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Summary

There has been tremendous technological progress, both in the manufacturing of ever more
sophisticated materials and in the steadily increasing computational power. Thus, materials
showing a pronounce kind of anisotropy —initially and/or induced — found their way into various
fields of engineering applications. On the one hand, for example, fusion deposition modeling
as used in 3D printing creates materials that behave anisotropically to increase load-bearing
capacity. On the other hand, the power of modern computers enables numerical simulations that
provide deeper insights into the underlying material behavior. However, in order to accurately
predict material behavior while keeping the computational time cost relatively low, continuum
mechanical models are needed that are capable of capturing a broad spectrum of anisotropy,
in particular those anisotropic effects caused by various inelastic material behaviors.

In this regard, almost all materials, regardless of whether they are non-living or living, un-
dergo inelastic deformation at some point. May it be irreversible deformation, rate dependence,
degradation up to failure or even growth of living organisms. Macroscopically, all of these
phenomena can cause the material to behave anisotropically if it did not already do so initially.
For instance, the material’s stiffness might fail completely in one direction due to microcracks,
while being less degraded in another direction. Further well-known inelastic effects might be
caused by anisotropic yield criteria such as Hill’s one, or even by kinematic (plastic strain)
hardening. In addition, one of the currently most challenging topics in continuum mechanics
is the modeling of (direction-dependent) growth of biological tissues. From a continuum
mechanical point of view, all these phenomena are modeled based on two essential concepts:
The multiplicative decomposition of the deformation gradient and structural tensors.

Besides theoretical modeling, numerical implementation can be highly challenging as well
and is known to be error-prone due to the complexity typically associated with such models.
Therefore, the continuum mechanical framework employed should be designed in such a way
that it can be easily implemented in algorithmic differentiation (AD) tools to enable robust and
efficient computations.

This cumulative dissertation is intended to make a valuable contribution in this regard.
The overall objective is to develop generic continuum mechanical formulations for inelastic
phenomena associated with anisotropy in a geometrically nonlinear context. Therefore, a
compilation of several publications by the author (and his co-authors) is presented. These
should contribute to the development of more advanced material models in the future. In the
beginning of this thesis the motivation, the research relevant questions and a comprehensive

literature overview regarding the state-of-the-art are presented. After this introductory part,
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the first paper deals with initially anisotropic materials such as fiber reinforced plastics. For
the fiber, different failure mechanisms under tensile or compressive loadings are taken into
account, while for the matrix isotropic damage coupled to plasticity is considered. Therefore,
in addition to the initial anisotropy, further anisotropic effects arise due to the involved tension-
compression asymmetry as well as the change in the stiffness ratio between fiber and matrix.
Since three scalar (local) damage variables are used in this work, each of them is gradient-
extended using the micromorphic approach to obtain mesh-independent results. The entire
framework is formulated in a geometrically nonlinear sense and investigated using several
numerical simulations.

Thereafter, the following three articles address the anisotropy induced by plasticity and
anisotropic damage within initially isotropic materials. As in the first work, a ‘two-surface’
approach is employed to treat plasticity and damage as independent but strongly coupled
mechanisms. The governing equations are described in logarithmic strain space using an
additive split, while damage is represented by a symmetric second order tensor. Moreover,
the proposed framework satisfies the damage growth criterion, which prevents the model from
artificial stiffening effects. Once again, the micromorphic approach is used, whereas the
damage tensor’s invariants are gradient-extended. Several representative structural examples
are examined to investigate the model’s ability to provide mesh-independent results in uniaxial
and multiaxial settings, as well as two- and three-dimensional boundary value problems.

The last two articles of this dissertation deal with the combination of the multiplicative
decomposition and AD in the context of biomechanics. For this purpose, a co-rotated config-
uration of the intermediate configuration is introduced, which shares the same characteristics
with the intermediate configuration, but is uniquely defined. Thus, it can be implemented using
AD in an efficient and physically sound manner. In addition, the concept of structural tensors,
an additional split of the inelastic part of the deformation gradient and hardening effects are
discussed in a thermodynamically consistent manner. The stress-driven kinematic growth
model, which is formulated in terms of the co-rotated configuration, utilizes the concept of
homeostatic surfaces to describe growth and remodeling processes of soft biological tissues.
In this regard, two parallel decompositions of the deformation gradient are employed, in order
to treat direction-dependent and independent constituents separately. Moreover, remodeling
of collagen fibers is taken into account in a stress-driven manner. The model is fully imple-
mented using AD using an implicit approach. The predicted growth and remodeling behavior

is compared with experiments found in literature and agrees qualitatively well with these data.



Zusammenfassung

Die technologischen Fortschritte sind enorm, sowohl bei der Herstellung von immer ausgefeil-
teren Materialien als auch in der stetig wachsenden Rechenleistung. Dadurch haben anisotrope
Materialien — initial und/oder induziert — ihren Weg in verschiedene Bereiche der Ingenieurs-
anwendungen gefunden. Einerseits werden beispielsweise durch die Schmelzschichtung im
3D-Druck Materialien geschaffen, die sich anisotrop verhalten, um die Tragfahigkeit zu er-
hohen. Andererseits ermoglicht die Leistungsfihigkeit moderner Computer tiefere Einblicke
in das zugrunde liegende Materialverhalten. Um jedoch das Materialverhalten vorhersagen
zu konnen und gleichzeitig die Rechenzeit relativ gering zu halten, werden kontinuumsme-
chanische Modelle benétigt, die in der Lage sind anisotropes und inelastisches Verhalten zu
beschreiben.

Nahezu alle Materialien, unabhéngig ob sie nicht-lebendig oder lebendig sind, erfahren in-
elastische Verformungen. Dabei kann es sich um irreversible Verformung, Ratenabhiingigkeit,
Degradation bis hin zum Versagen oder um das Wachstum von lebenden Organismen handeln.
Makroskopisch gesehen konnen all diese Phanomene dazu fiihren, dass sich das Material zu-
satzlich anisotrop verhilt. So kann die Steifigkeit des Materials in einer Richtung aufgrund
von Mikrorissen vollstindig versagen, wihrend sie in einer anderen Richtung weniger stark
beeintrichtigt wird. Weitere bekannte inelastische Effekte konnen durch anisotrope FlieBkrite-
rien wie das von Hill oder auch durch kinematische Verfestigung verursacht werden. Dariiber
hinaus ist die Modellierung des (richtungsabhéingigen) Wachstums von biologischem Gewebe
eine der derzeit anspruchsvollsten Herausforderungen. Aus kontinuumsmechanischer Sicht
werden all diese Phdanomene mittels zwei wesentliche Konzepte modelliert: Die multiplikative
Zerlegung des Deformationsgradienten und Strukturtensoren.

Neben der Modellierung kann auch die numerische Umsetzung eine grofle Herausforde-
rung darstellen und ist aufgrund der Komplexitit, die mit solchen Modellen verbunden ist,
fehleranfillig. Daher sollte das kontinuumsmechanische Modell leicht mit algorithmischer
Differenzierung (AD) kombinierbar sein, um robuste und effiziente Berechnungen zu ermog-
lichen.

Diese kumulative Dissertation soll einen wertvollen Beitrag dazu leisten. Das ilibergeord-
nete Ziel besteht darin, allgemeine kontinuumsmechanische Formulierungen fiir inelastische
Phianomene mit Anisotropie bei grolen Deformationen zu entwickeln. Dazu werden meh-
rere Veroffentlichungen des Autors (und seiner KoautorInnen) présentiert. Damit soll auch in
Zukunft die Entwicklung anspruchsvoller Materialmodelle ermdglicht werden.

Zu Beginn werden die Motivation, die forschungsrelevanten Fragestellungen und ein Lite-
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raturiiberblick zum Stand der Technik vorgestellt. Danach beschiftigt sich der erste Artikel
mit initial anisotropen Materialien wie faserverstirkten Kunststoffen. Fiir die Faser werden
unterschiedliche Versagensmechanismen unter Zug- oder Druckbelastung beriicksichtigt, wih-
rend fiir die Matrix isotrope Schidigung gekoppelt mit Plastizitit betrachtet wird. Zusétzlich
zur urspriinglichen Anisotropie treten weitere anisotrope Effekte aufgrund der involvierten
Zug-Druck-Asymmetrie sowie der Anderung des Steifigkeitsverhiltnisses zwischen Faser und
Matrix auf. Es werden drei skalare (lokale) Schidigungsvariablen verwendet, welche mittels
des mikromorphen Ansatzes gradientenerweitert werden, um netzunabhéingige Ergebnisse zu
erhalten. Das Modell wird geometrisch nichtlinear formuliert und anhand mehrerer numeri-
scher Simulationen untersucht.

Die folgenden drei Arbeiten befassen sich mit der durch Plastizitdt und anisotrope Schidi-
gung induzierten Anisotropie in urspriinglich isotropen Materialien. Wie im ersten Artikel
wird ein Zwei-Flichen-Ansatz verwendet, um Plastizitdt und Schidigung als unabhéngige,
aber stark gekoppelte Phinomene zu behandeln. Die maB3gebenden Gleichungen werden im
logarithmischen Dehnungsraum durch eine additive Zerlegung beschrieben, wihrend die Schi-
digung durch einen symmetrischen Tensor zweiter Ordnung beschrieben wird. Dariiber hinaus
wird das Damage Growth Criterion erfiillt, wodurch kiinstliche Versteifungseffekte vermieden
werden. Die Invarianten des Schidigungstensors werden mittels des mikromorphen Ansatzes
gradientenerweitert. Mehrere reprisentative Strukturbeispiele untersuchen, ob das Modell in
der Lage ist netzunabhingige Ergebnisse in ein- und mehrachsigen Anwendungen sowie bei
zwei- und dreidimensionalen Randwertproblemen zu liefern.

Die letzten beiden Artikel befassen sich mit der Kombination von multiplikativer Zerlegung
und AD im Kontext der Biomechanik. Zu diesem Zweck wird die Zwischenkonfiguration
ko-rotiert formuliert, wodurch die physikalischen Eigenschaften erhalten bleiben, aber mit
AD auf effiziente und physikalisch fundierte Weise kombiniert werden kann. Dariiber hinaus
werden das Konzept der Strukturtensoren, eine zusitzliche Zerlegung des inelastischen Anteils
des Deformationsgradienten und Verfestigungseffekte in einer thermodynamisch konsistenten
Weise diskutiert. Das spannungsgetriebene Wachstumsmodell, das in Bezug auf die ko-
rotierte Konfiguration formuliert ist, nutzt das Konzept der homoostatischen Oberflichen zur
Beschreibung von Wachstums- und Umbauprozessen weicher biologischer Gewebe. In diesem
Zusammenhang werden zwei parallele Zerlegungen des Deformationsgradienten verwendet,
um richtungsabhéngige und unabhingige Konstituenten getrennt zu behandeln. Auflerdem
wird das Remodeling von Kollagenfasern spannungsgetrieben beriicksichtigt. Das Modell
wird vollstindig implizit mittels AD implementiert. Das vorhergesagte Materialverhalten wird

mit Experimenten aus der Literatur verglichen und stimmt qualitativ gut mit diesen iiberein.
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1 Introduction

1.1 Motivation and research-relevant questions

Nature is anisotropic. Nature is inelastic. But nature is in equilibrium.

Mechanical behavior in nature is far from being simple, since it is in general neither isotropic
nor elastic. However, as nature has been optimized over millions of years of evolution following
the principle of survival of the fittest, it is not surprising that some of the best solutions to
biochemical processes and for load-bearing mechanisms can be found there.

In fauna, there are countless examples of biological materials that are subject to growth
and behave initially or induced anisotropically, as e.g. teeth and bones, but also soft tissues
and blood vessels. An example for initial anisotropy is the helical arrangement of collagen
fibers in arteries, which is optimal for achieving the highest possible resilience and strength
while keeping the tissue flexible at the same time. Contrary to this, an isotropically behaving
material would result in a much too high stiffness in radial direction of the vessels, which would
significantly reduce the vessel’s flexibility. This example vividly underlines the advantage of
directionally dependent material behavior.

In flora, similar components can be found, which provide the plants with nutrients and
stability. Here, the material behaves strongly anisotropic like e.g. wood fibers in the wood
tissue or also the transport tissue consisting of xylem. Sclerenchyma cells, which are usually
grouped into bundles, serve as supporting and strengthening tissue at the periphery of plant
organs. Only in this way is it possible, for instance, for thin leaf stems to carry flat leaf blades
and for stems to bear leaves, flowers and fruit, as well as for trees to withstand strong winds.

Due to mutations, selection and isolation in the course of evolution, highly optimized and
perfectly adapted load-bearing structures have evolved, which nowadays serve as inspiration
in the engineering of large structures or plant-based designs. In addition, modern and precise
manufacturing processes make it possible to design components with preferred directions in
order to increase resistance while at the same time reducing material consumption. Apart from
these non-living applications, in-silico therapy in the context of patients’ healthcare requires

(among other things) a deep understanding of the (anisotropic) mechanical behavior of all
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types of tissues. Computer-aided therapy can be used to preoperatively estimate diseases such
as coronary in-stent restenosis and to adapt the design of drug-eluting stents to patient-specific
needs.

No material found in nature behaves in an absolute elastic manner, since all materials
exceeding a certain threshold either behave rate-dependently (viscous), undergo irreversible
deformations (plasticity), grow in the case of living organisms, or fatigue and/or even fail
(damage). From an evolutionary perspective, this proofed advantageous. During the forming
of tissue, water stored in the tissue can lead to locally increased internal pressures, which,
due to its visco-elastic behavior, are reduced over time and an (almost) uniform pressure
is restored. Moreover, large deformations can occur (locally) in the affected living soft
tissues. Furthermore, most non-living materials show significant inelastic behavior due to the
underlying microstructure, e.g., metals and polymeric materials. The former undergo plastic
deformations due to both dislocations of crystallographic planes and twinning, while in the
latter polymer chains in the amorphous phase can cause the material to behave visco-elastically
or crystalline phases may slip and cause irreversible deformations. This does not even require
the component to be overstressed during its application, since inelastic deformations at large
deformations can already be observed during manufacture as a result of forming (mechanical,
thermo-mechanical or electro-chemical).

Although large deformations do not always occur globally, finite strains can certainly be
observed locally in the process zone in addition to finite rotations, for instance, considering
forming, (continuously smeared out) cracks as well as growth and remodeling. Thus, an
in-depth understanding of inelastic material behavior at large deformations in a continuum
mechanical context is essential.

None of the above challenges in today’s engineering applications, ranging from automotive
and aerospace to civil and mechanical engineering or computer-aided medical therapy, could
be handled without powerful numerical simulations, most of which are conducted by means of
the finite element method (FEM). The accuracy and prediction capabilities of these simulations
strongly depend on the element formulation, but especially on the material model employed.
Although multiscale models can be used that resolve the microstructure in a discrete manner,
these methods suffer from high computational cost (see e.g. |Geers et al.| [2010], |Matous
et al.| [2017], Praster et al. [2019], |Gierden et al.| [2022]], [Kloppenburg et al.| [2023]] and
Mester et al.| [2021, [2023]]). Therefore, efficient continuum mechanical models that account
for the microstructural effects in a smeared and phenomenological sense are desirable, as they
drastically reduce computation time while providing reliable results.

In order to address also the aforementioned ambitious challenges, it is necessary to gain
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a deeper understanding of the underlying mechanisms of inelastic phenomena in the context
of anisotropic material behavior. Especially in the regime of finite deformations, there is
a growing need for research in recent years, since there is no unified concept to treat the
combination of anisotropy and inelastic material behavior in a continuum mechanical way.
Therefore, in the following, the phenomena of plasticity, anisotropic damage and its gradient-
extension, and growth and remodeling of living organisms that are considered in this work are
introduced, as well as the scientific questions that arise in the context of continuum mechanical
formulations.

Plasticity. As one the oldest inelastic phenomena investigated at large deformations, the
first contributions to the field of finite elasto-plasticity were made in the 1960s. Two famous
theories, which are still widely used in the continuum mechanics community, are hypo-
and hyperelastic based material models. The former assume the rate of deformation tensor
(symmetric part of the spatial velocity gradient) to be additively decomposable into an elastic
rate tensor and a plastic rate tensor. The latter theory suggests the multiplicative decomposition
of the deformation gradient into an elastic (recoverable) part and plastic (irreversible) part (see,
e.g.,|[Eckart/[1948]], [Kroner [[1959]], Lee and Liu [1967]], Lee|[1969] and Mandel [[1973]]). This
decomposition introduces a stress-free intermediate configuration, which is essential to state
the elastic law. Further, it is assumed that a specific (and differentiable) strain energy exists
that is a potential for the stress. In line with the procedure of (Coleman and Noll [1963], the
free energy serves as such a potential.

It is worth noting that only hyperelastic based material formulations are considered in this
dissertation, i.e. all proposed material models assume that the stress is derivable from the
Helmholtz free energy.

Moreover, reference is made to the pioneering works of Coleman and Gurtin/[1967]] and Rice
[1971] as well as Germain et al.| [1983]] for a mathematically sound and thermodynamically
consistent derivation of inelastic materials based on the concept of internal variables. In
particular, the latter comments on the thermodynamically consistent use of inelastic- or pseudo-
potentials — a concept used throughout this dissertation — to derive the evolution equations of
these variables.

In case of pure hyperelasticity, i.e. no irreversible strains occur, the deformed body is fully
described by the boundary value problem applied as well as a specific expression for the
Helmholtz free energy function. Contrary, in most common approaches nowadays, plasticity
requires at least a set of internal variables as well as the definition of a (convex) yield criterion,
which indicates the elastic limit. Usually, the thermodynamic driving forces associated with the

internal variables serves as an argument for the yield criterion/function, which is topologically
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decomposed into its interior (elastic) and its surface (plastic). As the evolution of the internal
variables is determined neither by the boundary value problem nor the strain energy, evolution
equations for those must be prescribed. Following the principle of maximum plastic dissipation,
the evolution of plastic strains might be prescribed by the gradient of the yield criterion, which
is suitable for most metals and is called associative flow rule. However, most soil materials such
as clay behave differently. These materials require the introduction of an inelastic potential,
where the (non-associative) flow rule is prescribed by the gradient of the inelastic potential.

Unfortunately, the employed multiplicative decomposition suffers from an inherent rotational
non-uniqueness of the intermediate configuration. As a result, constitutive relations cannot be
implemented directly in numerical softwares. Pull-back operations are required, making the
numerical implementation more challenging and error-prone.

Therefore, elegant formulations of the constitutive relations are of invaluable importance
for modern computational mechanics as well as for the application of sophisticated material
models.

Damage. While plasticity is usually associated with dislocations on the microscopic level,
damage is typically characterized by microdefects. These defects can roughly be classified into
(spherical or elliptical) microvoids and microcracks. After nucleation, these microdefects grow
and coalesce with each other until a macroscopic crack can be observed, whose propagation
is referred to as fracture. Compared to modeling approaches for elasto-plasticity or visco-
elasticity, there is a large number of approaches for the description of damage and fatigue
existing, but until today, no universally valid concept has emerged.

Nevertheless, describing damage in a smeared sense according to the concept of continuum
damage mechanics has steadily gained popularity in recent decades. Within this approach,
scalar- or tensor-valued internal variables accounting for the degree of degradation are intro-
duced. In case of a linear relationship between the strain and the work conjugated stress, these
variables may degrade the stiffness tensor. More general, the Helmholtz free energy is de-
graded by the damage variables such that the energy tends to zero as the material is considered
‘fully broken’. In their most simplified version, damage approaches assume the microdefects to
be only spherical microvoids. Hence, the overall damage behavior is isotropic, i.e. the material
is degraded directionally independent, and thus, only a scalar damage variable is required.

However, it is known that the underlying damage mechanisms are much more complex. Due
to elliptical microvoids and orientated microcracks, the behavior at the macroscopic level can-
not be considered isotropic anymore. Especially non-proportional loading or highly directional
loading are known to cause the material to behave anisotropic, although it may behaved initially

isotropic. Therefore, it seems natural to model damage as a direction dependent phenomenon.
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If the material behaves brittle, introducing damage variables as internal variables is sufficient
to describe the inelastic material behavior. Analogous to plasticity, the evolution equations can
then be set up, for example, based on the dissipation inequality and the principle of maximum
dissipation. In the case of ductile material behavior, i.e. plasticity coupled to damage, the
modeling is much more challenging. There exist approaches in the literature which assume
a simultaneous evolution of damage and plasticity (so-called ‘one-surface’ approaches) or
independent evolution (‘two-surface’ approaches). The latter approaches allow a much more
flexible modeling, but are more complex in terms of multiple loading scenarios comparable to
multi-surface plasticity. In addition, the evolution of plasticity is often assumed to take place
in the so-called effective continuum, i.e. the material is virgin. Thus, the plastic evolution
is strongly coupled to damage, since the mapping to the effective continuum depends on the
approach chosen to incorporate damage.

In summary, the scientific debate on how to couple anisotropic damage to plasticity is still
not conclusively settled and of greatest interest.

Gradient-extension. Unfortunately, as continuum damage models belong to the class of so-
called conventional ‘local’ damage models, they suffer from a mesh size dependence in case of
softening. This results, among others deficiencies, in an undesirable and unphysical decrease
of energy dissipation with increasing mesh density. Moreover, the width of the damage zone
does not remain finite. In addition, not only the mesh density but also the orientation of
the finite elements may influence the direction of the macroscopic crack within a numerical
simulation. This pathological dependence is caused by a loss of ellipticity (at least for static
problems) of the boundary value problem, resulting in an ill-posed problem. Remarkably, the
reason for this does not lie in the FEM, but is rather an inherent problem of the material model
formulation itself. Hence, using a different numerical approach to solve the boundary value
problem would not solve the aforementioned problems.

In order to overcome these issues, several techniques have been developed, of which the
two most prominent are the nonlocal integral- and gradient-type method. The idea of both
methods is to include the neighborhood of the material point into the calculation of the material
response and not only the physical state present at the point itself.

In integral-type approaches, for example, a local material quantity is replaced by its nonlocal
and averaged counterpart. By taking the integral over the domain, a nonlocal character is incor-
porated into the material formulation. However, with regard to the numerical implementation
within the FEM, this approach contradicts the local character of the finite element method,
since a spatial averaging necessarily requires information of the neighboring elements. This

also complicates the linearization in case of a global Newton-Raphson iteration for solving the
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boundary value problem.

Contrary to this, gradient-type approaches usually introduce another partial differential
equation as well as a ‘nonlocal’ variable associated with this differential equation at the global
level. Since these approaches require only the variable itself as well as its gradient (higher
order gradients can also be used), these approaches are easy to implement into standard
finite element codes and fit perfectly with the local character of the FEM. In addition to the
differential equation, the constitutive relations for the mechanical stress response are enriched
by a contribution of the ‘nonlocal’ variable. This relationship introduces a nonlocal character
into the material formulation by considering an internal length scale at the material point level.

However, since the ‘nonlocal’ variables do not necessarily have a clear physical interpre-
tation, it is not straightforward to determine the interplay between them and the constitutive
framework. In particular, for anisotropic damage, how to choose the constitutive framework
using gradient-type approaches as well as the number of ‘nonlocal’ variables remain open
scientific questions.

Growth and remodeling. Aiming to improve patients’ healthcare by providing patient-
specific medical therapy to enable preoperative estimates of therapeutic success, computer-
aided simulations are becoming an indispensable tool in modern medicine. In addition,
multiphysical simulations, which include the inelastic material behavior of biological tissues,
allow predictions to be made about the successful insertion of implants and, based on this,
their improvement to bioadaptive designs. To address these challenges, profound and interdis-
cipline knowledge regarding the complex physiological, chemical, biological, and mechanical
interactions are inevitable. From a continuum mechanical point of view, especially residual
stresses evolving in soft biological tissues are of particular interest, as they strongly influence
the deformation of the body even in the absence of external loadings. Nowadays, rise in these
stresses is assumed to be caused by growth (addition and/or removal of mass) and remodeling
(adaption of internal structure).

While earlier approaches employed, for example, pseudo-thermal loading to cause the
observed residual stresses, more recently two approaches have become particularly popular
for describing the two phenomena: Constrained mixture models and the kinematic growth
approach.

Although constrained mixture models will not be employed to model soft tissues within this
dissertation, their main idea will be briefly discussed, however, the interested reader is referred
to the following works as well as the literature cited therein. Motivated by e.g. individual
half-lives in the extracellular matrix of each constituent, constrained mixture models for soft

tissues (see Humphrey and Rajagopal| [2002]) assume each volume element to be a mixture of
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several constituents, for example, elastin, collagen, and smooth muscle cells. While all of them
undergo the same deformation, this approach enables to take into account individual turn-over
rates, deposition times and stress-free configurations. Since all constituents are resolved within
the governing equations, an extension to include the interstitial fluids, such as was done by
Ateshian and Ricken![2010], can be easily considered. However, the drawback of this method is
its mathematically challenging description of soft tissues as well as its complex computational
implementation. Therefore, more recent models perform a homogenization in time such that
only a single reference configuration is required (see Cyron et al. [2016]), which significantly
reduces the computational cost.

In contrast to constrained mixture models, the fundamentals of kinematic growth approaches
rely on the multiplicative decomposition of the deformation gradient. Although the underlying
mechanisms of growth and remodeling are far from understood, it is widely assumed that both
are triggered by mechanical stimuli. Hence, in order to reach the so-called ‘homeostatic stress’
throughout the tissue, causing the above mentioned residual stresses, the tissue grows and
remodels itself. Therefore, from a modeling point of view, the inelastic part of the deformation
gradient must be designed in such a way that this condition is met at each material point. The
simplest approach is to assume isotropic growth, i.e. the inelastic part is proportional to the
identity tensor multiplied by one or more growth factors. The latter are usually a function of
the stress tensor. Since the results obtained by these isotropic growth models are generally
inconsistent with experimental observations, more sophisticated approaches take into account
the local stress state and define the (tensorial) evolution of growth and remodeling as a function
of the stress tensor. Such kind of models are referred to as anisotropic growth models and are
much more flexible with regard to the particular boundary value problem. Noteworthy, the
type of growth is independent of the underlying or initial macroscopic material behavior, i.e.
anisotropic growth may also be present in initially isotropic material.

In the literature, a variety of approaches can be found to describe anisotropic growth.
Some of them are limited to specific components (and their idealized geometries such as e.g.
cylinders) in the human body, for instance, blood vessels and in particular arteries. However,
it seems more appropriate to choose a stress-like growth criterion based only on the state at
the local material point rather than on the geometry.

This raises scientific questions about the choice of such a growth criterion, the choice of the
associated stress tensor, the incorporation of a time scale since growth and remodeling are not
instantaneous, and a flexible but physically reasonable formulation of the evolution equations.

Fiber reorientation. A major constituent of soft biological tissues is collagen fibers, which

are responsible for optimized carrying of mechanical loadings. Due to these fibers, the overall
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material behavior is initially anisotropic.

In contrast to non-living materials, collagen fibers are remodeled by the cells due to a complex
interplay between resorption and production of those fibers, which is commonly referred to as
fiber reorientation. Macroscopically, these processes can be described by a reorientation of
the structural vector aligned with the (averaged) direction of collagen. While it is generally
accepted that reorientation takes place towards a principal direction, for instance, by minimizing
the angle between the structural vector and the principal direction, it is controversial whether
this principal direction is defined by strain- or stress-like quantities.

For elastic material behavior, both approaches lead to the same result, since the thermody-
namically conjugated strain and stress measures are coaxial, but due to growth and remodeling,
this is no longer necessarily the case. In the context of this dissertation, stress-driven remod-
eling is pursued, as this seems reasonable to reduce the mechanical loading of the tissue.

Scientifically interesting is the question of how to choose a time-dependent and physically
reasonable evolution equation, especially with regard to the associated stress tensor in the

case of inelastic material behavior.

Fundamental questions are still open in various fields of material modeling in a continuum
mechanical sense, ranging from classical elasto-plasticity to modern biomechanics. Although
the materials to be modeled are both living and non-living, from a continuum mechanics point
of view they can be subsumed as inelastic and anisotropic materials. Therefore, the dissertation
aims at developing thermodynamically consistent material models that are not only applicable
to various anisotropic and inelastic materials, but are also numerically efficient and can be eas-
ily implemented by means of AD, as modern material models are accompanied by challenging
numerical implementations.

To begin with, anisotropic (transversely isotropic) materials consisting of fibers embedded
in a matrix are discussed. Conceptually, the anisotropy is captured through structural tensors,
where the matrix is modeled elasto-plastically based on the multiplicative decomposition
of the deformation gradient. Different failure mechanisms (fiber breakage, fiber kinking,
matrix failure) are accounted for by multiple scalar-valued damage variables. To avoid mesh
sensitivity, each of them is gradient-extended using the micromorphic approach by Forest
[2009, 2016]], which provides a straightforward and conventional way to extend ‘local’ models
to ‘nonlocal’ ones.

Subsequently, anisotropic damage using a second order tensor coupled to elasto-plasticity
at finite strains is presented. For conceptual reasons, the constitutive framework is stated with

respect to the logarithmic strain space. Within this approach, both phenomena are treated
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as independent but strongly coupled dissipative mechanisms. Noteworthy, the damage tensor
can be interpreted as an evolving structural tensor. Furthermore, it is appealing to recognize
that the proposed model does not suffer from artificial stiffening, since the damage growth
criterion by (Wulfinghoff et al. [2017] is fulfilled. As for initially anisotropic materials, the
micromorphic approach is employed to overcome mesh dependence in case of softening. To
this end, the three invariants of the damage tensor are gradient-extended.

Finally, concerning the questions related to the rotational non-uniqueness of the multi-
plicative decomposition as well as growth and remodeling, a co-rotated formulation of the
intermediate configuration is proposed. This allows a conceptually straightforward combina-
tion of inelastic and anisotropic materials with AD. In this way, the proposed stress-driven
kinematic growth model for soft biological tissues can be efficiently implemented. Thereby,
tensional homeostasis is accounted for by homeostatic surfaces introduced by Lamm et al.
[2022], which describe the preferred stress with respect to the principal stress space. Ad-
ditionally, production and resorption of collagen fibers is modeled in a smeared sense by a
reorientation of the associated structural vector towards the principal stress direction in the

current configuration.

1.2 State-of-the-art in geometrically nonlinear anisotropic

inelasticity

In order to contextualize the aforementioned questions and issues with already published pa-
pers and to further motivate this dissertation, a review of the relevant literature is provided.
Plasticity based on the multiplicative decomposition is already well established in the contin-
uum mechanics community and a variety of standard literature exists (e.g. Haupt [2002] and
Bertram|[2012]), including its numerical treatment (see e.g. |[Weber and Anand [1990], |Cuitifo
and Ortiz| [[1992], Miehe| [[1996] and Sielenkamper et al. [2022]). Thus, the following will
mainly focus on the fields of anisotropic damage and its regularization as well as soft tissue
modeling.

The following literature review is not meant to be complete, but rather serves as an intro-
duction to the different topics based on their origins as well as to current challenges that are of

particular interest to the scope of this dissertation.
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1.2.1 Continuum mechanical modeling of anisotropic damage

As mentioned above, damage modeling can be divided into isotropic and anisotropic damage,
the latter of which also causes initially isotropic materials to behave in a direction-dependent
manner.

Since its micromechanical motivation, also in a phenomenological and smeared sense, goes
back to various works dealing with isotropic damage, this topic will be introduced in the
following paragraph.

Furthermore, as this thesis deals with ductile damage, i.e. coupled damage and plasticity,
works that are of particular interest in this regard will be mentioned. In this context, only
‘coupled’” models in the case of ductile damage will be discussed. In contrast to the ‘uncoupled’
models, these models are able to consider e.g. a stiffness reduction or a reduction of the plastic
threshold in time, since damage is incorporated into the constitutive modeling.

Microstructure. As mentioned above, dislocations are associated with plasticity, while
nucleation of microdefects, their growth and coalescence are the underlying mechanisms to
cause material degradation. The experimental investigation of these mechanisms is of particular
interest in|Scheyvaerts et al.|[2011]], Shang et al.| [2020] and [Liu et al.| [2021].

In this regard, Lemaitre and Dufailly [1987] proposed several techniques to measure the
degree of degradation. These techniques can be classified into direct and non-direct methods.
The former evaluate e.g. micrographic pictures, while the latter measure the influence of
degradation on other material properties such as stiffness, thermal conductivity or electric
potential. This already gives rise to the requirements for continuum mechanical modeling,
since all these quantities must be considered as influenced by damage. For instance, Celentano
and Chaboche [2007] investigated and characterized ductile damage of steel in an experimental
study using non-direct methods.

Moreover, it is found that the stress state, especially the stress triaxiality, has a significant
influence on the nucleation, growth and coalescence of microvoids. Over the years, several
studies have investigated this influence, e.g. the works of Benzerga et al.|[2004]], Briinig et al.
[2008]], Mirone and Corallo [2010], Malcher et al.|[2014]. Benzerga et al. [2004] concluded
that all stages of damage should be considered inherent anisotropic. In order to measure
anisotropic damage, for instance, the direction dependent stiffness reduction can be measured
(see Hao et al.| [1985] and Lemaitre et al. [2000]). More recently, either biaxial loading
scenarios are utilized to study the effect of damage anisotropy due to different stress states
applied (see e.g. Briinig et al.| [2008, 2013|] and [Schemmann et al. [2018]]) or the specimen is
subjected to non-proportional loading paths (see Briinig et al.[[2019]). In this context, |Gerke

et al. [2020] provided a collection of specimen geometries to study damage anisotropy.



1.2 State-of-the-art in geometrically nonlinear anisotropic inelasticity 11

Isotropic damage. Although most of the existing approaches to model damage are based
on the above described mechanisms of damage growth, they can be roughly differentiated into
micromechanically and phenomenologically motivated ones.

A popular subgroup of the first approach are Gurson-type models (see Gurson [1977]),
which are based on the observations for void evolution of McClintock! [1968]] and Rice and
Tracey [[1969]. Within these models, the internal variables are associated with the void volume
fraction, which, in turn, reduces the yield threshold of plasticity. In a series of publications (see
"Tvergaard| [1981, 1982alb]), the original formulation of the Gurson-type model was adapted
and made more flexible. Finally, [Ivergaard and Needleman| [1984] chose a type of damage
threshold based on the void volume fraction, which is probably the most popular and is often
referred to as the Gurson-Tvergaard-Needleman (GTN) model. The GTN model was then
enhanced to include, for example, the shear damage evolution (see e.g. Wu et al.| [2019]),
plastic anisotropy (see e.g. [Morin et al. [2015]]), yield criteria for intergranular ductile void
growth (see Sénac et al.| [2023]) and kinematic hardening (see e.g. Klingbeil et al. [2016]).
For a comprehensive literature review and a comparison between micromechanically and
phenomenologically motivated models, the interested reader is referred to Besson [2010]].

Models belonging to the second group are consistent with the concept of Continuum Dam-
age Mechanics, which goes back to the pioneering work of [Kachanov| [1958]] and describes
degradation in a smeared sense. To this end, a scalar-valued variable associated with the
material integrity was introduced, which was slightly exchanged by Rabotnov [1963, [1969]
with a scalar-valued variable related to the damage state rather than the integrity. Furthermore,
an interpretation as the reduced cross-sectional area was provided.

In contrast to micromechanically motivated models, the damage variable in Continuum
Damage Mechanics (CDM) considers the underlying mechanisms only in a phenomenological
and smeared sense, and further usually reduces the stiffness of the material. Hence, its
evolution is derived from irreversible thermodynamic principles, and, most of the time, the
concept of either ‘effective stress’ or ‘effective variables’ as well as the hypothesis of strain
(see |[Lemaitre [[1971] and |Lemaitre and Chaboche [1978]]) or energy equivalence (Cordebois
and Sidoroff| [1982]). In Skrzypek and Ganczarski [1999]], a comprehensive overview about
different phenomenological models and the underlying behavior (e.g. ductile or brittle) is
provided. Due to its versatility, the CDM serves as an inspiration in various fields of material
modeling, for instance, for the modeling of material dissolution in electro-chemical machining
(seevan der Velden et al.|[2021]] and jvan der Velden et al.|[2023]]).

As one of the first contributions to derive a thermodynamically sound damage model, the
work of |(Chaboche, [1978]] is to be mentioned. Lemaitre| [1984} [1985a,b] went on to develop
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one of the first ductile isotropic damage models, which is still widely used in the mechanics
community. Since then, various effects were included into the original formulation, e.g., aging
(Marquis and Lemaitre|[1988]]), crack-closure (Andrade Pires et al. [2003]] and Bouchard et al.
[2011]), Lode’s angle (Lian et al.| [2014]]) and finite strains (de Souza Neto et al.|[1998] and
Saanouni and Lestriez|[2009]]).

Most of these models utilize ‘single-surface’ approaches, i.e., damage can only evolve
simultaneously with plasticity. Contrary, ‘two-surface’ approaches treat damage and plasticity
as independent and irreversible but strongly coupled mechanisms (see the early works of Ju
[1989], Hansen and Schreyer [1994]] and Zhu and Cescotto| [[1995]). This makes it possible to
model damage behavior ranging from brittle to ductile within a single material model (see e.g.
Vignjevic et al. [2012], Brepols et al.| [2017, 20185, 2020], [Kiefer et al.| [2018]], Dittmann et al.
[2018] and |Sprave and Menzel [2020]]). Some recent contributions to this field have already
derived thermo-mechanically coupled ‘two-surface’ models (see e.g. [Dittmann et al.| [2020]]
and Felder et al.|[2022])). In this dissertation, only these types of approaches are used to model
coupled damage and plasticity.

Anisotropic damage. Isotropic damage is to be considered an extreme exception, since
microdefects occurring only in the shape of spherical microvoids are practically excluded,
regardless of the degree of ductility. Experimentally, it can be observed that the stiffness
depends on the loading direction, which means that in the case of a hyperleastic material, the
Helmholtz free energy also depends on the loading direction. For phenomenological modeling,
a variety of approaches can be found in the literature. These can be broadly classified according

to their tensorial order:

* Scalar-valued/zeroth order. Conceptually, the simplest extension to include anisotropic
damage might be to use a set of scalar-valued (tensors of zeroth order) damage variables.
These variables are associated either with the failure of individual constituents in case
of composites or with different failure mechanisms of one constituent. For instance, the
volumetric/deviatoric response for small strains can be degraded by individual damage
variables (see e.g. Neilsen and Schreyer [[1993]] and|Carol et al.|[2002]) or in case of finite
deformations for the volumetric/isochoric parts (see e.g. [Rolfes et al.| [2006]) as well
as tension-compression asymmetry can be accounted for by several damage variables
(see e.g.Mazars et al.|[[1990], Papa [1996], Comi| [2001] and Comi and Perego| [2001])).
Continuum damage mechanical modeling of composites is investigated using several
variables, among others, by Maimi et al.|[2007], Holthusen et al.|[2020] and |Poggenpohl
et al. [2021]. For completeness, micro-plane models also belong to this group of scalar-

valued damage models (see e.g. Bazant and Gambarova| [1984]], Bazant and Oh| [[1985]]
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and Kuhl et al.| [2000, 2001]). Here, anisotropic damage is incorporated using multiple

micro-planes, all of which are degraded by individual damage variables.

* First order. Due to non-spherical voids and microcracks, the cross-sectional area
parallel to these cracks is reduced. Mathematically, the area in a given direction can be
described by an outward normal vector of that plane and its magnitude, which represents
the area. Therefore, the use of a first order damage tensor can be motivated and have
been used, for example, by Davison and Stevens [1973]] and |[Krajcinovic and Fonseka
[1981]. The recent publication of Dorn and Wulfinghoft [2021]] introduces a (first order)
crack orientation director in order to describe normal and shear cracking. In addition,
a multiplicative split of the deformation gradient is applied into elastic and crack parts.
Thus, the model may also be classified in the second subgroup of second order tensors,

cf. below.

* Second order. Using a second order damage tensors seems to be a natural extension
compared to the modeling of elasto-plasticity, visco-elasticity or growth. These inelastic
phenomena are modeled by introducing second order tensors in addition to the total
strain tensor. Therefore, and due to their easier interpretation compared to higher order
tensors, second order anisotropic damage models are widely used today. These models

can be divided into two groups:

(i) In analogy to isotropic damage, the second order damage tensor is treated as an
additional internal variable, which can be considered ‘decoupled’ from the deformation.
Additionally, the second order damage tensor is usually assumed to be symmetric. Most
models existing (small and finite strains) follow this type of approach, among many
others, see the models of Dragon and Mrdz [1979], Murakami| [1981], |Cordebois and
Sidoroft| [[1982], Hansen and Schreyer [[1994], Murakami and Kamiyal [[1997/]], Voyiadjis
et al.[[2008]], Badreddine et al.[[2015]] and [Fassin et al.| [2019b,a]]. Since the Helmholtz
free energy is usually considered to be a scalar-valued isotropic function of its arguments,
it is modeled using (mixed) invariants (see Spencer [1971] and Zheng| [[1994]). Thus,
an isotropic degradation results from the principal invariants of the damage tensor itself,
while damage anisotropy is caused by mixed invariants of the strain and the damage
tensor (see e.g. Kuna-Ciskal and Skrzypek [2004] and Challamel et al. [2005]). More
generally, this allows to interpret the damage tensors as a structural tensor (see Reese
et al.|[2021]], [Holthusen, Brepols, Reese and Simon! [2022a], Holthusen, Brepols, Reese
and Simon| [2022b], and Holthusen, Brepols, Simon and Reese| [2022]).

(ii) The total strain is decomposed into elastic strains and damage strains (and plastic,
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viscous and growth strains, if required). Consequently, damage enters the Helmholtz free
energy indirectly through the amount of elastic strain. Models based on this approach
can be found, for instance, in|Lehmann|[[1989], Briinig [2003]] and [Menzel et al. [2005]].

* Fourth order. In case of a linear relationship between the strain and the work conjugated
stress, the constitutive law can be equivalently expressed by double contracting the
(second order) strain tensor with the (fourth order) elasticity tensor. Hence, it seems
reasonable to modify the (effective) elasticity tensors, and thus, to incorporate damage
anisotropy through the stiffness tensor (see e.g. (Chaboche et al. [1995] and Pituba and
Fernandes|[2011]]). More generally, there are also irreducible sets of invariants for fourth
order tensors (Betten| [1987]]), which may allow constitutive modeling of damage similar
to the approach described for second order tensors. Compared to models using a second
order tensor, a higher degree of damage anisotropy can be realized using a fourth order
damage tensor.

* Eighth order. For completeness, damage tensors of eighth order are mentioned. As
described by (Chaboche, [1978] and subsequent works, the highest degree of damage
anisotropy is achieved using eighth order damage tensors. However, from a contin-
uum mechanical modeling point of view, these tensors are not practical for constitutive

modeling.

It should be noted that for ductile damage modeled by a second order damage tensor, the
question of how to define the ‘effective’ stress as well as the mapping between the ‘real’ and
‘effective’ stresses is by no means trivial to answer. In addition, Murakami [2012] mentioned
that using a second order damage tensor, damage orthotropy is the most complex damage
anisotropy representable, however, Kachanov| [1987]] emphasized its accuracy even for high
crack densities. Therefore, and due to the large amount of available literature using second
order damage tensors, a second order damage tensor is employed in the models presented in
Chapters [313]

The model for transversely isotropic materials (matrix with embedded fibers) presented in
Chapter 2] uses several scalar-valued damage variables both for the individual components and
to account for different failure mechanisms of the fibers (fiber breakage and kinking). The

latter split accounts for asymmetric behavior between tension and compression.
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1.2.2 Mesh regularization techniques

All damage models outlined in the previous Chapter [I.2.1] regardless of whether they are
micromechanically or phenomenologically motivated (including the micro-plane approaches),
are so-called ‘local’ models, and thus, unfortunately suffer from a pathological mesh depen-
dency. Although damage is perhaps the most well-known inelastic phenomena causing mesh
dependence, this dependence can also generally occur due to softening behavior, such as plas-
ticity. Since reported in the literature by Bazant et al.|[1984] and de Borst et al.|[1993], the
issue of mesh sensitivity has been intensively studied and a wide variety of approaches to
solving it have been developed. Additionally, for instance, Jirasek and Grassl [2008] reported
an undesired dependence between the propagation of the localization zone and the orientation
of the finite elements. Loosely, the techniques to cure the pathological mesh dependence can
be categorized into three groups.

The first group contains so-called crack band models (see e.g. Bazant [[1982] and Bazant
[1985]]). As these models only require an adaption of the material parameters, they are easy to
implement. However, although these models provide the correct amount of dissipated energy,
the remaining issues are not solved.

Models belonging to the second group account for cracks in a discrete manner, i.e., dis-
continuities such as a jump in the displacement field are allowed. Cohesive zone models
(Dugdale [[1960]] and Barenblatt [1962]) resolve the crack by a separation between finite ele-
ment surfaces. Hillerborg et al.| [1976]] introduced the fracture energy into the formulation of
traction-separation laws, in order to define the threshold of crack initiation and propagation.
Until today, the cohesive zone approach is subject of several contribution to the field of discrete
damage modeling (see e.g. Bayat et al.| [2020], Chen et al.|[2021] and Rezaei et al. [2021]).
Unfortunately, the crack path must be known in advance, since its propagation is restricted
along the elements’ surfaces. Therefore, the extended finite element method (Belytschko and
Black [1999]) was developed. In the field of damage modeling, the energetic approach of Mo€s
and Belytschko| [2002] can be mentioned, since this allows to model arbitrary cracks.

Continuous modeling approaches represent the third group. While continuum mechanics
accounting for the microstructure, for instance, by means of the Cosserat continuum theory
(see e.g. |de Borst [1991]), nonlocal continuum formulations such as kinematics-inspired
peridynamics (Javili et al.|[2019] and [Laurien et al. [2023]]) as well as viscous regularization
techniques (see e.g. [Needleman|[1988|] and [Niazi et al.|[2013]]) can be subsumed in this group,
two established approaches are of particular interest here: Nonlocal integral and gradient-
extended formulations.

Nonlocal integral-type. First introduced by [Pijaudier-Cabot and Bazant|[1987]] and Bazant
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and Pijaudier-Cabot [[1988]] in field of inelastic, especially damage, material modeling, the
nonlocal integral-type approach. Since then, nonlocal integral-type models were further
developed and applied to various structural problems (see e.g. |Ganghoffer et al. [1999] and
Borino et al| [2003]]). However, as already indicated, the combination of nonlocal integral
formulation and the FEM is obstructive from the numerical implementation point of view,
since the general characteristics (nonlocal integrals and local finite elements) oppose each
other.

Gradient-extended. Contrary to nonlocal integral-type models, gradient-enhanced formu-
lations incorporate an internal length scale by an additional partial differential equation (PDE).
This PDE includes gradients of the newly introduced field variable, and both the variable
itself and the gradients enter the material formulation. Consequently, the ‘local’ material
model is enriched by a nonlocal character through the PDE on the global level. For ‘local’
plasticity models, gradient-enhanced formulations were proposed, for instance, by [Svendsen
and Bargmann| [2010], Wulfinghoft and Bohlke| [2012] and [Miehe| [2014]. A comprehensive
review paper on gradient-enhanced plasticity theories was presented by Voyiadjis and Song
[2019].

In analogy to these enhanced formulations, ‘local’ damage(-plasticity) models were en-
hanced by incorporating an internal length scale via an additional PDE. Particular subclasses
of those are the phase field of fracture (see Francfort and Marigo| [1998]] and Bourdin et al.
[2000]) and the micromorphic approach (see Forest| [2009, [2016]).

In the phase field approach, a field order parameter as well as a corresponding PDE is
introduced on the global level. Within the ‘local’ material model, the ‘local’ damage variable is
replaced by the field order parameter. Hence, the formulation is rendered nonlocal. Important
contribution to the phase field of fracture approach are its thermodynamically consistent
derivation presented by Miehe et al.| [2010a]] and its robust implementation in the context of
the FEM (see |[Miehe et al.|[20105]).

The micromorphic approach, and the conceptually similar but less general formulation of
Dimitrijevic and Hackl [2008, 2011], introduces a ‘micromorphic’ or ‘nonlocal’ variable on
the global level similar to the phase field of fracture. In contrast to phase field models, this
variable is not directly incorporated into the formulation of, for instance, the elastic stored
energy, but rather a ‘local’ counterpart is still utilized. Thus, material point studies are still
possible without spatial discretization. In order to ensure a strong coupling between both
variables, a penalty energy is usually added to the Helmholtz free energy, which penalizes the
difference between these variables. The advantage of the micromorphic framework definitely

lies in its rigorous thermodynamically consistent derivation and its unified applicability to a
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wide range of material phenomena. Noteworthy, the micromorphic approach is not limited to
damage and/or plasticity models. Consequently, a very general procedure to gradient-enhance
any variable on the ‘local’ material point level is proposed.

In the field of (ductile) damage modeling, the micromorphic approach was successfully
applied by various authors: Micromorphic-extended isotropic (ductile) damage is considered
e.g. by|Aslan et al. [2011]], Saanouni and Hamed [2013]], Brepols et al.| [2017, 20185, 2020],
Sprave and Menzel [2020] and |Friedlein et al. [2023]], among many others. For instance,
Fassin et al.|[2019bla], Holthusen et al.| [2020], Holthusen, Brepols, Reese and Simon|[20225],
Poggenpohl et al. [2021]] and Langenfeld and Mosler| [2020] cured mesh sensitivity in the
case of anisotropic damage using the micromorphic approach. Due to the above mentioned
advantages in terms of consistency and generality, the regularization technique chosen in

Chapters [2}{5]is the micromorphic approach.

1.2.3 Growth and remodeling of soft biological tissues

The simulation of growth and remodeling processes are two of the most prominent subfields
of biomechanics and mechanobiology. In this regard, growth deals with the change of mass
and/or volume, while remodeling is associated with the adaptation of internal structure. Since
new findings in these two fields and all peripherally related subfields are being explored on a
daily basis, it would be foolish to assume that all aspects could be introduced here. One of the
reasons for this is that the macroscopic effects and relationships are somewhat understood, but
the underlying mechanisms are far from understood.

A detailed characterization of growth and remodeling would require modeling in a multi-
physics context, including fluid-structure interactions and various advection-reaction-diffusion
equations for the transport of hormones and nutrients. These are extremely challenging sci-
entific problems in themselves and are the subject of ongoing research (see, among many
others, | Yoshihara et al. [2014], Thon et al. [2017], Escuer et al. [2019] and [Manjunatha et al.
[20224a]]). However, it is common sense that a major factor influencing growth and remodeling
is mechanical stimulation, regardless of whether the biological material of interest is hard
or soft tissue. Since the growth and remodeling model proposed in this thesis is limited to
mechanically-driven inelastic deformations, the following focuses on the mechanical influence
on tissues.

First of all, the variety of different types of tissues found in nature is enormous, but a rough
classification can be made between plant and animal tissues. The continuum mechanical
modeling of the former is treated, for example, in Macek et al.| [2023]]. In this dissertation, the

focus is on animal tissues.
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Animal tissues can be categorized into connective, muscle, nervous, and epithelial tissues
(cf. [Pawlina and Ross| [2018]]). These tissues are a mixture of cells and the extracellular
matrix, which consists mainly of elastin, collagen, and ground substance. The latter two are
most commonly produced by fibroblasts cells. A much deeper insight into the hierarchical
structure of tissues, tissue types, the cells involved, the interactions at the cellular level,
and generally into biomechanics with special emphasis on tissue mechanics is provided in
the textbook by Cowin and Doty [2007]. In addition, the interested reader may find more
detailed introductions to biomechanics and the mechanical modeling of biological growth in
the textbooks by Humphrey and Delange [2004] and |Goriely [2017], respectively.

A common categorization in biomechanics and/or mechanobiology distinguishes between
hard and soft tissues. On the one hand, hard tissues and their continuum mechanical modeling
such as, for example, bones (see e.g. (Cowin and Hegedus| [1976], Hegedus and Cowin|[1976],
Cowin and Nachlinger| [1978]], |(Cowin|[[1999], |(Cowin|[2001]], Nackenhorst and Hartung [2001]]
and Floerkemeier et al.[[2010]]), horns (see Skalak et al. [1997]) and teeth already received
greater consideration from the modeling point of view. On the other hand, the physiologically
specific material modeling of soft tissues includes brain tissues (see e.g. [Budday et al.| [20135]],
Mihai et al.|[2017],|Budday et al.|[2017] and |Budday et al.|[2020])), the skin (see e.g. Buganza
Tepole et al| [2011]]), arteries (Holzapfel et al.| [2000], Holzapfel and Ogden [2010]), the
cardiovascular system (see e.g. |[Humphrey| [2002], Hoskins et al. [2017] and |Quarteroni et al.
[2017]), the heart (see e.g. |Dal et al.|[2013]], Baillargeon et al. [2014]), muscles (see e.g. |Bol
et al.[[2014] and |Wisdom et al. [2014]]), tendons (see e.g. BOl et al.|[2015] and |Burgio et al.
[2022]) and many more. In contrast to hard tissues, soft biological tissues are subject to both
finite rotations and finite strains, while hard tissues are usually only exposed to finite rotations.
In this dissertation, special attention is paid to the continuum mechanical modeling of soft
tissues.

Non-living materials behave only in a passive way, i.e. all elastic and inelastic deformations
are caused by the natural dissipation mechanisms. Thus, no entropy source or sink has to
be introduced to be in agreement with physics. With respect to inelastic behavior, besides
degradation, viscoelastic behavior is quite pronounced for soft tissues, e.g. in the case of
brain tissues (Reiter et al. [2021]] and Ricker et al. [2023]) and the heart (Tikenogullar et al.
[2022]). These processes usually occur on a much smaller time scale than active deformations
(cf. |Goriely [2017]). Active deformations refer to processes in which the dissipation of the
system is reduced, which only occurs in living materials and is most prominent in growth and
remodeling. Obviously, this violates the rules of physics if the living organism is modeled as a

closed system. To this end, living organisms are mechanically considered an open system and



1.2 State-of-the-art in geometrically nonlinear anisotropic inelasticity 19

additional entropy sources and/or sinks are introduced (see Kuhl and Steinmann| [2003a.b])).
Furthermore, due to the large time scale of growth processes, the balance of mass is considered
to be implicitly satisfied, and thus, the balance of linear momentum is reduced to the quasi-static
case, which is known as the slow-growth assumption (cf. |Goriely| [2017]).

Since active deformations are not necessarily driven by thermodynamically consistent driv-
ing forces, it is appropriate to mention the most common modeling approaches to drive (active)

growth and remodeling:

* Active forces extend the body forces in the strong form of linear momentum by an active
force term. Thus, in order to be in equilibrium, the stress state is altered with respect to

the load state of the external loads.

* The existence of active stresses is postulated in addition to the stresses derived from the

elastic stored energy (see e.g. |Guccione and McCulloch| [1993]).

* Typically, all strain energies are designed so that a stretch of one corresponds to the
zero-value minimum of the energy. However, shifting the minimum of the collagen
fibers toward a stretch of zero, the fibers actively desire to contract themselves. Of
course, a minimum at zero is forbidden, as this would result in a contraction to zero.

This approach is called active fibers (see e.g. Moulton et al.|[2016])).

* An active metric known from differential geometry is utilized (see e.g. |Yavari and
Goriely [2014]). Here, the distance between material points is changed such that stresses

arise caused by a change of the reference configuration.

* The deformation gradient is decomposed multiplicatively into an elastic as well as a
growth and remodeling part, sometimes referred to as active strains or kinematic growth
approach, which will be used in the present thesis. Although it may seem similar to the
previous approach, active strains should not be confused with an active metric, since the
multiplicative decomposition suffers from inherent rotational non-uniqueness, unlike the

active metric.

For a brief but extremely insightful overview that is well worth reading, see the overview by
Goriely| [2018]]. In this regard, the purpose of soft biological tissues to grow and remodel
themselves can be attributed to several reasons, but one established reason is the ability to
achieve, maintain, and restore a state of homeostasis.

Homeostasis. Homeostasis is an essential factor in ensuring healthy tissues. According

to the definition of Cannon [[1929], homeostasis describes the ability of tissues to respond to
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physiological influences in such a way that a similar mechanical state is maintained and restored
(cf. e.g. |Cyron and Humphrey|[2016]). However, this does not specify the mechanical quantity
describing the homeostasis, be it strain, stress, force or stiffness. Wolinsky and Glagov|[1967]]
went on to study the aorta and found that tension seemed to drive homeostasis regardless of
the size of the specimen.

Subsequently, Brown et al. [1998] introduced the term tensional homeostasis to account for
the hypothesis that soft tissues seem to prefer a tensile stress state. However, since ‘tensional
homeostasis’ is only a hypothesis, the term ‘mechanical homeostasis’ can also be used more
generally (see |Humphrey et al.| [2014]). Considering that growth and remodeling might
be mainly driven by mechanical stimuli, additional limiting factors such as the availability
of hormones and nutrients should be mentioned. Thus, ‘mechanical homeostasis’ may also
emphasize that most (continuum mechanical) modeling approaches consider only the influence
of mechanical fields. One of the few works that combines growth and remodeling with the
diffusion and availability of nutrients is the contribution of Soleimani et al.| [2020].

In order to gain more knowledge about the underlying mechanisms and to understand what
drives homeostasis, an excessive number of experimental studies have been conducted in
the recent past. Uniaxially constrained experiments of tissue equivalents were conducted,
for example, by Marenzana et al.| [2006] and Ezra et al. [2010]. Both a contraction of the
tissue, indicating tensional homeostasis, and a restoration of homeostasis were observed.
However, tissues are generally not exposed to uniaxial conditions, but are practically always
subject to multiaxial conditions. In order to close this gap in experimental terms and the
deeper understanding of homeostasis, a large number of multiaxial experiments, including
perturbation to observe the recovery of homeostasis, have been performed by Eichinger et al.
[2020], Eichinger, Grill, Kermani, Aydin, Wall, Humphrey and Cyron| [2021]] and Eichinger,
Paukner, Aydin, Wall, Humphrey and Cyron [2021] in the recent past. For a broader description
and a more detailed explanation of the mechanisms associated with homeostasis at the cellular
level, the interested reader is kindly referred to the review article by [Eichinger, Haeusel,
Paukner, Aydin, Humphrey and Cyron [2021] and the thesis by the same author (Eichinger
[2021]).

Kinematic growth. The variety of approaches that have been developed over the years
to simulate soft tissue is as diverse as soft tissue is complex. As alluded to in the previous
Chapter constrained mixture models have become popular for several reasons mentioned.
In addition, since the behavior of soft tissues is mainly controlled by cells, it seems natural
to resolve the cells’ behavior as well as the cell-cell interactions in a discrete manner (see

e.g. Mogilner et al. [2012]). In this way, new knowledge about the cells can be directly
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incorporated into the simulation. However, this approach suffers from a lack of connection from
this microscale to the macroscopic tissue scale (see (Goriely| [2017]). Therefore, continuum
mechanical models are still preferable, and the multiplicative decomposition (active strains) is
employed here.

The multiplicative decomposition of the deformation gradient in the field of growth and
remodeling goes back to the work of Rodriguez et al. [1994]. The models developed on the
basis of the multiplicative split may be classified into isotropic and anisotropic growth models.
Note that anisotropic growth does not refer to the initial material behavior, i.e., initially isotropic
materials may grow anisotropically and vice versa.

Isotropic growth models assume that the growth tensor itself or its evolution is proportional
to the identity tensor multiplied by some growth factor (see Lubarda and Hoger| [2002]]). The
growth factor can then be chosen as a function of some scalar quantity, say the trace of the
elastic Mandel-like stress tensor relative to the homeostatic stress. If both are equal, no further
evolution of growth and remodeling should take place. Consequently, all eigenvalues of the
inelastic part of the deformation gradient are equal at all times. Such kind of isotropic growth
models were proposed, for instance, by Himpel et al. [2005]] and Kuhl et al.|[2007]. However,
isotropic models imply that an extremely restrictive assumption about growth and remodeling
is made a priori, which in itself does not seem very flexible from a modeling point of view. Itis
therefore not surprising that the comparison between isotropic growth models and experiments
conducted by [Braeu et al. [2017]] showed a large number of limitations and no satisfactory
agreement between simulation and experiment.

In contrast, anisotropic growth models are able to grow and remodel directionally. The
straightforward extension of isotropic growth models is to introduce more than one growth
factor and multiply it by a specific direction (structural tensor), similar to modeling anisotropic
thermal expansion at finite deformations (see Vujosevic and Lubardal [2002]). The sum of
all growth factors gives the direction of the evolution of the total growth tensor. In the spirit
of this method, Goktepe et al. [2010] developed an anisotropic growth model including three
growth factors associated with specific muscle fiber orientation in the heart. Similarly, Saez
et al. [2014]] and Rahman et al.|[2023]] modeled growth in a hypertensive human carotid artery
using a transversally isotropic growth approach (cf. Goriely|[2017] for different categories of
growth tensors).

Since growth and remodeling are assumed to be related to tensile stresses, it seems reasonable
to define the evolution of growth in terms of the local stress field. This is the basic idea of
the models proposed, for example, by [Zahn and Balzani [2017, [2018] and [Liu et al.| [2019].

The former introduce a general growth tensor that is multiplicatively decomposed into three
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individual parts. Each part can account for a different preferred direction of growth.

An idea reminiscent of plasticity is presented by Soleimani et al.|[2020]. A scalar function
similar to a yield criterion is introduced to capture the over- and understress between the current
stress state and the homeostatic stress state. However, the tensor describing the direction of
growth is not derived from a potential, but rather is chosen based on the eigenvectors of the
Cauchy stress tensor. The idea of using a concept already known from plasticity was presented
by Lamm et al.|[2021, 2022]. A so-called ‘homeostatic surface’ is postulated, which describes
the preferred stress state in the principal stress state of the thermodynamically consistent
driving force associated with growth. The evolution might then be derived associatively or non-
associatively by postulating another growth potential. In addition, since growth and remodeling
do not occur instantaneously, time-dependent approaches motivated by the theory of visco-
plasticity are used to introduce a time scale into the model. [Holthusen et al.|[2023]] followed this
approach and extended it for initially anisotropic materials, in particular considering collagen
fibers.

Remodeling. The inelastic part of the deformation gradient generally contains both growth
and remodeling. Thus, according to Cyron et al. [2016]] and Braeu et al.| [2017], it seems
reasonable to multiplicatively decompose the inelastic part of the deformation gradient into
a part related to growth and a second part related to remodeling. Since remodeling refers
only to a change in the internal structure, the evolution of the remodeling related part must be
volume preserving. This can be achieved, for example, by a deviatoric evolution direction of
the remodeling related part, cf. von Mises plasticity (see e.g. Vladimirov et al. [2008])).

An example of remodeling in hard tissues (bones) is their adaptation to external loads by
some kind of reinforcement. From a modeling point of view, this can be achieved by adjusting
the density. Although this involves a change in volume associated with growth, it can also be
considered as remodeling (see |Goriely [2017]). However, the most well-known remodeling
phenomenon is certainly the remodeling of collagen fibers or their reorientation. The purpose
of this reorientation is to optimally carry external (tensile) loads. This topic will be discussed
in more detail in the following Chapter[I.2.4]

The growth and remodeling model presented in Chapters is based on the kinematic
growth approach and further postulates the existence of homeostatic surfaces. A ‘one-surface’
approach based on the Cauchy stress of the entire tissue and a ‘two-surface’ model, where one
surface describes the homeostatic state of the collagen and a second surface is responsible for
the homeostasis of the matrix are investigated. In order to elegantly implement the material
model through algorithmic differentiation, a novel framework is proposed using a uniquely

defined co-rotated intermediate configuration.
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1.2.4 Fiber reorientation

Collagen is one of the major constituents of, for instance, the extracellular matrix and tendons.
These collagen fibers are composed of collagen fibrils, which are produced by fibroblasts within
the cells. While they are perfectly suited to carry (tensile) mechanical loads, their contribution
under compressive conditions is negligible in most cases. For an overview of the molecular
structure, mechanical properties, and assembly process of collagen fibers, at least in tendons,
see the comprehensive article by [Silver et al.|[2003] and the literature cited therein.

A collagen fiber bundle does not contain completely parallel oriented fibers, rather the
orientation of all collagen fibers can be described by an average (major) direction. To account
for this dispersion within the continuum mechanical modeling, Gasser et al.| [2006] proposed
different approaches to consider the fiber dispersion. The identification of the fiber dispersion
parameter is the subject of e.g, Schriefl, Reinisch, Sankaran, Pierce and Holzaptel| [2012]] and
Schriefl, Zeindlinger, Pierce, Regitnig and Holzaptel [2012].

As mentioned in the previous chapters, a change in internal structure — referred to as remod-
eling — distinguishes living from non-living materials. Remodeling allows the organism to
dynamically adapt its material response to, for example, mechanical loading. Fiber reorienta-
tion can be considered a prominent remodeling process within soft biological tissues. Although
far from being understood, the interplay between resorption and production (proliferation) of
collagen fibrils and the fibroblasts involved is assumed to be mainly driven by mechanical
stimuli (see the review article by [Wells [2013]]), which is supported by experimental evidence
(see e.g. [Stopak and Harris| [1982], |[Eastwood et al.|[1998]] and Hu et al.| [2009]).

From a mechanical modeling point of view, these mechanical stimuli can be divided into
strain- and stress-driven approaches. The former usually assume that the averaged direction of
collagen coincides with the principal direction of (tensile) strain, while stress-driven approaches
proceed analogously with the principal direction of (tensile) stress.

Strain-driven. Cowin| [[1984] argued that baroreceptors sensing mechanical stimulation
are merely stretch/strain receptors. Therefore, fiber reorientation can only be a strain-driven
process. This argument culminates in the statement of |(Cowin| [2004] that the concept of stress
is a purely fictitious and man-made concept (a statement that the author of this dissertation
shares in principle) Therefore, physiologically, only the measurable quantity stretch/strain can
influence reorientation. It is interesting to note that [Wang et al. [2001] observed the fibers’
reorientation mainly depends on the magnitude of the applied strain rather than its rate.

Driessen et al. [2004] defined the evolution equation for fiber reorientation in terms of the
angle between the collagen fibers and the target vector towards the collagen fibers should be

reoriented. The model was then extended to include fiber dispersion (see Driessen et al.|[2008]])
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and successfully applied in the context of (idealized) arteries and aortic valves. A patient-
specific simulation including fiber remodeling was presented by Creane et al.| [2011], who
assumed that the mean fiber direction is at an angle between the first and second highest positive
strain vectors. A constitutive framework for strain-driven fiber remodeling for transversely
isotropic materials has been proposed by Menzel [2005]. Here, an evolution equation is set
for the structural vector aligned with the averaged direction of collagen fibers, which rotates
the vector in the direction of the principal eigenvector of the right Cauchy-Green tensor. This
evolution equation is beneficial since it naturally preserves the orthogonality condition, i.e.,
the structural vector remains a vector of unit length. This approach was pursued, for example,
by Kuhl et al.|[2005]] and Himpel et al. [2008] in the context of structural simulations. Later,
Menzel| [2007]] extended the constitutive framework to two families of fibers included. The
interested reader is referred to the introductory part of the latter article for an overview of the
physiological background and continuum mechanical modeling of fiber reorientation.

Stress-driven. Since the strain energy in a hyperleastic material takes an extremum if
the strain tensor and the work conjugated stress tensor are coaxial (cf. |Sgarra and Vianello
[1997]), one may motivate a stress-driven fiber reorientation. However, for inelastic materials
the right Cauchy-Green tensor and the second Piola-Kirchhoff stress tensor are generally not
coaxial, since the second Piola-Kirchhoff stress is a tensor-valued isotropic function of the
right Cauchy-Green tensor as well as the inelastic part of the deformation gradient. Thus, for
inelastic materials, the stress-driven approach will lead to a different orientation compared to
the results for a strain-driven approach in general.

In Imatani and Maugin|[2002]], an evolution equation for the structural vector is introduced,
where the driving force involved is of Mandel-stress-type and its principal directions, respec-
tively. Johansson et al.| [2005] followed a similar approach as well. Hariton et al.| [2007a,b]]
proposed an iterative scheme in which the boundary value problem is computed several times
to obtain the final orientation of the collagen fibers. In their work, they considered two families
of fibers in an arterial wall. To increase efficiency and to reduce computational cost, [Fausten
et al. [2016] developed an incremental algorithm, where they averaged the principal stresses
over all Gaussian points and chose the loaded state for the computation. Although for most
applications the orientation of collagen at the end of fiber remodeling is of interest, incremental
approaches may suffer from abrupt changes in the direction of anisotropy, and thus, lead to
numerical instabilities. Therefore, Zahn and Balzani| [2017, |2018]|] introduced a continuous
reorientation algorithm based on the angles enclosed between the actual orientation of collagen
fibers and the target vector. Similarly, Holthusen et al. [2023]] adopted the approach presented

by Menzel [2005]], however, the structural vectors with respect to the current configuration ori-
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ents towards the principal direction of the Cauchy stress tensor. Here, a continuous remodeling
approach is utilized with decreasing remodeling rate for decreasing angle enclosed between
collagen fibers and the principal direction.

Additionally, the recent approach of Ciambella and Nardinocchi [2019, 2022] and Ciambella
etal. [2022] can be considered stress-driven. Instead of evolving the referential structural vector
towards a preferred direction, they introduced a (second order) rotation tensor and multiplied it
with the second order structural tensor, which is the dyadic product of the structural vector with
itself. This rotated structural tensor then enters the Helmholtz free energy. After a rigorous
thermodynamic evaluation, an evolution equation only for the rotation tensor is obtained. Thus,
the structural vector remains unaltered. Since the driving force used to derive the evolution
equation for this rotation tensor is in fact its thermodynamically consistent driving force, the
approach can be classified as stress-driven.

Besides the question whether fiber reorientation is strain- or stress-driven, there is an ongoing
debate about the deformation of the structural vector between the reference and the current
configuration, and thus, also to the intermediate one. Most models for soft biological tissues
found in literature assume an affine deformation, however, as investigated by [Stracuzzi et al.
[2022] affine mappings might not be appropriate in each case. A non-affine continuum
mechanical approach can be found, for instance, in Raina and Linder| [2014]].

However, this question is out of the scope of this dissertation and an affine mapping is
chosen. Furthermore, the remodeling of the structural vector is stress-driven and an evolution
equation for the current structural vector is introduced (see Chapters[6}{7). The target vector is

equivalent to the (tensile) principal direction of the Cauchy stress tensor.

1.3 Outline of the dissertation

The present cumulative dissertation consists of three peer-reviewed journal articles (Chapters|2]
and [6)) as well as three contributions to conference proceedings (Chapters [} [5and [7). The

dissertation is structured as follows:

* Article 1 (Chapter [2)) deals with the modeling of initially anisotropic materials, for
instance fiber-reinforced plastics, which undergo plastic deformations and damage. The
entire framework is derived in a thermodynamically consistent manner. To account
for the anisotropy resulting from the embedded fibers, the concept of structural tensors
is used. Furthermore, both damage of the fibers and damage coupled to plasticity
of the matrix constituent are considered at finite strains. A ‘two-surface’ approach

for coupled damage-plasticity is utilized for the matrix part. Moreover, three scalar
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damage variables associated with fiber damage under tensile loading, fiber kinking
under compressive loading, and a variable accounting for the damage of the matrix
material are used. As a result, based on the stretch in fiber direction, crack-closure of
fibers can be taken into account, providing a tension-compression asymmetry of the
overall model. Since the damage variables are employed in a local sense, the model
would suffer from pathological mesh dependence. To overcome this issue, each local
damage variable is gradient-extended using the micromorphic approach. In addition,
the numerical implementation of the evolution equations, the finite element formulation,
and the solution procedure are presented in a fully implicit manner. Finally, material
point studies and structural examples are used to examine the various inelastic effects of

the proposed formulation and highlight its ability to provide mesh-independent results.

Article 2 (Chapter is concerned with initially isotropic materials, which, due to
damage anisotropy coupled to plasticity, become anisotropic with respect to their overall
response. For the kinematics, logarithmic strains are considered, where an additive
split into elastic and plastic parts is utilized. Once more, a ‘two-surface’ approach for
coupled damage-plasticity equips the model with greater flexibility with regard to the
degree of ductility and allows an independent constitutive modeling of each inelastic
phenomenon. In addition, isotropic and kinematic hardening effects are considered
for both inelastic phenomenon. Furthermore, anisotropic damage is modeled in line
with Continuum Damage Mechanics, where a symmetric second order damage tensor
is utilized to account for the induced anisotropy. Since the framework is derived in the
logarithmic strain space, its transformation into the Lagrangian strain space is presented
not only for the consitutively dependent quantities, but also for the material tangent
operators, to be applicable in the finite element formulation described in Chapter
Besides these constitutive modeling related considerations, the question on how to
address mesh sensitivity using the micromorphic approach arises again. Contrary to
scalar isotropic damage, the choice of nonlocal variables is non-trivial as there are
several ways to incorporate an internal length scale into the model. Therefore, the
invariants of the damage tensor are gradient-extended. Moreover, the entire numerical
implementation on a local material point level and on the structural finite element level
is presented. Several single element tests as well as three structural examples show the
effect of damage anisotropy, anisotropic damage coupled to plasticity, and that the novel

invariant-based gradient-extension can provide mesh-independent results.

* Article 3 (Chapter 4)) presents a condensed version of the material model derived in



1.3 Outline of the dissertation 27

Chapter [3] Here, the difference is the incorporation of anisotropic damage into the
elastic strain energy. The final material formulation to be implemented is analogous to
Chapter [3] Moreover, the choice of most energy contributions to the Helmholtz free
energy is not presented in a generic way, but rather simplified to the most appropriate
version. However, another structural example of an asymmetrically notched specimen
that undergoes both plasticity and anisotropic damage is examined. The results again
illustrate both the effect of damage anisotropy on a structural level and the robust

numerical framework.

* In Article 4 (Chapter |5) addresses additional theoretical aspects of the anisotropic
damage model coupled to plasticity that were discussed neither in Chapter [3| nor in
Chapter ] First, it is shown that due to the chosen mapping of the second order
damage tensor from the reference to the intermediate configuration, the formulation
is invariant with respect to superimposed rotations of the intermediate configuration.
Second, another possible gradient-extension is suggested based on the volumetric and
deviatoric part of the damage tensor, respectively. Hence, the number of additional
nonlocal variables is reduced to two. The framework is similarly condensed as in
Chapter ] Moreover, and in contrast to the examples from Chapters [3] and [] the

material model is studied in a three-dimensional setting using a ‘dog-bone’ specimen.

* Article 5 (Chapter [6) presents both a novel co-rotated formulation of the intermediate
configuration and a new stress-driven kinematic growth model for soft biological tissues.
Due to the inherent rotational non-uniqueness of the intermediate configuration, it is
not straightforward to implement the constitutive equations stated with respect to the
intermediate configurations into an AD tool. Moreover, all derivatives with respect to
variables of this very configuration cannot be calculated using AD. Therefore, a co-
rotated formulation is presented, which shares the same physical interpretation with
the intermediate configuration, but is uniquely defined. Especially in case of highly
anisotropic materials undergoing inelastic effects, this approach proved helpful. Next,
this co-rotated approach then serves as the theoretical framework for the novel stress-
driven growth model. Within this model, two parallel multiplicative decompositions
of the deformation gradient are used to distinguish between growth and remodeling
of either direction-independent constituents or direction-dependent constituents such
as collagen. Furthermore, the approach of homeostatic surfaces introduced by Lamm!
et al. [2022] is employed to describe the inelastic evolution equations, where both a

‘one-" and a ‘two-surface’ approach are discussed. Since growth and remodeling are a
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time-dependent processes, a Perzyna-type approach is employed to incorporate a time
scale into the model. In addition, remodeling of collagen fibers is included in a stress-
driven manner with respect to the co-rotated current configuration. The latter avoids the
usage of objective rates. In order to study the proposed material model, the model is
validated using several experimental data for uniaxial and multiaxial loading taken from

the literature.

Article 6 (Chapter [/)) considers a condensed version of the stress-driven growth model
developed in the previous chapter. The model is derived with respect to the co-rotated
intermediate configuration, however, contrary to Chapter[6] no inelastic hardening effects
are taken into account. Furthermore, only the ‘one-surface’ approach based on the overall
Cauchy stress is used to derive the evolution equations in an associative manner. As
in the previous article, fiber remodeling is included in a stress-driven manner based
on the overall Cauchy stress. Due to the co-rotated formulation, the entire model
is implemented using an algorithmic differentiation tool. Lastly, another structural
example of a cylindrical specimen with a hole, which is subjected to internal pressure,
is examined. Here, special attention is paid to both the overall growth and remodeling

rate and remodeling of collagen fibers towards the major tensile stress direction.

Finally, in Chapter [§|an overall conclusion of the present work as well as an outlook on further

topics with respect to current trends in material modeling is given.
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2.1 Abstract

An anisotropic, in particular transversal isotropic, thermodynamically consistent material
model for unidirectional fiber composite layers at finite strain is proposed. To account for the
anisotropy, the concept of structural tensors is used. Tension-compression asymmetric fiber
damage as well as an elasto-plastic-damage matrix material are discussed, whereas plasticity
and damage are modeled by a two-surface approach. Anisotropic damage is modeled by
utilizing three scalar, local damage variables. In this context, mesh-independent damage
evolution is achieved using the micromorphic approach presented by [Forest [2009, 2016],
separately for the fiber and the matrix part. Further, an element formulation including the
additional micromorphic degrees of freedom and its linearization for the global Newton-
Raphson scheme are presented. Numerical examples show the behavior of the presented

material model at the Gauss point and structural level.

Nomenclature
a Scalar A Matrix n X m
a First order tensor A Third order tensor
a Tuplen x 1 A Fourth order tensor
A Second order tensor e; Cartesian basis vector
0 Zero tensor/matrix of any order I Second order identity tensor
0ij Kronecker delta & Dyadic product
Y Specific free Helmholtz energy €3I Frobenius norm
¥ Free Helmholtz energy AT Transpose of A
() Fiber associated value Al Inverse of A
(*)p Matrix associated value tr (A) Trace of A
(). Elastic quantity dev (A) Deviator of A
(x), Plastic quantity sym(A) Symmetric part of A
(x)g Local damage quantity Grad (x) Lagrangian gradient
(*)7 Nonlocal damage quantity Div (%)  Lagrangian divergence
(x); Tension quantity of fiber (*) Total time derivative
(¥). Compression quantity of fiber diag (¥)  Diagonal matrix
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Single contraction (=: AB) ()T Exchange ith and kth basis vector
Double contraction (;) Nye notation (11, 22, 33, 12, 13, 23)

2.2 Introduction

The growing demand for fiber-reinforced materials in both automotive and aerospace indus-
tries makes efficient numerical calculations necessary. Due to the fibers, this class of materials
behaves no longer isotropic. Instead, they are dependent on the direction of the fibers, resulting
in an anisotropic, for unidirectional layers transversal isotropic, material response. In addition
to the consideration of anisotropic material behavior, the calculation of the complex failure of
the composite is especially needed to optimize the structural design. In most cases a polymer is
used for the matrix material, whereas carbon, aramid or glass fibers are often used for the fiber
material, which explains the high strength as well as stiffness ratio to weight. Nevertheless,
also fiber materials such as steel, nylon or organic materials (e.g. wood fibers) and ceramic or
metals for the matrix are applied (see e.g. |Harris| [1999]).

Over the last decades, fiber-reinforced composites have undergone intensive research, with
particular attention being paid to structural failure. This has resulted in a multitude of cri-
teria for the description of such a behavior. Among others, well-known failure analyses are
based on the work of [Puck! [[1996]], [Puck and Schiirmann| [2002]], Tsai and Wul| [[1971]], Hashin
and Rotem|[1973]] and |Cuntze| [2006]]. The latter, for example, has identified several failure
modes that can be associated with either the matrix or fiber failure and further depend on the
loading. The kinking of the composite under compressive stress parallel to the fiber direction
was investigated in detail in the work of Evans and Adler [1978] and |Chung and Weitsman
[1995]. Kinking is to be seen as a separate failure mode, whereby this is not to be mistaken
with instability phenomena as investigated e.g. in Dow and Gruntfest| [1960]. Based on the
numerical findings by Harich et al.| [2009]], |[Laufer [2018]] developed a scalar three damage
variable model, which associates kinking with one of those.

Furthermore, Chaboche et al.|[[1995] and [Chaboche and Maire [2002]] reported crack-closure
effects for Ceramic Matrix Composites, whereby the initial stiffness is nearly regained after
damage in the case that the loading regime is changed from e.g. tension to compression. Mod-
eling of this effect can be found e.g. in Desmorat and Cantournet [2008]. Further investigations
of fiber-reinforced polymers especially regarding the epoxy matrix material have been done by
Gonzalez and LLorcal[2007]] and Totry et al.|[2008, 2010], who reported plastic deformations



32 2 An anisotropic constitutive model for fiber-reinforced materials including gradient-extended damage...

within the matrix material. Pure epoxy specimens were tested in detail by [Littell et al. [2008]],
who measured remaining deformations even after failure. This behavior was also observed by
Rocha et al.| [2019]]. In this context, the work of Basu et al.| [2006] and Ji et al.| [2011] are
mentioned, who model the behavior of the matrix plastically within fiber composites.

Besides the anisotropic and plastic behavior, a realistic material model for this kind of com-
posite materials needs to model the decreasing stiffness from the point of loss of the material
integrity. The discipline of Continuum Damage Mechanics (CDM) (cf. Kachanov [1958],
Rabotnov|[[1963]]) is one possible way to account for these effects. Here, the damage is modeled
by extending the constitutive equations by a set of damage variables, often referred as local
damage variables. Nevertheless, it is well known that in the framework of Finite Element
Method (FEM) localization effects occur for local damage models (cf. Bazant et al.| [[1984],
de Borst et al| [1993]]). As a result, mesh-independence is not guaranteed anymore and a
efficient numerical investigation can not be performed. In literature, several ways to overcome
this problem are discussed, whereas one possible way is to use nonlocal damage models (cf.
e.g. Bazant|[1991]). One possibile nonlocal method is the gradient-extension. For the gradi-
ent extension, the “micromorphic’ approach introduced by [Forest [2009, |2016] can be used.
This framework adds additional degrees of freedom to the global system, often referred as
‘micromorphic’ or 'nonlocal’ damage variables.

Due to the intrinsically anisotropic, in unidirectional layers transversally isotropic, behavior
of fiber composites an anisotropic damage formulation of the CDM is required. Based on the
work of |Lemaitre et al.|[2000], second order damage tensors are mostly used for this purpose. A
general and sufficient formulation is still an ongoing subject of research, currently investigated
by e.g. Desmorat [2016], |Alliche [2016]], Simon et al. [2017], Wulfinghoft et al.|[2017], He
[2019], Jin and Arson![2018]], Nasab and Mashayekhi [2019]], Fassin et al.|[2019b,al]. Although
the mentioned works consider anisotropic damage evolution, not all formulated material mod-
els behave initially anisotropic, which is the case for fiber-reinforced materials. In addition,
scalar damage variables seem to be sufficient enough for fiber composites as they can be as-
sociated with the several damage modes. Hence, the presented model in this paper uses only
scalar damage variables associated with the noted damage modes. Similar approaches have
been exploited by the already mentioned works of Laufer| [2018]] and Reinoso et al.| [2017].
The latter account for damage with three variables and their tension-compression split, which
leads to six variables in total. They further consider Puck’s criterion in a thermodynamically
consistent manner, which is e.g. also applied by Kerschbaum and Hopmann| [2016]]. Several
publications that are also dealing with fiber-reinforced material modeling and taking either

damage or plasticity or even both into account are for instance the works by Matzenmiller et al.
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[1995], Maimi et al.|[2007], Vogler et al.|[2013]], Dean et al.|[2017,[2019] and Jha et al.|[2019],
to give a short extract from the literature.

An efficient construction with fiber-reinforced materials requires a macroscopic material model
considering the mentioned effects and a stable numerical implementation. Therefore, this paper
is concerned with the thermodynamically consistent derivation of a CDM model for general
transversally isotropic materials, in particular for unidirectional fiber-reinforced layers. The
free Helmholtz energy is splitted into the matrix material and the additional fiber contribution.
The matrix is assumed to be elasto-plastic, whereby isotropic hardening is assumed. This is
modeled with a modification of the isotropic elasto-plastic model of |VIadimirov et al. [2008]]
which was further extended to plastic anisotropy by Vladimirov et al.|[2010]].

In order to take material anisotropy into account, structural tensors are applied in connection
with the free energy of the fiber. For both material parts, the damage is modeled separately
by means of scalar damage variables. These damage variables are associated with the matrix
failure as well as fiber tension and fiber compression failure, resulting in three scalar damage
variables. Although coupling between the fiber tension and fiber compression damage is cap-
tured due to coupling damage functions, a direct coupling between matrix damage and fiber
failure e.g. fiber pull-out is not considered. Thus, indirect anisotropic damage evolution is
achieved by the corresponding stiffness reduction of the matrix and fiber part, respectively. In
order to differentiate between tension and compression failure, tension-compression asymme-
try is used. In addition, it is thus possible to capture crack-closure effects. To describe all
the above mentioned failure modes, three scalar damage variables are certainly not enough.
Nevertheless, these variables and the damage modes associated are assumed to capture the
main damage modes that are necessary to describe the basic damage mechanisms within fiber-
reinforced materials. The matrix part can be considered as a two-surface elasto-plastic-damage
model, whereas the elasto-damage fiber part is a one-surface model. Furthermore, to prevent
localization, the scalar, isotropic framework of |Brepols et al.| [2017, 20184, [2020] is applied
to all three damage variables. Since this framework is based on the micromorphic approach,
three additional degrees of freedom are required in the presented model. Hence, this paper
also deals with the implementation into the FEM and presents an element formulation and its
consistent linearization as well as some numerical investigations at the Gauss point level and

structural examples.
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2.3 Constitutive modeling

The material model for fiber-matrix composites presented in the following is derived thermo-
mechanically consistent in this Section. The damage of both the fiber and the matrix is based
on the micromorph approach of [Forest|[2009, [2016]], whereas the framework used here is based
on the work of Brepols et al.|[2018a,[2020]. As in these works, the concept of *micromorphic’
degrees of freedom is used. For a better understanding of the modeling strategy, see the

schematic illustration Fig. 2.1]

Jr(Dy, De, 1) Ype(11, 1y, I5) Fiber

fr(Dar) ey (kp)

Frr(Dan) e (Cyye)  Matrix

Figure 2.1: Schematic illustration of the fiber-reinforced model

2.3.1 Kinematics

Fiber. To describe the anisotropic material behavior induced by the fiber direction, the
concept of structural tensors is widely used. Since the composite model behaves transversally
isotropic, only the introduction of a single structural tensor M is necessary. This is described

by M = mpr ® mp, where mp is oriented in the fiber direction and is defined as

mrp = (cos Py COS P, SIN Pgy COS P, SIN <pz> €,. 2.1

Figure shows the definition of the angles ¢,, and ¢.. Based on this structural tensor, two
additional mixed invariants (2.3) to the classical ones (2.2)) can be formulated to describe a
transversal isotropic material (see e.g. Spencer| [1971} [1984], Balzani [2006] and Holzapfel
[2010])

Li=u(C), IL=3 (tr (C)* —tr (C?)), I;=det(C) (2.2)

Iy =tr (CMyp) =)}, Is=tr(C°My), (2.3)

since M = M% In the above, C = FTF is the right Cauchy-Green stretch tensor and A g
is the stretch in fiber direction. Since only elasticity and damage is considered for the fiber, no

further discussion regarding the deformation gradient F' is necessary.
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Figure 2.2: Definition of the structural vector mp

Matrix. The elasto-plastic-damage model for the matrix presented here is mainly based on
the work of [Vladimirov et al.| [2008]], which use a widely accepted multiplicative split of the

deformation gradient in its elastic and plastic part (cf. [Eckart [[1948]], Kroner [1959]], [Lee and
[19671)

F = Fy.Fup. (2.4)

\Vladimirov et al.|[2008]] further decompose F, to account for nonlinear kinematic hardening.

Since only isotropic hardening is assumed here, this decomposition is not necessary. However,
the presented framework is still valid and therefore only a brief summary of the kinematic

relations will be presented
Cye = FYy Fye = Fy CFy,) . Cye = Fy ' CF; — L};,Cye — CuyeLngy,  (2.5)
where L, = FMpFA};,. Furthermore, the plastic right Cauchy-Green tensor Cy, = Fyp, Fp

is introduced.

2.3.2 Free Helmholtz energy

The aim of this section is to provide the general form of the specific Helmholtz free energy.
First, the total energy can be split using the rule of mixtures into a fiber-associated and a matrix

part using the fiber volume fraction Vg

VY= (1~ Ve)by + Vi ¢p. (2.6)

The above assumed Helmholtz free energy is approached from a phenomenological perspective

(see e.g. [Stier et al.| [2015]],|Simon et al.|[2015]], Stapleton et al.|[2015]). In the case presented

here, a Voigt type model is considered, which results in the assumption of equal strains, but
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different stresses for the fiber and matrix (cf. Section [2.3.3). However, for e.g. transverse
loading this approach is known to be not the most suitable, since the stress within the matrix
and the fiber are equal in this case. For the specific application, this choice of mixture must
be carefully examined and, if necessary, replaced by a more proper choice. A more advanced
approach, which also considers Reuss type bounds can be found in e.g. [Li et al. [2016].

In the literature, the fiber part is often referred as the ’anisotropic’ part and the matrix as
the ’isotropic’ part (cf. |[Holzapfel et al. [2000], Reese et al. [2001]], Reese| [2003]]). In this
paper, the interpretation is rather from a practical point of view, in which the matrix material
is seen as isotropic in itself and behaves macroscopically anisotropic only due to the additional
fibers. Hence, the energy of the fiber does not mean the real fiber energy, rather the additional

contribution due to the anisotropy to the isotropic stiffness.

Fiber. As mentioned above, for the fiber an elasto-damage model is used. A widely used
approach to model tension-compression asymmetry is the spectral decomposition of the strain
or stretch tensors, e.g. for small deformations € = €, + €, discussed e.g. by |Ladeveze and
Lemaitre|[1984] and|Simo and Ju [1987] and has been used by e.g. |Comi|[2001]]. Furthermore,
by utilizing tension-compression asymmetry, it is possible to model the damage behavior in
the tension regime different to those in the compression regime and also account for any crack-
closure effects.

Therefore, the additive split of C' into a tension and compression part C' = C; + C. is dis-
cussed. Based on this, the invariants (2.3)) would result in [, = tr (C;Mp) + tr (C.MF)
and I; = tr (C?Mp) + tr (C>Mp), since C,C. = C.C; = 0 holds (see Appendix [2.7.1).
However, this approach would lead to problems for the specific choices of the several energy
terms, which will be discussed in Section Also a spectral decomposition of e.g. C My
is not useful, since the tensors are both symmetric, however, not coaxial in general. Therefore,
a new approach is presented based on the fiber stretch (2.3), which is beneficial as there is no

need for a spectral decomposition

=:fp(D¢,De,14)

wF - ft(Dt)ftc<Dc)<I4 - 1>/+fc<Dc)fct<Dt)<1 - I4> er (II; -[47 -[5) (27)

Vv
tension part compression part

+ Yra(ke, ke) + Ypg (Dy, Dy, Grad (D), D, D, Grad (D.)) .
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In the above, the Heaviside function was used

(=4 =0 08

0 ,else.

The presented approach is very similar to those presented in e.g. |Holzapfel et al.| [2000];
Holzapfel and Ogden| [2010], Reese et al.|[2001]. However, two main points should be men-
tioned. First, none of the mentioned works consider damage, which can be easily accounted for
with the presented approach. Second, all works assume no stiffness contribution of the fiber
due to soft behavior in the compression regime. Since the damage variable D, should account
for e.g. kink band damage modes, neglecting the fiber in the compression regime would not
be suitable.

The first term in represents the tension-compression asymmetry with the damage func-
tions f; and f. as well as the coupling functions for tension and compression f;. and f.; (cf.
Fassin et al. [2019a]), which is multiplied with the elastic strain energy associated with the
fiber .. This term is both dependent on the first invariant of C' and the mixed invariants
(2.3). Moreover, D; and D, are the scalar fiber damage variables for tension and compression,
respectively. Furthermore, the term ¢ r4, depending on the damage hardening variables for
tension ; and compression k., accounts for the energy stored by fiber damage hardening. At
last, 114 is associated with the micromorphic fiber damage and depends on the micromorphic

damage variables D, and D..

Matrix. In contrast to the fiber part, for the matrix plasticity is also considered. Since
the matrix model used here is mainly based on Vladimirov et al. [2008] and Brepols et al.

[2020], a detailed discussion can be found in these works

Uur = far(Dar) (Vare (Chze) + Unp(hp))+0n1a(kar ) +¥nia (Dar, Dag, Grad (D)) - (2.9)

It should be emphasized that the plastic energy term 7, only denotes the energy stored by
isotropic hardening without any kinematic hardening. Furthermore, x, can be interpreted as
the accumulated plastic strain. The remaining energies are to be interpreted analogously to
the fiber part. Furthermore it should be mentioned that C',;. can be expressed indirectly in
terms of the invariants (2.2)) (cf. Appendix[2.7.2)). Thus, all required invariants to describe a
transversally isotropic material are included. Unlike for the fiber part, no tension-compression
asymmetry is assumed for the matrix. Therefore, f,; is the matrix damage function and D,

the scalar matrix damage variable associated with both tension and compression.



38 2 An anisotropic constitutive model for fiber-reinforced materials including gradient-extended damage...

2.3.3 Derivation based on the isothermal Clausius-Duhem inequality

In order to avoid unphysical behavior, the derivation of the constitutive dependent quantities

is based on the local form of the second law of thermodynamics

. 1 . = =
— poth+ 8 : 5C + &, - d+ Ep, : Grad <d> >0, (2.10)

J/

Vv
micromorphic extension

where S is the second Piola-Kirchhoff stress tensor and py is the density with respect to the
reference configuration. It can be observed that due to the micromorphic approach, additional
terms &y, and E, appear in the usual Clausius-Duhem inequality, accounting for the internal
damage forces. A detailed discussion of the contribution of the micromorphic extension to
the Clausius-Duhem inequality can be found in [Forest [2009, 2016]. The first order tensor
d = (D, D. Dy), e, contains the micromorphic damage variables.

First the derivative of the specific free Helmholtz energy (2.6) with respect to time is derived

Part 191 Part/{l g2
N T A T A AR
V= (8[1 ac anac o 815 ac O ey et o

. o .
Z DJFZ(%Z mL% d+—8Grad(d) .Grad(d)

where the index i = (¢,¢, M) is used. In the following, the parts I and II will be treated

separately.

Part I. Having in mind relation and (2.7)), the first part can be reformulated as

(2.12)

O, O,  OYp. Oly O, OI .
ngVF fF(DtJDC7I4)< ¢F ! ¢F 4 ¢F 5> -C.

oI, aC ~ oI, oC  0l, oC
At this point, it has already been utilized that 0fr/0I, = 0 holds. Introducing the partial

derivatives of the invariants

oL ol oL,

equation (2.12)) can be further transformed

aer aer aer
I M
or, * *or, M ar

g1 =Vr fr(Dy, D, Iy) ( (CMyp + MFC)) . C. (2.14)



2.3 Constitutive modeling 39

As a result, a new second Piola-Kirchhoff stress tensor for the fiber is introduced

OUrpe OUp, OV e
1/JFI+ ¢FMF+ Vi

= fp(Dy, D, 1) 2
SF fF( ty ey 4) p0< all 814 815

(CMpr + MFC)) . (@.15)

Part II. First, relation (2.5)) is to be inserted into g, as well as relation (2.6) and (2.9) are
utilized

awMe

g2 = (1-"Vp) fM(DM)aCM

(Pt CFyy — L5,Cote = CuicLagy) . (216)
With the application of invariance of the trace operator under cyclic permutation, the scalar
product rule of two general second order tensors sym (A) : B = sym (A) : sym (B) and both
the symmetry as well as the coaxiality of C.(0¢ s /OC ), two further stress measures can
be defined

Sur = far(Dar) 200Fy;) 3gM6F (2.17)
OVre
Sup = fu(Dar) 2p0Clre 32/}7]1\\/[4 (2.18)

which can be referred as the second Piola-Kirchhoff stress tensor associated with the matrix
and a Mandel stress tensor, accounting for the plasticity in the matrix model. A more detailed

derivation and discussion of these quantities can be found in|Vladimirov et al. [2008].

For further simplification, the thermodynamically conjugated forces are introduced

_ OYpq O _ _, O%wmd - MWty
R, == —po Oy R.:= —pop O, Ry = —po rny R, == —fu(Dwr) po o,
(2.19)
L afF<Dt7DC7I4) 81/}Fd afF(Dt7D87]4) 3¢FJ
Y, = —po aD, Yre — po oD, ' Y. = —po D, Yre — Po D,
d D 07
Y = —PO%MM)(%@ + Yunp) — Po 8%\]4;‘

(2.20)
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With the equations (2.15), (2.17), (2.18), (2.19) and (2.20) at hand, the Clausius-Duhem

inequality (2.10) can be rewritten as

1. 0 N
(S—(l—VF)SM—VFSF) I—C—I— on—po—w— -d
2 od
= Y : ; ' : ' : 2.21)
+ ('—‘03 - pom) : Grad <d) + VF <}/;5Dt + Rt/{'t + }/::Dc + RCK,C>

By using the standard arguments of Coleman and Noll [1961], main conclusions are the

following

- o

S=(1-Vp)S Vi8S =po—, B9 =p———.
( F) M+ FOF, 603 Poad; 05 po@Grad(d)

(2.22)

2.3.4 Evolution equations

It remains to be shown that the dissipation of the internal effects (damage and plasticity) can
never be negative to obtain a physically meaningful behavior. Accordingly, evolution equations

should be chosen for both damage and plasticity that satisfy this condition.

2.3.4.1 Evolution for the plastic regime

To present a general framework for modeling plasticity within the matrix, the evolution equation

for D)y, is based on a convex plastic potential, g,, defined in the stress space

gy
v 82]%]9 7

Dy, = (2.23)
in which Xp is the plastic multiplier. Further, the evolution of the accumulated plastic strain
kp is usually based on either the plastic dissipation potential or the norm of the plastic strain
rate D), whereas both include the plastic multiplier (see /de Souza Neto et al.| [2011]). The
yield criterion in connection with the Karush-Kuhn-Tucker (KKT) (Karush|[[1939], Kuhn and
Tucker| [[1951]]) conditions

hp >0, ®,<0, Ao, =0, (2.24)

close the set of constitutive equations. In most applications of fiber-reinforced materials, the
matrix material behaves non-associative, in particular polymeric matrices are known to be

pressure dependent (see e.g. [Fiedler et al.|[2001]]). In the literature, various works deal with
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suitable modeling especially in the context of fiber-reinforced polymers, e.g. the works of
Melro et al.|[2012}, 2013]],|Vogler et al. [2013]], Mehdipour et al. [2019], Dean et al.| [2019] and
Rocha et al.|[2019]], to name a few.

Since the aim of this paper is to present a thermodynamically consistent model, two assumptions
are made: (i) associative plasticity (g, = ®,,) for the plastic strains and the accumulated plastic
strain, (ii) a von Mises type yield criterion is chosen and (iii) no plastic tension-compression
asymmetry is observed for the matrix due to the yield criterion. In addition, it should be
emphasized that these assumptions are e.g. only valid for metallic matrix materials, however
thermodynamical consistency can be directly ensured if ®,, is a homogeneous function. Based

on the already mentioned works by Vladimirov et al. [2008]] and Brepols et al.| [2020]], the yield

5, = [2 e (21

with the stress like quantity o, denoting the constant initial yield stress. In the above

criterion is defined as

‘ — (00— R) (2.25)

formulation, plasticity is considered to act only on the undamaged part (cf. Brepols et al.

[20184])
- (*)

%) = — 2 (2.26)
*) Jau(Dur)
With these relations at hand, the evolution equations read as follows
.0 . /372 dev (SM )
Dy — i 0% 5 V3 7 (2.27)
o 0 o (5
. 9P A
s P _ P 2.28
" "OR,  fu(Du) (2:28)

2.3.4.2 Evolution for the damage regime

As already stated in Section [2.3.4.1} in this Section the framework for the damage evolution
should be derived in a general manner. The following general remarks apply separately to
each damage variable, but are shown for the sake of brevity for only one variable. Therefore,
a convex damage potential g; and a corresponding damage yield criterion ®, is introduced.
In the literature it is common practice to formulate the damage potential or the damage yield
criterion in terms of stresses or energy-based. However, for instance Hansen and Schreyer
[1994] discuss disadvantages of a stress-based damage criterion. In the present model, the
energy-based version comes naturally into play due to the driving force Y derived for each

damage variable in equation (2.21).
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Analogously to equation (2.23)), the evolution of the damage variable D can be defined as

. . 39 d

D=\ Iy (2.29)
For the corresponding accumulated variable x; similar formulations are conceivable as for
the plastic counterpart. A variety of possibilities exist to formulate both ®; and g4, which
in turn consider different aspects of damage mechanisms. At this point the work of Barbero
[2013], Bednarcyk et al. [2015] and [Simon et al.| [2017] should be exemplary mentioned,
since these works consider scalar damage variables as well. In their formulations, coupling
matrices are used in the formulation of g; and &4, in order to take into account the interaction
of the different damage variables during their evolution. For similar reasons as for the plastic
evolution equations, several simplifications are made at this point: (i) associative damage
evolution (g; = ®,) is assumed, (ii) no direct interaction, as e.g. achieved by coupling matrices,
is included in the several yield criterions and (iii) at the development state of the present model,
an extensive study to determine the most suitable criterion has not been carried out. Instead, the
damage evolutions of the three independent damage variables are each described by a similar
damage yield criterion (cf. Brepols et al.|[2018a]). These assumptions restrict the model, of
course, but the presented framework is sufficient to investigate the essential mechanisms.
The structure of the damage criterion is very similar to the plastic one. Therefore, the equations

are given without further discussion

®, = (I, — 1)Y; — (Yio — R) (2.30)
., = (1— L)Y, — (Yo — R.) 2.31)
@y = Yar — (Yaro — Rus). (2.32)

The prefactor of the tension part (7, — 1) and the compression part (1 — 1), ensures evolution
of the damage variable only in the tension regime and analogously for the compression regime.
At the same time, this implies that the tension and compression damage variables can never
evolve simultaneously. The scalars Y}, Yo and Y),q are the corresponding damage thresholds.
Thus, the several evolution equations read
. 0D, . L 0D; .

oy, M MR, i=(te M) (2.33)
It should be emphasized that the prefactor of equation (2.30) and (2.31)) is omitted for the
derivatives, since the specific damage variable only evolves if the prefactor is equal to one and

thus does not change the derivative. At last, the KKT conditions are introduced for the damage
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regime
>0, & <0, M&;=0 i=(tc,M). (2.34)

2.3.5 Proof of thermodynamic consistency

With the evolution equations just introduced in Section [2.3.4] it now remains to prove the
thermodynamic consistency. This will only be done in a shortened way, because the basic
procedure was shown in the already noted works. Nevertheless, some remarks need to be

made. For this purpose, the remaining part of equation (2.21) is first used and the equations

©.23), 2.27), 2.28)), (2.32)) and (2.33)) are to be inserted, which results in

Vi ((Y; R+ (Y, + RC)XC> F(1-Vp) ((@M + Yaro)har + (@, + ayo)xp) > 0. (2.35)

Due to the prefactor in equations (2.30) and it is not possible to directly transform
the above stated equation. Nevertheless, consistency can be shown by means of a case
differentiation. In the case that the prefactor is equal to one, then e.g. Y; + R; = ®; + Yy
holds true. If the prefactor is equal to zero, there is no dissipation due to damage evolution,
which implicitly fulfills the Clausius-Duhem inequality. Thus, taking into account the KKT
conditions ((2.24)) and (2.34))) and that the material parameters Y}, Yz, Yas0 and o, are greater

than or equal to zero as well as 0 < Vp < 1, the inequality is satisfied.

2.3.6 Representation of the constitutive relations in the reference
configuration

For the previous derivation, the fact that the different quantities within the plastic model were
related to different configurations did not matter. In the course of an efficient numerical im-
plementation, however, these should all be related to the reference configuration. Again, no
explicit derivations are given here and the reader is referred to the already above mentioned

literature.
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Stress-like quantity: Y, =CSu (2.36)
' , , 3/2 dev <}~"Mp> Cuyp
Evolution: Cup = 2M, ot (Dar) = (2.37)
O Jaer (V) - e (%)
. . . 3/2 dev (Y/Mp> CMp
Strain-like quantity: Typ =2 (2.38)
fa(Dur) 8 _\
dev (YMp> s dev <YMp>
3 _ _ \T .
Yield-function: D, = /5 dev (YMp) : dev (YMp> —(op—R,) (239

For reasons presented in |Vladimirov et al.| [2008]] the strain-like quantity T}, is symmetric.

2.3.7 Specific choice of free Helmholtz energies

To this point, the derivation is completely independent of the specific form of the free Helmholtz
energy. In the following it is necessary to find meaningful forms for the different energies.
Thereby, the matrix material should behave isotropic and the transversal isotropy purely de-
pends on the fiber. Nevertheless, the total energy is to be understood as a scalar isotropic
function of the tensors C, C}y, (or Cy.) and My, since the Helmholtz energy does not

change under a rotation of the tensors (see Holzapfel [2010]).

Fiber. The elastic strain energy for the fiber is mainly based on the function introduced
by Reese et al. [2001] with slight modifications and just for one fiber direction

Vo = Kol = 17 + 5Kumials = 17 + %Kmpul S3L 1) (240)
In the above, K41, Kaniz and Koy, as well as v, 5 and v are material parameters. To guarantee
a stress free state for C' = I the exponents have to be chosen to «, 3,7 > 2. However, to
reduce the model to linear elasticity the parameters are « = 2, § = 1 and 7 = 1. In order to
keep a stress free state, one could either add a term to the energy function (cf. Reese et al.
[2001])) or use the relation S = @%"E’ in which E is the Green-Lagrange strain tensor and
C%” is the material tangent (see Appendix . It should also be noted that this choice of
exponents means that polyconvexity can no longer be ensured. The interested reader can find

a detailed discussion of polyconvexity in the context of transversal isotropy in |Schroder and
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Neff [2003].

Remark 1. In Section|2.3.2]it was mentioned that the split of C into a tension and a compression
part causes issues for the specific energies. Taking for example the term (Iy — 1)? into account
(where the exponent has been already chosen equal to two) the split of the fourth invariant
Iy = Iy + Iy would lead to (1y + 14, — 1)2. Since 1414 is not equal to zero in general, a split
into both a pure tension and a pure compression part is not possible. This split may work for

other strain energy functions, however it is not suitable for the type chosen here.

Matrix. In the present material model formulation a compressible Neo-Hookean description
of the elastic strain energy function is chosen as well as a combination of Voce type and linear

hardening for the plastic energy

Uy = g [tr (Caze) — 3 — In (det (Caze))] + % [det (Caze) — 1 — In (det (Caz))]  (2.41)

exp(—spkp) — 1 1
P (ﬁp 4 2 - 2 ) + 5 Hy2, (2.42)
p

The material parameters A and ;. are the Lamé constants. In addition, H), is the linear hardening

modulus and 7, as well as s, describe the Voce type hardening Voce|[1955]].

Remark 2. Considering the case of linear elasticity also for the matrix contribution, the total

material tangent can be written as
Chm = (1= Vp)Cly + VeClr, (2.43)

with the linear elastic material tangent of the matrix @%‘ (see Appendix. For a physically
meaningful behavior it is necessary that the material tangent is positive definite, whereby
different restrictions can be derived for the Young’s modulus in fiber-parallel as well as fiber-
perpendicular direction as for the counterpart shear moduli and the Poisson’s ratio for tension
in fiber direction (cf. Altenbach [2015|]). The several restrictions can be found in Appendix
Since the material tangent of the fiber has two eigenvalues equal to zero and taking
equation (2.84)) into account, it is obvious that no material can be described purely by the fiber
part. Furthermore, the conversion formulas based on equation (2.43) in Appendix 2.7.4|lead
to the unusual case that some material parameters of equation (2.40) can result in negative

values.

Damage. It remains to choose energy functions for the local damage function ¢y and

Y q along with their micromorphic counterparts ¢/7 and ¢,,5. For the local ones, a structure
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similar to the Voce type hardening is chosen

- - 1 —9oclve) T 1
T (nt 4 o 58““) ) +7e (nc 1 o= - ) ) (2.44)
t c
— 1
Wy = 1o (/@M L ol SQMM) > . (2.45)
M

The several material parameters are to be interpreted analogously to the plastic Voce type
hardening. For reasons that become more clear in the later course, the energies for the

micromorphic parts are expressed together in an equation

(d—d)-Hy - (d—d) + JCrad (d) : (Ag- Grad (d), (246

DN | —

Vg + Vg =

where the tensors Hy = diag (H; H. Hy),, € ® €, and Ag = diag (A Ac Anr),y €0 © €

contain the so-called micromorphic moduli.

2.3.7.1 Specific forms of conjugated driving forces

Now, with the just chosen specific forms of the free Helmholtz energy parts, the thermodynamic
driving forces can be expressed. First, using the relations (2.15)) and (2.17) the second Piola-

Kirchhoff stress tensors for the fiber and matrix read as follows
Sr = fr(Dy, De, It) 2 [Konin(Is — 1)* ' Mp + Konin(Is — 1)° ' (CMp + M7C)
+ Kcoup ((Il - 3)7_1(]4 - 1)’YI + (Il - 3)7(]4 - 1)7_1Mp)}
2.47)

A [ det(C
Su = fu(Du) |1 (Chp, —C7') + 3 (%éﬂ)p) — 1> C‘l} : (2.48)

With these equations at hand, the total stress can be calculated according to equation (2.22).
Furthermore, the driving forces for the local damage variables (2.20)) are defined as

0fp(Di. Dy 1)
0D,

_ Ofr(Dy, D., I _
Uy — Hy(D; — Dy), Y, = — Jr(D:, 4)WF6—HC(DC—DC),

oD,
d D _
_M(@Me + Wpy,) — Hy (Das — Duy).
dDy,

Y, =

Yy =
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The additional scalar driving forces are as follows

R; = —1i(1 — exp(—s;k;)) i=(t,c, M) (2.50)
R, = —fu (D) (rp(1 — exp(—spkp)) + Hpkyp) - (2.51)

It is further necessary to find expressions for &, and =,. Considering the equations (2.6),
(2.22)) and (2.46)), the quantities can be expressed as

o, =—Vr-H;- (d—d) (2.52)
Bo, = Vp- Az Grad (d), (2.53)

with Vi = diag (V& Vr (1 — V), €4 ® €, containing the fiber volume fraction. Table

gives a short overview of the constitutive equations needed in the reference configuration.

2.3.8 Strong and weak forms of the field equations

Since this paper is less concerned with the theoretical derivation of the field equations than
with their numerical implementation in the context of the presented material model, reference
is again made to the relevant literature (e.g. |[Forest [2009, 2016] and Brepols et al.|[2020]]). In
the current context, the following strong forms of linear momentum and micromorphic balance

equation with their Dirichlet and Neumann boundary conditions are stated

Linear momentum: Micromorphic balance:
Div (FS)+ fo =0 in € Div (B, — Zo,) — &0, + &0, =0 in
FS. NnNg = to on 8th (on - EO@) Ny = €0€ on (9090
u=u ond,) d=d on 9%

In the above, 0} and 0.€)y describe the Neumann boundaries in the reference configuration
and 0,£)y and 9;(, the Dirichlet boundaries. The terms indicated by (;) describe the prescribed

values at the Dirichlet boundaries.

Remark 3. Noteworthy, the boundary of () is composed of the union of 0.8y and 038 with
0.0 N 9;9% = 0 for the micromorphic extension. However, in the case of micromorphic
damage no prescribed values for the Dirichlet boundary are considered. Hence, the boundary
of Qg is equal to 0.82.
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Table 2.1: Constitutive equations in reference configuration

Fiber | Matrix
Stress Stresses
a¢'Fe 877ZJFe — 81/1 e y—
Sr = fr(D¢, De, It) 2po ( oL I+ al, Mp | Sy = fu(Du) QPOFJ\IpaC]u Fyl
(97/}F aQZ}Me
c b)) D) 2p0C e
+ ol (CMp + MFC)> Mp = fu(Dar) 2p0C 9C.
Damage driving forces Damage and plastic driving forces
8][.F(Dt Dc -[4) I
i S 2 s _ _ dfy(D —
Y; an, Vg — Hy(Dy — Dy) Yy = *M(‘I’Me + Uyp,) — Hy(Dar — Dag)
dfr(Dy, De, I) D
}/; = —%\PF@ — Hc(Dc - DC) },]\41) CSA[

Damage evolution equations

Dt:).\'ta ’%;t:xt
Dc:}'\'w ’%c:)"'c

Damage yield functions
B, = (I — 1)Y; — (Yio — Ry)
(I)c = <1 - I4>Y; - (Y’CO - Rc)

Damage hardening forces

B Oprq
Ri = —po Orey
_ OYpa
e ==po Ok,

Damage and plastic evolution equations

DM = 7\1\1, Ky = 7\M
. . 3/2 dev (Y]\/Ip) CMp
Cup = 2k, (Do) - —
\/ dev (YM,?) - dev (YM,,>
. j\‘p
Ky = ———
b f M(DM)

Damage and plastic yield functions
Oy =Y — (Yoo — Rur)

8, /2 e (£20,)]| (00 -

Damage and plastic hardening forces
Oua
Ry = —
M PO — g
0
R, = —fu(Dar)po Vrp

Okyp
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In addition, the test functions du € {H' | fu = 0 on 9,8} together with §d € {H" | 6d =
0 on 0;0} are introduced. By further simplifications, in particular neglecting all contact and
external forces associated with the micromorphic damage (£, = o, = 0 and &y, = 0), the

micromorphic balance can be rewritten using equation (2.52)) and (2.53)

Vp-Hg- (d—d)+ Vp-A;-Div (Grad (d)) =0 (2.54)
(Ve - Az Grad (d)) -ng = 0. (2.55)

Further mathematical operations finally lead to

H;-(d—d)+ A;-Div(Grad (d)) =0 (2.56)
Grad (d) - my = 0, (2.57)

which is very similar to the structure for one scalar damage variable, e.g. presented in Brepols
et al.| [2020], and besides does not depend on the volume fiber fraction. Of course 0 < Vi < 1
has to hold at this point to avoid a division by zero.

By following the standard procedure (multiply by the test function, integrate over the do-
main and apply the divergence theorem), the following weak forms are obtained under the

consideration of the Neumann boundaries

gu::/SzéEdV— fo-éudV—/ to-dudA =0 (2.58)

Qo Qo 0tQo

gi:= | o0d-H; (d—d) dV — [ Grad (0d): (A; Grad (d)) dV =0. (259
QO Q()

2.4 Finite Element implementation

A brief summary of the implementation scheme following the framework of Brepols et al.
[2020] is presented. However, since there are three instead of one independent damage variable,
the framework has to be extended and particular attention must be paid to the arrangement of

the different matrices to ensure an efficient implementation, which is presented in the following.

2.4.1 Linearization

In the course of the Newton-Raphson scheme, the equations (2.58) and (2.59) are to be
linearized at the global level with respect to the increments Au and Ad. For this purpose,

the Gateaux derivative Z[(x)] in the direction of the displacement increment Aw and the
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micromorphic damage increment Ad has to be performed for each weak form. For short hand
notation, the resulting increments Ag, = Zy,[g.] - Au + D4[g.] - Ad as well as Agy :=
Dulga] - Au + Z4lg4) - Ad of the weak forms are introduced (a more precise definition can
be found in Appendix [2.7.5.1). Under the assumption that the body force f; as well as the
traction vector ¢, are independent of the actual displacement state, the following increments

are obtained

Ag, = / AS :0E dV +/ S :AE dV (2.60)
Qo

Qo

Ags = / 5d-H;- (Ad— Ad) dV — / Grad (5d) : (A; - Grad (Ad)) dV. (2.61)
QO Q0

In the linearized terms, AS = C : AE + L;- Ad and Ad = Ly : AE + Q; - Ad can
be expressed in terms of the required increments. In order to achieve quadratic convergence
during the solution procedure, the several material tangents have to be treated carefully and

will be therefore discussed in more detail in Section [2.4.4]

2.4.2 Numerical approximation

For the numerical approximation, the two dimensional scheme present in Klinkel and Reichel
[2019] is applied and extended to the three dimensional case. In the present context this scheme
has the advantage that due to the same number of degrees of freedom for the displacement as
for the micromorphic damage the same trilinear shape function matrices and their derivatives
can be used for the displacement and damage field. First, the exact domain is approximated

and then divided into subdomains

Nel
Qo ~ Qf = 5. (2.62)

e=1
Based on these subdomains, the several approximations of the field variables are as follows

u®=N(&n, QU du® =N(n,)oU° Au®=N(¢, n, ()AU® (2.63)
d°=N(,n,)D  dd° = N(£,1,0)0D¢,  Ad° = N(&,1,)AD®, (2.64)

with the shape function matrix N(, 7, ¢) defined in the isoparametric space (see Appendix
2.7.5.2) as well as the nodal values U® and D€. It remains to introduce the approximation of
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the derivatives

~

Fe=T+B(n, U, 6F°¢ =B(£,n,)dU°, AF® = B(¢,n, () AU*

(2.65)

Grad (d) = B(£,n,¢)D% Grad (6d)° = B(&,1,()éD%, Grad (Ad)" = B(&,n, ()AD".
(2.66)

These approximations now allow the equations (2.38)) (neglecting the body and external forces),
(2.59) as well as the incremental equations (2.60) and (2.61)), in connection with the abbrevia-
tions introduced in Section [2.4.1] to be suitably adapted for the FEM implementation

€

ru

Nel
gh = Jsu” / B'F.S°dVe— [ NPfsdve— [ N't5dA°
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(. J/
~~

67
du

In the latter equations the relations AE = F,,AF and 6 E = F,,6 F have been exploited. The
approximation of d® holds also true for the local counterpart. Furthermore, the matrices F,,
and S,,, can be found in Appendix Finally, applying the Dirichlet boundary conditions
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€
uu?

and assembling both the element residuals (ry, r9) and the element stiffness matrices (K

K* » K, and K%;), one obtains the coupled global boundary value problem

K.. K, AU r,
_ | =- . (2.70)
Kgu KJJ AD rg

2.4.3 Implicit time integration of the evolution equations

The local evolution equations are generally discretized in the time interval [t,,, t,,+1]. Therefore,
the Backward Euler method within the numerical implementation on the Gaussian level is
used. An exception is the equation for C wp (2.37), which is based on the modified exponential
mapping algorithm presented in Vladimirov et al.|[2008]], Reese and Christ [2008] and Dettmer
and Reese [2004]. This approach directly guarantees volume preserving and preserves the
symmetry of C wmp- For the damage part one is again referred to Brepols et al. [2020]. The

several residuals are then defined as

7'1 :(I)tzo’ 7’2:®C:0 (271)
rgzq)M:O, 7"4:(:Dp:O (272)
R; = —Cypp, + Uy exp (ANU, 1 Top Uy ) Uy = 0. (2.73)

Note that the index n 4+ 1 was omitted. Furthermore, the plastic stretch tensor is defined as
Cup = UJ%/IP. Several possible loading/unloading scenarios for the residuals defined in (2.72))
and have to be considered (see Brepols et al. [2020]), which influence the size of the
equation system shown later. In addition, a case differentation regarding the damage
evolution of the fiber part can be made. Due to the specific structure of ®, and ..
only one damage criterion can be exceeded, since the fiber is either stretched or compressed.

2.4.4 Consistent tangent operators

As mentioned in Section [2.4.T| the material tangents have to be defined in a consistent manner
to achive quadratic convergence. Therefore, one should bear in mind that the stress is a
function of the several local damage variables, the plastic Cauchy-Green tensor and the total
Cauchy-Green tensor. Taking into account the relation 1/2AC = AFE and using the chain

rule, the following expressions are obtained

oC " ou,L TaC T ad ac

= (2.74)

oU
C:2<as o8 0Uy, 08 8d>’ 0. gg
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08 oad 98 Uy, ad
_ e _|_ = : =, EE = 2—
od od ' oU. " od aC

L;= (2.75)
The derivatives of the stress tensor 0S/0C, 0S/dd, 0S/ 8U]\_/‘,§ can be found in Appendix
The remaining partial derivatives are computed based on the converged values for
the residuals of the previous Section. To gain these derivatives, an additional local Newton-
Raphson step is performed. In Nye notation the following system of equations has to be
solved

ory ory ('21”1

od  0AN,  OUL gry 9y

Ora Ora Ory gc gd

od 9Nk, 9U, L Ad 3_2 % >

ors  Ors QT31 AAN — _ | 9rs Ors AC (2.76)
ad oAk, 90, ~p aC  od Ad |’ '
dry Oy Ory AUL Ory  Ora

OR; ORs; _ORs 805 8d5 10x9

od  OAky U/ 10410

Here, the abbreviation AL, = At i

pnsy Was introduced. To end up with the form presented

above, several things should be noted: (i) the symmetry of Uz\}}n was used, (ii) x,, is defined
directly based on the plastic multiplier, (iii) similar to the last point the several x; . s and D
values can be defined explicitly based on the corresponding evolution equation and thus no
additional residuals are required to calculate these values. Hence, these variables just have to
be updated after the local Newton-Raphson iteration has converged and (iv) having equation
(2.33) in mind it can be shown that 0AL;/0D;,,, = 1 holds true. Therefore, the damage
variables D can be chosen as the independent variable.

Due to the fact that the material model is still under development and that the evolution
equations can still change (e.g. by Puck’s criterion), the derivatives of the residuals are
determined numerically. Also, the above mentioned scenarios reduce the size of the equation

system immensely in some cases.

2.5 Numerical examples

For a better understanding of this quite complex model, numerical examples are presented to
examine different aspects of the model. Due to the lack of own experimental data at the present
time, the material parameters for the numerical studies are freely chosen in each example.
First, the asymmetric damage evolution of the fiber is to be investigated with a cyclic uniaxial

tensile compression test. In order to obtain only the response of the material, a single element
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Figure 2.3: Cube: Boundary and loading conditions

is used. Second, the influence of the fiber direction on the matrix is investigated, however
using different mesh refinements. Here, the focus is on the fiber direction influence on the
plastic and matrix damage behavior. These two examples are discussed using a unit cube. The
last example investigates mainly the interaction of the fiber and matrix damage under various
conditions. For this purpose, a plate with hole specimen is used.

For the numerical examples, both the presented material model and the element formulation
were implemented into the MATLAB based FEM code DAEdalon (see |Baaser [2014]]).

2.5.1 Tension-compression asymmetric fiber damage

First, the model is investigated in the small strain regime. The purpose of the investigation is
the fiber elasto-damage behavior. Therefore, Y)/¢ and o, were set to infinity. The remaining
needed material parameters are listed in Table @ In addition, the damage functions have
been chosen to f; = (1 — D;)?, f. = (1 — D,)? as well as the coupling functions f., fi. are

set to one and the fiber exponents «, 3, v are equal to two.

Table 2.2: Material parameters for small strain study

A M Kanil Kani2 Kcoup Tt)c St/c YtO/cO Pry/z VF
Unit [F/L?] [F/L?] [F/A?] [F/?] [F/L?] [FL/L?] [-] [FL/L3] [°]  [%]

750/13  500/13 800 50 70 0.0001 1000 1.0-10' 0 65

Figure [2.3] shows the loading and boundary conditions as well as the displacement is defined
by the load program time ¢ / displacement u,, (cf. Fig.[2.4): (A) 0/0, (C) 0.5/0.001, (D) 0.75/0,
(F) 1/-0.001.

As expected, the chosen material parameters lead to a symmetric behavior in the tension and
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Figure 2.4: Force-displacement (left) and damage-time curves (right) at small strains

compression regime, since the strain energy V. leads to basically the same values at small
strains. Figure[2.4]shows the observed results, which are reasonable. Having in mind that only
the fiber damages, the remaining stiffness is caused by the matrix contribution.

Now, the material is investigated in the finite strain regime with the following load program
(cf. Fig.[2.5): (A) 0/0, (C) 0.5/0.5, (D) 0.75/0, (F) 1/-0.5. In addition, the influence of a fiber
direction, which is not parallel to the load direction, is to be investigated as well as different
damage parameters for the tensile and compression domain. Since the same elastic material

parameters as presented in Table[2.2] were chosen, Table [2.3|shows the modified parameters.

Table 2.3: Material parameters for finite strain study

i e St Se Y;() §/c0 Pz
Unit [FL/L?*] [FL/L?*] [-] [-] [FL/AL?] [FL/L?* [°]
80 200 50 5 1 25 0

The obtained results are shown in Figure [2.5] Here, the advantage of the tension-compression
asymmetry, besides the crack closure modeling, can be observed. The damage behavior in
the tension regime behaves totally different from the compression part. Although the damage
thresholds differ widely, the damage onset is within the same range.

The initial stiffness of the 30 degree angle investigation can be explained by the fact that the
fibers first orient themselves in the tensile direction. Thus, it is mainly the matrix stiffness that
can be observed at the beginning. This nonlinear behavior is similar to the ones observed by
e.g. Reese et al.|[2001]] and Jha et al.|[2019]]. Although they discuss orthotropic behavior, the

mechanism of fiber reorientation is comparable. Further, |[Puck and Schiirmann| [2002]] named
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Figure 2.5: Force-displacement (left) and damage-time (right) curves for different fiber angles
gy at finite strains

fiber-reorientation as a source of nonlinearities. In the compression regime, however, the
fibers are not aligned in the load direction, but shifted until they are perpendicular to the load
direction. Only then they effectively contribute to the stiffness through transverse elongation.
However, this state has not been reached yet. Thus, mainly the matrix stiffness can be observed
again.

Despite the above discussion, the results of the 30 degree study may seem unexpected, espe-
cially in the compression regime. Two remarks should be made on this: (i) the stiffness of the
matrix is extremely low compared to the fiber and in addition the value of K,,;; is very high
compared to K ;2 and K., Whereby especially the strain in the fiber direction has a high
influence on the stress in this direction, but less perpendicular to it, and (ii) nevertheless the
stiffnesses at small deformations provide a linear response even for 30 degrees. The last point is
examined in Figure where also a linear relationship between strain and stress (5 = v = 1)
has been investigated for the fiber part. Since a detailed study of the material parameters, in

particular on the elastic response, is out of the scope of this paper, it is not further investigated.

2.5.2 Fiber influence on isotropic matrix material

To study the material model of the matrix, among others, structural examples with imperfections
are commonly carried out. Such detailed investigations and also mesh convergence studies

can be found in |Brepols et al.| [2020]]. This work rather focuses on the indirect anisotropic
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Figure 2.6: Force-displacement curves for different angles ¢,,, at small strains

influence of the fiber on the isotropic matrix formulation. As in the previous chapter, a simple
example will be chosen, whereby the spatial influence will be considered additionally. Again,
this is a uniaxial tensile test in x-direction of a cube of edge length L, but with different mesh
refinements.

In most cases, the material inelasticities of fiber-reinforced materials within the matrix occur
before those of the fibers. Therefore, the fiber is considered purely elastic with the parameters
Kunit = Kania = Keoup = 10 [F/L*] and o = 8 = v = 2 [-]. In Table the material
parameters describing the matrix material are listed. Furthermore, the parameters for the
gradient-extended damage formulation are A,; = 10 [FL3/L?] and H,; = 1 - 10° [FL/L?], as
well as the damage function fy; = (1 — Dj)?. The fiber volume fraction was chosen to ten

percent and ¢, is set to zero.

Table 2.4: Matrix material parameters

A 1% H P n  Sp 040 v Sm YM()
Unit [F/L?] [F/L?] [F/L?] [F/L*] [-] [F/L?] [FL/L’] [-] [FL/L?]
15000/13  10000/13 450 20 10 40 8 0.1 100

Figure[2.7]shows the force-displacement curves for 512 elements as well as mesh convergence
studies for the different fiber angles. For 0, 30 and 60 degrees a well converged mesh can
be seen. Although the 90 degree convergence is less accurate, it is sufficient enough for the
examples studied here. Due to the early onset of plasticity, in Figure no major difference
can be seen between the different curves at the onset. However, looking at Figure [2.8al

quasi-homogeneous plasticity can be seen for 0 degrees. In contrast, Figure [2.8b] shows an
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Figure 2.7: Force-displacement curves (left) and mesh convergence (right) for different fiber
angles .,

inhomogeneous field. This is due to the inhomogeneous strain state resulting from the fiber
direction, which leads to strain peaks or relaxed areas. For other material parameters, the
difference between the values can be even larger. However, this already gives an idea of the

impact of the fiber direction.

I2.313e—03 l2.315e-03

|2.313e-03 z )

mpg mpg

(@) kp [-] for gy = 0° (b) p [-] for gy = 60°

|2.313e-03

Figure 2.8: Initial accumulated plastic strain for different angles at u, = 0.023 [L]

Considering the fact that for 0 and 30 degrees the curves are already dominated by the stiffness
of the fibers, similar observations can be made for the beginning of the damage. Again, local
strain peaks lead to a slight difference in the beginning. Remarkable is the earlier start for 90
degrees. This could be explained by the not identical transverse contraction ratios in y and z

direction, in contrast to zero degrees. Furthermore, the jump is noticeable with a deformation
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Figure 2.9: Deformed structure for ¢, = 90°

of approx. u, = 0.8 [L]. If one looks at the deformed structure (Fig. [2.94), this is due to the
strongly changing aspect ratio caused by the different transverse contraction.

If a larger deformation is applied (Fig. [2.9b), a further interesting result is observed. Due to the
nearly fully damaged matrix material, the structure has mainly a remaining stiffness in the fiber
direction. Having the actual loading in mind, the fibers a compressed because of transverse
elongation. Thus, in addition to the already very thin deformation state of the structure, it can
be seen as a thin structure which is under compression loading. For such a case, it is known to
behave unstable.

Nevertheless, this comparison should be substantiated by numerical investigations. For this
purpose, a deformation u,, = 1.19 [L] was applied for which the instability could be recognized
for the first time (see Appendix [2.7.7)). In order to understand the underlying mechanisms in a
better way, the eigenvalues of the material tangent of one element in the area of the instability are
carried out. The results a presented in Table[2.5] Two interesting results can be observed: (i) for
stretch parallel to the fiber (second row of the Green-Lagrange strain tensor), zero eigenvalues
occur and (ii) for compression parallel to the fiber even negative ones are observed.

Under consideration that the matrix nearly does not contribute to the material response, it is
mainly the contribution of the fiber part. As already discussed in Section [2.3.2] a physical
reasonable material can not be described only by the fiber, since the corresponding material
tangent is only semidefinite. However, it should be emphasized that these considerations were
carried out for linear elasticity. Since in the actual case the material tangent depends on the
deformation state (nonlinear elasticity), it is not surprising that also negative eigenvalues can
be observed.

Hence, the unstable behavior can also be explained from a numerical point of view and is
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further an interesting example of the theoretical considerations from Section [2.3.2] A more
detailed discussion would be out of place here, as the focus is different. However, the interested
reader can find a more detailed discussion in Appendix

Table 2.5: Gaussian point investigation of element with center coordinate at (0.9375, 0.4375,

0.4375)
GP 1 GP2 GP3 GP4 GP5 GP6 GP7 GP 8
Dy 9.248E-01 9.257E-01 8.723E-01 8.758E-01 9.258E-01 9.267E-01 8.727E-01 8.767E-01
2.33E+01 23.78 23.33 2378 233E+01 238E+01 2.33E+01 2.38E+01
8.33E-04 0 -0.01 -0.01 939E-04 9.39E-04 -7.51E-03 -7.51E-03
. -0.49 -0.49 -0.44 -0.44 -0.49 -0.49 -0.44 -0.44
E 2.12E-01  2.00E-01 0.66 0.65 1.61E-01 1.48E-01 0.64 0.63
2.80E-02 0.02 0.07 0.03 8.54E-04 -7.45E-03 0 -0.04
429E-02 4.28E-02 1.29E-01 130E-01 427E-02 425E-02 129E-01 1.29E-01
49492.457 46569341 8548.100 8870.943 48072.517 45045.226 8527.785 8870.883
8382.404 8713.096 2941.651 2676.929 8364.726 8718.892 2916.566 2635.130
Eigenvalues of  270.645 251.925 2.029 1.936  262.824 243.316 1.872 1.789
C 5.701 5.173 -0.095 -0.109 5.548 5.001 -0.094 -0.107
0.366 0.325 -4.433 -4.822 0.251 0.216 -4.471 -4.785
0.001 0.000 -239.111 -248.554 0.001 0.000 -242.424  -248.230

Finally, Figure 2.10] will be discussed, which shows the accumulated plastic strain r,, as well as
the damage variable of the matrix D), at the end of the deformation. As expected, the material
behaves quasi homogeneously for 0 degrees, since there is no anisotropy perpendicular to the
loading direction. Due to the mentioned strain peaks for the other angles, locally, significantly
higher values for x, and D), along the fiber are obtained compared to the quasi isotropic case,
at the same time with lower values for lower deformations. This emphasizes that even the
purely elastic behavior of the fiber already has a significant influence on the isotropic matrix
formulation, which should not be underestimated in real applications.

Further, it should be noted that all simulations were characterized by a quadratic convergence
behavior. Only oscillating values during the Newton-Raphson scheme caused problems, which

could be solved by halving the step size on appearance.

2.5.3 Plate with hole

In the following, several finite element structural computations will be performed. The main
purpose is to investigate the interaction between matrix damage and fiber damage under various
conditions. Therefore, a plate with hole (PWH) example is considered, which boundary
conditions for the full structure [2.1Tajand the symmetric part[2.1Tb|are shown in Figure 2.T1]
As itis illustrated, the structure is supported at the top and bottom. It is held fixed in x-direction

and the top displacement in the y-direction is increased over time. Thus, a clamping of the
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Figure 2.10: Accumulated plastic strain (left) and matrix damage (right) for different angles at

u, = 1[L]
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PWH is simulated. Note that for the symmetric part only half of the y-displacement is applied,
since applying half the displacement at the top and bottom for the full structure is equivalent

to the case shown here. However, the case illustrated is more common.

[, =100 lzym =50
2
L Uy = .
R=2
y Uy =0y —
I i I i
| lo = 10 [L] | s — 5 [L]
T T
(a) Full structure (b) Symmetric part

Figure 2.11: Plate with hole and boundary conditions

For reasons of simplicity and numerical efficiency, respectively the more straightforward
numerical implementation, a plane strain state is assumed. Even if a plane stress state would
be more realistic for this type of testing, this does not harm the purpose of the investigation
carried out here. For the realization, one element over the thickness is used, which is completely
held fixed in z-direction. The thickness is set to [; = 0.1 [L].The angle ¢, is always equal to
Zero.

The elastic and damage material parameters for the matrix and the fiber can be found in Table
[2.6]and [2.8] respectively. The material parameters for the additional plastic investigations are
listed in Table Furthermore, the fiber volume fraction is set to Vr = 30%. The degradation
function for the fiber tension damage and matrix damage are chosen to f; = (1 — D;)? and

fu = (1 — Dy)% Again, the coupling functions f;. and f.; are set to one. Since no fiber
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compression damage is expected for the following studies, no compression damage material
parameters have to be chosen or the damage threshold Y, is set to infinity.

In addition, an artificial viscosity by means of .S, = vE is added to the overall second Piola-
Kirchhoff stress tensor to overcome the severe snapback behavior in case of damage, which
was also successfully applied by e.g. [Fassin et al. [2019b/al]. The artificial parameter is set to
v =1 [FT/L?].

Table 2.6: Material parameters for matrix material (PWH)

A 1 rM SMm Yo Ap Hy
Unit [FA?] [FA2] [FLA?] [-] [FLA?] [FLYL3] [FL/L%]
40000 40000 8 10 10 30 1-10°

Table 2.7: Plastic material parameters for matrix material (PWH)

H, Tp  Sp 0y0
Unit [F/ Lz] [F/Lz] [-] [F/Lz]
20000 125 20 300

Table 2.8: Material parameters for fiber material (PWH)

Kanil K@mi? Kcoup 04/5/7 Tt St }/tO At Ht
Unit [F/L?] [F/L?] [F/L%] [-] [FL/L3] [-] [FL/L3] [FL31L?] [FL/L?]
35000 2500 15000 2 5 1 275 200 1-10°

In order to understand the interaction between fiber and matrix damage in more detail, the

following investigations are to be performed:
1. Pure elasto-damage matrix (EDM) material
2. Pure elasto-plastic-damage matrix (EPDM) material
3. Elasto-damage matrix and elasto-damage fiber with ¢,,, = 90° (EDMF90)
4. Elasto-plastic-damage matrix and elasto-damage fiber with ¢,, = 90°
5. Elasto-damage matrix and elasto-damage fiber with ¢,,, = 45°

As a result of the first two investigations it is possible to better identify the influence of the
fiber. For the sake of completeness, Tablelists the maximum reaction forces F;lax to which

the force-displacement curves in the following Sections are normalized.
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Table 2.9: Maximum reaction forces
Figure |2. 13| |2. 15| |2. 17| |2.20| |2.23|
Fymz"X [F] 617.554 412.987 1020.869 1159.164 467.501

2.5.3.1 Pure elasto-damage matrix material

The aim of this first investigation is to be able to study the influence of the fiber and its damage
evolution on the matrix material. Hence, the pure matrix material (V= = 0%) is investigated
using the parameters presented in Table[2.6|and the symmetric part of the PWH (Figure [2.11b).
Different mesh refinements with 1022, 2480, 3944 and 6739 finite elements are used to conduct
a mesh convergence study. These meshes differ mainly in the area of the hole, since here the
main inelastic effects are expected. The refinements are shown in Figure 2.12] As it can
be seen, only regular hexahedral elements are used and further no strong mesh distortion is

observed.

The global force-displacement curves obtained for the different meshes are presented in Figure
The curves are normalized to the maximum load of the 6739 mesh as well as the total
length [}, of the specimen.

Measured are both the total reaction force in y-direction and the displacement in y-direction.
Note that for both the values are multiplied by two to gain the answer of the full structure.
The difference between the curves is negligible small. Therefore, the curve of the mesh
with 1022 elements can be considered as already converged. Due to the small deformations
applied compared to the total length of the structure, a linear relationship between the load
and displacement can be observed in the elastic regime. Nevertheless, in the regions of high
damage values large strains occur. Thus, finite strain theory is absolutely required.

In addition, Figure [2.14|gives different stages of the local matrix damage variable D,,;. Shown
is the mirrored, full and deformed structure for the 6739 element mesh. In black is the
undeformed outline of the upper part of the full structure. The four snapshots are taken at
different times that are indicated by black rectangles in the load displacement curve (Figure
[2.13). The first three ones are taken during the decrease of the force-displacement curve. The
last one belongs to the end of the simulation. As expected, the damage begins to evolve at the

edge of the hole and then continues to rise to the outer edge of the structure.
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(a) 1022 (d) 3944

(c) Full mesh (1022)
(b) 2480 (e) 6739

Figure 2.12: Mesh refinements for symmetric PWH
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Figure 2.13: Force-displacement curves for pure elasto-damage matrix study
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Figure 2.14: Four different stages of pure matrix damage (deformed structure)

2.5.3.2 Pure elasto-plastic-damage matrix material

It is the aim of this paper to present not only a model for an elasto-damage matrix material,

but also for an elasto-plasti-damage matrix material. Thus, additionally to the last example

the influence of plasticity is investigated. To further study the influence of the fiber, the pure

elasto-plastic-damage matrix material is to be studied here. For this purpose, the same mesh

refinements as in the last example (Figure[2.12)) are used.
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Figure 2.15: Force-displacement curves for pure elasto-plastic-damage matrix study

The force-displacement curves are presented in Figure [2.15] which are normalized to the

maximum force of the 6739 mesh. Regarding the maximum force as well as the begin of the
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degradation good convergence can be observed. However, it should be noted that for the 3944
and 6739 mesh no convergence could be achieved at F,/F,*** ~ 0.5. This may could be
explained by a too low artificial viscosity and the resulting snapback. Nevertheless, from a
practical point of view the maximum reached forced and the beginning of degradation are far
more interesting. Therefore, these convergence difficulties are not further investigated.

It should also be noted that the difference to the EDM curve coincides with the beginning of
plasticity. The second kink in turn corresponds to the beginning of the damage. Although the
maximum reached force is less compared to the EDM case, the displacement at the beginning

of the degradation is higher.

HH

0.0 N W 0.45 Ky [-]

(a) Accumulated plastic strain

0.0 N
(b) Matrix damage D,

W 1.0 Dy [-]

Figure 2.16: Four different stages of pure matrix damage with plasticity (deformed structure)



68 2 An anisotropic constitutive model for fiber-reinforced materials including gradient-extended damage...

In Figure[2.16|the accumulated plastic strain as well as the matrix damage at for different stages
are presented, which are indicated by rectangles in Figure [2.15] These snapshots are taken
from the 2480 mesh.

Compared to the results of Figure[2.14] the general evolution of the matrix damage is similar
in both cases. However, due to the increasing plasticity, the observed necking of the specimen
in the area of the hole is much stronger than in the pure elasto-damage case with at the same
time lower applied deformation. The reasons for the differences compared to the pure elastic

failure can be explained by the much more ductile behavior due to the plasticity.

2.5.3.3 Elasto-damage matrix and elasto-damage fiber with ., = 90°

The next aim is to investigate the additional influence of the fiber, whose parameters are shown
in Table 2.8] Since an angle of ¢, = 90° is chosen here, the symmetry with respect to both
the x and the y axis is given. Therefore, as for the pure matrix analysis only a quarter of the

structure has to be simulated. For the discretization, the same meshes as in the last example

(Figure 2.12)) are used.

First, a mesh convergence study is performed. The force-displacement curves for the vari-
ous mesh discretizations are presented in Figure [2.17] These are normalized to the maximum
load of the 6739 mesh and to the structure length [;,. A small but noticeable difference between
the 1022 elements mesh and the other discretization suggests a non converged mesh. However,

the next finer discretization can be considered to be converged.

no. of elements:

—_— 1022

8 2480

..... 3944

- - 6739

- Pure EDM

-« - Without fiber damage
| |===-- Without any damage

EyJFr -]

\
0 0.5 1 1.5 2 2.5
uy/lh [-] '10_2

Figure 2.17: Force-displacement curves for elasto-damage matrix / elasto-damage fiber study
with ¢, = 90°
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In addition, the force-displacement curve of the pure matrix behavior is plotted (6739 el-
ements). It is worth mentioned that the maximum achieved load is only about 60 percent
compared to the fiber reinforced material and further is less stiff, which is usually the case for

fiber-reinforced materials.

ok A T

0.0 NN B 1.0 Dy [-]

(a) Matrix damage Dy

0.0 IS 10 D[

(b) Fiber damage Dy

Figure 2.18: Four different stages of fiber and matrix damage ¢,, = 90° (deformed structure)

A further interesting observation is the kink at u, /I, ~ 0.007. To preclude that perhaps the
fiber damage is mainly responsible for this effect, two further computation with the reinforced
material but without any fiber damage and without neither fiber nor matrix damage are per-

formed. The results are also added to the force-displacement curves in Figure [2.17] Since the
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original curves and the curve without fiber damage look quite the same and further the curve
without any damage does not show any nonlinearities, it can be suspected that it is mainly the

matrix damage leading to these nonlinearities.

Figure 2.19: Four different stages of matrix damage without fiber damage ¢,, = 90° (deformed
structure)

In order to understand the local behavior better and to study the interaction between fiber and
matrix damage, the damage evolutions of the fiber part D, and the matrix part D), at different
snapshots will be discussed, which are indicated in Figure [2.17] by black rectangles. These
snapshots for the matrix and the fiber are presented for the 6739 mesh in Figure 2.18] At first,
it can be seen that the matrix damage starts way earlier than the fiber damage. Furthermore,
due to the transversal isotropic behavior the damage of the isotropic matrix material does
not evolve as in case of an material without reinforcement. In particular, having a look at
the second snapshot of Figure [2.184] it is clearly visible that the damage evolves parallel to
the fiber direction. This influence was already studied in Section and is further similar

to the experimental observations of e.g. [Hashin and Rotem| [1973], Reifsnider and Lauraitis|

[1977]; [Lauraitis| [1981]], [Tsail [1979]] or[Kawai et al.|[2001]]. Although the structural example

is not totally equal, since a plate without hole was investigated by the mentioned works, the

basic mechanisms should stay the same as the influence of the fiber on the direction of matrix
damage.

Since the second snapshot is taken nearly at the maximum load reached and the fact that the
fiber damage has quite not start to evolve, the kink in the force-displacement curve can be fully
explained by the matrix damage as already suggested above.

The interaction between fiber damage and matrix damage becomes particularly clear between
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the second and third snapshot. If the matrix damage initially evolved parallel to the fiber, the
direction starts to change with the beginning of the fiber damage. As expected, the fiber damage
does not evolve along the fiber itself, but transversely. From a mechanical point of view this
makes complete sense, since, due to the ’crack’ of the fiber, the fiber does not contribute to the
load transfer anymore. This effect causes the matrix to be loaded in such a way that it is also
damaged along the fiber crack.

To give the reader an idea of how the matrix damage evolves at no or much later onset of
fiber damage, Figure 2.19[shows different stages without fiber damage. The first two snapshots
belong to the second and third snapshots in Figure If the same contour can be seen in
the first, this changes with the next snapshot. This is due to the fact that the absence of fiber
damage means that the matrix damage continues to evolve along the fiber. As shown in the last
two snapshots, which are out of the range of the force-displacement curve[2.17] this progresses

further towards the clamping.

2.5.3.4 Elasto-plastic-damage matrix and elasto-damage fiber with o, = 90°

As a second variation of the 90 degree angle specimen, an elasto-plastic-damage matrix ma-
terial is considered. Hence, the symmetry conditions are still fulfilled meaning that again the

symmetric mesh (Figure [2.12)) can be used for the investigation.

Figure [2.20] provides the force-displacement curve for the different mesh refinements with
1022, 2480, 3944 and 6739 finite elements, which are normalized to the ultimate force of the
6739 mesh. Similar to the example of Section [2.5.3.2] not all mesh refinements succeeded to
converge during the degradation, in particular the 6739 mesh here. However, as convergence
has been achieved for the same reasons as in Section [2.5.3.2] for the essential characteristics,
this is not relevant in the following. Therefore, the results of the 3944 mesh are discussed
below.

In order to allow a proper interpretation of the results, the force-displacement curves from
Section[2.5.3.2]and [2.5.3.3| have also been added. First of all, it can be seen that the material
response is stiffer than in the EPDM case and, secondly, that there are significantly nonlinear
effects compared to the results of the EDMF90 tests at u,/l;, ~ 0.0035. In contrast to the

curve presented in Figure[2.T5] it is not possible to differentiate between the onset of plasticity

and damage. Indeed, both phenomena start to evolve at even this deformation state.

Several snapshots of the accumulated plastic strain, matrix damage and fiber damage taken

during the process, which can be identified by rectangles in Figure are shown in Figure
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Figure 2.20: Force-displacement curves for elasto-plastic-damage matrix / elasto-damage fiber
study with ¢, = 90°

[2.21] As the first snapshots of accumulated plastic strain (Figure and especially matrix
damage (Figure [2.21b) show, both inelastic effects developed during the process up to the
moment immediately before degradation. In particular, the matrix damage has reached a max-
imum value of D), ~ 0.7. Furthermore, compared to the results of the EPDM case in Figure
[2.16] it can easily be seen that similar to the last example the fiber has a notable influence on

the direction of the evolution of both phenomena.

Finally, an interesting finding of the actual investigation shall be discussed, namely the higher
reaction force than in the EDMF90 investigation. While it was the case for the pure matrix
material that the testing without plasticity led to a lower reaction force compared to the brittle
material (see Figure [2.15), this is quite the opposite here.

First of all, the damage mechanism of the brittle EDMF90 investigation should be remembered.
Although the structure remained stable after the onset of matrix damage, as the fiber caused
the matrix damage to develop parallel to the fiber and not onto the exterior, the matrix did no
further contribute to the stiffness in the area of the hole. Hence, the fiber remains to carry the
load and is therefore extremely loaded in especially this area, leading to an early onset of the
fiber damage and the resulting failure of the structure.

The current investigation is contrary to this. As the investigations in Section [2.5.3.2] already
demonstrated, the much more ductile behavior of the matrix, which can also be recognized
by the stronger necking (Figure [2.18] and [2.21)), entails its damage to develop but does not
lead to sudden - or more precisely brittle - failure. In this way, the matrix does contribute
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(a) Accumulated plastic strain

0.0 IS Wl 1.0 Dy [-]
(b) Matrix damage Dy,

0.0 IS 10 D[]

(c) Fiber damage D;

Figure 2.21: Four different stages of fiber and matrix damage with plasticity (., = 90° (de-
formed structure)



74 2 An anisotropic constitutive model for fiber-reinforced materials including gradient-extended damage...

to the stiffness much more in the area of the hole compared to the brittle case resulting in a
lower loading of the fiber. For this reason, the onset of fiber damage is reached at a higher
deformation state. Nevertheless, quite soon after this damage threshold is exceeded, the entire
structure fails because a ’crack’ runs from the interior to the exterior, which can be nicely
observed by comparing the second and third snapshot in Figure [2.21b]and 2.21¢

2.5.3.5 Elasto-damage matrix and elasto-damage fiber with ¢, = 45°

The last example focuses on the interaction between matrix and fiber damage under off-axis
angle (., = 45°) conditions. Thus, the symmetry with respect to neither the x nor the y axis
is given. Consequently, the full structure is meshed.

For the mesh convergence study, three different mesh refinements are used which are presented
in Figure[2.22] As already for the symmetric part, the inelastic effects are expected in the area

of the hole, which is why the refinement is mainly in this region of the structure.

(a) 1677 (b) 2597 (c) 3517

Figure 2.22: Mesh refinements for full PWH

The gained force-displacement curves are shown in Figure [2.23] First of all, it can be nicely
seen that already the 1677 finite element mesh is converged regarding the damage onset as well
as the degradation.

Comparing the results of the off-axis analysis to the ones of both the pure matrix as well as the
90 degree angle investigation, a less stiff answer is observed. Regarding the latter, this is not

surprising, but prima facie for the pure matrix case. Although in the case of pure matrix and



2.5 Numerical examples 75

the off-axis study globally the structure is loaded under tension, locally the matrix is undergoes
shear stresses for the off-axis study due to the fibers. Since in both cases it is mainly the matrix
that contributes to the overall stiffness (the fibers reorient themselves for the off-axis study), it
is not astonishing for the off-axis investigation to result in lower stiffness.

Furthermore, in contrast to the results of other investigations, it can be seen that force-
displacement curves for the off-axis investigations increase at end. This effect is a result
of the reorientation of the fibers. Although the matrix has reached a fully broken state, the
fiber damage threshold is not excited. Thus, the fibers still contribute the stiffness and reorient

themselves, as no fiber pull-out is considered.

no. of elements:

.
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| |
0 0.2 0.4 0.6 0.8 1

uy /Iy [-] 1072

Figure 2.23: Force-displacement curves for elasto-damage matrix / elasto-damage fiber study
with ¢, = 45°

Having a look at Figure [2.24] several snapshots of the matrix damage can be seen, which are
indicated by rectangles in Figure[2.23] In addition, the black lines illustrate the outline of the
undeformed, full structure.

The evolution of the matrix damage is clearly different compared to the results presented in
Figure This strong difference is only due to a different angle of the fiber.

Moreover, the reorientation of the fibers and thus the resulting increase of the force-displacement
curve as discussed above can be observed in the last two snapshots. However, the last snapshot
shows a kind of ’inflation’ of the structure. This is partly due to the reorientation, but also
because the matrix has practically no contribution to stiffness. Thus the material is again only

described by the fiber, which can be rather problematic, as discussed above several times.
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M

0.0 N B 10 Dy [-]

Figure 2.24: Four different stages of matrix damage ¢, = 45° (deformed structure)

Although the results so far obviously show that the angle of the fiber influences the matrix
damage and its direction, the correlation is not fully understandable due to e.g. the early onset
of matrix damage. Therefore, in Figure @] the results for ., = 45° and ¢,, = 60° are
shown to the reader with an additional higher damage threshold Y}, = 100 [FL/L?]. Compar-
ing the contour plots of the undeformed structure, it can nicely be seen that the direction of the
matrix damage corresponds much better with that of the fiber. With regard to the direction of
matrix damage, these results are similar to the experimental observations of Hashin and Rotem
[1973], Pipes and Cole [1973]], Reifsnider and Lauraitis| [1977]]; Lauraitis [[1981] and Kawai
et al.|[2001].

-
-

B 10 Dy [-]

Figure 2.25: Matrix damage with Y); = 100 [FL/L*], ., = 45° (left) and ¢,,, = 60° (right)
(undeformed structure)
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2.6 Conclusion and outlook

A thermodynamically consistent material model for transversally isotropic materials with
gradient-extended damage separately for the elasto-plastic, isotropic and elastic, anisotropic
part at finite deformations was shown. Further, a new approach for the description of tension-
compression asymmetry based on fiber stretch was developed, to capture two main mechanisms.
On the one hand, the damage evolution in the tension and compression regime of the anisotropic
part can be described differently in order to take, for example, kinking into account. On the
other hand, the effect of crack closure can also be captured. Two scalar damage variables
associated with the fiber damage are introduced for this purpose.

The isotropic matrix material is modeled by an elasto-plastic model, whereby nonlinear
isotropic hardening was considered. In addition, for the matrix, isotropic damage was as-
sumed. Therefore, a further damage variable was introduced. By a two-surface approach the
plasticity and the damage are generally independent from each other, whereby greater flexibil-
ity of the model is achieved.

To avoid artificial mesh-sensitivity, the micromorphic approach was applied to each dam-
age variable separately, which is why an efficient element formulation and its linearization
were presented. In order to obtain quadratic convergence within the global Newton-Raphson
scheme, the derivation of material tangents with respect to the global degrees of freedom was

also discussed.

Various numerical examples have examined the different aspects of the model. Thus, it
could be shown that the damage behavior of the fiber in the tension and compression regime is
modeled completely independently of each other. Furthermore, the influence of the additional
anisotropic fiber part on the isotropic elasto-plastic-damage part was studied. In these studies,
the effect of local strain peaks has been observed, which leads to inhomogeneous plastic and
damage fields even in the case of a uniaxial tensile test without any structural imperfection.
Finally, the interaction between fiber and matrix damage and additionally plasticity was ex-
amined. It could be shown that the fiber does not only have an influence on both the matrix
damage and plasticity but further the fiber damage results in an interaction with the matrix and

its inelastic phenomena and vice versa.

Future works should concentrate on several points that had been mentioned in this work:
First, a lot of work has to be done to determine a consistent set of material parameters. For this

sake, the matrix material and the composite material have to be investigated separately, to avoid
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any inconsistency in the context of the material parameter identification. By this experimental
procedure the elastic, plastic and damage properties of the matrix can be determined first. In a
further step, the parameters associated with the fiber can then be determined by investigating
the composite.

Second, the formulation of the matrix damage used here is based on a scalar damage func-
tion without considering the influence of the actual stress state. However, some of the above
mentioned works on failure analysis suggest that it is necessary to consider whether tension is
applied in the direction of the fiber or transversely to it. To take this influence into account,
alternative formulations like the puck criterion are a possibility. In addition, in the case of
e.g. a fully broken matrix material state, it is not suitable to describe the material only by
the fiber part. Therefore, a global failure criterion (to capture e.g. fiber pull-out) should be
discussed. Third, the plasticity model used here is of a von Mises type. This assumption has to
be validated for the used matrix material in the actual context and perhaps has to be adjusted.
Last, attention has to be paid for delamination between the individual unidirectional layers. It
can be expected that the impact on the structural response of the fiber-reinforced laminate and
especially on its damage evolution is significant.

Apart from the material formulation, the FEM implementation has to be considered more
closely. It should be studied whether the observed unstable behavior caused under compres-
sion is realistic or due to e.g. the Q1 element formulation. Furthermore, fiber-reinforced
laminates are usually extremely thin structures, which can lead to locking phenomena. Various
finite element technologies are conceivable to avoid these. In addition, this could reduce the

computation time immensely.

2.7 Appendix

2.7.1 Tension-compression split of right Cauchy-Green tensor

A general right Cauchy-Green tensor with its eigenvalues w;, wy and w3 and its eigenvectors
n1, N and ng is discussed. If, for example, w; is larger or equal to one and both w, and ws

are lower than one, the tension-compression split lead to

Ct = win; N, (277)
Cc = W9Ty @ Mg + W3Ng @ N3. (278)

Since n - ny = ny - n3 = 0 holds true, it is obvious that C,C, = C.C; = 0.
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2.7.2 Relations between the invariants of the elastic and plastic parts

Using relation (2.5) and C), = FMpFMp, one can formulate the following

= tr (Fy, CFyp,) = tr (CCy) (2.79)
— tr (FsCFyih)") = tr (Fy LR P CF) =t ((CCyt)*) 280)
det (C ):d et (CC,y,) = det (C)det (Cyp)). (2.81)

This shows that the invariants of C)/. can be expressed in terms of C' and C),. In the case of

no plasticity this further proves the equivalence of the invariants of C),. and C.

2.7.3 Linear elastic material tangents

The material tangent in Nye notation for the fiber material in the case of linear elasticity with

respect to the fiber direction is

4K onin + 8Kaniz + 8Keoup 4K coup 4K coup 0 0 0
4K coup 0 0 0 0 0
(C“” B 02\111}2 B 4K coup 0 0 0 0 0
8C’ oC 0 0 0 2K anio 0 0
0 0 0 0 2K ni2 O
0 0 0 0 0 0
(2.82)
For the matrix material the material tangent for pure linear elasticity reads
A+2p A A 0 0 O
A A+2p A 0 0 O
@5\7 _ 4 o*wlin _ A A A+2p 0 0 0 (2.83)
OC 11 0C e 0 0 0 w 0 0
0 0 0 p O
0 0 0 0 u
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2.7.4 Engineering constants

Material parameter restrictions.

EH,EL,G||,GL>O, |VL|<1, V\|<\/E|\/Ei

E
l—v, —22=—= >0
||EH

Conversion formulas.

Q

) Q
I - 284

—3Ap + 4Vep? + 16 K2 VE — 2% — 2V A2

coup

- 4Kani1vFA - 8Kani2vFA - 4Kani1VF,u - 8[(0mi2‘/F,u - SKCO’U,pVF,LL
+ 6VeAp + 4K 1t VAN + 8K anio VAN 4+ 4K 4t VAL + 8K ania VAL
+ 8K coup Vit — 3VAAu

Q1
E, = N (2.85)
Q1 = 3Ap® — 6Vep® + 21 + 6VAE — 2VE NS — 8K iy VEU®
+ 4K it Va?E — 16 K gnin VAR + 8K gnioVEI?
— 16K coup ViR — 16K2,  Vip + 8K oouy Vil
+16K2,,Viu + ViAp® — 3VEAR? + 4K gt Vil
+ 8 KaniaVit? + 8K eoup V> — IVpAp® — 8Kynin VEAL
+ 4K it VEA I — 16K gniaVEA R + 8K io VEA L
+ 4K anit VEA R + 8K nio VA
Qs = A — 2Vpp? — AK2 VP + 12 + VR + Kopin Ve A
+ 2K ania VA + 2K 0nit Vit + 4K gnio Vit + 4K couy Vit
— 2VpAp — Kanit VAN — 2K 4o VAN — 2K it VAL
— 4K iVl — AK oy VL + VEA L

Gl = 1+ 2K aniaVir — Virp (2.86)

GL=pu—Vpxp (2.87)
L A AR, Ve = Ved
72N+ = Ve = Viep)

(2.88)
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With these lengthly equations at hand, the five engineering parameters can be determined. It

is also visible that for Vr = 0 an isotropic material behavior is achieved.

2.7.5 Finite Element additions
2.7.5.1 Gateaux derivative of the field equations

The Gateaux or directional derivative of the multi-field problem about a known state (u*, d*)

is defined as follows

Dulgu] - Au = 4 (gu(u* + € Au,d")) Dalga) - Ad = 4 (gu(u*,d* + € Ad))

de 0 de —0
d * 7% 7 * gk 7
Pulail S = § ' + e )| Zalad Ad = I (ol @+ e AdD))
= (3.89)
2.7.5.2 Approximations
N — <NII N81> (2.90)
0 9, 0
B= (Bg— +B,— + BC—) N
og  Ton 06 2.91)

T
— ([ 9(x) 9(x) O(x) : 9(x) 0(x) O(x) ; O(x) 9(x) O(x)
B = (dlag <8X1 X2 8X3> diag <8X2 9Xs 8X1> diag <8X3 ax1 6X2>)

FE 0 0 0 0 Fy 0 F4 0
0O F, 0 F5, 0 0 0 0 Fg
po_ |0 0 B 0 By 0 Fy o000 (2.92)
F, F5 0 Fn 0 Fy 00 F Fg
Fyy 0 F5 0 F5 Fgy F Fyy 0
0 K5 Fg Fy F5 00 F 00 Fg
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S 0 0 S, 0 0 S5 0 0
0 S, 0 0 S5 0 0 S5 0
0 0 S% 0 0 S5 0 0 S5

S, 0 0 S, 0 0 Si 000

Sw=|0 S, 0 0 S, 0 0 S5 0 (2.93)
0 0 S4% 0 0 S84 0 0 S5

S, 0 0 S4 0 0 S&% 000
0 S5, 0 0 S5 0 0 Sy 0
0 0 S% 0 0 S, 0 0 S5

2.7.6 Partial derivatives of the second Piola-Kirchhoff stress tensor

oS 98 dSy
ac ~ L= Vi5e TVirge
asM 1 A det(C) A RN T
ffM( )( 2( “+2det(CMp) 2) ((C ®C') +(C'eC™)
A det(C) ., 4 .
2det (G © 0C
oS
e = 7Dt De, 1) 2 (Kanar (0= 1)(Ls = 1)°*Mr @ My

oI, 01
K . _ _1\8—22°5 5 . —1mIs
+ Kanio ((ﬁ 1)([5 1) 8C ® = oC ([5 1) D )

t+ Keouwp (V=D)L =3 (L= 1) TR T + (L —3) (L, — 1)
(Mp@I+T®Mp)+(y— 1)1 —3) (i — 1) *Mp © My))

1
]DIE) — 5 (6jkMFil + 5U€ijl + (SﬂMij + 5leFik) e X €; X e, X e

08 1 (2.94)
N - - - —
oU; ] =(1- VF)fM(DM)§ (5 (5ijMLil + 5ikUM;ﬂ + 5ilUMij + 5leM;mc>
p
det (C
+ AW((;'M)) (Cz-;lUMplk + Ci;lUMpkz)) e,®e;®e,R® e
p
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08 Ofr(Dy, D, I o _
oD, Vr = (9tDt 4 (Kanit (Is = 1) Mp + Kapio(Is — 1)°
(CMp + MpC) + Kooy (I = 3) ' (Is — 1) T + (I — 3)"(1s — 1) ' Mp))
(2.96)
08 Ofr(Dy, D, I . ~
oD, =Vr fF( 8tDc 4> 2 (K“"“(Ll - 1) lMF + Kam?(lf) - 1)6 !
(CMp + MpC) + Keoup (I = 371 (Iy = 1) T + (I, = 3)7 (14 — 1) Mp))
(2.97)
o8 dfar (D) —1 ~1 A [ det(C) —1
ooy~ V=, G-+ 5 G T € (2.98)

2.7.7 Unstable behavior discussion

The observed unstable behavior in the numerical example (Section [2.5.2) should be investi-
gated in a more focused way. In this Section, it was stated that the instability was observed
first for a deformation of u, = 1.19 [L]. The corresponding deformed structure as well as the

matrix damage variable are presented in Figure 2.26]

|0.93

0.91855

0.90464
0.9

(0.9375,0.4375,0.4375)

(a) Deformed structure (b) Dy [-]

Figure 2.26: First observed unstable behavior at v, = 1.19 [L]

On the one hand, it can be observed that it is mainly the middle part of the structure beginning
to deform into the z-Direction. On the other hand, the damage has reached a higher value at
the edge. Thus, two elements and their material tangent eigenvalues are studied in addition to
the element presented in Section [2.5.2] One element at the edge of the structure and second a
element in the nearly undamaged area for comparison. The results are presented in Table [2.10]
and 2111

The nearly undamaged element (Table [2.10) is positive definite for all deformation states,
even for those where compression is applied in fiber direction. Thus, no unstable behavior is

expected. In contrast to that, the element at the edge (Table [2.11)) shows a similar behavior to
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Table 2.10: Gaussian point investigation of element with center coordinate at (0.0625, 0.0625,

0.0625)
GP1 GP2 GP 3 GP 4 GP5 GP 6 GP7 GP 8
Dy 2.207E-02 2.207E-02 2.207E-02 2.207E-02 2.207E-02 2.207E-02 2.207E-02 2.207E-02
5.83E-01 0.58 0.58 0.58 5.84E-01 5.84E-01 5.84E-01 5.84E-01
-1.58E-01 -0.16 -0.16 -0.16 -1.58E-01 -1.58E-01 -1.58E-01 -1.58E-01
- -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16
E -6.05E-05 -5.20E-05 0 0 -8.85E-05 -8.85E-05 0 0
-7.35E-05 0 0 0 -8.53E-05 -8.53E-05 0 0
-1.71E-05  1.21E-05 -2.08E-05 -1.02E-05 1.14E-05 1.14E-05 1.22E-06 1.18E-05
7298.8 7299.7 7298.51 7299.32 7299.75 7300.64 7299.21 7300.01
2861.14 2861.06 2860.84 2860.67 2861 2860.93 2860.42 2860.26
Eigenvalues of 1427.64 1427.6 1427.49 1427.41 1427.56 1427.53 1427.28 1427.2
¢ 451.34 451.22 451.3 451.17 451.15 451.04 451.1 450.97
444.55 444 4 444.52 444.36 444.41 444.26 444.33 444.18
359.95 359.76 359.94 359.74 359.72 359.54 359.7 359.51

Table 2.11: Gaussian point investigation of element with center coordinate at (0.9375, 0.0625,

0.4375)
GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP 8
D 9.282E-01 9.295E-01 8.784E-01 8.804E-01 9.291E-01 9.305E-01 8.791E-01 8.812E-01
2.43E+01 24.88 2427 2488 243E+01 2.49E+01 243E+01 2.49E+01
2.73E-04 0 -0.01 -0.01 3.09E-04 3.09E-04 -5.41E-03 -5.41E-03
. -0.49 -0.49 -0.45 -0.45 -0.49 -0.49 -0.45 -0.45
E 1.08E-01  9.88E-02 0.71 0.71 1.08E-01  9.82E-02 0.71 0.71
1.15E-02 0.01 0 0 -1.30E-02 -1.43E-02 -0.06 -0.06
-2.28E-03 -2.32E-03 -2.50E-04 -4.63E-05 -1.90E-03 -1.94E-03 -4.01E-05 1.63E-04
44337.062 47394317 9200.926 9659.705 43084.527 45990.424 9217.390 9678.963
9080.195  9545.862  2395.999 2345221  9099.643  9568.170  2366.905  2312.999
Eigenvalues of 242993 251.012 2.508 2.505 235.967 243.395 2.535 2.531
C 4.877 4.926 -0.121 -0.116 4.733 4773 -0.119 -0.114

0.147 0.134 -4.084 -4.018 0.145 0.131 -4.021 -3.947
0.000 0.000  -203.386  -205.032 0.000 0.000  -200.883  -202.182
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the one discussed in Section[2.5.2] since also here negative eigenvalues are present in the case
of compression parallel to the fiber direction. The reason for these observation is similar to
the one already discussed in Section[2.5.2]

Although the edge element has reached a higher matrix damage state, the middle element is
more interesting for two reasons: (i) the unstable behavior is obviously more crucial compared
to the edge element and (ii) the absolute value of the negative eigenvalues is higher. Hence, a

eigenvalue analysis of the resulting stiffness matrix is carried out. The key results are presented

in Table 2.121

Table 2.12: Eigenvalues of K,,,, of element with center coordinate at (0.9375, 0.4375, 0.4375)
at a displacement u,, = 1.19 [L]

Number of eigenvalue Value
1 530.88
2 178.41

17 0.01
18  6.37E-15
19 1.72E-15
20 -4.37E-15
21 -2.88E-02
22 -3.84E-02
23 -5.84E-02
24 -3.27

In particular, the significant negative eigenvalue of —3.27 is critical with regard to the defor-
mation behavior and especially in terms of the unstable behavior. For a better understanding
of the related effects, the corresponding eigenvector is illustrated using a unit cube in Figure
2.27

The observed deformation is very similar to the one globally observed within the structure in
Figure [2.26a] Hence, it can be concluded that the deformation is mainly influenced by the
negative eigenvalue. At last, it should be remarked that also for the edge element negative
eigenvalues were observed, which will be also the case for the other unstable elements. Thus,

it is not surprising that the deformation gets worse for larger displacements applied as seen in

Figure[2.9b]
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(a) Perspective view (b) YZ-Plane

Figure 2.27: Illustration of eigenvector (yellow) corresponding to eigenvalue —3.27
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3.1 Abstract

The objective of the present paper is to develop a thermodynamically consistent coupled
damage-plasticity model at large deformations, which accounts for damage anisotropy. More-
over, a ‘two-surface’ approach allows modeling plasticity and damage independently. Thus,
both phenomena are treated as separate dissipative mechanisms, making the model attractive
for application to both brittle and ductile materials. The framework is based on Continuum
Damage Mechanics. Furthermore, logarithmic strain measures - also known as Hencky strain -
are considered for the kinematics, while the decomposition of the total deformation into elastic
and plastic parts is based on the additive split. Hence, the derivation of the model and its
conjugated quantities takes place in the logarithmic strain space, but these are subsequently
transformed to their Lagrangian counterparts to be applicable in standard finite element for-
mulations. Consequently, the transformation of constitutively dependent quantities such as
stresses, but also the various associated material sensitivities, are addressed here. Another
main aspect of this work is the gradient-extension of the presented model in order to cure mesh
sensitivity in case of material softening. To this end, a novel gradient extension is derived
using the invariants of the second order damage tensor, which is based on the micromorphic
approach. In addition to the theoretical framework, special attention is paid to the finite element
implementation, the formulation of the local residuals, and additionally the computation of the
material tangents to achieve quadratic convergence rate within the Newton-Raphson scheme.
Single element studies as well as representative structural examples investigate the model’s
response to various loading scenarios, the effect of damage anisotropy and further highlight its

ability to provide mesh-independent results while undergoing large deformations.

Nomenclature
a, A Scalar ® Dyadic product
a First order tensor AT Transpose of A”
e; Cartesian basis Al Inverse of A~ !
a Tuple n x 1 tr (A) Trace of A
A Second order tensor dev (A) Deviatoric part of A
A Matrix n X m vol (A)  Trace of A
A Fourth order tensor det (A) Determinant of A
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A Tensor of n-th order In(A)  Logarithm of A

Sym (e) Symmetric group Grad (e) Lagrangian gradient
Single contraction Div (e)  Lagrangian divergence

AB A - B = Ay Bije; Qe diag (e)  Diagonal matrix
Double contraction (o)Tk Interchange i-th and
(e.g. A: B=A;B;) k-th basis vector

3.2 Introduction

Over the last decades, research in the field of material modeling of damage and in particular
anisotropic damage has steadily increased. As observed in the course of, for instance, metal
forming or natural engineering materials such as paperboard, isotropic models reach their lim-
itations for such complex load paths and are not able to adequately represent reality anymore.
Hence, accurate material models are essential for a proper prediction based on simulations
and, thus, for the reduction of costs due to extensive experiments as well as for the general
optimization of complex process flows. Besides brittle damage, characterized by an abrupt
failure of the structure, ductile damage is of particular interest in this regard.
Micromechanically, ductile damage is characterized by dislocations and microdefects, the for-
mer being associated with plasticity. Microdefects, in turn, can be classified into (spherical
or elliptical) microvoids and microcracks, where the degree, ratio, and orientation of at least
microcracks depend on the material itself, but also strongly on the loading process. Due to such
preferred directions of the microdefects, the microlevel can no longer be considered isotropic,
which then becomes apparent at the macrolevel in the form of anisotropic damage. Nucleation
and growth of these microdefects lead to a continuous loss of stiffness and, with further load
increase, coalescence finally leads to a crack on the macroscopic level and thus to failure.

For a better understanding of these processes at the microlevel, excessive experimental investi-
gations have been carried out, focusing not only on the growth of the microdefects but also, for
example, on the stress state influence as well as the failure mechanism itself. In this context,
the works of [Mirone and Corallo [2010], [Barsoum and Faleskog [2011], [Li et al.|[2011] and
Malcher et al.| [2014]] who payed attention to stress triaxiality are exemplary mentioned. Nu-
cleation, growth and coalescence of microdefects is of particular interest in e.g. [Scheyvaerts
et al. [2011], Shang et al.| [2020], Liu et al. [2021]. In addition, the works of Briinig et al.
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[2008]], Briinig and Gerke [2011], Briinig et al. [2013} 2018, 2019] contributed a lot to the
understanding of micromechanical damage processes, along with the comprehensive literature
therein. Especially the latter, as well as the works of e.g. [Kulawinski et al.| [2011]] and Song
et al.|[2017]], studied the influence of non-proportional load paths on the macroscopic behav-
ior. (Gerke et al.| [2020] provided an overview of possible specimen geometries and loading
scenarios in order to study anisotropic damage.

The current work is based on the common approach of Continuum Damage Mechanics (CDM),
which originates from the ongoing development of the works of Kachanov|[1958] and Rabot-
nov|[[1963}1969] by the pioneering contribution of (Chaboche|[[1978]]. CDM describes damage
phenomenologically by means of scalar and/or tensorial quantities, which capture the loss of
material integrity in a smeared sense. Among the first contributions in the field of ductile
isotropic damage, the model of Lemaitre| [[1984), |1985a,b] is certainly one of the most impor-
tant to be mentioned. This model treats damage and plasticity as strongly coupled phenomena
rather than as separate mechanisms, and was continuously improved over the years to include
various effects: Aging (Marquis and Lemaitre| [[1988]]), crack-closure effect (e.g. |Andrade
Pires et al. [2003]], [Bouchard et al. [2011]]), finite strains (e.g. [de Souza Neto et al. [1998]],
Saanouni and Lestriez [2009]) and damage anisotropy (e.g. Lemaitre et al.|[2000], Badreddine
et al.[[2010]).

The latter is of particular interest and will be briefly discussed.

In the case of initially anisotropic materials, the individual constituents usually show differ-
ent failure behavior, which can be modeled by means of scalar damage variables (see, for
example, Maimi et al. [2007], Bednarcyk et al.| [2015], Reinoso et al.| [2017], Simon et al.
[2017], Holthusen et al. [2020], Dean et al.| [2020]], Poggenpohl et al. [2021]) and studied
experimentally, for instance, by [Reinoso et al. [2012]. In contrast, initially isotropic materials
are much more challenging to model, since the degree of anisotropy is strongly related to the
mentioned microdefects. Two approaches are most popular to model anisotropic damage. On
the one hand, a fourth order tensor is utilized (e.g. (Chaboche [1981} [1993]], |Chaboche et al.
[1995]], Ortiz| [1983]], Govindjee et al.| [1995], Chow and Wei [1999]) which is beneficial in
terms of formulating effective stresses. On the other hand, using a (symmetric) second order
tensor (Dragon and Mro6z/[[1979], Murakami [[1981], Cordebois and Sidoroft|[1982]], Chaboche
[1992, 1993]], Hansen and Schreyer [1994], Murakami and Kamiya| [[1997], Abu Al-Rub and
Voyiadjis| [2003]], Voyiadjis et al. [2008]], Desmorat and Cantournet [2008]; Desmorat| [2016],
Fassin et al.| [2017, [2019bla], among many others) seems to be a natural extension in com-
parison to continuum mechanical modeling of e.g. visco-elasticity and elasto-plasticity and

gained wide acceptance. In/Chaboche [[1984]], a comparison between a fourth order tensor and
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a second order tensor model is provided.

Over the last years, several approaches were developed to extend the classical infinitesimal
damage theory and especially the case of anisotropic damage to finite strains. One partic-
ular approach introduces a damage metric tensor, while different kinematic assumptions are
adopted for the finite deformation measure. For instance, the model of Briinig [2003]], which
was already validated in several experimental studies, is based on the theory of Lehmann
[1989,[1991]]. Menzel and Steinmann| [2003|], Menzel| [2005]], Bammann and Solankil [2010a]]
and Balieu and Kringos [2015] developed a material model which shares some similarities
with the multiplicative decomposition of the deformation gradient in elasto-plasticity and was
further extended to crystal plasticity (Ekh et al.|[2004]) and viscous effects (Chen et al.|[2017]).
Another kind of finite anisotropic damage models accounts for damage by means of an addi-
tional second order damage tensor, which was already proposed by Murakami| [[1988]]. Similar
approaches are followed e.g. by Badreddine et al.| [2015] , [Badreddine and Saanouni [2015,
2017]], Badreddine et al. [2017] and Voyiadjis and Kattan [[1992bla]. Also the model in the
recently published work of Reese et al. [2021] is a representative of this type of modeling
strategy. The model proposed within the current work follows this kind of modeling approach
as well.

The literature review on various topics of CDM is by no means complete, nor does it claim
to be. However, several textbooks, e.g. those by Lemaitre and Desmorat| [2006]], |Voyiadjis
and Katten! [2005] [2006]], Murakami| [2012]] and |Saanouni| [2013]], which deal with the state
of the art of CDM, provide a fairly deep insight into these topics. This variety of textbooks

underscores the importance of CDM even nowadays.

Besides these various modeling strategies, so-called ‘local’ models, including the approaches
named above, are ill-posed mathematical problems and thus suffer from the disadvantage of
pathological mesh-dependence on a structural level in the context of finite element simula-
tions (Bazant et al.| [[1984]], de Borst et al.| [1993]] and |de Borst [1996]). This leads to an
artificial decrease of both energy dissipation and damage onset during mesh refinement. In
order to counteract these problems, several regularization techniques were developed during
the last decades. Three famous regularization methods are the viscous-type one (see e.g.
Needleman| [1988]], Langenfeld et al. [2018]), the nonlocal integral-type formulation (see e.g.
Pijaudier-Cabot and Bazant [1987], Bazant and Ozbolt [1990], Bazant and Jirasek! [2002]),
and gradient-enhanced models (see e.g. Peerlings et al.|[1995] [1996] and |Geers| [2004]]). A
comprehensive and detailed comparison between the last two mentioned methods can be found

in Peerlings et al.|[2001]]. One interesting subclass of gradient-enhanced models is the micro-
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morphic approach suggested by [Forest [2009, [2016]], which was also used with considerable
success in the field of damage in the recent past, for instance, by |/Aslan and Forest [2009],
Aslan et al.| [2011]], Saanouni and Hamed [2013]], Brepols et al.| [2017, 20185, 2020], |[Fassin
et al. [2017,2019bla]], Langenfeld and Mosler [2020] and Sprave and Menzel| [2020]. In fact,
the micromorphic approach offers a quite general way to introduce a nonlocal counterpart
to any of the material model’s local variables and, thus, offers a flexible way to account for
internal length scales within the actual framework. Therefore, this very same approach to cure

mesh-dependence is pursued.

From the literature review given, an ongoing demand for regularized elasto-plasticity models
coupled to anisotropic damage at finite strains becomes evident. In particular, anisotropic
damage models and their gradient extension are important topics of investigation in order to be
able to make adequate predictions. Thus, the scope and key points of the present contribution

can be summarized as follows:

* Conceptional treatment of an anisotropic damage framework in logarithmic strain space
using the additive split for kinematics (Section [3.3]and [3.3.1).

* Development of a novel gradient-extension based on the micromorphic approach using

the damage tensor’s invariants, to overcome severe mesh-dependence (Section [3.3.2).

* Thermodynamically consistent derivation in the logarithmic strain space based on a ‘two-

surface’” approach in order to treat damage and plasticity independently (Section [3.4).

* Fulfillment of the damage growth criterion proposed by Wulfinghoft et al.|[2017/]] (Sec-
tion [3.4.4).

* Derivation, linearization, and numerical implementation of the weak forms of linear

momentum and micromorphic balance in the context of finite element simulations (Sec-

tion [3.4.5]and 3.5).

* Presentation of transformation relationships of constitutively dependent quantities and

material sensitivities between logarithmic and Lagrangian strain space (Section [3.5.4).

Finally, in Section [3.6] several single element studies and structural examples examine the
model’s response to different loading scenarios and the influence of anisotropic damage.
Moreover, its ability to deliver mesh-independent results is investigated. A conclusion and
outlook are given in Section
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3.3 Preliminaries

Nowadays, the multiplicative split of the deformation gradient F’ into its elastic part F, and its
plastic part Fj, is widely accepted (see e.g. |[Eckart [[1948]], Kroner [[1959], |Lee and Liu|[1967])

for modeling elasto-plastic behavior at finite strains
F =F.F,. (3.1)

Additionally, the polar decompositions of F' = RU, F, = R.U. and F, = R,U, = V,R,
into their proper orthogonal and positive definite stretch parts are introduced. As a consequence
of these decompositions, and in analogy to the right Cauchy-Green tensor C = FTF = U?,

the following rotational-free right Cauchy-Green-like tensors are defined as

. T _ 2 =T -1 _ —1 -1 p-—1
C.=F F.=U;=F, CF =R,U, CU, R, (3.2)
C,=F/F,=U; (3.3)
where it is important to note that C, and Up‘lc’ Up‘ ! share the same eigenvalues, while their

eigenvectors are transformed by R,. In contrast to C,, C,, is defined with respect to the

reference configuration. Therefore, the following left Cauchy-Green-like tensor
B,=F,F =V’=R,C, R’ (3.4)

is introduced, in addition. However, since the constitutive framework will be stated in terms

of logarithmic strains (Section [3.4)), these strain tensors are defined based on C' and Equations

B2D-GA) as

1
e=InU) = 5111(0) (3.5)
1 1
ne =l (Uc) = 7In(C) = R, In (U 'CU,")R,' = R,e. R, (3.6)
1
n, =In(V,) = ;B In(C,)R," = R, ¢, R, (3.7)

It can be directly concluded that an isotropic function of 7). can be equivalently expressed
in terms of seﬂ Unfortunately, €. cannot be expressed generally in terms of € and €, in a
closed-form manner, which is considered a drawback. In this context, it is interesting to note

that e, = € — €, holds if and only if C' and U, commute and thus €, = € — €, (see Remark [4)).

!The same holds for 7, and &,,.
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From now on, it is assumed that the elastic strain is given by
n.=R,(e—¢,) R =R, e R’ (3.8)

in general, and in analogy to Equation (3.6), which is known as the additive split. Although
[tskov| [2004] and Neft and Ghibal [2016] reported some disadvantages using this additive
split, it is at least ‘surprisingly close’ to Equation (3.6) as pointed out e.g. by Miche et al.
[2002]. Moreover, these disadvantages are usually outweighed in engineering applications
as demonstrated in the literature by the successful usage across a wide range of material
behaviors (see e.g. [Papadopoulos and Lu! [[1998, 2001]], Schroder et al.| [2002], |Sansour and
Wagner [2003] and Miehe et al.|[2002, 2009, 2011, 2017]ﬂ

Additionally, and for the sake of brevity, the following short hand notations for the integrity
bases of an isotropic function for up to two tensors are introduced (see Spencer [1971}|1984],
Boehler [1979], Zheng|[[1994])

(A),tr (A%),tr (A%)) | A € Sym(3)}

(A) = {(tr (A 3.9)
B (AB),tr (A2B),tr (AB?),tr (A’2B?)) | A, B € Sym(3)}.

{
) = {(
Remark 4. Due to the property that In (AB) = In (A) +1n (B) if A and B commute, 1, and

Ne coincide if and only if C' and U,, commute. This is always the case when the principal axes

E tr
M(A, tr

of C do not rotate during loading (coaxial loading). For instance, pure stretch and pure shear
fulfill this requirement. Nevertheless, as investigated by Itskov|[2004] in a theoretical manner,
non-coaxial loadings, e.g. simple shear, show a clear difference between the multiplicative and
additive decomposition in general. Only the former is able to provide physically reasonable
results for these deformations. However, under the additional assumption of small elastic
strains, i.e. C, — I, C and U, are ‘nearly’ coaxial, and thus, the additive decomposition
is ‘close’ to the multiplicative version. This assumption is also made here. In this regard,
the recent works of |Friedlein et al.|[2021] 2022] studied the performance of the additive split
in case of excessive strains also on a structural level, revealing interesting insights into its
structural response for coaxial and non-coaxial loadings. Of course, the assumption of small
elastic strains restricts the model to, for instance, metals, however, this is not the main focus of

this particular contribution.

2All of them dealing with small elastic deformations.
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3.3.1 Mapping of second order damage tensor

Going back to the work of Murakami| [[1981], anisotropic damage in the small strain regime can
be modeled using a second order damage tensor. In further development, Murakami [1988]]
extended this to the finite strain regime by introducing a (positive semi-definite) damage tensor
D, € Sym(3) in the current configuration. While the virgin material is obtained if D, = 0,
a fully broken state corresponds to D, = I. As further argued in this work, the damage state
should only depend on the ‘irreversible change of internal structure’, hence the constitutive
framework is stated in terms of the ‘elastically unloaded configuration’ (EUC) by means of
a pull-back operation from the current configuration using F. '. However, as a consequence
of this pull-back, the damage tensor D in the EUC is obtained by a mixed-variant mapping
(cf. [Sansour et al.|[2007]) of the damage tensor D;, which means that D is not symmetric in
genera]ﬂ
One possible symmetry-preserving mapping is presented by Reese et al.| [2021], which is
briefly discussed in the following. In contrast to Murakami [1988], the referential (positive
semi-definite) damage tensor D, € Sym(3) is used and pushed by D = FpDTFpT to the EUC.
The ‘fully broken’ state is characterized by D, = I and D = B,, respectively. The subtle
issue that D = I is not correlated with the ‘fully broken’ state can be circumvented by working
with

D=R,D.R,'=R,D.R] =R,"D,R] (3.10)

which naturally preserves both the symmetry of D as well as the same characteristic poly-
nomial, such that £(D) = £(D,). Hence, D = I corresponds to a ‘fully broken’ state and
further the damage tensors reduce to D, = D = D I with the scalar damage variable D in
case of isotropic damage.

The mapping (3.10) will be used within this work and is similar to the one provided by |Gan-
jiani et al. [2013]ﬂ In addition, the interested reader may find a more general treatment of
this topic on transformations between different configurations, including the one defined in
Equation (3.10), in the work of [Latorre and Montans| [2016].

3Murakamil [[1988] mentioned that the skew-symmetric part of D can be excluded. However, this procedure is
not followed here.
“They use the elastic rotation tensor R, between the EUC and the current configuration.
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3.3.2 Micromorphic approach and its application to gradient-extended

damage

Based on the micromorphic approach introduced by [Forest [2009, [2016] and due to the re-
quirement that both the internal and the external virtual work have to be equal, the local forms

of the balance equations are obtained asﬂ
Balance of micromorphic field:

Balance of linear momentum:

Div (F'S) + fo =0 in By Div (o, — Eo,) — &0, +&o. =0 in By
FS-ny=t, ong,B, (3.11) (Bo, — Zo,) 10 =&, ond.By
u = ’u,, on auBO a = (_i/ on aJBO
(3.12)

In the above equations, S denotes the second Piola-Kirchhoff stress tensor, &, as well as
E,, refer to the conjugated internal forces related to the micromorphic tuple d == (d;, .. ., d,,)
with n micromorphic variables d;. This tuple can be considered the nonlocal counterpart of
the local tuple d := (dy, .. ., d,) with the same number n but local variables d; given later on.
Further, the external forces acting on the body are the volume force f;; and the micromorphic
‘volume’ forces &,, Zo,. Surface loads acting on their corresponding boundary are intro-
duced by the tractions ¢, and &,,. Furthermore, B, denotes the problem’s referential domain,
where its boundary is decomposed according to 0By = 0, By U 0;By = 0;By U 0.B, with
0,By N 0;By = 03By N 0.By = (). The outward normal vector in the reference configuration

is denoted by n and prescribed values on the Dirichlet boundaries are indicated by (e)’.

3.3.2.1 Invariant-based gradient-extension

There exist several approaches in the literature to account for gradient-extended material mod-
els in the case of anisotropic damage. For instance, the isotropic damage model developed
by Titscher et al.|[2019], based on the work of Peerlings et al.| [1996]], was extended by Yin
et al.| [2020] to the case of anisotropic damage. The latter authors chose three equivalent strain
measures for the gradient-extension. In a similar way, Germain et al.|[2007]] introduced three
additional fields for the anisotropic gradient-extension. In contrast,|Abu Al-Rub and Voyiadjis
[2003]] chose the individual components of the damage tensor itself for the gradient-extension.
In a recently published work, Fassin et al. [20195] derived their gradient-extended model by
means of the micromorphic approach (Forest [2009, |2016]]). While this very last model is

highly efficient from a computational point of view, since only the scalar damage hardening

>For more details, see Appendixm
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variable is extended, the principle of maximum dissipation cannot be followed in every case
for damage evolution.

In contrast, the present model follows this principle but uses the micromorphic approach for
gradient-extension in connection with the damage tensor as wel]ﬂ Choosing damage for the
gradient-extension is based on the one hand on the good experiences made so far in other
damage gradient-extended models such as tension-compression asymmetric, anisotropic dam-
age (e.g. Fassin et al. [20194]]), isotropic damage coupled with (finite) elasto-plasticity (e.g.
Brepols et al.| [2017, 20185, 2020]), and initially anisotropic materials (e.g. Holthusen et al.
[2020], Poggenpohl et al. [2021]), and on the other hand an undesired artificial widening of
the damage zone reported e.g. by (Geers et al.| [1998]] and Saroukhani et al.| [2013]] could not

be observed up to now.

As pointed out in Section a set of local d; and their corresponding nonlocal d; vari-
ables is introduced. In order to ensure a strong coupling between them, the Helmholtz free
energy is extended by a penalty energy h. In case of isotropic damage, a possible choice is
h = P/2 (D — D)?, with the nonlocal damage variable D and penalty factor P (cf. Brepols
et al.[[2020]). In case of a second order damage tensor, a natural extension would be of the type
h = P/63" (D; — D;)? with the eigenvalues D; of the damage tensor, since this directly
reduces to the penalty term for isotropic damage if all eigenvalues are equal. However, this
approach implies that the ‘correct’ pair D; and D; must be connected at any time. Hence, the
eigenvalues’ evolutions must be known, which especially in a time discretized solution scheme
and having in mind that eigenvalues are usually obtained using iterative solution methods does

not seem very practical. Therefore, the invariants of D are gradient-extended, i.e. d reads
d = (di, do, d3) = (tr (D), tr (D?), tr (D?)) (3.13)

which does not suffer from the just mentioned issues. Consequently, three additional degrees
of freedom (d;, ds, d3) are introduced.

To the authors’ knowledge, a gradient-extension based on the invariants of the damage tensor
in the context of the micromorphic approach has not been reported in the literature yet and,

thus, represents a novel approach.

Remark 5. Although the integrity basis (3.13)) is chosen, one could also use the principal
invariants, namely the trace of the damage tensor, the trace of the cofactor and the determinant

of the damage tensor. However, as will be seen later, the derivative of d with respect to the dam-

®Hence, a gradient-extended damage hardening variable is not used here.
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age tensor itself is required. Since this tensor is positive semi-definite, the expression obtained
would be more complicated compared to the one obtained in (3.13), see Appendix[3.8.2}

3.4 Constitutive modeling in the logarithmic strain space

3.4.1 Helmholiz free energy

Following the concept of material isomorphism (see e.g. Bertram| [1999] and |Svendsen
[2001] and the literature cited therein), the volume specific Helmholtz free energy depends
on quantities stated in the EUC (intermediate configuration). Further, it is assumed to be an

isotropic function (cf. Equation (3.9)), which can be additively decomposed as

w (7_767 npv D7 RIH Kd, d7 (_17 Grad (a)) = w€<lfl€7 D) + wp(npv D7 /fp) + wd(’%d)

B g (3.14)
+ ¢n(D) + g (d,d, Grad (d)),

The (damaged) elastic stored energy is given by ., the plastic hardening due to isotropic as
well as kinematic hardening, which is also influenced by damage, is given by v,,. Furthermore,
isotropic hardening is captured by the plastic hardening variable r,. Similar to the latter
phenomenon, damage hardening is additionally considered by the damage hardening variable
kq. The fourth term, namely 1)y, is introduced in order to ensure that the eigenvalues of D and
D, do not exceed the value one, i.e. 0 < D; < 1 and so for D,;, respectivelyﬂ Noteworthy, the
hardening energy v, and the driving force derived from it can be interpreted as a special kind
of kinematic damage hardening (cf. Hansen and Schreyer [[1994]), which was used in a similar
manner by Fassin et al.|[2017,[2019bla] and Poggenpohl et al.|[2021]. The energy v); accounts
for the micromorphic contribution (cf. Section[3.3.2]and [3.3.2.1). Furthermore, in the present

work, the gradient influence is given by the Lagrangian gradient of d. It should be noted that
choosing the Lagrangian gradient of d is not a unique choice. Although other approaches
exist, several authors made good experience working with the Lagrangian gradient (see e.g.
Steinmann| [[1999], Wcisto et al.| [2013]], Brepols et al.| [2020]). Moreover, as discussed in
Section and Equation (3.13), d is not an ‘extra’ internal variable, but can be expressed

as a function of the damage tensor. Hence, the energy v is alternatively stated as

g =g (d(D),d, Grad (d)) = 4, (D,d,Grad (d)). (3.15)

’Since this energy is chosen so that its influence is small until D; tends towards one, material hardening caused
by it is negligible (cf. Section[3.4.4)
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Although both the elastic and the plastic energy are not necessarily influenced in the same
way by the damage tensor (see Hansen and Schreyer| [1994]), both have to approach zero if
the damage tensor reaches D = I. Furthermore, as a consequence of the damage growth
criteriorﬂ the individual energies have to be monotonically decreasing functions with respect
to D.

Remark 6. Although 1)y, can generally be expressed in terms of E(D), it is more convenient
to choose a form depending on the eigenvalues, i.e. ), = @/v)h(Dl, Dy, Ds). Indeed, this still

satisfies that 1y, is an isotropic function of D.

3.4.2 Derivation based on the isothermal Clausius-Duhem inequality

In order to obtain the constitutive relations in a thermodynamically consistent manner, a
derivation based on the (micromorphically extended) isothermal form of the Clausius-Duhem
inequality (cf. [Forest [2009, 2016]]) is carried out, i.e.

—¢+T:é+€oi-a+Eoi:Grad(d>20 (3.16)

VvV
micromorphic extension

where the stress power is given in terms of the logarithmic strain and its conjugated force
T. Considering the assumed form of the Helmholtz free energy (3.14) and (3.13), the time

derivative can be expressed as follows

0. . Oy, . Ope Oy, Oy, Oy :
= : — : D
V= o ey, T (aD “oD0 oD oD -
Oy . g, | Oy - Mg = '
+ G+ Gakact 5o+ gy ¢ Grad (d).

For the following derivations, it should be noted that these are quite similar to the more detailed
procedure presented in e.g. Dettmer and Reese| [2004] and |Vladimirov et al.| [2008, [2010].
Starting with differentiating Equation (3.8]) with respect to time results in

n.=R,é&.R,'-R,e.R,' R,R,'—R,R' R, c.R," (3.18)
—_—— —— ———
=MNe =Wg :W]%j =Te

where it is important to note that Wy, is skew-symmetric. Since the mappings between the
EUC and reference configurations for 7, (3.7) and D (3.1I0) are chosen in a similar way, their

8For more details, see Appendixm
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rates are easily obtained as
n=R,é, R —n,Wg—Win, D=R,D R'-DWyr—W.D. (3.19

In the next step, the rate of the elastic energy 1. is considered while both rates (3.18) and
(3.19)), as well as the additive split (3.8) are taken into account. In addition, the invariance of

the trace operator under cyclic permutation leads to

e . e e e
Ve = R a:i} R, : (¢ —sp)+Rpla%R D, 2(n aw +Da%> Wr (3.20)
==Y h symmetrlc

-

=0

where Y. denotes the damage driving force resulting from the elastic part of the energy.
Moreover, the proof of symmetry is presented in Appendix [3.8.4] and holds analogously for
the subsequent derivations. Continuing with the rate of the plastic energy v, and under

consideration of the rates (3.19), the following is obtained

' 1 Oy O o O My .
_ 1 ~77p 1 p 7P p . 7P
b= Ry G Ryié s B GER, . D, 2( vt Dap ) Wit 5.l
=X ::_YP ;6 :Z—Rp
(3.21)

In the above equation, the following conjugated driving forces are introduced: The plastic
backstress X, the plastic driving force for damage Y, and the (plastic) isotropic hardening
force R,.

In what follows, it is essential to note that (0, /0D) D = D (0ty,/0D) holds, since v, is
only dependent on the integrity basis £(D) and, thus, coaxial to D. Hence, the following is
found for the energies associated with damage hardening

L e Ot Oy, Mg
Intda=R SO R, . D, —2Dy s Wit 5 (3.22)
N e’ ~—~
=Yy =0 =—Ry

Regarding the product of the damage tensor and the partial derivative of ¢; with respect to D,
similar relations hold as for ¢, having in mind that the dependence of ¥); on D is expressed
in terms of £(D) as well (cf. Equation (3.13))

— awd awd awd’ = awg K
. D, - 2D <] o d). G2
=R SR, o5 V" 50 U G @ Grad (d).  (3.23)
—_—— —_——

=Yy =0
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As the above derivations showed, the rate of Wy and thus also of IR, never contributes to the
rate of the Helmholtz free energy and is left undetermined, which is considered an advantage.
Moreover, Appendix [3.8.5| proves that R, is not required to compute the several conjugated
driving forces, which are all defined in the reference configuration. Finally, inserting the

different rates (3.20)-(3.23) into Equation (3.16) leads to

782#@ . ,8¢e . 7 % N -
(T_RPIWRP) €+ <RplaneRp—X) :Ep‘i‘(Yé‘i_Y;-)_}fh_Yé):Dr

+ Ry fop + Ra iia + (501. _%) cd+ (Eoi _%fa—%> Grad (d) > 0.
(3.24)
Following the well-known arguments of (Coleman and Noll|[1961] and assuming zero dissipa-
tion resulting from the micromorphic variables as well (see Forest|[2016]]), the following state

laws are obtained

oYy oy
Rp7 SOi = ﬂ EOi = wd

_1 0%
T=R," = = (A
R od’ 0Grad (d)

p a'f'e

(3.25)

3.4.3 Onset criteria and evolution equations

In order to prove the fulfillment of Equation (3.24)), onset criteria and evolution equations for
both plasticity and damage have to be chosen. The evolution equations follow the principle of
maximum dissipation. Nevertheless, the following particular choices certainly do not affect

the generality of the model in any way.

3.4.3.1 Plastic yield criterion and evolution equations

Going back to the pioneering work of Kachanov, [1958]], plasticity takes place in the so-
called effective continuum. Thus, the plastic yield criterion is expressed in terms of effective
quantities, i.e.

(¢) = (®)Ip=0. (3.26)
A von Mises-type criterion is chosen and extended by kinematic and isotropic hardening
®, :=1/3Jy — (0,0 — R,) <0. (3.27)

In the above, the second invariant of the stress deviator is used .J == 1/2 tr (dev (T — X )2)

and the initial yield stress is denoted by o,9. With these definitions at hand, the associative



102 3 A two-surface gradient-extended anisotropic damage model using a second order damage tensor...

flow rules for the plastic quantities read as follows

. . 8®p . 3 — o < . . a® f)/
— 5, 22 = M~ dev (T — X =, 2= 2
ep 710 aT PYP \/ﬁ deV ( ) 9 K:p ’yp a Rp fd (3 8)

with the plastic multiplier -,. Note that in the these equations, it is assumed that the following
mappings between effective and damaged continuum hold: 1" = M : T and R, = f4 Rp, where
M possesses both minor and major symmetry and will further be specified in the following
(cf. Section [3.4.4.1] and Appendix [3.8.6). To close the set of plastic constitutive equations,
the Karush-Kuhn-Tucker conditions (KKT) (Karush| [1939], Kuhn and Tucker [1951]]) are
introduced such that

>0, @, <0, 4@, =0. (3.29)

Remark 7. In case that T and € commute, it can be shown that CS = T holds true, and
thus, T has the same eigenvalues as the (physical reasonable) Kirchhoff stress FSFT. Since
the yield criterion (3.277) is provided in terms of effective quantities, this is always the case if

€ and €, are coaxial.

Remark 8. In view of Equation (3.28), the von Mises effective plastic strain rate | 3tr (€2) is
equivalent to k,, at least for isotropic damage, since MI™! reduces to ﬁ (03051 + 0410y;) with

0;j being the Kronecker delta.

3.4.3.2 Damage onset criterion and evolution equations

Since a two-surface approach is considered in this work, i.e. individual onset criteria are stated

for plasticity and damage, the damage onset criterion is chosen as
Dy =V3Y, Ay Y, — (Yy— Ry <0. (3.30)

At this point, several things should be noted: (i) the pre-factor /3 is introduced in order to
be in line with the scalar isotropic damage model of Brepols et al.| [2020], (ii) (o) refers to
the positive semi-definite parﬂ of Y (cf. [Fassin et al.| [20195]]) and (iii) since the damage
growth criterion (see Appendix [3.8.3) restricts the choice of the Helmholtz free energy and
thus the damage driving force, the fourth order damage projection tensor A is introduced in

line with Reese et al.| [2021]]. This tensor provides more flexibility and can be seen similar to

°In fact, Y, and Y, are positive (semi-)definite (cf. Section [3.4.4.1). In contrast, the hardening force Y}, can
become so large that the overall driving force Y becomes (semi-)negative definite. This is only the case, if a
eigenvalue of D tends to one.
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the extension of the von Mises criterion by Hill and Orowan [1948]]. Here, the following form

is suggested
23

Aj=(I-D,)"e(I—-D,)")". (3.31)
The material parameter Yj in (3.30) denotes the damage threshold, while ¢, controls the degree
of nonlinearity of A,. Further, in order to compute (I — D,)“, a spectral decomposition
of D, is required in general, however, since this is already necessary for Y}, no additional
computational effort is needed. Nevertheless, it should be noted that the product A, : Y, must
yield a positive (semi-)definite tensor, in general, to ensure Y, : A, : Y, to be positive in
(3.30). For A, chosen in Equation (3.31), this can easily be shown (cf. Remark [I0). With
these equations at hand, the associative evolution equations are introduced as
:%%:%é ! +(P+1AdiY++Y+3AdZP+)7fédZ%%Z%
(3.32)

with the fourth order projection tensor P, defined according to Y, = P, : Y. Under

D,

consideration of the tensor’s symmetries, [P, can be expressed following Ju|[1989] as

3

Q. =) (YiynYen!, P, = % ((Q+ 2Q:) +(Qy® Q+)T) : (3.33)

=1

In the above equation, the eigenvalues Y; of Y and its eigenvectors i} are introduced. Further,

the Heaviside step function is denoted by (e)
(o) = : (3.34)

In addition, since it is required in the local Newton-Raphson iteration, the derivative of .
with respect to Y can be obtained with the formula provided in Appendix (which is
non-zero only if Y is indefinite). The set of constitutive damage equations is closed by the
corresponding KKT conditions, similar to Equation (3.29).

Remark 9. Due to Y}, Y. can turn out to be the zero tensor, in which case the onset criterion
(3.30) is not differentiable anymore. Unfortunately, also during the Newton-Raphson iteration
this can be the case. In order to avoid a division by zero, it is exploited that the onset criterion

for a converged solution is zero due to the KKT conditions. Hence, the following relationship
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can be found
V3 1 31
Ad . Y+ N 2% - Rd

(3.35)
which is used for the numerical implementation and is similar to|Challamel et al.|[2005]].

Remark 10. The rate of the damage tensor (3.32); must be positive semi-definite, since
damage healing does not occur (non-reversible process). Therefore, taking into account
Equation (3.31)), the following can be deduced for the damage rate

V3
Y+:Ad:Y+

D, =4, Q. (I—- D)"Y, (I-D,)"Qy (3.36)

which is indeed positive semi-definite, since Y is positive semi-definite.

The remaining part of the reduced Clausius-Duhem inequality (3.24) can be proven to
be fulfilled under consideration of the evolution equations (3.28) and (3.32)), and the KKT
conditiond™l

3.4.4 Specific form of Helmholtz free energy

The previous derivation was performed in a very general manner, without specifying the actual
forms of the individual Helmholtz free energies. The main purpose was to show that the pre-
sented framework is not limited to specific expressions for these energies but is very flexible.
Nevertheless, in order to study the model in a detailed manner and its behavior for different

loading scenarios, concrete expressions are chosen in the following.

For the elastic energy, a quadratic form with respect to the elastic logarithmic strains is
chosen. In addition, as considered e.g. by Lemaitre et al.| [2000], Lemaitre and Desmorat
[2006], |Saanouni [2013|], Badreddine et al.| [2015]], [Badreddine and Saanouni| [2015]] and
Desmorat [2016]], the anisotropic nature of damage is assumed to affect only the isochoric
part of the Helmholtz free energy. In contrast, the volumetric part is influenced by means of
a scalar degradation function f;. These considerations, and further the volumetric-isochoric
decomposition of logarithmic strains (cf. Appendix[3.8.9), motivate to introduce the following

elastic energy

Ve = e tT (dev (’F)e)Q(I — D)) O+ fq e tr (dev (ﬁ8)2)(1 — )+ fa %tr (ﬁe)Q. (3.37)

9For more details, see Appendixm
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The elastic shear modulus is denoted by .., the elastic bulk modulus by K., and the parameter
¥ € [0,1] controls the degree of anisotropy (see [Fassin et al. [2019b]). The degradation
function f; = f4(£(D)) = f4(£(D,)) captures isotropic damage and is chosen as

fa= (1 - @)Ed = (1 — @)ed (3.38)

with e > 0.
The energy contribution of plastic hardening is chosen analogously as follows

Yy = pip tr (deV (7717>2(I - D)) U+ faq pp tr (deV (77:U>2)(1 — ) + fa %tr ("719)2

exp(—sp kp) — 1
Sp

(3.39)

+ farp (fip +

where the plastic material parameters have a similar meaning as their elastic counterparts. In
addition, nonlinear isotropic hardening is modeled according to [Voce| [1955] with the corre-
sponding material parameters 7, s,,.

Isotropic damage hardening is chosen similar to isotropic plastic hardening, however, a
quadratic term is added with hardening modulus H; to account for linear damage harden-

ing

+ —Hy k3. (3.40)
Sd

exp(—sq kq) — 1 1
g =14 ('id+ ) ) 5

The additional damage hardening, limiting the eigenvalues of D, follows from an integrated

form of the Lorentz factOIEI and the requirement that it is equal to zero if no damage is present

=1 nd nd

5 1— D) 7 1
Ui = K Z(—(l_—ﬁ—Dﬁl_L) (3.41)

with hardening parameter /;, and n4 being a positive and even integer.
Finally, the micromorphic contribution to the Helmholtz free energy is chosen as a quadratic

function of its arguments, i.e.

N | —

g = % > (Hi(di —di)*) + 5 ) (Ai Grad(d;) - Grad(d;)) . (3.42)

i=1 i=1

The first term penalizes the difference between the local and nonlocal variable with the indi-
vidual penalty factors H,, Hy, H3 (cf. h and P in Section|3.3.2.1). The second term represents

"'Thus, the influence of Y}, is negligible small except then D; tend to one.
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the gradient-extension of the micromorphic approach. Via the material parameters A;, A,, A3
internal length scales are introduced into the model. The choice of three distinct micromorphic

moduli H; and A; is not mandatory but equips the model with a greater flexibility.

Remark 11. As is frequently the case for coupled plasticity-damage models, the number of
material parameters is relatively high. However, four different phenomena can be identified
to which these parameters belong, namely: elastic (1., K.), plastic (ji,, Kp, 7p, Sp, 0yo),
damage (U, eq, Hy, 74, Sa, cq, Yo, A;) and numerical (Ky, ng, ag, H;) parameters, the latter are
associated either with damage (K}, ng, ag) or gradient extension (H;). Furthermore, it should
be noted that depending on the specific application or material, for instance, not all hardening
mechanisms are needed, which would reduce the number of parameters. Nevertheless, the
physically related parameters can be obtained most readily by monotonic and cyclic loading
tests within the relevant regimes, with cyclic tests allowing the relationship between kinematic
and isotropic hardening to be determined, as well as damage initiation and subsequent degra-
dation. A similar procedure has already been successfully used for comparable models (e.g.
by Dittmann et al.| [2020], \Sprave and Menzel| [2020], |Felder et al.| [2022|]). The numerical

parameters are usually chosen such that a stable simulation is ensured.

3.4.4.1 Specific forms of conjugated driving forces

The chosen expressions for the individual energies lead to the following conjugated driving

forces

¢ State laws associated with &, (_i and Grad (d):

T -4, [(I _D,)e. +&.(I-D,) - ;tr (I - D)) — gtr (&.)tr (D)

+ gtr (se)DT] U+ fa2pe dev (&) (1 —0) + fq K. tr(€.)1
(3.43)
(&o,)r = —Hi (dr—dy), ke{1,2,3} (3.44)
(Eo,), = Ag Grad (di), k€ {1,2,3} (3.45)
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* Plastic driving forces associated with €, and &,:
2 2
X =u, |I—-D,)e,+e,(I —D,)— gtr (I — D,)e,)I — §tr (ep)tr (D) I

+ %tr (ep)Dr] U+ fa2p,dev(e,) (1 —9) + fa K, tr(ep)I

(3.46)
R, = —firpy(1 —exp(—s,ky)) (3.47)
* Damage driving forces associated with D, and fy:
_ 2 2 Ofa  Ke . _\20fa
Y, = pie dev (€.)° U — pe tr (dev (£.)7) (1 ﬁ)aDr 7tr (€e) oD, (3.48)
Y, = sy v (&) 0 gy tr (dev ()1~ )5 2 — Lo (e, 01
oD, 2 0D,
(3.49)
ot exp(—spky) — 1\ Of4
PP Sp oD,
& 1
Y, =K, ([— —~ 1] ny" ® nD) (3.50)
i=1 \L(1— D)
3
Y; =) (Hi(tr (D}) —d;)i D) (3.51)
i=1
Ry = —[rq(1 — exp(—saka)) + Ha Kd] (3:52)

D

with the eigenvalues D,, and eigenvectors n;”" of D,. Further, it should be emphasized

that in the above it was utilized that the eigenvectors of D and D, transform according to
D D, eps .

n; = R, n;"". Additionally, the fourth order damage tensor M (cf. Section|3.4.3.1) can be

deduced from Equation (3.43)) and is derived in Appendix [3.8.6]

Moreover, from a numerical point of view, D,, > 1 may occur during the iterative solution on

the local level, which would result in ‘not a number’ for Y},. Therefore, it is approximated by

a Taylor expansion for values of D,, close to one{Tj

Remark 12. The degradation function f; must be a monotonically decreasing function with
respect to (D) (same holds for £(D,.)). Hence, 0f;/0D, is negative semi-definite. Con-
sequently, both the elastic Y, and plastic Y, driving forces are positive semi-definite tensors.

Hence, the damage growth criterion (see Appendix[3.8.3)) is fulfilled.

2For more details, see Appendix m
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3.4.5 Weak forms and their linearization

To solve the global field equations numerically, the weak forms of the balance relations (3.11])
and (3.12) are derived. The micromorphic balance relation is therefore simplified, in particular
all external and contact forces are neglected as well as no values on the Dirichlet boundary are
prescribed, i.e. 0B = 0.B,. Taking these simplifications and the relations for the generalized
stresses (3.44)-(3.45) into account, the weak forms are obtained by following the standard
procedure (multiplication by test functions, integration by parts and application of divergence

theorem)

gu(u,d, du) = / S:0EdV — fo-dudV — / to-oudA =0 (3.53)

Bo Bog 0t Bo

ga(u,d,od) = /

By

5d - H- (d—d)dv _/ Grad (5) : (A, - Grad (d)) dV = 0

(3.54)

with the test functions du and 6d as well as H; = diag(H, Hy H3) and A ; = diag(A; Ay As).
Since both weak forms are generally nonlinear functions, a Newton-Raphson iteration is used
for numerical solution. For this purpose, the linearization of (3.53)) and (3.54)) is required, which
is performed using the Gateaux derivative D[e|. The resulting increments are abbreviated
Agy = Du[g.] - Au+Dg[g,] - Ad and Agg = D, [g4] - Au+Dglgg) - Ad} Furthermore, the
body force f; and the surface traction ¢, are assumed to be independent of the field variables,

resulting in the following increments

Ag, = / AS :OE dV —|—/ S:AE dV (3.55)
Bg

By

Agg = / 6d-Hz- (Ad — Ad) dV — / Grad (6d) : (Az- Grad (Ad))dV. (3.56)
Bo BO

The first summands in (3.53)-(3.56) can further be reformulated in terms of the desired

increments Awu and Ad, which leads to

98 a8 . .
AS=_2| :AE+Z=| -Ad=C:AE+.%;-Ad 3.57
oB|, “P T adl, i G:7)
ad ad . -
Ad=——| :AE+Z=| -Ad=%,:AE+G;-Ad 3.58
IE |4 T adl, i (5:58)

3For more details, see Appendix [3.8.10)
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where E denotes the Green-Lagrange strain tensor and the short hand notations

AE = % (Grad (Aw)"F + FTGrad (Au)> (3.59)

AOE = % <Grad (6u)" Grad (Au) + Grad (Au)” Grad ((5u)> : (3.60)

Analogously to (3.59), 0 E = 1/2 (Grad (6u)" F + FTGrad (5u)) is introduced. In order to
obtain a quadratic convergence rate during the Newton-Raphson procedure, the (algorithmic)
consistent tangent operators in (3.57)-(3.58) have to be computed, which will be discussed in
Section[3.5.4

3.5 Algorithmic implementation

3.5.1 Numerical approximation and discretization

First, the exact domain in the reference configuration B is approximated (superscript /) and
further divided into n.; number of finite elements
Nel
By~ By = | ] B;. (3.61)
e=1
The element types used in this work are trilinear hexahedral and bilinear quadrilateral Q1
standard elements, thus the approximations and consequently the numerical integration take
place in the isoparametric space. Hence, the field variables, their increments as well as the
test functions are approximated in the corresponding finite element domain (superscript ¢) and

discretized according to

u' =N, (€)u’,  ou' =N, (€)oo, Au’=N,() Au’ (3.62)
d,  4d°=Ng§)ad',  Ad°=Ny&) Ad (3.63)

where u® and d° contain the nodal values of displacement and micromorphic variables, respec-
tively. The shape function matrices N,, and IN; contain the corresponding shape functions in
terms of natural coordinates & = (£, 7, (). Next, based on (3.62)-(3.63)), the spatial derivatives
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of the field variables are expressed as

Fe=T1+B,(¢)u’, Grad(0u)°=B,(€)0u’, Grad(Au)® =B, (&) Au®
(3.64)

Grad (d)° = Bg(¢) d", Grad (6d)° = Bg(€) 6d°, Grad (Ad)° = Bg(¢) Ad°
(3.65)

~

where (o) denotes Nye’s notation of the corresponding quantity. Having these equations at

hand, the (approximated) weak forms (3.53)-(3.54)) as well as their linearizations (3.535)-(3.56)
can be suitably discretized for the finite element procedure

—p€
=rf
N\

-~

NT ¢ dA6> =0 (3.66)

MNel

= Jou" ( / BT FT §eqve— [ NI fedve —
=1 Bj Bj
NJ HS (d°—d°) dv° — /

Nel
ho._ e’
e=1 Bg Bg

(. /
g

=r

SIS

8BS

BY A¢ Grad (d)° dve> =0 (3.67)

a
and, taking into account (3.57)-(3.58),

—Ke
=K¢ .,
A\

- N

B’S,, B, dve> Au®

Nel

Aglh = Jou” / B” F C°F,, B, dV° +/
=1 B B

e
0

Nel (3.68)
el T T e e J€

+|Jou (/ BT F % Nddv> Ad

e=1 BS ,
:K?LJ
=K
el
Agh = Jod” ( N HS (GS—TI) Nydve — / B A% B; dVe> Ad’

e=1 B B§ (3 69)

Nel
+ o ( NTH. 9 F,, B, dve) Au
e=1 8
e

u

where the relations 6E¢ = F,,B,, du® and AE® = F,,B,Au® are exploited. The introduced

terms r{,, and Kf,, ,, denote the element residuals and element stiffness matrices, respectively.
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These element contributions are assembled finally, in order to obtain the global nonlinear

system of equations, which can be solved using the Newton-Raphson scheme, i.e.

Kuu KuJ A]-_l r,
_ | =— ) (3.70)
Kz K/ \Ad rg

In the above nonlinear system of equations

Nel Nel Nel Nel
K.=AK,) Ki=AK,) Ki=AK; Kz=AK
! e:iel nele:1 ! (371)
r,= A ri= ACH
e=1 e=1

represent the assembled global stiffness matrices as well as the assembled residuals with the

Nel
assembly operator J\ (e).

e=1

Remark 13. As pointed out by Holthusen et al.| [2020], for the special case of three additional
micromorphic field variables, the shape function matrices N,, /N as well as their correspond-
ing B-Operators can be chosen in the exact same way, which results in a more efficient element
implementation. Nevertheless, for the sake of clarity, these operators were distinguished here.

In addition, the explicit expressions for ¥, S,, as well as the B-Operators are provided there.

3.5.2 Implicit time integration

Before the discretized evolution equations are introduced, some notes on the numerical im-
plementation in the context of finite elasto-plasticity are briefly discussed. In case of volume
preserving plasticity, i.e. det (C},) = 1, the standard Backward Euler scheme usually does not
preserve the volume when choosing the multiplicative decomposition. A problem which can
be solved, for instance, by using additional constraint equations (see Vladimirov et al.|[2008]).
Another method to circumvent this issue - also in the case of anisotropic plasticity - is the usage
of the exponential map integrator, which naturally preserves the volume (see e.g. Dettmer and
Reesel| [2004]], Reese and Christ| [2008]], [Vladimirov et al. [2008, ZOIO]ﬂ However, from
a computational point of view, the exponential map integrator requires way more numerical
effort compared to the Backward Euler method in each local Newton-Raphson step. In this

regard, it is interesting to note that the requirement det (C},) = 1 in terms of logarithmic strains

% Arghavani, Auricchio, Naghdabadi and Reali|[2011]); Arghavani, Auricchio and Naghdabadil [2011] proposed
a modification of the exponential map integrator based on the logarithm, which seems to be an improvement
from a computational point of view.
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is equivalent to tr (¢,) = 0, as pointed out in Appendix As will be seen, the Backward
Euler scheme directly ensures this requirement without any further modifications.

All the evolution equations are discretized within the time interval ¢ € [t,,, t,1] and are solved
using a fully implicit scheme. Using the Backward Euler scheme for the evolution equations
associated with plasticity, the following discretized formulas are obtained

o A
e, =€, + Ay, M dev (T = X), ky=hy, + =52 (B72)

3
Vi2J, J

Note that the index n + 1 indicating values at time ¢, ; is omitted. Both in the absence of
damage and in case of isotropic damage, it becomes evident that Equation (3.72), preserves the
volume, since M is proportional to the fourth order symmetric identity tensor and so its inverse.
In Appendix [3.8.6/it is shown that also the product M~* : dev (’f - X > yields a deviatoric

tensor in case of anisotropic damage, so that for a general elasto-plastic-damage loading step the

plastic volume is preserved. The evolution equations for damage are discretized accordingly

(under consideration of Remark [9))

3 1

D, =D, +Ay-—

]P)+ N Ad . Y+ + Y+ N Ad . P+) 5 Rq = /‘idn + A’Yd (3.73)

In the evolution equations for both plasticity Ay, := At 4, ., and damage Ay, = At 94

n+1
denote the individual incremental multipliers with time increment At.

Remark 14. The evolution equations for r, (3.72)), and x4 (3.73), do not have to be treated as
additional variables within the nonlinear system of equations at the material point level. Both

can be obtained based on their converged values from the last step, the incremental multipliers
and D,.

3.5.3 Possible loading scenarios and corresponding residuals at the

integration point level

On a material point level, more precisely on an integration point level, four different loading
scenarios have to be distinguished: (i) elastic loading/unloading, (ii) elasto-plastic loading, (iii)
elastic-damage loading and (iv) elasto-plastic-damage loading. Based on the KKT conditions,
the restrictions for the onset criteria as well as the (incremental) multipliers are summarized
in Table [3.1] For the identification of the active inelastic phenomena, a classical trial step

procedure in combination with a active-set search strategy similar to multi-surface plasticity
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(see e.g. [Simo and Hughes|[2006])) is followed ™[]

Table 3.1: Possible loading/unloading scenarios at the integration point level

. . Multiplier Onset criteria . .
Loading scenarios . . Active residuals
plasticity = damage plasticity damage
elastic loading/unloading Ay, =0 Ayy=0 ¢, <0 ¢,<0 -
elasto-plastic loading Ay, >0 Ay =0 ®,=0 ¢,<0 r1, Ry
elastic-damage loading Ay, =0 Ay >0 ¢, <0 ®;=0 r3, Ry

elasto-plastic-damage loading Ay, >0 Avy; >0 ¢, =0 ®;=0 r1, Ry, 13, Ry

Taking into account Equations (3.27), (3.72);, (3.30) and (3.73); the full set of residual
equations is defined as follows

T V3Js — (040 — Ry)

0
R, | sp—spn—A%?)M_l:dev(’f—)z)/\/ﬁ 10
rs | 3Y, Ay Y, — (Y — Ry)? o
R, D, -D, —Av;3 (Py:Ay: Y, +Y, :Ay:PL) /(2(Y0 — Ra)) 0
—
o (3.74)

In addition, considering the symmetry of both €, and D, the residual reduces to fourteen
equations in the most complex case of elasto-plastic-damage loading. The set of updated
unknowns during the iterative solution procedure is X;,. = (A7, €, Avy DT)T. In order to
compute the Jacobian J,. := OF ../ 0%, for the local iteration, the algorithmic differentiation
software package AceGen is utilized (Korelc| [2002], Korelc and Wriggers| [2016]).

Remark 15. In the local residual system of equations (3.74), the residual for the damage
criterion 13 is different from @, in Equation (3.30). The reason for this is similar to the
argumentation within Remark|9) Although setting r3 = ®4 would not result in any numerical
problems, the Jacobian J,,. contains a division by zero if Y, is equal to the zero tensor. To
circumvent this issue, the form for r3 provided in is used, which results in the same

solution for the unknowns.

3.5.4 Algorithmic consistent tangent operators

The material moduli introduced in Equations (3.57) and (3.58) need to be computed with the

same accuracy as the Jacobian J,,. in order to achieve quadratic convergence on a global level

I5As investigated in detail e.g. by [Brepols et al. [2017], a Fischer-Burmeister approach could be utilized
alternatively, which has several advantages and disadvantages compared to the active-set search.
161n contrast to multi-surface plasticity, in the present case each multiplier describes a different phenomenon.
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during the iterative solution procedure. These tangents have to be ‘algorithmically consistent’
with the chosen time integration algorithm, i.e. the Backward Euler method. However, since
the material model is formulated in the logarithmic strain space, the Lagrangian derivatives
cannot be obtained directly. Instead, first their logarithmic counterparts are computed and
then transformed to the tangents (3.57)-(3.58) with the help of the formulas provided in
Appendix [3.8.11} Therefore, the following tangent moduli are introduced in analogy to (3.57)-

(.58)

CLOG = g—f - %—Z . SZ; . %ip o ;; . aalz’“ ; (3.75)
T T T D
o = G = ge,, 5 o ] aapr 2 e ] (3.70)
D
GLOG = g—j'e — aaz()iT : 853’“ ] (3.78)

Again, all partial derivatives of the constitutively dependent variable 7' are obtained with
the help of AceGen. Since d depends only on £(D,), the partial derivatives are given in
closed-form as Y o4 Py

1 2 3 2
=1 =2D,, =3D;. 3.79
oD, ’ oD, oD, " (3-79)

It remains to compute the partial derivatives of the internal variables with respect to the

‘global’ ones. Therefore, and on the basis of the implicit function theore the following
can be concluded

0Xl 01?1
®=_J 1 == 3.80
8X910 loc 8X910 Xioe ( )
where x,, = (¢ d)T contains the ‘global’ nine variables (taking the symmetry of & into

account). The additional partial derivative of the residual on the right hand side is computed
using AceGen. From the solution of the system of equations (3.80), the desired derivatives can
be obtained by the corresponding submatrices.

Once the tangent moduli (3.75)-(3.78) are obtained, they have to be transformed to their La-
grangian counterparts. Considering the derivation presented in Appendix[3.8.11], the following

17n the current context, the implicit function theorem is expressed by Tloc(Xgios Xioe(Xgl0)) = 0.
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transformation relations hold between the logarithmic and Lagrangian tangent moduli

6
C=Q:C":Q+T:L, H=Q:xFC (3.81)

d Oe
u = % B : a_E = guLOG : @7 GJ = GdéOG (3.82)
d

where the major symmetry of Q := (20e/0C) is exploited. Further, it is important to note that
the second Piola-Kirchhoff stress tensor is obtained by S = 7' : Q, while no transformation
is required for d. With these transformation relations at hand, the finite element equations in

Section [3.5.1) can be computed. Moreover, a pseudo-code of the numerical implementation is
presented in Appendix [3.8.12]

3.6 Numerical examples

In the following, several numerical examples examine both the (local) material model itself
as well as its behavior on a structural level with the proposed gradient-extension. Due to
a current lack of experimental data, the material parameters are chosen in accordance to
Brepols et al.|[2020] and are summarized in Table[3.2] For simplicity, the gradient-extension
parameters A; and H; are chosen to be the same for all studies. The material model as
well as the element routine were implemented into the finite element software package FEAP
(Taylor [2020]), where the commercial software tool HyperMesh and the open-source software
ParaView (Ahrens et al.| [2005]) were used for meshing and visualization of the structural

examples, respectively.

3.6.1 Single element studies

In order to investigate the pure material response of this complex material model, several 3D
and 2D single element studies, with an edge length of one millimeter, are performed. To
avoid any influence resulting from gradient-extension, the material parameters A; and H; are
set to zero and, additionally, the corresponding degrees of freedom for nonlocal damage are

restrained. The material parameters correspond to ‘set 1’ in Table (3.2

3.6.1.1 Ductile damage under uniaxial tension

This first example is concerned with the interaction between plasticity and isotropic (9 = 0)

as well as anisotropic damage (9 = 1), respectively. For this purpose, a single 3D element
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Table 3.2: Material parameter sets

Symbol Material Parameter set 1 set 2 Unit Eq.
Le Elastic shear modulus 7500 55000 MPa (3.37)
K. Elastic bulk modulus 10000 61666.6 MPa
9 Anisotropy parameter 0.0-1.0 0.0/1.0 -
Iy Ist kinematic hardening parameter 12.5 62.5 MPa (3.39)
K, 2nd kinematic hardening parameter 0 0 MPa (3:39)
T Ist isotropic hardening parameter 12.5 125 MPa (3:39)
Sp 2nd isotropic hardening parameter 8.5 5 - (3:39)
Ty0 Initial yield stress 20 100 MPa @327)
eq Isotropic damage exponent 1 1 - (3:38)
Hy Linear damage hardening parameter 0.1 1 MPa (3.40)
T4 Ist nonlinear damage hardening parameter 0 5 MPa (3.40)
Sd4 2nd nonlinear damage hardening parameter 0 100 - (3.40)
Ky, Additional hardening parameter 1 0.1 MPa (3.47)
Ng Additional hardening exponent 2 2 - (3.41)
aq Taylor series coefficient 0.999999  0.9999999 - App.
Cq Extended damage criterion 0 1 - (3.31)
Yo Initial damage threshold 0.1/10 2.5 MPa (3.30)
A; Internal length scale parameters 0 100/75 MPa mm? (3.42)
H; Penalty parameters 0 10410° MPa (B42)

is subjected to uniaxial loading. The resulting force-displacement curves in loading direction
for two different values of the initial damage threshold Y, = {0.1, 10} [MPa] are shown in
Figure Due to the loading applied, no shear terms are present for D.,..

In case of Yy = 0.1 [MPa], there is hardly any difference visible between isotropic and
anisotropic damage in Figure both with regard to the onset of damage and to the overall
degradation. However, the rate of the (anisotropic) damage component in loading direction
(D,,) is higher than for the isotropic version (D), while the rates of the other damage compo-
nents corresponding to the perpendicular loading directions (D,,, D,,) are lower (Figure[3.1b).
In contrast, a clear difference between the onset of damage and degradation becomes evident for
Yy = 10 [MPa], while the same behavior for the damage rates as before is observed. Although
a difference espcially in damage onset may seem counterintuitive for a virgin material, the
reason for this lies in the different expressions between the isotropic and anisotropic versions
of the damage driving forces Y, (3.48) and Y), (3.49). Due to these differences, the criterion

of damage onset is reached ‘earlier’.

Additionally, an effect due to finite strains can be recognized in Figure [3.Ta] In contrast
to a geometrically linear framework, the decreasing stiffness in a geometrically nonlinear

framework can be caused not only by material softening, but is also influenced by the change
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in cross section. This phenomenon is known as ‘geometrical softening’. As a result, onset
of damage or beginning of strong degradation may not necessarily coincide with reaching the

maximum force, as is also the case in Figure

The influence of anisotropy parameter ¥} on the damage tensor’s main components is studied
in Figure Increasing the anisotropy parameter, meaning that the damaged material be-
haves ‘more anisotropic’, the rates and values between these components differ more strongly.
Choosing ¥ = 0 leads to the very same evolution of each component, which is a natural

requirement for isotropic damage.

3.6.1.2 Ductile damage under plane stretch and shearing

The second example investigates the material under shear loading, which, in general, results
in an evolution of shear damage components in the case of anisotropic damage. However,
since a ‘fully broken’ state corresponds to D, = I, these shear terms must vanish with
increasing loading. Moreover, the damage driving forces Y, and Y, are generally
independent of D,., which could lead to an unphysical increase of D, (D, > I) even in a
fully broken material. These latter effects are cured by the hardening force Y}, (3.50) and are
demonstrated in the following. For this purpose, the deformation gradient acting on a single

element is prescribed as

1+w 0 0
F = w 1 0 e X €; (383)
0 01

with the stretch parameter w and an initial damage threshold Y, = 10 [MPa]. For simplicity, a
plane strain 2D element in the e;-es-plane is used.

Figure[3.3]depicts the damage evolution of the main diagonal components D, ,, D,,,, and D,,,
as well as the off-diagonal component D, ,. All other shear components are zero during the
entire loading. Both effects addressed above can be nicely observed. On the one hand, the
shear component reaches its maximum with increasing main diagonal components, but tends
to zero in further progress, i.e. D, = I is accomplished. On the other hand, an undesired and
unphysical increase of the damage tensor after the material lost its stiffness is not observed.
Without taking Y}, into account, these latter two behaviors would not be achieved, at least not
without additional modifications™|

8For instance, if cq in Ay (3:31) is unequal to zero, the latter effect is also achieved. However, the choice for A
in Equation (3.3T)) does not ensure a decrease in the shear components.
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(b) Damage-displacement curves

Comparison between isotropic (¢ = 0) and anisotropic (¢ = 1) ductile damage for
different damage thresholds Y{, under uniaxial loading in e;-direction. In case of
anisotropic damage, D, is diagonal with equal components in e,- and e3-direction
(D,, = D,,). For isotropic damage, D, is spherical, i.e. D, = DI.
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(a) Damage in e;-direction (b) Damage in es- and e3-direction
Figure 3.2: Influence of anisotropy parameter ¥ on damage evolution D, in e;-direction
(loading direction) and D,.,, D,, (D,, = D,,) in e,- and e3-direction with damage

threshold Y, = 0.1 [MPa]. For 9 = 0, the behavior is isotropic, i.e. D,, = D,, =
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Figure 3.3: Evolution of damage components for stretch in e; -direction combined with shearing
in e;-e,-plane for increasing stretch parameter w in F' (3.83) and damage threshold
Yy = 10 [MPa]. After w reaches 0.05 [-], the off-diagonal component D,,, tends
to zero with increasing main diagonal components (D,,, = D,,, = 0). Isotropic
damage (D) is shown for comparison.
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3.6.1.3 Brittle damage under alternating loading direction

The last single 3D element study serves to illustrate the meaning of induced anisotropy on an
initially isotropic material. For this purpose, the plastic yield stress is set to (nearly) infinity
and a damage threshold Y, = 0.1 [MPa] is used. Consequently, and because of the resulting
absence of plastic strains, the kinematics can be considered ‘exact’ since no additive split is
assumed.

The displacements are prescribed as shown in Figure[3.4] The loading in each spatial direction
is increased until all damage components reach the same value, here 0.985 (Figure [3.5b).
Noteworthy, in order to achieve this requirement, different maximal displacement values must
be prescribed in the present study. In addition, due to the uniaxial boundary conditions applied

during each loading/unloading phase, no shear damage components evolve.

The resulting force-displacement curves in each direction are depicted in Figure [3.5a) while
the damage evolution corresponding to the time points in Figure [3.4]are shown in Figure [3.5b]
For a better understanding of induced anisotropy and its influence on the material, the isotropic
case is briefly discussed. Therefore, ¥ is set to zero and the 3D element is loaded by the same
loading program as shown in Figure[3.4] During the first loading/unloading phase, the damage
threshold is exceeded, and thus, damage occurs. During reloading in the second phase, the
reloading stiffness is the very same as the unloading stiffness during the first phase. Notewor-
thy, since uy'*” is less than u}"**, degradation of the material does not further increase during
the second loading phase. In the third loading phase, the same behavior with regard to the
reloading stiffness is observed, but unlike the second loading phase, u5'** is higher compared
to u"** leading to further degradation. The fact that the reloading stiffness is always the
same as the previous unloading stiffness illustrates the direction-independent behavior of an

isotropically damaged material.

Contrary to the isotropic case, the anisotropic model (¥} = 1) depends on a specific direc-
tion. On the one hand, damage does not only occur when the displacement in the subsequent
loading phase is higher than the previous one. An effect that can be explained by induced
anisotropy, since anisotropic behavior generally changes the transversal elongation of the ma-
terial and, thus, the damage driving force Y, is different in each loading phase. On
the other hand, the reloading stiffness is higher compared to the previous one after the load-
ing displacement direction is altered. Considering the damage rates and evolutions of the
first example (Section @ it is easier to understand the directional manner. Since the

damage component (e.g. D,, for the first loading phase) corresponding to the spatial direc-
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Figure 3.4: Prescribed displacements in each spatial direction until D,, = D,, = D,, ~ 0.985
[-]is reached (cf. Figure[3.5b). Thus, the maximum prescribed displacements are

u® = 0.036 [mm], u5™* = 0.0354 [mm], u5*** = 0.0381 [mm]. The time points

correspond to ¢¢: Initiation of (anisotropic) damage (cf. Figure [3.5b)), t¢: Alter
uniaxial displacement loading direction, ¢;": Unloading.

tion (u,) increases under uniaxial loading at a higher rate than the other components (D,,,
D,,) - which was demonstrated in the first example - the stiffness associated with this very

direction is degraded the most. Thus, the reloading stiffness in another direction is less reduced.

In addition to these discrepancies, a significant higher load is reached for the isotropic version
compared to the anisotropic one during the first loading phase. Reasons given for this are
that (isotropic) damage occurs later under the applied loading (cf. Section|3.6.1.1)) and further
that x4 evolves differently. In the present study, the latter results in more pronounced damage

hardening and consequently a higher maximum force is gained in case of isotropic damage.

3.6.2 Structural examples

In the following, the proposed material model is investigated on a structural level. In particular,
the ability of the invariant-based regularization to predict mesh-independent results is studied.
For simplicity, 2D plane strain problems are considered using quadrilateral elements. The

material parameters correspond to ‘set 2’ from Table [3.2]for all structural examples.
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Figure 3.5: Material response of anisotropic brittle damage in each spatial direction subjected
to the loading in Figure with damage threshold Yy, = 0.1 [MPa]. Isotropic
damage behavior obtained for the same loading is shown, in addition.

3.6.2.1 Asymmetrically notched specimen (brittle damage, monotonic loading)

The first structural example deals with an asymmetrically notched specimen undergoing mono-
tonic loading in e;-direction. The main purpose is to prove that mesh-independent results are
achieved by the proposed gradient-extension and further that mesh convergence is gained also
for complex and shear dominated deformations. To exclude any influence of plasticity on
the regularization, the material is considered ‘brittle’ for the time being, i.e. 0,0 — 00, and
furthermore, the micromorphic moduli are set to A; = 100 [MPa mm?] and H; = 10* [MPa].
The particular boundary value problem and geometry are taken from |Brepols et al.| [2017]] and
are depicted in Figure[3.6] The left edge is considered clamped, while the right edge is loaded
by a single force in the middle and is also constrained to remain perpendicular to the load.

However, the edge is allowed to deform perpendicular to the load.

Mesh refinement using 1624, 3592, 6651, 9667, 12704 and 13955 finite elements is mainly
performed in the green highlighted area in Figure [3.6] The coarsest as well as the finest mesh
are shown in Figure The obtained force-displacement curves for the different meshes are
shown in Figure [3.8 and are normalized to the maximum achieved load by the finest mesh.
During degradation, severe snap-back behavior becomes visible. In order to follow the quasi-

static solution path, an arc-length controlled solution procedure is utilized. Nevertheless, mesh
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Figure 3.6: Geometry and boundary value problem. Left edge is completely fixed, right edge
is loaded by a single force and is enforced to stay straight and perpendicular to the
force. The green highlight indicates the area of mesh refinement. The thickness is
one millimeter.

Figure 3.7: Mesh with 1624 (left) and 13955 finite elements (right). The area of refinement
including mesh transition coincides with the green highlight in Figure 3.6}

convergence towards a solution with a finite amount of energy dissipation for decreasing mesh
size is clearly visible. Thus, the ability of the proposed method to achieve mesh-independent

results, also for complex solution paths, is well demonstrated.

In contrast to the degradation during snap-back, where most of material’s integrity loss arises,
the following degradation rate is slow. To explain this effect, a closer look at D,., is needed.

Although the contour plot of D,,, looks qualitatively the same as D,,, and D,,, in Figure[3.9]

733
(not shown here), due to the plane strain conditions its evolution is quite slower. Having in

mind that the volumetric response of 1" is influenced by a scalar degradation function f;, which



124 3 A two-surface gradient-extended anisotropic damage model using a second order damage tensor...

is only zero if D, = I, the stress component 77, is not necessarily zero even if D, , tends to

T11
one. Thus, the remaining stiffness and the slow degradation can be explained. Nevertheless,
the remaining force is about seven percent of the maximum force at u; = 2 [mm], which can

be macroscopically considered ‘fully broken’.

no. of elements:

--- 1624
| 3592
—— 6651
| |- 9667
—— 12704
+|--- 13955

T 0.15

Fl/Fmax [']

2

Figure 3.8: Normalized force-displacement curves with maximum load Fi,,, = 37.957 [kN].
The displacement is normalized to the total length [ = 100 [mm]. For 13955
elements, the final value is about 0.07 [-]. Black squares indicate three analyzed
snaps.

To give the reader a better understanding of the underlying process, three contour snaps at
different stages of the simulation, indicated in Figure [3.8] are provided in Figure 3.9 When
reaching a certain state of deformation, D, , starts to evolve at the lower notch first and progres-
sively increases towards the upper edge. Right after damage initiation, D,,, evolves as well and
‘follows’ D

arranged notches, the imposed shear band leads to a vertical movement of the right part of the

but the damage zone is smaller compared to D,,,. Due to the asymmetrically

T11° ri1*

specimen, which in its final broken state (3. snap) is completely separated.

Lastly, Figure [3.10| compares the final damage zones of three exemplary chosen meshes. All
zones remain finite and do conform well between the different meshes. No artificial widening
of the damage zones can be observed. Hence, the proposed regularization technique is able to

control the range of localization and keeps it constant during refinement.

For a better understanding of the stress-strain state, various scalar stress and strain measures

are given in Figure [3.11] In line with [Voyiadjis et al| [2021]], the strain state is described
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Figure 3.9: Damage contour plots of main diagonal components of D,.. The third component
D,,, behaves qualitatively similar. In Figure the snaps are indicated by black
squares. The undeformed geometry is illustrated by black lines.

by the effective Green-Lagrange strain E.;; = %tr (E?), while the stress state is repre-
sented by several invariants, namely the von Mises stress o, the triaxiality p, and the Lode
parameter r. All stress invariants are calculated with respect to the Cauchy stress tensor (see
Appendix [3.8.13). As expected, the strain localizes in the severely damaged zone, indicating
a rather high deformation in this region. Similarly, the von Mises stress at the notches is
most pronounced at the first snap and drops to almost zero when the left and right parts are
separated. Only at the upper notch, some stress peaks occur. In this context, it is interesting
to note that Lode’s parameter within the damaged area is minus one, which is contrary to the
rest of the specimen. This is due to the negative stress component in the thickness direction
(not shown here). The state of triaxiality allows a similar conclusion. Briefly, the transition
from damaged to undamaged material is characterized by very high gradients in both the strain

and stress contour plots, which can be seen most clearly in the first and second snap, respectively.

Table [3.3] is concerned with the global numerical stability. Shown are the global (normal-
ized) residual norms. At the beginning of damage (1. snap), the convergence rate is perfectly

quadratic and converges towards the solution within a few steps. With increasing degradation,
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Figure 3.10: Comparison of the width of the final damage zone of D, , and D,,, for three
exemplary chosen meshes at u; = 2 [mm]. The width per damage component
remains almost constant.

especially when the force-displacement curves are descending, the convergence is quite slower
and loses its quadratic rate, even though the tangents are derived in a consistent manner (2.
snap). However, similar observations were already reported in the literature, e.g. by Brepols
et al. [2020] and Felder et al. [2022]. In addition to this loss of quadratic convergence and the
accompanying increase in iterations, quite many restart files were needed during the snap-back.
With each restart, the arc-length was adjusted. This high computational effort is only observed
for brittle simulations, while ductile simulations do not require an extraordinary number of
restart files. After the severe snap-back, the convergence behavior reaches a quadratic rate
again, as shown at the end of the simulation (3. snap), which is associated with a much more

stable numerical simulation.
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Figure 3.11: Stress-strain states at three different snaps indicated by black squares in Figure
First column: Effective Green-Lagrange strain £, (logarithmic scale), second
column: Von Mises stress o, third column: Lode parameter 7.
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Table 3.3: Global convergence rates of the asymmetrically notched specimen at three different
snaps. The snaps are indicated by black rectangles in Figure [3;8}

1. snap 2. snap 3. snap
iteration residual residual residual residual residual residual

(normalized) (normalized) (normalized)

1.000E+03 1.000E+00 1.000E+03 1.000E+00 1.000E+03 1.000E+00
3.029E-03  3.0298E-06 1.789E-02 1.789E-05 3.527E-01 3.527E-04
7.414E-08 7.414E-11 5.313E-05 5.313E-08  7.960E-04 7.960E-07

- - 9.176E-07 9.176E-10  2.403E-08 2.403E-11

W o = O

3.6.2.2 Tensile specimen with imperfection (ductile damage, monotonic loading)

In contrast to the previous example, the following example takes plasticity also into account.
The example’s objective is the interaction between plasticity and isotropic/anisotropic damage
on a structural level, as well as the ability to still provide mesh-independent results. Therefore,
a tensile specimen is investigated, which is subjected to monotonic loading in es-direction.
The boundary value problem is taken from the literature (Ambeati et al.|[2016]) and was studied
by Brepols et al. [2020] as well. However, the these papers did not consider an imperfection
in their studies, as shown in Figure[3.12] The reason for the imperfection is that in a previous
study without imperfection (not shown here), a nearly horizontal crack which resulted only
in a vertical deformation of the specimen. In order to impose a horizontal deformation and,
thus, a numerically more challenging simulation, the imperfection is added. Furthermore, the

micromorphic moduli are chosen as A; = 75 [MPa mm?] and H; = 10° [MPa].

For the anisotropic version, mesh convergence is studied by various mesh refinements using
892, 1908, 3722, 7066 and 9512 finite elements, where the refined areas of the 892 and 9512
meshes are shown in Figure[3.13] The corresponding force-displacement curves are illustrated
in Figure [3.14] and show the desired convergence towards a solution with negligibly small dif-
ferences. Moreover, the isotropic damage model is computed using the finest mesh. In addition
to the last ‘brittle’ example, these results clearly demonstrate the model’s regularization also

in a ‘ductile’ framework.

Although not as significant in the present example, the slightly higher maximum force achieved
as well as the later onset of degradation of the isotropic model compared to the anisotropic

version, as visible in Figure are consistent with the findings of the single element test
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Figure 3.12: Geometry and boundary value problem with imperfection (not to scale). The gray
highlight indicates clamping and is not simulated. Bottom edge is completely
fixed, upper edge is loaded by a single force and is allowed to deform as a rigid
body as well as stays perpendicular to the force. The green highlight indicates the
area of mesh refinement. The thickness is one millimeter.

in Section Moreover, the evolution of damage and accumulated plastic strain fields
are investigated at discrete deformation states and illustrated in Figure [3.15] In line with
the observed behavior in the force-displacement curves, damage initiation in the anisotropic
model occurs earlier, resulting in a lower force and degradation. Although damage anisotropy
is considered, the contour plots of D, , and D,.,, do not noticeably differ in terms of values or
damage zone widths, the latter being in contrast to the previous example. Moreover, the final
anisotropic state looks quite similar to isotropic damage.

In contrast, there is a clear difference between «,, in case of isotropic and anisotropic damage.
In view of its evolution Equation (3.28)),, one notices that the rate of «,, is strongly influenced
by f;. Considering that D

fa compared to f; in the isotropic version can be comprehended for similar reasons as in the

45 €vOlves much slower than D, , and D,,,, a slower decrease of
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Figure 3.13: Mesh with 892 (left) and 9512 finite elements (right). The area of refinement
including mesh transition coincides with the green highlight in Figure [3.12]

previous example. Thus, the rate of ,, and so its final value, is less in the anisotropic version

in this particular example.

As intended, Figure[3.15]|shows a clear horizontal movement of the upper part of the specimen,
which can be considered separated from the lower part in its final state, demonstrating the
robustness of the material model formulation and gradient-extension. Shear components in
D, for anisotropic damage might contribute to the larger horizontal movement than in case
of isotropic damage, in addition. Furthermore, Figure [3.16]compares the final damage zones.

Again no artificial widening is observed.

The stress and strain state is shown in Figure Especially with regard to the differences
between isotropic and anisotropic damage, these are interesting to investigate, since quite few
differences can be identified in the force-displacement curves. Both models reach very high
effective strain values in the highly notched center of the specimen. Only few differences can
be observed in the contour plots. In contrast, the corresponding stress states differ clearly over
time, which becomes best apparent from Lode’s parameter. For the first two snaps, o4, p and r
already diverge between isotropic and anisotropic damage, but for the third snap, the difference
is most evident. In particular, the maximum von Mises stress in the anisotropic case is much
less localized than in the isotropic case, and the triaxiality also deviates from each other in
the strongly notched area. It should be mentioned that the local peaks partly deviate even
more significantly from each other, but are not shown here for the sake of better visualization.
Finally, p and r reveal the reason for the differences. In the anisotropic case, r is minus one

almost in the entire notched zone, whereas in the isotropic case plus one clearly prevails, high-
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lighting a substantially different stress state only due to anisotropic damage. In fact, the stress
in thickness direction is negative in case of anisotropic damage, while it is positive for isotropic
damage. Reason for this might be that Poisson’s ratio is initially direction-independent and
remains direction-independent in case of isotropic damage, while anisotropic damage leads to

a direction-dependence of Poisson’s ratio, and thus, to a completely different transversal strain.

As for the last example, the numerical stability of the tensile specimen is briefly discussed.
The corresponding (normalized) residual norms for both anisotropic and isotropic damage are
shown in Table [3.4]and [3.5] respectively. A quadratic convergence rate was observed through-
out the elasto-plastic regime until strong degradation occurs (1. snap), which is not shown in
Table[3.4and[3.5] At damage initiation (1. snap), the convergence rate for both cases is almost
quadratic, with only one additional iteration for the anisotropic version. During the drop of the
force-displacement curves (2. snap), both model version suffer from a lack of quadratic con-
vergence, which is comparable to the asymmetrically notched specimen. However, it should be
mentioned that throughout the degradation, no restart files were necessary, which is contrary to
the last example. Only during the transition from the rise to the fall of the curves, a restart was
necessary. With the curves flattening, both versions reach quadratic convergence rate again (3.
snap). Noteworthy, the isotropic version performs quite well. Nevertheless, it is remarkable
that the anisotropic version coupled with plasticity also achieves a quadratic convergence rate
again. The observations for the last example (Section [3.6.2.3) are quite the same as for the

tensile specimen.
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Figure 3.14: Normalized force-displacement curves with maximum load F},,,, = 2.3285 [kN].
The displacement is normalized to the total length [ = 140 [mm]. For 9512
elements, the final value is about 0.03 [-]. Black squares indicate three analyzed
snaps.
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Figure 3.15: Left: Damage contour plots of D,,, and D,,, for anisotropic damage and D
for isotropic damage. Right: Accumulated plastic strain contour plots in case
of anisotropic and isotropic damage. Figure [3.14] indicates the snaps by black
squares. The (full) deformed geometry corresponds to anisotropic damage.
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Figure 3.16: Comparison of the damage zone D
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3722

T22

9512

0.0

for three exemplary chosen mesh refine-

ments at the end of the simulation v, = 18 [mm]. The widths remain almost

constant.

Table 3.4: Global convergence rates of the tensile specimen (anisotropic damage) at three
different snaps. The snaps are indicated by black rectangles in Figure [3.14]

1. snap 2. snap 3. snap

iteration residual residual residual residual residual residual

(normalized) (normalized) (normalized)
0 1.000E+02 1.000E+00 1.000E+02 1.000E+00 1.000E+02 1.000E+00
1 1.313E+00 1.313E-02  9.859E-02 9.859E-04 9.863E-02 9.863E-04
2 2.585E-04 2.585E-06 6.217E-06 6.217E-08 7.390E-04 7.390E-06
3 2.611E-05 2.611E-07 1.047E-08 1.047E-10  1.558E-04 1.558E-06
4 6.702E-09 6.702E-11 - - 1.419E-08 1.419E-10

Table 3.5: Global convergence rates of the tensile specimen (isotropic damage) at three different
snaps. The snaps are indicated by black rectangles in Figure [3.14]

1. snap 2. snap 3. snap
iteration residual residual residual residual residual residual
(normalized) (normalized) (normalized)
0 1.000E+02 1.000E+00 1.000E+02 1.000E+00 1.000E+02 1.000E+00
1 1.239E-01 1.239E-03 2.061E-01 2.061E-03 1.027E-02 1.027E-04
2 3.854E-05 3.854E-07 6.539E-05 6.539E-07 5.649E-07 5.649E-09
3 6.653E-09 6.653E-11 1.006E-08 1.006E-10 - -
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Figure 3.17: Stress-strain states at three different snaps indicated by black squares in Fig-
ure@ First column: Effective Green-Lagrange strain F ;¢ (logarithmic scale),

second column: Von Mises stress o, third column: Lode parameter 7.
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3.6.2.3 Cruciform specimen (ductile damage, non-proportional loading)

The last structural example serves to demonstrate the influence of damage anisotropy on a
structural level, similar to the single element study in Section [3.6.1.3] but for ‘ductile’ material
behavior. To this end, a cruciform specimen with slightly adopted geometry as inspired by
Seymen et al. [2016] is considered and depicted in Figure Due to symmetry, only one
quarter is simulated and loaded as shown in Figure Furthermore, A; = 75 [MPa mm?]
and H; = 10° [MPa] are chosen.

In the previous example, a clear difference between anisotropic and isotropic damage was
hardly observed, neither in terms of the load-displacement curves nor in the contour plots
of damage. Therefore, as described in some previously mentioned experimental works (cf.
Section [3.2)), a non-proportional load program is prescribed, where the two outer edges are
biaxially loaded in a stepwise manner. The loading is shown in Figure [3.20] and two values
for the intermediate displacement are investigated in the following, i.e. w = {0.8,1.75} [mm].
For most of the following discussion, it is sufficient to consider only the results up to time 5,
but for completeness, the simulation is performed up to ¢3 in order to achieve a ‘fully broken’

state. All simulations are performed fully displacement-driven.

Careful mesh convergence studies, until convergence for both edges A and B is observed, are
performed using 1260, 2512, 5444, 10404, 17254, 21700, 32208 and 41836 finite elements
(not shown here for brevity, see Appendix [3.8.14). The corresponding mesh sizes for the
coarsest and finest mesh are shown in Figure at least a detail due to the small mesh size

for 41835 elements. All results presented in the following correspond to the finest mesh.

First, the results for « = 0.8 [mm] are considered. Within interval 0 — ¢, no differences be-
tween the isotropic and anisotropic force-displacement curves can be observed (Figure [3.22).
Changing the loading direction at ¢, and increasing the displacement at edge B, a first deviation
between isotropic and anisotropic behavior is noticeable within interval t, — t; (Figure [3.23)),
caused by both different damage onsets and different evolutions of damage. These two effects
lead to the load drop at edge A between t, — t; (Figure [3.22)). The following load increase in
e;-direction then clearly highlights a discrepancy between both model versions. The underly-
ing process is illustrated at specific snaps during the applied load program in Figure (3.24] In
accordance with the mentioned observations in the force-displacement curves, no damage oc-

curs during the first loading phase, but initiates during the second one. Furthermore, D,,, and

T11
D,.,, reach a higher value compared to D, suggesting a more degraded state. Noteworthy, and

in contrast to the previous structural examples, the component D, evolves quite differently
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Figure 3.18: Geometry and boundary value problem. Due to symmetry, the gray highlighted
parts are not simulated. Mesh refinement is mainly performed in the green
highlighted area. The thickness is two millimeters.
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Figure 3.19: Symmetric part of boundary value problem and applied boundary conditions.
The displacement perpendicular to each edge is set to zero. Displacement-driven
calculations are conducted following the load program in Figure [3.20}

than D, , and D,.,.

Next, the simulation for u = 1.75 [mm)] is discussed in further detail. Contrary to © = 0.8

[mm], the force-displacement curves between the isotropic and anisotropic version diverge

8.25 | [ -
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Figure 3.20: Prescribed non-proportional loading at edge A and B (cf. Figure (3.19). The
slopes during loading are equal to one in each time interval. Two different values
u = {0.8,1.75} [mm] are investigated.
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Figure 3.21: Detail of refined area (highlighted in green, cf. Figure [3.18) between the two
notches. Mesh with 1260 (left) and 41836 finite elements (right).

strongly within interval 0 — %, in particular after reaching their maximum loads and during
material softening, respectively. Hence, the forces at edge B at ¢, differ significantly, but within
to —t1 and t; — to, the curves diverge just slightly further. As before, three snaps are presented
in Figure [3.25]to underpin the explanations for the differences compared to @ = 0.8 [mm]. In
the actual case, damage initiates already within the first interval for all components. Again,
and D
higher values than their counterparts for « = 0.8 [mm]. The latter explains why the forces for
u = 1.75 [mm] are lower than for « = 0.8 [mm)] at time ¢, (cf. Figure @[)

components [ are more pronounced than D and, moreover, all components gain

T11 T22

Figure [3.26] presents the crack shapes for the anisotropic and isotropic versions at t3. It is
interesting to note that the anisotropic crack shape looks quite sharper when the softening
regime is not reached within 0 — ¢y (u = 0.8 [mm]), while for & = 1.75 [mm] both shapes look
almost the same. Despite the different crack shapes and differences in the force-displacement
curves, the final crack contour plots for isotropic (D)) and anisotropic damage (D,,,, D,,,)
seem to closely match each other (cf. Figure [3.24] [3.25]and Appendix [3.8.14).

For completeness, contour plots of accumulated plastic strain are shown in Figure at tﬂ
As for the previous structural example, «, yields higher values in case of isotropic damage -

independent of @ - most likely due to the same argumentation as given in Section[3.6.2.2]

Lastly, the stress and strain responses of the various loading cases for both isotropic and
anisotropic damage are discussed. Figures [3.28] and [3.29] illustrate the stress-strain states

for u = 0.8 [mm] of anisotropic damage and isotropic damage, respectively. At ¢, as well

The corresponding damage contour plots are provided in Appendix [3.8.14
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as t1, none of the different strain and stress measures differ significantly between isotropic
and anisotropic damage. Having the corresponding force-displacement curves (Figures [3.22]
and [3.23) as well as the damage contour plots (Figure [3.24)) in mind, this might not be very
surprising. In fact, at ¢; the state of degradation is more or less the same. As mentioned
above, however, the structure at ¢, is more degraded in case of anisotropic damage, which
explains why the von Mises stress is lower compared to isotropic damage, at least on average.
Although the effective Green-Lagrange strain looks quite the same, the triaxiality and Lode’s
parameter show some differences. These results are consistent with the conclusion that the

influence of anisotropic damage is not as significant when « is set to the lower of the two values.

For u = 1.75 [mm], a similar behavior is observed as also discussed above. Already at
time ¢, the effective Green-Lagrange strain in the case of isotropic damage is localized to a
much narrower range (Figures [3.30/and [3.31)). Thus, the von Mises stress observed is higher
within this region. Considering the fact that, roughly speaking, stiffness attracts loads and the
isotropic model is less damaged at ¢;, these observations can be well understood. Similar ob-
servations can be made for p and . As the difference in the force-displacement curves increase
over time, it is not surprising that the very same is the case for the stress-strain states. While
both the strain and stress gradients are less sharp for anisotropic damage, a much narrower range
is of interest in the case of isotropic damage with the corresponding gradients being higher. In
particular, the effective Green-Lagrange strain and the Lode parameter clearly highlight these
differences. One possible explanation is a different degradation state as already described for
u = 0.8 [mm] and, as in the previous example, a continuously evolving directional dependence

of Poisson’s ratio with increasing degradation.

3.7 Conclusion and outlook

A gradient-extended coupled damage-plasticity model accounting for anisotropic damage by
means of a second order damage tensor at large strains was presented. The model was derived
in a thermodynamically consistent manner and accounts for both plastic and damage hardening,
where the key points of the constitutive framework include the representation in the logarithmic
strain space, the use of the additive split, the transformation to the Lagrangian space, and the
fulfillment of the damage growth criterion for a generally elasto-plastic-damage loading step.
The latter prevents the model from artificial stiffening. Moreover, in order to gain a flexible
formulation with regard to the material’s degree of ductility, a ‘two-surface’ approach was

employed.
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Figure 3.22: Normalized load-displacement curves (41836 elements, edge A) with maximum
load F4 = 1.5912 [kN] (@ = 1.75 [mm], anisotropic model, finest mesh). The

maxr

displacement is normalized to [ = 100 [mm]. The time points correspond to the
load program in Figure [3.20}

Although a symmetric second order damage tensor was used, the proposed gradient-extension,
which is based on the micromorphic approach, requires only three ‘nonlocal’ variables associ-
ated with the damage tensor’s invariants. The numerical solution procedure for the fully coupled
system of equations, solving both the linear momentum in terms of Lagrangian quantities and
the micromorphic balance, uses Newton-Raphon’s method. Therefore, the composition of the

algorithmically consistent tangent operators in the Lagrangian space was presented as well.

Single element studies were performed and demonstrated the difference between plasticity
coupled to isotropic and anisotropic damage, as well as the effect of induced anisotropy. Fi-
nally, structural examples investigated the model’s ability to achieve mesh-independent results.
In order to exclude any influence of plasticity on the regularization, brittle simulations proved
the applicability of the regularization technique. Moreover, the structural influence of damage
anisotropy on the model’s plastic evolution was investigated in ductile simulations. Although
these simulation did not show a significant difference in the final crack path, a crucial difference
in the load-displacement curves between isotropic and anisotropic damage was observed, espe-
cially for non-proportional loading. This clearly highlights the relevance of taking anisotropic

damage into account in, for instance, forming processes.

Despite these promising numerical results, comprehensive experimental calibrations and val-
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Figure 3.23: Normalized load-displacement curves (41836 elements, edge B) with maximum
load F = 1.5912 [kN] (cf. edge A, Figure [3.22) and total length [ = 100

max

[mm]. The time points correspond to the load program in Figure 3.20}

idations are highly desirable in the future. At least the plastic part was already validated in
several mentioned works. In this context, the usage of the additive split in connection with
anisotropic damage might be studied in more detail. Furthermore, a material formulation that
does not make use of the additive split is of interest, as well as the comparison between mul-
tiplicative and additive decompositions in the presence of anisotropic damage. Moreover, due
to the strong influence on the final crack path, the model should be equipped with anisotropic
plasticity and - in this regard - additional (plastic) regularization should be considered (see
e.g. Dimitrijevic and Hackl| [2011]], Lodygowski et al. [2011]], [Saanouni and Hamed| [2013]]
and Miehe et al. [2017]) to counteract localizing shear bands. Moreover, numerical studies
should investigate the possibility of reducing the set of ‘nonlocal’ variables in order to reduce
the numerical effort. In this context, it is worth referring to the recently proposed develop-
ments of reduced integration elements for gradient-extended damage (see Barfusz, Brepols,
van der Velden, Frischkorn and Reese [2021]]; Barfusz, van der Velden, Brepols, Holthusen
and Reese [2021]]) based on|Reese [2005]] and Juhre and Reese|[2010], which noticeably reduce
the computational effort and make the structural simulations very robust against strong mesh

distortions.
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3.8 Appendix

3.8.1 Virtual work in the context of the micromorphic approach

The pathological mesh dependence in FE simulations and, in its absolute consequence, the
shrinking of the damage zone to zero, can be remedied by various methods. Gradient-extension
introduces an internal length scale, which additionally describes the material by means of a
material parameter. In the present work, the micromorphic approach of Forest [2009, 2016] is
followed, which in parts goes back to the work of Mindlin| [1964]. Accordingly, the desired
regularization is realized only indirectly via the micromorphic variable and the requirement
that its local counterpart is constantly close to it.

The internal virtual work g;,; as well as its external counterpart g.,; defined in terms of

constitutively dependent quantities in the reference configuration are obtained as

Gint = / S:0EdV + / (&, - 6d + Bo, : Grad (6d)) dV (3.84)
Bo BO
micromorp?lirc extension
Jext = f()é’l,l/dv—i‘/ to(S’U,dA
Bo 0¢Bo

+/ (505 -0d + Z, : Grad (6&)) dV + &, - 6d dA (3.85)
Bo

0.Bo

Vv
micromorphic extension

A much more deep discussion as well as derivation of the above formulas and their detailed

transformation to their strong forms can be found in Brepols et al. [2020].

3.8.2 Invariant-based approach in terms of principal invariants

Choosing the principal invariants I, = tr (D), I1p = 1/2 ((tr (D)) — tr (D?), I1Ip =
det(D), the derivatives in Equation (3.79) are obtained as

ol oIl oIl
— T —IpI-D, 2P
b oD,

— =11, D' )
oD, " 9D, p D, (3.86)

However, since D, is positive semi-definite, the inverse cannot always be computed. Therefore,
in order to obtain a closed-form expression for the third derivative, one rewrites the concerned

term by applying the Cayley-Hamilton theorem

olllp
oD,

= I[IpI — IpD, + D?. (3.87)
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Note that the above formula could also be obtained by a limit analysis. Although the advantage
of always as many non-zero principal invariants as eigenvalues, the approach from Equation

(3.13) is chosen due to its simpler structure.

3.8.3 Damage growth criterion

Damage, unless material healing is considered, is generally associated with a loss of material
integrity and thus with a decrease of the material resistance. Consequently, if the damage
tensor ‘increases’, i.e. one of its eigenvalues increases, the material stiffness must decrease.

A more general (and mathematical) treatment of this topic can be found in |Wulfinghoff et al.
[2017], which derived the so-called damage growth criterion, an important contribution to
the field of CDM. The fulfillment of this criterion prevents any kind of artificial stiffening.
Although this requirement seems natural, many models in the literature suffer from violating
it (see the discussion in Wulfinghoft et al.| [2017]]). In the case of anisotropic damage, the
criterion has been successfully applied by e.g. |[Fassin et al.|[2019bla] and Reese et al.| [2021]).
Without going to much into detail, the main findings are summarized here. For simplicity,
an elasto-plastic material without any kind of hardening is considered. Thus, the energy

contributing to the overall stiffness of the material 1), has to decrease for evolving damage
ve(n, D +dD) < ¢(n;, D) Vn; € Sym*(3) (3.88)

here expressed with respect to the intermediate configuration. Alternatively, Equation (3.88)

can be expressed as

e
oD

Since dD is positive semi-definite, Jv)./0D must be at least negative semi-definite. The

:dD <0. (3.89)

interested reader may found a more detailed discussion, also in the case of elasto-plasticity, in
the work of Wulfinghoff et al.|[2017].

3.8.4 Isotropic tensor function of two symmetric tensors

Considering ¢ which is an isotropic function of A, B € Sym(3), ie. ¢ = ¢(A, B) =
V(E(A), M(A, B),E(B)). Hence, one can show that the following holds

A00(E(A)) _ 0u(E(A))

— 2 3
OA 0A A—a0A+a12A +0623A (390)
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which yields a symmetric tensor and moreover holds analogously for B. Thus, in order to
prove that A (0vy/0A) + B (0v/0B) yields a symmetric tensor, it is only necessary to

investigate the following

OU(M(A,B)) | pOv(M(A,B))

A 0A 0B

== ﬁo AB—i—ﬂl A2B+61 ABA-'-ﬁQ AB2

+ B3 A’B* + 35 AB*A + 3y BA + 5, BA?

+ 3y BAB + 8, B2A + 3; BA?B + j3; B2A?
(3.91)

which indeed yields a symmetric tensor, too. The several «; and ; denote the partial derivatives

of the isotropic tensor function with respect to the invariants.

3.8.5 Representation of thermodynamic driving forces with respect to
reference configuration
Taking the findings of Appendix into account and further noticing £(7.) = £(€&.),

M(ne, D) = M(é., D,), E(n,) = E(e,), M(n,, D) = M(e,, D,) and £(D) = £(D,),
the following can be found for the driving forces

T =R, (o I+ 20+ az 30 + Bo D + B1(n.D + Dn,)
+ 5o.D? + 33(n.D* + D*n.)) R,

(3.92)
=g I+ a1 26, + ay 32 + By D, + B1(€.D, + D, €.)
+ BQDg + BS(éeDf + Dfée)
X =R, (VO I+uvi2n,+v 37712; + 70 D +71(n,D + Dnp)
2 2 2 -1
+ 7 D* + 13(n, D + D np)) Rp (3.93)

= 1) I+ 141 2€p + 1 3812) + 79 DT + 71 (EpDr + DrEfp)
+ 79 D? + 13(,D? + DZ¢),)

which shows that the driving forces can be fully expressed in terms of quantities located within
the reference configuration. Similar expressions are obtained for Y, and Y), by interchanging
NelD (€.|D,) and n,| D (g,|D,), respectively. The driving forces Y}, and Y are obtained in a

quite similar way and thus are not shown here for brevity.
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3.8.6 Fourth order damage mapping tensor

For the plastic evolution Equations (3.28)), it is necessary to specify the relation between the
effective stress T and its damaged counterpart T, defined by M, based on the energy chosen
in (3.37). First, the effective stress is obtained by evaluating T for D, = 0

T = 2. dev (&) + K. tr (€.) I. (3.94)

Next, the effective stress can be decomposed into its deviatoric and volumetric part as follows

VOUT) =Py : T = K, tr(€,) I, dev(T) =Py, : T = 2y, dev (&,) (3.95)

23
with the two fourth order projection tensors Py, = 1/3 I ® I and Py, = (I I)T —P,,. By
comparing the deviatoric as well as volumetric parts of the effective and damaged stress, one
can find the following relations: vol (T") = N, : vol (T) and dev (T') = Ny, : dev (T)

These two additional mapping tensors read as follows

23

Ny = fa (I®I)" (3.96)

Nyey = (% ((I® (I - DT))QTS +((I - D,) ®I)27§) + %I@ DT) 9+ (1 —9) Ny

(3.97)

Finally, under consideration of the several minor and major symmetries, the fourth order

damage mapping tensor is deduced as

1 23 24
M = (5 ((I DT +(I® I)T)) : (Nyor 1 Pyot + Naey : Pey) (3.98)

while its inverse results in a somehow lengthy expression, and thus is not provided within this
written part. Nevertheless, a MATLAB script is provided as supplementary material in the
online version of this work. Within this script, the expression for M~! is given with respect
to the eigensystem of the damage tensor D, in a symbolic manner. In addition, it is proven
that M~! maps a general deviatoric second order tensor A, onto a deviatoric second order
tensor. Therefore, it is important to note that a deviatoric tensor keeps deviatoric under a

proper orthogonal change of the basis system, such that

tr ((QAQT — MI» = tr (QAu,Q") = tr (Ag,) =0 (3.99)
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with Q € SO(3). Hence, the product M~! : A ., can also be proven to yield a deviatoric

tensor with respect to the eigensystem of D,..

3.8.7 Additional damage hardening

For simplicity, the additional damage hardening force Y} (3.50) is rewritten in terms of the

derivative with respect to D,,

3

Y, =K,» (f(D,)nP @nP) (3.100)
=1
(1 _DT’i)@
F(Dy) = L) (3.102)
Ngq

As pointed out, during the local iteration it can not be excluded a priori that the values D, do
not exceed one, which would produce a ‘not a number’ error. In order to prevent this issue, a
Taylor series up to the fourth term of the function f(D,.) at a; € R is carried out (cf. Fassin
et al.[[20195]). The evaluation point a4 has to be lower than one but is usually very close it.

The following polynomial approximation is used every time D), is larger than a,

1

_"Ti_l
Ty (D ag) = ———— — 1+ L4y )
(1 — ad)” Nd
L 1)(1-ag)
( >271d (Dr, — @) (3.103)
L) (1)1 —ag) | .
( ) ( 5 nd> (Dri . ad>3

24nd(1— ad)“d (ag —1)*

(DM - ad)4

For the Jacobian J,. during the local Newton-Raphson iteration, the analytical derivative of Y},

with respect to D, is required. This derivative is obtained according to the formula provided
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in e.g. Ogden|[1984]

A(B) =) f(B)nP@nP (3.104)
=1
"2y
oA _y 1~ | THB) - 1B
— =) f(B)n@n’@n’@n. + - ( J )
i Zl 2 ; Bj - B (3.105)

(nlB®nf®nf3®nf+n?®nf®nf®nf)).

3.8.8 Thermodynamic consistency

In order to prove the thermodynamic consistency of the model and under consideration of
Equation (3.28), the plastic quantities within the reduced part of the Clausius-Duhem inequality

are expressed as

(T — X): €, =4, (T X) :dev (T - X) =4,\/37; (3.106)

as well as the contribution of isotropic hardening with I, £, = 7, Rp. Hence, the plastic
contribution to the overall dissipation is equal to
(T—X):€,+R,kp =", (P, +0y) >0 (3.107)

which is obviously fulfilled taking into account the KKT conditions (3.29) and o, > 0.

Analogously is proceeded for the damage part

Y D =%— (Y. :A:Y,)=9V3JVY, :A:Y,. 3.108
o ey Y+ ) =4aV3VY, i (3.108)

Hence, the dissipation caused by damage is obtained as
Y : D, + Ry fiqg = a (Pg+ Yy) >0 (3.109)

which is always positive for similar reasons as stated before.
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3.8.9 Volumetric-isochoric decoupling

In classical continuum models, the isochoric-volumetric split is obtained by following the ap-
proach of [Flory [1961]], expressed in terms of the stretch tensor U as
U = det(U)"'3U det(U)Y*I =: U,;,,U,,. The Helmholtz free energy depending on
U is additively decomposed: (U) = 1is0(Uiso) + Yuor(det(Uyy)). In e.g. (Criscione
et al. [2000] and Neft et al.| [2015] as well as the literature cited therein, several properties
of logarithmic strain measurements are discussed. A significant result in the context of the
volumetric-isochoric split is the property that of all strain measures that are members of the
Seth-Hill family (see Appendix [3.8.11)), only the decomposition of logarithmic strains into a
spherical and deviatoric part is directly related to the volumetric-isochoric split

In(U) = In(U det(U)"/* det(U)"/?) = (1H(U) _ In(det(1)) I) | In(det@)) ;

3 3
|
— () - tr (ln(U))I N tr ( n(U))I7
3 3
—dev(In(U)) =vol(In(U))
(3.110)

with In(det (A)) = tr(In(A)). Further, the incompressibility condition det(U) = 1 is
equivalent to tr (In(U)) = 0, which holds analogously for U, and is an essential statement in

volume preserving plasticity.

3.8.10 Gateaux derivative of the multi-field problem

The Gateaux derivative applied in the context of the present multi-field problem is expressed

as
Dulgu] - Au = % (9u (u* + € Au,d*, du)) . (3.111)
D4lgu] - Ad = % (9u (u*,d" + € Ad, 6u)) . (3.112)
Dulgg] - Au = % (94 (u* + € Au,d*, 0d)) ~ (3.113)
0ul] - Ad = L (g3 (u',d" + ¢ Ad,5d)) - (3.114)
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where (u*, d*) denote a known state of the field variables in time. With the following definitions
at hand

F(e) =1+ Grad (u" + ¢ Au) = F* 4 ¢ Grad (Au) (3.115)

= % (F* + ¢ Grad (Au)]” [F* + € Grad (Au)] —I)
ST
L2

Grad (Aw)" Grad (Au)

F*' Grad (Au) 4 Grad (Au)” *)

l\')l»—l

(3.116)

= E* 4+ ¢ AE* + ¢ §Grad (Au)" Grad (Auw)
E(e) = % ([F* + ¢ Grad (Au)]” Grad (6u) + Grad (0u)” [F* 4 € Grad (Au)])
1 T
=3 (F* Grad (du) + Grad (5u)TF*>
+e- <Grad (6u)” Grad (Au) + Grad (Au)" Grad (5u)>
= 0E"+e¢AFE
(3.117)
d(e) :=d* +¢Ad (3.118)
the Gateaux derivatives of g, are obtained as

Dulgu) - Au = 4 (/ S (E(e),d") : 0E(e) dV — | fo-du dV—/ ty - du dA)
de \ /5, Bo 9 Bo

e=0
0S8 OE .\ O0E
= (/BO {51&7() 9E - o + S (E(e),d") : 5e ] dv> .
* aS * * 3k
:/ {51@ . = AE +S(E,d):A(5E} dv
Be OF
(3.119)
and
@d[gu]-Aazi(/ S (E*,d(e)) : 0E* AV — fo-audV—/ to-audA)
de By By 0t Bo e=0

0S od
- B 22 %
(/305 od  Oe V)

= OE™ : 8_5 Ad dV.
od

Bo

e=0

(3.120)
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In a similar fashion, ©,,[gg] - Au and D g[g4] - Ad are calculated

9.0 Au= T (/B 5d-H; - (d (B(e),d) — d')dv

- /B Grad (64) : (Ay - Grad (@) dV)

= od OF
—(/Bo(gd'Hd'a_E.Edv)

; od
— [ 6d-H, —— : AE*dV
/BO Y

=0 (3.121)

e=0

as well as
Dol - Ad = L ( /B 5d-H; - (d (B, d(e) — d(e)) dV

— [ Grad (s5d) : (Ag- Grad (d(e))) dv)

Bo

- od od od
~(foam (G 5 - %)

- /B Grad (5d) : (A;- Grad (Ad)) dV)

_ ( 5d-H, (g_g Ad— A&> v — [ Grad (5d) : (Ay- Grad (2d)) dv>
Bo BO

(3.122)

e=0

e=0

where Grad (a(e)) = Grad (El*) + € Grad (A(_i) was exploited.

3.8.11 Derivation of transformation law between logarithmic and

Lagrangian strain space

For the following discussion, the generalized family of strain tensors also known as the Seth-Hill
strain tensors (see [Seth|[[1961]], [Hill| [[1968]]) is introduced

ﬁ(cm—I) ,m#0
sIn(C) ,m =10

E™ — (3.123)

where m € R. For the special cases m = 1 the Green-Lagrange strain tensor E = E()
as well as m = 0 the (logarithmic) Hencky strain tensor € := E® are obtained. In order

to obtain the transformation formula from the logarithmic to the Lagrangian strain space, the
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stress power is expressed as

1. )
S:§C’:S:E:T:é (3.124)
and further 5 .
6 .
_— 2— .= .
€ 5C 2C’ (3.125)

where Q possesses both minor and major symmetry, i.e. Qijii = Qjiri = Qijie = Qriij- Taking

Equation (3.124) into account, the second Piola-Kirchhoff stress tensor can be expressed as

S=T:Q. (3.126)

as well as its rate 95 98 1 oS
52 L2 d=cCc:.Cc+22. 3.127
S=-5 B+ 7 C:5C+ 5d ( )

Combining Equation (3.123)) and (3.126), the stress rate can be rewritten as

o . oT O \ 1, IT\ 4
S:T.Q+T.Q=(Q-g-@JFT"laCGC)‘§C+(Q'a_&>'d (3.128)
- -~ ~—

—C =5

from which a relation between the material tangent C and its counterpart in the logarithmic
strain space can be deduced. Note that the above results are in line with the ones provided
by Miehe and Lambrecht [2001]. However, they directly assumed to obtain the stress ten-
sor T' following the Coleman-Noll procedure (see (Coleman and Noll| [1961]) derived from
the Helmholtz free energy ). Then, by making use of Faa di Bruno’s formula the above

results can also be derived. Furthermore, the straightforward numerical implementation of Q,

6
L := 4 9%¢/0CAC as well as the transformation to S and C based either on the eigenvalue
bases or eigenprojections is provided by Miehe and Lambrecht [2001]] or Schroder et al.|[2002].

3.8.12 Implicit integration scheme at local Gaussian point level

For a better understanding, Algorithm [I] provides a pseudo-code of the implicit time integra-
tion scheme as well as the transformation between Lagrangian and logarithmic strain spaces.
Following the notation introduced by Korelc| [2009], é(e)/5(e) defines an algorithmic differ-

entiation operator. These derivatives are obtained using AceGen. A more detailed explanation

tr

. can be found, for instance, in |Simo

of the active-set search strategy and the trial active-set JJ
and Hughes|[2006]] and Brepols et al. [2017].
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Algorithm 1 Implicit integration scheme

A~

InPUt: Cn—l—l’ dn+1’ Epna Rpp» Drn, Rd,

* Logarithmic strain space

6
1 . Oeny1 . 8%eni1
Ent1 < 2 In (Cn+1) ) QnJrl — 2acn+17 IL4n+1 — 480n+150n+1

¢ Trial state

€pnir < Epni Kpnpr < Kpny D «— D,,; Kda,., < Kd,

Tn+1
éen+1 S Ent1 — €pn+1
> Compute Toi1, Xnt1, Rp,i1» Yoy1, and Ry, | based on Equations (3.24), (3.43), (3.46)-

<I>” — \/»\/tr dev (Thy1 — Xopp1) ) - (Uyo - an+1)
O V3 Yo Aay Yo — (Yo— Ray) > cf. Equations (3.31)) and (3.33)
¢ Check onset criteria

if (I>”” > 0 or 7 > 0 then

~f£t ={a € {p,d} | ] > 0} > Define trial active-set
> Set £, and Xy, according to J'7, (cf. Table|3.1/and Equation (3.74))
k<+1
while ||fl(fg | > tol do > Start local Newton-Raphson iterations (k)
e () e
k< k+1 .
end while

if Ay, < 0for any a € J then

act

> Drop « from the active-set. Restart Newton-Raphson iterations with new J,

else
> State is admissible. Solution has been found

>Update €, .., Kp,,., Dr,.\, Kd,., depending on Ji,

> Update T}, 4
—1
500 50
VXZ — — Ior loc
o ox5) 0% g10,, 11
end if

end if
* Compute constitutively dependent quantities and tangents
dpyr (tr (D,,..),tr (D2 ), tr (D3 ))T

Tn+1 Tn+1
AT 6><9 S:f’nﬂ . Ad (3x9) 5dn+1

) n+1
Xglon+1 Dx;0c —VXJoe
nglo oc

xglon+1 Dxjoe
T;lo—vxloc
* Transform to Lagrangian space
> Get Cr0f, #19¢ from AT, ., and GL0% Gy,,, from Ad, 44
Spi1 ¢ Ty Qn—i—l
6

(C"H‘l — Q”H'l n+1 Qn+1 + Tn+1 : Ln—i—l

. LOG
Q%/dn+1 < @TL—H :

n+1
LOG .
gun-&-l gun+1 Qn+1
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3.8.13 Stress invariants

In order to describe the stress state of the material, different invariants of the Cauchy stress
tensor o = 1/J FSF7 are utilized, with J = det (F') = y/det (C) being the determinant of

the deformation gradient. Under consideration of

dev (o) = (0' _b (")I)

3
1. tr (CS)

=" - ——=ZT)|F7
77 (s - H5)

— %F‘Tdev (CS)F"

these invariants can be expressed in terms of Lagrangian quantities as follows

IT =tr(o) = tr (?S)
Jg = %tr (dev (0')2) = %ﬁtr (dev (C’S)Q)
Jg = det (dev (o)) = det (de;s(C’S))'

With the latter equations at hand, the stress state invariants can be calculated as

Oeqg = /3J§ = % gtr (dev (CS)2)
IO’

17 tr(CS)
3 _ 3
pi=— =
Oeq

3tr (dev (05)2)

=

B sl ? det(dev(CS)) 0 3
r = cos (36,) = 5 (J§’> = 2 (tr (dev (05)2)>

where 6. denotes Lode’s angle in line with Han and Chen| [[1985]].

3.8.14 Convergence study for cruciform specimen

(3.129)

(3.130)
(3.131)

(3.132)

(3.133)

(3.134)

(3.135)

See Figures [3.32}{3.35| for the convergence study and Figure [3.36] for damage contour plots.
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T11
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733

D’I‘11’ D DT:;;;’ D [_]

7229

Figure 3.24: Damage contour plots for # = 0.8 [mm] of main diagonal components of D, in
case of anisotropic damage and D for isotropic damage (41836 elements). The
first two columns correspond to the time of load change while the third column is
during further increase of ;' (cf. Figure[3.20).
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D

7119 Drgza Drgga D [—]

Figure 3.25: Damage contour plots for & = 1.75 [mm] of main diagonal components of D, in
case of anisotropic damage and D for isotropic damage (41836 elements). The
first two columns correspond to the time of load change while the third column is
during further increase of ;' (cf. Figure[3.20).
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ﬁg

Figure 3.26: Comparison between isotropic (blue) and anisotropic (red) crack shapes at ui' =
8.25 [mm] (¢3) for different « using 41836 finite elements.

.

u=0.8

anisotropic

isotropic

0.0 NN

Bl 50
Hp [']

Figure 3.27: Accumulated plastic strain in case of anisotropic and isotropic damage at u{! =
8.25 [mm] (¢3) for different % using 41836 finite elements.
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to t 12
uy =u, uy =0 ut = u, uf = ui = 3.0, ub =u
Eegy[-]

0.0 WSy, .- 5.8
0.002 0.02 0.2 2

S e
f ava | 2
s

Eers

0.0 260.0 0cq [MPa]
—1.0 AN Tl ) ol-]
—1.0 1.0 r[-]

Figure 3.28: Stress-strain states for anisotropic damage and « = 0.8 [mm)] (cf. Figure |3.20).
First column: Effective Green-Lagrange strain F, ¢, (logarithmic scale), second
column: Von Mises stress 0., third column: Lode parameter 7.
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to t 12
A=, ub =0 ut = u, uf = ut = 3.0, ub =

Eegy[-]

0.0 WSy, .- 5.8
0.002 0.02 0.2 2

P A a
o a¥a | 2
aln * 2%

Eers

0.0 260.0 0cq [MPa]
—1.0 AN Tl ) ol-]
—1.0 1.0 r[-]

Figure 3.29: Stress-strain states for isotropic damage and % = 0.8 [mm)] (cf. Figure[3.20). First
column: Effective Green-Lagrange strain [, ¢ ¢, second column: Von Mises stress
Ocq» third column: Lode parameter .
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to t 12
A = B 0 A B

uy =1u, uy =1u ut = 3.0, ub =
Eegy[-]
0.0 M o o 7.5
0.00010.010.11

0.0 300.0 0cq [MPa]
—2.0 AN Tl R ol-]
—1.0 1.0 r[-]

Figure 3.30: Stress-strain states for anisotropic damage and « = 1.75 [mm] (cf. Figure 3.20).
First column: Effective Green-Lagrange strain [, ¢, second column: Von Mises
stress o4, third column: Lode parameter .
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to tl t2
A — B 0 A B

uy =u, uy =1u ut = 3.0, ub =
Eegy[-]

0.0 M 1 o dr 7.5
0.00010.010.11

0.0 300.0 0cq [MPa]
—2.0 AN ll ) ol-]
—1.0 1.0 r[-]

Figure 3.31: Stress-strain states for isotropic damage and « = 1.75 [mm] (cf. Figure |3.20).
First column: Effective Green-Lagrange strain [, ¢, second column: Von Mises
stress o4, third column: Lode parameter .
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Figure 3.32: Normalized load-displacement curves (uy,q, = 0.8 [mm], edge A,
FA = 1.5294 [kN], anisotropic, finest mesh)
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Figure 3.33: Normalized load-displacement curves (., = 0.8 [mm], edge B,
FA = 1.5294 [kN], anisotropic, finest mesh)

max



162 3 A two-surface gradient-extended anisotropic damage model using a second order damage tensor...

FlA/Frlréllax [']

no. of elements:

--- 1260

2512
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—-— 17254
— 21700
---32208
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Figure 3.34: Normalized load-displacement curves (U, = 1.75 [mm], edge A,
FA = 1.5912 [kN], anisotropic, finest mesh)
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Figure 3.35: Normalized load-displacement curves (U, = 1.75 [mm], edge B,
FA = 1.5912 [kN], anisotropic, finest mesh)
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T11
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Figure 3.36: Damage contours at u’l“ = 8.25 [mm] (¢3) for different @ (41836 elements)
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4.1 Abstract

A novel ‘two-surface’ gradient-extended damage-plasticity model taking into account damage
anisotropy in the logarithmic strain space is derived in a thermodynamically consistent manner.
In addition, the concept of an additive split is followed, while the weak form of the linear
momentum is stated with respect to Lagrangian quantities. Hence, the mapping between
these two spaces is additionally addressed here. Moreover, in order to overcome mesh-
dependency, the invariants of the second order damage tensor are gradient-enhanced using
the micromorphic approach. In addition, some aspects of the numerical implementation are
discussed. A numerical example considering an asymmetrically notched specimen illustrates

the model’s behavior as well as its ability to deliver mesh-independent results.

4.2 Introduction

For several decades, much research has been conducted in the field of anisotropic damage
from both an experimental and a modeling point of view. Since experimental studies have
shown that, for instance, in the case of non-proportional loading paths isotropic damage models
reach their limitations, there is an enormous need of anisotropic damage models. Further, if
one considers forming processes, besides non-proportional load paths also large deformations
occur. Especially in the field of metal forming, coupled models for damage with plasticity
at finite deformations are of utmost importance to better understand these processes and to
predict local phenomena such as stress peaks.

The field of Continuum Damage Mechanics (CDM) is a well established modeling approach
to counteract these problems by means of phenomenological material models. In fact, CDM
is still an active field of research and led to coupled anisotropic models at large deforma-
tions in the recent past, for instance, for initially isotropic materials using a damage tensor
(e.g. Badreddine et al.|[2015]]) or anisotropic materials using several scalar damage variables
(e.g. Holthusen et al.| [2020]). Moreover, while for the infinitesimal theory the kinematics
in connection with a second order damage tensor are relatively clear, the finite strain theory
offers way more conceptual ways to deal with finite elasto-plasticity combined with anisotropic
damage.

In addition to the modeling difficulties, it is known that so-called local damage models suffer
from severe mesh-dependency when considering structural examples. A possible solution
technique is to take additional length scales into account by means of e.g. gradient-extended

material model formulations. A certain subclass of those approaches is the micromorphic
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approach [Forest|[2009, 2016|], which has proven to avoid mesh-dependency for different cases
of damage models (see e.g. Brepols et al.|[2020], Fassin et al. [20195]).

To this end, a coupled damage-plasticity model using a second order damage tensor in the sense
of CDM is discussed. For this purpose, the material formulation takes place in the logarithmic
strain space and further assumes the elastic strain to be additively decomposable. Following
the micromorphic approach, a novel gradient-extension of the damage tensor’s invariants is dis-
cussed to counteract mesh-dependency. First, several fundamental aspects for the constitutive
framework are presented (Sec. 4.3)), followed by the thermodynamically consistent derivation
of the material model in Sec. In Sec.[d.5] some remarks on the numerical implementation
are given, also including a brief description of the transformation of constitutively dependent
quantities between logarithmic and Lagrangian space. Finally, a numerical example investi-

gates the proposed gradient-extended material model in Sec. [4.6]

4.3 Governing equations

Logarithmic strain measures. As widely accepted in the field of finite elasto-plasticity, the
total deformation gradient can be multiplicatively decomposed into an elastic and plastic part
F = F_F,. In addition, the polar decomposition of F,, = R,U, into a proper orthogonal part
and a positive definite stretch part is introduced.

Since the aim of this contribution is to state the material model formulation in terms of logarith-
mic  strain measures, the elastic logarithmic strain is introduced as
€. = 1/2In(FTF, ). However, in order to express the rate of &, depending on total and
inelastic deformations, the rate of U, has to be considered rather than its logarithmic counter-
part In(U,,). To circumvent this problem, the concept of an additive split of the deformation is
followed, which is ‘surprisingly close’ to the multiplicative version according to Miehe et al.
[2002]. With this approach at hand, the elastic strain is defined as

1 1
€e =3 In(C) — 5 In(C)) 4.1)
I —

with the total and plastic right Cauchy-Green tensors C(,,y = F(:;C) F(p). Noteworthy, the elastic
logarithmic strains €, and e, are only equal if and only if C' and C, commute and further
F, = U, holds. Nevertheless, the split (4.1) is very well tested for quite different material

behaviors in the literature and shows good agreement with experimental observations, even for
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anisotropic plasticity.

Mapping of second order damage tensor. In the case of a purely elasto-plastic material
behavior, the energy 1 is usually assumed as an isotropic function of FI F. or, in the case
of logarithmic strains, as an isotropic function of €.. In contrast, the damage tensor is usu-
ally stated with respect to the current or reference configuration and further is assumed to be
positive semi-definite. Here, the latter assumption is followed and the referential second order
damage tensor D), is introduced. However, this means that a mapping to the intermediate
configuration is required.

Two mapping strategies are considered here, namely symmetry-preserving (e.g. Reese et al.
[2021]) and mixed-variant mappings (e.g. Murakami [1988]]). While the latter prevent unde-
sired inelastic scaling effects, only the former preserve the symmetry of the damage tensor D
in the intermediate configuration in general, which is beneficial for the formulation of v in
terms of its integrity basis. Each advantage is desirable in the case of damage, which is why a

mapping combining both is preferable. Thus, the following mapping is stated
D=R,D.R] =R,D,R,’ (4.2)

which will be used within this work. For further derivations, please note that the eigenvectors

of D and D, transform according to n” = R, n}’".

Micromorphic approach. To overcome the severe mesh-dependency, an additional inter-
nal length scale is introduced. In this context, the micromorphic approach suggested in |Forest
[2009,[2016]] offers a quite general way to account for additional gradient influences within the
formulation of (local) material models. For this purpose, n additional unknowns - summarized
within d := (dy, ..., d,), which is referred to here and in the following as the micromorphic
damage vector - are introduced in general. These additional so-called nonlocal variables are
strongly coupled to the local variables of the material model, for instance, the damage variable
D in the case of scalar isotropic damage models (see e.g. [Brepols et al. [2020]). The gradient
influence is then taken into account by an additional field equation - similar to the strong form
of linear momentum - introduced for the micromorphic field. In case of damage, this field
equation is given as (cf. Brepols et al. [2020])

Div(Ey,) — &), =0 in By 4.3)

k3 K3

Eoi Ny = 0 on 3Bg (44)
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with the Lagrangian divergence operator denoted by Div(e), the *generalized’ stresses 2o, and
&o, as well as the outward normal vector n, with respect to the reference configuration. The

domain of the body in the reference configuration is denoted by B,.

Invariant-based gradient-extension. Several approaches based on the micromorphic one
exist in the literature to gradient-enhance local damage material models. While for scalar
isotropic damage models it seems natural to gradient-extend the scalar damage variable D,
several possibilities exist in the case of anisotropic damage. Besides the approach to extend
the components of the damage tensor (e.g. Langenfeld and Mosler [2020]), also the gradient-
extension of the damage hardening variable is possible (see [Fassin et al. [20195]). The latter
one is beneficial from a computational point of view, since only one additional degree of
freedom has to be considered. However, as discussed in the just mentioned work, this leads to
problems for the formulation of the damage yield criterion. To circumvent this situation, the
invariants of the second order damage tensor are used for the gradient-extension. Hence, the
local damage vector d := (d;, dy, d3) containing the local counterparts to d; is introduced here
as

dy = tr(D), dy =tr(D?), dz=tr(D?). (4.5)

Noteworthy, due to the mapping in Eq. (#.2), it holds true that tr(D?) = tr(D!) with
i € {1,2,3}. As a consequence, three micromorphic degrees of freedom d;, do, ds have
to be considered in addition to the displacement field. To the best knowledge of the authors,
such an approach based on the invariants of the damage tensor in connection with the micro-

morphic approach has not yet been used in the literature.

Weak forms. For the numerical implementation, the weak form of both the displacement field
and the micromorphic field have to be solved, which read under consideration of Eqs. (4.3)

and (4.4) in the reference configuration

gu(u,d,du) = / S:0EAV - | f- 6udV—/ to-oudA=0  (4.6)
Bo Bo 0t Bo

gi(u,d,é6d) = [ &, -6ddV + / Eo, : Grad (6d) dV =0 (4.7)
B() BO

with the second Piola-Kirchhoff stress tensor S, the short hand notation
OFE = sym(F'Grad(éu)), the volume force fo, the traction ¢, and the test functions du
and dd, respectively. Further, the Lagrangian gradient operator is denoted by Grad(e).
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4.4 Constitutive framework

For the constitutive modeling, the plastic logarithmic strain with respect to the intermediate
configuration is defined as 7, := 1/2In(F,F)) = R, e, R]. With this quantity at hand, the

Helmholtz free energy is assumed to be additively decomposed as

w = wé<ée7 D) + wp(npv Hpa D) + wd</€d) + wh(D> + wcf(da a> Grad(a)) (48)

Within the assumed form of the energy, s represents the elastic energy contribution and 1,
the plastic contribution due to kinematic as well as isotropic hardening with the accumulated
plastic strain ~,. Both are affected by the damage tensor D. Furthermore, damage hardening
is captured by the damage hardening variable «, within the energy 1,. The energy associated
with ¢/}, can be seen as a penalty energy preventing the eigenvalues of D (and thus also D,.)
from exceeding the value one. Such an approach was already used in the case of anisotropic
damage in |Fassin et al.|[20195] at small strains. In contrast to the other energies, the integrity
basis is not expressed in terms of invariants but rather the eigenvalues of D are used for v,
i.e. ¥, = Yu(D1, Do, D3). Nevertheless, this still means that 1), is an isotropic function of
the second order damage tensor. The last term, namely 17, accounts for the gradient-extension
and further ensures the strong coupling between d and d. This general format can be further
specified, having Eq. (4.5]) in mind, since d is only a function of D. Hence, the formulation of

this energy contribution can be rewritten as 7 = ¥g(D,d, Grad(d)).

4.4.1 Derivation based on the isothermal Clausius-Duhem inequality

For the derivation of thermodynamic driving forces, the micromorphically extended Clausius-

Duhem inequality is used

~ U+ T+ &, d+ S, : Grad (d) > 0 4.9)

-
micromorphic extension

with the stress power expressed in terms of € and its stress-like conjugated driving force T'.
Before inserting the total time derivative of v into the inequality, one has to note that due to
the additive split (4.1)) the elastic strain is defined with respect to the reference configuration.
Thus, the elastic energy part in Eq. (4.8)) is no longer a function of €, but rather e.. Since D is
located in the intermediate configuration, D), is utilized in connection with .. Consequently,
the elastic energy contribution v, in Eq. (4.8) is replaced by . (e., D,.).

After several mathematical operations, which are omitted here for brevity, the evaluated time
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derivative of v yields the following

(T—a¢e):é+(T—X): LY 4Y, v, —Y): D,

Oe.

. . V4 3 - g ) 3
+Rp/fp+Rdlid+(Eol ad).d+(uoi e TEN .Grad(d)ZO.

(4.10)

Following the well-known Coleman-Noll procedure for the stress tensor 1" as well as similar
relations for the ‘generalized’ stresses in order to fulfill the inequality for arbitrary processes,

one may find
O Wi o _ O
de.’ ad’ 7% 9Grad(d)

Furthermore, the kinematic backstress tensor and the driving force associated with plastic

T —

&, = 4.11)

isotropic hardening are defined as

X = RTG%R R, = —%. (4.12)
" ony Ok
Analogously, the damage hardening force is introduced as R, := —014/0k4. The remaining

driving forces associated with the rate of the second order damage tensor D, are defined as

O 0%
oD, 7= oD

PR, Y, = RT‘%LR Y; = R” %R (4.13)

Y, = —
¢ P oD P oD

Noteworthy, the driving forces introduced all have in common that they are defined with re-
spect to the reference configuration. It is further important to note that, since all energies are
isotropic functions of their arguments, one can show that the plastic rotation tensor R, is not
needed to compute any of these forces. Moreover, the rate of I, does not occur within the
Clausius-Duhem inequality. Hence, this tensor plays no role in the actual model and remains
undetermined, which is considered as an advantage.

To guarantee the non-negativeness of the remaining dissipation inequality, a set of evolution
equations for the plastic and damage related quantities are presented in the following. For both

processes, associative laws are assumed.

Plastic evolution equations. For simplicity, but without loss of generality, a von Mises-

type yield criterion in the so-called effective continuum is assumed which reads

®, =1/3Jy — (0,0 — R,) <0 (4.14)
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with Jy == 1/2 tr(dev(T — X)?) being the second invariant of the deviator of the driving
force and (;) = (®)|p—o refers to effective quantities. The initial yield stress is denoted by

o,40. Based on this criterion, the evolution equations are as follows

. . 8®p . 3 -~ i _ . a@ ’y
it dev(T — X): M! P2 4.15
Ep ,YP aT Vp /12j:2 eV( ) ) ( )

Ry = Ypm—er
p p a Rp -
with the plastic multiplier 7,,. In the above, invertible mappings in terms of a fourth order tensor

M and the scalar degradation function f; are introduced, which relate effective and damaged
quantities, i.e. T = M : T and R, = fa Rp. Finally, the set of plastic constitutive equations
is closed by the Karush-Kuhn-Tucker (KKT) conditions ®,, < 0, ¥, > 0 and ®,7, = 0.

Damage evolution equations. The damage criterion for the onset of damage is denoted
by (cf. |[Fassin et al.| [20195]])

Dy =V3Y, Ay Y, — (Yo —Ry) <0. (4.16)
Here, Y| denotes the initial damage threshold and further Y, = Z?:1<Y,~> v ny @nY refers
to the positive part of the driving force, where Y; and n) are the eigenvalues and eigenvectors
of Y, respectively. The Macaulay brackets are given as ((e)); = ((e) +|(®)|)/2. In addition,
and in line with Reese et al.| [2021]], the damage yield criterion is extended by a fourth order
damage tensor A, in order to provide more flexibility for the modeling of damage evolution.
Different choices for this tensor are possible, while for the time being the components with
= (0i — Dy, ) (650 — Dy,,), where 0y

denotes the Kronecker delta. Following again the associative concept, the evolution equations

respect to the Cartesian basis system are given as Ay,

for the damage quantities read as follows

: . 0Py 3 . . 0%
D, = - I—D)Y.(I—D)Q., iy=-~get— 4.17
gy = iy RdQ+( )Y ( )Q+, Fa="a o — 4 @17

where 4, denotes the damage multiplier and Q| = 3", (Y;) iy nY ®nY with ((e)) denoting
the Heaviside step function. Thus, Y, can be alternatively expressed as
Y, = Q.Y Q.. Inanalogy to plasticity, the KKT conditions are introduced as ®; < 0,7, > 0
and ®;9 = 0. Please note that in Eq. @&.I7); it was used that
VY. Ay Y, = (Yy— Ry)/+/3 follows from the KKT conditions for a damage step (Y4 > 0).
Although this reformulation does, of course, not change the solution, a division by zero is
avoided, which may occur using /Y, : A, : Y, within the local Newton iteration.
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4.4.2 Particular choices of Helmholtz free energy terms

While the derivation of the model has been kept quite general so far, in what follows particular
choices will be made for the terms in Eq. (4.8). For the elastic energy, a quadratic form with
respect to €, is chosen. Furthermore, as pointed out for instance in |Desmorat| [2016]], the
isochoric response of the Helmholtz free energy is assumed to be affected by the anisotropic
nature of damage. In contrast, the volumetric part is assumed to be only affected by isotropic
damage. Thus, it is influenced by the degradation function f, already introduced in Eq. (#.15)),,
which is an isotropic function of D (and so of D,.). In this regard, a great benefit of logarithmic
strains becomes evident, since their decomposition into deviatoric and spherical parts is directly
related to the decomposition into distortion and dilatation (see e.g. (Criscione et al.[[2000]).

Hence, the elastic energy is provided as

e = e tT (dev(ee)Q(I — Dr)) + fa % tr (66)2 . (4.18)

In the above, 1. and K. denote the shear modulus and bulk modulus, respectively. Similarly,

the plastic energy combining kinematic and nonlinear isotropic hardening is denoted by

exp(—s, ky) — 1
Yy, = py, tr (dev(np)z(I — D)) + farp (ij + ( g v) ) (4.19)
p
with fi,, 7, and s, being the plastic material parameters. Since a von Mises-type yield criterion
is used here, no volumetric response for the backstress needs to be considered. Further, the
degradation function is specified as f; = 1 — tr(D)/3. The remaining energies associated

with damage are given as

3
— —1 1
Vg =Tyg (Hd + eXp(=5a a) ) + §Hd K5, Un = Kj, E (—2\/ 1-D;,— D, + 2)
i1

Sd

(4.20)

where the material parameters r4, sy, H, and K, are introduced and both linear and nonlinear
isotropic hardening are considered. Finally, the micromorphic contribution to the overall

Helmholtz free energy is assumed to be of quadratic type and reads as follows

N | —

i = % > (Hi(di = di)*) + 5 ) (Ai Grad(dy) - Grad(d;)) (4.21)

=1 =1
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with the material parameters H; and A; with ¢ € {1,2,3}. While for sufficient large H; the
strong couplings between d; and d; are ensured, A; introduce additional length scales into the

material model accounting for the nonlocal character of damage.

4.5 Remarks on the numerical implementation

The weak forms provided in Egs. (4.6) and are solved using the finite element method with
standard Q1 elements and are therefore discretized in both space and time. To solve the resulting
system of nonlinear equations, the Newton scheme is used on a global level, which requires the
material sensitivities 9S/0E, 0S/0d, dd/OE, dd/dd (more precisely: their algorithmically
consistent counterparts are needed), where E denotes the Green-Lagrange strain tensor. Since
the material model is derived in the logarithmic strain space, the material sensitivities with re-
spect to the logarithmic strains are obtained first and then transformed to their Lagrangian coun-
terparts. With the relation
S =T :20e/0C at hand, one can find

2
oS 485.8T_0€ T4 O“e oS 288.8T od 28(21_@6

9E _"9C 9e ‘oc T '9cec ad “ac ad’ OE %'8(?22)

where it was utilized that 0e /OC' possess both minor and major symmetry. For the derivation
of the transformation - at least for the purely mechanical part - the reader is kindly referred
to Miehe and Lambrecht| [2001]. Noteworthy, the sensitivity d/0d does not need to be
transformed.

The local residual functions are obtained by the discretized evolution Egs. (.13) and (4.17)
within a time interval ¢ € [t,,t,1] using the backward Euler method and additionally the
yield criteria (4.14) and @.16). Thus, the internal variables which have to be solved are
Aty 15 Epnirs AtYa, > D

rnis- INOte that this is sufficient to ensure plastic incompressibility.
However, in order to avoid a division by zero for the local Jacobian, the (modified) damage
criterion solved on a material point level reads: ®; = 3 Y, : Ay : Y, — (Yy — Ry)? = 0.
It is worth noting that, if damage is active (Y3 > 0), ®4 can be obtained by means of an
equivalence transformation of ®,;. For the solution strategy, a combination of the classical
trial step procedure in combination with an active-set search strategy is pursued. The local
Jacobian as well as the material sensitivities within the logarithmic space are obtained with the
help of the implicit function theorem and the algorithmic differentiation tool AceGen. Thus,
the four tangent operators for the finite element method can be computed automatically in a

consistent manner.
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4.6 Numerical example

In order to investigate the model’s behavior as well as its ability to deliver mesh-independent
results, an asymmetrically notched specimen is studied. The computation is conducted under
plane strain conditions using 2D quadrilateral finite elements. The boundary value problem
is taken from the literature Brepols et al.|[2017]] and is illustrated in Fig. 4.1 The specimen
is clamped at its left side and loaded by a concentrated force at the node in the middle of the
right edge. In addition, the horizontal displacement degrees of freedom at this very edge are
constrained in such a way that they deform in the same way as the node loaded by the single
load does.

The material parameters for this example are partly taken from Brepols et al.|[2020]], otherwise
chosen as: p. = 55000 [MPa], K. = 61666.6 [MPa], n, = 62.5 [MPa], r, = 125 [MPal,
sp = 5 [-], o0 = 100 [MPa], H; = 1 [MPa], r; = 5 [MPa], sq = 100 [-], K}, = 0.1 [MPa],
Yy = 2.5 [MPa] as well as A; = 75 [MPa mm?] and H; = 10° [MPa] with i € {1,2, 3}.

A mesh convergence study using 1624, 3592, 9667, 12704 and 13955 finite elements is
conducted and shown in Fig.[d.2] where u; corresponds to the displacement of the right edge.
A clear trend towards a solution with a finite amount of energy dissipation can be observed.
Noteworthy, mesh refinement is strongly performed between the two notches.

In the process, damage starts to evolve at both notches and from that on progresses towards
the interior of the specimen. Three stages during this process are shown in Fig. 4.3 for the
damage component D, ,, where these stages are indicated by black rectangles in Fig. The
corresponding accumulated plastic strain is shown as well. The remaining damage components
of interest (D,,,, Dy, D
to D,,,, whereas D

conditions. This is also the reason why the load-displacement curve only drops to slightly less

) are not shown here for brevity, however, D,.,, evolves quite similar

79929 712 722

reaches merely a value of approximately 0.9 due to the plane strain

T11° 33

than ten percent of the maximum load achieved. Nevertheless, this can be considered as a
‘fully broken’ state, since a clear crack path can be observed.

Furthermore, in Fig.[4.4|the convergence of the damage contour plots of two exemplary meshes
at the end of the simulation is shown. Although there are slight differences in the area of the

upper notch visible, these can be considered as negligibly small.

4.7 Conclusion

In this work, a thermodynamically consistent damage-plasticity model accounting for the

anisotropic nature of damage by means of a second order damage tensor was presented. More-
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Figure 4.1: Geometry and boundary value problem.
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Figure 4.2: Normalized load-displacement curves (F},,x = 5.4631 [kN]).

over, a novel gradient-enhanced framework based on the invariants of the second order damage
tensor and the micromorphic approach was discussed, in order to tackle mesh-sensitivities
caused by damage localization. Hence, three degrees of freedom in addition to the displace-
ment field have to be considered within the finite element method.

Based on the extended Clausius-Duhem inequality, expressions for the conjugated forces as-
sociated with the gradient-extension and the stress tensor were derived. Within this modeling
approach, both logarithmic strains and an additive split of the elastic strain were utilized for the
kinematics. The remaining dissipation inequality is fulfilled for arbitrary processes by means
of associative evolution equations for the damage and plastic variables, respectively. In order
to be applicable in standard finite element formulations based on Lagrangian quantities, the
transformation from the logarithmic strain space was additionally addressed, in particular the

transformation of the (algorithmic consistent) tangent operators. Finally, a numerical example
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Figure 4.3: Three different stages of damage component D,., and accumulated plastic strain x,,
for the finest mesh (13955 elements). The stages are indicated by black rectangles

within Fig. 4.2}

3592 13955

Figure 4.4: Exemplary comparison of damage contour plots D,. , for different mesh refinements
at the end of the simulation (u; = 16.5 [mm]) plotted with the corresponding mesh.

demonstrated the behavior of the proposed model on a structural level as well as the ability to
cure the mesh-dependency. It may be mentioned that a much more detailed study is currently

in progress. In addition, the consideration of finite element technology could be interesting

in order to reduce the computational effort (e.g. Barfusz, van der Velden, Brepols, Holthusen|

jand Reese] [2021]).
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5.1 Abstract

Within this contribution, we discuss additional theoretical as well as numerical aspects of
the material model developed in Holthusen, Brepols, Reese and Simon| [2022bla], where a
‘two-surface’ damage-plasticity model is proposed accounting for induced damage anisotropy
by means of a second order damage tensor. The constitutive framework is stated in terms of
logarithmic strain measures, while the total strain is additively decomposed into elastic and
plastic parts. Moreover, a novel gradient-extension based on the damage tensor’s invariants
is presented using the micromorphic approach introduced in |[Forest| [2009]. Finally, going
beyond the numerical examples presented in Holthusen, Brepols, Reese and Simon| [2022ba],

we study the model’s ability to cure mesh-dependency in a three-dimensional setup.

5.2 Introduction

The defects observed on the microstructure can be classified into microvoids and microc-
racks, the former degrading the material more or less directionally independent. The latter,
on the other hand, induce a strong anisotropy even in initially isotropic materials. Contin-
uum mechanical models that take this anisotropy into account are essential for estimating the
stiffness, and thus, the load-bearing capacity of structures that are damaged. In this context,
non-proportional load paths, such as those occurring in forming processes, are also known to
trigger this kind of induced anisotropy.

Within this contribution, in line with Continuum Damage Mechanics (CDM), we account for
damage anisotropy by means of a second order damage tensor (see Murakami [1988]) in a
phenomenological and smeared sense. The CDM modeling approach is used for a wide range
of materials and damage behaviors, ranging from initially isotropic materials (e.g. |Badreddine
et al. [2015]) to initially anisotropic materials with different constituents (e.g. |Holthusen et al.
[2020]), and further, is employed in the context of scale transitions (e.g. [Poggenpohl et al.
[2022]). In this regard, Reese et al.|[2021] recently formulated a finite strain framework that
interprets the second order damage tensor in terms of structural tensors. This approach is
also followed in Holthusen, Brepols, Reese and Simon| [2022b,a], but in the logarithmic strain
space, where additionally a novel gradient-extension is introduced. The latter extension is
necessary to overcome mesh-dependency, a well-known problem of so-called local damage
models, to which the class of CDM models belongs. In view of the many possibilities known in
the literature for introducing a gradient-extension, the latter authors decided to use the micro-
morphic approach Forest|[[2009,2016], which provides a rather flexible and general framework
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for introducing additional length scales into the material formulation.

In this contribution, we first consider various aspects of the model developed in Holthusen,
Brepols, Reese and Simon|[2022b], discussing here in further detail the invariance to superim-
posed rotations of the intermediate configuration. In addition, the assumption of an additive
decomposition of the total strain and the choice of local variables for the gradient extension
are briefly discussed (Sec.[5.3)). In Sec. the transformation from logarithmic strain space
to the Lagrangian one is presented, where a numerically more efficient calculation method is

addressed. Finally, the model is investigated in a three-dimensional context using a tensile
specimen (Sec. [5.5)).

5.3 Constitutive framework

Additive decomposition. In finite elasto-plasticity modeling, the multiplicative decomposition
F = F_F, into elastic and plastic parts is well established, which introduces an intermediate
configuration in addition to the reference and current configuration. Further, both parts
possess their polar decompositions into a rotational and stretch tensor, i.e. F, = R.U. and
F, = R,U, with R, /, € SO(3). Since both stretch tensors are defined with respect to different
configurations, we make further use of the polar decomposition F,, = V,RR,. These stretch

tensors are suitable to define the following logarithmic strain measures
e=lU), e=nU,), n.=mhU0), n,=l(V,)=R,e, R] (5.1

where the polar decomposition of the deformation gradient F' = RU with R € SO(3) is
utilized. Considering both the property of the logarithm In (A) = 1/21n (A?) for any positive
definite tensor A and U? = F,, "U?F,;"", one may rewrite the elastic logarithmic strain as

n= 30 (U2) = By ) n (U U0} ) B = Ry R 52

where €, is the elastic strain measure with respect to the reference configuration, which is
pushed to the intermediate one by R,. Having further the properties In (A™') = —In (A) as
well as In (AB) = In(A) + In (B) if and only if A and B commute in mind, the additive

decomposition of the strain is motivated

n.=R,(e —¢,) R, = R,&. R]. (5.3)
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Obviously, 1. and 7)., and thus also . and €., are only equal in case of coaxial loading.
However, assuming small elastic strains, the additive decomposition is suitable to capture the
elastic strains within the material (cf. Miehe et al. [2002]). Noteworthy, Friedlein et al.|[2022]
investigated the additive split in the context of excessive strains for coaxial and non-coaxial

loading coupled to damage and provided interesting results on the structural performance.

Mapping of damage tensor. In line with Reese et al| [2021], we assume a symmetric
and semi-positive definite referential damage tensor D,., which is pushed to the intermediate

configuration in analogy to €., €. and €,
D=R,D, R/ (5.4)

Hence, the eigenvalues of both tensors remain the same, while their eigenvectors are trans-
formed by R,,. Further, the mapping (5.4) prevents undesired inelastic scaling effects. Besides
these properties, a virgin material is characterized by D, = D = 0, while a ‘fully broken’

state corresponds to D, = D = 1.

Rotational non-uniqueness. The multiplicative decomposition of the deformation gradi-
ent suffers from an inherent problem of rotational non-uniqueness. Hence, a decomposition

including superimposed rotations of the intermediate configuration in the sense of
F=F.F,=FQ"QF,=FF;,, Q¢cS0(3) (5.5

can be equivalently stated. Considering the polar decomposition of Fy = QF, = QR,U, =
R:U, where R; € SO(3), one recognizes that this non-uniqueness only affects R,,, while U,
is uniquely defined. In further consequence, for the mapping chosen in Equation (5.4), one
must ensure that the Helmholtz free energy v is independent of the rotational non-uniqueness,

in order to obtain a physically reasonable material formulation, i.e.

@/J(ﬁeﬂ?p,D) :¢(ﬁ:7ﬂ;7D*) (56)

withn} = Ry (e —¢gp) R;T, n, =R e, R;T, and D* = R; D, R;T. Therefore, we assume

the Helmholtz free energy to be a scalar-valued isotropic function of its arguments. Since the
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following relations hold true

tr (7)) = tr (7)), tr ((m)") = tr((m,)"), tr (D)) =tr ((D)"), a€{1,2,3}
tr (@) (m,)° (D)) =t ()" ()" (D)), be.d € {0,1,2)
(5.7)
the presented framework using the mapping (5.4) indeed is invariant with respect to superim-

posed rotations of the intermediate configuration.

Choice of local variables for gradient-extension. The micromorphic approach introduced in
Forest| [2009, 2016] introduces a set of ‘non-local’ variables d on a global level. These vari-
ables are strongly coupled to the same number of inherent variables of the material formulation,
which will be referred as ‘local’ variables d. Noteworthy, the latter mentioned should not be
understood as additional constitutive variables rather than the constitutive variables themselves
or functions of those. Here, three ‘local’ variables are introduced, which are chosen as the

invariants of the damage tensor
d = (tr (D), tr (D?),tr (D%)). (5.8)

Besides the invariant-based gradient-extension, several other possibilities are known in the
literature, for instance, enhancing the damage hardening variable (see |Fassin et al. [20195]) or
the components of the damage tensor (see e.g. [Langenfeld and Mosler [2020]). Although the
invariant-based approach is quite general, the question arises whether it is possible to reduce the
number of variables. Having in mind that the volumetric part of the damage tensor represents
isotropic damage, while the remaining deviatoric part is responsible for the anisotropic nature,

one might use the following set

d= (tr (3D),tr (dev (D)Q)) (5.9)

which is a novel approach in gradient-extended anisotropic damage. A further benefit of this
latter choice is that it reduces to the gradient-extension proposed by Brepols et al. [2020] in
case of isotropic damage. However, investigating this kind of approach in further detail is out

of the scope of this contribution.
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5.3.1 Helmholtz free energy

In the following, the Helmholtz free energy is assumed to be additively decomposable

w = Q/Je (77’67 D) + Q/)p (np’ Da Hp) + ,lvbd (D7 K’d) + 77ch? (da aa Grad (a)) (510)

where 1), represents the elastically stored energy, 1, takes kinematic and isotropic plastic
hardening into account, damage hardening is given by 14, and v ; is a ‘coupling’ or ‘non-local’
energy term ensuring both a strong coupling between d and d as well as introduces an internal
length scale into the material formulation. Moreover, ¢/, prevents the eigenvalues of D and
D, to exceed the value one and is in line with [Fassin et al. [20195]]. Additionally, ~, and kq

represent scalar hardening variables for plasticity and damage, respectively.

5.3.2 Micromorphically extended Clausius-Duhem inequality

Evaluating the micromorphically extended Clasuius-Duhem inequality in the logarithmic strain

space

~ U+ T i€+ &, d+ 8o, Grad (d) >0 5.11)

-
micromorphic extension

by inserting the assumed Helmholtz free energy in Equation (5.10), the following reduced

dissipation inequality is obtained
(T—X):€é,+Ryfpy+Y : D, + Ryfeqg >0 (5.12)

under consideration of the state laws

o - o

T:RT = = =0 = Y=+
A M e (d)

(5.13)

In Equation (5.T1)), T is the ‘material’ stress work-conjugated to the logarithmic strain rate,
while both &, and =, are so-called ‘generalized’ stresses. The thermodynamically consistent
driving forces occurring in Equation (5.12)) can be clearly distinguished into plastic and damage
parts. First, we introduce the following plastic driving forces
I 9

X=R'""R. R =—
P Ok

.14
> om, P (5.14)
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with X being the plastic backstress tensor and R, the plastic isotropic hardening force.
Furthermore, the damage driving forces are obtained as
o o

Y = -R' = Ry =———
d al-ﬂd

s 5 B (5.15)

where Y is the damage driving force and R, being a damage hardening force. It should be
noted that Y is composed out of four individual contribution, which result from the elastic,
plastic, damage hardening, and ‘non-local” energy terms. For the latter, it is important to note
that d is a function that depends solely on D. Hence, the arguments of the ‘non-local’ energy
in Equation (5.10) can be written as ¢; = 1 (D, d, Grad (a)) Moreover, it is worth noted
that the plastic rotation tensor R, remains undetermined in the present framework, which
is considered an advantage. In order to guarantee that the dissipation inequality is fulfilled
for arbitrary processes, meaningful evolution equations are chosen in the following, whereby
a ‘two-surface’ approach is followed. These particular choices, however, do not restrict the

generality of the model in any way.

Plastic regime. For the plastic regime, a von Mises-type yield criterion is chosen with

respect to the so-called effective continuum

- - ~ 1
= \/3Js— (0,0~ R,)) <0, Jy= (gtr(dev(T—Xf))’Do’ By = Ry

D=0
(5.16)
with o, denoting the plastic onset. For the evolution equations, the principle of maximum
dissipation is followed, i.e.

: . 00, . , 0P . . 09 v oT

€, =% — =M1 2L k=5 =L M:=-— (5.17)

PTrer T o T OR, T oT
where M is a fourth order damage mapping tensor, which transforms the constitutively depen-
dent variables from the effective to the ‘damaged’ space. Further, 7, is the plastic multiplier,
while f; denotes the scalar degradation function and will be introduced in Section [5.3.3]
Karush-Kuhn-Tucker (KKT) conditions close the set of plastic constitutive equations.

Damage regime. In analogy to the plastic regime, the onset of damage is characterized
by

Pgi=+/3Y, :As: Y, — (Yo — Ry) <0 (5.18)
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with the damage threshold Y{ and

3

Yo=Y YinYen!, A, =6x— D) (05— D,,). (5.19)
i=1

In the latter equation, Y; and n; denote the eigenvalues and eigenvectors of Y, respectively.

Additionally, (e) defines the Macaulay brackets and the fourth order tensor A, equips the model

with greater flexibility, whereby the definition in Equation is given with respect to the

Cartesian basis system. Similar to the plastic regime, the evolution equations are obtained by

following the principle of maximum dissipation

. . 0Py . 0Py ) . 0Py .
D — — _ = _— = .2

with the definition of the mapping tensor Q, = > (Vi)y nY ® nY, where (o) is the
Heaviside step function. The damage set of constitutive equations is closed by individual KKT

conditions with the damage multiplier ;.

5.3.3 Specific choices of energy terms

So far, the derivation of the model was kept quite general, in order not to restrict the model to
a particular choice of energy terms. However, to study the model in a more detailed manner,

the following energies are chosen

* Elastic energy: It is assumed that anisotropic damage results from isochoric deforma-
tions, while isotropic damage is associated with volumetric deformations (cf. e.g.
Desmorat [2016])). In case of logarithmic strains, the energy can be easily decomposed

into volumetric and isochoric deformations (cf. e.g. |Criscione et al.| [2000])

Ve = pe tr (dev () (I — D)) + fa %tr ()’ (5.21)

* Plastic energy: Chosen in line with the previous one but extended by an exponential

hardening term

exp (—spkp) — 1
Sp

Vp = pp tr (deV (np)2 (I - D)) + fa %tr (np)Q +famp (Kp *
(5.22)

* Damage energy: Includes exponential and linear hardening, and moreover, a limit func-
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tion for the eigenvalues D; of D is involved

wdzrd(ﬁd_i_exp(—sdlid)—l)+%/€d+KhZ< 2\/1—-D D+2)

S4
(5.23)

* Micromorphic energy: Ensures a strong coupling of the ‘local’ variables with their

‘non-local’ counterparts, and further, introduces an internal length scale by taking the

Lagrangian gradient of d into account (cf. e.g. [Brepols et al.[[2020])
o= > (di—dy) Z Grad (d;) - Grad (d;) (5.24)
2

In the above, 1t and K. are the elastic shear and bulk modulus, 1, and K, can be interpreted
analogously, while r,,, s,, r4, and s; describe exponential hardening of plasticity and damage.
Additionally, linear damage hardening is described by H; and the eigenvalue limitation by K,
while H is a penalty factor and A characterizes the internal length scale. The degradation

function is given by fy =1 — @.

5.3.4 Weak forms
The weak forms which need to be solved on a global level read as follows
gu(u,d, du) = / S:0EdV — fo-oudV — / to-oudA =0 (5.25)
Bo By 0t Bo

gi(u,d,é6d) = [ &, -6ddV + / Eo, : Grad (6d) dV =0 (5.26)
Bo BO

with the test functions du and dd, the second Piola-Kirchhoff stress tensor S, the virtual
Green-Lagrange strain 6 F := sym (F7Grad (du)), the referential body force vector fo, and
the referential traction vector t,. Both weak forms are nonlinear functions of their arguments,

and thus, need to be solved using Newton-Raphson’s method.

5.4 Transformation of algorithmic tangent operators

To be applicable in standard finite element formulations, the weak form of linear momentum
(5.25)) is stated in terms of Lagrangian quantities. In contrast, the entire constitutive framework

is expressed in terms of logarithmic strain measures, and thus, the constitutively dependent
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variables as well as the material tangent operators need to be transformed to the Lagrangian
space. Employing both that & solely depends on C' := U? and the fact that the stress power
in logarithmic and Lagrangian space has to be equal, the transformation of the second Piola-

Kirchhoff stress is found

oe 1
2% 20 T : E—S C’ — S§=T:Q. (5.27)
—

Since the evolution equations introduced in Section [5.3.2] are discretized in time within a
time interval ¢t € [t,,,1], the unknown variables which have to be solved on a local level

are Yp, 1> €ppi1s Vdpii» and D All of them being discretized using the backward Euler

Tn+1°*
method. Algorithmically, these variables are implicit functions of C,; and anH. Hence,
in an algorithmic sense, one may write S, 1 = S, (Cn+1,(_in+1) as well as d,;1 =
% (Crt1,dp41). In analogy, the logarithmic stress reads T41 = Ty (€pp1, dnsr). A

straightforward incrementation of these latter equations leads to the following expressions

aSn+1 i —AC—I— aSn+1 Aa Ad = 2 adnJrl i —AC 4 Z=ntl adn+1

AS =2
a(:’nJrl adn-i-l , a(:'nJrl adn—‘,—l

-Ad  (5.28)

with the global increments AC and Ad. Following a similar procedure for T}, ; and Q,1,

the increments of S,, ;1 and d,,;1, taking into account Equation (5.27)), can also be written as

aTnJrl 6 1
AS = ATn—H : Qn+1 + Tn+1 : AQn—i—l = Qn-i—l : Oe : Qn—i—l + Tn+1 : Ln—i—l : EAC
n+1
aTn—H 3
+Qpi1: — - Ad
Qnir: 5 a
(5.29)
adn-i—l 1 8dn+1 I
Ad = nt1 P =AC + — -Ad 5.30
E $ Qe 2 od, 11 ©-50)
6 ) 6
with the sixth order tensor L = 4 82’860' Both Q and IL can be determined analytically

(cf. Miehe and Lambrecht [2001]]), but require both eigenvalues and eigenvectors, and thus,
are numerically expensive to determine. However, if one considers that C' has no complex
eigenvalues, the calculation can be implemented numerically extremely efficient by means
of algorithmic differentiation using the trigonometric solution of the eigenvalue problem. A
technique based on this type of approach to compute the matrix logarithm as well as its
derivatives is presented in Hudobivnik and Korelc| [2016] using generating functions, which

is not only very efficient but also quite accurate in terms of numerics. The material tangent
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operators in the logarithmic space are obtained using the algorithmic differentiation tool
AceGen.

5.5 Numerical example

In this numerical example, a tensile specimen is considered in a three-dimensional setting,
whose boundary value problem is taken from the literature Felder et al.| [2022] and is de-
picted in Figure [5.1] Hexahedral finite elements with trilinear shape functions are used for
discretization. The tensile specimen is uniaxially constrained, while the displacement in y
direction is increased over time. Furthermore, due to symmetry, only one eighth of the entire
geometry is simulated. Noteworthy, only Neumann boundary conditions are considered for
the micromorphic boundary value problem, which are set to zero.

The material parameters for this example are taken from Holthusen, Brepols, Reese and Simon
[2022b]; Brepols et al.|[2020]: p. = 55000 [MPa], K, = 61666.6 [MPa], p,, = 62.5 [MPa],
K, = 0 [MPa], r, = 125 [MPa], s, = 5 [-], oo = 100 [MPa], Hy = 1 [MPa], rq = 5 [MPa],
sq = 100 [-], K = 0.1 [MPa], Y, = 2.5 [MPa] as well as A = 75 [MPa mm?] and H = 10°
[MPa]. It should be noted that an additional parameter used for a Taylor expansion of damage
hardening is ag = 0.9999999 [-] (cf. Holthusen, Brepols, Reese and Simon| [20225]).

The specimen is loaded in a monotonic way, where the displacements at the outer edges are
steadily increased. A careful mesh convergence is performed using 580, 4113, 13660, and
18510 finite elements, which is shown in Figure [5.2] The finite element mesh of the finest
discretization is shown in Figure[5.3] It is appealing to recognize convergence in both the onset
of damage and the amount of dissipation. At the end of the simulation, the structural specimen
can be considered ‘fully broken’, since the final value of the load is about two percent of the
maximum value reached during the loading and a clear crack going through the specimen can
be observed.

Moreover, Figure [5.3] provides the contour plots of the main damage components as well as
the accumulated plastic strain at the end of simulation using the finest mesh. A strong necking
is clearly visible in the middle of the specimen. In this context, D,  can be interpreted as
cracks in the plane perpendicular to the loading direction, which is why this plane is the most
degraded. Slightly less degraded is the component D,.__, while the component D, merely
reaches a value of 0.8 [-]. In addition, the accumulated plastic strain , can be understood as
a measure of plasticity evolved, which is most pronounced in the region of necking.

Overall, it can be concluded that the developed material model is capable of providing plausible

results even in a three-dimensional context.



190 5 A gradient-extended anisotropic damage-plasticity model in the logarithmic strain space

Figure 5.1: Geometry and boundary value problem. The specimen is loaded uniaxially, while
the red edges remain perpendicular to the red forces. The displacements u, (blue)
are measured halfway between the center and the outer (red) edges of the specimen.
The forces (red) are measured at the outer edges. Due to symmetry, only one eighth
of the geometry is simulated.

5.6 Conclusion

Within this contribution, the model of |Holthusen, Brepols, Reese and Simon| [2022b]], which
couples elasto-plasticity to anisotropic damage for initially isotropic materials, was discussed
in further detail. In addition, pathological mesh-dependency was cured by gradient-extended
invariants of the second order damage tensor, resulting in three global unknowns in addition
to the displacement field.

First of all, it was shown that the mapping for the damage tensor chosen in|Holthusen, Brepols,
Reese and Simon [2022b] indeed is invariant with respect to superimposed rotations of the
intermediate configuration. Noteworthy, assuming an additive decomposition of the total strain
does not harm the findings made in any way. As a consequence, it is not necessary to make
any assumptions about, for instance, the plastic spin. Moreover, an alternative choice of the
invariants used for gradient-extension was discussed here, which is based on the volumetric-
deviatoric decoupling of the second order damage tensor.

For the numerical implementation, the weak form of linear momentum was expressed in terms
of Lagrangian quantities, in order to be able to use the proposed model in standard finite
element formulation. Therefore, the Lagrangian strains must be transformed to the logarithmic
space and both the constitutively dependent variables as well as their algorithmic consistent
tangent operators vice versa. In order to decrease the numerical effort required, it might be
suitable to work with a combination of generating functions and algorithmic differentiation.
Lastly, the material model was examined in a three-dimensional numerical example to as-
sess the ability of the proposed gradient-extension to cure mesh-dependency. Since coupled

damage-plasticity simulations generally are very expensive in terms of numerical computation
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Figure 5.2: Normalized force-displacement curves with maximum load Fi,., = 6.044 [kN].
Note that this value corresponds to the value of the whole geometry and not to the
eighth, if symmetry is exploited. The latter corresponds to a quarter of Fy,,,. The
displacement is normalized to the total length of the specimen [ = 100 [mm]. For
18510 finite elements, the final value is about 0.02 [-]. The displacement wu; is
indicated in Figure[5.1]

time, future works should focus on how to decrease the numerical effort, for instance, using
adaptive mesh refinement or reduced integration (see e.g. Barfusz, van der Velden, Brepols,
Holthusen and Reese| [2021]]).
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Figure 5.3: Left: Finite element mesh with 18510 elements, five layers are used in thickness
direction. Middle: Contour plots of damage components D, , D, ., D, ., and
accumulated plastic strain x, at the end of simulation (us; = 10 [mm]). The
maximum value of 1.0 [-] corresponds to the damage values, while 1.8 [-] is the

maximum plastic strain value. Thin black lines illustrate the initial geometry.
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6.1 Abstract

In the field of material modeling, there is a general trend to include more and more com-
plex phenomena in the modeling, making the models’ theoretical derivation and numerical
implementation extremely difficult. In particular, modeling inelastic material behavior under
finite deformations in a continuum mechanical manner, e.g. to simulate soft biological tissues,
remains one of the most challenging tasks. Unfortunately, the multiplicative decomposition
of the deformation gradient usually utilized in this context suffers from an inherent rotational
non-uniqueness, making it not straightforward to combine this approach with algorithmic dif-
ferentiation (AD) — a very helpful tool in modern computational mechanics. To address this
issue in the growth and remodeling model proposed herein, a novel co-rotated intermediate
configuration is introduced. This configuration shares essential characteristics with the in-
termediate one, but is uniquely defined and applicable to a wide range of inelastic materials.
In this regard, the concept of structural tensors, hardening effects, and a thermodynamically
consistent derivation are discussed as well. Since the stress-driven growth model presented is
based on the approach of homeostatic surfaces by Lamm et al. [2022]], a large number of deriva-
tives of potentials and energies are required, which can be elegantly implemented using AD
due to the co-rotated formulation. Moreover, fiber remodeling of collagen fibers is taken into
account in a stress-driven manner using AD. Finally, qualitative comparisons are made with
recently published experiments by Eichinger et al.|[2020] in uniaxial and multiaxial settings,

revealing the efficient combination of the proposed framework and the material model.

Nomenclature

a, A Scalar X Cross product
a First order tensor | a | va-a
e; Cartesian basis | Al tr (ATA)

a-b
a Tuple n x 1 < (a,b) arccos (—)

lallb]
A Second order tensor AT Transpose of A
A Matrix n x m Al Inverse of A
1

A Fourth order tensor sym (A) 3 (A+ AT)

SO(3) Special orthogonal group tr (A) Trace of A
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Single contraction det (A) Determinant of A
AB A-B = A;Bye; ® e, exp (A) Exponential of A

Double contraction Grad (e) Lagrangian gradient
® Dyadic product Div (e)  Lagrangian divergence
A Nye notation of A

6.2 Introduction

Multiplicative decomposition. For modeling inelastic material behavior under finite defor-
mations, the multiplicative decomposition of the deformation gradient into an elastic and an
inelastic part has gained widespread in the continuum mechanics community and various ap-
plication fields. Due to this decomposition, an intermediate configuration is introduced into
the material formulation. Over the last decades, an enormous number of papers have been
published based on this concept, which underlines a still high research interest in this regard.
In the following, only a few that are of particular interest are named. Starting from finite
elasto-plasticity (see e.g. [Eckart| [1948]], Kroner [1959], Lee| [1969], Mandel [1973]], Lubarda
et al.| [1996]), the idea of a multiplicative decomposition to separate elastic and inelastic mate-
rial behaviors was used in case of visco-elasticity (see e.g. |Sidoroft| [1974], |[Lubliner| [[1985],
Holmes et al.| [2006], Reese and Govindjee|[[1998], Lion|[[1997], Latorre and Montans [2015]),
visco-elasto-plastic models (see e.g. Haupt and Sedlan [2001]], Nedjar| [2002]], Felder et al.
[2020]) as well as in the field of biomechanics (Rodriguez et al. [[1994], Lubarda and Hoger
[2002]).

Noteworthy, the decompositions arising within the latter mentioned fields can also be inter-
preted in the sense of material isomorphism (see Bertram! [[1999], Svendsen| 1998, [2001]),
which naturally preserves the material’s elastic behavior. Furthermore, the deformation gra-
dient might be also decomposed in case of finite thermo-elasticity or thermo-elasto-plasticity
(see [Stojanovic et al.|[1964], [Vujosevic and Lubardal [2002], Felder et al.|[2022]). However,
the thermal part is mainly determined by temperature and not by the pure mechanical problem.
Moreover, Bammann and Solanki [20105] decompose the deformation gradient into an elastic
and damage part in case of brittle damage. Shanthraj et al.|[2017]] capture cleavage by a three
factor decomposition, where the inelastic part is decomposed into plastic and damage parts.

In addition, the idea of intermediate configurations was extended to finite damage mechanics,
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for instance, by Menzel et al.|[2005]] using fictional configurations.

Apart from the theoretical considerations of the multiplicative split as well as the material
models based on it, its numerical implementation is the subject of a wide range of research.
Significant contributions to the application of return mapping algorithms based on the expo-
nential map integrator scheme were made, among others, by Weber and Anand [[1990], Eterovic
and Bathe [[1990], |Cuitino and Ortiz [[1992]], Simo and Miehe|[1992]] and Miehe| [[1996].
Unfortunately, all classical multiplicative decompositions, regardless the specific material be-
havior, have in common that the elastic and inelastic part suffer from an essential arbitrariness.
Thus, it is neither possible to compute the elastic nor inelastic part, unless additional informa-
tion about the substructure, for instance, about the slip systems involved in crystal plasticity
(see e.g. |Asaro| [[1983]]) is known. Nevertheless, in order to be able to calculate the two parts,
the inelastic material spin tensor is often set to zero, which implies that inelastic isotropy is
assumed a priori (see Dafalias| [[1984,|1985]). Although this assumption may be valid for e.g.
some classes of metals, its general applicability is questionable. Concerning the nature of the
inelastic material spin tensor, reference is made to the work of |Dafalias|[[1987, 2011]], in which
extensive discussions of the kinematics for finite elasto-plasticity can be found. The lack of a
unified solution to the arbitrariness leads to the inability to calculate any stress- or strain-like
quantity defined in the intermediate configuration, which must be considered a drawback.
Since this is the natural configuration for specifying the constitutive framework, a solution to
the problems that arise is highly desirable. For instance, the three-factor decompositions pro-
posed by Bammann and Johnson| [1987]] and |Casey| [2017] might be employed. In contrast to
the usual two-factor decomposition, all three factors are uniquely defined in these approaches.
Nevertheless, the question remains to what extent a uniquely defined configuration similar to
the intermediate configuration can be formulated. This configuration should have the same
symmetry properties and physical interpretation as the intermediate configuration, since the

conjugate driving forces of the latter have a sound physical interpretation.

Algorithmic differentiation. Since the numerical implementation of models is an essen-
tial part in computational mechanics, an efficient and robust implementation technique is
crucial. Often, partial differential equations are coupled with each other, involving a large
number of derivatives, which would be extremely time-consuming and error-prone if com-
puted by hand. To counteract these problems, algorithmic differentiation (see e.g. [Wengert
[1964], Bartholomew-Biggs et al.| [2000]], Griewank and Walther| [2008]) has emerged as an
extremely powerful tool that solves the drawbacks of classical methods such as symbolic or

numerical differentiation. Therefore, a huge number of AD tools for various programming
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languages were developed in the past, e.g. for FORTRAN (Bischof et al.| [[1992]], Hascoet and
Pascual| [2013]]), C/C++ codes (Griewank et al.| [1996]]) or Mathematica (Korelc| [2002]), to
name only a few.

These tools have already found their way into computational solid mechanics, both on a struc-
tural finite element level (see e.g. Zwicke et al. [2016], Vigliotti and Auricchio [2021]) and
on a material point level (see e.g. Hudobivnik and Korelc [2016]) and have proven to be quite
helpful and robust even in case of complex simulations. Unfortunately, because of the rota-
tional non-uniqueness, for instance, the elastic Cauchy-Green tensor is not unique in general.
Thus, while it is possible to calculate, for example, the Helmholtz free energy as a function
of the invariants of the elastic strain tensor, the derivative with respect to the elastic Cauchy-
Green tensor is again not unique. Therefore, it is not possible to calculate this derivative
in an algorithmic way, especially not using AD. Hence, it is not straightforward to combine
AD with inelastic and/or anisotropic materials under finite strains in general — at least not
performed in the (physically sound) intermediate configuration — which must be considered a

strong drawback and needs further development.

Biomechanics. Being an intensively studied domain of continuum mechanical modeling
in the recent past, biomechanics is a highly interesting field and very challenging from a
modeling point of view. Aiming to improve patient healthcare through in silico-based medi-
cal therapy, various mechanical properties of living organisms such as soft biological tissues
need to be well understood. This requires novel approaches in order to predict the lifespan
of bioengineered implants. A characteristic property of biological tissues, both soft and hard
ones, is their ability to flexibly adapt to mechanical forces acting on them, which was already
observed in the early work of [Wolft] [1870].

In this context, the process of growth, referring to a change in mass or volume, and remod-
eling, which takes into account the change in internal structure, are nowadays distinguished
(see e.g. 'Thomson! [1917], Ambrosi et al.| [2019]) and are of particular interest for the con-
stitutive modeling of tissues. Additionally, it is well known that both phenomena are mainly
mechanically-driven (see e.g. (Cyron and Humphrey| [2016]], Erlich et al.| [2019]]), as tissues,
from a physiological point of view, exhibit an optimal load-bearing capacity under a preferred
stress state, the so-called (tensional) homeostasis. In this regard, bridging the mechanical
loading across the scales from the tissue to the cellular level is an important topic and has
recently been investigated by Stracuzzi et al.|[2022] in a comparative study between continuum
and discrete fiber models.

Depending on the loading applied, tissues dynamically grow and remodel themselves to es-
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tablish this state, and further, also restore this state after loading has changed (see e.g. Brown
et al. [1998], Eichinger et al.| [2020]). As a result of this continuous or long-term loading,
soft tissues may be damaged (see e.g. [Dong et al. [2020]) but have the ability to heal, the
modeling of which is part of current research (Zuo et al.| [2022]). Noteworthy, since a purely
phenomenological model is proposed within this contribution, growth and remodeling are not
explicitly differentiated, rather both phenomena are considered in a smeared sense.

In the literature, the existing models for volumetric growth can be roughly divided into isotropic
models, such as the model of Lubarda and Hoger [2002]], which assume the same growth in all
spatial directions, and anisotropic models with direction-specific growth, such as the models of
Menzel [2005] and Soleimani et al.| [2020]. It should be noted that the terminology ‘isotropic’
and ‘anisotropic’ should not be misunderstood with the underlying or initial material behavior,
i.e., anisotropic growth can also be observed in materials that are initially directionally inde-
pendent.

Besides this classification and the resulting assumption about the nature of growth, most mod-
els are based on heuristic assumptions chosen in line with the conducted experiment. As a
result, the inelastic part of the deformation gradient, which is also multiplicatively decomposed
in biomechanics, is defined a priori. Thus, predictions in case of other loading scenarios is
almost impossible, as also investigated in the work of Braeu et al.,| [2017] in the context of
isotropic models compared to experimental observations.

In order to overcome these limitations of continuum growth modeling, two different approaches
are widely used in the literature. These approaches are capable to flexibly adapt to different
boundary value problems using the same model and circumvent heuristic assumptions about
the growth part. The first one is the so-called ‘constraint mixture approach’, which considers
the material as a mixture of different constituents with individual masses. In a biomechanical
context, this theory is adapted by Cyron et al.|[2016] and Cyron and Humphrey| [2016] in a ho-
mogenized sense, describing growth and remodeling by a continuous removal and deposition
of mass increments and therefore by introducing, for example, a deposition stretch. Contrary
to classical constraint mixture models, their approach does not suffer from a relatively high
computational cost. Further, Braeu et al.| [2019]] improved the approach insofar as no assump-
tions have to be made about the growth-related part of the deformation gradient a priori.
Alongside this promising approach, the ‘original’ two-factor decomposition of the deforma-
tion gradient into an elastic part and a growth-related part mentioned above (Rodriguez et al.
[1994]), referred to as kinematic growth, receives renewed attention. Vastmans et al. [2022]
compare the results of a kinematic growth model as well as a constraint mixture model using

the same experimental data. Further, the models of, for instance, |Soleimani et al.| [2020] and
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Lamm et al. [2022] belong to the kinematic growth approach, where growth is constantly in-
fluenced by the mechanical stress state and is able to change its principal directions. The latter
authors introduce a novel concept of so-called ‘homeostatic surfaces’, similar to yield surfaces
known from plasticity, which define the homeostatic state in the principal stress space. While
growth and remodeling take place, the tissue seeks in a (non-)associative manner to achieve
this state described by the homeostatic surface. Thus, the direction of growth is determined by
the derivative of a growth potential with respect to the corresponding driving force. The great
advantage of this appealing framework is that a variety of conceptual modeling approaches of
plasticity are already known, both theoretically and numerically. For example, the concepts
of isotropic, kinematic and distortional hardening or visco-plasticity can be easily adapted to
growth modeling.

Although both consider anisotropic growth, the models of Soleimani et al.| [2020] and Lamm
et al. [2022]] are restricted to initially isotropic materials. However, soft tissues, such as those
found in tendons, arteries, fascia, or muscles, behave in a significantly anisotropic manner due
to collagen fibers. Collagen is one of the main components of the extracellular matrix, along
with elastin and the ground substance. The microfibrils formed from collagen are characterized
by extremely stiff behavior, which then results in mostly transversally isotropic behavior of
the overall tissue. The interested reader may find a deeper insight into the basic biological,
but also mechanical principles, e.g. in the textbooks of [Holzapfel and Ogden| [2003] and
Humphrey and Delange|[2004]. In contrast to ‘classical’ transversally isotropic materials such
as fiber-reinforced plastics, the preferred direction in soft tissue can change according to the
loading as well. This remodeling of collagen fibers (see e.g. [Taber [1993]), which should
not be confused with growth and remodeling at the beginning, was already observed experi-
mentally by Stopak and Harris| [[1982] under mechanical stimuli. The underlying mechanisms
are a complex interplay of resorption and production of collagen, but are often described in
a continuum mechanical sense as a rotation towards the main loading direction (see Menzel
[2005] and Kuhl et al. [2005]), hence the term ‘reorientation’ is loosely associated with it.
Suitable modeling of these complex constituents within soft tissues is still a current research
topic in its own (see e.g. [Miller and Gasser| [2021]), where also the modeling of muscles can
be mentioned in this context of anisotropic constitutive modeling (see e.g. [Ehret et al.|[2011],
Bol et al.|[2014]).

This overview of the literature on biomechanical modeling does not claim to be complete and
reveals only a small insight into the current biomechanical modeling approaches as well as the
various challenges associated with them. Due to the immense knowledge and research that

has been conducted in recent years, the authors are pleased to refer the interested reader to
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various review articles and textbooks on biomechanics, e.g. Menzel and Kuhl| [2012]], Kuhl
[2014], de Rooij and Kuhl [2016], Goriely| [2017], |/ Ambrosi et al. [2011}, 2019] and Budday
et al. [2020].

As aresult, it becomes clear that mechanical modeling of soft tissues is far from being complete
and requires advanced and sophisticated models that combine the various characteristics of

growth, remodeling, homeostasis and reorientation, which is a big challenge.

Outline. The symbiosis of above challenges is essential for modern material modeling. For
example, biomechanics cannot be handled without computer-aided models, which, however,
are far from simple — for this gap AD proves to be an indispensable tool. However, without
any assumptions, the inelastic part of the deformation gradient cannot be determined. Con-
sequently, no quantity in the intermediate configuration is calculable. Thus, equations stated
in this very configuration cannot be implemented into AD. To solve this, a novel co-rotated
framework of the intermediate configuration is introduced in Section [6.3] This configuration
is uniquely defined and shares some essential properties with the intermediate one.

The proposed framework serves then as the theoretical foundation for the stress-driven kine-
matic growth model, which accounts for initially anisotropic behavior and fiber reorientation,
developed in Section [6.4] Within this model, two different strategies for facing the tensional
homeostasis based on homeostatic surfaces (Section [6.4.3)) are presented. Its numerical imple-
mentation in a fully implicit manner is discussed in Section [6.5] with particular attention paid
to the application of AD. Finally, several numerical examples illustrate the model’s ability to
adequately capture growth and remodeling as well as reorientation (Section [6.6). Moreover,
the model is compared in a qualitative manner with recent experimental data of Eichinger et al.
[2020] in a uniaxial as well as multiaxial setting. Section provides a conclusion of the

work.

6.3 Co-rotated intermediate configuration

In this section, the concept of a co-rotated intermediate configuration cic in the context of the

multiplicative decomposition of the deformation gradient
F =F.F, (6.1)

into inelastic F; and elastic parts F, as well as its application in constitutive modeling are

briefly presented.
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Before discussing the main aspects of the cic framework, the most common approaches for
modeling inelastic material behavior based on Equation (6.1)) are shortly summarized. In
this regard, it is crucial to note that for these approaches, the starting point for stating the
constitutive framework — e.g. the choice of the Helmholtz free energy or evolution equations —
is typically the intermediate configuration zc. These approaches can be roughly classified into

four different categories, viz.:

1. The inelastic velocity gradient L; = E-Fi_1 is determined by the underlying mi-
crostructure. For instance, in crystal plasticity L; is defined by n,. active slip sys-
tems, i.e. L; = > "l (44 Sa ® m,) wWith s, and m,, being the unit vectors of the

slip system and 7, being a multiplier. Thus, the evolution equation is obtained as
Fi = ZZG:? (’Ya Sa @ ma) F;.

2. The inelastic material spin tensor €2; := L; — sym (FZFfl) is assumed to be zero
(inelastic isotropy). Hence, L; is equal to its symmetric part in general. Thus, the
evolution equation reduces to E = Z,F; with Z; denoting the rate and direction of
inelastic evolution. Although this approach seems to be similar to the latter, it should

not be confused with it, as there might be no evidence to set {2; equal to zero.

3. The inelastic part F; of the deformation gradient or its evolution is set a priori, for
example, proportional to the identity. In the latter case, the evolution equation results
in F, = 9I with ¢ being the rate of inelastic evolution. Such models may be found in

biomechanics, see e.g. Lubarda and Hoger| [2002].

4. The Helmholtz free energy as well as all yield criteria and inelastic potentials are
assumed to be scalar-valued isotropic functions. In combination with suitable pull-back
operations to the reference configuration, it can be shown that neither F, nor F; need to
be calculated. In the following, this approach will be abbreviated pbic. A short summary
is presented in Appendix [6.8.1] For a deeper insight into the theoretical background of
the pbic framework, the interested reader is kindly referred to the works of e.g. Simo
and Miehe| [[1992] and Dettmer and Reese| [2004].

A brief overview can also be found in [Lubardal [2004]]. Unless further knowledge of the un-
derlying microstructure is available, the latter pbic framework is advantageous since no further
assumptions need to be made about the nature of inelastic evolution. In this context, it is ap-
pealing to note that most of the equations given in the ic have a sound physical interpretation,

as they can be related to the current configuration (see e.g. |Dettmer and Reese [2004] and

Appendix [6.8.1).
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Therefore, only the pbic and the cic frameworks will be compared in the following. Besides all
the advantages of the pbic framework, the question remains how to avoid the required pull-back
operations. On the one hand, these make the physical interpretation more complicated, and on
the other hand, they prevent the equations related to the ic from being entered directly into AD

tools. Therefore, the pbic framework is extend to a co-rotated formulation (cic) in the following.

Rotational non-uniqueness. The inherent problem of the decomposition (6.1) is that both

parts suffer from a rotational non-uniqueness, i.e.
F =F.Q Q\F, = FF; (6.2)

is a possible decomposition as well, with Q; € SO(3). Considering the polar decompositions
F.,=YV_,R.and F;, = R,U,, where R., R; € SO(3) as well as V, and Uj are positive definite

stretch tensors, respectively. Further, with the following equations at hand

F*=V.R.Q! = V.R; (6.3)

it becomes clear that the rotational non-uniqueness affects only R, and R;, while V, and U, are
uniquely deﬁnecﬂ In order to derive a continuum mechanical material model, the following
Cauchy-Green-like tensors with respect to the ic (see Figure [6.1]) are introducecﬂ

C:=F"F' =QF'F.QT = QC.Q7 (6.5)
B; = F'F/ = Q,F,F/ Q] = QB,Q (6.6)
C; = F/ F/ =F'F,=C. (6.7)

Regarding the rotational non-uniqueness, |[Bammann and Johnson| [1987]] and (Casey, [2017]]
proposed two different three-factor decompositions of F', where all parts are uniquely defined.
Especially the latter mentioned was successfully applied by|Ulz and Celigoj [2021]] in the recent
past and shares a few similarities with the framework proposed here. Since the aforementioned
work deals with this topic in a mathematically more detailed manner, and further discusses a
change of observer, the interested reader is kindly referred to this work as well as the literature

cited therein.

'R, Ry € SO(3)
2A second order tensor A in the intermediate configuration affected by the rotational non-uniqueness in the
following manner A* = Q; AQT will be called C.-like hereinafter.
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Additional inelastic decomposition. Within the present framework, an additional decom-
position
F,=F,F, (6.8)

is discussed, as might be of interest in modeling nonlinear kinematic hardening (see Lion
[2000], [Vladimirov et al|[2008]] and |Christ and Reese| [2009]). As in case of Equation (6.2),
the decomposition (6.8)) is not unique as well, since F; = F;, QT Q. F;, with Q, € SO(3) can
be stated. Further, again having Equation (6.2)) in mind, one might define F}; := Q.F,Q7
and F;' := QI'F,,, such that F} = F; F; holds. However, in this regard, it is interesting to
note that

B;, = FF; = Q.\F, F, Q] = QB;,Q{ (6.9)

i g b iy

behaves C.-like.

Structural tensors. Moreover, in order to account for initially anisotropic behavior, for
instance in the context of fiber-reinforced plastics (e.g. Mehdipour et al. [2019], Holthusen
et al. [2020], Poggenpohl et al. [2021]) and thermoplastics (e.g. Dean et al. [2016, 2017]) or
anisotropic phenomena that may induce a certain kind of anisotropy such as damage (see e.g.
Hansen and Schreyer [1994]], Badreddine et al.|[2015]], Reese et al.|[2021]], Holthusen, Brepols,
Reese and Simon [2022b]), structural tensors are considered (see e.g. [Spencer| [1971, 1984],
Boehler [1979], Zhang and Rychlewski [[1990], Schroder and Neft [2003]]). For simplicity, the
structural tensor H in the reference configuration is assumed to be symmetric and is mapped

to its intermediate counterpart H according t
H' = F/HF; = QFHF'Q] = QHQ! (6.10)

which behaves C.-like. Noteworthy, if H is not symmetric, H is generally not symmetric,
regardless of the mapping chosen. As a consequence, the integrity basis of ¢) might contain
both the symmetric and skew-symmetric part of H (cf. Zheng [1994]), which would also
influence the evaluation of the Clausius-Duhem inequality.

For a better understanding, Figure [6.1]illustrates the different decompositions and the mapping
of a material point and its local neighborhood of a referential body % to the current body %,.

Helmholtz free energy. The tensorial quantities introduced above are suitable to describe

3 Also other mappings are possible. The results for three important ones are presented in Appendix m
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Figure 6.1: Decomposition of the deformation gradient F' = F_F; into inelastic and elastic
parts as well as the additional decomposition F; = F; F; . Moreover, FF = RU
and F; = R,;U, possess their polar decompositions. Configurations: rc —reference
configuration, crc — co-rotated configuration, cc — current configuration, ic —
intermediate configuration, aic — additional intermediate configuration, cic — co-
rotated intermediate configuration.

different material behaviors in a phenomenological and smeared sense. Thus, and in line with
material isomorphism (cf. Bertram![1999]], Svendsen! [ 1998, [2001]]), the Helmholtz free energy
per unit reference volume is assumed to be an isotropic function depending on the following

arguments (cf. e.g. |Green and Naghdi [[1971])
=" (C.. B, B, H) =" (C.. B/, B}, H") . 6.11)

It is important to note that, since 1 is assumed to be an isotropic function of its arguments, and
further due to Equations (6.3), (6.6), (6.9) and (6.10)), the formulation is invariant with respect
to superimposed rotations of F; (cf. e.g. [Sansour et al.|[2007]).

Unfortunately, it is not possible to calculate any of the arguments of Equation (6.11)), since
the push-forwards to the ic of all arguments involve F;. Therefore, neither the Helmholtz free
energy ¢ can be calculated in its assumed form * nor the derivatives with respect to those
arguments’}

Remark 16. Although the Helmholtz free energy is unique, since it is assumed to be an

“Noteworthy, the invariants of the arguments of Equation (6.11) can be calculated without knowing F; but U;.
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isotropic function and thus not affected by the rotational non-uniqueness, the derivatives are
not unique with respect to arguments defined in the intermediate configuration. For simplicity,
assume an energy depending only on the elastic variables, i.e., ) = ' (C,) = ' (CY). Thus,

the derivatives read

oY’ oY’

= I+ay,C.+ a3 C? = I+aC +a;C* 6.12
aC. 14+ 30, aC: 1 2 C 30, (6.12)
where o; = i%. Hence, the derivative is affected by the non-uniqueness. Similar

observations can be made for the remaining arguments.

Co-rotated pull-back. As seen so far, the non-uniqueness is strongly related to the rotation
tensor R;. A first step to circumvent this non-uniqueness is to note that v, as a scalar-valued
isotropic function, can be expressed in terms of (mixed) invariants (see Spencer|[1971]], Boehler
[1979],/Zheng [1994]ﬂ The second step, which is the main idea of the co-rotated intermediate

configuration cic, is to pull-back all quantities in Equation (6.11) to this very configuration (cf.

Figure [6.1))

C.=R;'C.R, =R/C.R, =U;'CU;"* (6.13)
B,=R 'BiR;, = R/B,R, =C,; =U} (6.14)
B, =R;'B,R,= R/B, R, = U,C;'U, = U;U;°U;, (6.15)
H:=R;'HR, = R'HR, =U,HU, (6.16)

with C .= FTF and F;, = R;,U,,, where R;, € SO(3) and U;, being uniquely deﬁnecﬂ

In this way, the eigenvalues as well as the symmetry properties between the ic arguments and

a?

their cic counterparts, e.g. C, and C,, remain the same. Additionally, in line with finite
elasto-plasticity and the assumption of an unstressed intermediate configuration (see Lee and
Liu| [1967]] and [Lee| [1969]), the cic can also be considered unstressed. Nevertheless, all
quantities in Equations (6.13))-(6.16) can be directly computed, i.e. they are uniquely defined.
Therefore, the Helmholtz free energy can be equivalently expressed a{] (cf. Appendix

¢ = w* (C’ea Ciagiwﬂ) = w* <Ce7Bi7Bib7 EI) . (617)

Due to simplicity, the derivation is restricted to the three distinct invariants of each tensor and mixed invariants
for up to two tensors.

°R; ! = R/ since R; € SO(3).

"Instead of C;, one may use C; ' to model the inelastic strains in the sense of an Euler-Almansi strain measure,

see Appendix[6.8.4]
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Clausius-Duhem inequality. Next, it is the aim to derive the conjugated driving forces in a
thermodynamically consistent manner. Therefore, the (isothermal) Clausius-Duhem inequality
—?ﬂ. + % S:C > 0, with the second Piola-Kirchhoff stress tensor .S, must be evaluated and

requires the time derivative of the Helmholtz free energy

def : oY* = o* . o* - o -
=" =—:C, : C; B, H 6.18
VeV =56 % e Y T am, Bt o (6.18)
with the rates
:C'e :Ez

- : — T
C.=U'CU ' - U 'cU'UU ' -L"C, (6.19)
C,=UU, +UU, = L,C; +CLT UZ-(I}Z-+I}1.T)UZ» (6.20)
H =UHU, + L;H + HL!. (6.22)
In the above equations, the relation C’i_a = -C; 1C'Z-a C.. ! was utilized. Moreover, all inelastic

rotational parts, i.e. R; and R, , remain undetermined, which is considered an advantage.
Inserting the results for the different rates (6.19)-(6.22) into Equation (6.18)), and following
the procedure of Coleman and Noll| [1961]], the state law for the second Piola-Kirchhoff stress
reads after rearranging o

S=2U" 9C. U (6.23)
With this last equation at hand, the reduced dissipation inequality in terms of conjugated

driving forces is obtained as

—E T e
Dred = | 2C.— — 2 Ci—-2——B,-2—=H|:L
! aC. ~oc; 0B, o0H
— . (6.24)
,(/}* 1 ,(/}*
H+ >
U, i3 HU C.'U; ‘9B, UC;':C;, >0.
N—— N V)

=G :\rg

where X and x are back-stress tensors. Although the stress-like tensors 3, X, x and Y are

not generally symmetric, it is interesting to note that I is indeed symmetric (cf. |Svendsen



6.3 Co-rotated intermediate configuration 207

[2001]], Reese| [2003]]). The same holds for G and ®. Thus, the last inequality reduces to
Deed =T:D;+G:-H+0©:C;, >0 (6.25)

with D; := sym (L;) = %U{lC'iUi_l. In addition, it is easy to show that all thermodynamic

driving forces in Inequality (6.25)) are the co-rotated expressions of their ic counterparts, e.g.

> = R;l (2 Ce%> R; (cf. Appendix |6.8.1), such that their physical interpretation is the

sameﬂ It remains to choose sufficient onset criteria and potentials for the inelastic evolutions,

typically in terms of their conjugated forces, to ensure the fulfillment of Inequality (6.25) for
arbitrary processes. For instance, assuming a potential g; (f‘) =g (f‘> to be an isotropic

function and following (non)-associative evolution laws, one obtains

Tar ~ TN op TUiop (6.26)
with 7 denoting some rate quantity and the thermodynamic driving force I = R, TR, con-

jugated to sym (Ll)ﬂ With these equations at hand, the set of constitutive equations is closed.

Summary of the cic framework. Contrary to the pbic framework, the cic is uniquely defined.
Further, F; is required in the pbic framework to compute quantities in the zc in their tensorial
form. Within the cic framework, the latter is not the case. The fundamental idea is to pull-back
all strain-like quantities in the ic by the rotation tensor R;. Thereby, it is observed that all
thermodynamically conjugated driving forces are nothing but the co-rotated counterparts of
the ic driving forces. Thus, a few subtle issues of the pbic are overcome. In summary, it is

appealing to recognize some of the cic advantages, namely:

* The framework is easily comprehensible, since all equations ‘look’ the same as in the

pbic framework.

* Due to the orthogonal pull-back, the physical interpretation between the pbic and cic
pairs remains the same, i.e. their invariants are equal, and further, properties such as

symmetry are preserved.

* For example, yield criteria with a physical interpretation in the ic have the same inter-
pretation in the cic. Only the ic quantities have to be ‘interchanged’ in the equations

with their cic equivalents.

8They share the same eigenvalues, but their eigenvectors are rotated by R,;.
For H and C;, one may proceed similarly.
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* In contrast to pbic models, within the cic framework all strain- and stress-like quantities

are uniquely defined.
* Thus, spectral decompositions of all quantities are possible.
o9

> 8C.
on C.. Thus, the derivative could theoretically be written down, but in general it cannot

* Moreover, all derivatives can be computationally obtained. For example depends
be computed numerically as C, is not known (cf. Equation (6.5), Remark [I6] and

Appendix . In contrast, since C, is known, g—g@ is unique and can be calculated.

* The latter makes the whole framework very attractive in context of AD. In simple terms,
the cic framework allows equations derived on a sheet of paper to be implemented

directly into the AD tool. In particular, the derivatives required to develop a constitutive

framework for inelastic materials can all be determined using AD.

Overall, these advantages enable the development of highly complex material models, which
usually involve challenging derivatives and error-prone numerical implementations. In this
regard, the following sections address a novel biomechanical material model based on the

proposed framework, which is implemented into an AD software.

Remark 17. For instance, |Vladimirov et al.| [2008] and |Brepols et al.| [2020] express the
dissipation resulting from the additional split of F; in terms of D,, = sym <FM ‘F;:1> Since
F; possesses its polar decomposition, one might rewrite the last term in Inequality (6.23) as
2U,,OU,, : D, with D;, = sym (UiaUl-j) — R'D, R, = 1U'C,.U_". Thus, the
driving force ® = 2 U, ,®U,, can be seen as the ‘additional’ co-rotated counterpart to the

driving force in the mentioned works.

Remark 18. The interested reader may find the essential equations to derive an elasto-plasticity

model and a visco-elasticity model taken from the literature in the context of the cic framework

in Appendix

6.4 Constitutive modeling of soft biological tissues

First, it is assumed that a change in mass of the system takes place on a much longer time
scale than the change in shape, a common assumption which is referred to as the slow-growth
assumption (see e.g. (Goriely| [2017]). Thus, the balance of mass is implicitly satisfied, while
the balance of linear momentum can be reduced to the quasi-static case. Consequently, any

mass production or flux is neglected. Moreover, in the context of growth and remodeling at
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finite strains, the multiplicative decomposition (6.1)) into elastic F, and growth-remodeling
F, related parts is well-known (Rodriguez et al.| [1994]) and was widely used in the past by
several authors (see e.g. Garikipati et al.[[2004], /Ambrosi and Guana [2007]], Grytsan et al.
[2017]], Braeu et al.| [2017]], Truster and Masud| [2017]]). For instance, the (active) addition
or removal of mass can cause the stress state of the material to be different compared to its
referential stress state. This kind of deformation associated with the stress state is characterized
by the growth-remodeling related part of F'. The elastic part ensures compatibility with the
total deformation field. Thus, if a volume element is cut out of the body, its deformation
is completely characterized by Fj;. A more detailed explanation can be found in the just
mentioned literature.

Since soft biological tissues are considered in a phenomenological and smeared sense within
this contribution, two decompositions of the deformation gradient are employed, the first
summarizing mostly direction-independent constituents (e.g. elastin, smooth muscle cells
etc.), which will collectively be referred to as ‘matrix’ (m), and the second accounting for

strongly direction-dependent constituents (mainly collagen co), i.e.
F=F, £ F, =F_F,,. (6.27)

Obviously, this choice is mainly influenced by the effects of the individual constituents on the
overall mechanical behavior and does not resolve the individual constituents in detail. However,
this is sufficient for the present stage of model development and can be easily extended in future
work. An additional decomposition of the inelastic parts, as for example used by Braeu et al.
[2017] to decouple growth and remodeling, is not taken into account here, but could be easily
implemented (cf. Equation (6.8)).

6.4.1 Helmholtz free energy

For the subsequent derivation of the material model, the following dependency of the scalar-
valued isotropic Helmholtz free energy function is assumed, and additionally, a widely used

rule of mixtures approach into ‘matrix’ and collagen parts is applied
¥ =t (Ce,) +Yeo (Ceppy M) (6.28)

with C,,, = U, 'CU, ! and C

€co

= U, !CU,!. Here, 1, represents the elastic stored
energy within the ‘matrix’, while 1., accounts for the collagen fibers’ energy contribution.

For the time being, no further energy contribution directly counteracting growth processes is
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assumed, as for instance done by |Braeu et al.| [2019]] and Lamm et al.|[2022]. However, this
might be incorporated by assuming an energy depending also on C,, and/or C,_, respectively.
Noteworthy, no further assumptions on the energy itself are made. Thus, the model presented
hereafter is derived in a quite general manner. Further, the structural tensor M = H takes the

fiber orientation of collagen fibers into account and is specified aﬂ
M=n®n (6.29)

where n is the normalized structural vector in the rc. This vector is parallel to the averaged
main direction of collagen in the referential configuration. In line with Reese|[2003] and the

previous section, the tensor is mapped to the cic via

N — U,.n © U,.n _ 1
| Ugon| | Ugn|  Cy,: M

UgcoMUgco (6‘30)

while its cc counterpart is defined analogously

1 1
FMF'= — _F,
C:M C. M

€co

M. = R

T 1T
gcoMRgcoFeco = N ® Nee (6.31)
and describes the fiber orientation with respect to the cc. For completeness, the ic structural

tensor can be obtained by

v F, n F, n
M: Jco co :R
[Fn ] CFn]

MR] . (6.32)

Note that the traces of all structural tensors are equal to one.

6.4.2 Derivation based on the isothermal Clausius-Duhem inequality for

open systems

In contrast to most materials, biological tissues can not be seen as a ‘closed’ system, since they
constantly interact with their surroundings. For instance, growth and remodeling imply the
inflow of e.g. nutritions and hormones. However, the scope of this contribution is stress-driven
remodeling rather than the additional field equations describing diffusion processes. Thus, and

in accordance with Kuhl and Steinmann| [2003¢][], the isothermal Clausius-Duhem inequality

19The recent work of [Bauer and Bohlke|[2022] discusses the usage of a fourth order tensor to account for fiber
orientations.
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for open systems is employed
.1 :
U+ 58:C+8 20 (6.33)

where Sy summarizes both the contribution of entropy flux and entropy source, which can be
understood as the exchange or interaction with the ‘outside world’ (e.g. human bodyﬂ

Following the derivation from the previous section, the state law is obtained as

S =2 (U 1 Y + Ut Y U, ) (6.34)

gm aC Geco aC

€co

The framework of Section [6.3] applied to Equation (6.28)) leads under consideration of Equa-
tion (6.34) to the following reduced dissipation inequality

Dred = B 1 Dy, + (Beo — Yoo+ Iey) : Dy, + Gep : M + S > 0. (6.35)
\_/-/ N ~ /
=Im ::f‘co

where 3, == 26’6 80 and D = sym (Ungg—jl> with j € {m,co}, Yoo == 2%M as
well as I:Ico =2 61” : (M @ M ) Furthermore, the driving force

G., = Cg ( Ug B%IU + aw : (M ® Cg)) is introduced. Comparing the express{ons for
the driving forces in Equatlon with (6.24)), one notices some additional terms in I, and
G.,. These result from the rate of M (cf. Appendix|6.8.6). Nevertheless, both T, and G,

are still symmetric.

6.4.3 Evolution equations based on homeostatic surfaces

In order to close the set of constitutive equations, it remains to choose appropriate evolution
equations for ng as well as Dgco. For this purpose, homeostatic surfaces ®; as proposed by
Lamm et al. [2022] are utilized, describing the preferred (homeostatic) stress to be reached
within the entire tissue. These surfaces can be interpreted similar to plastic yield criteria,
i.e. they define a surface in the principal stress space. However, contrary to plasticity, these
surfaces do not distinguish the purely elastic and elasto-plastic regime, rather the tissue growths
and remodels until the stress state lies on this particular surface. Slightly more mathematically
spoken, this means that both ®; < 0 and ®; > 0 are possible, but ®; — 0 is reached after a
finite amount of time. In order to account for the time dependency, visco-plastic concepts are

employed.

"Note that Sy is introduced for mathematical convenience, however, it is never computed here.
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In the present contribution, two different approaches are pursued, viz.

* One-surface approach: A single homeostatic surface based on the total stress, i.e. the
sum of all constituents, is introduced (Section [6.4.3.1).

» Two-surface approach: Two different surfaces are used to account for different preferred
stresses of both constituents (Section [6.4.3.2)).

While the latter approach is more flexible and takes into account that not all constituents of
the tissue may share the same material properties, i.e. they try to reach different homeostatic
stresses, the former is advantageous when considering the experimental determination of
the homeostatic surface, since only the tissue’s overall behavior must be measured. Since
two-surface approaches are frequently used today, e.g. in coupled damage-plasticity models
(see e.g. Kiefer et al.| [2012], Brepols et al.| [2017]), a variety of insights into their efficient
implementation can be found in the literature.

The evolution equations are defined in either an associative manner based on the surface
or a non-associative manner derived from a growth potential. Noteworthy, the latter equips
the model with greater flexibility in general. Besides, fiber remodeling of collagen fibers is
modeled based on the total stress within the tissue (Section [6.4.3.3)) and is the same for both

the ‘one-surface’ and ‘two-surface’ approach.

6.4.3.1 Model I: ‘One-surface’ approach

For the definition of the ‘one-surface’ approach, the most reasonable stress measure to express
the homeostatic surface ®, and growth potential g, is the Cauchy stress tensor o = %’T =
%FSFT with J denoting the deformation gradient’s determinant. In order to derive the
evolution equations, o has to be related to the thermodynamic driving forces T',,, and T,.

Therefore, considering Equation (6.34)), the following relations can be found

s=c'(U,,=.U0," +U,,3.,U,") (6.36)
r=F"(U,2.U,"+U,,%,U,")F" (6.37)

Although these relations are sufficient for the formulation of homeostatic surfaces, it is im-
portant for the next steps to keep in mind that AD utilizes the chain rule to derive derivatives.
In the case that the homeostatic surface is expressed in terms of the eigenvalues o; of o, e.g.
using a Rankine-type surface, i.e. ®, = max (0, Fhom) — Thom With homeostatic stress ohom

(cf. [Soleimani et al. [2020]), not only the invariants of o are required, but also the tensor itself
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(olest
do

fully implemented with respect to the rc, no dependence on F' is desired, which is needed to
compute

Therefore, the so-called co-rotated Kirchhoff stress 7 = R 7R = USU defined with
respect to the crc (see Figure is introducecEfl, being symmetric and sharing the same
eigenvalues with the Kirchhoff stressE} Inserting the latter into Equation (6.37), the following
is obtained

to compute Since the proposed framework is expressed with respect to the cic and later

Geo

-

r=USU=U"(U,, =,U,' +U, 2,U U (6.38)
—Y,
where Y is generally non-symmetric, but shares the same eigenvalues with 7. Hence, it is

suitable to define a homeostatic surface as a scalar-valued isotropic function in the following

1 1 1
3, = ¥ () = T (jf) s (37”-> — 3 <3Yg) . (6.39)

In contrast toLamm et al.|[2022], the homeostatic surface in this contribution is described by a

manner

smoothed Rankine-like surface that intersects with the principal stress axes only in the positive
regime and, moreover, is not defined within the eighth octanm to account for the hypothesis of
tensile homeostasis. This hypothesis represents a fundamental difference of living tissue from
classical materials, since a preferred state of stress rather than a stress-free state is desired (cf.
e.g. Cyron and Aydin|[2017] and [Eichinger, Haeusel, Paukner, Aydin, Humphrey and Cyron

[2021]). The corresponding homeostatic surface reads

tr(Y,) — 20, ,52tr (Y2) + 8, =0

(6.40)
tr (Y,) + \/%tr (Y2)+ 8, —20, else

KA
Il
Sl

where the surface described by the second case is illustrated in Figure [6.2] The case differen-
tiation is mainly done for numerical reasons to ensure a well-defined evolution for all possible
stress states, since the term under the square root may tend towards zero. As a consequence,
the growth and remodeling direction (cf. Equation (6.41])) would tend towards infinity.

For simplicity, but without loss of generality, an associative evolution equation is chosen, i.e.

12 A5 will be seen in Section also the eigenvector n, of o, and thus, also the derivative % is required.

13Moreover, the material sensitivity 2 % can not be calculated, since the mapping between C' and F' is surjective.
Thus, g—g can not be obtained in general.

“4F = RU with R € SO(3).

SThe co-rotated Kirchhoff stress also plays an important role for the fiber reorientation in Section
Further, g—g is unique.

165, 09,03 < 0 with o; denoting the Cauchy stress tensor’s eigenvalues.
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gq = P, + 20,. Hence, the growth and remodeling direction for both constituents is derived
from this potential byE]

Jg, Jg, 0g, Jg, Jg,
= = — = = — N = — = = . 41
T U (azm 9%, T ar, U\ a5, ©4D)

With the latter equations at hand, the normalized evolution equations are obtained as

Ng N,
_ D =4 —— 9o 6.42
"IN, P TN, (42

with the growth multiplier 7,. Due to the normalization, the multiplier is ensured to be a
rate quantity, independent of the specific potential. Note that the evolution equations can be
pulled-back to the rc in line with Equation (6.26). Furthermore, as mentioned above, the
growth and remodeling evolution is accomplished using visco-plastic concepts. Here, the
approach of |Perzynal [[1966| 1971] is adopted, such that the rate of growth and remodeling

depends on the over- and under-stress from the homeostatic surface and tends to zero as the

1
1 (@, )\
R 7 R 6.43
K Mg (2‘79) ( )

In the latter equation, 7, is the ‘growth and remodeling’ time, while v, describes the degree of

state of homeostasis is reached

non-linearity. To be capable to capture the limit of rate independent growth and for numerical
stability reasons, Equation (6.43)) is reformulated (cf. |de Souza Neto et al.| [2011]])

D, — 20, (n,7,)" = 0. (6.44)

6.4.3.2 Model II: “Two-surface’ approach

As already mentioned, the ‘one-surface’ approach is easier to be experimentally determined.
However, the accuracy to model the complex behavior of soft tissues might not be sufficient.
Hence, a ‘two-surface’ model is introduced in the following. To this end, it is important
to note that the overall Kirchhoff stress 7 is the sum of both the ‘matrix-Kirchhoff stress’
= 2F, dg? F! and ‘collagen-Kirchhoff stress’ 7., = 2F.,, dgw F! ., whereby the
elgenvalues of I‘m are the same as the ones of 7,,,. In addition, as shown by Reese [2003]], the
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_6920
— ﬂg<0
- B,>0

(a) Perspective view (b) Intersection with o3 = 0 plane

Figure 6.2: Rankine-like homeostatic surface defined with respect to the eigenvalues o; of
the Cauchy stress tensor. The hydrostatic axis is denoted by p. The surface’s
intersection with the principal axes for 3, = 0 is defined by the stress-like material
parameter o,, while 3, describes the distance to the apex.

following relation holds true
1

C. M

€co

Teo : M. =

T,, : sym <CM) (6.45)
which describes the ‘collagen-Kirchhoff stress’ in fiber direction with respect to the cc. Hence,

it is straightforward to prove that

1

o 1 _ _ _
Teo : M. = — T, : sym (CecoM) = L., sym (C M) (6.46)

Ceco M C_’eco : M ceo

holds also true. With these preliminaries at hand, the following homeostatic surfaces per

constituent are defined as

2tr (T,,) — 20m, Lt (T2) + B =0
o, — Jr(_ ) o _ 7 r( ) B (6.47)
Ltr (D) + /et (T2) + B — 20, clse
11 - -
o= 55— g Leo s Y™ (Ce.. M) — 000 (6.48)

€co

where ®,, is chosen in analogy to @, (6.40), but refers only to the ‘matrix’ part. Both ®,, and

., are described by individual preferred stresses o, and o,, and further, are scaled by .J in
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order to be defined in Cauchy’s principal stress space. The following steps are quite similar to

the previous section, i.e.

OGm Ogm 09y 09co 09co
= — = m — — N = — = — 4
) O oY (az:m) ox,,’ Jeo R 0., (6.49)

with ¢,, = ®,, + 20, and g, = P, + 0.,. Consequently, the evolution equations read as

follows
gm

N,
= Yeo T ” ——Feo (6.50)

gco”

= ’ym
1V,

o |
with individual growth multipliers *,, and 7., per constituent. Lastly, in analogy to Equa-
tion ((6.43), the following is stated

L (B N\ 1 (B,
Tm = — <_) sy Yeo = — ( ) (651)
/]7m 2am 7/]CO O'CO

both of which are similarly rewritten as Equation (6.44) for reasons like those mentioned in

Section

6.4.3.3 Fiber reorientation

In contrast to most ‘standard’ transversely isotropic materials, collagen fibers within soft
tissues are able to be remodeled by the cells, in order to optimally carry mechanical loading.
Due to this remodeling, which will be called reorientation hereafter to distinguish it from
remodeling processes described above, soft tissues can adapt their mechanical resistance to
varying loading scenarios. In the literature, two different approaches are widely used, namely
either a strain- or stress-driven approach. The latter is followed by, for instance, Hariton
et al. [20074a]] and Zahn and Balzanil [2017]], and will also be utilized within this contribution.
As a stress-driven approach, the only physically meaningful stress measure to describe this
particular phenomenon is again the Cauchy stress, where an optimal state is reached when M.
(6.31)) and o are coaxial. In line with this kind of approach, an evolution equation for n... (cf.
Equation (6.31))) should tend towards zero the more n.. becomes collinear with some target
VECHOT T, Which is usually chosen as one of the eigenvectors of o. However, considering
an evolution equation for n.., one has to deal with objective rates, which is not desired. To
avoid this issue, one can pull 72, back to the rc by means of F~', which is similar to the
approach of Zahn and Balzani [2018]]. Nevertheless, as already mentioned in Section[6.4.3.1]

9 OTtarget

B , which is not desired as the formulation

this would then generally require the derivative
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should be independent of Fm Thus, the evolution equation is prescribed with respect to the

crc and the following auxiliary vector is introduced

1 1
n=————Un — n=-———U"'n 6.52
vn-C-n vn-C-1-n (0:32)

with respect to the crc and nn - n = 1. It is also worth mentioning that 72 and M = n®n are

related to the cc as follows
n.=Rn, M,=RMR" (6.53)
Consequently, the structural tensor M in the rc can be calculated according to

1 -
=———U'MU". (6.54)
CcC1:M
In line with the approach suggested by Menzel [2005]], which is adopted by e.g. Kuhl et al.
[2005] and |[Himpel et al. [2008], the following evolution of 7 is assumed

A= 27:75 (P X Fhrarger) X7 (6.55)

-~

&

such that the rate decreases as the angle <{ (72, Toreer) becomes smaller (et = R Torarger)-
The parameter 7, can be considered as the remodeling time of fiber reorientation. Note that
this particular evolution equation was originally introduced in the context of a strain-driven
approach, but can also be used for a stress-driven approach. Additionally, the latter equation
can be reformulated

n=Qn (6.56)

with Q = Z?:l (W X e;) ® e; being skew-symmetric, and thus, fulfilling the orthogonality
condition 1 - 2 = 0.

So far, N is not further specified, except that Cauchy’s eigenvectors are most reasonable
when expressing the evolution with respect to the cc. Since o and 7 share the same eigenvectors,

one may also go for the latter one. In this regard, the spectral decompositions

3 3
T = Z TiMg, @My, T = Z Ti Nz, @ Nz, (6.57)
i=1

i=1

8Further, the issue of the derivative g—g arises again (cf. Footnote @ A solution for this might be the so-called
first elasticity tensor a;% and its pull-back to the rc (see|Ogden| [[1984]).
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are introduced with the same eigenvalues 7; for both tensors, but different eigenvectors 7.,
and nz, which are related by n,, = Rnz. Itis appealing to recognize that < (n,n;) =
< (N, Mr, ), Which substantiates Equation (6.55) with a physical meaning, since the angle in
the crc remains the same as in the cc. Based on the maximum eigenvalue 7;, T2 is chosen
the same as the corresponding eigenvector 1z, which is described in detail in Appendix
In case of several maximum eigenvalues, the smallest angle between the eigenvectors and the

current direction of n is calculated and serves as a decision-making aid.

Remark 19. A more mathematical treatment of Equation (6.55)) and its derivation based on a
pull-back from the cc as well as the associated objective rate can be found in Appendix[6.8.8}
It is shown that the evolution described by Equation (6.55) follows from an evolution equation

for n..

6.4.4 Particular choice of Helmholtz free energy

The material model presented so far was derived in a general manner without specifying the
Helmbholtz free energy. Hence, the material model is independent of the chosen form. However,
in order to study the model in a more detailed manner, a suitable energy must be chosen. For

the time being, a compressible Neo-Hookean-type energy is chosen for the ‘matrix’ part

U =2 (1r(Ce,.) = 3 n (det (C.,.))) + %m (det (C,,) — 1 —1In (det (C.,,)))

(6.58)
with the Lamé constants A,, and ., of the ‘matrix’ part. Additionally, an energy originally
introduced by |Holzapfel et al.|[2000] is adopted for the collagen part, and further, the common

assumption is made that collagen fibers cannot carry compressive loads, i.e.

€co

heo = 212 St (6.59)
0 ,tr (C M) <1

o (exp [ 16 (i (Cob) = 1) = 1) L1 (G M) 21

where K7 and K, denote material parameters. It should be noted that fiber dispersion might
be included in line with |Gasser et al. [2006], but it is not considered at the current stage
of development. Nevertheless, the interested reader may find experimental studies on the
determination of the dispersion parameter in Schriefl, Reinisch, Sankaran, Pierce and Holzapfel
[2012] and Schriefl, Zeindlinger, Pierce, Regitnig and Holzapfel| [2012]. With these energies
at hand, the model will be investigated in Section [6.6] however, it should be noted that due to

the cic framework combined with AD, it is quite easy to change the expressions for the energy.
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6.5 Algorithmic implementation

In the following, both the algorithmic implementation of the material model is presented as
well as the essential steps of the element formulation are summarized. Since the element
formulation used within this contribution is not the focus, the interested reader is kindly
referred to the works cited below. Both the material model as well as the element routine
are implemented with the help of the algorithmic differentiation tool AceGen (Korelc [2002],
Korelc and Wriggers|[2016]). Further, in line with Korelc| [2009], ‘;E:g denotes an algorithmic
differentiation operator, indicating that the derivative is obtained by means of AceGen.

Moreover, a single Gaussian point concept for continuum elements (Q1STc) by Barfusz,
Brepols, van der Velden, Frischkorn and Reese [2021] is employed, which is based on the
Enhanced Assume Strain (EAS) method introduced by [Simo and Armero [1992]. The former
carry out a Taylor expansion of both the element’s geometry and the constitutively dependent
quantities with respect to the element’s center. As studied by Holthusen et al.|[TBA], omitting
the Taylor series of geometry while using only a Taylor series expansion of the constitutively
dependent variables leads to increased performance and more accurate results. The interested

reader may find a short summary of the enhanced Q1STc element using AD in Appendix[6.8.9]

6.5.1 Implicit time integration and corresponding local residuals

On the local level, a fully implicit time integration scheme is employed, where all evolution
equations are discretized within a time interval ¢ € [t,,, t,,+1] (At == t, 11 — t,). Values from
the last converged time step are indicated by an index n, whereas the index n 4+ 1 denoting
values from the next time step is omitted in the following. Regardless of the choice of the
model with one or two homeostatic surfaces, evolution equations for D, and D, have to be

solved, which both can be represented as follows, considering Equation (6.26)
C,=2UTU, T =T (6.60)

Originally suggested by Dettmer and Reese [2004]] and further improved by Christ and Reese
[2009] and |VIadimirov et al. [2008], their formulation of an exponential integrator scheme for

the time discretization is used, i.e.

Ci=exp 2AtUTU; ) C,. (6.61)
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Having in mind that the exponential satisfies the identities exp (A) " = exp (—A) and
exp (BAB™!) = Bexp (A) B~ if B is invertible, the following residual form is obtained

U —Uexp (—2AtT;) U; = 0. (6.62)

Additionally, it is appealing to note that Equation (6.62)) naturally ensures the symmetry
of U;. Unfortunately, calculating the exponential of —2 At T} usually requires a spectral

decomposition or truncated series representation, in order to be able to also calculate the

Oexp(A)
oA

circumvent this, the approach proposed by [Korelc and Stupkiewicz| [2014] is followed, who

derivative However, this leads to an undesired increase in numerical effort. To
compute the exponential function based on a generating function (see |Lu [2004]) by means
of AD. Noteworthy, Arghavani, Auricchio and Naghdabadi [2011]; Arghavani, Auricchio,
Naghdabadi and Reali [2011] investigated a reformulated residual of Equation (6.62) using the
logarithm instead of an exponential integrator with considerable success in terms of numerical
efficiency. Moreover, the calculation of 7 requires the determination of the stretch tensor U and
its derivative with respect to C. However, it should be mentioned that this must be calculated
only once before the local Newton-Raphson iteration and does not need to be updated. Similar
to the exponential, this tensor is obtained by means of a generating function .% (C') combined
with AD (see [Hudobivnik and Korelc|[2016]).

For time discretization of Equation (6.56)) describing the fiber reorientation, an exponential

integrator scheme is utilized, i.e.
7i — exp (At Q) fi, = 0. (6.63)

Note that the index n + 1 is omitted again. Since Qis skew-symmetric, the following closed-

form expression, which is known as Rodrigues’ formula, is employed

sin (Au/ﬂ) P 1 — cos (Au/ﬂ)

w-w ( a-w)2

02 (6.64)

The evolution of fiber reorientation is thus implemented in an efficient manner. Moreover,
since exp (At Q) € SO(3), the (time discretized) evolution equation does indeed describes a
rotation.

The number of local unknown variables depends on the chosen material model with one or
two homeostatic surfaces. Under consideration of the symmetry of both U, and U,_, the

gdco?

unknowns reduce to 16 for Model I and 17 for Model II. Appendix|[6.8.10]provides two pseudo-
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codes, Algorithms [3] and ] in order to make the material models’ implementation easier to

understand.

6.5.2 Algorithmic consistent tangent operator

To achieve quadratic convergence within the global Newton-Raphson iteration, it is necessary to
derive the (algorithmic) tangent operator consistently with the local time integration introduced
in the previous section. Therefore, the implicit (algorithmic) dependency of the local variables
with respect to the displacement field must be taken into account. Although already presented
in Algorithms [3|and 4] the derivation of the tangent operator is briefly shown in the following.
Since this derivation is more or less the same for both models, the derivation is restricted to
Model 1.

Under consideration of all previous constitutive equations, one can identify the following
dependence S = §* (C,U,n,U,, U, ). Thus, the algorithmic consistent tangent operator

C can be calculated

oS 0§ oU 0S8 o0n 0S oU, oS 0U,
=2 =t = =+ = == Ao ;e 6.65
t (ac o ac Ton ac Tau, oc T auU,. ac ) (6.65)
where the index n + 1 is again omitted. Since U depends solely on C, g—g can be directly

calculated as, for instance, described in the previous section. The algorithmic dependence
of the local variables is obtained using the implicit function theorem. In this regard, let
h; = hy (Ugm, n, ﬁgw> denote the local variables, and further, ry <C’ , hI) = 0 being a
converged local residual. Hence, K, defined via

ohy ( ory > 1 ory

=) = 6.66

oc  \oh oC (6.66)
::?(rloc

contains all desired implicit derivatives appearing in Equation (6.63) .

6.6 Numerical examples

In the following, the models’ response in an academic setting as well as their capability to
reproduce experimental observations are investigated. Section examines the models
while undergoing temporary changing boundary conditions. Afterwards, in Section [6.6.2]the

material models are compared with recently published experimental data taken from Eichinger
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et al.|[2020]] in a qualitative manner. The different material sets used within the latter mentioned
studies are summarized within Table Both the element routine as well as the material
models with Model I and II are implemented into the finite element program FEAP (see
Taylor| [2020]), the open-source package ParaView (see |Ahrens et al.| [2005]]) is utilized for
visualization and the finite element meshes are generated using the commercial software
HyperMesh.

Table 6.1: Material parameter sets. The parameters belonging to the Helmholtz energy and
fiber reorientation may vary in set 2 and set 3, depending on whether Model I
or Model II is used. Moreover, the homeostatic stresses in set 3 depend on
which experiment (‘dog-bone’ or cross specimen) is simulated. However, the ratio

‘dog-bone’ Cross
om0 — Zm (.69 is kept constant.
Oco Oco
Symbol Nume.rical Example 6.6.1 [6.6.2.1 6.6.2.2 .
Material parameter Set 1 Set 2 Set 3 Unit
Helmholtz free energy
. . - I: 50 I: 818 N
A, Lamé constant of ‘matrix 50 1L 40 1999  mmZ
. ., I: 80 1:982  uN
L Shear modulus of ‘matrix 100 1L 70 1L 426 o
Ky Stiffness parameter of collagen 200 Ii ;gg I} ggg; n‘f—gz
K, Exponential parameter of collagen 20 Ii }ég I —
Model I
oy Homeostatic stress 20 11.6  ‘dogbone: 133 uN
cross: 22.9 mm
By Stress-like apex parameter 1 1 1 n’f—EQ
Mg Relaxation time 150 400 658 h
Vg Perzyna exponent 1 1 1 —
Model IT
Om Homeostatic stress of ‘matrix’ 10 4 ‘dogbone: 572 uN
cross: 10.6 mm
Bm Stress-like apex parameter of ‘matrix’ 1 1 1 n’f—f;g
Nim Relaxation time of ‘matrix’ 75 250 280
Vm Perzyna exponent of ‘matrix’ 1 1 1 —
Oeo Homeostatic stress of collagen 10 7.6  dogbone: 828 uN
cross: 15.3 mm
Neo Relaxation time of collagen 75 100 381 h
Veo Perzyna exponent of collagen 1 1 1 —
Fiber reorientation
. . . . I:5 I: 50
s Relaxation time of reorientation 5 h

II: 10 II: 37
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Figure 6.3: Left: Geometry and boundary value problem of cylindrical specimen. Both bottom
and top surfaces are clamped. At the top, the displacement in longitudinal direction
is prescribed, while the same displacement is prescribed in negative direction at
the bottom edge. Right: Finite element mesh with 1377 elements used for the
cylindrical specimen.

6.6.1 Cylindrical specimen

In order to study the ability of both achieving the prescribed homeostatic stress as well as
reorient collagen fibers, a cylindrical specimen is fully clamped at the top and bottom surface,
while the displacement perpendicular to these surfaces varies with time. Figure[6.3]illustrates
the corresponding boundary value problem as well as the finite element mesh used for these
studies. The material parameters are arbitrarily chosen and correspond to ‘set 1’ listed in Ta-
ble[6.1] The displacement is prescribed in a stepwise manner over time, where certain values
are held constant for a time period of 20 [h] (see Figure[6.4). Both stretching and compression

of the cylindrical specimen are investigated.

Homeostatic stress. To begin with, the fibers are initially aligned with the z axis. Since the



224 6 Inelastic material formulations based on a co-rotated intermediate configuration...

stress state in the middle of the specimen is almost uniaxial, the fibers do not have to reorient
themselves, expect for the region near the clamping. Hence, the effect of remodeling can
studied in a more detailed manner. In Figure [6.5] the obtained Cauchy stress as well as the
reaction force in z direction are shown. Up to ¢ = 20 [h], both the Cauchy stresses and reaction
forces for Model I as well as Model 1l rise up to the desired homeostatic stress. Noteworthy,
due to the additive decomposition of .S (cf. Equation (6.34)) also the Cauchy stress is the sum
of both constituents. Thus, for Model II, the observed Cauchy stress must be equal to the sum
of 0., and o, in a uniaxial setup, which is the case here. The specimen is then loaded at three
different intervals with different specified displacements. In each interval, both model versions
are able to regain the homeostatic stress state, where Model II reaches the state within a shorter
time period. It should be noted that the reaction forces in each interval are not necessarily the
same, since the homeostatic stress is given in terms of Cauchy’s stress, which is defined per
unit current area. Since the current areas are not the same in each interval, the reaction forces
are also not the same. Moreover, Figure [6.6|illustrates the radial displacement of the cylinder.
As expected, the specimen contracts itself during the first interval to achieve a tensile stress
state. Stretching the specimen within the second step increases the tensile stress, which is why

the specimen relaxes afterwards. The remaining steps can be analogously interpreted.

Fiber reorientation. It remains to investigate the models’ capability to align the fibers
with the eigenvector associated with the principal stress direction. Contrary to the previous
study, the initial fibers are therefore randomly orientated in each element. Nevertheless, the
specimen is subjected to the same loading conditions as before. However, only up to a value
of ¢ = 40 [h]. In Figure the fiber vector 7 is illustrated. It can be readily observed that, in
addition to remodeling to achieve a homeostatic stress state, the fibers in both model versions
reorient and align with the principal stress direction. Even after immediately increasing the
load at ¢ = 20 [h], the fibers are still able to align with the principal direction. In addition,
the expansion and contraction already observed in Figure [6.6] can be well seen in Figure
between t = 0 — 20 [h] and £ = 20 — 40 [h], respectively.

6.6.2 Qualitative comparison with experimental data

In the following, the two model versions are qualitatively compared with recent experiments of
equivalent tissues conducted by Eichinger et al. [2020], who provided the authors with both the
experimental data and the geometry for the specimens. In the mentioned study, two different
geometries are examined, one is a ‘dog bone’ specimen to examine the equivalent tissues under

a nearly uniaxial stress state, and the other is a cross specimen to examine multiaxial stress
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Figure 6.4: Stepwise loading procedure applied to the boundary value problem depicted in

Figure[6.3]

states. A cell-seeded collagen gel is used, which is clamped directly into the testing device with
the end of gelation. The subsequent experiment starts immediately, ensuring a stress-free state
at the beginning. For more details of the manufacturing and testing procedure, the interested
reader is kindly referred to the work of Eichinger et al.| [2020].

6.6.2.1 ‘Dog-bone’ specimen (uniaxial constraint)

In this section, a ‘dog-bone’ shaped specimen is investigated. Figure[6.§]illustrates the geom-
etry as well as the finite element meshed used for simulation. Due to the force transducers in
the experimental setup, the right and left edges are considered to be clamped and not simu-
lated. The aim is to investigate to what extent the model versions are able to reproduce the
homeostatic state compared to experimental data. For this purpose, the ‘dog-bone’ specimen
is held fixed for 17 [h] until a tensile state is reached by growth and remodeling. Subsequently,
the reaction force obtained after 17 [h] is perturbed by +10%. Note that this perturbation is
applied in a displacement-driven manner, which is held constant up to 27 [h] (cf. Figures|6.11]

and|[6.12).

For both Model I and Model II, the material parameters are fitted to the experimental data
using nonlinear optimization with the help of the Matlab build-in function patternsearch. The
obtained parameters correspond to ‘set 2 listed in Table [6.1] It is important to mention that

in both cases only the experimental data of +10% up to 17 [h] are used for optimization.
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Figure 6.5: Cauchy stress o, and reaction force F), in longitudinal direction obtained with
Model I and II. The homeostatic stress for Model I is chosen as o, = 20 [ IS‘HTQ}

while the sum of o0, and o, is equal to 20 [ rﬁ:?} for Model II. The loading

conditions are depicted in Figure[6.3]and [6.4] The Cauchy stress is evaluated at the
node closest to the center of the cylinder.

Hence, the response of the model is not adjusted for neither perturbation nor compression,
which means that these results are predictive. However, due to a current lack of experimental
data, the material parameters differ per model version, and further, are not necessarily the only
solution possible, i.e. they might be not unique. A more detailed analysis of the individual
constituents as well as more information about the displacement field, e.g. using digital image
correlation, are required to optimally determine the parameters. In this regard, it should be
noted that the Perzyna exponents v; and the stress-like parameters 3; were not optimized to

restrict the solution.

Before the numerical observations are discussed, a careful mesh convergence study is per-
formed using 280, 663, 2112 and 4580 finite elements. The obtained force-time curves are
depicted in Figure [6.9] while the corresponding meshes are shown in Figure [6.10] A very
good convergence behavior can already be observed with coarse meshes. For the following

investigations, the mesh with 2112 elements is used.

As mentioned above, the testing procedure is divided into two parts, where the boundary
conditions are kept constant for the first 17 hours, followed by a rapid increase in displacement
to achieve a force perturbation. Both the experimental data including the standard error of the

mean (SEM) as well as the numerical results are shown in Figure [6.11] for Model I and Fig-
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Figure 6.6: Displacement in radial direction of the cylinder on the side surface at half the
height of the cylinder. Positive values would mean that the cylinder is expanding
compared to the initial configuration.

ure [6.12]for Model II. One can observe that the equivalent tissues seek a tensional homeostatic
state, independent of whether a positive or negative perturbation is applied, which is consistent

with other experiments available in the literature (see, for instance, Brown et al.| [1998]] and

Ezra et al.|[2010]).

The ‘one-surface’ approach reveals the S-shaped increase within the first 17 hours slightly
more accurately, while the ‘two-surface’ approach re-establishes homeostasis within a shorter
period of time. However, both do not establish the homeostatic state as fast as observed in
the experiments. Nevertheless, with both versions it is possible to reproduce the experimental
curves in a very good way, which is especially pleasant for Model I considering that only the
overall behavior is specified. Thus, it becomes evident that only specifying the Helmholtz free
energy and the assumption of homeostatic surfaces leads to reliable results. But it must be
emphasized that a more precise investigation in the future is essential.

Furthermore, in Figure the Cauchy stress in longitudinal direction for the +10% loading
is shown at the beginning, just before (177) and right after (17") the perturbation as well as at
the end of the simulatiorﬁ A homeostatic state is achieved mainly within the entire specimen
before the perturbation, increases with stretching and is re-established in the following. In line

with the previous observations, Model II is slightly more rapid.

19The results for the —10% loading procedure are similar.
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Model 1

Model 11

Figure 6.7: Fiber reorientation of Model I and II. The structural vector 7 is illustrated. The
initial fiber orientations are randomly chosen in each element. The loading proce-
dure prescribed in Figure [6.4]is applied up to ¢ = 40 [h]. The snapshot at ¢ = 20~
[h] corresponds to the state immediately before the perturbation is applied. The
deformed geometry is not to scale.

Besides these promising results, a remark should be made on the experimental results only
for the +10% loading procedure. Although the simulation clearly re-establishes homeostasis,

the experimental results seem to slightly differ from this particular state. An explanation for

this phenomenon was already given by [Eichinger et al. [2020], who concluded that the cells

may exceed a certain threshold and re-enter the cell cycle increasing the number of cells. An
increased number of cells would explain a change in the preferred homeostatic state. Since
cell proliferation is out of the scope of this work, this phenomenon cannot be modeled with
the presented models. Noteworthy, the experimental setup is slightly changed in the following

section, where Mitomycin C is used in order to minimize proliferation.
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Figure 6.8: Geometry for ‘dog-bone’ specimen. The thickness is four millimeters. Top: Mold
used for manufacturing. Bottom: Finite element mesh with 2112 element in total
(four elements over the thickness, see Figure [6.10c]). The edges are considered to
be clamped, and thus, are not simulated.

It remains to investigate the reorientation of collagen fibers, which is depicted in Figure [6.14]
Since the equivalent tissues did not undergo any mechanical loading during manufacturing, a
random distribution of collagen fibers is assumed at the beginning. The fibers are aligned with
the principal stress direction after 17 hours and align themselves also after the perturbation is
applied. Only in the region near the clamping no clear fiber direction can be identified, but

this can be explained by a very complex stress state in this area, which is not surprising.

Lastly, attention should be paid to the numerical performance. Therefore, the residual norms
of the global Newton-Raphson iterations at three different time steps are shown in Table
Regardless of the used model, the convergence rate is perfectly quadratic throughout the whole
simulation and converges towards the solution in a few iterations. Even after the perturbation is

applied, which is a strong discontinuity in the displacement, the convergence is very satisfying.

6.6.2.2 Cross and ‘dog-bone’ specimen (multiaxial constraint)

In order to study the models undergoing multiaxial boundary conditions, a cross specimen

is investigated in the following. As already mentioned in the previous section, with the
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Figure 6.9: Force-time curves with four different mesh refinements for the ‘dog-bone’ speci-

ry >y .

(a) 280 elements (b) 663 elements (c) 2112 elements (d) 4580 elements

Figure 6.10: Finite element meshes with four different mesh refinements for the ‘dog-bone’
specimen. The refinement is performed in all three spatial directions.

experimental setup used by [Eichinger et al.| [2020] for the ‘dog-bone’ specimen, it cannot be

ensured that cell proliferation is avoided, which is why they treated the cells with Mitomycin C
preventing a re-entering of the cell cycle. Hence, also the ‘dog-bone’ specimen is investigated
once more in the following. The mold utilized for manufacturing as well as the boundary value
problem used for the cross specimen are depicted in Figure[6.15] As in the previous example,
the outer edges are considered to be fully clamped. Similarly, the loading is prescribed in
a two-step manner, however, contrary to Section [6.6.2.1] the state of homeostasis is reached
within a period of 27 hours, while the total time taken by the experiment is 42 hours. Moreover,
the homeostatic forces achieved in both the cross- and ‘dog-bone’-setup are perturbed again
after 27 hours, but with £20% of their values.

Due to a more sophisticated experimental study, let us briefly summarize the setups investigated

in this section

* ‘Dog-bone’: Same experimental setup as in Section [6.6.2.1], but with a perturbation of
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Figure 6.11: Model I - Comparison of simulation with experimental data of ‘dog-bone’ tissue
stripe. Left: Perturbation at t = 17 [h] with +10% of the homeostatic reaction
force. Right: Perturbation at ¢ = 17 [h] with —10% of the homeostatic reaction
force, experimental data is plotted as the mean value of all experiments with error
bars denoting the SEM.

+20% of the homeostatic force. With this kind of setup, a uniaxially constraint problem
is investigated in the middle of the specimen (see Figures [6.16a] and [6.17al).

* Biaxially constraint — semi-biaxially loaded: A cross-like specimen is investigated. The
force perturbation is applied in a semi-biaxial manner, i.e. only the displacements of the
horizontal arms in z direction is changed after 27 hours (see Figures [6.16b]and [6.17D).

* Biaxially constraint — biaxially loaded: The same cross specimen is investigated as
before, but this time both the horizontal (z) and vertical (x) arms are stretched by +20%
as well as compressed by —20% of their homeostatic forces (see Figures and

Thus, a total of ten independent experimental curves are available, since the forces in both

directions were measured for each of the cross-like setups.

To begin with, the same parameters as in the previous section (‘set 2”) are used. Unfortunately,
it was even not possible to reproduce the experimental observations made for the ‘dog-bone’
specimen shown in Figure [6.16al and [6.17al However, this could be expected, having in mind

that neither the parameters are uniquely determined with certainty as already discussed in Sec-

tion[6.6.2.1] nor that the specimens can be considered to be the same as in the previous section
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Figure 6.12: Model II - Comparison of simulation with experimental data of ‘dog-bone’ tissue
stripe. Left: Perturbation at t = 17 [h] with +10% of the homeostatic reaction
force. Right: Perturbation at ¢ = 17 [h] with —10% of the homeostatic reaction
force, experimental data is plotted as the mean value of all experiments with error
bars denoting the SEM.

due to the Mitocymin C. Hence, the material parameters must be fitted to the experimental data
once more, where nonlinear optimization tools are utilized to determine the material param-
eters. For optimization, only the experimental data of the ‘dog-bone’ and the semi-biaxially
loaded cross specimen with +20% in both directions perturbation were used, but only up to
the time step just before the perturbation is applied (t = 27~ [h]). Thus, only three out of ten
experimental curves are used for fitting, which means that the remaining results are predictive.
However, it was not possible to determine a suitable set of preferred stresses which fit to both
‘dog-bone’ as well as cross specimen. Hence, it was decided to use the same parameters for
both ‘dog-bone’ and cross specimen, but let the preferred stresses differ from each other (see
‘set 37 in Table [6.1)). Nevertheless, it should be mentioned that for Model II at least the ratio

p dog-bone eross

oo = i N 0.69 is kept constant. Of course, it would be desirable to determine a single
sé‘i of paramcéters, but given the arbitrary choice of homeostatic surfaces, which is mechanically
motivated but requires a much more sophisticated experimental determination, the assumption
of different homeostatic stresses is acceptable. A more precise determination would require

further experiments, which is beyond the scope of this contribution.

A careful mesh convergence study in analogy to Section [6.6.2.1] was carried out using 626,

1032 and 3132 finite elements. The results are not shown here for brevity. However, a similar
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Figure 6.13: Cauchy stress in z direction at different time steps for the +10% loading procedure.
Here, 17~ denotes the time step right before the perturbation is applied, while
17" corresponds to the time step right afterwards.

behavior as in Figure [6.9] was observed. The results presented in the following correspond to

the solution with 3132 finite elements in total, where four elements over the thickness are used.

Regardless both semi-biaxial or biaxial loading and stretching or compression, the results up
to the perturbation (f = 27~ [h]) should be the same for all cross investigations. Indeed,
the simulation clearly shows this kind of behavior, except for some minor deviations due to
randomly chosen initial directions of the fibers. Contrary, the experimental results show signif-
icant deviations, which might be explained by the inherently very large variability in biological

tissues. In addition, the different slopes at the beginning between the ‘dog-bone’ and cross

specimen raise questions. As mentioned by Eichinger et al.|[2020] themselves, replacing the

cross specimen with a ‘dog bone’-like one should not affect the results, which is consistent
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Figure 6.14: Fiber reorientation of Model I and Model II for the ‘dog-bone’ specimen. The
structural vector 7 is illustrated. The results correspond to the +10% loading
procedure.

with observations made in the simulation. However, the experimental data strongly differ from
each other. With the approach of equal parameters for all specimens, it was not possible to

determine a more suitable parameter set.

Both model versions are able to reproduce the experimental studies in a surprisingly close
way. However, compared with Model I (see Figure [6.16), Model II (see Figure [6.17) performs
better in terms of both recovery of the homeostasis as well as less deviation for the entire time
period investigated. Therefore, the following discussion focuses on the results obtained using
Model II, but the corresponding results of Model I are shown in Appendix[6.8.11} Additionally,
the results for the ‘dog-bone’ specimen are qualitatively the same as in Section [6.6.2.1] and
thus, are also not discussed below.

In Figure [6.18] the Cauchy stresses in = and z direction are shown for both the semi-biaxially
and biaxially loaded cross specimen undergoing stretching. As desired, right before loading
(t = 27~ [h]), the component o, in the vertical arms tends to the homeostatic tensile stress
while in the horizontal arms the stress component o, behaves similarly. This is independent
of the subsequent semi-biaxial or biaxial loading. Perturbing the homeostatic force by +20%
generally increases the observed stresses, whereby the increase in the vertical arm is higher in
case of biaxial loading (t = 27 [h]).

For the case of compression by —20% of the homeostatic force, the Cauchy stress components
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Table 6.2: Global convergence rates of the ‘dog-bone’ specimen at three different time steps
(see Figure[6.1T] and [6.12). Listed are the global residual norms, where ¢ = 17.01
[h], also referred to as ¢ = 17 [h], corresponds to the first iteration after applying
the perturbation of +10%.

t = 8.5 [h] t =17.0 [h] t=17.01 (17") [h]
Iteration Model 1 Model 11 Model I Model II Model I Model II
0 1.117E+00 2.096E+00 5.617E-01 1.064E+00 1.707E+02 1.500E+02
1 1.842E-03 3.255E-03 5.191E-04 1.243E-03 4.876E-01 1.828E-01
2 6.231E-08 8.186E-08 8.039E-10 7.286E-09 1.217E-03 9.959E-05
3 8.115E-11 6.893E-11 - - 1.649E-08 1.061E-10

41.2 60

Figure 6.15: Geometry for cross specimen. The thickness is four millimeters. The mold used
for manufacturing is highlighted in grey. The edges are considered to be clamped,
and thus, are not simulated.

immediately before and after perturbation are shown in Figure[6.19] Due to the same exper-
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imental setup up to ¢ = 27~ [h], there is nearly no difference between the semi- and biaxial
loading, and moreover, the results are quite similar as in Figure [6.18 Noteworthy, the small
deviation result from the randomly chosen fiber directions at the beginning. In contrast to
stretching, a decrease in the stress components is observed for compression, whereby, however,
the results concerning the vertical and horizontal arms for both semi-biaxial and biaxial loading
can be interpreted analogously to the previous results made for stretching.

Finally, Figure [6.20] illustrates the reorientation of fibers during the simulation. At the begin-
ning, the fibers are randomly orientated. While the specimens grow and remodel themselves
in order to reach a tensile homeostatic state, the fibers within the arms align with the principal
stress direction. Contrary, the fibers in the center of the specimens are orientated rather ran-
domly. Compared with Figure[6.18] these behaviors are quite good understandable, as there is
a main tensile stress within the arms, while both o, and o, are positive and almost equal in
the specimen’s center resulting in a more complex stress state. Both observations are in line
with experimental findings made by Hu et al. [2009]]. At the end of the simulation, an even
clearer alignment can be noticed, which can be explained on the one hand by the extra stimulus

due to the perturbation and on the other hand by the additional time for the reorientation.

6.7 Conclusion and outlook

The main objective of this work were, to introduce a novel constitutive framework based on a
co-rotated intermediate configuration for various types of inelastic material behaviors,which is
used in the context of a stress-driven growth model for materials behaving initially anisotrop-
ically. This general framework and the material model excellently synergize with each other,
since modeling of biomechanical processes is usually associated with a high degree of com-

plexity.

The co-rotated intermediate configuration shares the same physical interpretation with the
intermediate configuration, which is the starting point for most inelastic material models.
However, contrary to the intermediate one, the co-rotated one is uniquely defined, i.e. all
strain- and stress-like quantities can be determined within this configuration. Thus, all deriva-
tions required to derive the constitutively dependent or thermodynamically consistent variables
can be obtained using algorithmic differentiation. Moreover, the derivation of evolution equa-
tions using dissipation potentials that depend on these constitutively dependent variables can
also be computed using algorithmic differentiation. Due to the latter steps as well as due to

the fact that the calculation of the (algorithmic) consistent tangent is known to be very error-
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prone, the co-rotated framework significantly simplifies the development of new continuum

mechanical models.

The stress-driven growth model can be considered the initially anisotropic version of the
model proposed by |[Lamm et al. [2022]. Hence, biological fibers such as collagen can be taken
into account. As presented by the latter mentioned authors, the growth and remodeling process
in order to achieve a state of tensile homeostasis is modeled using homeostatic surfaces. Thus,
the inelastic part of the deformation gradient does not have to be specified a priori. The model
seeks to achieve the preferred stress state described by the surfaces in the principal stress
space of Cauchy’s stress. Within this contribution, two versions of the model were presented.
The first version assumes one homeostatic surface in terms of the overall Cauchy stress, the
second assumes two surfaces expressed in terms of the stresses of the individual constituents.
While the former is easier to be experimentally determined, the second one is more flexible
in modeling the behavior of soft tissues. In addition to growth and remodeling, stress-driven
fiber reorientation was also taken into account. It was assumed that fibers align with the main

principal stress eigenvector.

Finally, the model versions were implemented in an efficient way using an algorithmic dif-
ferentiation tool. Computational examples were performed to study the models’ ability to
reach a homeostatic state under several loading conditions, their reorientation behavior as well
as their numerical performance. The models were qualitatively in good accordance with the

experimental data of [Eichinger et al.|[2020] even for complex multiaxial setups.

Despite these promising results, a more comprehensive determination of the model versions’
material parameters is of high interest as well as further validation. For this purpose, digi-
tal image correlation should be employed to obtain high resolution of the deformation field.
Additionally, more experimental evidence on the usage of homeostatic surfaces is necessary.
Besides these topics, cell-cell interactions such as cell aggregates (see e.g. [Firooz et al.|[2022])
as well as diffusion of nutrients and hormones should be considered in future work, as done
for instance by Manjunatha et al.| [20225] — all these factors influence and limit growth and

remodeling in addition to the mechanical stimuli considered in this contribution.
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6.8 Appendix

6.8.1 Summary of pbic framework

For simplicity, the influences of structural tensors as well as an additional split of F; are
neglected in the following. Further, no dependence on B; is assumed. Thus, the Helmholtz

free energy reads

=1 (Ce). (6.67)

Inserting the above energy into the dissipation inequality —v) + %S’ . C > 0 leads to the

following expression

Lo ) 1 o
—2F! —T ). — . D;>0. )
(S 2 F, aCeF’ ) 2C+2Ceace D; >0 (6.68)
—
=X

Following the arguments of (Coleman and Noll| [1961] and under consideration of J} being an

isotropic function, the general expression for S and 3 are obtained as

S =2 (oq Cl +ay CFICC + ay O (CC’;l)2> (6.69)
S =2 <a1 FTCF ' +0, F"CC;'CF ™" + a3 F/ T (CC;Y) CF;1> (6.70)

with «; = i%. The Mandel-like stress tensor 3 can be related to the Kirchhoff stress

tensort = FSFT =2 Fe%Fg by 3 = FZ+F-T. Hence, both share the same eigenvalues.
Consequently, a scalar-valued isotropic function of 3 can be interpreted analogously in terms
of T.

It is obvious that F; is required in order to compute 3, however, F; is not unique. As common
practice in elasto-plasticity or visco-elasticity, the evolution law is derived from a potential
g; depending on the invariants of the thermodynamic driving force. This potential itself is

assumed to be an isotropic function, resulting in the following expression for the inelastic rate

.09 y y
D=5 % =g (B I+5 5+ 55 52) (6.71)
>
with 4 being some rate quantity and 3; = @ %. Hence, the computation of D), requires F; as

well. In order to stay within this ‘classical” framework, several pull-backs are necessary, which
will be briefly presented in the following. At first, one notices the relation > =C.FS FT.
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With this at hand, it is easy to show that the invariants of 3 can be expressed as
tr <2k) — tr ((ETCQES)k> —tr ((CS)’“), ke {1,2,3) (6.72)

which do not require F;. Next, having the relation C’Z = 2FZ-TDiFi in mind, the evolution law

can be pulled-back and rewritten as

Ci =2 Fngz F, =2 (5 Ci+ b, F'SF, + 3 F'S°F,) 6.73)
with
F'SF, =2 (a1 C+0; CC;'C +ay (CC1)'C). (6.74)

The latter can be expressed in terms of C' and C;. Note that a similar result can be found for
ETfJZE. Thus, the rate of C; does not require F;.

6.8.2 Different mappings of structural tensor

In the following, three different mappings of the structural tensor H in addition to the one
presented in Equation (6.10) from the reference configuration to the cic are considered (cf.

Dafalias|[1987]]). Therefore, the Helmholtz free energy is assumed as follows
v =14'(C, H). (6.75)

The corresponding reduced dissipation inequalities (cf. Equation (6.24))) are obtained as:

|. H=U'HU ' (H=F THF™).

aw/ _ aw/ _ _1 aw/
2H D, - U,
- ) Ll OH

=2
Dhea <Cac OH

—U;! "H >0 (6.76)

2. H=UHU; ' (H = F,HF ).

@red;_<2ca¢ 6¢HT+HT(%i> L,— U8¢U H>0 (6.77)

oC. o0H OH ‘OH
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3. H=U'HU;(H = FTHF):.

_ aw/ B awl T awl T B ) awl )
=12 = H — — — H|:L,—U: —U,: H >
Dred ( Ceae, <8H> (8H iU gl H =20

(6.78)

6.8.3 Invariants

The invariants in the intermediate configuration can be expressed in terms of cic quantities as

follows

tr (CF) =tr (CF), tr (Bf) = tr (CF), k € {1,2,3} (6.79)
tr(BS) = tr (BE), tr (H") =t (H"), ke {1,283} (680)

%

tr (chfobﬁd> —tr (C°C'BS HY), a,b,c,d € {0,1,2} (6.81)

where the ‘structure’ of the invariants is maintained. Alternatively, one may investigate the

characteristic polynomial, for instance,
pr(Aa) = det (C. — Aud) =det (R; [C. — AaI| R') = det (C. — AaI)  (6.82)
or

pa(Ag) = det (C.B, — AgI) = det (R, [C.C,, — A\gI| R;") = det (C.C, — A\pI)
(6.83)

and so forth.

6.8.4 Modeling inelastic strains Euler-Almansi-like

The Green-Lagrange strain tensor E = %(C’ — I) is pushed to the Euler-Almansi strain
tensor by A = F-TEF~! = %(I — B™'). Hence, its counterpart in the intermediate
configuration F;, "EF; ' = 1 (C.—I)+ 1 (I - B;') = E. + A, additively decouples
elastic and inelastic strains. Here, the inelastic strains are modeled Euler-Almansi-like. In this
regard, the cic strains read Ri_lEeRi = % (C’e — I) as well as R;lAiRi = % (I — Ci_l).

Thus, it is more convenient to express the Helmholtz free energy as

=19 (C.,C). (6.84)
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With the relation C;! = —C;"1C;C;* at hand and in comparison with Equations (6.24) and
(6.25)), the following is found
0u

_ O _
ed = [2C.=—= +2C! . D; > 6.8
Dred <C€)Ce+ C, acf) >0 (6.85)

where the term in brackets is still symmetric (cf. the first mapping presented in Appendix[6.8.2).

6.8.5 Elasto-plastic and visco-elastic model in the cic framework

Elasto-plasticity. In the following, the equations to derive the model presented by [Vladimirov
etal. [2008] in the context of the cic framework shortly summarized. For all material parameters
occurring in the following, reference is made to the latter mentioned work. Moreover, due
to brevity, the effect of isotropic hardening is neglected, however, this is straightforward to
add. Vladimirov et al.| [2008]] account for nonlinear kinematic hardening, thus, the additional

decomposition of Fj is required (cf. Equation (6.8)). The Helmholtz free energy reads

fﬂrf——nei éei__nei
0= 5 (€ =3 =@t (C)) + 7 (0t (C) —1=m (@ (€)oo

+ £ (tr (By) — 3 —In (det (By)))

[\')l(‘a[\')

In addition, the following yield criterion ® as well as the potential gy;,, which describes the

evolution of nonlinear kinematic hardening are prescribed

P = \/gudev (T)[| -0, <0, T:=%-x (6.87)
b -\ 2
Guin 1= 5 tr <dev (©) ) (6.88)

Thus, the evolution equations for both D, and Dia are obtained as

_ 0o
D, =4y —= 6.8
7o (6.39)
. . agkm
D, = = 6.90
o =7 ) (6.90)

with the plastic multiplier .
Visco-elasticity. In addition, the equations needed to derive the model of Reese and Govindjee

[1998] in the cic context are briefly provided. For the Helmholtz free energy, the model of
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Ogden and Hill| [1972] is utilized, i.e.

(o )r (we(;lr;)'r N we(:r;)r N we(:r;)r B 3) 4 % (det (C’e) —1—1In (det (C'e)))

(a)r ()r ()r K
(1) (w1 P twy? twy? — 3) + — (det (C) — 1 — In (det (C)))

4
(6.91)

where again reference is made to the original work for material parameters’ meaning. Further,
_ 1 _ 1

we, denote the eigenvalues of (det (Ce) 3) C. and w; the eigenvalues of <det (C)_3> C.

The set of constitutive equations is closed by the definition of a dissipative potential

1 _ 9 1 9 - =
i = — tr (dev (1)) w(F)?, T=3% 6.92
6 = ot (dev (T)°) + g o (T) (6.92)
as well as the evolution equation
* 1 0g;
D, = -2 6.93
T or (6.93)

with the relaxation time 7 and f1,, = 3 S () ()

6.8.6 Rate of M

The rate of M (6.30) reads
= 1 . . . -
M = —Cgco : MUgcoMUgco + UgcoUgco UQCOMUQCOW +MLgCO
e M (6.94)
—
— U, MU,
- <Cgco : M) ge Jeo
with L
( : >_ 5 (G M€y M) (6.95)
Cg.:o : M (Cgco : M)2 Yeo * Jco * . .

The term in brackets can be rewritten using Equation (6.20) as

(ng .M +C,, : M) - (zigw .U, MU, +C,, M) (6.96)
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with 2L, : U, MU, =2D, :U, MU, . Hence, the final result is obtained as

- 1
M=——
C, M

Jco

cC, M

Jco

) L o _ - C M _
U,,MU,,+L, M+ML! — <2ng M e ) M. (6.97)

6.8.7 Choice of 7itarget and its derivative

Algorithm [2] describes the procedure to decide which eigenvector of 7 is chosen. Moreover,
the derivative of the eigenvector n;,, and thus, also the derivative of 72, With respect to 7 is
defined in Equation (6.98). Since this derivative tends to infinity if 7, = 7,, a small perturbation
is included in order to avoid numerical instabilities. Noteworthy, the chosen perturbation is in
analogy to Miehe|[1993]].

Algorithm 2 Set 72,55

Input: 7, n
Output: 72;4,gc
> calculate spectral decomposition of 7 into eigenvalues 71 < 7 < 73 and eigenvectors 1z,
Nz, Mgy
ile < << 0 then
> no maximal eigenvalue, stress state under compression
ﬁ'target —n
else if m < 7 < 73 and 753 > 0 then
> one maximal eigenvalue, stress state under tension
if < (’fL, 117:3) < (’fl, —’I’L7-3) then
’ﬁ/target Ny
else
> enclosed angle is obtuse
Nz, <— —MNz,
Ntarget Ny
end if
elseif ;1 = 3 0or m, = 13 0r 1 = ™5 = 73 and 73 > 0 then
> several maximal eigenvalues, stress state under tension
> find smallest angle «; for all 7; > 0 between eigenvector and structural vector
o; = < (’fL, n,:z.)
if < (’fl, n,:z.) > ('fL, —’I’L-,*-i) then
> enclosed angle is obtuse
Nz < —Ngj
o, =< (n,nz)
end if
’fltarget A Uz (mll’l ai)
end if
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3
1 1
T2 Z To(l+€) — (1 — e)n%” ® (nz, @ nz, +ns, @ng,) (6.98)

with

0 ' Ta
¢ = kil (6.99)

1078 o=

6.8.8 Evolution equation of current structural vector

As mentioned in Section [6.4.3.3] a physically reasonable evolution equation of the structural
vector should be stated in terms of n... Since the latter is defined with respect to the cc,
an objective rate must be considered for its evolution equation. Therefore, the following

Green-Naghdi-like rate is introduced between the crc and cc

o d . .
n.=R|—|R'n.|| =n.— RR 'n,=Rn. (6.100)
dt ——

=N

It should be noted that in contrast to the classical Green-Naghdi rate, one does not have to
assume U = I. With this latter objective rate at hand, the following evolution equation is

introduced
;Lcc = QL (ncc X ntarget) XMNee. (6101)

S
J/

'
=w

In analogy to Section |6.4.3.3| the skew-symmetric tensor {2 = Zle (w X €;) ® e; is defined.

The latter evolution equation is rewritten as
ne= (2+ RR) ne, (6.102)

which fulfills the orthogonality condition n.. - 1., = 0, since RR'is skew-symmetric as
well. In order to derive the evolution equation of 72 (6.53)), Equations (6.100) and (6.101)) are

combined

o
2
Since the cross product obeys the following identity @ (a x b) = ((Qa) x (Qb)) for any
Q € SO(3), and considering 7 = R 'n,, as well as Nyger = B~ Nyarger, Equation (6.53) is

R (Tee X Marger) X Mee) - (6.103)
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regained

B ™
n —=

2n«R*mgxﬁf%mgbqR*mgzg(ﬁxmngﬂ (6.104)

6.8.9 Single Gaussian point concept (enhanced Q1STc)

To begin with, the two-field functional solved during the iterative solution procedure is denoted
by

go (u,w, du) = / S(E):6E.dV — [ fo-0udV — / ty-oudA =0 (6.105)
Bo Bo 9:Bo

Jw (U, w, du) = / S(E):6E.dV =0 (6.106)
Bo

with the incompatible displacement field w. Moreover, the (total) Green-Lagrange strain
tensor £ = E, + E, is assumed to be additively decomposable into a compatible part
E.(u) = % <F6T Fe—1 ) as well as an incompatible part E.(w). The deformation gradient
at the element level F'¢ is obtained using AD (cf. Equation (6.111)).

For discretization, the problem’s approximated domain B is divided into n,; elements

Nel
Bo~ B} =B (6.107)
e=1
where an isoparametric approach is followed for the (initial) geometry () and displacement

(u®) of the eight-node hexahedral elements, i.e.
u*=N()u’, z°=N(£x" (6.108)

In the latter equation, u® contains the element nodal values of displacement and x° its nodal
positions, respectively. Additionally, & = (¢ ,n,C)T contains the natural coordinates with
respect to the isoparameteric space, while the trilinear shape functions /V; are arranged within
the shape function matrix

N=W1I,...,NsI). (6.109)

With these formulas at hand, the Jacobian matrices with respect to the referential and current

positions are obtained as

J:(SAwu qurza(wA—{—U)
23 o€

(6.110)
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which allow to compute the deformation according to
Fe=1J.,J" (6.111)

It remains to define the incompatible part of the Green-Lagrange strain tensor, which is given

in Nye’s notation by

E°=T| B°'w" (6.112)

where w® = (wy, we, w3, wy, w5,w6)T contains the six enhanced degrees of freedom and
T transforms from the isoparametric to the Lagrangian space@ which is evaluated at the
element’s center for reasons discussed in Barfusz, Brepols, van der Velden, Frischkorn and

Reese| [2021]. Furthermore, the enhanced B-Operator is defined as

B° = (6.113)

o O o o O
S O I O O O
S Yy O O O O
oI O O o O
meo O O O O
TSy O O O O O

In order to eliminate various locking phenomena, which are widely known for low-order finite
element formulations in the literature, as well as to increase the efficiency enormously by using
only one instead of eight Gaussian points, and moreover, not having to store the enhanced
degrees of freedom as history variables, S(E) is obtained by a Taylor series expansion up to

bilinear terms with respect to the element center

3 A
E

S(E) =~ S‘ 4 Cho (i
£=0 i=1 0&;

1[4 (OE
&+ = - - ' &6 . (6.114)
£=0 2;;<5§j (5&)) eo

J#i

20Note that some rows and columns must be interchanged compared with the expression provided by Barfusz,
Brepols, van der Velden, Frischkorn and Reese|[2021]], since they do not use Nye’s notation.
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Noteworthy, the ‘correct’ material tangent C was already substituted with its hourglass coun-

terpart C in the latter equation, which is expressed as

4 -2 =200 0
-2 4 —200 0
gro #0172 =24 000 uhg:l\/tr(dev(s‘ﬁz")z). (6.115)
3o o 0o 300 2\ tr (dev (Ele=0)?)
0 0 0 030
0 0 0 00 3

Contrary to Barfusz, Brepols, van der Velden, Frischkorn and Reese [2021], but in line with
Holthusen et al.[[TBA], the values of the current time step are used to calculate ;9. For solving
the global Newton-Raphson scheme, the element residual as well as the element stiffness matrix
are required, however, since both are consistent with the formulas in Barfusz, Brepols, van der
Velden, Frischkorn and Reese|[[2021], they are omitted here for brevity. Nevertheless, it should
be mentioned that the (algorithmic) material tangent of S with respect to C'is still required

for the enhanced Q1STc formulation.

6.8.10 Pseudo-codes of Models | and li

Algorithm 3| provides the pseudo-code of Model I, while the pseudo-code of Model II can be
found in Algorithm Note that %

Str(Ce)

5C

|0 is equivalent to a ‘standard’ partial derivative. For
- . 31}1‘(06) . —1
= 0, while c Cz .

instance,

0

6.8.11 ‘One-surface’ contour plots for cross specimen

See Figures [0.21}16.23
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Algorithm 3 Implementation of Model I

Input: C, Ug Ugm s My,
Output: S, Um Ugw,ﬁ,(C
U + 5'/%0); U,, < Ugm”; U, < f]gw"; n < Ny, Yy 0
* Local Newton-Raphson iteration (k)
k<1

k 2 ~ .
h§ ) A (Ugm7 n? Ugco7 P)/g)
while [|r\*)|| > tol do

C., < U, 'CU. C.,+ U,'cu,!

€m eco Jco

M o M+ U SVt M « &4U, MU,
> Define Helmholtz free energy 1, see Equations (6.58) and m
S 2Ce, 78| w202 )

0
> Define @, and g,, cf. Equation (6.40)
: R eUngn — gmexp< 2At’yg” ”>U

599
N, < sym ((ﬁm ;

dgq
N, < sym ( 5.

e, < ®4— 20, (779"79)%

1 8% 1 1_0¢
S<«<2U0,; G 0U +2U, 50600

T+ USU
> Spectral decomposition of 7 and define 72;qy4c¢, See Appendix [6.8.7]
W = 5-(7 X Toarget); QY7 (Oxe)Re

- sin( AtV &-@ ) 1— cos(At\/w w)
—| I ( Q 02

Geon,

) ; R, + U2 -U,, exp (—2 At %&ﬁ) U,

-1
Geo

k) A A
I‘% <~ <R1m7 Ry, r1,, 7’I<I>g>

(k+1) (k) 5 - (k)
h; < hy” — 5n® Iy
k+—k+1
end while

-1
5.(k) s.(k)
ory ory
Vhy + (Sh(k> ) 3G
DC

* Calculate stress state and tangent operator

‘5’{

1 69 1 1 8¢ -1
S« 2U, 5ot | Uyt +2U, 52 ’ U,
0 0
C« 98
0C | pn™ _ DU _ 50

—=Vhy; ===%=
DC L bE~s¢e




6.8 Appendix

249

1200
21000 B i
=
& 800 - i
§ 600
5 A
2400 | z |
5 00 v
[P 7
R 200 |/ £ - Exp. z: +20% ||
7 Sim. z : +20%
0~ : : ‘ i
0 10 20 30 40
Time ¢ [h]
(a) ‘Dog-bone’ — uniaxially constraint —
1200
1000 |- -
£ inimxh J41i
= 800 ]
S
£ 600 7 |
fw /
S 400 / + Exp. z: +20% ||
g g = Exp. z : fixed
& 200/ Sim. z : +20% |-
J ——-Sim. z : fixed
00 10 20 30 40
Time ¢ [h]
(b) Cross — biaxially constraint — semi-
1200
Z1000 |- '\\ i
= PEFESES LS RE s
o 800 - /ﬁ’f |
g 0| 4 ]
g b
g a0| [ + Bxp. z : +20% ||
g I Exp. = : +20%
& 200/ Sim. 2 : +20% ||
i ——-Sim. z : +20%
0 ‘ ‘ I I
0 10 20 30 40
Time ¢ [h]

1200
21000 - |
=
&' 800 |- |
S
S 600 : |
: e
=400 g .
8 I/'/'
o200/ f - Exp. z: —20% |
/ Sim. z : —20%
0% : ‘ ‘ \
0 10 20 30 40
Time ¢ [h]
uniaxially loaded in one (2) direction
1200
21000 | e
= E{:}:-J: *\I\F—ﬂ?j—j- ~J-
w800 T A1
3 o
5 600 |- ‘;/, i
.§ 400 ,"“"r - Exp. z: —20% ||
g ;l = Exp. x : fixed
& 200 |/ Sim. z : —20% | |
/ ——-Sim. z : fixed
00 10 20 30 40
Time ¢ [h]

biaxially loaded in one (z) direction

1200
="1000 -
3 BY
= g0l ;/E §5is3 ilﬁﬂi}-ﬂ_
5 ,(/"
é 600 |- /{/i |
.g 400 |- /l,g‘/ « Exp. z:—20% ||
§ I//’/ Exp. z : —20%
& 200/ Sim. z : —20% |
i ——-Sim. z : —20%
0 ‘ ‘ \
0 10 20 30 40
Time ¢ [h]

(c) Cross — biaxially constraint — biaxially loaded in both (z and 2) directions

Figure 6.16: Model I — Comparison of simulation results with experimental data under multi-
axial constraint. Perturbation at¢ = 27 [h] with +=20% of the homeostatic reaction
force. Experimental data is plotted as the mean value of all experiments with error

bars denoting the SEM.
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(c) Cross — biaxially constraint — biaxially loaded in both (z and 2) directions

Figure 6.17: Model II — Comparison of simulation results with experimental data under multi-
axial constraint. Perturbation at¢ = 27 [h] with +=20% of the homeostatic reaction
force. Experimental data is plotted as the mean value of all experiments with error

bars denoting the SEM.
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Figure 6.18: Model II — Cauchy stress in both x and z direction right before (¢t = 27~ [h]) and

after (t = 277" [h]) the perturbation of +20% is applied.
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1axially constraint

iaxially loaded

5.0 T W 380
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Figure 6.19: Model II — Cauchy stress in both x and z direction right before (¢t = 27~ [h]) and
after (t = 27" [h]) the perturbation of —20% is applied.
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biaxially constraint - biaxially loaded

Figure 6.20: Model II — Fiber reorientation of 72 at the beginning, right before perturbation and
at the end of the simulation. Both loading scenarios (semi-biaxial and biaxial) are

shown. The results correspond to an increase of +20% of the homeostatic force
att = 27 [h].
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Algorithm 4 Implementation of Model II

Input: C, Ug Ugm s, My
Output: S, Um Ugw,ﬁ,(C
U + 5'/%0); U,, < Ugm”; U, < f]gw"; NNy, Ym0 Yo 0
* Local Newton-Raphson iteration (k)
k1

k 2 ~ . .
h%l) «— (Ugm7 n, Ugcm Ym PYco)
while [|r\¥|| > tol do

C., < U, 'CU. C.,+ U,'lcu,!

€m eco Jco

M<—n®n7 M +— 57U 1MU L M + & o = Us. MU,
> Define Helmholtz free energy zﬂ, see Equations (6.58) and m
3

r,«2C,, o
> Define ®,, and g, for ‘matrix’ part, cf. Equation (6.47)

5 m . 2 N, m
N,, « t, Ry, « U2, — Uy, exp (=2 Atd, e ) U,
112, < P — 200 (MmYm) ™"

5 | n RN YARY

T 2C., 58| —2485| M+2tr SNIOAJ)AJ
> Define ®., and g, for collagen part, cf. Equation

1) co . 2 N, co
A@w¢—6aJ, Ry, « U2, Uy, exp (=2 At4, 8 ) U,,,

TII<I>CO — (I)co — O¢o (ncovco)yco
Se2U15w'U1+2U15w

-1

9m §Cem |, 90 6Cecq | 90
T+ USU
> Spectral decomposition of 7 and define 7i(,,4c:, sSee Appendix [6.8.7] -
W 5 (n X Miarget); Q « Zz (o xe)Re;

- sm(At\/ . ) 1— cos(At\/w w)
Py < T — <I—|— N Q-+ ( &).Q)Q 02 Ny,
(k)

Iy’ (an, Ru,,, Tun, Tue,,, M.,
(k+1) (k) 0\ (k)
11
hy 7 hy’ = ( =1 I
11
k< k+1
end while

-1
A

_ 11 il

VhH < (Sh(k> 30

DU 85U

DC ™~ 3C
 Calculate stress state and tangent operator
169 1 1_69% -1
S<«<2U0,; G 0U +2U9wacew U,.
C+ 25
5C | pn{P by DO _50
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biaxially constraint - biaxially loaded

Figure 6.21: Model I — Fiber reorientation of 7 at the beginning, right before perturbation and
at the end of the simulation. Both loading scenarios (semi-biaxial and biaxial) are

shown. The results correspond to an increase of +20% of the homeostatic force
att = 27 [h].
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Figure 6.22: Model I — Cauchy stress in both = and z direction right before (¢ = 27~ [h]) and
after (t = 27" [h]) the perturbation of +20% is applied.
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7.1 Abstract

A co-rotated formulation of the intermediate configuration is derived in a thermodynamically
consistent manner. As a result of this formulation, algorithmic differentiation (AD) and
the equations of the material model can be combined directly, i.e., the equations can be
implemented into the AD tool and the corresponding derivatives can be calculated using AD.
This is not possible when the equations are given in terms of the intermediate configuration,
since the multiplicative decomposition suffers from an inherent rotational non-uniqueness.
Moreover, a novel stress-driven kinematic growth model is presented that takes homeostasis
and fiber reorientation into account and is based on the co-rotated formulation. A numerical
example reveals the promising potential of both the co-rotated formulation and the stress-driven

growth model.

7.2 Introduction

In the last decades, the modeling of finite inelastic material behavior has become more and
more advanced. In this regard, the multiplicative decomposition of the deformation gradient
has emerged as an extremely powerful continuum mechanical approach. This approach is used
in various disciplines reaching from elasto-plasticity coupled with damage (e.g. Holthusen,
Brepols, Reese and Simon|[2022b]) to the modeling of soft tissues’ growth and remodeling
(e.g. Soleimani et al.| [2020]]). To tackle the challenging and error-prone numerical imple-
mentation of such models, AD has proven to be a handy tool, which unfortunately cannot be
easily combined with models based on the multiplicative decomposition. The reason lies in
the involved rotational non-uniqueness of the decomposition.

One of the currently most challenging tasks of material modeling is the simulation of soft
biological tissues. Soft tissues are known to seek for a certain state of homeostasis (see e.g.
Eichinger, Haeusel, Paukner, Aydin, Humphrey and Cyron| [2021]]). In order to achieve this
state, which is characterized by a preferred stress state to be reached throughout the tissue,
the tissue growths and remodels itself until this state is reached. In the literature, different
approaches exist to describe these phenomena, for instance, constraint mixture approaches. In
this regard, Lamm et al.| [2022]] recently published an approach based on so-called homeo-
static surfaces. These surfaces prescribe the preferred state in the principal stress space, such
that growth and remodeling is considered in a smeared and phenomenological sense until the
current stress state coincides with the surface. Additionally, soft tissue are able to remodel

collagen fibers — often referred to as reorientation — in order to increase their mechanical
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resistance to changing loading conditions.

Within this contribution, a novel co-rotated formulation of the intermediate configuration is
presented at first. This configuration is unique, but shares the same physical interpretation
with the intermediate one. Hence, contrary to equations stated with respect to the interme-
diate configuration, material model equations in the co-rotated configuration can be directly
implemented into an AD tool. This enables an efficient and easy numerical implementation of
a wide class of materials.

Second, a new stress-driven growth and remodeling model is discussed. Its theoretical back-
bone is the co-rotated intermediate configuration. Furthermore, the approach of homeostatic
surfaces is followed and the preferred stress state is prescribed in terms of the overall Cauchy
stress in the principal stress state. Here, the hypothesis of tensile homeostasis is followed.
Moreover, reorientation of collagen fibers is taken into account such that these fibers align with
the principal tensile direction.

Sectionpresents the co-rotated formulation, and further, discusses the influence of structural
tensors. Subsequently, in Section [7.4] a novel stress-driven growth and remodeling model is
developed. Further, the evolution equations of the different inelastic phenomena are discussed.

Finally, the models is investigated in a three-dimensional setting in Section

7.3 Co-rotational formulation of the intermediate

configuration

Within this contribution, the well-established multiplicative decomposition of the deformation
gradient F' into its elastic F, and growth-related part F} is employed (see Rodriguez et al.
[1994]). For the time being, the Helmholtz free energy v is assumed to be a scalar-valued
isotropic function of the elastic Cauchy-Green tensor C, = F F, = F, "CF, ! with C =
FTF and some structural tensor M = F,M F]/tr(CyM) with C, = F]F, and M
being a (symmetric) structural tensor in the reference configuration. Its purpose is to take into
account the orientation of the fibers. The mapping of M from the reference to the intermediate
configuration is chosen in line with Reese|[2003]].

Unfortunately, the multiplicative decomposition of F suffers from an inherent non-uniqueness,
ie.

F=F.F,=F.Q"QF,=F'F", QcS0(3) (7.1)

g’
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is an equivalent decomposition as well. Due to this non-uniqueness, neither C, nor M can
be determined, and thus, also ¢ = 9 (C,, M ) cannot be calculate Hence, it is not straight-
forward to implement the material model’s equations derived with respect to the intermediate
configuration directly into an AD tool. To solve this, additional pull-back operations of all
constitutively dependent variables are necessary (cf. |Dettmer and Reese| [2004]]). However,
besides the additional effort, the thermodynamic driving forces might lose their physical mean-
ing as well as their symmetry properties.

Therefore, the aim is to present a co-rotated formulation of the intermediate configuration in
the following. Contrary to the latter, this co-rotated configuration is uniquely defined, but at the
same time has the same physical interpretation as the intermediate configuration. Further, all
symmetry properties are preserved. To begin with, using the polar decomposition F,, = R,U,,
with R, € SO(3), it can be seen that only the rotation tensor R, is affected by the non-
uniqueness, while the growth-related stretch tensor Uy, is uniquely defined. Thus, the co-rotated
quantities C, = RTC.R, = U,;'CU, ' and M = RTMR, = U,MU,/tr(C,M) are
introduced. Since these quantities are similar with their intermediate counterparts, the same
Helmholtz free energy can be used, ie. ¢ = ¥(C,, M ) = 9(C., M). Inserting this
Helmholtz free energy into the Clausius-Planck inequality —¢ + 1 /28 : C > 0, the following
state law for the second Piola-Kirchhoff stress S as well as the thermodynamic driving forces

are obtained

- - O0Y oY el - o A

L y=2 s II=2——M- MM r=Y-1I
Us Ceace’ oM aM H(MeM), 2
7.2)

where the relative stress T is conjugated to Dg = sym(UgUg_ ). Furthermore, the conju-

S_ngl(jé/f

gated driving forces in the latter equation can be considered the co-rotated quantities of their
intermediate counterparts, e.g. ¥ = R (2C.(0¢/0C.))R,. It should be mentioned that
the driving force associated with M is unique as well and can also be computed using AD.
However, since this driving force is not needed in the model presented hereafter, it is omitted
at this point.

Since all quantities in Equation (7.2)) are uniquely defined as well, all of them can be imple-
mented into an AD tool without further pull-back operations. Moreover, all derivatives of
the Helmholtz free energy can be calculated using AD, which is considered a major advan-
tage, since these might be challenging when computed ‘by hand’. With this framework of

a co-rotated intermediate configuration at hand, the following Section considers a novel

ISince v is an isotropic function, changing the arguments ¢ = 1% (C, C,, M) allows to determine 1) depending
on referential quantities (cf. [Dettmer and Reese| [2004]]).
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stress-driven kinematic growth model, which is based on the proposed co-rotated framework,

and thus, fully implemented using AD.

Note on numerical implementation. Since an AD tool is utilized for the numerical im-
plementation, only some scalar-valued inelastic potentials as well as the Helmholtz free energy
need to be prescribed. All derivatives appeared so far are uniquely defined, and thus, can be
calculated by AD. The same holds for the derivatives of the material model proposed hereafter.
For the time discretized evolution equation of D,, an exponential integrator scheme similar
to Dettmer and Reese|[2004] is utilized. Thus, an efficient and flexible implementation of the

overall model is enabled.

7.4 Stress-driven growth model

This sections deals with a novel stress-driven growth and remodeling model for soft tissues
as well as the reorientation of collagen fibers in a stress-driven manner. In this regards, soft
tissues are considered in a smeared sense. Hence, for modeling growth and remodeling, two
parallel decomposition of the deformation gradient into ‘matrix’ (/) and ‘fibers’ (f) parts are
utilized, i.e.

F Fe"L Fg'm Fef Fgf : (73)

Direction-independent constituents such as elastin are summarized within the first decom-
position, while the second decomposition accounts for direction-dependent constituents like
collagen. The Helmholtz free energy is assumed to be additively decomposed, i.e. ¢ =
P (Ce, )+ I (C. P M) where the contribution of the ‘matrix’ is given by ), and 1 ¢ accounts
for the ‘fibers’ contribution. Moreover, the structural tensor in the reference configuration is
defined by M = n ®mn with n being the structural vector in the reference configuration, which
is parallel to the (major) collagen direction. Similar to the procedure described in the previous
section, and as a result of the parallel decomposition in Equation ((7.3)), the driving forces and

the second Piola-Kirchhoff stress read

S=2U"! 8wUl 2U18¢U T, =2C. oY 2C,

r,—20, 2 1
9 9C,,, 9 9C,, "ac,, 1T 7TYaC,

—1II
(7.4)
with C,,, == U, 'CU, "and C,, := U, 'CU, " The stretch tensors Uy,, and Uy, result from

the polar decompositions of Fy, and F, ,

respectively. Moreover, it is important to note that

both T, and T ¢ are symmetric (cf. [Svendsen| [2001]). It remains to choose suitable evolution
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equations for growth and remodeling as well as fiber reorientation, which will be presented in

the following.

7.4.1 Evolution equations

Soft biological tissues are known to prefer a state of homeostasis, i.e. a homeostatic stress is
tried to reach throughout the whole tissue. Within this contribution, the approach suggested in
Lamm et al.|[2022] for modeling growth and remodeling is followed. A so-called ‘homeostatic
surface’ in the principal stress space similar to plasticity is introduced, which describes the
preferred or homeostatic stress. Due to growth and remodeling, the tissues seeks to achieve
this preferred state. The direction of growth may be described in an associative way by taking
the derivative of the homeostatic surface with respect to the thermodynamic driving forces.

Besides growth and remodeling, collagen fibers are produced and absorbed by cells in order to
optimally carry mechanical loading. In a smeared sense, this can be described by a reorienta-
tion of the structural vector associated with the direction of collagen fibers. Here, it is assumed
that an optimal state is reached when the structural vector is collinear with the eigenvector
associated with the principal eigenvalue of Cauchy’s stress tensoro = 1/J 7 =1/J FSFT.

In the latter equation, .J is the determinate of F' and 7 the Kirchhoff stress tensor.

Growth and remodeling. The homeostatic surface proposed herein is assumed to be a
scalar-valued isotropic function of the overall Cauchy stress o. To account for the hypoth-
esis of tensile homeostasis, i.e. a tensile stress state is preferred (cf. [Eichinger, Haeusel,

Paukner, Aydin, Humphrey and Cyron|[2021]), the following smoothed Rankine-like surface

O =tr(o)+tr(o?)+ 5 —20hm (7.5)

where oy, is the homeostatic stress and [ is a stress-like parameter for shifting the surface in

is introduced

the  principal stress space. Further, having in  mind  that
=2 (Fem(aw /0C., )EL + F. (90 /aCef)ngj) withC,,, == F F, andC,, = F'F,,,

the following relation is important to note
r=F (U, U, +U, (T;+ MU, ) F". (7.6)

The term in brackets is generally non-symmetric, but shares the same eigenvalues with 7.

Hence, the following evolution equations for the co-rotated symmetric parts of the inelastic
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velocity gradients D, = sym (Ugm U g_ml) and D, ;= sym (Ug U, ar 1) are introduced

_ .00 o0d _ . 0D odb
ng—”Y&Fm/HaFmW Dgf—’Ya—Ff/Ha—FfH- (7.7)

In the latter equations, * is a kind of growth multiplier that describes the rate of growth

and remodeling. The multiplier is determined by a Perzyna-type law (see Perzyna [1966]):
4 =1/n(P®/20pom). Here, n is the growth and remodeling time.

Reorientation. As mentioned above, fiber reorientation is considered in a stress-driven
manner. Therefore, a physically reasonable evolution equation of the structural vector is stated
in the current configuration. More precisely, an optimal state is reached if the structural
vector in the current configuration is parallel to Cauchy’s principal eigenvector. Unfortu-
nately, in this case objective rates must be taken into account. To avoid this issue, the polar
decomposition F' = RU with R € SO(3) is employed. Based on this decomposition, the so-
called co-rotated Cauchy stress R” o R as well as the (normalized) stretched structural vector
n' = (1/v/n - C - n) Un are introduced. Noteworthy, it can be shown that an optimal state
is also reached if the principal eigenvector of the co-rotated Cauchy stress and n’ are collinear.
It should be noted that it is assumed that the collagen fibers always align with the principal
tensile direction. In the case of a fully compressive state, no reorientation takes place.

The evolution equation is chosen in line with [ Menzel [2005]]

0 = 21 (0 x ) x 0’ (7.8)
T

with the reorientation time 7. Note that the latter equation can be reformulated in terms of
a skew-symmetric tensor contracted with n’. Hence, if an exponential integrator scheme is
utilized for the time discretized evolution equation, this can be solved in closed-form using

Rodrigues’ formula. Further, n, is the principal eigenvector of Cauchy’s stress tensor.

7.4.2 Specific choices for energy terms

For studying the material model’s response, the following Helmholtz free energy terms are

chosen. For the ‘matrix’ part, a compressible Neo-Hookean energy is used

G = 1 (1 (C)) = 3= In (det (C,))) +

5 T’” (det (C.,,) =1 —1In(det (C.,.)))

(7.9)
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while the energy for the ‘fibers’ part is in line with Holzapfel et al.| [2000]

o (exp (Ks(tr (Ce, M) — 1)%) — 1). (7.10)

_ 4
2K,
In the latter, the Macaulay brackets are used, since collagen fibers are assumed to be not able

to carry compressive loadings. The material parameters are fi,,, A,,, K1 and K.

7.5 Numerical example

In this contribution, the boundary value problem considered is chosen in accordance with the
example presented e.g. in Himpel et al.|[2008]]. The corresponding geometry as well as the
loading applied are illustrated in Figure[7.1] Here, the radial displacement loading is described
by u,(z) = 0.3 sin(7/4 z) [mm] such that the maximum displacement is 0.3 [mm]. Both the
top and bottom surfaces are considered clamped.

The material parameters are either taken from the literature Himpel et al. [2008] or arbitrarily
chosen: A,, = 4.285 [MPa], u1,, = 1.071 [MPa], K; = 2.0 [MPa], Ky = 1.0 [-], 0pom = 1.0
[MPa], n = 10.0 [h], 8 = 0.1 [MPa], 7 = 10.0 [h]. The initial collagen fiber directions are
randomly chosen per element. Furthermore, a reduced integrated finite element formulation
with a single Gaussian point per element Barfusz, van der Velden, Brepols, Holthusen and
Reese [2021] is utilized for discretization to avoid locking effects.

The loading is increased in a monotonic way within the first hour, i.e. the load is linearly
increased until the maximum displacement of 0.3 [mm] is reached at ¢ = 1 [h]. Subsequently,
the loading is hold constant until the end of the simulation. Furthermore, the force-time curve
obtained throughout the simulation up to ¢ = 40 [h] is shown in Figure As can be seen,
due to growth and remodeling as well as fiber reorientation, a tensile state is observed at
the beginning, while a compressive state is reached in the longitudinal direction at the end.
Moreover, since the slope is decreasing at the end, it can concluded that a state of homeostasis
is reached. In order to give a better understanding of the processes, Figure provides the
contour plots of the Cauchy stress in longitudinal direction o, and the value of the growth
multiplier 7. Noteworthy, the multiplier is always non-zero if the current stress state does not
lie on the homeostatic surface, i.e. homeostasis is not reached.

At the beginning (¢ = 1 [h]), the fibers are randomly orientated. Further, the stress state is far
from lying on the chosen homeostatic, since the rate of  is relatively high and mainly depends
on the over- and under-stress, respectively. With time, the collagen fibers orient themselves

towards the principal tensile direction of stress, which is the circumferential one. At the end
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of the simulation, nearly all fibers are aligned with this particular direction.

Since the rate of growth and remodeling is highest in the middle of the specimen, growth
and remodeling are most pronounced in this region. However, at the end of the simulation
homeostasis is reached throughout the whole specimen. Similarly, stress is initially quite
heterogeneous in the longitudinal direction, but becomes more homogeneous as homeostasis
is reached and collagen fibers are aligned in circumferential direction.

In summary, it can be concluded that the model is able to provide plausible results in terms of

homeostasis and fiber reorientation for complex loading scenarios.

|
|
|
|
|
|
(2) l (2)

0.5 0.5 [mm]

Figure 7.1: Geometry and boundary value problem. The geometry and loading are axisym-
metric with z being the axis of symmetry. The displacement in radial direction is
sine-shaped. For meshing, 4 elements in thickness direction, 16 elements over the
height and 32 elements in circumferential direction are used.

4) [N]

Reaction force F} (2

Time ¢ [h]

Figure 7.2: Force-time curve at the top surface (z = 4 [mm]). Within the first hour, the sine-
shaped loading is linearly increased and then hold constant throughout the rest of
the simulation.
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Figure 7.3: Top: Cauchy stress o, in longitudinal (2) direction at different time steps. Further,
the reorientation of collagen fibers is visualized. Bottom: Growth multiplier
at different time steps. A zero value corresponds to a stress state lying on the
homeostatic surface.

7.6 Conclusion and outlook

This work has addressed both a novel co-rotated formulation of the intermediate configuration
and a stress-driven growth model based on this formulation. The former is extremely advanta-
geous when it comes to the application of AD tools for the implementation of material models
based on the multiplicative decomposition of the deformation gradient.

The soft tissue material model derived from the latter takes into account both reorientation
of collagen fibers and homeostasis. The latter is described by homeostatic surfaces. These
surfaces are similar to yield criteria in plasticity, i.e. they describe a surface in the principal
stress state. Contrary to plasticity, growth and remodeling always takes place until the current
stress state lies on this surface. Here, a surface in terms of the overall Cauchy stress was chosen
for this purpose.

Collagen fibers are assumed to align with the principal eigenvector of the Cauchy stress tensor.
To avoid objective rates of the corresponding evolution equation, a polar decomposition of the
deformation gradient was used.

Finally, the material model was examined on the basis of a structural example. It was shown
that both the state of homeostasis and an orientation of the fibers in the main tensile direction
can be simulated. Future work should focus on the determination of the homeostatic area, as

well as the comparison with experiments.






8 Conclusions and Outlook

The present dissertation was concerned with different modeling approaches for anisotropic
material behavior under consideration of various inelastic effects. Particular attention was paid
to the phenomena of plasticity, damage and growth in a theoretical and continuum mechanical
framework. Both initially anisotropic materials and anisotropy induced by inelastic effects
were investigated.

The first article presented in Chapter[2]dealt with initially anisotropic materials, in particular
transversal isotropy was taken into account. Based on the second law of thermodynamics, the
model was derived consistently. Structural tensors were used to account for initial anisotropy,
the matrix was modeled elasto-plastically with isotropic and kinematic hardening, and three
scalar damage variables were introduced. Noteworthy, a so-called ‘two-surface’ approach
was used to treat damage and plasticity as independent but strongly coupled mechanisms.
Hence, several inelastic phenomena were considered. First, kinematic hardening leads to a
natural plastic anisotropy due to the translational motion of the yield surface in the principal
stress space. Second, three significant failure mechanisms are accounted for using three
damage variables, namely fiber breakage under tensile loading, kinking under compression,
and (isotropic) matrix failure. The first two result in an asymmetry of the fibers under tensile
and compressive loading. Moreover, in order to guarantee mesh-insensitive results, each of
these variables were gradient-extended using the micromorphic approach. Therefore, the
theoretical development, approximation, linearization, and algorithmic implementation of the
associated weak forms and the local residuals were derived and solved using a monolithic
solution strategy. The proposed model was examined using single element tests as well as
structural examples. The former revealed the effect of tension-compression asymmetry of
the fibers under uniaxial cyclic loading tests. Subsequently, the structural examples were
concerned with the overall influence of the orientation of fibers on the direction of both
fiber and matrix damage. Furthermore, the accumulated plastic strain was investigated and
compared with experimental observations reported in literature. For this purpose, the proposed
model was subjected to several plate with a hole examples under different fiber angles. It was

shown that the evolution of inelastic phenomena is strongly influenced by the fibers’ direction.

271
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Additionally, the performance of the developed gradient-extension was investigated and it was
shown that this approach can handle high degrees of damage up to complete failure.

By introducing several scalar damage variables, a certain kind of damage anisotropy has
already been taken into account within this contribution. However, it is known that damage
is inherently an anisotropic phenomenon resulting from underlying microdefects, especially
microcracks. Consequently, at least the matrix constituent should be modeled anisotropically
with respect to its damage behavior.

Hence, in Chapter [3| a general geometrically nonlinear theory was developed for initially
isotropic materials undergoing plastic deformations coupled to anisotropic damage. To this end,
a symmetric second order damage tensor was introduced. The entire theoretical framework
was systematically developed with respect to the logarithmic strain space, where the local
part of the Helmholtz free energy depends on the logarithmic elastic strains, logarithmic
plastic strains, the damage tensor, and the accumulated variables of plasticity and damage.
For the kinematics, an additive decomposition was assumed. Since the energy was assumed
to be an isotropic function, the principal invariants of the damage tensor result in isotropic
damage, while mixed invariants of strains and damage induce damage anisotropy. With this
assumed energy at hand, the model was derived in a thermodynamically consistent manner,
where kinematic and isotropic hardening effects of each dissipative mechanism were taken into
account. A ‘two-surface’ approach was again employed for the evolution of these phenomena.
It should be emphasized that the model satisfies the damage growth criterion, which prevents
artificial stiffening during progressive damage and is violated by some models in the literature.
In addition to these local modeling related considerations, pathological mesh dependence
must be addressed in the case of damage and material degradation. For this purpose, the
micromorphic approach was utilized once again and a novel gradient-extension of the damage
tensor’s invariants was proposed. Additionally, to be applicable in standard finite element
formulations, the transformation of all constitutively dependent variables as well as all tangent
operators to the Lagrangian strain space was presented. For the numerical implementation,
both the local residuals and the global weak forms were solved in a monolithic scheme using
Newton-Raphson’s method, while algorithmic differentiation was used on a local level. The
element formulation used is similar to the one presented in Chapter 2] The effect of damage-
induced anisotropy, the coupling between plasticity and damage anisotropy, and the limitation
of the eigenvalues of the damage tensor to the value of one were studied under various loading
conditions using single element tests. In representative structure examples, the invariant-
based regularization was studied at first. For this purpose, an asymmetrical notched specimen

and brittle material behavior were investigated in order to exclude any effects resulting from
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plasticity. Even at high degrees of damage and severe snapback, the framework was able to
achieve mesh-insensitive results. Furthermore, the difference between isotropic and anisotropic
damage was examined under monotonic and non-proportional loading paths by means of a
‘dog-bone’ and cruciform specimen. Especially the latter showed significant differences in
terms of both overall stiffness and remaining load-bearing capacity after degradation.

In Chapters [ and [5] further aspects of the formulation from Chapter [3| were addressed.
For example, more simplistic Helmholtz free energies were used and the expressions for the
evolution equations were simplified. In addition, other theoretical aspects were discussed. It
was shown that the mapping of the damage tensor does not violate the independence of the
rotational non-uniqueness of the intermediate configuration, and a reduced set of invariants
for the regularization was proposed. This time, the asymmetrically notched specimen was
investigated using a ductile material, and moreover, a three-dimensional example was studied.
The formulation was able to handle both simulations in a robust and stable manner.

Despite these promising results and the insights revealed into coupled elasto-plasticity
coupled to anisotropic damage, there is still the need for further research. One major aspect
is for sure to avoid an additive decomposition of the total strain into elastic and plastic parts.
Although this assumption might be valid in case of small elastic strains and coaxial loadings,
its general application in structural simulations remains questionable.

Modeling inelastic material behavior at large deformations is — as can be seen, for example,
from the models discussed in the previous chapters — a highly complex and challenging task.
In engineering applications, this always involves numerical implementations of these models,
which is known to be a time-consuming and error-prone process.

Therefore, Chapter [6] presented an elegant way of how to generally formulate inelastic
materials based on the multiplicative decomposition of the deformation gradient in order to
enable an easy, physically sound and straightforward implementation using algorithmic dif-
ferentiation. Within this thermodynamically consistent framework, the constitutive variables
defined with respect to the intermediate configuration are pulled back by the rotational part of
the inelastic part of the deformation gradient. Due to this orthogonal pull-back, the physical
interpretation remains the same, thus the arguments defined in the intermediate configuration
of any isotropic function need only to be interchanged with their co-rotated counterparts. As
a result, the inelastic rotation remains undetermined, which is considered an advantage. In
the second part of this chapter, the proposed co-rotated formulations serves as a theoretical
framework for a novel stress-driven kinematic growth model for soft biological tissues. Here,
growth and remodeling are modeled in a phenomenological sense using two parallel decom-

positions of the deformations gradient to treat growth and remodeling of direction-dependent
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and -independent constituents separately. In line with the hypothesis of tensional homeostasis,
homeostatic surfaces were introduced to prescribe the preferred stress state in the principal
stress space. Two approaches were investigated: (i) a ‘one-surface’ model which prescribes the
overall Cauchy stress and (ii) a ‘two-surface’ model accounting for different preferred stresses
of each constituent. Further, collagen fibers, the major direction-dependent component of
soft tissues, are remodeled or reoriented by cells to optimally carry mechanical loads. In this
contribution, it was assumed that this takes place in a stress-driven manner, i.e. an optimal state
is reached if the structural tensor describing the direction of collagen fibers is coaxial with the
overall Cauchy stress tensor. To avoid objective rates for the associated evolution equation, the
polar decomposition of the deformation gradient was employed and the equations were stated
in the co-rotated current configuration. The material model was fully implemented implicitly,
while only the Helmholtz free energy and the homeostatic surfaces were defined, and, thanks
to the co-rotated formulation, all the numerics were obtained with the help of algorithmic
differentiation. For structural simulations, a reduced integration-based solid element with only
one Gaussian point was used, which was improved by using algorithmic differentiation, to
obtain accurate structural results and eliminate locking. The model’s capability and numerical
performance was revealed by three structural examples. In the first example, a clamped cylin-
drical specimen was utilized to compare the ‘one-’ and ‘two-surface’ approach with each other.
Both model versions were able to achieve homeostasis and restore it under altering loading
conditions. Besides, the collagen fibers were initially oriented randomly, but with time they
aligned towards the principal stress direction. Despite this highly anisotropic boundary value
problem, it could be well recognized on the basis of the global convergence behavior that a
numerically extremely stable model was developed and quadratic convergence was achieved
throughout the simulation. Subsequently, a qualitative comparison was carried out with exper-
imental data from the literature. For this purpose, the model was subjected to (nearly) uniaxial
boundary conditions in a second and to (nearly) biaxial boundary conditions in a third example.
Noteworthy, not all of the measured experimental data were used to characterize the material
parameters, allowing the remaining data to be used to assess the prediction of the model.
Although these comparisons were only qualitative, the results of the model were very
promising and showed the main properties of soft tissue to be expected in terms of homeostasis
and alignment of collagen fibers in the direction of principal stress, even under biaxial loading.
The last Chapter [7| was concerned with a more detailed investigation of the ‘one-surface’
model from the previous chapter. To this end, a hollow cylinder was subjected to sinusoidal
internal pressure. Due to growth and remodeling, the reaction force in longitudinal direc-

tion shifted from tension to compression. In addition, the collagen fibers aligned with the
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circumferential direction, since this is the principal (tensile) stress direction.

In the present thesis, different continuum mechanical approaches for a variety of anisotropic
materials with inelastic effects have been discussed and their reliability was validated by
sophisticated numerical studies. Nevertheless, there is an ongoing demand for research in this
field in general.

As one of the most challenging fields of continuum mechanics nowadays (cf. Maugin
[2013]]), biomechanics is ideally suited to combine the different approaches presented here in
an application-oriented way. In this regard, it is important to note that soft tissues are not only
undergoing growth and remodeling, but may also be affected by irreversible deformations or
even degradation. This can, of course, refer to typical degradation caused by excessive loading
of the tissue, but a common disease is calcification, where calcium is abnormally deposited in
soft tissues. Due to the resulting hardening, the tissue may behave more brittle and — given
its complex microstructure — damage may progress in an anisotropic manner. More generally,
almost all organs in living organisms are subject to cyclic loading, the most famous of which
is certainly the heart. Detailed digital twins of these organs, as implemented for example in
Baillargeon et al.| [2014], allow the simulation of several cycles. Since cyclic loading is always
accompanied by fatigue, the combination of irreversible deformations (plasticity), anisotropic
damage as well as growth and remodeling is of extraordinary interest also here. While these
are only exemplary combinations of the inelastic effects discussed in this thesis, it clearly
reveals an absolutely desirable task for modern continuum mechanical challenges and needs
further research. Particularly at the theoretical level, in order to better understand the complex
interactions between different inelasticities.

Apart from these local modeling questions, various field equations on a global level need to
be taken into account, which may cause the material to behave significantly differently locally.
The thermo-mechanical coupling of dissipative mechanisms in a finite element simulation is
a common problem in engineering applications, for example the heat production of plastic
deformations (see e.g. (Canadija and Mosler [2011]) and damage (see e.g. [Felder et al.| [2022])
plays a crucial role, but also the temperature-dependent mechanical properties. With regard to
biomechanical problems, the incorporation of diffusion equations is essential, which describe,
among other things, the concentration of nutrients and hormones (see e.g. [Escuer et al.|[2019]],
Manjunatha et al.| [20224] and Rahman et al.|[2023]]). For instance, homeostasis and growth
rate are strongly dependent on the current concentration of these fields. In contrast to plasticity
and damage, growth and remodeling are active processes, i.e. additional energy must be added
to the system and/or its entropy must be reduced. The related transformation of chemical

energy into mechanical energy, also to contract muscles, involves mechano-electro-chemical
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coupling in living organisms (see e.g. |[Kojic et al. [2019]]), also highly relevant in the context
of the heart (see e.g. Dal et al.| [2013]]).

The coupling of these fields is a challenging task in its own and can only be accomplished by
algorithmic differentiation. To this end, the proposed co-rotated framework is ideally suited as
a counterpart at the local material point level when it comes to the numerical implementation.
Itis worth noting that the micromorphic approach used for gradient-extended damage is already
a fairly general multi-field problem.

A novel and popular approach to materials modeling is the use of data science methods from
computer science and related techniques such as machine learning and neural networks. Instead
of developing a constitutive material model, the mechanical response is in a sense calculated
directly from the data used. Besides, there are also approaches that bypass both the constitutive
modeling and the construction of neural networks, but directly use the experimental data in
a so-called data-driven manner (see Kirchdoerfer and Ortiz [2016], Eggersmann et al.| [2021]]
and [Prume et al.| [2023]]).

The disadvantage of all these computer techniques is that they ignore in their basic principles
the knowledge of several centuries of material modeling and thermodynamics. As a result,
unphysical predictions can occur, especially for materials that do not behave in a purely elastic
material manner, which must be considered a drawback. To solve this issue, there is a growing
tendency to incorporate physics into computer science, for instance, through the use of physics-
augmented (see Klein et al.|[2022]]) or physics-informed (see [Raissi et al.[ [2018] 2019]] and
Rezaei et al.|[2022]) neural networks as well as constitutive artificial neural networks (see|Linka
and Kuhl|[2023]]). While the physical restrictions of field equations are more or less clear and
can be directly incorporated into computer science approaches, the thermodynamic restrictions
of complex material modeling are by no means a trivial task, especially when inelastic effects
or anisotropic behavior are involved. Thus, the investigation of these challenging material
behaviors in a macroscopic and phenomenological sense based on the principles of continuum
mechanics as well as the design of new approaches for anisotropic and inelastic materials
remains of outstanding interest — not only to be used in the classical sense as material models
for finite element simulations, but also to ensure the physical plausibility of novel modeling

approaches and to support the development of those in a systematic way.
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List of Tables

6.1

Material parameter sets. The parameters belonging to the Helmholtz energy

and fiber reorientation may vary in set 2 and set 3, depending on whether

Model I or Model II is used. Moreover, the homeostatic stresses in set 3

depend on which experiment (‘dog-bone’ or cross specimen) is simulated.

. o dog-bone
However, the ratio g’gogw =

O.CIOS S

—ms ~ 0.69is kept constant.| . . ... ... .. 222

CTross
UCO

Global convergence rates of the ‘dog-bone’ specimen at three different time

steps (see Figure|6.11{and|6.12]). Listed are the global residual norms, where

t = 17.01 [h], also referred to as t = 177 [h], corresponds to the first iteration

after applying the perturbation of +10%.|. . . . . . . ... ... ... .. .. 235
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