amplitudes±1.5 V with alternat-
ing polarity. Defined as such, every pulse drives each cell through a transition
into its next HRS or LRS. The read operation was benchmarked separately un-
der equivalent conditions, reading out the entire array using a fixed readout
voltage of Vread = 0.2 V.

The CPU benchmark was performed on using an Intel Xeon Silver 4116
CPU, varying the cell array size M, the order of the VAR process p, as well as
the number of threads used to perform the operations in parallel. The resulting
read/write throughputs are summarized in Fig. 3.12. Write throughputs were
obtained in the range 107 − 108 operations per second (OPS), or between 10−
100 ns per individual write operation. Read operations were approximately
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an order of magnitude faster than writes, with 108 − 109 OPS or 1− 10 ns per
read operation. Due to the size of necessary matrix multiplications, increasing
the VAR order p incurs a cost of write throughput, with a p = 100 model
running approximately 2.4× slower than one with p = 10. The read operation,
in contrast, shows a negligible dependence on the VAR order.

Figure 3.12: Benchmarks of the read/write operation through-
put per cell of the Julia model implementations. In (A) and
(C), an array of 220 (∼106) cells are simulated on the CPU as
a function of number of parallel threads spawned, and the VAR
model order p. In (B) and (D), the CPU (24 threads) and GPU
implementations are benchmarked versus the array size M, with

p = 10.

The GPU accelerated version was benchmarked in an analogous way, us-
ing the same host machine with an NVIDIA TITAN RTX GPU device. The
results are shown in dependence of the cell array size M in Fig. 3.12(B,D). The
GPU implementation overtakes the CPU above M = 105 parallel operations
where the entire array is updated, and achieves an order of magnitude faster
performance for large arrays with M > 106. However, CPU throughput is
applicable to subsets of the array, and may retain an advantage for sparse op-
erations.

3.4 Discussion

In order to assess the potential of emerging synaptic devices, new lightweight
and accurate device models are needed to constitute the millions/billions of
weights used in modern machine learning (ML) models. Candidate memory
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cells such as ReRAM are highly non-linear stochastic devices with complex
internal states and history dependence, all of which needs to be explicitly taken
into account. In this work we introduced an efficient generative model for
large synaptic arrays, which closely reproduces the statistical behavior of real
devices.

Taking advantage of a recently developed electrical measurement tech-
nique [163], we systematically fit the model to a dataset that is dense in relevant
information about the device state evolution. Together with this new kind of
measurement, our modeling approach helps complete a neuromorphic design
feedback loop by defining a programmatic connection from the measured be-
havior of a fabricated device under the intended operating conditions directly
to fitted model parameters. Probability density transformation of the under-
lying SVAR stochastic process gives the model the power to accurately repro-
duce nearly arbitrary distribution shapes and covariance structures across the
switching cycles and across the separate devices. These features enable evalu-
ation of network performance while automatically adapting to a wide variety
of possible future device designs.

We provide parallelized implementations for both CPU and GPU, where
up to 15 million cells per gigabyte of available memory can be simulated
at once, and benchmarks show write throughputs above three hundred
million weight updates per second. As a point of reference, this throughput
exceeds the pixel rate of a 30 frames per second video stream at 4K resolution
(3840×2160 pixels). Realistic current readouts including digitization and
noise were also benchmarked, and are approximately an order of magnitude
faster than weight updates. While speeds can be expected to improve with
future optimizations, these benchmarks give a basis for estimating the scope
of applicability of the model to ML tasks.

The implementation and the general concept of this model are naturally
extendable. Although model parameters were adapted here to a specific HfO2-
based ReRAM device, the method is applicable to a variety of other types of
stochastic memory cells such as PCM, MRAM, etc. Four specific switching
features were chosen in this demonstration to reconstruct (I, V) cycling be-
havior, but additional switching parameters can also be extracted from mea-
surements and accommodated within this framework. Ideally informed by
statistical measurement data, different functional forms, transition behaviors,
time dependence, and underlying stochastic processes can each be substituted.
Fitting may also be performed with respect to the output of physics-based sim-
ulations, thereby establishing an indirect link to physical parameters while
achieving much higher computational speed. With these considerations, the
model represents a flexible foundation for implementing large-scale neuro-
morphic simulations that incorporate realistic device behavior.
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Chapter 4

Mott-oxide neuronal nano-devices

The graphics marked by a copyright in this chapter are adapted, with permission, from
Ref. [44] and Ref. [45].

4.1 Thin film deposition

Synthesis of pure-phase (V1−xCrx)2O3 thin films is a challenging materials en-
gineering problem, and is the subject of previous work by Jonathan A. J. Rupp.
The deposition of the (V1−xCrx)2O3 films discussed in this chapter are one of
the products of this prior work. For completeness, the deposition conditions
parameters will be briefly recounted here, but the interested reader can refer
to other works which have described various aspects of the material synthesis
and optimization in much greater detail [219–222].

Depositions of mixed vanadium/chromium oxide thin films were carried
out using reactive RF magnetron sputtering from alloyed V1−xCrx sputtering
targets with x = 0.0, 0.05, and 0.15. One inch diameter targets were used, with
a target to substrate distance of 5 cm and an incident angle of 15◦. With an
applied sputtering power of 50 W and with the substrate temperature held at
600 ◦C, polycrystalline layers were deposited on various substrates including
platinum, titanium nitride, silicon nitride membranes, and silicon membranes.
Nominally amorphous films were also deposited at room temperature (20 ◦C)
under otherwise identical conditions as the polycrystalline films.

As part of the material optimization, the oxygen partial pressure was ad-
justed to obtain the targetted corundum phase and (V1−xCrx)2O3 sesquioxide
stoichiometry. The base pressure was held below 1 nbar and the working pres-
sure was fixed at 10 µbar, and the oxygen partial pressure was controlled by
simultaneous flow from two separate gas sources; The first containing pure
Argon and the second a mixture of oxygen/argon in the ratio 1/99. Crystallo-
graphic phases were determined for using X-ray diffractometry in grazing in-
cidence mode (GI-XRD) with a X’Pert PRO powder diffractometer (PANalyt-
ical). Film stoichiometry was evaluated by transport measurements through
the low temperature V2O3 metal-insulator phase transition, the steepness of
which is known to depend very sensitively on the defect concentration in the
sub 1% range [223]. Optimized conditions were obtained with the mass flow
controllers for the two gases set to 94 sccm and 6 sccm, respectively.
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For the determination of thickness and calculation of deposition rate, X-ray
reflectometry data were acquired and fitting was performed by PANalytical’s
“X’pert Reflectometry”. Using the optimized deposition conditions, film thick-
nesses between 90 nm to 5 nm were deposited within a few minutes for each
of the substrates and each of the chromium concentrations. The desired pure-
phase corundum V2O3 crystallinity was confirmed by GI-XRD down to 30 nm
thickness, but was not well resolved by this technique for thicknesses below
30 nm.

To avoid post-oxidation or degradation before or during X-ray characteri-
zation, all (V1−xCrx)2O3 films examined by X-ray were capped in situ with a
2 nm tantalum film.

4.2 Film characterization with X-ray absorption

While the bulk properties of the (V1−xCrx)2O3 system are relatively well stud-
ied and understood [89, 224], properties of thin films are less known because
of the extra experimental challenge involved. Due to the small length scale,
the composition and crystal configuration in films are difficult to characterize,
especially at extremely low thicknesses below 10 nm. In thin films, phase coex-
istence, off-stoichiometry, and interface effects such as strain and diffusion all
conspire to impact the metal-insulator phase transition behavior. X-ray absorp-
tion spectroscopy (XAS) is a widely used technique that measures excitations
of atomic core levels to probe the electronic structure of a sample; it is use-
ful for chemical speciation, and is applicable to extremely thin material layers.
In particular, X-ray absorption near edge structure (XANES) analysis provides
information about the valence and coordination environment of a specific ele-
ment in the sample. The energies and intensities of vanadium K-edge absorp-
tion features were found to be correlated with the vanadium oxidation state
in bulk and powdered oxides [225–227], but so far this technique has not been
applied to thin (V1−xCrx)2O3 film samples.

Here, we show XANES characterization for the various (V1−xCrx)2O3
films described in the previous section. XANES measurements were per-
formed at the microXAS X-ray beamline at the Swiss Light Source facility
(Paul Scherrer Institute, Switzerland). Hard X-rays from the synchrotron were
monochromatized to the Cr and V K-edges using a double Si crystal and
focused to a spot size of approximately 1.5 µm (horizontal)×1 µm (vertical)
using an elliptically shaped Rh-coated mirror pair in the Kirkpatrick-Baez
(KB) geometry. Incident X-ray intensities were measured with a He-flushed
ion chamber before reaching the sample. The photon energy was calibrated
with respect to the K-edge of a reference vanadium foil, with the first detected
peak of its derivative spectrum defined as 5465 eV.

Reference powders of binary oxides (V2O3, VO2, V2O5) were obtained
from Sigma-Aldrich (analytical grade). To prevent oxidation, the powders
were handled and stored in an inert environment prior to measurement. Each
reference material was encapsulated in Kapton tape compartments in order to
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be measured in transmission mode. While in transit to the beamline, reference
samples were packaged individually in aluminized gas barrier bags, along
with RP agent (500 mL) from Mitsubishi Gas Chemical Company, Inc., which
absorb moisture, oxygen, and corrosive gases.

Reference powder samples were measured in transmission mode, and thin
film specimens were measured in fluorescence mode using a Si drift detec-
tor. Absorption and fluorescence spectra were acquired for incident photon
energies between 5330 eV to 5800 eV for the V K-edge and between 5850 eV
to 6400 eV for the Cr K-edge. The photon energy was scanned with a vary-
ing step size with a minimum step size of 0.2 eV near the main absorption
edges. The scanning procedure was repeated four times for the V edge and ten
times for the Cr edge, to provide a higher SNR by averaging over the repeated
scans. The partial fluorescence yield was extracted from each of the XRF spec-
tra through numerical integration between 4780 eV to 5110 eV for the V Kα

peak and 5290 eV to 5550 eV for the Cr Kα peak. These integration windows
were carefully selected to avoid overlap with the elastic scattering peaks. A
correction was made to the Cr Kα (5414 eV) intensity to account for the over-
lapping the V Kβ line (5427 eV). This background was subtracted using the
extracted V Kα intensity, assuming a fixed intensity ratio of the V Kα to V Kβ of
ten. All fluorescence yields were normalized by the incoming beam intensity
and corrected for detector dead time. Spurious peaks in the XANES spectra,
arising from Bragg peaks intruding into the V and Cr Kα integration windows,
were manually pruned from the dataset.

All XANES spectra for references and thin films were normalized by the
same procedure and using the same parameters. The normalization procedure
first set the pre-edge baseline to zero by subtraction of a linear fit within a fixed
pre-edge energy range. The post-edge was then normalized to unity through
division by a line which was fit within a fixed post-edge energy range. For
the V K-edge, the respective fit ranges were 5389 eV to 5455 eV and 5671 eV
to 5768 eV. For the Cr K-edge, they were 5911 eV to 5979 eV, and 6241 eV to
6360 eV. As shown in Fig. 4.1, absorption spectra for both K-edges were clearly
resolved all the way down to the weakest signal case (5 nm film thickness
and 5% Cr content). Between specimens, main edge energy differences on the
order of 1 eV, as well as strong intensity variations of the pre-edge features
were detected.

Main edge energies were extracted from the spectra after normalization by
interpolation to the 0.5 absorption level crossing. The extracted edge energies
were seen to increase with the cation oxidation state for both V and Cr oxide
reference compounds, in agreement with the trends previously reported [225–
227]. The extracted edge energies of the film specimens were compared with
the reference materials to judge oxidation state and identify potential inter-
mixing of the many possible VOx phases (Fig. 4.2). The edge energies for all
film samples were distributed closest to the values of reference materials V2O3
and Cr2O3, showing no clear deviations from the intended material phase
(V1−xCrx)2O3 with the utilized variations in deposition parameters. There
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Figure 4.1: Normalized absorption spectra (from fluorescence
yield) for the K edges of V (A, C) and Cr (B, D) for 30 nm
(A, B) and 5 nm (C, D) thin films, each with 5% Cr content.
Good signal quality was obtained even for the Cr K edge of 5 nm
films. The energy ranges used for normalization are indicated by

the colored transparent bands.

is a trend of increasing energy for both the V and Cr edges with film thick-
ness, suggesting a possible reducing effect of the Si membrane substrate on
the oxide film near the interface. Strain effects induced by lattice parameter
mismatch could also play a role here, with such effects being more prominent
for the thinner films.

Even more pronounced than the main edge energy shifts, the thin film
XANES spectra also showed strong variations in the pre-edge peaks when dif-
ferent deposition parameters were used (Fig. 4.3). This pre-edge corresponds
to a 1s→ 3d electronic transition, which is formally dipole forbidden but be-
comes allowed due to a slight deviation from octahedral symmetry of the V
coordination environment [225–227]. A triplet structure arises here due to the
crystal field splitting of the ground state. These structures are very sensitive to
the stoichiometry, the crystal phase, and can also be related to the Mott insu-
lating state [88, 228].

The intensity of the pre-edge peak in the VOx system is suggested in the
literature to be a more sensitive indicator of the V oxidation state than the
main K-edge energy shifts. This was studied by several groups through refer-
ence powder measurements of compounds with different oxidation states (e.g.
VO, VO2, V2O3, V2O5) obtained from a commercial source (Alfa Aesar) [225–
227]. However, a comparison of the literature spectra reveals a quantitative
discrepancy of the pre-edge intensities both between the studies and with the
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Figure 4.2: Variation of the measured V and Cr main K-edge
energy vs. film thickness. The shown films were deposited at
temperature 600 ◦C on 10 µm Si membrane substrates and con-
tain 5% Cr. Colored bands indicate the measured edge energy
(±1σ) for the reference oxide powders. A trend of increasing
edge energy with film thickness suggests an impact of the sub-

strate interface.

present study (Fig. 4.4). With V2O5 being the most thermodynamically sta-
ble oxide, powders of lower V oxides tend to slowly oxidize in atmosphere.
Therefore, larger pre-peak intensities could indicate varying levels of contam-
ination with V2O5 occuring due to air contact during sample preparation and
transport. Until the true reference spectra are clarified, the present discrepency
confounds a complete evaluation of the pre-peaks in the XANES spectra of the
thin film samples.

In summary, we have successfully collected XANES spectra of ultra-thin
(V1−xCrx)2O3 films deposited under a variety of conditions, which are the
first of their kind reported for this material system. The spectra show strong
variations in the pre-edge peak structure, which contain information about the
vanadium valence state and its coordination geometry. We demonstrated that
the pre-edge region is very sensitive to the stoichiometry and could be better
probe for the valence states than the main edge energy. We also find a strong
influence of the substrate on the pre-edge that will require further investiga-
tion. We expect that combining X-ray microscopy and electrical measurements
will allow a way to bridge the chemical microstructures with the functional
properties of devices.
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Figure 4.3: Pre-edge (V-K) absorption peaks of the thin film
specimens. Peak intensities are strongly affected by variations of
deposition parameters, (A) Cr content (B) film thickness (C)
substrate (D) deposition temperature. Each subplot shows the
effect of a parameter variation from the reference condition of
10 nm thickness, 10 µm SiOx substrate, 600 ◦C deposition tem-

perature, and 5% Cr concentration.
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Figure 4.4: Absorption spectra of vanadium oxide reference
powders measured in this work (V2O3, VO2, V2O5) compared
with literature references. Strong discrepancies in pre-peak inten-
sities as well as edge energies are displayed. Column (A) shows
the overlapped spectra and column (B) shows the same spectra

with relative offsets.
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4.3 Nanodevice fabrication

For all electrical investigations of resistance switching phenomena covered in
this chapter, (V1−xCrx)2O3-based nano-scale metal-insulator-metal (MIM) de-
vices were prepared using the same deposition parameters as the films used
in the XANES study in Section 4.2. The devices consist of full oxide films con-
tacted from below by square TiN vias and capped with 30 nm Pt top elec-
trodes. The effective device widths, determined by the dimensions of the TiN
via, varied across the dies between 120 nm and 500 nm, and the deposited ox-
ide thickness ranged from 90 nm to 5 nm. A device cross-section for a 90 nm
oxide thickness is shown in the SEM micrograph of Fig. 4.5.

Figure 4.5: Cross-sectional SEM of a (V0.85Cr0.15)2O3 nan-
odevice, using a 90 nm thick oxide layer, 30 nm top electrode
(Pt), and a 250 nm × 250 nm bottom point contact (TiN). The
active volume of the cell is indicated with a dashed red outline.

© 2018 IEEE.

Each individual device has independent top and bottom electrode contacts
routed to 100×100 µm probing pads, both electrically isolated from the sur-
rounding film and substrate. The pads have an estimated capacitance 65 fF to
the substrate, and the capacitance of the devices themselves is much smaller,
with a maximum estimated value of

Cd =
ϵ0ϵrw2

ox
tox

≈ 9 fF, (4.1)

assuming relative permittivity ϵr = 20, device width wox = 500 nm, and de-
vice thickness tox = 5 nm.

In addition to isolated devices with direct electrode contacts, a subset of
devices also included integrated serpentine series resistors which can be used
to control (I, V) trajectories during switching events. With very little parasitic
capacitance between the on-chip resistors and the memory cells, devices are
well protected from unwanted current overshoots and their NDR characteris-
tics can be interrogated with minimal risk of degradation. The mean calibrated
values of the resistances used were 150 Ω, 2,164 Ω, 8,197 Ω, and 12,857 Ω, each
with a ±3% relative error as determined by a measurement of 18 samples of
each nominal resistor size.
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Ultrathin (< 10 nm) functional layers are particularly important for nano-
electronic applications. The thinnest fabricated devices (5 nm) were character-
ized by transmission electron microscopy (TEM), as summarized in Fig. 4.6.
Material composition was confirmed using electron energy loss spectroscopy
(EELS), revealing a uniform device thickness and high quality interfaces with
the electrodes.

Figure 4.6: A cross-section of an ultra-thin (V0.85Cr0.15)2O3
device (5 nm × 120 nm × 120 nm) characterized by TEM. An
overview (A) shows the location of the thin active layer (inset).
The energy loss spectrum of the 5 nm oxide layer (B) clearly
shows the L-edges of vanadium and chromium and K-edge of
oxygen. Spatially resolved EELS (C) shows a sharp material

interface with the bottom (TiN) and top (Pt) electrodes.

4.4 Electrical characterization

4.4.1 The pristine state

Initial resistivity analysis

Following fabrication of rectangular nanodevices of varying dimensions, mea-
surements of their initial resistances were made in order to verify electrical
uniformity. For a statistical view, an automatic wafer probing system was used
to measure all the devices across the different samples. High resolution sub-
threshold (I, V) characteristics were recorded with voltage sweeps between
±100 mV using a direct connection of the DUT to an Agilent 4155C SPA. The
device resistance was defined as the inverse slope of a least-squares fit line to
the (I, V) data for |V| ≤ 100 mV. The result, shown in Fig. 4.7, indicates that
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the conductivity of the films is uniform in both area and thickness, following
Pouillet’s law for the resistance of a uniform medium,

R =
ρtox

w2
ox

, (4.2)

where ρ is the sample resistivity, tox is the oxide thickness and wox is the de-
vice width. On average, standard deviation of the log resistance was 5.5% of
the mean value for each respective device dimension. The thickness scaling
suggests that the conduction mechanism is bulk-limited with no major electri-
cal influence of the interface down to 10 nm thickness. This finding contrasts
with the interface limited conduction commonly seen in MIM stacks, such as
VCM cells, where lowering of a Schottky barrier is a central component in the
theory of resistive switching [229, 230].

Figure 4.7: Violin plots showing resistance measurements for
(as deposited) (V0.85Cr0.15)2O3 devices as a function of (A) de-
vice width and (B) oxide thickness. The vertical (and mirrored)
histograms each show the measured distributions of 10 to 50
duplicate devices with five different widths and three different
thicknesses. The average log device resistance scales in propor-
tion to oxide thickness and in inverse proportion to device area,

following Pouillet’s law.

Resistivity values for all measured devices were calculated using equa-
tion 4.2 and compared with two literature references (Fig. 4.8). Kuwamoto et
al. [224] studied single (V1−xCrx)2O3 crystals, which show a steep resistivity
change at the phase transition boundary near x = 1%. Homm et al. [83] mea-
sured thin (V1−xCrx)2O3 films (60-80 nm) grown by molecular beam epitaxy
on sapphire substrates and annealed in vacuum. Here, the loss of the sharp
MIT was attributed to strain due to the substrate lattice mismatch.

The measured resistivities for the devices in our study were between one
to two orders of magnitude higher than those reported for epitaxial thin films,
and were closer to the bulk crystal values. The cause of this was not deter-
mined conclusively, but could be explained by a number of factors, such as
different strain conditions, disorder, or slight differences in stoichiometry. For
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amorphous devices with x = 15%, measured resistivities were spread across
four orders of magnitude, and were not uniform in film thickness. This non-
uniformity could be due to a formation of an interfacial conduction barrier
with these deposition conditions, in contrast to all others.

Figure 4.8: Measured resistivity distributions of (V1−xCrx)2O3
devices (120 nm to 500 nm width) vs. chromium concentration,
x. Values for crystalline and amorphous films are compared with

values extracted from references [83, 224].

Temperature dependence of the conductivity

Determining the physical mechanism of electron transport is important for un-
derstanding and modeling device behavior. In particular, the impact of ele-
vated temperatures on the conductivity is relevant for the operation of nan-
odevices, where Joule heating often plays a strong role. However, the theoret-
ical mechanisms of conduction are diverse and difficult to accurately predict
from first principles. Unfortunately, they are also not straightforward to ascer-
tain from electrical measurements. Once device current is measured as a func-
tion of temperature and/or voltage, identification of a conduction mechanism
amounts to a curve fitting exercise, with many candidate analytical models,
and potentially several acting in parallel or in series [127]. As free parameters
amass, fits become overdetermined, and good fits do not necessarily imply a
physically correct description.

With the above in mind, we collected multivariate conduction data in or-
der identify a consistent conduction model. A (V0.85Cr0.15)2O3-based device
with width 500 nm and thickness 90 nm was measured with a Keithley 2636B
SMU voltage source with a 2 kΩ external resistor in series. Device current was
measured as a function of both voltage applied to the top Pt electrode and of
ambient temperature from 305 K to 425 K, as controlled by a custom-made
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temperature stage. Device voltage was calculated by subtracting the series re-
sistance voltage drop IdRs from the sourced voltage. A strong temperature
dependence was observed, as shown in the Arrhenius plot of Fig. 4.9.

Most dielectric conduction models, such as interface limited Schottky
emission and bulk limited Poole-Frenkel (P-F) emission, have the thermal ac-
tivation of carriers in common. This leads to a strong exponential temperature
dependence of the current,

I ∝ exp
(
−EB

kBT

)
. (4.3)

In these models, applied voltage generally acts to reduce the effective energy
barrier [127]. However, when the fitted Arrhenius slopes of our measurement
data are attributed to energy barrier changes, EB increased from 215 meV to
275 meV as device voltage increased from 0.20 V to 1.25 V. This is a first indica-
tion that self-heating needs to be taken into account, and the changing slopes
can be more accurately ascribed to an increasing device temperature with ap-
plied power.

Figure 4.9: Arrhenius plot for temperature dependent con-
duction measurements. At low voltages and temperatures, the
trends closely follow a simple thermal activation behavior with

energy barriers between 215 meV and 275 meV.

Close agreement with the measurement data was found using a simple
empirical relation

I(V, T) = aV exp
(
−b
T

)
exp

(
c
√

V
)

, (4.4)

where a, b, and c are free parameters. A thermal resistance approximation,

T = T0 + Rth IV, (4.5)
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Table 4.1: Parameters for the current vs. voltage vs. ambient
temperature fit.

Symbol Value Unit

a 3.433× 10−2 S
b 2.626× 103 K
c 9.694× 10−1 V− 1/2

Rth 1.112× 105 K W-1

is used to calculate the cell temperature relative to the ambient level T0, and
Rth is also considered a free parameter. This conduction model was fit to
all the multivariate measurement data simultaneously using the least squares
method, and the result is shown in Fig. 4.10. As the equation system has no
analytical solution, it was solved numerically inside of the fitting routine. The
values of the best fit parameters are given in Table 4.1.

Although the data is displayed on a so-called P-F plot, the functional form
differs from P-F conduction and has separable voltage and temperature con-
tributions – a constant energy barrier is used with no voltage-induced lower-
ing. A possible physical interpretation of the separate components is described
in the supplementary material of [231] by a combination of thermal activa-
tion and trap assisted tunneling, though this could be further complicated by
electron-electron interactions in the correlated oxide.
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Figure 4.10: Temperature dependent conduction measure-
ments of a 500×500×90 nm3 (V0.85Cr0.15)2O3 device fit with
the empirical model of Eqs. 4.4 and 4.5. Dashed lines show the
conduction equation without taking Joule heating into account,
which highlights its importance for fitting the higher power re-

gions of the data.

S-type negative differential resistance

As seen in the temperature dependent measurements of Fig. 4.10, the
fabricated (V1−xCrx)2O3 nanodevices show an NDR effect in the initial
as-deposited state. These smooth NDR characteristics were observed in both
polarities when measured with sufficiently large external series resistances
and sufficiently slow (> 1 ms) voltage sweeps. The reversible NDR curves
are retraced on the positive and negative measurement sweep, and their
shape depended strongly on the device dimensions (Fig. 4.11). This type of
NDR is classified as S-type, although only the bottom part of the S shape was
reversibly observable. This was in part due to a low internal series resistance
of the test devices (recall Fig. 1.12) but also because a degradation of the
dielectric generally occured before a possible return to positive differential
resistance at elevated currents (above ∼1 mA).

When the same cells are controlled with a different measurement circuit,
it is possible to observe a threshold switching (TS) effect [37, 160]. As a
point of comparison with typical quasistatic sweeping measurements, a
device was measured with a direct SMU connection and different sourcing
modes (Fig. 4.12). Placing an external 200 Ω series resistance near the sample
was necessary to observe complete reversibility of the TS effect, due to the
slow reaction of the SMU current compliance. Devices with smaller widths
(< 250 nm) were less likely to endure even a single cycle of this quasistatic TS
without irreversibly altering the state of the device.
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Figure 4.11: Bipolar NDR characteristics of (V0.85Cr0.15)2O3
devices with width 250 nm and with three different thicknesses,
measured using 8.2 kΩ on-chip series resistances. The device
thickness has a large effect on the NDR shape, and very lit-
tle difference is measured between the two voltage polarities.

© 2018 IEEE.

Beyond the possibility of destructive current overshoots that are not di-
rectly detectable by the instrument, there are several pitfalls to be aware of
when considering TS measurements of this standard type. Although a con-
necting line is plotted between each consecutive measurement data point, no
datapoints are collected by the instrument during the threshold transitions be-
cause of the low (≤ 50 Hz) sampling frequency of the SMU. Furthermore, due
to an unfortunate convention, the voltage values plotted for the voltage con-
trolled curves are the programmed source voltage, not the voltage actually
output by the SMU or seen at the DUT electrodes. This means that every TS
datapoint shown in Fig. 4.12 that does not coincide with the device’s NDR
curve is in fact fictional, and does not correspond to any change in the external
biasing conditions. Plotted in this way, there is an appearance of hysteresis
with respect to the applied voltage, even if the device itself is not internally
hysteretic. In reality, the device settles into the same set of (I, V) steady states
in both the current and voltage controlled cases, and these steady states do
not depend on the history but only on the present biasing condition. There-
fore, we conclude that the TS and NDR effects both arise here due to the same
continuous and non-hysteretic material mechanism.

The specially designed circuits discussed in Chapter 2 extend the options
for non-destructive evaluation of NDR materials, and give access to a much
wider range of experimental timescales. While TS is barely observable in
our devices with an SMU measurement, high TS endurance is measurable
using the CLA circuit, with negligible degradation over 2.5 billion cycles
(see Fig. 4.13). A general weakness of TS measurements is that they do not
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Figure 4.12: A 500×500×90 nm3 (V0.85Cr0.15)2O3 device
(as deposited) measured with a Keithley 2636B SMU configured
as a voltage source and as a current source. In each case, an
increasing and decreasing sweep were both recorded. In voltage
sourcing mode with the current compliance function, typical TS
behavior is measured. In current sourcing mode, a smooth re-

versible NDR characteristic is measured. © 2018 IEEE.

adequately interrogate the nature of the resistance transition, because the
intermediate states are rendered unstable by the driving circuitry. Different
physical causes of conductivity changes present themselves very similarly
in TS measurements; they simply appear as rapid jumps in current. On the
other hand, the digipot circuit introduced in Section 2.1 allows a convenient
characterization of the device NDR characteristics (as seen in Fig. 2.6[A]). The
NDR curve gives the set of fixed points of the volatile device state on the
(I, V) plane, which is fundamental to understanding an overall measurement
circuit as a dynamical system. Whereas switching trajectories that stray from
the steady state NDR curve are highly dependent on the driving circuitry and
signals, the NDR curve can be regarded as a purely device property that can
be directly measured electrically in appropriate circumstances.

A study of the dependencies of the NDR curves is particularly insightful
for gaining a physical understanding of the system. First, we look at the de-
pendence of the device geometry on the shape of the NDR curve. The curves
for the as-deposited devices were measured for each cell size, which varied in
both thickness and in width (Fig. 4.14). This was done using external series
resistance values that varied between 1 kΩ and 20 kΩ, and triangular voltage
pulses lasting between 1 ms and 10 ms. To successfully collect this data, the
series resistance and the timescale of the measurements had to be carefully se-
lected for each device size. For small device widths (≤ 150 nm), the cells could
not indefinitely sustain steady-state biasing before a separate non-volatile pro-
cess (to be further discussed) began to degrade the cell. At the same time, the
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Figure 4.13: Repeated threshold switching of a
500×500×90 nm3 (V0.85Cr0.15)2O3 device using the CLA cir-
cuitry with current limit 480 µA. Cycles were controlled with a
1 MHz triangle wave, with 1 ms duration measurements (shown)
interleaved every millionth cycle. Very little device degradation
was observed, and the threshold voltage drifted by only 20 mV

after over 2.5 billion cycles.

sweeps needed to be slow enough to not depart dynamically from the NDR
curves we intended to measure.

In the device size dependent data, the scaling of the voltage at the point of
NDR onset (dV/dI = 0) rules out the possibility that the devices switch due to
an effect that occurs, for example, at a constant threshold electric field value.
There is, however, an interesting trend in the total power (P = IV) at this NDR
“knee”. The knee power increases in proportion to the width of the device, but
does not depend strongly on the thickness of the device. This observed power
scaling hints at the involvement of thermal effects in the switching mechanism.
We will return to this data in section 4.5, where a physical model is used to ex-
plain the NDR knee dependency and to make predictions for device behavior
at even smaller dimensions.

According to the foregoing discussion, and in light of the electro-thermal
theory presented in Section 1.4, there is already a strong indication for Joule-
heating as the cause of NDR in the pristine (V1−xCrx)2O3 device state. As
a further direct test of this, we measured the effect of the top electrode (TE)
thickness on the NDR curve, with the expectation that the TE thickness only
impacts the overall thermal resistance of the cell and has no other confounding
effect. We designed the experiment to examine the effect of TE thickness in
isolation, leaving the initial oxide/TE interface intact. This was done with a
sequence of NDR curve measurements of the same device between successive
room temperature depositions of 30 nm Pt layers on top of the existing TE.
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Figure 4.14: Measurements of the NDR characteristics of
(V0.85Cr0.15)2O3 nanodevices with varying (A) device widths
and (B) device thicknesses. Dashed lines of constant power in-
tersect each point of NDR onset. (C) The power dissipated
by the device at the NDR knee depends strongly on the device

width, but only weakly on the device thickness.

The results, shown in Fig. 4.15, show an increase of the NDR onset power from
328 µW to 456 µW as the TE thickness was increased from 30 nm to 90 nm.
The size of this effect is beyond what could be expected from a variation in
electrical resistance of the electrode lead, measured to be below 100 Ω for a
30 nm electrode thickness, and clearly points to heating as a relevant factor for
the NDR mechanism.
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Figure 4.15: Variations in the measured NDR characteristics
of the same (V0.85Cr0.15)2O3 device when additional Pt layers
were added to the top electrode. Due to the heat sinking effect
of the top electrode, the power at NDR onset and the fitted Rth
value increased with the electrode thickness. The oxide thickness
was 30 nm and device width was 350 nm. Measurements were
performed with 10 ms voltage sweeps and a 2 kΩ external series

resistance.

4.4.2 Non-volatile effects

All insulating films break down when electrically stressed beyond certain lim-
its. Typically through ionic migration or other reconfiguration of the insulat-
ing material, initially well insulating devices can reach new states that possess
different properties, accompanied by non-volatile (NV) changes in the overall
resistance level. The specific state arrived in after initial breakdown generally
depends on how the measurement circuit reacts to the rapidly changing device
resistance.

As an extreme example, when electroforming and measuring the cells with
a quasistatic sweeping procedure using an SMU with current compliance,
bipolar resistance switching is typically induced (Fig. 4.16). With this kind
of measurement, it is unlikely to observe the purely volatile TS regime in the
pristine state, and the measured (I, V) traces instead resemble those seen
in a variety of other material systems that operate according to the VCM
mechanism. This behavior is presumably connected to ionic defects being
created and released into the oxide film during the electroforming current
overshoot transient. As seen in the measurements of Fig. 4.16, subsequent re-
sistive switching operations are also strongly associated with these transients,
and only sporadically slow transitions are spared from experiencing large
overshoot currents.
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Figure 4.16: Bipolar resistive switching recorded in a
150×150×30 nm3 (V0.85Cr0.15)2O3 device using direct SMU
voltage sourcing with current compliance 175 µA. (A) Data for
six switching cycles as returned by the SMU, contrasted with
high frequency oscilloscope samples of the same SET transitions.
(B) The corresponding current vs. time transients induced in the
measurement. Monitoring the SMU measurement with an oscil-
loscope reveals strong role that overshoot currents play in the

switching process.

As we have seen that the material system supports both volatile and non-
volatile resistive switching components, natural questions are: what are their
roles in the overall switching process, when does each come into play, and
what is happening physically inside the device? Electrical measurements can
provide valuable insights to help answer these questions, but require careful
attention to the measurement circuitry, to which specific signals are being mea-
sured, and to how they are sampled and plotted.

To get a closer look at the impact of current overshoot transients during
runaway switching from the pristine device state, we can use circuitry to ex-
plicitly control and measure the amount of overshoot and examine its effect.
To do this, we used the CLA circuit described in Section 2.2, which has a well
known response (see Eq. 2.5), while incrementally adding capacitance in paral-
lel to the DUT. The capacitance was controlled through connection of a rotary
variable capacitor between the CLA input node and ground, and adjusting
its setting in between measurements. The results, plotted in Fig. 4.17, show
that reversible threshold switching was only observable when using ≤ 85 pF
of added capacitance. Adding 105 pF to the measurement circuit, approxi-
mately equivalent to a 1 m coaxial cable, led instead to a NV conductance tran-
sition under otherwise equivalent conditions. While the standard TS plot of
Fig. 4.17(A) gives little insight into the cause of the difference in switching be-
havior, the sub-1 µs transients shown in Fig. 4.17(B) reveal current spikes and
oscillations following TS, with increasing amplitude according to the added
capacitance value. These spikes, not present at the lowest capacitance setting,
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eventually exceed the dielectric strength of the oxide and lead to rapid decom-
position of the insulating layer.

Figure 4.17: By adding capacitance to the measurement cir-
cuit, volatile TS eventually gives way to NV resistive switching in
a (V0.85Cr0.15)2O3 nanodevice (350×350×30 nm3). The mea-
surements used triangular voltage sweeps (3 V) with 1 ms dura-
tion and CLA current bias 500 µA. (A) A standard (I, V) plot
retraces the same reversible TS curve for Cp ≤ 85 pF, but a NV
event is recorded with Cp = 105 pF. (B) As the capacitance
increases, high speed device conductance measurements at the
switching threshold show oscillatory signals with increasing am-
plitudes. With Cp = 105 pF, the initial current spike is followed

by a permanant shift in device conductance.

Even with a fixed, low value of parasitic capacitance, differences in mea-
surement procedure can also give rise to sudden NV events. An important in-
stance of this is the effect of the applied voltage sweep rate in a series resistance
control circuit. For sufficiently large Rs and sufficiently low sweep rates, the
steady-state NDR curve can be retraced on the increasing and decreasing volt-
age sweep. However, due to the limited dynamical speed of the conductance
change in the switching material, faster sweep rates lead to a rate-dependent
hysteresis that brings the device (I, V) switching trajectory progressively fur-
ther from the NDR curve as the state variable lags the input driving signal (see
Fig. 4.18). As the cell is pushed further out of equilibrium by higher sweep
rates, eventually a spiking threshold can be crossed. If the induced spike is
large enough, it is accompanied by a rapid NV resistive switching process, re-
sulting in a decreased resistance state. The (I, V) trace of this newly created
state is similar to the previous example, reached by increasing the parasitic ca-
pacitance during threshold switching. This interesting, counter-intuitive result
of increasing the sweep rate implies that characterizations using fast driving
signals such as square pulse waveforms (where the sweep rate approaches
infinity) are prone to cause NV events, even where a sweep to the same ampli-
tude with 1,000× longer duration does not.
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Figure 4.18: Voltage sweeping measurements of an as-
deposited (V0.85Cr0.15)2O3 device (350×350×30 nm3) using
the digipot characterization circuit with Rs = 3.7 kΩ and 4.5 V
triangular voltage waveforms. Sweeping to the same maximum
applied voltage, device (I, V) trajectories for low voltage sweep
rates (ms timescale) trace the characteristic NDR curve, while
trajectories for faster sweep rates diverge from it and eventually
trigger a runaway transition (µs timescale). A major departure
of the trajectory from the measurement load line shows that a
∼10 ns current spike originated from discharge of the parasitic

capacitance.

In addition to sudden NV events that were shown to coincide with tran-
sient spikes in the device current, there is another distinct way NV changes can
be induced in the samples. This second mode can be achieved by extended sta-
ble biasing of a device near or above the NDR threshold, and contrasts with the
former mode in that the NV shifts occur over a relatively long timescale and al-
low a gradual transition to lower resistance levels. To control the gradual tran-
sition mode above the NDR knee, biasing needs to be done either with high
enough series resistance to suppress runaway load-line transitions, or using a
current source with low parasitic capacitance. By continuously sweeping the
bias at low speed and repetitively retracing NDR curves, we demonstrate this
gradual NV switching mode for different starting film thicknesses (Fig. 4.19).
The gradual resistance switching observed here is comparable to a constant
current stress degradation, frequently studied in context of dielectric break-
down. However, capturing the full (I, V) curves during the process provides
additional information about the nature of the state transition.

The device states that follow sudden or gradual NV transitions typically
possess a modified NDR characteristic, distinct from the original NDR curve
of the pristine state. By comparing these curves for the sudden and grad-
ual cases, it is apparent that these modes are distinguished not only by their
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Figure 4.19: Gradual NV switching of (V0.85Cr0.15)2O3 de-
vices (device width 250 nm) induced by slow sweeping measure-
ments along the NDR curves. The sweeps, lasting three seconds
each, were performed with 8.2 kΩ series resistance and with dif-
ferent device thicknesses. Each repeated sweep causes a small
NV modification of the NDR curve — an effect which is qual-
itatively similar to a reduction of the starting oxide thickness.

© 2018 IEEE.

speed, but they also produce notably different states. In each case, the modi-
fied NDR curves have progressively lower NDR threshold voltages and higher
sub-threshold leakage currents. However, for the sudden case, the device
power at the new NDR onset point is significantly reduced relative to the pris-
tine state (visible in Fig. 4.17 and 4.18) whereas for the gradual case, the NDR
onset power remains relatively constant as the device switches. According to
the interpretation to be further discussed in the modeling section 4.5.2, the ap-
pearance of these different NDR curve shapes can be attributed to a difference
in the spatial profile of the conductivity redistribution in the two cases. Here,
we initially point out experimental clues that the sudden NV events are as-
sociated with filamentary conduction paths while the gradual NV switching
results in the growth of a relatively uniform high conductivity layer across the
entire device area.

With the initial device resistance inversely proportional to device area (re-
call Fig. 4.7), the standard electrical evidence for filamentation is the produc-
tion of formed states across devices of different areas showing resistance levels
independent of area [232, 233]. This highly simplified picture rests on the as-
sumption that filamentary growth (and thus the final resistance state) is not
influenced in any way by the total device area. However, area dependence of
the formed state can enter in various ways such as through its impact on the
conditions required to initiate the forming process [70], by its connection to the
energy stored in the device self-capacitance [110], and by conduction through
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the residual unformed area of the cell. The analysis is also complicated by
the possibility of creating multiple filaments [234], and the fractal dimension
of the percolation process [235]. Nevertheless, sub-threshold resistance mea-
surements before and after electroforming can be used to give experimental
support for the presence of a filament in the device.

As a first approximation, consider the total resistance of memory cell (as-
sumed uniform in thickness) if a filament of area A2 is embedded inside a
larger device area A1,

Rformed =

(
ρ1tox

A1 − A2

)
∥
(

ρ2tox

A2

)
=

ρ1ρ2tox

A2ρ1 + (A1 − A2)ρ2
, (4.6)

where ρ1 and ρ2 are the resistivities of the pristine material and of the fila-
ment, respectively. As shown in Fig. 4.20, measurements of the sub-threshold
resistance of (V0.85Cr0.15)2O3 cells before and after a voltage-controlled and
current-limited electroforming step closely follows this functional form of area
dependence. This suggests that filamentary conduction paths were created as
a consequence of the sudden NV resistance switching induced by this unstable
measurement configuration.

Figure 4.20: Sub-threshold (500 mV) resistance levels of
(V0.85Cr0.15)2O3 devices (30 nm thickness) before and after a
sudden forming event induced using the CLA current limiting cir-
cuit. The device area dependence of the resistance after forming
shows a filamentary signature, approximately following Eq. 4.6.

© 2018 IEEE.

For the case of the gradual NV process, a similar analysis based on the area
dependence of the resistance levels is not possible, as there are no two distinct
before/after states to be identified for comparison. Instead, switching continu-
ously progresses as the bias level or the biasing time is increased. However, the
effect of this gradual process on the NDR curve is informative when compared
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between different device thicknesses. Starting from a relatively higher thick-
ness, the initial NDR curve eventually develops an NDR signature compara-
ble to a pristine film with lower thickness (Fig. 4.19). A simple explanation for
this NDR curve evolution is that a uniform, low resistivity layer grows grad-
ually across the whole device area. This result indicates that a control circuit
enabling stable biasing near the device NDR curve leads to quite different con-
ductivity distributions after electroforming than in the unstable case, and the
question of electronic stability could mean the difference between filamentary
and non-filamentary NV switching in the same device material system.

4.4.3 Switching dynamics

The speed of conductance switching is clearly important for device applica-
tions, due to its implications for memory read/write times and energies and
its impact on the overall performance of physical neural networks. Switching
speed measurements can also give clues about the physical mechanisms in-
volved in the switching process. As seen previously in Fig. 4.18, (V1−xCrx)2O3
devices in the pristine state show strong differences in the measured (I, V)
trajectories when operated on millisecond and microsecond timescales. Gen-
erally, switching dynamics are instead studied by application of square volt-
age pulses directly to the cell of interest. In these measurements, a delay time
before a relatively shorter transition time is seen very broadly across many dif-
ferent classes of resistive switching devices [171, 236]. Measurements and sim-
ulations of time delay behavior in different types of electro-thermal switches
when subject to voltage pulses have been reported [39, 40], and the specific
shape of transition has even been used as evidence for the type switching
mechanism [237].

Here we show that for the same type of device, several distinct dynamic
behaviors can be induced by voltage pulses, depending on the driving signal
levels and circuitry external to the cell. The variety of dynamical behaviors are
consistent with and largely predictable by a simple electro-thermal model as
elaborated in the following section (4.5). We also show a large reduction in the
characteristic switching times of formed device state relative to the pristine,
which is later understood to originate from switching in a decreased material
volume with a reduced heat capacity.

The result of a direct voltage pulsing experiment on a pristine
(V0.85Cr0.15)2O3 cell is summarized in Fig. 4.21. The measured switch-
ing delay times span four orders of magnitude from 100 ns to 1 ms across only
a 100 mV range of pulse amplitudes. The transition times were approximately
one order of magnitude lower than the delay times for each pulse amplitude.
The CLA (section 2.2) was used here to halt the runaway transition at 480 µA,
but its effect in the circuit is negligible when the device current is significantly
below the limit. However, the specific configuration of the CLA during the
measurement limited the rise time of current readout to around 100 ns, and
the transition times are expected to be even faster as the voltage amplitude is
further increased.
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Figure 4.21: Switching speed (current vs. time) measure-
ments for a 500×500×90 nm3 (V0.85Cr0.15)2O3 device subject
to square voltage pulses with different amplitudes. Current is
limited to 480 µA by the CLA probing circuit. A 1 ms duration
triangle sweep measurement is also superimposed on the left plot
for reference. A switching delay time is observed that sensitively
depends on the voltage amplitude near the threshold voltage.

By measuring a similar cell through an on-chip series resistance, as shown
in Fig. 4.22(A,B,C), we demonstrate that the switching delay behavior seen pre-
viously in Fig. 4.21 is a matter of the “angle of attack” of the load line to the
cell’s NDR curve, which is also anticipated by the electro-thermal theory (recall
Fig. 1.14). In contrast to the delay-transition behavior seen without added se-
ries resistance, the conductance transition signals with added series resistance
follow an approximately exponential dependence in time, with time constants
independent of the pulse amplitude. This shows that the delay-transition be-
havior is specific to using a control circuit with current-voltage feedback that
constrains the switching trajectories to first pass nearby, and then away from
the NDR condition where the the conductance change is slowed. By approach-
ing the NDR curve with a trajectory that moves monotonically nearer to it, as
in the shown series resistance case, the initial switching delay is eliminated.

An important experimental result also shown in Fig. 4.22 is that after
electroforming, the timescale of switching is dramatically reduced relative to
switching in the pristine device state. Using voltage pulses, formed devices
typically support threshold switching on the 10 ns scale or below. Another
way to compare the switching timescales before and after forming is by
looking into the sweep response with a series resistor, as shown in Fig. 4.23.
For a 100 ns sweep, the (I, V) trace opens up slightly as the device current
begins to lag the applied voltage, but the dynamic threshold voltage is less
than 100 mV larger than the NDR knee voltage and similar currents are
reached at the maximal point of the sweep. This should be compared with
sweep rate dependence of a pristine device, previously shown in Fig. 4.18,
where a dramatic departure from the NDR curve was induced by an order of



4.4. Electrical characterization 113

magnitude lower sweep rate.

Threshold switching is not only much faster in formed devices than be-
fore forming, but it also remains very stable and repeatable. The increased
speed of switching makes it practical to test the endurance beyond the level
shown for the pre-formed device (recall Fig. 4.13). In [44], we showed an ex-
ample of such a formed device enduring over 1012 cycles with little sign of
degradation, and less than 5% variability and drift in the threshold voltage.
However, as with any endurance-type measurement, this specific number of
endured cycles is expected to strongly vary with the type of control exerted on
the cell [64]. While the endurance measurement is a promising result, it can
not be considered a fixed property of the (V0.85Cr0.15)2O3 material.
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Figure 4.22: Measurements of the conductance switching dy-
namics of a 250×250×30 nm3 (V0.85Cr0.15)2O3 device using an
8.2 kΩ on-chip series resistance before (B),(C) and after (D),
(E) (abrupt-type) electro-forming. (A) shows the (I, V) switch-
ing trajectories enforced by the series resistance circuit, each ap-
proaching the respective (pristine, formed) measured NDR char-
acteristics. The same set of voltage pulse amplitudes were used
in both cases, with the square pulse waveforms beginning and
ending at 1 V to allow continuous conductance measurements.
The transitions effectively have a time constant that does not
depend on the pulse amplitude, but that is dramatically reduced

after forming.
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Figure 4.23: The effect of voltage sweep rate on the measured
switching trajectories in a 250×250×30 nm3 (V0.85Cr0.15)2O3
device with on-chip series resistance 2.2 kΩ after abrupt-type
electroforming. Threshold switching persists even at 100 ns

timescales. © 2018 IEEE.
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4.4.4 Oscillatory/spiking behavior

Due to the reduced switching time and energy after electroforming, formed
cells are prone to oscillation during (I, V) measurement, especially when con-
trolled with external circuitry (as opposed to on-chip resistors). These non-
linear relaxation oscillations arise because of the stray capacitance in parallel
with the cell, which can store enough energy to significantly heat the cell even
for small values below 10 pF. One of the conditions to observe the oscillations
is for the cell to be biased with a fixed point in a sub-range of the NDR re-
gion, which requires that the capacitor/device combination is driven through
a large enough series resistance, or by a current source. The biasing range
where free-running oscillations can be induced depends on the value of the
parallel capacitance Cp (recall Fig. 1.17), and for any sufficiently large Cp, the
corresponding limit cycle always encircles the fixed point that would other-
wise be a steady state.

Oscillations were experimentally induced in electroformed (V0.85Cr0.15)2O3
devices by applying voltage pulses and using an external series resistance
(Fig. 4.24). As the critical biasing amplitude for sustained oscillation is
approached from below, the measured (I, V) trajectories spiral into the fixed
point and eventually settle there. Applying voltages nearer to the border of
stability, or the Hopf-bifurcation level, the transient oscillatory signal lasts
longer and is highly susceptible to noise from thermal fluctuations. Finally,
when the pulse amplitude is in a suitable range, limit cycles are reached after
a period (∼10 µs) of relaxation from the initial spiking transient.

Experimental (I, V) limit cycles for different bias levels were measured and
are shown in Fig. 4.25. These show an oscillation frequency and amplitude
that depend on the voltage bias level, the parallel capacitance and the series
resistance. While the frequency only increases with the applied voltage, the
amplitude increases to a maximum level in the middle of the unstable biasing
range, before reducing again and eventually reaching another non-oscillatory
stable point further up the NDR curve. Oscillations frequencies were observed
in this system above 300 MHz when using a discrete surface mount series re-
sistor to further minimize the parasitic capacitance to a sub-picofarad level. In
Section 4.5.3, an electro-thermal model provides very close agreement to the
measured voltage dependence of the oscillation amplitude and frequency.
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Figure 4.24: Oscillatory transients measured in formed
(V0.85Cr0.15)2O3 devices in response to square voltage pulses
(100 ns rise time) with increasing amplitude. The progression
from subplots (A) to (F) represents an increasing voltage pulse
amplitude, where larger amplitudes lead to longer decaying tran-
sients before stable limit cycles (F) are eventually reached. Data
is shown from two separate devices, both with 30 nm thickness:
(A, B, C) with width 250 nm, Rs=1.1 kΩ, and (D, E, F) with

width 150 nm, Rs=4.5 kΩ.
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Figure 4.25: Current-voltage limit cycles reached in a formed
150×150×30 nm3 (V0.85Cr0.15)2O3 device during voltage pulses
of different amplitude. Measurements were made with the
digipot circuit with series resistance setting 4.5 kΩ. Oscilla-
tion frequencies were in the 10 MHz range and increased with

the applied voltage.
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4.5 Electro-thermal modeling

4.5.1 Scaling of the NDR steady state

In this work, devices were fabricated down to 120×120×5 nm3 size, making
them the smallest nano-devices of (V1−xCrx)2O3 reported to date. However,
memory and neuromorphic applications will require even smaller dimensions
to achieve high density and 3D integration. Thus, it is important to study the
impact of scaling on the device operation. Our fabricated devices varied in size
in two dimensions (Fig. 4.26), and we observed experimentally that reducing
the width and thickness had roughly opposite effects on the NDR knee volt-
age (Fig. 4.14). In these samples, we see leakage currents in the 10 µA range,
a figure which should be reduced for lower power consumption. While it is
expected that scaling down the device area will also reduce the leakage, it is
questionable whether it is also possible to maintain or improve the overall de-
vice functionality through scaling. Here we analyze the collected data to build
an electro-thermal model that includes size dependencies in order to predict
the scaled behavior.

Figure 4.26: Diagram showing the varied dimensions of the
thin film nano-devices: the thickness (tox) and the width (wox).
Devices have a square cross-section and the width of the third

dimension is also wox (not drawn).

In section 4.4.1, the device size dependence on the current was verified
by resistivity measurements of many devices across the wafers (Fig. 4.7). We
found that the resistance at low voltage was proportional to oxide thickness
and inversely proportional to the device area. Furthermore, we obtained very
close agreement to temperature dependent measurement data using the em-
pirical relation given in Eq. 4.4. These findings justify the use of a bulk limited
conduction model where microscopic current density is given by

j(E, T) = αE exp
(
−b
T

)
exp

(
γ
√

E
)

, (4.7)

and the total macroscopic device current scales as

I(V, T, tox, wox) = αw2
ox

V
tox

exp
(
−b
T

)
exp

(
γ

√
V
tox

)
, (4.8)
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where α, b, and γ are fit parameters, and wox, tox are the device width and
thickness.

Considering the thermal part of the model, we use a thermal resistance
approximation for the steady-state temperature,

T = T0 + Rth(wox, tox)IV. (4.9)

Different scaling behaviors of the thermal resistance are possible depending
on the relative thermal conductivities and thermal boundary resistances of the
various materials and interfaces present. It was noted in the experimental sec-
tion 4.4.1 that the NDR knee power as the device dimensions varied mainly
depended on the device width, with a much lower contribution from the thick-
ness. Gibson et al [161] derived that when the functional form of the conduc-
tion equation has separable V and T components, as is the case in Eq. 4.8, the
electro-thermal NDR knee always occurs at the same temperature difference
∆T above the ambient T0, and ∆T depends only on the activation energy b.
This makes the knee power an experimentally accessible indication of thermal
resistance, and shows that it mainly scales with the device width in our case.

Another way to analyze the measured NDR characteristics is to explicitly
fit the curves to equations 4.8 and 4.9 with Rth as a free parameter. The results
of independent fits (Fig. 4.27) show that the equations fit each of the NDR
curves remarkably well and also produce an approximately linear dependence
of the thermal resistance on the inverse of the device width. An interpretation
of this type of width scaling and the relative absence of thickness dependence
is that the heat losses out of the cell are dominated by the electrode contacts,
and the lateral loss through the sides of the low thermal conductivity oxide
itself is negligible. This reasoning also explains why changing the top electrode
thickness had a strong effect on the NDR curve (shown previously in Fig. 4.15).
The scaling factor 1/wox approximates the spreading resistance and holds for
contacts to semi-infinite media as well as finite plates [238–241]. This scaling
behavior of Rth has been assumed in other works [140, 242], though different
scaling behaviors are sometimes used in other situations [107, 212, 243, 244].

To fit the entire size-dependent dataset with single shared parameter set,
we use the approximation

Rth(wox, tox) = Rth,0 +
Rth,w

wox
(4.10)

where the parameters Rth,0 and Rth,w are subject to fitting. To account for a
slight thickness gradient or interfacial layer in the deposited oxide material,
we also allow a small linear variation of the γ parameter with thickness,

γ(tox) = γ0 + γttox, (4.11)

where γ0 and γt take the place of γ as fit parameters. This adjustment is meant
to improve the fit to the experimental data at large thicknesses, and is not ex-
trapolated further in the following scaling projection.
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Figure 4.27: (A) Measurements and fits of NDR characteris-
tics for (V0.85Cr0.15)2O3 devices with different widths (120 nm
to 500 nm) and thicknesses (10 nm to 90 nm). Fits to each
curve are independent to accommodate device-to-device variabil-
ity. (B) shows the Rth values corresponding to the best fit, which

grows linearly with 1/wox.

The complete set of fitted parameter values for the NDR scaling model are
given in Table 4.2.

Using the parameters that fit our NDR measurements, we varied the de-
vice dimensions in our model to obtain the projected behavior for scaled de-
vices (Fig. 4.28[A]). We found a generally favorable scaling properties, with
the half-threshold leakage dropping to the 100 nA level while the threshold
voltage stays below 3 V for a 10×10×10 nm3 device. Increasing the thermal
isolation by reducing the top electrode thickness (Fig. 4.28[B]) leads to a strong
reduction in the NDR onset voltage, giving additional possibilities for control-
ling device operation via tuning of the thermal environment.

Table 4.2: Parameters for the NDR scaling model.

Symbol Value Unit

α 7.378× 104 S m-1

b 3.423× 103 K
γ0 1.382× 10−4 m1/2 V− 1/2

γt 2.424× 103 m− 1/2 V− 1/2

Rth,0 4.495× 105 K W-1

Rth,w 2.235× 10−2 m K W-1
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Figure 4.28: Simulated effect of scaling on the NDR curves
of (V0.85Cr0.15)2O3 devices. In (A), the width of a device with
10 nm thickness is scaled. Leakage currents are drastically re-
duced while the NDR onset voltage remains in a usable range.
In (B), the effect of reducing the electrode thickness, or equiva-
lently reducing the heat dissipation in a 10×10×10 nm3 device.

© 2018 IEEE.

4.5.2 Non-volatile model

In section 4.4.2, a variety of electrical situations were identified to induce non-
volatile (NV) shifts in the (I, V) characteristics of (V1−xCrx)2O3 cells. The NV
effects apparently set in when the device already has its conductivity affected
by elevated temperature and electrical conditions are such that critical levels
of device voltage and current are exceeded for a sufficient amount of time.

Experimentally, we have demonstrated two distinct NV switching modes:

1. a “sudden” mode resulting from electrical instability that is associated
with production of filamentary conduction paths, and

2. a “gradual” mode operating at long timescales (above approximately
1 ms) with stable biasing, which appears to reduce conductivity uni-
formly across the whole device area.

When efforts are made to quickly interrupt the NV process, intermediate states
can be produced that also have a reversible (volatile) regime with electro-
thermal character. In progressive stages of the process, modified NDR curves
are measurable that are different from the NDR curve of the pristine state.
Here, we present a simple model for the electrical effect of the NV process to
be compared with measurement data to further support the idea that different
filament sizes can be created in the same devices using the two different NV
modes. Using this model, we show a readily measurable fingerprint in the
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NDR curves of formed devices that is indicative of the filamentary radius, and
give further implications for scaled devices.

Many mechanisms for local conductivity changes resistive switches ex-
ist and have been extensively classified depending on the electrodes and the
switching material [16]. For the purposes of the following argument we remain
indifferent about the physical origin of the conductivity changes during form-
ing and only consider the effect of an assumed filament size and shape on the
volatile device operation. One possibility is that after forming, a complete fila-
ment is newly created that extends through the entire oxide thickness. This sec-
ondary phase or reduced oxide could have volatile switching properties that
were not already present in the pristine device, such as an electronic IMT, and
similar experimental findings in related materials (NbOx, VOx, TaOx) have
been interpreted along these lines [90, 245–247]. However, we can also con-
sider what happens when a conductive filament incompletely bridges the ox-
ide thickness. Whatever its physical origin, it is reasonable to expect that if a
filament continuously grows from one electrode to the other and a limitation
is placed on the energy delivered during the process, a “gap” of the original
switching material remains before the oxide is eventually bridged.

l
tox

r

R

Is(Vd, Ts)

Ig(Vg, Tg)

Rint= ρl/πr²

Vd

Vg

Shell

Gap

Pillar

Electroformed cell

Id

Figure 4.29: A simple lumped-element model for non-volatile
states in a (V1−xCrx)2O3 cell. In a formed cell, three circuit
elements consisting of subvolumes of the cell are isolated and
considered separately. A resistive “pillar” with a certain radius,
uniformly high conductivity, and no temperature dependence par-
tially bridges the oxide thickness and confines a new switching
volume in the “gap”. Two separate volumes of as-deposited ma-
terial (the “shell” and “gap”) each have their own temperature

states Ts and Tg.

The conductance distribution after forming could have a variety of shapes
in the radial or axial dimensions, but for convenience and without much loss
of generality, we suppose a cylindrical conductive “pillar” is formed in the
center of the device leaving a gap between it and one of the electrodes. We
assume that inside the pillar, the resistivity has a uniformly low value ρ, and
that it has no state variable and does not participate in switching. The effect
of this inactive pillar is a substitution of a small internal series resistance and
to confine a new effective switching volume composed of the same material as
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the pristine device. A diagram and circuit approximation for the formed cell
with a specific pillar length l and radius r embedded in a device with thickness
tox and radius R is shown in Fig. 4.29.

The equation system that implicitly identifies the steady state of the com-
posite system driven by a current source (Id) consists of the circuit equations
from Kirchhoff’s laws,

Id = Is + Ig, (4.12)

Vg = Vd − Ig
ρl
Ag

, (4.13)

and the conduction equations for the subvolumes,

Is = αAs
Vd

tox
exp

(
−b
Ts

)
exp

(
γ

√
Vd

tox

)
, (4.14)

Ig = αAg
Vg

tg
exp

(
−b
Tg

)
exp

(
γ

√
Vg

tg

)
, (4.15)

Ts = T0 + Rth,s IsVd, (4.16)
Tg = Ts + Rth,g IgVg, (4.17)

Rth,s =
Rth,w

R
√

π
, (4.18)

Rth,g =
Rth,w

r
√

π
, (4.19)

which are found by applying the scaling equations 4.8 and 4.9. Here, the sub-
scripts s and g refer to the variable belonging to the shell and gap volumes,
respectively, and the geometrical factors are defined as

As = π(R2 − r2), (4.20)

Ag = πr2, (4.21)
tg = tox − l. (4.22)

Solving the above equation system numerically for varying pillar dimen-
sions l and r (Fig. 4.30), we find that formed steady states have an NDR region
for all but the thinnest gap lengths below ∼5 nm, and the NDR onset volt-
age always reduces relative to the pristine state. The main difference in the
calculated NDR curves is that for small pillar radius ratios r/R, the current
and power at NDR onset reduces as the pillar length increases, whereas for
r/R = 1, the NDR power remains constant. This suggests that the power shift
at the NDR knee is a measurable indication of the degree of filamentation in
a formed cell. Comparing with the measurements after non-volatile shifts in
Section 4.4.2, this simple model shows that the differences in the shapes of
the NDR curves in the gradual and sudden forming cases can be attributed to
different radii of the formed pillars.
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Figure 4.30: The simulated effect of the gradual growth of a
conductive pillar of different radii, r, inside an electro-thermal cell
of radius R. For small r/R, the NDR power (marked for l = 0
with a dashed line) reduces as the pillar grows, but for r = R,
the NDR power stays the same. Here, the pillar resistivity was

given an arbitrary value of ρ = 10−5 Ωm.

In Section 4.4.3 we demonstrated faster dynamics of a filamentary formed
state relative to the pristine state. This finding is also explained by the pillar-
gap model when considering as an approximation that the heat capacity of
each region scales with volume. The dynamical equations for the rates of tem-
perature change for the shell and gap are

Cth,s
dTs

dt
= IsVd −

Ts − T0

Rth,s
, (4.23)

Cth,g
dTg

dt
= IgVg −

Tg − Ts

Rth,g
, (4.24)

Cth,s = Cth,vAstox, (4.25)
Cth,g = Cth,vAgtg, (4.26)

where Cth,v is the volumetric heat capacity of the oxide material. As the gap
becomes thinner, the shell is less involved in the switching and the relevant
thermal time constant is Rth,gCth,g, which scales down with the gap size as rtg.
As we have seen in Section 1.4.2, the speed of switching in an electrothermal
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cell can span orders of magnitude because of circuit constraints on the heat-
ing efficiency, but in each case the total heat capacity acts to directly scale the
heating speed, and therefore the switching speed.

Insofar as the assumptions of the non-volatile model presented here reflect
reality, there are also interesting implications for scaled devices. When the
gap after forming is small, its contribution dominates the shape of the (I, V)
curves; the shell only contributes to the total leakage and does not heat up
significantly. Therefore, highly scaled cells can be expected to have similar
characteristics as measured in formed cells but with lower leakage, and im-
portantly with no forming step required [44]. Curve fitting (I, V) measurement
data to the model provided here could in principle provide an estimated size
and shape of the gap volume in question, but due to the various assumptions
made, this approach may have limited accuracy. Nonetheless, we expect the
NDR power in formed devices to be correlated with the filament sizes, making
relative comparisons possible.

4.5.3 Oscillatory model

For realistic investigations of neural networks incorporating compact oscilla-
tory and/or spiking devices, a model is needed that closely matches the mea-
surement data of real devices. For this purpose, an oscillatory dataset was
collected using a 150×150×30 nm3 (V0.85Cr0.15)2O3 device with the voltage
applied to the top electrode through an external 10 kΩ series resistance sol-
dered at the base of a non-coaxial probe needle. The cell was electroformed
through a circuit instability (saddle-node bifurcation) during an initial 1 ms
sweep to 4 V, and the oscillatory current signal was measured in the formed
state with a bandwidth of 350 MHz and sample rate of 2.5 GHz while apply-
ing a second 1 ms sweep to 3.5 V. In this dataset, oscillations were recorded
for applied voltages in the range 2.5 V to 3.5 V. As the voltage increased, the
oscillation frequencies increased from 30 MHz to 70 MHz and the current am-
plitudes also increased from 200 µA to 600 µA.

For fitting the measurement data, we adopt a slightly simplified version of
the pillar/gap model from the previous section where heating in the pristine
shell region is ignored and replaced by a static resistor with value Rp. A circuit
schematic approximating the measurement setup is shown in Fig. 4.31. In this
measurement, we assume that Cp is dominated by the probe needle intercon-
nect and not the device itself, so that IC is transmitted back to the AWG source
without being measured at the opposite device terminal. The device current
signal, measured through a scope channel’s 50 Ω shunt to ground, is denoted
Id.
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Figure 4.31: Electronic circuit model used for fitting oscillatory
measurement data.

The differential-algebraic system of equations corresponding to the elec-
trothermal circuit is

Cth
dT
dt

= IgVg −
Tg − T0

Rth

Cp
dVd

dt
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Va −Vd
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− Id
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Vd

Rp
+ Ig

Ig = απr2 Vg

tg
exp

(
−b
T

)
exp

(
γ

√
Vg

tg

)
Vg = Vd − IgRint

(4.27)

The model was fit to the experimental data in two steps. First, the measured
NDR curve below the onset of oscillations was fit to the steady state of the
model by varying parameters α, b, γ, tg, r, Rth and Rp. The remaining pa-
rameters, Cp, Cth, and Rint, were then fit by a brute force method where a
cartesian product of the three fit parameters within reasonable ranges were
tested in 15×15×15 separate numerical simulations. In each case, the system
was driven by the same input voltage waveform as used in the experiment,
and the oscillation frequencies and amplitudes were extracted. From the 3,375
total simulations, the best fit was chosen to minimize the squared residuals
between the measured and simulated oscillation frequency and amplitude vs.
voltage curves.

Using this fitting technique, we identified model parameters that give ex-
traordinarily close agreement to the measurement data (see Fig. 4.32). The
resulting set of parameters, shown in Table 4.3, are in a physically plausible
range, but are effective values within the uniform temperature and thermal re-
sistance approximation. For this reason, parameters like the heat capacity may
differ somewhat from bulk values measured in comparable materials.
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Figure 4.32: Close agreement between experimental and sim-
ulated relaxation oscillations in a circuit containing an electro-
formed 150×150×30 nm3 (V0.85Cr0.15)2O3 nanodevice. The
oscillation frequency and amplitude is controlled by the value of

the sourced voltage.

Table 4.3: Parameters for the fitted oscillator model.

Symbol Value Unit

α 1.328× 104 S m-1

b 3.212× 103 K
γ 2.750× 10−4 m1/2 V− 1/2

tg 6.000× 10−9 m
r 2.257× 10−8 m
Rint 1.200× 103 Ω
Rp 3.000× 105 Ω
Rth 4.100× 105 K W-1

Cth 5.278× 10−16 J K-1

Rs 1.000× 104 Ω
Cp 3.333× 10−12 F
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4.5.4 Finite element analysis

Though many of the key concepts of electro-thermal systems can be under-
stood and reasonably modeled using the simplifying assumption of a uniform
temperature and current distribution, one aspect not revealed by the simple
model is the appearance of temperature and current constriction. In a simple
uniform model, the stability landscape can be visualized and understood via
phase plane analysis. Spiking and oscillatory modes in circuits can also be
predicted in a straightforward way. However, the model cannot explain why
filaments sometimes arise in the electroformed states, nor any other possible
consequences of strongly constricted temperature profiles.

A partial differential equation (PDE) formulation of an electro-thermal cell,
while harder to analyze on a high-level, can take the variations in the tempera-
ture and current in one or more spatial dimensions into account. Numerical so-
lutions to PDE boundary-value problems can be computed by the widely-used
finite element method (FEM) [248]. One practical issue with this computation-
ally heavy method is that, currently, the most sophisticated FEM solvers run
on proprietary programs with poor programming interfaces. Nevertheless,
provided enough mental fortitude, certain insights can still be gained from
numerical simulation using FEM.

An FEM model was adapted from the existing model of Funck et al [37],
where it was used to show that threshold switching in NbO2-based devices can
occur due to thermal runaway at temperatures far below the IMT temperature.
The electrical conduction equation was substituted with the fitted conduction
equation of Eq. 4.7, and the materials and cell structure were changed to match
the (V1−xCrx)2O3 devices measured in this work [249]. It is an axisymmetric
2D model running on the commercial FEM software COMSOL, covering the
radial and axial dimensions of a cylindrical geometry with boundary condi-
tions as shown in Fig. 4.33.

Figure 4.33: The cell geometry, boundary conditions, and
meshing used for FEM simulations of a (V1−xCrx)2O3-based
electro-thermal cell. The red line at r = 0 nm shows the axis of

rotational symmetry.
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The equation system to solve in the cell volume starts with the point form
of Ohm’s law,

j = σE, (4.28)

where j is the current density vector, E is the electric field, and σ is the elec-
tric conductivity, which takes a constant value in each material except for the
(V1−xCrx)2O3 layer, where it has temperature and field dependence defined
by

σVCrOx = α exp
(
−b
T

)
exp

(
γ
√
|E|
)

. (4.29)

The rest of PDE system consists of static form of the equation of current conti-
nuity,

∇ · j = ∇ · (σ∇V) = 0, (4.30)

and the heat equation,

ρmCth,p
∂T
∂t

= Q +∇(κ∇T), (4.31)

where ρm is the density of mass, Cth,p is the specific heat capacity, κ is the
thermal conductivity, and the heat energy per unit volume is generated by
Joule heating,

Q =
|j|2

σ
. (4.32)

The material parameter values were largely sourced from thin film literature
and are provided in Table 4.4.

When driving the cells with a static current source (implemented as a
boundary condition), S-type NDR shape of the (I, V) steady states appear
in analogy with the uniform temperature case. However, along with the
maximum temperature Tmax, each steady state is associated with a tem-
perature profile that changes shape as the NDR curve current is increased
(see Fig. 4.34). The full width at half maximum (FWHM), defined as the
diameter of the temperature contour at T = (T0 + Tmax)/2 in the middle
oxide thickness, gives a scalar indication of the constriction of the temperature
distribution. Below the NDR onset current, the temperature distribution of
the thermal steady state is nearly uniformly distributed within the via radius,
and is elevated less than 40 ◦C from baseline. As the current increases inside
the NDR range, the temperature distribution constricts slightly, with the
FWHM gradually reducing below the device diameter but never reaching less
than 75% of it. The temperature profile also constricts asymmetrically in the z
dimension, with the maximum temperature being reached slightly below the
middle of the oxide thickness.

Although the physical processes behind NV switching are not explicitly
modeled in this work, we hypothesize a connection between the temperature
profiles induced by Joule heating and the different types of electro-forming
effects that were observed experimentally.

For the model parameters assigned here, thermal steady states along the
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Table 4.4: Parameters for the FEM model.

Symbol Value Unit Description

rcell 940 nm Radius of the cylindrical cell
rTiN 141 nm Radius of the TiN via
hTiN 200 nm Thickness of the TiN via
hVCrOx 30 nm Thickness of the VCrOx layer
hPt 30 nm Thickness of the Pt layer

κPt 30 W m−1 K−1 Thermal conductivity of Pt [250]
σPt 9.50× 106 S m−1 Electrical conductivity of Pt [250]
ρm,Pt 21.5 g cm−3 Mass density of Pt [250]
Cth,p,Pt 133 J kg−1 K−1 Heat capacity of Pt [250]

κTiN 2.7 W m−1 K−1 Thermal conductivity of TiN [251]
σTiN 6.25× 106 S m−1 Electrical conductivity of TiN [252]
ρm,TiN 5.22 g cm−3 Mass density of TiN [253]
Cth,p,TiN 601 J kg−1 K−1 Heat capacity of TiN [254]

κSiN 2.0 W m−1 K−1 Thermal conductivity of SiN [255]
σSiN 9.35× 10−14 S m−1 Electrical conductivity of SiN [256]
ρm,SiN 3.19 g cm−3 Mass density of SiN [256]
Cth,p,SiN 900 J kg−1 K−1 Heat capacity of SiN [256]

κVCrOx 1.0 W m−1 K−1 Thermal conductivity of VCrOx
ρm,VCrOx 4.50 g cm−3 Mass density of VCrOx [220]
Cth,p,VCrOx 3333 J kg−1 K−1 Heat capacity of VCrOx [257]

α 1.429× 104 S m-1 VCrOx conduction prefactor
b 3.017× 103 K VCrOx conduction energy barrier
γ 2.600× 10−4 m1/2 V− 1/2 VCrOx conduction nonlinearity coefficient
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Figure 4.34: Simulated temperature (T) profiles of the ther-
mal steady state for different source current levels along the NDR
curve. (C) shows the cell geometry and the temperature distri-
bution at 200 µA. (A) shows the radial profile at half oxide
thickness and (D) the thickness profile at r = 0. (B) displays
the location of the NDR bias for each of the temperature profiles.

NDR curve have a relatively broad temperature distribution. Assuming sta-
ble NDR biasing over a sufficiently long period of time, it can be expected
that a temperature-dependent NV process (such as the production and drift
of oxygen vacancies) will also follow the radial profile of the temperature dis-
tribution previously set up by Joule heating. This helps explain the relatively
uniform NV layer growth observed for these conditions in our experiments.
The main parameter influencing the FWHM of the temperature profile is the
thermal conductivity of the oxide, which may vary with temperature accord-
ing to the Wiedemann–Franz law in general but is assumed constant here. As
shown in Fig. 4.35, with all else held constant, lower thermal conductivities
increase the steady-state constriction significantly while also slightly modify-
ing the NDR shape itself. For this model, the thermal conductivity value for
the (V1−xCrx)2O3 layer was determined by time-domain thermoreflectance to
be 1.0 W m−1 K−1. By producing a more pronounced constriction, we expect
that lower κ values would make it more likely to locally induce chemical or
structural changes at an earlier point along the NDR curve, potentially even
below the knee current. Therefore, it is possible that for lower κ materials, a
reversible NDR region would not be observable and the formed states could
be intrinsically more constricted than we observed in our experiments.
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Figure 4.35: The effect of the assumed thermal conductivity
of the oxide layer, κ, on the simulated temperature profile in
the NDR steady states. With all else equal, a lower thermal
conductivity gives more constricted solutions and higher peak

temperatures at the same current values.

It is also illustrative to consider the temperature profiles induced outside
of thermal equilibrium, as will occur when the cell is driven by fast voltage
signals or when there is a driving signal-induced circuit bifurcation. To in-
vestigate this, we compare three simulated driving scenarios for the cell. The
external series resistance and the applied voltage waveform are varied in order
to

1. trace the device NDR curve,

2. produce a saddle-node bifurcation and a load-line jump to a new, distant
equilibrium, and

3. induce an out-of-equilibrium switching trajectory by overdriving with a
square pulse.

The results, summarized in Fig. 4.36, show that while the cells eventually set-
tle into the same thermal profiles of the NDR steady state, these situations
each result in very different transient levels of thermal filamentation. At ev-
ery point of the switching trajectories, the FWHM was smaller than or equal
to the corresponding NDR steady state at the same current level. The maxi-
mum degree of filamentation roughly followed the speed of the transition in
question. The load-line jump in scenario 2 lasted ∼150 ns and had a minimum
FWHM of 140 nm, while in scenario 3 the jump lasted ∼50 ns and had a lower
minimum FWHM of 60 nm. The maximum temperatures reached at the center
of the cells that experienced constriction were also much higher than seen in
the steady state, even at very similar instantaneous (I, V) values. It is easy to



134 Chapter 4. Mott-oxide neuronal nano-devices

imagine that if these operations were carried out using any real-world mate-
rial, the extreme constriction seen at some point during the trajectories could
lead to decomposition in narrow filamentary region of the material, in contrast
with the more uniform case seen with steady NDR biasing.

Figure 4.36: A comparison of simulated electro-thermal switch-
ing for three different driving scenarios that show strong differ-
ences in the amount of thermal constriction. On the left side of
the figure, parameters at each current level are plotted. On the
right side of the figure, corresponding 2D temperature profiles
are shown in vertically stacked frames depicting increasing cur-

rent levels.

Among the experimental results shown previously, the sudden forming
mode was associated with large current spikes from the parasitic capacitance.
However, we did not include parasitic capacitance in the FEM model and still
encountered strong thermal constriction without the spikes. A similar finding
was also recently pointed out by Goodwill et al. [258]. Fundamentally, current
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constriction comes from sustained positive feedback between local conductiv-
ity enhancement and its driving force (here, heat generation), and there are
therefore certain scenarios that predictably lead to filamentation. Whether and
to what degree the positive feedback occurs is determined by the overall mea-
surement circuit, of which the DUT is only one component. In the experimen-
tal case, the parasitic capacitance further degrades the ability to stabilize the
cells, but we would also expect to see the filamentation effect even if it were
possible to reduce the parasitic capacitance to zero. The distinguishing point
is not the spiking itself, but that whenever the driving circuit pushes the (I, V)
trajectory of the cell far away from its NDR curve, the heating rates become
large relative to the equalizing factor of thermal diffusion. This can happen for
variety of different reasons and has multiple contributing factors in an experi-
ment. However induced, we expect that rapid changes in the device resistance
state will tend to be associated with filamentary conduction paths.

On the materials side, an important quantity when considering the balance
between filamentary and non-filamentary switching is the thermal diffusivity
of the medium,

αth =
κ

ρmCth,p
, (4.33)

which is roughly the rate that the temperature, and thereafter the NV filament,
can spread through the material. It evaluates to ∼60 nm2/ns for the parame-
ters used for the (V1−xCrx)2O3 film. This establishes an informal connection
between the timescale of the switching event and the area of the filament pro-
duced in the process. At the same time, we expect the thermal conductivity to
also set a kind of upper bound on the filamentary radius, due to its effect on
the steady-state temperature profiles, the FWHMs of which are not exceeded
during driven transients.

4.6 Discussion

This chapter described the fabrication of nano-devices based on the Mott insu-
lating material (V1−xCrx)2O3. After verifying a high compositional and struc-
tural quality, we applied non-standard electrical measurement techniques to
study both volatile and non-volatile switching phenomena in the devices. The
cells have an adaptable NDR characteristic, leading to highly endurant ex-
citable dynamics of interest for emulating spiking neurons in neuromorphic
circuits.

The volatile switching component is comprehensively explained by Joule
heating and conductivity enhancement at elevated temperatures due to carrier
activation. The astute reader will notice a close resemblance of the switching
behavior to that of the macroscopic thermistor measurement in Appendix B.
While some of the phenomena strain human intuition, they have the same
character as those observed in a simple and decidedly ordinary system. The
remaining differences in speed, voltage, and current levels can be explained
simply by scaling to nanometer dimensions.
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Nano-electronic applications ask for smaller device dimensions than are
easy to fabricate in a research setting. By measuring and analyzing the NDR
curves of devices in a variety of different sizes (thicknesses and widths), we
were able to determine the scaling behavior of electrical and thermal conduc-
tion in the cells. This information allowed us to build a device model that
predicts good scaling behavior down to a 10 nm length scale.

Furthermore, we observed that NV resistance transitions can occur in dif-
ferent ways and with different consequences. A gradual process is induced
by extended biasing at (I, V) points near the NDR curve, while a rapid pro-
cess can be induced through various circuit instabilities. By a combination of
evidence from experiment and simulation, we postulate that heating activates
a NV process and results in the formation of a highly conductive pillar in-
side the cell. Depending on how the NV transition is induced, this pillar can
be either highly localized or distributed across the entire cell area. The pillar
could consist of an oxygen deficient or (re)crystallized oxide phase, or possibly
a compressed metallic domain(s) having undergone a metal-insulator transi-
tion [259]. We judge ionic motion to be most likely given the prevalence of
this mechanism in TMOs, the similarity of the bipolar (I, V) measurements to
those produced in VCM cells, and the absence of a detectable change in cross-
sectional TEM. However, we did not make a final determination of which ionic
species are involved.

By using measurement circuits with limiting feedback during NV switch-
ing, we are able to access a range of states with NDR and TS modified from
the pristine characteristic. Our model suggests that after these NV (forming)
events, the modified volatile effects proceed in the same material and due to
the same mechanism as in the forming-free operation, but occur in the de-
creased volume of the pillar gap. By supposing a functional equivalence be-
tween a formed device and a device with a smaller size (corresponding to the
gap size), we showed evidence that scaling the device down will further re-
duce the leakage, significantly speed up the switching, and eliminate the ne-
cessity of a forming step; all of which are beneficial for applications.

Besides careful attention to the measurement circuitry, three experimental
conveniences contributed to the ability to record these effects in this particular
material system. First, the relatively high electrical conductivity of the pris-
tine material reduces the series resistance and applied voltage needed to stabi-
lize its NDR curve. Second, the high thermal conductivity makes the thermal
steady-state temperature profile relatively uniform across the device width,
making the material more likely to reversibly withstand NDR biasing on rel-
atively long timescales. Finally, the apparent absence of interfacial Schottky
barriers gives visibility of the conductance change in the bulk of the device as
the pillar grows, which might not be the case for material stacks with interface-
limited conduction.
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Conclusion

Resistive switching devices are promising building blocks for future mem-
ory and unconventional computing architectures, but remaining non-idealities
presently stand in the way of their production readiness. Two of the most
salient challenges are that they are prone to electrical instabilities and have
large cycle-to-cycle and device-to-device variability. Conventional lab mea-
surements of these cells commonly represent very different conditions from in-
tegrated systems, and often have unclear implications for device applications.
In particular, without integrated current-limiting devices, overshoots during
runaway resistance transitions hinder the ability to control and characterize
switching processes. With isolated devices vulnerable to runaway transitions,
parasitic capacitance is an important factor, and both the type of external feed-
back and the amount of parasitic capacitance lead to different switching out-
comes in general.

Due to the strong influence of the measurement setup on switching data,
device evaluation requires accurate modeling of the driving circuitry, which
rules out the use of proprietary “black box” feedback circuits. The two
measurement circuit designs introduced in Chapter 2 provide a new, simple
means for control and tractable analysis of switching processes, without the
prohibitive requirement of CMOS integration. They provide synchronized
measurement of switching trajectories at high speed while using adjustable
feedback mechanisms to stabilize the system and to control the amount of
resistive switching induced. The minimal designs with low part counts are
relatively robust against load-induced instability and have the important
advantage that their response is accurately predictable using only a few
idealized component models.

We demonstrated collection of 105 to 107 switching cycles per second with
the new system, which is highly useful for studying the stochastic nature of
switching processes. The DUT current and voltage are simultaneously sam-
pled for up to ten million switching cycles per second, and millions of such
cycles are endured even by devices which do not survive switching using
commercial SMUs. By combining the strengths of conventional approaches
— the short time scales and fast sampling rates of pulsed measurements and
the higher information content of quasistatic cycles — this new technique is
capable generating rich, statistically significant datasets in a short amount of
time. With this technique, the nature of physical processes that support neu-
romorphic functionalities can be conveniently investigated, yielding insights
into how optimal control can eventually be achieved.
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Using the statistical information collected by applying the new mea-
surement circuitry to a fabricated HfO2-based ReRAM device design, we
constructed a new type of stochastic device model. The hierarchical statistical
model is optimized for low memory footprint and fast, parallel simulation
of large synaptic arrays on both CPUs and GPUs. This work is intended to
seamlessly provide a physically validated drop-in model of a resistive RAM
cell for large-scale neuromorphic simulations, which automatically adapts to
new measurement data. We have open-sourced the model implementation
and hope that it will be of use to the community as a plug-in model for RS
devices, or as a framework to create further device models.

Finally, nanodevices based on the correlated-electron material
(V1−xCrx)2O3 were fabricated and characterized in this work by X-ray
spectroscopy and by a variety of electrical measurements. High speed current
excursions were demonstrated in simple excitable circuits containing the
devices, making them interesting as compact spiking elements for use in
neuromorphic computing. While the material characterization suggests
high phase purity and correct stoichiometry, unambiguous evidence of an
electrically induced Mott-type IMT in these devices is still absent, and may
require further material engineering to realize in thin films. We interpret the
various volatile switching results without reference to phase transitions, and
instead find very close agreement with an electro-thermal model. Therefore,
considerations not only of the material properties but also the thermal
environment are critical for determining device behavior, and adjusting the
thermal isolation provides an engineering path for modifying important
variables such as the threshold voltage and leakage current. A major challenge
in applying the devices will be reducing the quiescent power consumption.
Our model suggests favorable scaling properties in this regard, but it remains
to be seen whether fully scaled devices will follow the prediction and whether
they are capable of self-oscillation without the addition of bulky capacitive
components.

In addition to the electro-thermal volatile switching effects, a NV effect
comparable to the VCM-type acts in parallel in the (V1−xCrx)2O3 devices. Al-
though a physical/dynamical model for this effect was not considered, the ap-
proximate shape of the NV conductance redistribution was inferred through
its effect on the remaining volatile switching behavior. The results suggest
that filaments are not a fundamental and unavoidable material property, but
rather a controllable consequence of the overall stability of the measurement
circuitry. We showed electrical measurements that are capable of differentiat-
ing these conditions, and we expect that a range of filament diameters could
be realized in the same system in a predictable way by modifying the driving
circumstances, and that there could be accompanying differences in switching
performance. Furthermore, to explain the persistent volatile switching after
NV perturbation, our model supposes that the volatile effect occurs in a re-
maining gap of pristine material due to the same electro-thermal effect as the



4.6. Discussion 139

as-deposited device. Approached in these terms, the results contribute valu-
able insight about how both the volatile and non-volatile properties of inter-
mediate resistance states can be harnessed for use in neuromorphic circuits.
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Appendix A

Parameter assignment for the
thermistor model

In a basic thermistor model, we assume a temperature dependent electrical
conduction relation where

I = AV exp
(
−Eb

kBT

)
, (A.1)

and a lumped thermal model,

Cth
dT
dt

= IV − T − T0

Rth
. (A.2)

Plausible parameter values are chosen for a clear visual representation on
a linear axis scale. The material is assumed an intrinsic semiconductor with
Eb = 0.5 eV, and A = 5× 103 S such that the cell has 50 kΩ resistance at room
temperature T0 = 300 K.

For a rough idea of the expected order of magnitude of Rth, consider the
steady-state 3D heat equation in an isotropic medium with uniform thermal
conductivity κ,

−κ∇2T(r) = q(r) (A.3)

With a point heat source q at the origin and with the boundary condition
T → T0 as the radius r → ∞, we have the solution

T(r) =
q

4πκr
+ T0. (A.4)

The average temperature inside of radius r ≤ R is

T =
3

4πR3

∫ R

0
T(r)4πr2dr =

3q
8πκR

+ T0, (A.5)

and the effective thermal resistance is

Rth =
dT
dq

=
3

8πκR
, (A.6)
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which is inversely proportional to the radius and the thermal conductivity.
Assuming hypothetical values of κ = 10 W/m/K and R = 50 nm, we assign
Rth = 2.4× 105 K/W. For the same cell volume, assuming a heat capacity of
2 J/K/cm3, we use a lumped value of Cth = 1.05× 10−15 J/K.
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Appendix B

Zoo of thermistor behavior

An interesting set of dynamical effects can appear in electrical measurements,
which simply follow from Joule heating in a device with strongly tempera-
ture dependent conductivity. To show this unambiguously, we measured a
commercial negative temperature coefficient (NTC) thermistor intended for
temperature sensing applications (TDK part number NTCG063JF103FT). The
small surface mount device (300 µm × 300 µm × 500 µm) was presumably
engineered for high voltage linearity, using a resistive material composed of
unspecified semiconductor ceramics, and layered internal Pd electrodes. The
conduction model given in the device datasheet specifies the static resistance
as a function of temperature,

R = R0 exp
(

B
(

1
T
− 1

T0

))
(B.1)

which equals the reference resistance R0 = 10 kΩ at temperature T0 = 25 ◦C,
and B = 3400 K corresponds to a bandgap of 0.3 eV.

The device can also be operated outside the intended temperature sensing
regime, where the self-heating effect produces NDR curves, which are also
provided in the datasheet. A variety of measurements of the NTC thermistor
using a Keithley 2636B SMU are shown in Fig. B.1. In every case, there was
no permanent change in the NTC after the voltage was removed. These effects
mirror those observed in scaled electro-thermal cells, but they occur on a much
larger time and power scale, which is explained by the relatively large heat
capacity, low thermal resistance, and absence of barrier lowering due to low
electric field.
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Figure B.1: Electrical measurements of a commercial surface-
mount NTC thermistor. (A) NDR due to self-heating is mea-
sured with a sweeping current source. NDR curve retraces itself
at low sweep rates, and a hysteresis opens at higher sweep rates.
(B) The NDR curve depends strongly on the ambient tempera-
ture. (C) Sudden current jumps are measured when controlled
with a sweeping voltage source. (D) Current jumps (duration
∼100 ms) occur after a delay which depends sensitively on the
amplitude of an applied voltage pulse. (E) (F) Relaxation os-
cillations occur when driven by a 20 mA current source with a

470 µF capacitor in parallel.



145

Bibliography

[1] J. Backus, “Can programming be liberated from the von Neumann
style?: A functional style and its algebra of programs,” Commun. ACM,
vol. 21, no. 8, pp. 613–641, Aug. 1978, ISSN: 0001-0782, 1557-7317. DOI:
10.1145/359576.359579.

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24,
Mar. 1995, ISSN: 0163-5964. DOI: 10.1145/216585.216588.

[3] G. Indiveri and S.-C. Liu, “Memory and Information Processing in Neu-
romorphic Systems,” Proc. IEEE, vol. 103, no. 8, pp. 1379–1397, Aug.
2015, ISSN: 0018-9219, 1558-2256. DOI: 10.1109/JPROC.2015.2444094.

[4] I. L. Markov, “Limits on fundamental limits to computation,” Nature,
vol. 512, no. 7513, pp. 147–154, Aug. 2014, ISSN: 0028-0836, 1476-4687.
DOI: 10.1038/nature13570.

[5] C. Mead, “Neuromorphic Electronic Systems,” Proc. IEEE, vol. 78, p. 8,
1990.

[6] D. V. Christensen, R. Dittmann, et al., “2022 roadmap on neuromorphic
computing and engineering,” Neuromorph. Comput. Eng., vol. 2, no. 2,
p. 022 501, Jun. 2022, ISSN: 2634-4386. DOI: 10.1088/2634-4386/ac4a83.

[7] W. Wan, R. Kubendran, et al., “A compute-in-memory chip based on
resistive random-access memory,” Nature, vol. 608, no. 7923, pp. 504–
512, Aug. 2022, ISSN: 0028-0836, 1476-4687. DOI: 10.1038/s41586-022-
04992-8.

[8] P. A. Merolla, J. V. Arthur, et al., “A million spiking-neuron integrated
circuit with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, Aug. 2014, ISSN: 0036-8075, 1095-9203.
DOI: 10.1126/science.1254642.

[9] M. Davies, N. Srinivasa, et al., “Loihi: A Neuromorphic Many-
core Processor with On-Chip Learning,” IEEE Micro, vol. 38,
no. 1, pp. 82–99, Jan. 2018, ISSN: 0272-1732, 1937-4143. DOI:
10.1109/MM.2018.112130359.

[10] D. J. Wouters, R. Waser, and M. Wuttig, “Phase-Change and Redox-
Based Resistive Switching Memories,” Proc. IEEE, vol. 103, no. 8,
pp. 1274–1288, Aug. 2015, ISSN: 0018-9219. DOI: 10.1109/JPROC.2015.
2433311.

[11] S. Yu and P.-Y. Chen, “Emerging Memory Technologies: Recent Trends
and Prospects,” IEEE Solid-State Circuits Mag., vol. 8, no. 2, pp. 43–56,
2016, ISSN: 1943-0582. DOI: 10.1109/MSSC.2016.2546199.

[12] H. Li, T. F. Wu, S. Mitra, and H.-S. P. Wong, “Resistive RAM-Centric
Computing: Design and Modeling Methodology,” IEEE Trans. Circuits

https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1038/nature13570
https://doi.org/10.1088/2634-4386/ac4a83
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2015.2433311
https://doi.org/10.1109/JPROC.2015.2433311
https://doi.org/10.1109/MSSC.2016.2546199


146 Bibliography

Syst. I, vol. 64, no. 9, pp. 2263–2273, Sep. 2017, ISSN: 1549-8328, 1558-
0806. DOI: 10.1109/TCSI.2017.2709812.

[13] G. W. Burr, R. M. Shelby, et al., “Neuromorphic computing using non-
volatile memory,” Adv. Phys. X, vol. 2, no. 1, pp. 89–124, Jan. 2017, ISSN:
2374-6149. DOI: 10.1080/23746149.2016.1259585.

[14] V. K. Sangwan and M. C. Hersam, “Neuromorphic nanoelectronic ma-
terials,” Nat. Nanotechnol., vol. 15, no. 7, pp. 517–528, Jul. 2020, ISSN:
1748-3387, 1748-3395. DOI: 10.1038/s41565-020-0647-z.

[15] V. Milo, G. Malavena, C. Monzio Compagnoni, and D. Ielmini,
“Memristive and CMOS Devices for Neuromorphic Computing,”
Materials, vol. 13, no. 1, p. 166, Jan. 2020, ISSN: 1996-1944. DOI:
10.3390/ma13010166.

[16] D. Ielmini and R. Waser, Resistive Switching: From Fundamentals of
Nanoionic Redox Processes to Memristive Device Applications. John Wiley
& Sons, 2015.

[17] A. Chen, J. Hutchby, V. V. Zhirnov, and G. Bourianoff, Eds., Emerging
Nanoelectronic Devices. Chichester, West Sussex, United Kingdom: John
Wiley & Sons Inc, 2014, ISBN: 978-1-118-44774-1.

[18] You Zhou and S. Ramanathan, “Mott Memory and Neuromorphic De-
vices,” Proc. IEEE, vol. 103, no. 8, pp. 1289–1310, Aug. 2015, ISSN: 0018-
9219, 1558-2256. DOI: 10.1109/JPROC.2015.2431914.

[19] H. Liu, D. Bedau, J. Sun, S. Mangin, E. Fullerton, J. Katine, and A. Kent,
“Dynamics of spin torque switching in all-perpendicular spin valve
nanopillars,” Journal of Magnetism and Magnetic Materials, vol. 358–359,
pp. 233–258, May 2014, ISSN: 03048853. DOI: 10.1016/j.jmmm.2014.01.
061.

[20] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive
Switching Memories - Nanoionic Mechanisms, Prospects, and Chal-
lenges,” Adv. Mater., vol. 21, no. 25-26, pp. 2632–2663, Jul. 2009, ISSN:
09359648, 15214095. DOI: 10.1002/adma.200900375.

[21] L. O. Chua, “Memristor-The missing circuit element,” IEEE Trans. Cir-
cuit Theory, vol. 18, no. 5, pp. 507–519, 1971, ISSN: 0018-9324. DOI: 10.
1109/TCT.1971.1083337.

[22] J. Kim, Y. V. Pershin, M. Yin, T. Datta, and M. Di Ventra, “An Experimen-
tal Proof that Resistance-Switching Memory Cells are not Memristors,”
Adv. Electron. Mater., vol. 6, no. 7, p. 2 000 010, Jul. 2020, ISSN: 2199-160X,
2199-160X. DOI: 10.1002/aelm.202000010.

[23] M. Di Ventra and Y. V. Pershin, Memristors and Memelements: Mathemat-
ics, Physics and Fiction (SpringerBriefs in Physics). Cham: Springer In-
ternational Publishing, 2023, ISBN: 978-3-031-25624-0 978-3-031-25625-
7. DOI: 10.1007/978-3-031-25625-7.

[24] L. O. Chua and S. M. Kang, Memristive Devices and Systems, 1976.
[25] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The miss-

ing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May 2008,
ISSN: 0028-0836. DOI: 10.1038/nature06932.

https://doi.org/10.1109/TCSI.2017.2709812
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1038/s41565-020-0647-z
https://doi.org/10.3390/ma13010166
https://doi.org/10.1109/JPROC.2015.2431914
https://doi.org/10.1016/j.jmmm.2014.01.061
https://doi.org/10.1016/j.jmmm.2014.01.061
https://doi.org/10.1002/adma.200900375
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1002/aelm.202000010
https://doi.org/10.1007/978-3-031-25625-7
https://doi.org/10.1038/nature06932


Bibliography 147

[26] S. Vongehr and X. Meng, “The Missing Memristor has Not been
Found,” Sci. Rep., vol. 5, no. 1, Dec. 2015, ISSN: 2045-2322. DOI:
10.1038/srep11657.

[27] S. Chandra, “On the Discovery of a Polarity-Dependent Memory
Switch and/or Memristor (Memory Resistor),” IETE Tech. Rev., vol. 27,
no. 2, p. 179, 2010, ISSN: 0256-4602. DOI: 10.4103/0256-4602.60170.

[28] R. Williams, “Reply to - "On the Discovery of a Polarity-Dependent
Memory Switch and/or Memristor (Memory Resistor)",” IETE Tech.
Rev., vol. 27, no. 2, p. 181, 2010, ISSN: 0256-4602. DOI: 10.4103/0256-
4602.60171.

[29] B. Mouttet, “The Mythology of the Memristor,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2010.

[30] P. Meuffels and R. Soni, “Fundamental Issues and Problems in the Real-
ization of Memristors,” ArXiv Prepr., 2012. DOI: 10.48550/arXiv.1207.
7319.

[31] L. Chua, “Resistance switching memories are memristors,” Appl. Phys.
A, vol. 102, no. 4, pp. 765–783, Mar. 2011, ISSN: 0947-8396, 1432-0630.
DOI: 10.1007/s00339-011-6264-9.

[32] S. Kim, M. Lim, Y. Kim, H.-D. Kim, and S.-J. Choi, “Impact of Synaptic
Device Variations on Pattern Recognition Accuracy in a Hardware Neu-
ral Network,” Sci Rep, vol. 8, no. 1, p. 2638, Dec. 2018, ISSN: 2045-2322.
DOI: 10.1038/s41598-018-21057-x.

[33] C. Bengel, F. Cüppers, M. Payvand, R. Dittmann, R. Waser, S.
Hoffmann-Eifert, and S. Menzel, “Utilizing the Switching Stochasticity
of HfO2/TiOx-Based ReRAM Devices and the Concept of Multiple
Device Synapses for the Classification of Overlapping and Noisy Pat-
terns,” Front. Neurosci., vol. 15, p. 661 856, Jun. 2021, ISSN: 1662-453X.
DOI: 10.3389/fnins.2021.661856.

[34] E. Janod, J. Tranchant, et al., “Resistive Switching in Mott Insulators and
Correlated Systems,” Adv. Funct. Mater., vol. 25, no. 40, pp. 6287–6305,
Oct. 2015, ISSN: 1616301X. DOI: 10.1002/adfm.201500823.

[35] M. Querré, J. Tranchant, et al., “Non-volatile resistive switching in the
Mott insulator (V1-xCrx)2O3,” Phys. B Condens. Matter, vol. 536, pp. 327–
330, May 2018, ISSN: 09214526. DOI: 10.1016/j.physb.2017.10.060.

[36] J. S. Brockman, “Electric Field-Induced Conductivity Switching in
Vanadium Sesquioxide Nanostructures,” Ph.D. dissertation, 2012.

[37] C. Funck, S. Menzel, N. Aslam, H. Zhang, A. Hardtdegen, R. Waser,
and S. Hoffmann-Eifert, “Multidimensional Simulation of Threshold
Switching in NbO2 Based on an Electric Field Triggered Thermal Run-
away Model,” Adv. Electron. Mater., vol. 2, no. 7, p. 1 600 169, Jul. 2016,
ISSN: 2199160X. DOI: 10.1002/aelm.201600169.

[38] M. Le Gallo, A. Athmanathan, D. Krebs, and A. Sebastian, “Evidence
for thermally assisted threshold switching behavior in nanoscale phase-
change memory cells,” J. Appl. Phys., vol. 119, no. 2, p. 025 704, Jan. 2016,
ISSN: 0021-8979, 1089-7550. DOI: 10.1063/1.4938532.

[39] J. M. Goodwill, D. K. Gala, J. A. Bain, and M. Skowronski, “Switching
dynamics of TaOx -based threshold switching devices,” J. Appl. Phys.,

https://doi.org/10.1038/srep11657
https://doi.org/10.4103/0256-4602.60170
https://doi.org/10.4103/0256-4602.60171
https://doi.org/10.4103/0256-4602.60171
https://doi.org/10.48550/arXiv.1207.7319
https://doi.org/10.48550/arXiv.1207.7319
https://doi.org/10.1007/s00339-011-6264-9
https://doi.org/10.1038/s41598-018-21057-x
https://doi.org/10.3389/fnins.2021.661856
https://doi.org/10.1002/adfm.201500823
https://doi.org/10.1016/j.physb.2017.10.060
https://doi.org/10.1002/aelm.201600169
https://doi.org/10.1063/1.4938532


148 Bibliography

vol. 123, no. 11, p. 115 105, Mar. 2018, ISSN: 0021-8979, 1089-7550. DOI:
10.1063/1.5020070.

[40] Z. Wang, S. Kumar, Y. Nishi, and H.-S. P. Wong, “Transient dynamics
of NbOx threshold switches explained by Poole-Frenkel based thermal
feedback mechanism,” Appl. Phys. Lett., vol. 112, no. 19, p. 193 503, May
2018, ISSN: 0003-6951, 1077-3118. DOI: 10.1063/1.5027152.

[41] J. Lin, S. Guha, and S. Ramanathan, “Vanadium Dioxide Circuits Emu-
late Neurological Disorders,” Front. Neurosci., vol. 12, p. 856, Nov. 2018,
ISSN: 1662-453X. DOI: 10.3389/fnins.2018.00856.

[42] M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, “A scal-
able neuristor built with Mott memristors,” Nat. Mater., vol. 12,
no. 2, pp. 114–117, Dec. 2012, ISSN: 1476-1122, 1476-4660. DOI:
10.1038/nmat3510.

[43] T. Brown, B. Mann, et al., “Language models are few-shot learners,” in
Adv. Neural Inf. Process. Syst., H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020,
pp. 1877–1901.

[44] T. Hennen, D. Bedau, et al., “Forming-Free Mott-Oxide Threshold Se-
lector Nanodevice Showing S-Type NDR with High Endurance (> 1012

Cycles), Excellent Vth Stability (< 5%), Fast (< 10 ns) Switching, and
Promising Scaling Properties,” in IEDM, San Francisco, CA, USA, 2018,
pp. 37.5.1–37.5.4. DOI: 10.1109/IEDM.2018.8614618.

[45] T. Hennen, D. Bedau, et al., “Switching Speed Analysis and Controlled
Oscillatory Behavior of a Cr-Doped V 2 O 3 Threshold Switching Device
for Memory Selector and Neuromorphic Computing Application,” in
2019 IEEE 11th Int. Mem. Workshop IMW, Monterey, CA, USA: IEEE,
May 2019, pp. 1–4, ISBN: 978-1-72810-981-7. DOI: 10.1109/IMW.2019.
8739556.

[46] W. Ma, T. Hennen, et al., “A Mott Insulator-Based Oscillator Circuit for
Reservoir Computing,” in 2020 IEEE Int. Symp. Circuits Syst. ISCAS,
Seville, Spain: IEEE, Oct. 2020, pp. 1–5, ISBN: 978-1-72813-320-1. DOI:
10.1109/ISCAS45731.2020.9181105.

[47] D. J. Dumin, Ed., Oxide Reliability: A Summary of Silicon Oxide Wearout,
Breakdown, and Reliability (Selected Topics in Electronics and Systems
23). Singapore: World Scientific, 2002, ISBN: 978-981-02-4842-0.

[48] J. Kim, V. J. Dowling, T. Datta, and Y. V. Pershin, “Holy memristor,”
arXiv:2111.11557, Nov. 2021. arXiv: 2111.11557.

[49] A. A. Sivkov, Y. Xing, K. Y. Cheong, X. Zeng, and F. Zhao, “Investigation
of honey thin film as a resistive switching material for nonvolatile mem-
ories,” Materials Letters, vol. 271, p. 127 796, Jul. 2020, ISSN: 0167577X.
DOI: 10.1016/j.matlet.2020.127796.

[50] R. Y. Adhikari, N. E. Harmon, and K. P. Williams, “Pristine leaf
based electrochemical resistive switching device,” Applied Ma-
terials Today, vol. 24, p. 101 077, Sep. 2021, ISSN: 23529407. DOI:
10.1016/j.apmt.2021.101077.

https://doi.org/10.1063/1.5020070
https://doi.org/10.1063/1.5027152
https://doi.org/10.3389/fnins.2018.00856
https://doi.org/10.1038/nmat3510
https://doi.org/10.1109/IEDM.2018.8614618
https://doi.org/10.1109/IMW.2019.8739556
https://doi.org/10.1109/IMW.2019.8739556
https://doi.org/10.1109/ISCAS45731.2020.9181105
https://arxiv.org/abs/2111.11557
https://doi.org/10.1016/j.matlet.2020.127796
https://doi.org/10.1016/j.apmt.2021.101077


Bibliography 149

[51] F. Yasmin Rahman, S. Sarkar, H. Banik, M. Jashim Uddin, D. Bhat-
tacharjee, and S. Arshad Hussain, “Investigation of non volatile resis-
tive switching behaviour using rose petal,” Materials Today: Proceedings,
vol. 65, pp. 2693–2697, 2022, ISSN: 22147853. DOI: 10.1016/j.matpr.
2022.05.341.

[52] Z. W. Dlamini, S. Vallabhapurapu, T. S. Mahule, and V. S. Vallabhapu-
rapu, “Electrical conduction and resistive switching in cow milk-based
devices prepared using the spin-coat method,” AIP Advances, vol. 12,
no. 9, p. 095 321, Sep. 2022, ISSN: 2158-3226. DOI: 10.1063/5.0098976.

[53] R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, “Co-
existence of Filamentary and Homogeneous Resistive Switching
in Fe-Doped SrTiO3 Thin-Film Memristive Devices,” Adv. Mater.,
vol. 22, no. 43, pp. 4819–4822, Nov. 2010, ISSN: 09359648. DOI:
10.1002/adma.201001872.

[54] M. D. Pickett, J. Borghetti, J. J. Yang, G. Medeiros-Ribeiro, and R. S.
Williams, “Coexistence of Memristance and Negative Differential
Resistance in a Nanoscale Metal-Oxide-Metal System,” Adv. Mater.,
vol. 23, no. 15, pp. 1730–1733, Apr. 2011, ISSN: 09359648. DOI:
10.1002/adma.201004497.

[55] J. Bae, I. Hwang, et al., “Coexistence of bi-stable memory and mono-
stable threshold resistance switching phenomena in amorphous NbO x
films,” Appl. Phys. Lett., vol. 100, no. 6, p. 062 902, Feb. 2012, ISSN: 0003-
6951, 1077-3118. DOI: 10.1063/1.3685485.

[56] H. Abbas, Y. Abbas, et al., “The coexistence of threshold and memory
switching characteristics of ALD HfO2 memristor synaptic arrays
for energy-efficient neuromorphic computing,” Nanoscale, vol. 12,
no. 26, pp. 14 120–14 134, 2020, ISSN: 2040-3364, 2040-3372. DOI:
10.1039/D0NR02335C.

[57] R. Waser and M. Aono, “Nanoionics-based resistive switching memo-
ries,” Nat Mater, vol. 6, no. 11, pp. 833–840, Nov. 2007, ISSN: 1476-1122.
DOI: 10.1038/nmat2023.

[58] J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N.
Lau, and R. S. Williams, “The mechanism of electroforming of metal
oxide memristive switches,” Nanotechnology, vol. 20, no. 21, p. 215 201,
2009, ISSN: 0957-4484. DOI: 10.1088/0957-4484/20/21/215201.

[59] K. M. Kim, D. S. Jeong, and C. S. Hwang, “Nanofilamentary resistive
switching in binary oxide system; a review on the present status and
outlook,” Nanotechnology, vol. 22, no. 25, p. 254 002, Jun. 2011, ISSN:
0957-4484, 1361-6528. DOI: 10.1088/0957-4484/22/25/254002.

[60] G.-S. Park, Y. B. Kim, et al., “In situ observation of filamentary conduct-
ing channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure,” Nat
Commun, vol. 4, no. 1, p. 2382, Dec. 2013, ISSN: 2041-1723. DOI: 10.1038/
ncomms3382.

[61] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S.
Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotech, vol. 3, no. 7, pp. 429–433, Jul. 2008,
ISSN: 1748-3387, 1748-3395. DOI: 10.1038/nnano.2008.160.

https://doi.org/10.1016/j.matpr.2022.05.341
https://doi.org/10.1016/j.matpr.2022.05.341
https://doi.org/10.1063/5.0098976
https://doi.org/10.1002/adma.201001872
https://doi.org/10.1002/adma.201004497
https://doi.org/10.1063/1.3685485
https://doi.org/10.1039/D0NR02335C
https://doi.org/10.1038/nmat2023
https://doi.org/10.1088/0957-4484/20/21/215201
https://doi.org/10.1088/0957-4484/22/25/254002
https://doi.org/10.1038/ncomms3382
https://doi.org/10.1038/ncomms3382
https://doi.org/10.1038/nnano.2008.160


150 Bibliography

[62] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM)
based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251, 2010.

[63] Y. Chen, “ReRAM: History, Status, and Future,” IEEE Trans. Electron
Devices, vol. 67, no. 4, p. 14, 2020.

[64] C. Nail, G. Molas, et al., “Understanding RRAM endurance, retention
and window margin trade-off using experimental results and simula-
tions,” in 2016 IEEE Int. Electron Devices Meet. IEDM, San Francisco,
CA, USA: IEEE, Dec. 2016, pp. 4.5.1–4.5.4, ISBN: 978-1-5090-3902-9. DOI:
10.1109/IEDM.2016.7838346.

[65] J. P. Strachan, A. C. Torrezan, G. Medeiros-Ribeiro, and R. S. Williams,
“Measuring the switching dynamics and energy efficiency of tantalum
oxide memristors,” Nanotechnology, vol. 22, no. 50, p. 505 402, Dec. 2011,
ISSN: 0957-4484, 1361-6528. DOI: 10.1088/0957-4484/22/50/505402.

[66] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,” Nanotech-
nology, vol. 22, no. 48, p. 485 203, Dec. 2011, ISSN: 1361-6528. DOI: 10.
1088/0957-4484/22/48/485203.

[67] S. Menzel, M. von Witzleben, V. Havel, and U. Böttger, “The ultimate
switching speed limit of redox-based resistive switching devices,” Fara-
day Discuss., vol. 213, pp. 197–213, 2019, ISSN: 1359-6640, 1364-5498. DOI:
10.1039/C8FD00117K.

[68] M. von Witzleben, T. Hennen, A. Kindsmüller, S. Menzel, R. Waser, and
U. Böttger, “Study of the SET switching event of VCM-based memories
on a picosecond timescale,” J. Appl. Phys., vol. 127, no. 20, p. 204 501,
May 2020, ISSN: 0021-8979, 1089-7550. DOI: 10.1063/5.0003840.

[69] H.-Y. Chen, S. Brivio, et al., “Resistive random access memory (RRAM)
technology: From material, device, selector, 3D integration to bottom-
up fabrication,” J Electroceram, vol. 39, no. 1-4, pp. 21–38, Dec. 2017,
ISSN: 1385-3449, 1573-8663. DOI: 10.1007/s10832-017-0095-9.

[70] B. Govoreanu, G. Kar, et al., “10x10nm2 Hf/HfOx crossbar resistive
RAM with excellent performance, reliability and low-energy oper-
ation,” in 2011 Int. Electron Devices Meet., Washington, DC, USA:
IEEE, Dec. 2011, pp. 31.6.1–31.6.4, ISBN: 978-1-4577-0504-5. DOI:
10.1109/IEDM.2011.6131652.

[71] N. Raghavan, R. Degraeve, A. Fantini, L. Goux, D. J. Wouters, G. Groe-
seneken, and M. Jurczak, “Stochastic variability of vacancy filament
configuration in ultra-thin dielectric RRAM and its impact on OFF-state
reliability,” in 2013 IEEE Int. Electron Devices Meet., Washington, DC,
USA: IEEE, Dec. 2013, pp. 21.1.1–21.1.4, ISBN: 978-1-4799-2306-9. DOI:
10.1109/IEDM.2013.6724674.

[72] R. Degraeve, A. Fantini, et al., “Hourglass concept for RRAM: A dy-
namic and statistical device model,” in Phys. Fail. Anal. Integr. Circuits
IPFA 2014 IEEE 21st Int. Symp. On, IEEE, 2014, pp. 245–249.

[73] A. Chen and M.-R. Lin, “Variability of resistive switching memories
and its impact on crossbar array performance,” in 2011 Int. Reliab. Phys.
Symp., Monterey, CA, USA: IEEE, Apr. 2011, MY.7.1–MY.7.4, ISBN: 978-
1-4244-9113-1. DOI: 10.1109/IRPS.2011.5784590.

https://doi.org/10.1109/IEDM.2016.7838346
https://doi.org/10.1088/0957-4484/22/50/505402
https://doi.org/10.1088/0957-4484/22/48/485203
https://doi.org/10.1088/0957-4484/22/48/485203
https://doi.org/10.1039/C8FD00117K
https://doi.org/10.1063/5.0003840
https://doi.org/10.1007/s10832-017-0095-9
https://doi.org/10.1109/IEDM.2011.6131652
https://doi.org/10.1109/IEDM.2013.6724674
https://doi.org/10.1109/IRPS.2011.5784590


Bibliography 151

[74] A. Fantini, L. Goux, et al., “Intrinsic switching variability in HfO2
RRAM,” in 2013 5th IEEE Int. Mem. Workshop, Monterey, CA,
USA: IEEE, May 2013, pp. 30–33, ISBN: 978-1-4673-6169-9. DOI:
10.1109/IMW.2013.6582090.

[75] J. Hubbard, “Electron Correlations in Narrow Energy Bands,” Proc. R.
Soc. Math. Phys. Eng. Sci., vol. 276, no. 1365, pp. 238–257, Nov. 1963,
ISSN: 1364-5021, 1471-2946. DOI: 10.1098/rspa.1963.0204.

[76] N. F. Mott, Metal-Insulator Transitions, First edition. London: Taylor &
Francis, 1990, ISBN: 978-0-203-21059-8.

[77] V. Dobrosavljevic, “Introduction to metal-insulator transitions,” in
Conductor-Insulator Quantum Phase Transitions, Oxford University Press,
2012, pp. 3–58, ISBN: 978-0-19-959259-3.

[78] L. Cario, C. Vaju, B. Corraze, V. Guiot, and E. Janod, “Electric-Field-
Induced Resistive Switching in a Family of Mott Insulators: Towards a
New Class of RRAM Memories,” Adv. Mater., vol. 22, no. 45, pp. 5193–
5197, Dec. 2010, ISSN: 09359648. DOI: 10.1002/adma.201002521.

[79] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru,
and C. S. Hwang, “Emerging memories: Resistive switching mecha-
nisms and current status,” Rep. Prog. Phys., vol. 75, no. 7, p. 076 502,
Jul. 2012, ISSN: 0034-4885, 1361-6633. DOI: 10.1088/0034-4885/75/7/
076502.

[80] H. A. Wriedt, “The O-V (Oxygen-Vanadium) system,” Bull. Alloy Phase
Diagr., vol. 10, no. 3, pp. 271–277, Jun. 1989, ISSN: 0197-0216. DOI: 10.
1007/BF02877512.

[81] A. L. Pergament, G. B. Stefanovich, N. A. Kuldin, and A. A. Velichko,
“On the Problem of Metal-Insulator Transitions in Vanadium Oxides,”
ISRN Condens. Matter Phys., vol. 2013, pp. 1–6, 2013, ISSN: 2090-7400.
DOI: 10.1155/2013/960627.

[82] H. Schuler, S. Klimm, G. Weissmann, C. Renner, and S. Horn, “Influ-
ence of strain on the electronic properties of epitaxial V2O3 thin films,”
Thin Solid Films, vol. 299, no. 1, pp. 119–124, 1997. DOI: 10.1016/S0040-
6090(96)09399-6.

[83] P. Homm, L. Dillemans, et al., “Collapse of the low temperature insu-
lating state in Cr-doped V2O3 thin films,” Appl. Phys. Lett., vol. 107,
no. 11, p. 111 904, Sep. 2015, ISSN: 0003-6951, 1077-3118. DOI: 10.1063/
1.4931372.

[84] M. Querré, E. Janod, et al., “Metal–insulator transitions in (V1-xCrx)2O3
thin films deposited by reactive direct current magnetron co-
sputtering,” Thin Solid Films, vol. 617, pp. 56–62, Oct. 2016, ISSN:
00406090. DOI: 10.1016/j.tsf.2015.12.043.

[85] E. B. Thorsteinsson, S. Shayestehaminzadeh, and U. B. Arnalds, “Tun-
ing metal-insulator transitions in epitaxial V2O3 thin films,” Appl. Phys.
Lett., vol. 112, no. 16, p. 161 902, Apr. 2018, ISSN: 0003-6951. DOI: 10.
1063/1.5023180.

[86] J. Trastoy, Y. Kalcheim, J. del Valle, I. Valmianski, and I. K. Schuller,
“Enhanced metal–insulator transition in V2O3 by thermal quenching

https://doi.org/10.1109/IMW.2013.6582090
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1002/adma.201002521
https://doi.org/10.1088/0034-4885/75/7/076502
https://doi.org/10.1088/0034-4885/75/7/076502
https://doi.org/10.1007/BF02877512
https://doi.org/10.1007/BF02877512
https://doi.org/10.1155/2013/960627
https://doi.org/10.1016/S0040-6090(96)09399-6
https://doi.org/10.1016/S0040-6090(96)09399-6
https://doi.org/10.1063/1.4931372
https://doi.org/10.1063/1.4931372
https://doi.org/10.1016/j.tsf.2015.12.043
https://doi.org/10.1063/1.5023180
https://doi.org/10.1063/1.5023180


152 Bibliography

after growth,” J. Mater. Sci., vol. 53, no. 12, pp. 9131–9137, Jun. 2018,
ISSN: 0022-2461, 1573-4803. DOI: 10.1007/s10853-018-2214-7.

[87] C. Adda, L. Cario, et al., “First demonstration of “Leaky Integrate and
Fire” artificial neuron behavior on (V0.95Cr0.05)2O3 thin film,” MRS
Communications, vol. 8, no. 3, pp. 835–841, Sep. 2018, ISSN: 2159-6859,
2159-6867. DOI: 10.1557/mrc.2018.90.

[88] F. Rodolakis, P. Hansmann, et al., “Inequivalent Routes across the Mott
Transition in V2O3 Explored by X-Ray Absorption,” Phys. Rev. Lett.,
vol. 104, no. 4, Jan. 2010, ISSN: 0031-9007, 1079-7114. DOI: 10 . 1103 /
PhysRevLett.104.047401.

[89] D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M.
Rice, “Metal-insulator transitions in pure and doped V2O3,” Phys. Rev.
B, vol. 7, no. 5, p. 1920, 1973.

[90] J. Meng, B. Zhao, Q. Xu, J. M. Goodwill, J. A. Bain, and M. Skowron-
ski, “Temperature overshoot as the cause of physical changes in resis-
tive switching devices during electro-formation,” J. Appl. Phys., vol. 127,
no. 23, p. 235 107, Jun. 2020, ISSN: 0021-8979, 1089-7550. DOI: 10.1063/
5.0010882.

[91] H. Wan, P. Zhou, L. Ye, Y. Lin, T. Tang, H. Wu, and M. Chi, “In Situ Ob-
servation of Compliance-Current Overshoot and Its Effect on Resistive
Switching,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 246–248, Mar.
2010, ISSN: 0741-3106, 1558-0563. DOI: 10.1109/LED.2009.2039694.

[92] A. Kalantarian, G. Bersuker, et al., “Controlling uniformity of RRAM
characteristics through the forming process,” in Reliab. Phys. Symp. IRPS
2012 IEEE Int., IEEE, 2012, pp. 6C–4. DOI: 10.1109/IRPS.2012.6241874.

[93] J. Song, D. Lee, et al., “Effects of RESET Current Overshoot and Resis-
tance State on Reliability of RRAM,” IEEE Electron Device Lett., vol. 35,
no. 6, pp. 636–638, Jun. 2014, ISSN: 0741-3106, 1558-0563. DOI: 10.1109/
LED.2014.2316544.

[94] V. Havel, “Transient Processes in Resistive Switching Memory Devices
at Ultimate Time Scale Down to Sub-Nanosecond Range,” Ph.D. disser-
tation, RWTH Aachen, 2016.

[95] R. E. Kalman, “Mathematical Description of Linear Dynamical
Systems,” Journal of the Society for Industrial and Applied Mathematics
Series A Control, vol. 1, no. 2, pp. 152–192, Jan. 1963, ISSN: 0887-4603.
DOI: 10.1137/0301010.

[96] D. K. Schroder, Semiconductor Material and Device Characterization, 3. ed.
Hoboken, NJ: Wiley-Interscience [u.a.], 2006, ISBN: 978-0-471-73906-7.

[97] “Pulsed I-V Testing for Components and Semiconductor Devices,”
Keithley, Applications Guide.

[98] M. Lanza, H.-S. P. Wong, et al., “Recommended Methods to Study Resis-
tive Switching Devices,” Adv. Electron. Mater., vol. 5, no. 1, p. 1 800 143,
Jan. 2019, ISSN: 2199160X. DOI: 10.1002/aelm.201800143.

[99] T. D. Brown, S. Kumar, and R. S. Williams, “Physics-based compact
modeling of electro-thermal memristors: Negative differential resis-
tance, local activity, and non-local dynamical bifurcations,” Applied

https://doi.org/10.1007/s10853-018-2214-7
https://doi.org/10.1557/mrc.2018.90
https://doi.org/10.1103/PhysRevLett.104.047401
https://doi.org/10.1103/PhysRevLett.104.047401
https://doi.org/10.1063/5.0010882
https://doi.org/10.1063/5.0010882
https://doi.org/10.1109/LED.2009.2039694
https://doi.org/10.1109/IRPS.2012.6241874
https://doi.org/10.1109/LED.2014.2316544
https://doi.org/10.1109/LED.2014.2316544
https://doi.org/10.1137/0301010
https://doi.org/10.1002/aelm.201800143


Bibliography 153

Physics Reviews, vol. 9, no. 1, p. 011 308, Mar. 2022, ISSN: 1931-9401. DOI:
10.1063/5.0070558.

[100] A. Fantini, D. J. Wouters, et al., “Intrinsic switching behavior in HfO2
RRAM by fast electrical measurements on novel 2R test structures,” in
Mem. Workshop IMW 2012 4th IEEE Int., IEEE, 2012, pp. 1–4.

[101] S. Balatti, S. Ambrogio, Z. Wang, S. Sills, A. Calderoni, N. Ramaswamy,
and D. Ielmini, “Voltage-Controlled Cycling Endurance of HfOx-Based
Resistive-Switching Memory,” IEEE Trans. Electron Devices, vol. 62,
no. 10, pp. 3365–3372, Oct. 2015, ISSN: 0018-9383, 1557-9646. DOI:
10.1109/TED.2015.2463104.

[102] S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, and
R. Waser, “Origin of the Ultra-nonlinear Switching Kinetics in Oxide-
Based Resistive Switches,” Adv. Funct. Mater., vol. 21, no. 23, pp. 4487–
4492, Dec. 2011, ISSN: 1616301X. DOI: 10.1002/adfm.201101117.

[103] Y. M. Lu, M. Noman, W. Chen, P. A. Salvador, J. A. Bain, and M.
Skowronski, “Elimination of high transient currents and electrode
damage during electroformation of TiO2-based resistive switching
devices,” J. Phys. Appl. Phys., vol. 45, no. 39, p. 395 101, Oct. 2012, ISSN:
0022-3727, 1361-6463. DOI: 10.1088/0022-3727/45/39/395101.

[104] S. Tirano, L. Perniola, et al., “Accurate analysis of parasitic current over-
shoot during forming operation in RRAMs,” Microelectron. Eng., vol. 88,
no. 7, pp. 1129–1132, Jul. 2011, ISSN: 01679317. DOI: 10.1016/j.mee.
2011.03.062.

[105] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and
Y. Sugiyama, “Reduction in the reset current in a resistive random ac-
cess memory consisting of NiOx brought about by reducing a parasitic
capacitance,” Appl. Phys. Lett., vol. 93, no. 3, p. 033 506, Jul. 2008, ISSN:
0003-6951, 1077-3118. DOI: 10.1063/1.2959065.

[106] S. Ambrogio, V. Milo, Z. Wang, S. Balatti, and D. Ielmini, “Analyti-
cal Modeling of Current Overshoot in Oxide-Based Resistive Switching
Memory (RRAM),” IEEE Electron Device Lett., vol. 37, no. 10, pp. 1268–
1271, Oct. 2016, ISSN: 0741-3106, 1558-0563. DOI: 10.1109/LED.2016.
2600574.

[107] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, and D.
Wouters, “Control of filament size and reduction of reset current be-
low 10µA in NiO resistance switching memories,” Solid-State Electron.,
vol. 58, no. 1, pp. 42–47, Apr. 2011, ISSN: 00381101. DOI: 10.1016/j.
sse.2010.11.031.

[108] C. Nguyen, C. Cagli, et al., “Advanced 1T1R test vehicle for RRAM
nanosecond-range switching-time resolution and reliability assess-
ment,” in 2015 IEEE Int. Integr. Reliab. Workshop IIRW, South Lake
Tahoe, CA: IEEE, Oct. 2015, pp. 17–20, ISBN: 978-1-4673-7395-1. DOI:
10.1109/IIRW.2015.7437059.

[109] J. P. Strachan, A. C. Torrezan, et al., “State Dynamics and Modeling of
Tantalum Oxide Memristors,” IEEE Trans. Electron Devices, vol. 60, no. 7,
pp. 2194–2202, Jul. 2013, ISSN: 0018-9383, 1557-9646. DOI: 10.1109/TED.
2013.2264476.

https://doi.org/10.1063/5.0070558
https://doi.org/10.1109/TED.2015.2463104
https://doi.org/10.1002/adfm.201101117
https://doi.org/10.1088/0022-3727/45/39/395101
https://doi.org/10.1016/j.mee.2011.03.062
https://doi.org/10.1016/j.mee.2011.03.062
https://doi.org/10.1063/1.2959065
https://doi.org/10.1109/LED.2016.2600574
https://doi.org/10.1109/LED.2016.2600574
https://doi.org/10.1016/j.sse.2010.11.031
https://doi.org/10.1016/j.sse.2010.11.031
https://doi.org/10.1109/IIRW.2015.7437059
https://doi.org/10.1109/TED.2013.2264476
https://doi.org/10.1109/TED.2013.2264476


154 Bibliography

[110] Y.-S. Fan, L. Zhang, D. Crotti, T. Witters, M. Jurczak, and B. Govoreanu,
“Direct Evidence of the Overshoot Suppression in Ta2O5-Based Resis-
tive Switching Memory With an Integrated Access Resistor,” IEEE Elec-
tron Device Lett., vol. 36, no. 10, pp. 1027–1029, Oct. 2015, ISSN: 0741-
3106, 1558-0563. DOI: 10.1109/LED.2015.2470081.

[111] A. Hardtdegen, C. La Torre, F. Cuppers, S. Menzel, R. Waser, and S.
Hoffmann-Eifert, “Improved Switching Stability and the Effect of an In-
ternal Series Resistor in HfO2/TiOx Bilayer ReRAM Cells,” IEEE Trans.
Electron Devices, vol. 65, no. 8, pp. 3229–3236, Aug. 2018, ISSN: 0018-
9383, 1557-9646. DOI: 10.1109/TED.2018.2849872.

[112] M. B. Gonzalez, M. Maestro-Izquierdo, F. Jiménez-Molinos, J. B. Roldán,
and F. Campabadal, “Current transient response and role of the inter-
nal resistance in HfOx-based memristors,” Appl. Phys. Lett., vol. 117,
p. 262 902, 2020. DOI: 10.1063/5.0031575.

[113] D. Ielmini, D. Mantegazza, A. Lacaita, A. Pirovano, and F. Pellizzer,
“Parasitic reset in the programming transient of PCMs,” IEEE Electron
Device Lett., vol. 26, no. 11, pp. 799–801, Nov. 2005, ISSN: 0741-3106. DOI:
10.1109/LED.2005.857719.

[114] K. M. Kim, J. J. Yang, et al., “Voltage divider effect for the improvement
of variability and endurance of TaOx memristor,” Sci Rep, vol. 6, no. 1,
p. 20 085, Apr. 2016, ISSN: 2045-2322. DOI: 10.1038/srep20085.

[115] Y. Ma, D. Li, et al., “Formation of the Conducting Filament in TaOx-
Resistive Switching Devices by Thermal-Gradient-Induced Cation Ac-
cumulation,” ACS Appl. Mater. Interfaces, vol. 10, no. 27, pp. 23 187–
23 197, Jul. 2018, ISSN: 1944-8244, 1944-8252. DOI: 10 . 1021 / acsami .
8b03726.

[116] P. R. Shrestha, D. M. Nminibapiel, J. P. Campbell, J. T. Ryan, D. Veksler,
H. Baumgart, and K. P. Cheung, “Analysis and Control of RRAM Over-
shoot Current,” IEEE Trans. Electron Devices, vol. 65, no. 1, pp. 108–114,
Jan. 2018, ISSN: 0018-9383, 1557-9646. DOI: 10.1109/TED.2017.2776860.

[117] V. Ostrovskii, P. Fedoseev, Y. Bobrova, and D. Butusov, “Structural
and Parametric Identification of Knowm Memristors,” Nano-
materials, vol. 12, no. 1, p. 63, Dec. 2021, ISSN: 2079-4991. DOI:
10.3390/nano12010063.

[118] D. Ielmini, C. Cagli, and F. Nardi, “Resistance transition in metal oxides
induced by electronic threshold switching,” Appl. Phys. Lett., vol. 94,
no. 6, p. 063 511, Feb. 2009, ISSN: 0003-6951, 1077-3118. DOI: 10.1063/1.
3081401.

[119] P. Shrestha, D. Nminibapiel, J. P. Campbell, K. P. Cheung, H. Baumgart,
S. Deora, and G. Bersuker, “Dependence of the filament resistance on
the duration of current overshoot,” in Integr. Reliab. Workshop Final Rep.
IRW 2013 IEEE Int., IEEE, 2013, pp. 55–58.

[120] A. A. Sharma, M. Noman, M. Abdelmoula, M. Skowronski, and
J. A. Bain, “Electronic Instabilities Leading to Electroformation of
Binary Metal Oxide-based Resistive Switches,” Adv. Funct. Mater.,
vol. 24, no. 35, pp. 5522–5529, Sep. 2014, ISSN: 1616301X. DOI:
10.1002/adfm.201400461.

https://doi.org/10.1109/LED.2015.2470081
https://doi.org/10.1109/TED.2018.2849872
https://doi.org/10.1063/5.0031575
https://doi.org/10.1109/LED.2005.857719
https://doi.org/10.1038/srep20085
https://doi.org/10.1021/acsami.8b03726
https://doi.org/10.1021/acsami.8b03726
https://doi.org/10.1109/TED.2017.2776860
https://doi.org/10.3390/nano12010063
https://doi.org/10.1063/1.3081401
https://doi.org/10.1063/1.3081401
https://doi.org/10.1002/adfm.201400461


Bibliography 155

[121] K. M. Kim, J. J. Yang, et al., “Low Variability Resistor-Memristor Cir-
cuit Masking the Actual Memristor States,” Adv. Electron. Mater., vol. 1,
no. 6, p. 1 500 095, Jun. 2015, ISSN: 2199160X. DOI: 10 . 1002 / aelm .
201500095.

[122] D. C. Gilmer, G. Bersuker, et al., “Effects of RRAM stack configuration
on forming voltage and current overshoot,” in Mem. Workshop IMW
2011 3rd IEEE Int., IEEE, 2011, pp. 1–4.

[123] W. Chen, W. Lu, et al., “Switching characteristics of W/Zr/HfO2/TiN
ReRAM devices for multi-level cell non-volatile memory applications,”
Semicond. Sci. Technol., vol. 30, no. 7, p. 075 002, Jul. 2015, ISSN: 0268-
1242, 1361-6641. DOI: 10.1088/0268-1242/30/7/075002.

[124] J. Diaz-Fortuny, M. Maestro, J. Martin-Martinez, A. Crespo-Yepes, R.
Rodriguez, M. Nafria, and X. Aymerich, “Current-limiting and ultrafast
system for the characterization of resistive random access memories,”
Review of Scientific Instruments, vol. 87, no. 6, p. 064 705, Jun. 2016, ISSN:
0034-6748, 1089-7623. DOI: 10.1063/1.4954973.

[125] A. Mikhaylov, A. Belov, et al., “Multilayer Metal-Oxide Memristive De-
vice with Stabilized Resistive Switching,” Adv. Mater. Technol., vol. 5,
no. 1, p. 1 900 607, Jan. 2020, ISSN: 2365-709X, 2365-709X. DOI: 10.1002/
admt.201900607.

[126] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd
ed. Boston: McGraw-Hill, 2003, ISBN: 978-0-07-232107-4.

[127] F.-C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films,”
Adv. Mater. Sci. Eng. Adv. Mater. Sci. Eng., vol. 2014, 2014, e578168, 2014,
ISSN: 1687-8434, 1687-8434. DOI: 10.1155/2014/578168,10.1155/2014/
578168.

[128] M. P. Shaw, H. L. Grubin, and I. J. Gastman, “Analysis of an Inhomoge-
neous Bulk “S-shaped" Negative Differential Conductivity Element in
a Circuit Containing Reactive Elements,” IEEE Trans. Electron Devices,
vol. ED-20, pp. 169–177, 1973.

[129] M. P. Shaw, V. V. Mitin, E. Schöll, and H. L. Grubin, Eds., The Physics
of Instabilities in Solid State Electron Devices. Boston, MA: Springer US,
1992, ISBN: 978-1-4899-2344-8. DOI: 10.1007/978-1-4899-2344-8.

[130] R. E. Burgess, “The A.C. Admittance of Temperature-Dependent Circuit
Elements,” Proc. Phys. Soc. B, vol. 68, no. 10, pp. 766–774, Oct. 1955, ISSN:
0370-1301. DOI: 10.1088/0370-1301/68/10/309.

[131] C. Karakotsou, A. N. Anagnostopoulos, K. Kambas, and J. Spyridelis,
“Chaotic voltage oscillations in the negative-differential-resistance re-
gion of the I - U curves of V 2 O 5 crystals,” Phys. Rev. B, vol. 46, no. 24,
pp. 16 144–16 147, Dec. 1992, ISSN: 0163-1829, 1095-3795. DOI: 10.1103/
PhysRevB.46.16144.

[132] S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, “Physics of the
Switching Kinetics in Resistive Memories,” Adv. Funct. Mater., vol. 25,
no. 40, pp. 6306–6325, Oct. 2015, ISSN: 1616-3028. DOI: 10.1002/adfm.
201500825.

[133] J. B. Roldán, G. González-Cordero, et al., “On the Thermal Models for
Resistive Random Access Memory Circuit Simulation,” p. 46, 2021.

https://doi.org/10.1002/aelm.201500095
https://doi.org/10.1002/aelm.201500095
https://doi.org/10.1088/0268-1242/30/7/075002
https://doi.org/10.1063/1.4954973
https://doi.org/10.1002/admt.201900607
https://doi.org/10.1002/admt.201900607
https://doi.org/10.1155/2014/578168, 10.1155/2014/578168
https://doi.org/10.1155/2014/578168, 10.1155/2014/578168
https://doi.org/10.1007/978-1-4899-2344-8
https://doi.org/10.1088/0370-1301/68/10/309
https://doi.org/10.1103/PhysRevB.46.16144
https://doi.org/10.1103/PhysRevB.46.16144
https://doi.org/10.1002/adfm.201500825
https://doi.org/10.1002/adfm.201500825


156 Bibliography

[134] E. C. Zeeman, “Catastrophe Theory,” in Structural Stability in Physics, W.
Güttinger and H. Eikemeier, Eds., vol. 4, Berlin, Heidelberg: Springer
Berlin Heidelberg, 1979, pp. 12–22, ISBN: 978-3-642-67363-4. DOI: 10.
1007/978-3-642-67363-4_3.

[135] A. Fuchs, “Dynamical Systems in One and Two Dimensions: A Geomet-
rical Approach,” in Nonlinear Dynamics in Human Behavior, J. Kacprzyk,
R. Huys, and V. K. Jirsa, Eds., vol. 328, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 1–33, ISBN: 978-3-642-16262-6. DOI: 10 .
1007/978-3-642-16262-6_1.

[136] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-based memory: The sneak paths problem and solutions,”
Microelectron. J., vol. 44, no. 2, pp. 176–183, Feb. 2013, ISSN: 00262692.
DOI: 10.1016/j.mejo.2012.10.001.

[137] A. Chen, “Nonlinearity and Asymmetry for Device Selection in
Cross-Bar Memory Arrays,” IEEE Trans. Electron Devices, vol. 62,
no. 9, pp. 2857–2864, Sep. 2015, ISSN: 0018-9383, 1557-9646. DOI:
10.1109/TED.2015.2450712.

[138] L. Zhang, S. Cosemans, D. J. Wouters, G. Groeseneken, M. Jurczak, and
B. Govoreanu, “Selector design considerations and requirements for 1
SIR RRAM crossbar array,” in 2014 IEEE 6th Int. Mem. Workshop IMW,
May 2014, pp. 1–4. DOI: 10.1109/IMW.2014.6849358.

[139] W. Banerjee, “Challenges and Applications of Emerging Nonvolatile
Memory Devices,” Electronics, vol. 9, no. 6, p. 1029, Jun. 2020, ISSN: 2079-
9292. DOI: 10.3390/electronics9061029.

[140] D. Li, J. M. Goodwill, J. A. Bain, and M. Skowronski, “Scaling behavior
of oxide-based electrothermal threshold switching devices,” Nanoscale,
vol. 9, no. 37, pp. 14 139–14 148, 2017, ISSN: 2040-3364, 2040-3372. DOI:
10.1039/C7NR03865H.

[141] S. A. Chekol, F. Cuppers, R. Waser, and S. Hoffmann-Eifert, “An
Ag/HfO2/Pt Threshold Switching Device with an Ultra-Low Leakage
(< 10 fA), High On/Off Ratio (> 1011), and Low Threshold Voltage (<
0.2 V) for Energy-Efficient Neuromorphic Computing,” in 2021 IEEE
Int. Mem. Workshop IMW, Dresden, Germany: IEEE, May 2021, pp. 1–4,
ISBN: 978-1-72818-517-0. DOI: 10.1109/IMW51353.2021.9439601.

[142] D. Lee, M. Kwak, et al., “Various Threshold Switching Devices for Inte-
grate and Fire Neuron Applications,” Adv. Electron. Mater., vol. 5, no. 9,
p. 1 800 866, Sep. 2019, ISSN: 2199-160X, 2199-160X. DOI: 10.1002/aelm.
201800866.

[143] A. J. Hughes, P. A. Holland, and A. H. Lettington, “Control of holding
currents in amorphous threshold switches,” Journal of Non-Crystalline
Solids, vol. 17, no. 1, pp. 89–99, Jan. 1975, ISSN: 00223093. DOI: 10.1016/
0022-3093(75)90116-7.

[144] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dy-
namical Systems, and an Introduction to Chaos. Elsevier, 2013, ISBN: 978-0-
12-382010-5. DOI: 10.1016/C2009-0-61160-0.

[145] S. O. Pearson and H. S. G. Anson, “The Neon Tube as a Means of Pro-
ducing Intermittent Currents,” Proc. Phys. Soc. London, vol. 34, no. 1,

https://doi.org/10.1007/978-3-642-67363-4_3
https://doi.org/10.1007/978-3-642-67363-4_3
https://doi.org/10.1007/978-3-642-16262-6_1
https://doi.org/10.1007/978-3-642-16262-6_1
https://doi.org/10.1016/j.mejo.2012.10.001
https://doi.org/10.1109/TED.2015.2450712
https://doi.org/10.1109/IMW.2014.6849358
https://doi.org/10.3390/electronics9061029
https://doi.org/10.1039/C7NR03865H
https://doi.org/10.1109/IMW51353.2021.9439601
https://doi.org/10.1002/aelm.201800866
https://doi.org/10.1002/aelm.201800866
https://doi.org/10.1016/0022-3093(75)90116-7
https://doi.org/10.1016/0022-3093(75)90116-7
https://doi.org/10.1016/C2009-0-61160-0


Bibliography 157

pp. 204–212, Dec. 1921, ISSN: 1478-7814. DOI: 10.1088/1478-7814/34/
1/341.

[146] S. Lavizzari, D. Ielmini, and A. L. Lacaita, “A New Transient Model
for Recovery and Relaxation Oscillations in Phase-Change Memories,”
IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1838–1845, Aug. 2010,
ISSN: 0018-9383, 1557-9646. DOI: 10.1109/TED.2010.2050963.

[147] A. A. Sharma, Y. Li, M. Skowronski, J. A. Bain, and J. A. Weldon, “High-
Frequency TaOx-Based Compact Oscillators,” IEEE Trans. Electron De-
vices, vol. 62, no. 11, pp. 3857–3862, Nov. 2015, ISSN: 0018-9383, 1557-
9646. DOI: 10.1109/TED.2015.2475623.

[148] A. L. Hodgkin and A. F. Huxley, “Currents carried by sodium and
potassium ions through the membrane of the giant axon of Loligo,”
The Journal of Physiology, vol. 116, no. 4, pp. 449–472, Apr. 1952, ISSN:
0022-3751, 1469-7793. DOI: 10.1113/jphysiol.1952.sp004717.

[149] A. S. Dmitrichev, V. I. Nekorkin, D. V. Kasatkin, V. V. Klinshov, S. Y.
Kirillov, O. V. Maslennikov, and D. S. Shchapin, “Nonlinear dynamical
models of neurons: Review,” AND, vol. 26, no. 4, pp. 5–58, 2018, ISSN:
08696632. DOI: 10.18500/0869-6632-2018-26-4-5-58.

[150] J. Rinzel and G. B. Ermentrout, “Analysis of neural excitability and os-
cillations,” in Methods in Neuronal Modeling: From Synapses to Networks,
Cambridge, MA, USA: MIT Press, 1989, pp. 135–169, ISBN: 0-262-11133-
0.

[151] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Ex-
citability and Bursting (Computational Neuroscience). Cambridge, Mass:
MIT Press, 2007, ISBN: 978-0-262-09043-8.

[152] M. Desroches, J. Rinzel, and S. Rodrigues, “Classification of bursting
patterns: A tale of two ducks,” PLoS Comput Biol, vol. 18, no. 2, H. Berry,
Ed., e1009752, Feb. 2022, ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.
1009752.

[153] R. FitzHugh, “Mathematical models of threshold phenomena in
the nerve membrane,” Bulletin of Mathematical Biophysics, vol. 17,
no. 4, pp. 257–278, Dec. 1955, ISSN: 0007-4985, 1522-9602. DOI:
10.1007/BF02477753.

[154] W. E. Sherwood, “FitzHugh–Nagumo Model,” in Encyclopedia of
Computational Neuroscience, D. Jaeger and R. Jung, Eds., New York,
NY: Springer New York, 2014, pp. 1–11, ISBN: 978-1-4614-7320-6. DOI:
10.1007/978-1-4614-7320-6_147-1.

[155] R. E. Burgess, “Negative Resistance in Semiconductor Devices,” Can. J.
Phys., vol. 38, no. 3, pp. 369–375, Mar. 1960, ISSN: 0008-4204, 1208-6045.
DOI: 10.1139/p60-038.

[156] H. K. Henisch, “Amorphous Semiconductor Switching,” vol. 236, p. 3,
1972.

[157] D. M. Kroll, “Theory of electrical instabilities of mixed electronic and
thermal origin,” Phys. Rev. B, vol. 9, no. 4, pp. 1669–1706, Feb. 1974,
ISSN: 0556-2805. DOI: 10.1103/PhysRevB.9.1669.

[158] M. Shaw, “Thermal instability—The precursor to switching in
inhomogeneous thin films,” IEEE Trans. Electron Devices, vol. 26,

https://doi.org/10.1088/1478-7814/34/1/341
https://doi.org/10.1088/1478-7814/34/1/341
https://doi.org/10.1109/TED.2010.2050963
https://doi.org/10.1109/TED.2015.2475623
https://doi.org/10.1113/jphysiol.1952.sp004717
https://doi.org/10.18500/0869-6632-2018-26-4-5-58
https://doi.org/10.1371/journal.pcbi.1009752
https://doi.org/10.1371/journal.pcbi.1009752
https://doi.org/10.1007/BF02477753
https://doi.org/10.1007/978-1-4614-7320-6_147-1
https://doi.org/10.1139/p60-038
https://doi.org/10.1103/PhysRevB.9.1669


158 Bibliography

no. 11, pp. 1766–1771, Nov. 1979, ISSN: 0018-9383. DOI: 10 . 1109 / T -
ED.1979.19683.

[159] Montani, “An electrothermal model for high-field conduction and
switching phenomena in TeO2-V2O5 glasses,” J. Non-Cryst. Solids,
vol. 149, no. 3, pp. 249–256, 1992. DOI: 10.1016/0022-3093(92)90073-S.

[160] S. Slesazeck, H. Mähne, et al., “Physical model of threshold switching in
NbO2 based memristors,” RSC Adv., vol. 5, no. 124, pp. 102 318–102 322,
2015, ISSN: 2046-2069. DOI: 10.1039/C5RA19300A.

[161] G. A. Gibson, “Designing Negative Differential Resistance Devices
Based on Self-Heating,” Adv. Funct. Mater., vol. 28, no. 22, p. 1 704 175,
May 2018, ISSN: 1616301X. DOI: 10.1002/adfm.201704175.

[162] T. Hennen, E. Wichmann, R. Waser, D. J. Wouters, and D. Bedau, “Stabi-
lizing amplifier with a programmable load line for characterization of
nanodevices with negative differential resistance,” Review of Scientific
Instruments, vol. 93, no. 2, p. 024 705, Feb. 2022, ISSN: 0034-6748, 1089-
7623. DOI: 10.1063/5.0080532.

[163] T. Hennen, E. Wichmann, et al., “Current-limiting amplifier for high
speed measurement of resistive switching data,” Rev. Sci. Instrum.,
vol. 92, p. 054 701, 2021. DOI: 10.1063/5.0047571.

[164] A. Hardtdegen, C. La Torre, H. Zhang, C. Funck, S. Menzel, R. Waser,
and S. Hoffmann-Eifert, “Internal Cell Resistance as the Origin of
Abrupt Reset Behavior in HfO2-Based Devices Determined from
Current Compliance Series,” in 2016 IEEE 8th Int. Mem. Workshop IMW,
Paris, France: IEEE, May 2016, pp. 1–4, ISBN: 978-1-4673-8833-7. DOI:
10.1109/IMW.2016.7495280.

[165] M. J. Ibáñez, D. Barrera, D. Maldonado, R. Yáñez, and J. B. Roldán,
“Non-Uniform Spline Quasi-Interpolation to Extract the Series Resis-
tance in Resistive Switching Memristors for Compact Modeling Pur-
poses,” Mathematics, vol. 9, no. 17, p. 2159, Sep. 2021, ISSN: 2227-7390.
DOI: 10.3390/math9172159.

[166] D. Maldonado, F. Aguirre, et al., “Experimental study of the series resis-
tance effect and its impact on the compact modeling of the conduction
characteristics of HfO2-based resistive switching memories,” Journal of
Applied Physics, vol. 130, no. 5, p. 054 503, Aug. 2021, ISSN: 0021-8979,
1089-7550. DOI: 10.1063/5.0055982.

[167] “DS1808 dual log digital potentiometer,” Maxim Integrated, Datasheet
DS1808Z, 2001, Archived at https://perma.cc/VK7V–8MSG.

[168] “THS309x high-voltage, low-distortion, current-feedback operational
amplifiers,” Texas Instruments, Datasheet THS3091, 2015, Archived at
https://perma.cc/PQX3–RUZD.

[169] E. Wichmann, “Computer Controlled Variable Impedance Circuit for
Electrical Characterization of Resistive Switching Cells,” Bachelor The-
sis, 2019.

[170] P. R. Mickel, A. J. Lohn, and M. J. Marinella, “Detection and character-
ization of multi-filament evolution during resistive switching,” Appl.
Phys. Lett., vol. 105, no. 5, p. 053 503, Aug. 2014, ISSN: 0003-6951, 1077-
3118. DOI: 10.1063/1.4892471.

https://doi.org/10.1109/T-ED.1979.19683
https://doi.org/10.1109/T-ED.1979.19683
https://doi.org/10.1016/0022-3093(92)90073-S
https://doi.org/10.1039/C5RA19300A
https://doi.org/10.1002/adfm.201704175
https://doi.org/10.1063/5.0080532
https://doi.org/10.1063/5.0047571
https://doi.org/10.1109/IMW.2016.7495280
https://doi.org/10.3390/math9172159
https://doi.org/10.1063/5.0055982
https://doi.org/10.1063/1.4892471


Bibliography 159

[171] F. Cüppers, S. Menzel, et al., “Exploiting the switching dynamics of
HfO2-based ReRAM devices for reliable analog memristive behavior,”
APL Materials, vol. 7, no. 9, p. 091 105, Sep. 2019, ISSN: 2166-532X. DOI:
10.1063/1.5108654.

[172] A. García, P. Stasner, and T. Hennen, “Impact of Series Resistance on
ReRAM Switching Stability,” M.S. thesis, RWTH Aachen, 2022.

[173] T. Hennen, A. Elias, J.-F. Nodin, G. Molas, R. Waser, D. J. Wouters, and
D. Bedau, “A high throughput generative vector autoregression model
for stochastic synapses,” Front. Neurosci., vol. 16, p. 941 753, Aug. 2022,
ISSN: 1662-453X. DOI: 10.3389/fnins.2022.941753.

[174] H. Jiang and D. A. Stewart, “Using Dopants to Tune Oxygen Vacancy
Formation in Transition Metal Oxide Resistive Memory,” ACS Appl.
Mater. Interfaces, vol. 9, no. 19, pp. 16 296–16 304, May 2017, ISSN: 1944-
8244, 1944-8252. DOI: 10.1021/acsami.7b00139.

[175] D. A. Stewart, “Diffusion of oxygen in amorphous tantalum oxide,”
Phys. Rev. Materials, vol. 3, no. 5, p. 055 605, May 2019, ISSN: 2475-9953.
DOI: 10.1103/PhysRevMaterials.3.055605.

[176] N. Kopperberg, S. Wiefels, S. Liberda, R. Waser, and S. Menzel, “A Con-
sistent Model for Short-Term Instability and Long-Term Retention in
Filamentary Oxide-Based Memristive Devices,” ACS Appl. Mater. Inter-
faces, vol. 13, no. 48, pp. 58 066–58 075, Dec. 2021, ISSN: 1944-8244, 1944-
8252. DOI: 10.1021/acsami.1c14667.

[177] A. Ascoli, R. Tetzlaff, Z. Biolek, Z. Kolka, V. Biolkova, and D. Biolek,
“The Art of Finding Accurate Memristor Model Solutions,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 5, no. 2, pp. 133–142, Jun. 2015,
ISSN: 2156-3357, 2156-3365. DOI: 10.1109/JETCAS.2015.2426493.

[178] I. Messaris, A. Serb, S. Stathopoulos, A. Khiat, S. Nikolaidis,
and T. Prodromakis, “A Data-Driven Verilog-A ReRAM Model,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37,
no. 12, pp. 3151–3162, Dec. 2018, ISSN: 0278-0070, 1937-4151. DOI:
10.1109/TCAD.2018.2791468.

[179] D. Ielmini and V. Milo, “Physics-based modeling approaches of resis-
tive switching devices for memory and in-memory computing applica-
tions,” J. Comput. Electron., vol. 16, no. 4, pp. 1121–1143, Dec. 2017, ISSN:
1569-8025, 1572-8137. DOI: 10.1007/s10825-017-1101-9.

[180] E. Abbaspour, S. Menzel, and C. Jungemann, “Studying the switching
variability in redox-based resistive switching devices,” J. Comput. Elec-
tron., vol. 19, no. 4, pp. 1426–1432, Dec. 2020, ISSN: 1569-8025, 1572-8137.
DOI: 10.1007/s10825-020-01537-y.

[181] J. Reuben, D. Fey, and C. Wenger, “A Modeling Methodology for Re-
sistive RAM Based on Stanford-PKU Model With Extended Multilevel
Capability,” IEEE Trans. Nanotechnology, vol. 18, pp. 647–656, 2019, ISSN:
1536-125X, 1941-0085. DOI: 10.1109/TNANO.2019.2922838.

[182] J. Mayer, K. Khairy, and J. Howard, “Drawing an elephant with four
complex parameters,” American Journal of Physics, vol. 78, no. 6, pp. 648–
649, Jun. 2010, ISSN: 0002-9505, 1943-2909. DOI: 10.1119/1.3254017.

https://doi.org/10.1063/1.5108654
https://doi.org/10.3389/fnins.2022.941753
https://doi.org/10.1021/acsami.7b00139
https://doi.org/10.1103/PhysRevMaterials.3.055605
https://doi.org/10.1021/acsami.1c14667
https://doi.org/10.1109/JETCAS.2015.2426493
https://doi.org/10.1109/TCAD.2018.2791468
https://doi.org/10.1007/s10825-017-1101-9
https://doi.org/10.1007/s10825-020-01537-y
https://doi.org/10.1109/TNANO.2019.2922838
https://doi.org/10.1119/1.3254017


160 Bibliography

[183] H. Li, P. Huang, B. Gao, X. Liu, J. Kang, and H.-S. Philip Wong, “Device
and Circuit Interaction Analysis of Stochastic Behaviors in Cross-Point
RRAM Arrays,” IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 4928–
4936, Dec. 2017, ISSN: 0018-9383, 1557-9646. DOI: 10.1109/TED.2017.
2766046.

[184] F. Maria Puglisi, L. Larcher, A. Padovani, and P. Pavan, “Bipolar Resis-
tive RAM Based on HfO2: Physics, Compact Modeling, and Variability
Control,” IEEE J. Emerg. Sel. Topics Circuits Syst., 2015, ISSN: 2156-3357,
2156-3365.

[185] C. Bengel, A. Siemon, et al., “Variability-Aware Modeling of Filamen-
tary Oxide-Based Bipolar Resistive Switching Cells Using SPICE Level
Compact Models,” IEEE Trans. Circuits Syst. Regul. Pap., pp. 1–13, 2020,
ISSN: 1549-8328, 1558-0806. DOI: 10.1109/TCSI.2020.3018502.

[186] Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, and H.-S. P. Wong,
“A Compact Model for Metal–Oxide Resistive Random Access Mem-
ory With Experiment Verification,” IEEE Trans. Electron Devices, vol. 63,
no. 5, pp. 1884–1892, May 2016, ISSN: 0018-9383, 1557-9646. DOI: 10.
1109/TED.2016.2545412.

[187] P.-Y. Chen and S. Yu, “Compact Modeling of RRAM Devices and Its
Applications in 1T1R and 1S1R Array Design,” IEEE Trans. Electron De-
vices, vol. 62, no. 12, pp. 4022–4028, Dec. 2015, ISSN: 0018-9383, 1557-
9646. DOI: 10.1109/TED.2015.2492421.

[188] A. Siemon, D. Wouters, S. Hamdioui, and S. Menzel, “Memristive
Device Modeling and Circuit Design Exploration for Computation-
in-Memory,” in 2019 IEEE Int. Symp. Circuits Syst. ISCAS, Sapporo,
Japan: IEEE, May 2019, pp. 1–5, ISBN: 978-1-72810-397-6. DOI:
10.1109/ISCAS.2019.8702600.

[189] M. Bocquet, H. Aziza, et al., “Compact Modeling Solutions for Oxide-
Based Resistive Switching Memories (OxRAM),” JLPEA, vol. 4, no. 1,
pp. 1–14, Jan. 2014, ISSN: 2079-9268. DOI: 10.3390/jlpea4010001.

[190] P. Huang, D. Zhu, et al., “Compact Model of HfOx-Based Electronic
Synaptic Devices for Neuromorphic Computing,” IEEE Trans. Electron
Devices, vol. 64, no. 2, pp. 614–621, Feb. 2017, ISSN: 0018-9383, 1557-9646.
DOI: 10.1109/TED.2016.2643162.

[191] N. Wald and S. Kvatinsky, “Understanding the influence of de-
vice, circuit and environmental variations on real processing in
memristive memory using Memristor Aided Logic,” Microelec-
tronics Journal, vol. 86, pp. 22–33, Apr. 2019, ISSN: 00262692. DOI:
10.1016/j.mejo.2019.02.013.

[192] M. C. Cario and B. L. Nelson, “Autoregressive to anything: Time-series
input processes for simulation,” Operations Research Letters, vol. 19,
no. 2, pp. 51–58, Aug. 1996, ISSN: 01676377. DOI: 10 . 1016 / 0167 -
6377(96)00017-X.

[193] D. J. Rezende and S. Mohamed, “Variational Inference with Normal-
izing Flows,” in Proceedings of the 32nd International Conference on Ma-
chine Learning (PMLR), vol. 37, Lille, France, 2015, pp. 1530–1538. DOI:
10.5555/3045118.3045281.

https://doi.org/10.1109/TED.2017.2766046
https://doi.org/10.1109/TED.2017.2766046
https://doi.org/10.1109/TCSI.2020.3018502
https://doi.org/10.1109/TED.2016.2545412
https://doi.org/10.1109/TED.2016.2545412
https://doi.org/10.1109/TED.2015.2492421
https://doi.org/10.1109/ISCAS.2019.8702600
https://doi.org/10.3390/jlpea4010001
https://doi.org/10.1109/TED.2016.2643162
https://doi.org/10.1016/j.mejo.2019.02.013
https://doi.org/10.1016/0167-6377(96)00017-X
https://doi.org/10.1016/0167-6377(96)00017-X
https://doi.org/10.5555/3045118.3045281


Bibliography 161

[194] A. Chen, “Utilizing the Variability of Resistive Random Access Mem-
ory to Implement Reconfigurable Physical Unclonable Functions,”
IEEE Electron Device Lett., vol. 36, no. 2, pp. 138–140, Feb. 2015, ISSN:
0741-3106, 1558-0563. DOI: 10.1109/LED.2014.2385870.

[195] J. D. Hamilton, Time Series Analysis. Princeton, N.J: Princeton University
Press, 1994, ISBN: 978-0-691-04289-3.

[196] H. Lütkepohl, New Introduction to Multiple Time Series Analysis. Berlin:
New York : Springer, 2005, ISBN: 978-3-540-40172-8.

[197] A. Fantini, G. Gorine, et al., “Intrinsic program instability in
HfO2 RRAM and consequences on program algorithms,” in 2015
IEEE Int. Electron Devices Meet. IEDM, Washington, DC, USA:
IEEE, Dec. 2015, pp. 7.5.1–7.5.4, ISBN: 978-1-4673-9894-7. DOI:
10.1109/IEDM.2015.7409648.

[198] J. B. Roldán, F. J. Alonso, A. M. Aguilera, D. Maldonado, and M. Lanza,
“Time series statistical analysis: A powerful tool to evaluate the
variability of resistive switching memories,” Journal of Applied Physics,
vol. 125, no. 17, p. 174 504, May 2019, ISSN: 0021-8979, 1089-7550. DOI:
10.1063/1.5079409.

[199] S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical
Modeling with Python,” in Python in Science Conference, Austin, Texas,
2010, pp. 92–96. DOI: 10.25080/Majora-92bf1922-011.

[200] T. Dalgaty, N. Castellani, C. Turck, K.-E. Harabi, D. Querlioz, and
E. Vianello, “In situ learning using intrinsic memristor variability
via Markov chain Monte Carlo sampling,” Nat Electron, vol. 4, no. 2,
pp. 151–161, Feb. 2021, ISSN: 2520-1131. DOI: 10.1038/s41928- 020-
00523-3.

[201] B. Butcher, G. Bersuker, et al., “Hot Forming to Improve Memory Win-
dow and Uniformity of Low-Power HfOx-Based RRAMs,” in 2012 4th
IEEE Int. Mem. Workshop, Milan: IEEE, May 2012, pp. 1–4, ISBN: 978-1-
4673-1081-9. DOI: 10.1109/IMW.2012.6213647.

[202] L. Zhao, H.-Y. Chen, et al., “Multi-level control of conductive nano-
filament evolution in HfO2 ReRAM by pulse-train operations,”
Nanoscale, vol. 6, no. 11, pp. 5698–5702, 2014, ISSN: 2040-3364,
2040-3372. DOI: 10.1039/C4NR00500G.

[203] J. Moon, W. Ma, J. H. Shin, F. Cai, C. Du, S. H. Lee, and W. D. Lu, “Tem-
poral data classification and forecasting using a memristor-based reser-
voir computing system,” Nat. Electron., vol. 2, no. 10, pp. 480–487, Oct.
2019, ISSN: 2520-1131. DOI: 10.1038/s41928-019-0313-3.

[204] W. Ma, P.-F. Chiu, W. H. Choi, M. Qin, D. Bedau, and M. Lueker-Boden,
“Non-Volatile Memory Array Based Quantization- and Noise-Resilient
LSTM Neural Networks,” in 2019 IEEE Int. Conf. Rebooting Com-
put. ICRC, San Mateo, CA, USA: IEEE, Nov. 2019, pp. 1–9, ISBN:
978-1-72815-221-9. DOI: 10.1109/ICRC.2019.8914713.

[205] T. Besard, C. Foket, and B. De Sutter, “Effective Extensible Program-
ming: Unleashing Julia on GPUs,” IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 4, pp. 827–841, Apr. 2019, ISSN: 1045-9219, 1558-2183, 2161-
9883. DOI: 10.1109/TPDS.2018.2872064.

https://doi.org/10.1109/LED.2014.2385870
https://doi.org/10.1109/IEDM.2015.7409648
https://doi.org/10.1063/1.5079409
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1109/IMW.2012.6213647
https://doi.org/10.1039/C4NR00500G
https://doi.org/10.1038/s41928-019-0313-3
https://doi.org/10.1109/ICRC.2019.8914713
https://doi.org/10.1109/TPDS.2018.2872064


162 Bibliography

[206] T. Hennen, “StochasticSynapses.jl,” Zenodo, May 2022. DOI: 10.5281/
zenodo.6535411.

[207] B. U. Pedroni, S. Joshi, et al., “Memory-Efficient Synaptic Connectivity
for Spike-Timing- Dependent Plasticity,” Front. Neurosci., vol. 13, p. 357,
Apr. 2019, ISSN: 1662-453X. DOI: 10.3389/fnins.2019.00357.

[208] B. U. Pedroni, S. R. Deiss, N. Mysore, and G. Cauwenberghs, “Design
Principles of Large-Scale Neuromorphic Systems Centered on High
Bandwidth Memory,” in 2020 Int. Conf. Rebooting Comput. ICRC,
Atlanta, GA, USA: IEEE, Dec. 2020, pp. 90–94, ISBN: 978-1-66541-975-8.
DOI: 10.1109/ICRC2020.2020.00013.

[209] L. V. Kantorovich, “Mathematical Methods of Organizing and Planning
Production,” Management Science, vol. 6, no. 4, pp. 366–422, Jul. 1960,
ISSN: 0025-1909, 1526-5501. DOI: 10.1287/mnsc.6.4.366.

[210] S. Park, J. Noh, et al., “Nanoscale RRAM-based synaptic electronics:
Toward a neuromorphic computing device,” Nanotechnology, vol. 24,
no. 38, p. 384 009, Sep. 2013, ISSN: 0957-4484, 1361-6528. DOI: 10.1088/
0957-4484/24/38/384009.

[211] S. Ambrogio, S. Balatti, et al., “Neuromorphic Learning and Recognition
With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide
RRAM,” IEEE Trans. Electron Devices, vol. 63, no. 4, pp. 1508–1515, Apr.
2016, ISSN: 0018-9383, 1557-9646. DOI: 10.1109/TED.2016.2526647.

[212] D. Ielmini, “Modeling the Universal Set/Reset Characteristics of Bipo-
lar RRAM by Field- and Temperature-Driven Filament Growth,” IEEE
Trans. Electron Devices, vol. 58, no. 12, pp. 4309–4317, Dec. 2011, ISSN:
0018-9383. DOI: 10.1109/TED.2011.2167513.

[213] F. Nardi, S. Larentis, S. Balatti, D. C. Gilmer, and D. Ielmini,
“Resistive Switching by Voltage-Driven Ion Migration in Bipolar
RRAM—Part I: Experimental Study,” IEEE Trans. Electron Devices,
vol. 59, no. 9, pp. 2461–2467, Sep. 2012, ISSN: 0018-9383, 1557-9646. DOI:
10.1109/TED.2012.2202319.

[214] Y. Nishi, K. Fleck, U. Böttger, R. Waser, and S. Menzel, “Effect of RE-
SET Voltage on Distribution of SET Switching Time of Bipolar Resis-
tive Switching in a Tantalum Oxide Thin Film,” IEEE Trans. Electron
Devices, vol. 62, no. 5, pp. 1561–1567, May 2015, ISSN: 0018-9383. DOI:
10.1109/TED.2015.2411748.

[215] W. Kim, S. Menzel, et al., “Impact of oxygen exchange reaction at
the ohmic interface in Ta2O5-based ReRAM devices,” Nanoscale,
vol. 8, no. 41, pp. 17 774–17 781, 2016, ISSN: 2040-3364, 2040-3372. DOI:
10.1039/C6NR03810G.

[216] C. La Torre, K. Fleck, S. Starschich, E. Linn, R. Waser, and S. Menzel,
“Dependence of the SET switching variability on the initial state in
HfOx-based ReRAM,” Phys. Status Solidi A, vol. 213, no. 2, pp. 316–319,
Feb. 2016, ISSN: 18626300. DOI: 10.1002/pssa.201532375.

[217] G. Piccolboni, G. Molas, et al., “Investigation of the potentialities of Ver-
tical Resistive RAM (VRRAM) for neuromorphic applications,” in 2015
IEEE Int. Electron Devices Meet. IEDM, Washington, DC, USA: IEEE,

https://doi.org/10.5281/zenodo.6535411
https://doi.org/10.5281/zenodo.6535411
https://doi.org/10.3389/fnins.2019.00357
https://doi.org/10.1109/ICRC2020.2020.00013
https://doi.org/10.1287/mnsc.6.4.366
https://doi.org/10.1088/0957-4484/24/38/384009
https://doi.org/10.1088/0957-4484/24/38/384009
https://doi.org/10.1109/TED.2016.2526647
https://doi.org/10.1109/TED.2011.2167513
https://doi.org/10.1109/TED.2012.2202319
https://doi.org/10.1109/TED.2015.2411748
https://doi.org/10.1039/C6NR03810G
https://doi.org/10.1002/pssa.201532375


Bibliography 163

Dec. 2015, pp. 17.2.1–17.2.4, ISBN: 978-1-4673-9894-7. DOI: 10 . 1109 /
IEDM.2015.7409717.

[218] D. Ielmini, F. Nardi, and C. Cagli, “Universal Reset Characteristics of
Unipolar and Bipolar Metal-Oxide RRAM,” IEEE Trans. Electron De-
vices, vol. 58, no. 10, pp. 3246–3253, Oct. 2011, ISSN: 0018-9383, 1557-
9646. DOI: 10.1109/TED.2011.2161088.

[219] J. A. J. Rupp, “Synthesis and Resistive Switching Mechanisms of Mott
Insulators based on Undoped and Cr-doped Vanadium Oxide Thin
Films,” Ph.D. dissertation, RWTH Aachen University, 2020.

[220] J. A. J. Rupp, E. Janod, et al., “Competition between V2O3 phases de-
posited by one-step reactive sputtering process on polycrystalline con-
ducting electrode,” Thin Solid Films, vol. 705, p. 138 063, Jul. 2020, ISSN:
00406090. DOI: 10.1016/j.tsf.2020.138063.

[221] J. A. J. Rupp, M. Querré, et al., “Different threshold and bipolar
resistive switching mechanisms in reactively sputtered amorphous
undoped and Cr-doped vanadium oxide thin films,” J. Appl. Phys.,
vol. 123, no. 4, p. 044 502, Jan. 2018, ISSN: 0021-8979, 1089-7550. DOI:
10.1063/1.5006145.

[222] J. A. J. Rupp, R. Waser, and D. J. Wouters, “Threshold Switching in
Amorphous Cr-Doped Vanadium Oxide for New Crossbar Selector,”
IEEE, May 2016, pp. 1–4, ISBN: 978-1-4673-8833-7. DOI: 10.1109/IMW.
2016.7495293.

[223] S. A. Shivashankar and J. M. Honig, “Metal-antiferromagnetic-insulator
transition in V2O3 alloys,” Phys. Rev. B, vol. 28, no. 10, pp. 5695–5701,
Nov. 1983, ISSN: 0163-1829. DOI: 10.1103/PhysRevB.28.5695.

[224] H. Kuwamoto, J. M. Honig, and J. Appel, “Electrical properties of the
(V1−xCrx)2O3 system,” Phys. Rev. B, vol. 22, no. 6, p. 2626, 1980. DOI:
10.1103/PhysRevB.22.2626.

[225] J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, “K-edge
absorption spectra of selected vanadium compounds,” Phys. Rev.
B, vol. 30, no. 10, pp. 5596–5610, Nov. 1984, ISSN: 0163-1829. DOI:
10.1103/PhysRevB.30.5596.

[226] D. Haskel, Z. Islam, et al., “Local structural order in the disordered
vanadium tetracyanoethylene room-temperature molecule-based mag-
net,” Phys. Rev. B, vol. 70, no. 5, Aug. 2004, ISSN: 1098-0121, 1550-235X.
DOI: 10.1103/PhysRevB.70.054422.

[227] W. Wisawapipat and R. Kretzschmar, “Solid Phase Speciation and Sol-
ubility of Vanadium in Highly Weathered Soils,” Environ. Sci. Technol.,
vol. 51, no. 15, pp. 8254–8262, Aug. 2017, ISSN: 0013-936X, 1520-5851.
DOI: 10.1021/acs.est.7b01005.

[228] P. Hansmann, A. Toschi, G. Sangiovanni, T. Saha-Dasgupta, S. Lupi, M.
Marsi, and K. Held, “Mott-Hubbard transition in V2O3 revisited,” Phys.
Status Solidi B, vol. 250, no. 7, pp. 1251–1264, Jul. 2013, ISSN: 03701972.
DOI: 10.1002/pssb.201248476.

[229] J. H. Hur, M.-J. Lee, C. B. Lee, Y.-B. Kim, and C.-J. Kim, “Modeling for
bipolar resistive memory switching in transition-metal oxides,” Phys.

https://doi.org/10.1109/IEDM.2015.7409717
https://doi.org/10.1109/IEDM.2015.7409717
https://doi.org/10.1109/TED.2011.2161088
https://doi.org/10.1016/j.tsf.2020.138063
https://doi.org/10.1063/1.5006145
https://doi.org/10.1109/IMW.2016.7495293
https://doi.org/10.1109/IMW.2016.7495293
https://doi.org/10.1103/PhysRevB.28.5695
https://doi.org/10.1103/PhysRevB.22.2626
https://doi.org/10.1103/PhysRevB.30.5596
https://doi.org/10.1103/PhysRevB.70.054422
https://doi.org/10.1021/acs.est.7b01005
https://doi.org/10.1002/pssb.201248476


164 Bibliography

Rev. B, vol. 82, no. 15, p. 155 321, Oct. 2010, ISSN: 1098-0121, 1550-235X.
DOI: 10.1103/PhysRevB.82.155321.

[230] A. Siemon, S. Menzel, A. Marchewka, Y. Nishi, R. Waser, and E. Linn,
“Simulation of TaOx-based complementary resistive switches by a
physics-based memristive model,” in 2014 IEEE Int. Symp. Circuits
Syst. ISCAS, Melbourne VIC, Australia: IEEE, Jun. 2014, pp. 1420–1423,
ISBN: 978-1-4799-3432-4. DOI: 10.1109/ISCAS.2014.6865411.

[231] C. Baeumer, C. Funck, et al., “In-Gap States and Band-Like Transport
in Memristive Devices,” Nano Lett., vol. 19, no. 1, pp. 54–60, Jan. 2019,
ISSN: 1530-6984, 1530-6992. DOI: 10.1021/acs.nanolett.8b03023.

[232] I. Baek, M. Lee, et al., “Highly scalable non-volatile resistive memory
using simple binary oxide driven by asymmetric unipolar voltage
pulses,” in Electron Devices Meet. 2004 IEDM Tech. Dig. IEEE Int., Dec.
2004, pp. 587–590. DOI: 10.1109/IEDM.2004.1419228.

[233] H. Mähne, L. Berger, et al., “Filamentary resistive switching in
amorphous and polycrystalline Nb2O5 thin films,” Solid-State
Electronics, vol. 72, pp. 73–77, Jun. 2012, ISSN: 00381101. DOI:
10.1016/j.sse.2012.01.005.

[234] C. Baeumer, R. Valenta, et al., “Subfilamentary Networks Cause Cycle-
to-Cycle Variability in Memristive Devices,” ACS Nano, vol. 11, no. 7,
pp. 6921–6929, Jul. 2017, ISSN: 1936-0851, 1936-086X. DOI: 10 . 1021 /
acsnano.7b02113.

[235] In Kyeong Yoo, Bo Soo Kang, Seung Eon Ahn, Chang Bum Lee, My-
oung Jae Lee, Gyeong-Su Park, and Xiang-Shu Li, “Fractal Dimension
of Conducting Paths in Nickel Oxide (NiO) Thin Films During Resis-
tance Switching,” IEEE Trans. Nanotechnol., vol. 9, no. 2, pp. 131–133,
Mar. 2010, ISSN: 1536-125X, 1941-0085. DOI: 10 . 1109 / TNANO . 2010 .
2041670.

[236] S. Menzel, S. Tappertzhofen, R. Waser, and I. Valov, “Switching kinet-
ics of electrochemical metallization memory cells,” Phys. Chem. Chem.
Phys., vol. 15, no. 18, p. 6945, 2013, ISSN: 1463-9076, 1463-9084. DOI:
10.1039/c3cp50738f.

[237] P. Stoliar, M. Rozenberg, E. Janod, B. Corraze, J. Tranchant, and L. Cario,
“Nonthermal and purely electronic resistive switching in a Mott mem-
ory,” Phys. Rev. B, vol. 90, no. 4, Jul. 2014, ISSN: 1098-0121, 1550-235X.
DOI: 10.1103/PhysRevB.90.045146.

[238] D. P. Kennedy, “Spreading Resistance in Cylindrical Semiconductor
Devices,” Journal of Applied Physics, vol. 31, no. 8, pp. 1490–1497, Aug.
1960, ISSN: 0021-8979, 1089-7550. DOI: 10.1063/1.1735869.

[239] S. Song and K. P. Moran, “Constriction/spreading resistance model for
electronics packaging,” in ASME/JSME Thermal Engineering Conference,
vol. 4, 1995, p. 8.

[240] G. Ellison, “Maximum thermal spreading resistance for rectangular
sources and plates with nonunity aspect ratios,” IEEE Trans. Comp.
Packag. Technol., vol. 26, no. 2, pp. 439–454, Jun. 2003, ISSN: 1521-3331.
DOI: 10.1109/TCAPT.2003.815088.

https://doi.org/10.1103/PhysRevB.82.155321
https://doi.org/10.1109/ISCAS.2014.6865411
https://doi.org/10.1021/acs.nanolett.8b03023
https://doi.org/10.1109/IEDM.2004.1419228
https://doi.org/10.1016/j.sse.2012.01.005
https://doi.org/10.1021/acsnano.7b02113
https://doi.org/10.1021/acsnano.7b02113
https://doi.org/10.1109/TNANO.2010.2041670
https://doi.org/10.1109/TNANO.2010.2041670
https://doi.org/10.1039/c3cp50738f
https://doi.org/10.1103/PhysRevB.90.045146
https://doi.org/10.1063/1.1735869
https://doi.org/10.1109/TCAPT.2003.815088


Bibliography 165

[241] R. Holm and E. Holm, Electric Contacts: Theory and Application. Berlin;
London: Springer, 2011, ISBN: 978-3-642-05708-3.

[242] T. Chen, T.-Y. Lee, J. Allum, and M. McPartlin, “The thermal scaling:
From transistor to array,” in 2014 IEEE Radio Freq. Integr. Circuits Symp.,
Tampa, FL, USA: IEEE, Jun. 2014, pp. 123–126, ISBN: 978-1-4799-3864-3.
DOI: 10.1109/RFIC.2014.6851675.

[243] S. Long, C. Cagli, D. Ielmini, M. Liu, and J. Suñé, “Analysis and mod-
eling of resistive switching statistics,” J. Appl. Phys., p. 20, 2012. DOI:
10.1063/1.3699369.

[244] S. Long, L. Perniola, et al., “Voltage and Power-Controlled Regimes in
the Progressive Unipolar RESET Transition of HfO2-Based RRAM,” Sci.
Rep., vol. 3, no. 1, Dec. 2013, ISSN: 2045-2322. DOI: 10.1038/srep02929.

[245] M. D. Pickett and R. Stanley Williams, “Sub-100 fJ and sub-nanosecond
thermally driven threshold switching in niobium oxide crosspoint nan-
odevices,” Nanotechnology, vol. 23, no. 21, p. 215 202, Jun. 2012, ISSN:
0957-4484, 1361-6528. DOI: 10.1088/0957-4484/23/21/215202.

[246] X. Liu, S. Li, S. K. Nandi, D. K. Venkatachalam, and R. G. Elliman,
“Threshold switching and electrical self-oscillation in niobium oxide
films,” J. Appl. Phys., vol. 120, no. 12, p. 124 102, Sep. 2016, ISSN: 0021-
8979, 1089-7550. DOI: 10.1063/1.4963288.

[247] J.-G. Zhang and P. Eklund, “Filament formation in switching devices
based on V2O5 gel films,” J. Mater. Res., vol. 8, no. 03, pp. 558–564, Mar.
1993, ISSN: 0884-2914, 2044-5326. DOI: 10.1557/JMR.1993.0558.

[248] M. Mori, The finite element method and its applications. New York: Macmil-
lan, 1986, ISBN: 978-0-02-948621-4.

[249] M. Beschow, “Theoretical investigation of volatile resistive switching
in VOx based on an electronic induced thermal instability,” Bachelor
Thesis, RWTH Aachen, 2019.

[250] X. Zhang, H. Xie, et al., “Thermal and electrical conductivity of a sus-
pended platinum nanofilm,” Appl. Phys. Lett., vol. 86, no. 17, p. 171 912,
Apr. 2005, ISSN: 0003-6951, 1077-3118. DOI: 10.1063/1.1921350.

[251] A. Albert Irudayaraj, R. Srinivasan, P. Kuppusami, E. Mohandas,
S. Kalainathan, and K. Ramachandran, “Photoacoustic measure-
ment of thermal properties of TiN thin films,” J. Mater. Sci., vol. 43,
no. 3, pp. 1114–1120, Feb. 2008, ISSN: 0022-2461, 1573-4803. DOI:
10.1007/s10853-007-2248-8.

[252] Y. Igasaki, H. Mitsuhashi, K. Azuma, and T. Muto, “Structure and Elec-
trical Properties of Titanium Nitride Films,” Jpn. J. Appl. Phys., vol. 17,
no. 1, pp. 85–96, Jan. 1978, ISSN: 0021-4922, 1347-4065. DOI: 10.1143/
JJAP.17.85.

[253] F. Kauffmann, “Microstructure and properties of titanium ni-
tride/silicon nitride coatings,” 2003. DOI: 10.18419/OPUS-6523.

[254] M. Chase, NIST-JANAF Thermochemical Tables, 4th Edition, 1998.
[255] M. von Arx, O. Paul, and H. Baltes, “Process-dependent thin-film ther-

mal conductivities for thermal CMOS MEMS,” J. Microelectromech. Syst.,
vol. 9, no. 1, pp. 136–145, Mar. 2000, ISSN: 1057-7157, 1941-0158. DOI:
10.1109/84.825788.

https://doi.org/10.1109/RFIC.2014.6851675
https://doi.org/10.1063/1.3699369
https://doi.org/10.1038/srep02929
https://doi.org/10.1088/0957-4484/23/21/215202
https://doi.org/10.1063/1.4963288
https://doi.org/10.1557/JMR.1993.0558
https://doi.org/10.1063/1.1921350
https://doi.org/10.1007/s10853-007-2248-8
https://doi.org/10.1143/JJAP.17.85
https://doi.org/10.1143/JJAP.17.85
https://doi.org/10.18419/OPUS-6523
https://doi.org/10.1109/84.825788


166 Bibliography

[256] H. S. Dow, W. S. Kim, and J. W. Lee, “Thermal and electrical properties
of silicon nitride substrates,” AIP Adv., vol. 7, no. 9, p. 095 022, Sep. 2017,
ISSN: 2158-3226. DOI: 10.1063/1.4996314.

[257] H. V. Keer, D. L. Dickerson, H. Kuwamoto, H. L. C. Barros, and J. M.
Honig, “Heat capacity of pure and doped V2O3 single crystals,” J. Solid
State Chem., vol. 19, no. 1, pp. 95–102, 1976.

[258] J. M. Goodwill and M. Skowronski, “Intrinsic current overshoot during
thermal-runaway threshold switching events in TaOx devices,” J. Appl.
Phys., vol. 126, no. 3, p. 035 108, Jul. 2019, ISSN: 0021-8979, 1089-7550.
DOI: 10.1063/1.5087560.

[259] V. Dubost, T. Cren, et al., “Resistive Switching at the Nanoscale
in the Mott Insulator Compound GaTa4Se8,” Nano Lett., vol. 13,
no. 8, pp. 3648–3653, Aug. 2013, ISSN: 1530-6984, 1530-6992. DOI:
10.1021/nl401510p.

[260] Y. Ma, J. Goodwill, and M. Skowronski, “Quantification of Composi-
tional Runaway during Electroformation in TaOx Resistive Switching
Devices,” in 2019 IEEE 11th Int. Mem. Workshop IMW, Monterey, CA,
USA: IEEE, May 2019, pp. 1–4, ISBN: 978-1-72810-981-7. DOI: 10.1109/
IMW.2019.8739727.

https://doi.org/10.1063/1.4996314
https://doi.org/10.1063/1.5087560
https://doi.org/10.1021/nl401510p
https://doi.org/10.1109/IMW.2019.8739727
https://doi.org/10.1109/IMW.2019.8739727


167

Tyler A. Hennen

Education

JUNE 2016 Master of Science, The University of California, San Diego
Electrical and Computer Engineering: Applied Physics

MAY 2010 Bachelor of Science, The University of Minnesota, Minneapolis
Physics (Magna Cum Laude)

MAY 2010 Bachelor of Science, The University of Minnesota, Minneapolis
Mathematics

Experience

SEPT 2016 Wissenschaftlicher Mitarbeiter at RWTH AACHEN UNIVERSITY

Current Institut für Werkstoffe der Elektrotechnik 2

SEPT 2014 Graduate Student Researcher at UC SAN DIEGO

SEPT 2016 Center for Memory and Recording Research

JAN 2011 Research Engineer at HGST, A WESTERN DIGITAL COMPANY, San Jose
AUG 2014 Magnetic Recording Research (Formerly IBM Storage Division)

SEPT 2010 Teaching Assistant at THE UNIVERSITY OF MINNESOTA, Minneapolis
JAN 2011 Introductory College Physics

MAY 2007 Research Assistant at THE UNIVERSITY OF MINNESOTA, Minneapolis
SEPT 2010 Magnetic Microscopy Center

Awards

SEPT 2014 UCSD Electrical and Computer Engineering Departmental Fellowship
SEPT 2009 Edmond G. Franklin Scholarship in Physics
JUNE 2008 Undergraduate Research Opportunity Grant





169

List of Publications

T. Hennen, A. Elias, J. F. Nodin, G. Molas, R. Waser, D. J. Wouters, and D. Be-
dau, “A high throughput generative vector autoregression model for stochas-
tic synapses,” Frontiers in Neuroscience, vol. 16, p. 941753, 2022

T. Hennen, E. Wichmann, R. Waser, D. J. Wouters, and D. Bedau, “Stabiliz-
ing amplifier with a programmable load line for characterization of nanode-
vices with negative differential resistance,” Review of Scientific Instruments 93,
024705, 2022.

T. Hennen, E. Wichmann, A. Elias, J. Lille, O. Mosendz, R. Waser, D. J. Wouters,
and D. Bedau, “Current-limiting amplifier for high speed measurement of re-
sistive switching data,” Review of Scientific Instruments 92, 054701, 2021.

T. Hennen, D. Bedau, J. A. J. Rupp, C. Funck, S. Menzel, M. Grobis, R. Waser,
and D. J. Wouters, “Switching speed analysis and controlled oscillatory behav-
ior of a Cr-doped V2O3 threshold switching device for memory selector and
neuromorphic computing application,” IEEE 11th International Memory Work-
shop (IMW), Monterey, CA, USA, 2019

T. Hennen, D. Bedau, J. A. J. Rupp, C. Funck, S. Menzel, M. Grobis, R. Waser,
and D. J. Wouters, “Forming-free Mott-oxide threshold selector nanodevice
showing S-type NDR with high endurance (> 1012 cycles), excellent Vth sta-
bility (< 5%), fast (< 10 ns) switching, and promising scaling properties,” 2018
IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA,
pp. 37.5.1-37.5.4, 2018

W. Ma, T. Hennen, M. Lueker-Boden, R. Galbraith, J. Goode, W. H. Choi, P
Chiu, J. A. J. Rupp, D. J. Wouters, R. Waser, D. Bedau, “A Mott insulator-based
oscillator circuit for reservoir computing,” IEEE International Symposium on Cir-
cuits and Systems (ISCAS), Seville, Spain, 2020

J. Mohr, T. Hennen, D. Bedau, J. Nag, R. Waser, and D. J. Wouters, “Fabrication
of highly resistive NiO thin films for nanoelectronic applications,” Advanced
Physics Research, 2200008, 2022

M. von Witzleben, T. Hennen, A. Kindsmüller, S. Menzel, R. Waser, and U.
Böttger, “Study of the SET Switching Event of VCM-based Memories on a Pi-
cosecond Timescale,” Journal of Applied Physics, vol. 127, no. 20, p. 204501, 2020



170 Bibliography

C. Funck, C. Bäumer, S. Wiefels, T. Hennen, R. Waser, S. Hoffmann-Eifert, R.
Dittmann, and S. Menzel, “Comprehensive model for the electronic transport
in Pt/SrTiO3 analog memristive devices,” Physical Review B, vol. 102, no. 3,
2020

D. J. Wouters, S. Menzel, J. A. J. Rupp, T. Hennen, and R. Waser, “On the
universality of the I–V switching characteristics in non-volatile and volatile
resistive switching oxides,” Faraday Discussions Vol. 213, pp. 183-196, 2019

J. Hellerstedt, A. Cahlík, M. Švec, O. Stetsovych, and T. Hennen, “Counting
Molecules: Python based scheme for automated enumeration and categoriza-
tion of molecules in scanning tunneling microscopy images,” Software Impacts,
Vol. 12, 100301, 2022


	Abstract
	Acknowledgements
	Introduction
	Fundamentals
	Redox-based resistive switching mechanisms
	Correlated electrons and the vanadium oxide system
	Electrical measurements of resistive switching
	The electro-thermal switching mechanism
	Thermistor dynamics
	The geometry of volatile switching
	Oscillations and excitability
	Field effects


	Electrical measurement setup
	Digital potentiometer stabilization circuit
	Design principles
	Implementation
	Measurement demonstrations

	Current limiting amplifier
	Design principles
	Implementation
	Measurement demonstrations

	Discussion

	Fast stochastic modeling of synaptic arrays
	Methods
	Data collection
	Feature extraction
	Stochastic modeling
	Program implementation

	Simulation results
	Benchmarks
	Discussion

	Mott-oxide neuronal nano-devices
	Thin film deposition
	Film characterization with X-ray absorption
	Nanodevice fabrication
	Electrical characterization
	The pristine state
	Non-volatile effects
	Switching dynamics
	Oscillatory/spiking behavior

	Electro-thermal modeling
	Scaling of the NDR steady state
	Non-volatile model
	Oscillatory model
	Finite element analysis

	Discussion

	Conclusion
	Parameter assignment for the thermistor model
	Zoo of thermistor behavior
	Bibliography

