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Abstract

In recent years, the field of quantum information has witnessed remarkable
progress through the utilization of superconducting qubits. Nonetheless, despite
these advancements, significant hurdles persist when it comes to scaling up these
systems. One critical challenge that this thesis aims to tackle is the phenomenon
of decoherence, whereby a quantum system behaves akin to a classical system
in thermal equilibrium. However systems can avoid thermalization if they are in
the many-body localized phase.

The main objective of this thesis is to investigate the potential of MBL in pro-
tecting quantum memories from decoherence. We pursue a two-fold approach:
firstly, we establish the existence of a thermal to MBL phase transition in dis-
ordered transmon arrays. To achieve this, we employwell-established diagnostics
such as level spacing distribution and inverse participation ratio (IPR). Addition-
ally, we introduce a new diagnostic tool called the Walsh-Hadamard coefficients,
which reinforce the findings of IPR in a basis-independent manner. We apply
these diagnostics to both 1D and 2D transmon arrays with Gaussian disorder, as
well as chains with designed frequency patterns using the LASIQ technique.

Furthermore, we demonstrate that disorder-free systems can also exhibitMBL
by compensating for the absence of disorder through the utilization of quasi-
periodic frequency patterns. Surprisingly, we find that these systems not only
achieve localization, but also surpass the localization observed in comparable sys-
tems with Gaussian disorder. Finally, we develop a perturbation theory scheme
that enables the determination of the Walsh-Hadamard coefficients for large
transmon lattices, which are comparable to experimental devices.

Keywords: Quantum Information, Qubits, Transmons, Dephasing, Quantum
Chaos, Thermalization, Random Matrix Theory, Anderson Localization, Many-
Body Localization, Walsh-Hadamard Transformation, Local Integral of Motion,
Quasi-Periodic Potential



Abstrakt

In den letzten Jahren wurden auf dem Gebiet der Quanteninformation durch
die Nutzung supraleitender Qubits bemerkenswerte Fortschritte erzielt. Den-
noch bestehen trotz dieser Fortschritteweiterhin erheblicheHürden bei der Skalier-
ung dieser Systeme. Eine entscheidende Herausforderung, die in dieser Arbeit
diskutiert wird, ist das Phänomen der Dekohärenz, bei dem sich ein Quantensys-
tem ähnlich wie ein klassisches System im thermischen Gleichgewicht verhält.
Allerdings können Systeme eine Thermalisierung vermeiden, wenn sie sich in
der lokalisierten Vielkörperphase befinden.

DasHauptziel dieser Arbeit besteht darin, das Potenzial vonVielkörperlokalis-
ierung zum Schutz von Quantenspeichern vor Dekohärenz zu untersuchen. Wir
verfolgen einen dualen Ansatz: Zuerst weisen wir die Existenz eines thermis-
chen Phasenübergangs zur MBL-Phase in ungeordneten Transmon-Arrays nach.
Um dies zu erreichen, verwenden wir bewährte Diagnoseverfahren wie die Ver-
teilung der Niveauabstancle und das inverse Participation Ratio (IPR). Darüber
hinaus stellenwir ein neuesDiagnosetool namensWalsh-Hadamard-Koeffizienten
vor, das die Ergebnisse von IPR auf basisunabhängige Weise untermauert. Wir
wenden diese Diagnostik sowohl auf 1D- als auch auf 2D-Transmon-Arrays mit
Gaußschen Störungen sowie auf Ketten mit designten Frequenzmustern unter
Verwendung der LASIQ-Technik an.

Darüber hinaus zeigen wir, dass auch störungsfreie Systeme MBL aufweisen
können, indem sie das Fehlen von Störungen durch die Nutzung quasiperiodis-
cher Frequenzmuster kompensieren. Überraschenderweise stellen wir fest, dass
diese Systeme nicht nur eine Lokalisierung erreichen, sondern auch die in ver-
gleichbaren Systemenmit Gaußschen Störungen beobachtete Lokalisierung über-
treffen. Abschließend entwickelnwir ein Störungstheorieschema, das die Bestim-
mung der Walsh-Hadamard-Koeffizienten für große Transmongitter ermöglicht,
die mit experimentellen Aufbauten vergleichbar sind.
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Preface

The numerical simulation of quantum systems in many-body physics has long
posed a significant challenge for classical computers. Due to the exponential
scaling of degrees of freedom with system size, computational memory becomes
a limiting factor. A potential solution to this problem emerged in 1982 when
Feynman introduced the concept of quantum computers, which utilize quantum
systems for simulations [1]. Although the groundwork for quantum informa-
tion was laid with this proposal, numerous technological obstacles had to be
overcome before the realization of such a device became feasible. The field ex-
perienced a resurgence of interest in 1994 when Shor presented his renowned
algorithm [2] for prime factorization with a quantum computer.

In present times, numerous prototype quantum computing devices with sev-
eral hundred qubits have already been developed [3–5]. Despite these remark-
able technological achievements, the realization of large-scale quantum comput-
ing continues to face significant challenges due to technological limitations. One
of the primary obstacles for scaling up these devices is decoherence, which is the
process whereby quantum systems become entangled with their surroundings,
leading to the diffusion of quantum information. Once decoherence takes place,
the system no longer displays quantum behavior but instead behaves as a clas-
sical system in thermal equilibrium described by a thermodynamic ensemble.

However, it is important to note that not all systems undergo thermaliza-
tion. Specifically, systems that display insulating behavior can evade this fate
through the phenomenon of many-body localization. In many-body localization,
the correlations between various degrees of freedom diminish exponentially over
distance, allowing systems in this phase to preserve their quantum information
for extended periods by preventing entanglement with their surrounding envir-
onment.

The main objective of this thesis is to investigate the potential of protect-
ing quantum computing devices from decoherence through the implementation
of MBL. To conduct a thorough analysis, a specific qubit platform needed to be
selected, and in this case, we chose superconducting qubits operated in the trans-
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mon regime. Although the findings presented here are focused on the transmon
architecture for quantum computing, we believe that similar conclusions can be
extrapolated to other architectures as well.

To address our research question, we will approach it in two stages. Firstly,
we aim to determine whether transmon qubits exhibit thermalization and, if so,
whether a transition to a MBL phase occurs. To draw insights, we can consider
the classical analog of an array of interacting transmons, which can be likened
to a system of interacting pendulums. As a classical system, it serves as a typ-
ical example of a chaotic system. According to the Bohigas-Giannoni-Schmit
conjecture [6], the quantized system should demonstrate quantum chaos, which
is associated with thermalization. Through our investigation, we will establish
that by introducing sufficient disorder, in the form of random fluctuations in the
Josephson energies of the transmons, the system can indeed undergo a transition
from chaotic to an MBL phase. For this we will use the standard diagnostics of
this transition and we will also establish a new one, the Walsh-Hadamard trans-
formation, tailored for the MBL phase of the system.

From an engineering perspective, relying solely on randomness as a mean
of protecting our system may not be considered a reliable approach. There-
fore, we will also investigate the potential of localizing transmon arrays using
quasi-periodic potentials that mimic disorder. To explore this possibility, we
will primarily employ the Walsh-Hadamard transform and employ perturbation
theory arguments. By adopting a semi-analytical approach, wewill be able to cal-
culate theWalsh-Hadamard coefficients of large systems beyond the what is pos-
sible by means of exact diagonalization. Our findings reveal that the system can
indeed be effectively localized using quasi-periodic potentials, and intriguingly,
this approach can achieve even stronger localization than random disorder.

While the approach for studying MBL using transmons [7] we offer a new
prospective by taking under consideration MBL effects for the design and reli-
able operation of transmon qubits. We firmly believe that interaction between
the fields of quantum information and MBL physics can prove fruitful for the
further development of both. Finally our quasi-periodic potential approach to
localization can open new fields of research for designing potentials for optimal
operation of transmon qubits, with our novel tool of the Walsh-Hadamard trans-
formation at its core.

The structure of this thesis is as follows: In chapter 1, we will introduce
fundamental concepts of quantum information, such as qubits, entanglement,
and dephasing (1.1), as well as essential aspects of transmon qubits that will be
utilized consistently throughout the thesis (1.2)

In Chapter 2, we will provide a concise overview of thermalization (2.1) by
establishing a connection between the eigenstate thermalization hypothesis and
the predictions derived from random matrix theory, which describe quantum
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chaotic systems. Subsequently, we will outline the pertinent aspects of MBL
phenomenology for our study (2.2), as well as the probes we will employ to in-
vestigate the transition from chaotic to MBL behavior.

In chapter 3 we introduce the Walsh-Hadamard transformation as a tool to
study localization and its connection to the LIOM of MBL (3.1). We will also
develop a perturbation theory scheme for the calculation of Walsh-Hadamard
coefficients for a specific class of Hamiltonians (3.2).

In chapter 4 we will explore the phase transition of 1D transmon chains with
Gaussian disorder from chaotic to MBL(4.1).To ensure better comparability with
experimental devices we also apply our diagnostics for modern architectures, in-
cluding 2D lattice configurations and a new method for tuning Josephson junc-
tions post fabrication to control disorder (4.2).

Finally in chapter 5 we explore the potential of quasi-periodic transmon fre-
quency patterns for localizing the system. Initially we will introduce the details
of the model under consideration, based on the Aubry-André model, and its An-
derson localization (5.1). We conclude the chapter by comparing the MBL of our
system with one using Gaussian disorder and obtain perturbatively the Walsh-
Hadamard coefficients for a large transmon array of size comparable to that of
experimental devices (5.2).



1
Quantum Information and Transmon

Qubits

In this chapter, we will provide an introduction to key concepts in quantum in-
formation and explore the utilization of superconducting circuits operating in
the transmon regime as quantum memories. We will begin by offering a concise
overview of the fundamental resources in quantum information (1.1.1), namely
qubits and entanglement. Following that, wewill present a simple demonstration
of dephasing in quantum systems (1.1.2). Our focus will then shift to supercon-
ducting circuits as carriers of quantum information, wherewewill provide a brief
introduction to the basic principles of the charge qubit operated in the transmon
regime (1.2.1). Finally, we will introduce an effective model description for an
array of 𝑁 transmons interacting via capacitors (1.2.2).

1.1 Quantum Information Theory
Quantum information theory tries to utilize quantum systems as carriers of in-
formation, called qubits. To create a functional quantum computer, it is neces-
sary to have multiple qubits that can interact with one another, thereby generat-
ing entanglement. In the subsequent subsection 1.1.1, we will provide a concise
introduction to qubits and entanglement as foundational concepts. Once these
key notions are established, we will promptly move on to demonstrating the
emergence of dephasing phenomena in systems consisting of multiple interact-
ing qubits in subsection 1.1.2.



2 Quantum Information Theory

1.1.1 Qubits and Entanglement
The main idea behind quantum information is to augment the unit of classical in-
formation into a quantum system. This unit, called the bit, is a scalar variable that
takes two possible values 0 and 1. For quantum system we can represent these
two values as two states |0⟩ and |1⟩ in a 2D Hilbert space. However a quantum
system can be in any superposition of the two states as well and therefore the
basic unit of quantum information, the qubit, will be a vector in the 2D Hilbert
space

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (1.1)

where 𝛼 and 𝛽 are complex values. Their absolute value squared corresponds to
the probability of the qubit state |𝜓⟩ beingmeasured in state |0⟩ or |1⟩ respectively
and therefore they are bound by the normalization condition

|𝛼|2 + |𝛽|2 = 1 (1.2)

Another important resource of quantum information is entanglement. This
property can emerge only for systems with more than one qubit that are interact-
ing in some manner. The state |𝜓tot⟩ of a non-entangled n-qubit system in turn
is described by the tensor product of the states of its subsystems

|𝜓tot⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ ⊗⋯⊗ |𝜓𝑛⟩ = |𝜓1, 𝜓2, … , 𝜓𝑛⟩. (1.3)

We use both of these notations interchangeably. States that can be written in this
form are called separable. Entangled states on the other hand cannot be written
in a product form. Consider for example the 2-qubit state

|Φ+⟩ =
1
√2

(|00⟩ + |11⟩). (1.4)

We can try expressing this in the form of a tensor product of two arbitrary qubit
states like the one in Eq. (1.1)

1
√2

(|00⟩ + |11⟩) = (𝛼1|0⟩ + 𝛽1|1⟩) ⊗ (𝛼2|0⟩ + 𝛽2|1⟩) (1.5)

Simple algebraic arguments can convince one that these equations are not solv-
able and therefore the state of Eq. (1.4) is not separable.

Since entangled states do not support a vector state representation for their
subsystems we can switch to a broader representation for quantum states, the
density matrix. For a state |𝜓⟩ as the one in Eq. (1.1) which supports a vector
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state representation, we say that it is a pure state and the corresponding density
matrix is defined simply as

𝜌 = |𝜓⟩⟨𝜓| = (|𝛼|
2 𝛼𝛽∗

𝛼∗𝛽 |𝛽|2) . (1.6)

If we go to the eigenbasis of this matrix we can see that the diagonal elements
should then correspond to probabilities and therefore they would have to be real,
positive and adding up to 1. In other words any density matrix should be Her-
mitian, positive semi-definite and with trace 1.

However not all matrices that satisfy the above mentioned criteria are of the
form of Eq. (1.6). Those that cannot be written in that form correspond to the so
called mixed states and these are precisely the states that do not have a vector
state representation. We distinguish pure from mixed states by the calculating
the square of the density matrix. For a pure state it is trivial to see from Eq. (1.6)
that 𝜌2 = 𝜌 while for a mixed this will not be true.

In the most general case therefore the density matrix of a qubit is going to be
of the form

𝜌 = 1
2(1 + ⃗𝑛 ⋅ 𝜎⃗) = 1

2 (
1 − 𝑧 𝑥 − 𝑖𝑦
𝑥 + 𝑖𝑦 1 + 𝑧 ) , (1.7)

where ⃗𝑛 = (𝑥, 𝑦, 𝑧)𝑇 is some ℝ3 vector and ⃗𝜎 = (𝑋, 𝑌, 𝑍)𝑇 is the vector of Pauli
matrices. From the form of Eq. (1.7) it is easy to verify that this matrix respects
all the previously mentioned conditions to qualify as density matrix, assuming
‖ ⃗𝑛‖ ≤ 1. Additionally from squaring this expression we obtain

𝜌2 = 1
4(1 + ⃗𝑛 ⋅ 𝜎⃗)(1 + ⃗𝑛 ⋅ 𝜎⃗) = 1

2 (
1 + ‖ ⃗𝑛‖2

2 + ⃗𝑛 ⋅ 𝜎⃗) (1.8)

so we notice that in general 𝜌2 ≠ 𝜌 except for the case that the norm of the vec-
tor ⃗𝑛 is 1. This naturally leads to the representation of pure single qubit states as
vectors on a unit sphere, called Bloch sphere while the mixed states land some-
where inside the sphere. From this we can conclude that the maximally mixed
state is the one with ⃗𝑛 being the zero vector, in the sense that it is the furthest
away from a pure state.

For separable states we can still define the total state of the system via the
tensor product

𝜌tot = 𝜌1 ⊗ 𝜌2 ⊗⋯⊗ 𝜌𝑛 (1.9)

while the entangled states cannot be written in the form once again. However,
given the total density matrix of the system we can recover some information
about the state of a subsystem using the partial trace. For a 2-qubit state 𝜌12 the
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partial trace with respect to subsystem 2 is

𝜌1 = Tr2(𝜌12) = Tr2 (
1
∑

𝑖,𝑗,𝑘,ℓ=0
𝜌(𝑖𝑗𝑘ℓ)12 |𝑖𝑗⟩⟨𝑘ℓ|) (1.10)

=
1
∑

𝑖,𝑗,𝑘,ℓ=0
𝜌(𝑖𝑗𝑘ℓ)12 |𝑖⟩⟨𝑘|

1
∑
𝑚=0

⟨𝑚|𝑗⟩⟨ℓ|𝑚⟩ (1.11)

=
1
∑

𝑖,𝑘,𝑚=0
𝜌(𝑖𝑚𝑘𝑚)
12 |𝑖⟩⟨𝑘|. (1.12)

For the case of a separable state this simply reduces to Tr2(𝜌1⊗𝜌2) = 𝜌1Tr(𝜌2) =
𝜌1 while for an entangled state the partial trace has no vector state counterpart
and therefore will be a mixed state.

Finally we will quantify the entanglement of a state by the degree to which
its subsystems are mixed. The measure we use for that is the normalized von
Neumann entropy [8] or entanglement entropy defined as

𝑆(𝜌𝐴) = −Tr(𝜌𝐴 log2 𝜌𝐴) (1.13)

where 𝜌𝐴 is the partial trace of a system with respect to the complement of 𝐴.
Assuming that 𝜌𝐴 is a qubit state we can re-express the von Neumann entropy in
terms of the Bloch vector norm by diagonalizing the density matrix of Eq. (1.7)

det(𝜌𝐴 − 𝜆) = 0 ⇒ 𝜆 = 1
2(1 ± ‖ ⃗𝑛‖) (1.14)

and therefore

𝑆(𝜌1) = −1 + ‖ ⃗𝑛‖
2 log2 (

1 + ‖ ⃗𝑛‖
2 ) − 1 − ‖ ⃗𝑛‖

2 log2 (
1 − ‖ ⃗𝑛‖

2 ) . (1.15)

From this expression it is straightforward to see that for a separable state, and
thus pure partial trace with ‖ ⃗𝑛‖ = 1 the von Neumann entropy vanishes while
for amaximally entangled state and thereforemaximally mixed partial trace with
‖ ⃗𝑛‖ = 0 we have 𝑆(𝜌𝐴) = 1. For more detail on what was presented here see
[B1].

1.1.2 Dephasing
We have covered briefly two key static aspects of quantum information theory:
qubits and their entanglement. Here we will discuss some dynamical aspects.
Specifically we are interested on how arrays of qubits can be used as quantum
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memories. While the classical intuition would be to initialize the system in the
desired state that we want to store and then isolate it somewhere undisturbed,
reality is not that simple for quantum systems.

Even isolated from their environments, they possess some Hamiltonian 𝐻
that according to the Schrödinger equation generates dynamics for any arbitrary
state |𝜓(𝑡)⟩

𝑖𝜕𝑡|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩ ⇒ |𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡|𝜓(0)⟩ (1.16)

where we have set ℏ = 1 here and throughout the rest of the thesis. An equi-
valent equation for the density matrix evolution is the von Neumann equation

𝑖𝜕𝑡𝜌(𝑡) = [𝐻, 𝜌] ⇒ 𝜌(𝑡) = 𝑒−𝑖𝐻𝑡𝜌(0)𝑒𝑖𝐻𝑡 (1.17)

For the case of pure states it is straightforward to see that these two are equival-
ent by substituting 𝜌(𝑡) = |𝜓(𝑡)⟩⟨𝜓(𝑡)| in Eq. (1.17) and then using the Schrödinger
equation to complete the proof. Therefore, unless the system is prepared in an
eigenstate of the Hamiltonian, its state will time evolve under its own influence.
This characteristic of quantum systems makes the storage of quantum informa-
tion challenging.

We will demonstrate this here now for a specific choice of system. Consider
the 1D spin chain with Hamiltonian

𝐻𝑍𝑍 =
𝐿
∑
𝑖=1

𝜔𝑖𝑍𝑖 + 𝐽
𝐿−1
∑
𝑖=1

𝑍𝑖𝑍𝑖+1, (1.18)

where 𝑍𝑖 is the Pauli z matrix acting on site 𝑖. Since spin-1/2 particles are 2-level
systems they qualify as qubits [9] and therefore the system described by this
Hamiltonian is that of a qubit array of length 𝐿.

Assuming that 𝐽 = 0 for a moment we can see that the system is no longer
interacting and therefore whatever dynamics it has should be trivial. We will
prove this right away by making an assumption about the system initialization.
We assume that the system is initialized in a product state

𝜌(0) = 𝜌1(0) ⊗⋯⊗ 𝜌𝐿(0) =
𝐿

⨂
𝑗=1

𝜌𝑗(0) (1.19)

For 𝐽 = 0 the time evolution of the system is separable since every term com-
mutes with every other term and therefore

𝜌(𝑡) = 𝑒−𝑖𝐻𝑡
𝐿

⨂
𝑗=1

𝜌𝑗(0)𝑒𝑖𝐻𝑡 =
𝐿

⨂
𝑗=1

𝑒−𝑖𝜔𝑗𝑍𝑗𝑡𝜌𝑗(0)𝑒𝑖𝜔𝑗𝑍𝑗𝑡. (1.20)
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Since each part of the system evolves unitarily they will all remain in a pure state,
since we started in a separable state

𝜌𝑗(𝑡)2 = (𝑒−𝑖𝜔𝑗𝑍𝑗𝑡𝜌𝑗(0)𝑒𝑖𝜔𝑗𝑍𝑗𝑡)
2 = 𝑒−𝑖𝜔𝑗𝑍𝑗𝑡𝜌𝑗(0)2𝑒𝑖𝜔𝑗𝑍𝑗𝑡 = 𝜌𝑗(𝑡), (1.21)

in other words the entanglement entropy remains constantly at zero for any par-
tition of the system.

Figure 1.1: Entanglement entropy as a function of time. We present the entangle-
ment entropy of a qubit located at the center of a 1D lattice evolving under the Hamilto-
nian of Eq. (1.18). We performed this calculation numerically for random 𝜔𝑖 drawn from
a Gaussian distribution of mean 5 GHz and standard deviation 0.3GHz for odd chain
lengths 𝐿 = 3 through 9. Time is given in units of the inverse of the coupling strength 𝐽
which was fixed at 1MHz. The initial state of the system is chosen randomly from the
set of product states with each subsystem lying on the equator of the Bloch sphere.

If we now turn the coupling 𝐽 back on and starting again with the assumption
of a separable initial state the dynamics are no longer trivial. The time evolution
is no longer separable and we cannot make a simple analytic argument about the
entanglement entropy of the system. We can however calculate the dynamics
numerically for finite size systems. We performed this numerical analysis and
the results are reported in Fig. 1.1. Since there is some randomness involved
in our initialization of the system we needed to make sure that the system is
initialized far from an eigenstate. The eigenstates of the Hamiltonian in Eq. (1.18)
are obviously product states of the eigenstates of the 𝑍matrix therefore we chose
to initialize the system in product states of the form

𝜌(0) = 1
2𝐿

𝐿

⨂
𝑗=1

( 1 𝑒−𝑖𝜙𝑗
𝑒𝑖𝜙𝑗 1 ) (1.22)



Quantum Information Theory 7

In other words we chose the initial state of each qubit to be the furthest away
possible from a 𝑍 eigenstate which corresponds to the states with 0 z-component
for the Bloch vector. The 𝜙𝑗 angles are chosen randomly.

We immediately notice that the situation is drastically different with 𝐽 ≠ 0.
Even thought the system as a whole evolves unitarily with the global state re-
maining pure, the qubits become maximally entangled. As a result, the partial
trace of the system evolves from a pure state to a completely mixed state, some-
thing which is not possible for unitary dynamics as we have seen. Therefore
the quantum information of a single qubit at the center of the lattice spreads out
completely to the rest of the system. This is reminiscent to the mechanism of
dephasing.

In dephasing, a density matrix undergoes non-unitary evolution and trans-
itions into a mixed state by gradually erasing its off-diagonal elements. In the
case of a qubit state, this corresponds to the shrinking of its Bloch vector and its
alignment with the z-axis. Dephasing is part of a broader category of processes
known as decoherence, wherein quantum systems exhibit classical behavior. De-
coherence typically occurs in open systems that interact with an external reser-
voir. However, in the present case, the role of the reservoir is played by the
system itself, which acts on one of its qubits.

The situation becomes progressively more dire as we increase the length of
the chain, by reaching maximum entropy faster and remaining there for longer
times. We do also recover the initial state of the system periodically in time and
for brief intervals which become smaller and smaller as we increase 𝐿. This is
the well know phenomenon of quantum revivals [10].

The reason we did not compare the time evolution of the two cases directly
is because the time evolution of the states is frame dependent. For example we
can always go to the Heisenberg frame and then states do not evolve for any
system. However entanglement entropy as it was defined in Eq. (1.13) is frame
independent because of the trace. Therefore it makes a stronger statement about
why for 𝐽 = 0 the system has no dynamics and is thus an ideal quantummemory
while for 𝐽 ≠ 0 it has dynamics and local information of the system becomes
scrambled.

Maintaining control over the type of dephasing we have demonstrated here
is of utmost importance for a system designed to function as a quantummemory.
The conventional approach to achieve this control is by minimizing the coupling
as much as possible. However, this presents a challenge as it leads to longer gate
operation times required for qubit manipulation. We will show later on, that
an alternative solution to address this issue is to increase the spread of qubit
frequencies, denoted as 𝜔𝑖, using the phenomenon of many-body localization.
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1.2 The Transmon as a Qubit Platform
In recent years, one of the most promising platforms for quantum computation
has been superconducting qubits, particularly when operated in the transmon
regime [3, 4]. Here we outline briefly the main idea behind charge qubits and
the crucial role of anharmonicity for their manipulation in subsection 1.2.1. Once
the charge qubit has been introduced, we derive an effective description of the
system of capacitively coupled transmons as a Bose-Hubbardmodel in subsection
1.2.2.

1.2.1 The Role of Anharmonicity
As we have mentioned earlier any quantum system with two discrete energy
levels can be a qubit. But most quantum systems have more energy levels. This
is not a problem as long aswe can guarantee that our systemwill remain confined
in the Hilbert space defined by two energy levels, typically the ground state |0⟩
and the first excited state |1⟩. One of the first ideas that come to mind for the
implementation of a qubit is the harmonic oscillator

𝐻HO =
𝑝2
2𝑚 + 1

2𝑚𝜔
2𝑥2 (1.23)

with 𝑥 and 𝑝 the position and momentum operator of the oscillator respectively
and their commutation relation

[𝑥, 𝑝] = 𝑖 (1.24)

Upon closer examination, it becomes apparent that the chosen realization of
a qubit using a harmonic oscillator poses a fundamental problem. The energy
levels in this system are equally spaced, indicating that the frequency driving
the transition between |0⟩ and |1⟩ is the same as the frequency for the transition
between |1⟩ and |2⟩, and so on. Consequently, during the necessary manipula-
tions for quantum computation, our system can evolve outside the designated
qubit sector of the Hilbert space. This phenomenon is commonly referred to as
leakage.

We can avoid this issue if we introduce some anharmonicity in the system.
For example we can consider the system of a pendulum in a gravitational field

𝐻P =
𝑝2
2𝑚 +𝑚𝑔ℓ(1 − cos(𝑥)). (1.25)

For the quantized Hamiltonian the constant term𝑚𝑔ℓ contributes only a global
phase for the eigenstates and a constant shift for all energy levels therefore it can
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be ignored

𝐻P =
𝑝2
2𝑚 −𝑚𝑔ℓ cos(𝑥). (1.26)

Manufacturing such a quantum system is preposterous, the mass of the os-
cillator would have to be so small that gravitational effects could no longer be
relevant. What we can use instead is the electric circuit analogue of the system.
For the harmonic oscillator the corresponding circuit is the well know LC circuit

𝐻LC =
𝑄2

2𝐶 + Φ2

2𝐿 (1.27)

where 𝑄 is the charge of the capacitor with capacitance 𝐶 and Φ is the flux
through the inductor of inductance 𝐿 defined as

𝑑Φ
𝑑𝑡 = 𝑉(𝑡). (1.28)

Since the charge and the voltage are related via the known relation

𝑄 = 𝐶𝑉 ⇒ 𝑑Φ
𝑑𝑡 = 𝑄

𝐶 , (1.29)

therefore the role of momentum is carried by the chargewhile the role of position
is carried by the flux and the mass of the system corresponds to the capacitance.

From this we can already make an ansatz for the Hamiltonian of the circuit
analogue of the pendulum

𝐻PA =
𝑄2

2𝐶 − 𝐸J cos(2𝜋Φ/Φ0). (1.30)

The kinetic term of this Hamiltonian is equivalent to the one in Eq. (1.27) there-
fore it should also describe a capacitor. The second term however describes a
superconducting non-linear element called Josephson junction. The constant
Φ0 = ℎ/(2𝑒) is called the flux quantum with ℎ being Planck’s constant and 𝑒 the
electron charge. 𝐸J is the Josephson energy related to the critical current 𝐼c of
the junction via the relation 𝐸J = Φ0𝐼c/(2𝜋). We will take a phenomenological
approach here and we will not go through the details of superconductivity. For
more details on superconductivity see [B2] and for a more detailed derivation of
the Hamiltonian Eq. (1.30) see [11].

For convenience we define two dimensionless variables, the quantized su-
perconducting phase 𝜑 = 2𝜋Φ/Φ0 and the quantized charge 𝑛 = 𝑄/(2𝑒). The
charge is quantized in multiples of 2𝑒 since the superconducting current consists
of Cooper pairs. With these new definitions we rewrite the Hamiltonian of the
charge qubit as

𝐻CQ = 4𝐸C(𝑛 − 𝑛𝑔)2 − 𝐸J cos𝜑 (1.31)
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𝑉𝑔

𝐶𝑔

𝐶 𝐸J

|0⟩

|1⟩

|2⟩

Figure 1.2: Charge Qubit. On the left panel we present a qualitative sketch of the
first three energy levels of the charge qubit also comparing the potential to that of the
harmonic oscillator. On the right we present the circuit analogue of a pendulum. In the
circuit we have a voltage source denoted 𝑉𝑔 which is connected via the capacitor 𝐶𝑔 to
a Josephson junction (denoted by and x) shunted by the capacitance 𝐶. The circuit is
called a charge qubit or Cooper pair box.

where we have also included an offset charge 𝑛𝑔 and also define the capacitive
energy unit 𝐸C = 𝑒2/(2𝐶tot) with 𝐶tot = 𝐶 + 𝐶𝑔 the total capacitance of the
system (see Fig. 1.2). Drawing again from the correspondence to position and
momentum operators our new variables will have the commutation relation

[𝜑, 𝑛] = 𝑖 (1.32)

If we write the eigenvalue problem for the Hamiltonian of Eq. (1.31) in the
phase basis we obtain the differential eigenvalue problem

[4𝐸C (𝑖𝜕𝜑 + 𝑛𝑔)
2 − (𝐸𝑛 + 𝐸J cos𝜑)] 𝜓𝑛(𝑥) = 0 (1.33)

with the boundary condition 𝜓𝑛(𝜑) = 𝜓𝑛(𝜑+2𝜋). After the substitution 𝑔𝑛(𝑥) =
𝑒−2𝑖𝑛𝑔𝑥𝜓𝑛(2𝑥) Eq. (1.33) yields

[𝜕2𝑥 + (𝐸𝑛𝐸C
+
𝐸J

𝐸C
cos(2𝑥))] 𝑔𝑛(𝑥) = 0 (1.34)

with the accompanying boundary condition 𝑔(𝑥) = 𝑒𝑖2𝜋𝑛𝑔𝑔(𝑥 + 𝜋). Eq. (1.34)
is called the Mathieu differential equation with exact eigenvalues and eigenfunc-
tions given by the Mathieu functions [B3]. Using these function we plot the spec-
trum of the system for the first three energy levels in Fig. (1.3). There we have
plotted the spectrum as a function of the gate charge for 4 different values of the
ratio 𝐸J/𝐸C. Our first observation is that the energy levels are not equidistant as
in the case of the harmonic oscillator. However the spectrum fluctuates strongly
with the offset charge 𝑛𝑔 when this ratio 𝐸J/𝐸C is close to one. By increasing the
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ratio however the fluctuations are diminishing and eventually in the regime of
𝐸J/𝐸C ≫ 1 the states are virtually independent of the gate charge. This is called
the transmon regime [12, B4] and we will from now on always assume that our
system is operating in this region and that 𝑛𝑔 = 0.

Figure 1.3: Gate charge dependence of the energy levels of the Cooper pair box
We present the first 3 energy levels of the Cooper pair box as a function of the gate
charge 𝑛𝑔. The energy levels are give in units of the transition energy from ground state
to first excited 𝐸01 at 𝑛𝑔 = 1/2. We plot these energy levels for progressively higher
𝐸J/𝐸C approaching the transmon limit.

1.2.2 Bose-Hubbard Approximation
We will now move on to transmon arrays coupled via capacitors. The Hamilto-
nian describing such a system is

𝐻CCT = 4𝐸C

𝑁
∑
𝑖=1

𝑛2𝑖 −
𝑁
∑
𝑖=1

𝐸J𝑖 cos𝜑𝑖 + 𝜆∑
⟨𝑖,𝑗⟩

𝑛𝑖𝑛𝑗 (1.35)

where the coupling parameter 𝜆 is related to the capacitance that connects two
nearest neighbor transmons on a lattice, and we have assumed that its value is
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uniform. The same holds true for the capacitive energy 𝐸C while we allow for
the Josephson junctions to have varying Josephson characteristics.

We will now derive an approximate expression for this Hamiltonian which
yields a more intuitive interpretation and is more useful for numerical calcula-
tions. We start by expanding the cosine to fourth order

𝐻CCT = 4𝐸C

Ν
∑
𝑖=1

𝑛2𝑖 +
Ν
∑
𝑖=1

𝐸J𝑖 (
𝜑2𝑖
2 − 𝜑4𝑖

24) + 𝜆∑
⟨𝑖,𝑗⟩

𝑛𝑖𝑛𝑖+1. (1.36)

We have also dropped the constant term since it does not contribute anything to
the phenomenology of the system. In fact we will also drop any constant terms
that appear for the rest of the derivation as well.

Our next step is to switch to a second quantization description of the system
by performing the canonical transformation

𝑛𝑖 =
𝑖
2
4

√
𝐸J𝑖

2𝐸C
(𝑎†𝑖 − 𝑎𝑖) and 𝜑𝑖 = 4

√
2𝐸C

𝐸J𝑖

(𝑎†𝑖 + 𝑎𝑖) (1.37)

where 𝑎†𝑖 and 𝑎𝑖 are the bosonic creation and annihilation operators acting on
transmon 𝑖 with the algebra [𝑎𝑖, 𝑎†𝑗 ] = 𝛿𝑖𝑗 . The Hamiltonian then assumes the
form

𝐻CCT =
Ν
∑
𝑖=1

Ω𝑖𝑎†𝑖 𝑎𝑖 −
𝐸C

12
Ν
∑
𝑖=1
(𝑎†𝑖 + 𝑎𝑖)4 − ∑

⟨𝑖,𝑗⟩
𝐽𝑖𝑗(𝑎†𝑖 − 𝑎𝑖)(𝑎†𝑗 − 𝑎𝑗), (1.38)

where we used the definitions

Ω𝑖 = √8𝐸J𝑖𝐸C and 𝐽𝑖𝑗 =
𝜆
4

4√𝐸J𝑖𝐸J𝑗

√2𝐸C

. (1.39)

Finally we will employ a rotating wave approximation (RWA) [13] to discard
terms that oscillate rapidly (with a frequency much higher than the energy amp-
litude of the oscillating term) in the rotating frame given by the transformation

𝑈rot(𝑡) = exp(𝑖𝑡
𝑁
∑
𝑖=1

Ω𝑖𝑎†𝑖 𝑎𝑖) . (1.40)

According to the Lemma 3 of appendix A each ladder operator will rotate with
the onsite frequency Ω𝑖 but creation and annihilation operators rotate in the
opposite direction. Therefore terms that have an equal number of creation and
annihilation operators will not oscillate at all.
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The only terms that are oscillating in the rotating frame are therefore in the
second and third term of the Hamiltonian Eq. (1.40). The terms with an unequal
number of creation and annihilation operators from the second sum are oscil-
lating with a frequency that is going to be an integer multiple of the on site
frequencyΩ𝑖. Since in the transmon regime 𝐸C/Ω𝑖 ≪ 1we can drop these terms
and thus from the remaining, after normal ordering, we obtain

𝐸C

12
Ν
∑
𝑖=1
(𝑎†𝑖 + 𝑎𝑖)4

RWA≃ 𝐸C

2
Ν
∑
𝑖=1

𝑎†𝑖 𝑎†𝑖 𝑎𝑖𝑎𝑖 + 𝐸C

Ν
∑
𝑖=1

𝑎†𝑖 𝑎𝑖. (1.41)

With a similar argument for the last term we will have

∑
⟨𝑖,𝑗⟩

𝐽𝑖𝑗(𝑎†𝑖 − 𝑎𝑖)(𝑎†𝑗 − 𝑎𝑗)
RWA≃ −∑

⟨𝑖,𝑗⟩
𝐽𝑖𝑗(𝑎†𝑖 𝑎𝑗 + 𝑎𝑖𝑎†𝑗 ) (1.42)

assuming that
𝐽𝑖𝑗

Ω𝑖 +Ω𝑗
≃ 𝐽𝑖𝑖
2Ω𝑖

= 𝜆
32𝐸C

≪ 1. (1.43)

This is typically true for experimental setups with the coupling 𝜆 being approx-
imately 2 orders of magnitude smaller than 𝐸C.

Recombining everything back in Eq. (1.40) we obtain the Bose-Hubbard ap-
proximation of the transmon array Hamiltonian

𝐻BHA =
𝑁
∑
𝑖=1

𝜔𝑖 𝑎†𝑖 𝑎𝑖 −
𝐸C

2
𝑁
∑
𝑖=1

𝑎†𝑖 𝑎†𝑖 𝑎𝑖𝑎𝑖 + ∑
⟨𝑖,𝑗⟩

𝐽𝑖𝑗(𝑎𝑖𝑎†𝑗 + 𝑎†𝑖 𝑎𝑗) (1.44)

where we defined 𝜔𝑖 ≡ √8𝐸J𝑖𝐸C − 𝐸C and we can also re-express the coupling

with respect to the new frequency definition

𝐽𝑖𝑗 =
𝜆
16√

(1 + 𝜔𝑖
𝐸C
) (1 +

𝜔𝑗
𝐸C
). (1.45)

Upon examining the on-site Hamiltonian, it becomes evident that as 𝐸C tends
towards zero, the system behaves as a harmonic oscillator. However, when 𝐸C
is finite, the energy levels are no longer evenly spaced. Specifically, the energy
difference between𝐸01, the excitation energy for the transition |0⟩ → |1⟩, and𝐸12,
the excitation energy for the transition |1⟩ → |2⟩, is equal to𝐸C. This signifies the
restoration of anharmonicity in the system, with the anharmonicity magnitude
being equal to 𝐸C.

Before concluding this section, it is crucial to note that the Hamiltonian de-
scribed in Equation (1.44) is unbounded from below, which can lead to unphysical
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predictions. It is essential to recognize that this expression serves as an approx-
imation within a limited energy range. While it is possible to derive an exact
second quantization form for the complete Hamiltonian (refer to Appendix B), it
remains uncertain whether this formalism is suitable for numerical calculations.
Therefore, we will only employ Eq. (1.44) as an approximation when dealing
with the Hamiltonian, acknowledging its limitations and the need for careful
interpretation of the results obtained.



2
Many Body Localization and

Quantum Chaos

In this chapter, we will explore fundamental concepts of quantum chaos and
localization theory. We will commence by introducing some basic aspects of
random matrix theory (2.1.1) and establish its connection to thermalization and
the eigenstate thermalization hypothesis (2.1.2). Moving forward, we will delve
into Anderson localization as the starting point for our basic illustration of loc-
alization theory (2.2.1), followed by an introduction to the phenomenology of
the more intricate case of many-body localization (2.2.2). Once both of these dy-
namic phases of matter have been introduced, we will present the tools utilized
for studying the transition between them, namely level spacing statistics (2.3.1)
and the inverse participation ratio (2.3.2).

2.1 Chaotic Phase
A significant theoretical challenge lies in understanding the emergence of clas-
sical chaotic behavior from quantum systems. While classical chaos requires
some non-linearity in the dynamics of the system, in quantum mechanics time
evolution is determined from the Schrödinger equation which is linear. Bridging
the gap between these seemingly disparate behaviors involves the utilization of
random matrix theory. RMT deals with Hamiltonians that belong to ensembles
of random matrices, leading to the interpretation of the eigenstates of these
matrices as independent and random. Initially, this notion may appear counter-
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intuitive since one would expect that small perturbations in the parameters of a
Hamiltonian, would only cause slight changes in its eigenstates. Consequently,
the new eigenstates, still belonging to the same ensemble, could not be independ-
ent from the previous eigenstates. Yet this is exactly what happens for a particu-
lar class of systems which are called quantum chaotic due to the drastic mixing
of eigenstates under slight alteration of parameters. In this section, we provide
a concise introduction to RMT and establish its connection to the thermalization
of quantum systems through the eigenstate thermalization hypothesis.

2.1.1 Random Matrix Theory

We primarily study disordered systems in this thesis and here we present various
generic properties exhibited by such systems. Disorder manifests in physical sys-
tems through random fluctuations in the system parameters. The description of
a quantum system starts by writing down its Hamiltonian which will depend on
these parameters. For disordered systems with a finite Hilbert space the Hamilto-
nian assumes the form of a random matrix. We impose no additional constraints
on the Hamiltonian, apart from it being a real symmetric matrix. Although the
concepts discussed in this chapter can be extended to the broader realm of Her-
mitian matrices, the systems under consideration here possess real symmetric
Hamiltonians. Hence, for the sake of simplicity, we confine our discussion to
this particular case.

In the case of a real symmetric matrix, the eigenvectors are also real and con-
stitute an orthonormal basis. Since our matrices are random, the eigenvectors
exhibit a corresponding random nature. The distribution that characterizes these
vectors should correspond to a uniform coverage the unit hypersphere 𝑆𝑑−1,
where 𝑑 denotes the dimension of the Hilbert space. Therefore it is straight-
forward to write down the distribution of these eigenvectors with components
𝜓1, 𝜓2, … , 𝜓𝑑 in some arbitrary basis [14]

𝜌(𝜓1, 𝜓2, … , 𝜓𝑑) = 𝐶𝑑𝛿 (
𝑑
∑
𝑖=1

𝜓2𝑖 − 1) (2.1)

and the normalization coefficient can be easily determined by switching to spher-
ical coordinates and integrating the distribution

∫𝑑𝑉𝑑𝜌(𝜓1, 𝜓2, … , 𝜓𝑑) = 𝐶𝑑∫
1

0
𝑑𝑟 2𝜋

𝑑/2

Γ(𝑑/2)𝑟
𝑑−1𝛿(𝑟2 − 1) = 𝐶𝑑

𝜋𝑑/2
Γ(𝑑/2) . (2.2)
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Therefore our normalized distribution will be

𝜌(𝜓1, 𝜓2, … , 𝜓𝑑) =
Γ(𝑑/2)
𝜋𝑑/2 𝛿 (

𝑑
∑
𝑖=1

𝜓2𝑖 − 1) (2.3)

For our calculations later on we will find it beneficial to have the distribution
of the individual components of the eigenvectors rather than the the distribution
for the full eigenvector that we obtained here in Eq. (2.3). In order to do that we
can simply integrate the last 𝑑 − 1 variables of the distribution by switching to
spherical coordinates, as we did for the normalization, to obtain

𝜌(𝜓) = ∫𝑑𝜓2 …𝑑𝜓𝑑𝜌(𝜓, 𝜓2, … , 𝜓𝑑) =
Γ (𝑑

2
)

√𝜋Γ (𝑑−1
2
)
(1 − 𝜓2)

𝑑−3
2 . (2.4)

Themoments of this distribution can be readily obtain by simple integration. The
odd moments are trivially vanishing since the distribution is even and thus we
only have even moments of the form

𝜓2𝜅 = (2𝜅 − 1)!!
2𝜅

Γ (𝑑
2
)

Γ (𝑑
2
+ 𝜅)

≃ (2𝜅 − 1)!!
𝑑𝜅 + 𝑂(𝑑−(𝜅+1)). (2.5)

Note that the averaging here is done with respect to some fictitious ensemble of
Hamiltonians, called the Gaussian orthogonal ensemble (GOE) in our case, and
we will reserve the overline notation for this kind of averaging. Later on we will
refer to this as disorder averaging. One might immediately recognize the leading
term of these moments as the moments of the Gaussian distribution with mean
zero and standard deviation 1/𝑑. Therefore we can conclude that in the limit of
large Hilbert spaces 𝑑 → ∞ the rescaled variable 𝑑1/2𝜓 behaves as a random
variable given by a Gaussian distribution of mean zero and standard deviation 1.

We could now proceed to the distribution of energy levels but we will return
to this in subsection 2.3.1. Now we will consider the implications of random
matrix theory for the observables of such a Hamiltonian. We assume some ob-
servable with spectral decomposition

𝒪 =
𝑑
∑
𝑖=1

𝑂𝑖|𝑖⟩⟨𝑖|. (2.6)

Using the completeness relation of the eigenstates of the Hamiltonian, which we
denote with Greek indices and reserve Latin indices for the eigenbasis of 𝒪, we
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can express the observable in the eigenbasis of the Hamiltonian as

𝒪 =
𝑑
∑

𝜇,𝜈=1
⟨𝜇|𝒪|𝜈⟩|𝜇⟩⟨𝜈| =

𝑑
∑

𝑖,𝜇,𝜈=1
𝑂𝑖𝜓𝜇𝑖 𝜓𝜈𝑖 |𝜇⟩⟨𝜈|. (2.7)

with 𝜓𝜇𝑖 = ⟨𝜇|𝑖⟩ the amplitude of eigenstate |𝜇⟩ of the Hamiltonian on eigenstate
|𝑖⟩ of the observable and similarly for 𝜓𝜈𝑖 .

The ensemble average of the diagonal elements of the observable exhibit dif-
ferent behavior from the off-diagonal elements

𝒪𝜇𝜇 =
𝑑
∑
𝑖=1

𝑂𝑖(𝜓𝜇𝑖 )
2 ≃ 1

𝑑
𝑑
∑
𝑖=1

𝑂𝑖 = 𝑂 (2.8)

𝒪𝜇𝜈 =
𝑑
∑
𝑖=1

𝑂𝑖𝜓𝜇𝑖 𝜓𝜈𝑖 =
1
𝑑

𝑑
∑
𝑖=1

𝑂𝑖Ψ𝜇
𝑖 Ψ𝜈

𝑖 ≃ 0 (2.9)

In the first line we made use of Eq. (2.5) and in the second line we used the
observation that the rescaled variables Ψ𝜇

𝑖 = 𝑑1/2𝜓𝜇𝑖 and Ψ𝜈
𝑖 = 𝑑1/2𝜓𝜈𝑖 behave

approximately as independent random variables drawn from the same Gaussian
distribution for the reasons explained after Eq. (2.5). For the average of the off-
diagonal elements we have also invoked Lemma 5 in appendix C. Similarly for
the variance of the elements of 𝒪 we obtain

𝒪2𝜇𝜇 − 𝒪𝜇𝜇
2
= 1
𝑑2

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗(Ψ𝜇
𝑖 )

2 (Ψ𝜇
𝑗 )

2
− 𝑂

2
≃ 2
𝑑𝑂

2 (2.10)

𝒪2𝜇𝜈 − 𝒪𝜇𝜈
2
= 1
𝑑2

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗Ψ𝜇
𝑖 Ψ𝜈

𝑖Ψ
𝜇
𝑗 Ψ𝜈

𝑗 ≃ 1
𝑑𝑂

2 (2.11)

where we used again the Gaussian approximation for the rescaled variables and
Lemmas 6 and 8 in appendix C.

We can summarise all these results in the following ansatz for the elements
of the observable 𝒪

𝒪𝑚𝑛 ≃ 𝑂𝛿𝑚𝑛 +√
𝑂2

𝑑 𝑅𝑚𝑛 (2.12)

where 𝑅𝑚𝑛 is a random matrix with moments

𝑅𝑚𝑛 = 0 , 𝑅2𝑚𝑛 = 1 + 𝛿𝑚𝑛. (2.13)

It is very straightforward to confirm that this ansatz reproduces the first two
moments of the elements of any observable 𝒪 for a random matrix Hamiltonian.
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Since the fluctuations of the elements of 𝒪 around the mean are vanishing for
large enough systems with 𝑑 → ∞, assuming that𝑂2 itself does not scale with 𝑑,
the ansatz Eq. (2.12) should be approximately valid for any single Hamiltonian.

2.1.2 Eigenstate Thermalization Hypothesis
The RMT ansatz, as presented in Eq. (2.12), serves as an initial framework for
understanding the thermalization of quantum systems. Thermalization refers
to the phenomenon where a system gradually approaches thermal equilibrium
over an extended period of self-interaction or interaction with a reservoir. Once
thermalization is achieved, the statistical behavior of the system’s observables
aligns with the predictions of one of the thermodynamic ensembles. At first
glance, this definition appears contradictory to quantum mechanics, given that
the dynamics of any closed system are inherently unitary

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡|𝜓(0)⟩ =
𝑑
∑
𝑛=1

𝑐𝜇𝑒−𝑖𝐸𝜇𝑡|𝜇⟩, (2.14)

where 𝑐𝜇 = ⟨𝜇|𝜓(0)⟩. Correspondingly the time evolution of an observable is

𝑂(𝑡) = ⟨𝜓(𝑡)|𝒪|𝜓(𝑡)⟩ =
𝑑
∑

𝜇,𝜈=1
𝑐∗𝜇𝑐𝜈𝑒𝑖(𝐸𝜇−𝐸𝜈)𝑡⟨𝜇|𝒪|𝜈⟩ (2.15)

and after a long time

⟨𝑂(𝑡)⟩∞ = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑑𝑡 𝑂(𝑡) =

𝑑
∑
𝜇=1

|𝑐𝜇|2⟨𝜇|𝒪|𝜇⟩ (2.16)

assuming that there are no degeneracies or that they are extremely rare. Accord-
ing to the ergodic hypothesis this average should be equivalent to the ensemble
average of the system. Yet the time average of Eq. (2.16) is clearly dependent
on the initialization of the system |𝜓(0)⟩ via the coefficients 𝑐𝜇 = ⟨𝜇|𝜓(0)⟩ and
therefore it cannot be compatible with the definition of thermalization.

If however the system has a Hamiltonian which aligns with the assumptions
of RMT then the long time average of the observable yields

⟨𝑂(𝑡)⟩∞ ≃ 𝑂
𝑑
∑
𝜇=1

|𝑐𝜇|2 = 𝑂 (2.17)

and therefore if𝑂 is the average predicted by a thermodynamic ensemble thermal-
ization can be reconciled with quantum mechanics. The first one to note the
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connection between RMT and thermalization of quantum systems was Deutch
in 1991 [15].

It is now advantageous to provide a more qualitative explanation for the
mechanism through which quantum systems undergo thermalization and con-
nect it to quantum information. While globally the system evolves under unit-
ary evolution, for the case of a closed system, locally the system can evolve
into mixed states, by erasing the off-diagonal elements of the partial trace of
the system, via the known mechanism of dephasing (see subsection 1.1.2). Con-
sequently, the system effectively acts as a bath for its own degrees of freedom,
scrambling the quantum information of its state. The term ”locally” here refers
to a subset of the entire system under consideration, encompassing only a limited
number of degrees of freedom, significantly fewer than the total degrees of free-
dom of the entire system. Notably, these local observables are the ones accessible
in experimental settings, as opposed to global observables. However, one issue
remains unresolved: the long-term average predicted by RMT is independent of
energy, a characteristic that holds true only in the limit of infinite temperature
for the ensembles.

The resolution of this issue was given by Srednicki [16] in the form of the
eigenstate thermalization hypothesis which can be stated in the form of the fol-
lowing ansatz for the matrix elements of an observable

𝒪𝜇𝜈 = 𝑂 (𝐸) 𝛿𝜇𝜈 + 𝑒−𝑆(𝐸)/2𝑓 (𝐸, 𝜔) 𝑅𝜇𝜈 (2.18)

where the variables 𝐸 = (𝐸𝜇+𝐸𝜈)/2 and 𝜔 = 𝐸𝜈−𝐸𝜇 have been introduced, 𝑅𝜇𝜈
is a symmetric random matrix with element mean 0 and variance 1 and 𝑆 (𝐸)
is the thermodynamic entropy of the system and 𝑂 (𝐸) and 𝑓 (𝐸, 𝜔) are smooth
functions of their arguments.

It is worth noting that the ETH ansatz, given in Eq. (2.18), bears a remark-
ably similar structure to the RMT ansatz defined in Equation (2.12). The key
distinction lies in the inclusion of energy dependent factors for the elements of
the observable within the ETH ansatz. In fact, within a small energy window,
the spectral function 𝑓 (𝐸, 𝜔) approximately remains constant. Consequently,
the two equations become practically indistinguishable. Hence, in a sense, RMT
can be viewed as a zeroth-order approximation of the ETH. This convergence
between the two approaches accounts for the interchangeable use of terms such
as RMT, thermalizing, and quantum chaotic within the literature.



Localized Phase 21

2.2 Localized Phase
In the previous section, we discussed how systems that adhere to the ETH are
destined to exhibit thermal behavior. A fundamental aspect of thermalization
in quantum systems is their ability to act as reservoirs for their subsystems, by
allowing for the exchange of energy and particles between different parts of the
system. Therefore, for a system to avoid thermalization, it must prevent trans-
port and exhibit insulating behavior. This is precisely the case for systems that
undergo Anderson localization or many-body localization. In this section, we
will explore some essential characteristics of these two phenomena.

2.2.1 Anderson Localization
In the beginning of the previous section we hinted towards the connection of
RMT Hamiltonians with Hamiltonians of classical systems that exhibit chaotic
behavior. A natural question we can ask now is what happens for systems that
are classically integrable. For example consider 𝑁 uncoupled harmonic oscillat-
ors. This system is trivially integrable and its quantum counterpart has energy
levels given by

𝐸𝑛 =
𝑁
∑
𝑖=1

𝑛𝑖𝜔𝑖 (2.19)

where we assumed that each oscillator has a different characteristic frequency 𝜔𝑖
and 𝑛 is a list of integer values 𝑛𝑖. Clearly these energy levels are uncorrelated.
This fact becomes apparent when we examine nearby energy levels within the
high-energy sector of this system. Although these levels may be closely spaced,
they originate from distinct sets of coefficients 𝑛𝑖. This stands in stark contrast
to the scenario observed in GOE Hamiltonians, as we shall explore in subsection
2.3.1.

However, the example provided earlier was rather simplistic, and it is neces-
sary to explore the potential for avoiding thermalization in a more realistic sys-
tem. Let us consider a one-dimensional spin 1/2 chain described by the Hamilto-
nian:

𝐻0 =
1
2

𝑁
∑
𝑖=1

𝜖𝑖𝑍𝑖 +
𝐽
2 ∑⟨𝑖,𝑗⟩

(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗) (2.20)

In this expression, 𝑋𝑖, 𝑌𝑖 and 𝑍𝑖 are the Pauli operators acting on site 𝑖 of the
lattice. The values 𝜖𝑖 are randomly selected from a uniform distribution within
the range [−𝑊/2,𝑊/2], where 𝑊 represents the strength of the disorder. The
term 𝐽 corresponds to the hopping strength, while ⟨𝑖, 𝑗⟩ indicates ordered nearest
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neighbor pairs. The ground state of the system is the all spins down configur-
ation. Qualitatively this system can be thought of as a disordered spin lattice
where spin excitations are hopping around the lattice like particles without in-
teracting with any of the other excitations. This in combination with the fact
that the total spin-z operator

𝑍 =
𝑁
∑
𝑖=1

𝑍𝑖 (2.21)

commutes with the Hamiltonian, means that our analysis can be confined to the
single-excitation sector.

In order to understand the behavior of this system we can consider the two
extreme limits of no disorder (𝑊 = 0) and infinite disorder (𝐽/𝑊 = 0). In the
first case periodicity is restored in the lattice and therefore the eigenstates will
be plane waves

𝜓𝑘(𝑥) = ⟨𝑥|𝜓𝑘⟩ =
1
√𝑁

𝑒𝑖𝑘𝑥 (2.22)

where 𝑘 = 2𝜋𝑚/𝑁 with𝑚 ∈ {0, 1, … , 𝑁 −1}, and the energy levels are given by

𝐸𝑘 = 2𝐽 cos(𝑘). (2.23)

For a state |𝑥⟩ with one spin up at position 𝑥 of the lattice at time 𝑡 = 0, after
it is allowed to evolve under the periodic Hamiltonian of Eq. (2.20) the return
probability will be

|⟨𝑥|𝑒−𝑖𝐻0𝑡|𝑥⟩|2 =
||||
∑
𝑘
𝑒−𝑖𝐸𝑘𝑡⟨𝑥|𝜓𝑘⟩⟨𝜓𝑘|𝑥⟩

||||

2

= 2
𝑁2 ∑

𝑝>𝑘
cos [(𝐸𝑝 − 𝐸𝑘)𝑡] . (2.24)

Therefore the probability of returning to the initial state is quasi-periodic in time
and we have infinite revivals. However the situation is different if we consider
the thermodynamic limit of 𝑁 → ∞

|⟨𝑥|𝑒−𝑖𝐻0𝑡|𝑥⟩|2 = 1
2𝜋2 ∫

2𝜋

0
𝑑𝑝∫

𝑝

0
𝑑𝑘 cos [(𝐸𝑝 − 𝐸𝑘)𝑡] = 𝐽0(2𝐽𝑡)2. (2.25)

where 𝐽0(𝑥) is the Bessel function of the first kind [B3]. For long times this
function behaves approximately as 1/𝑡 and therefore the return probability is
vanishing and the system behaves diffusively.

The infinite disorder case is far more trivial. Essentially the spins decouple
and therefore we simply have eigenstates of the form

𝜓𝑚(𝑥) = ⟨𝑥|𝜓𝑚⟩ = 𝛿𝑥,𝑚 (2.26)
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where 𝛿 indicates the Kronecker delta and𝑚 is the site at which the eigenstate is
localized. For the energy levels we simply have 𝐸𝑚 = 𝜖𝑚 and the return probably
is calculated as

|⟨𝑥|𝑒−𝑖𝐻TB𝑡|𝑥⟩|2 =
||||
∑
𝑚
𝑒−𝑖𝐸𝑚𝑡⟨𝑥|𝜓𝑚⟩⟨𝜓𝑚|𝑥⟩

||||

2

= 1. (2.27)

Therefore the excitation initialized at site 𝑥 remains there indefinitely regardless
of whether we go to the thermodynamic limit or not.

In the realm of intermediate cases between diffusion and extreme localiza-
tion, one might anticipate a diffusive behavior that is hindered by the scattering
of excitations with the disorder potential. However, this expectation is refuted
by Anderson’s groundbreaking work [17], which demonstrates that the system
remains localized for any finite strength of disorder. This remarkable result holds
true even for two-dimensional lattices, although in three dimensions, a transition
to a delocalized phase occurs, as established by renormalization group arguments
[18]. Within the intermediate localized phase, the eigenstates adopt a specific
form:

𝜓𝑚(𝑥) = ⟨𝑥|𝜓𝑚⟩ = 𝐴𝑚(𝑥)𝑒−|𝑥−𝑥𝑚|/𝜉𝐸 (2.28)

Here, 𝑥𝑚 denotes the position in real space around which the eigenstate |𝜓𝑚⟩
localizes, and 𝜉𝐸 represents the localization length, which generally depends on
the energy. The function 𝐴𝑚(𝑥) is a bounded function which cannot be determ-
ined with analytic considerations. Since systems in this regime maintain their
initial states over extended periods of time, they exhibit a lack of transport and
thus evade thermalization.

2.2.2 Many Body Localization
We have seen that systems can evade thermalization by the mechanism of Ander-
son localization. However Anderson localized systems are non-interacting and
therefore are not particularly relevant for practical applications, like quantum
computing for instance. A natural question after this consideration, and in fact
one that Anderson himself contemplated, is whether Anderson localization sur-
vives if we introduce many body interactions. As it turns out such a mechanism
exists, called many body localization and we will go through its main features
here.

Most of the Anderson localization properties transfer as well for the case of
MBL: uncorrelated spectra, localized eigenstates (though not in the same sense
as Anderson localization, see subsection 2.3.2) and insulating behavior. However
MBL is a less robust phase, as it exhibits a transition to a chaotic phase even in
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1D. This transition is driven by the interplay between the disorder strength and
the coupling strength of the system.

One of the most remarkable properties of MBL is the fact that the eigenstates
exhibit an area law. To understand this we consider a system which is MBL and
divide it into two parts, 𝐴 and its compliment 𝐵. Assume that initially the two
subsystems are decoupled. The state of the system will then be a tensor product
of the states of the two subsystems |𝛼⟩ ⊗ |𝛽⟩. At 𝑡 = 0 we turn on the coupling
and by interacting the two subsystems will become entangled, meaning that the
full state of the system can no longer be written as a product state. However
due to the localization of the system, only degrees of freedom within a localiza-
tion length 𝜉1 from the boundary can interact while correlations away from the
boundary decay exponentially. Therefore the entanglement entropy should de-
pend on the surface of the boundary. In other words the system remains close
to a product state, in the sense that its Schmidt decomposition will have one
coefficient close to 1 and all other coefficients will be exponentially smaller.

As a consequence of the area law entanglement inMBL eigenstates, the trans-
formation that diagonalizes the Hamiltonian exhibits quasi-locality. To illustrate
this concept, we consider a specific system. Wewill augment the previously men-
tioned Hamiltonian of Eq. (2.20) with an additional term to introduce many-body
interactions, characterized by a coupling strength 𝑉

𝐻XXZ =
1
2

𝑁
∑
𝑖=1

𝜖𝑖𝑍𝑖 +
𝐽
2 ∑⟨𝑖,𝑗⟩

(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗) +
𝑉
4 ∑

⟨𝑖,𝑗⟩
𝑍𝑖𝑍𝑗. (2.29)

This is the Heisenberg XXZ Hamiltonian and the added term describes a repul-
sion between excitations. Initially we consider what happens for 𝐽 = 0. While
this is still a many body interacting Hamiltonian it is clearly diagonal and the
local particle spin operators 𝑍𝑖 are integrals of motion since they commute with
the Hamiltonian. Furthermore the eigenstates are separable.

Upon reintroducing the hopping term, the new eigenstates become connec-
ted to the old eigenstates through a transformation 𝑈 . This transformation also
relates the previous integrals of motion to new ones, given by

𝜏𝑧𝑖 = 𝑈𝑍𝑖𝑈† (2.30)

while the Hamiltonian transforms into

𝐻 = 𝑈𝐻XXZ𝑈† = ∑
𝑖
ℎ𝑖𝜏𝑧𝑖 +∑

𝑖<𝑗
𝐽𝑖𝑗𝜏𝑧𝑖 𝜏𝑧𝑗 + ∑

𝑖<𝑗<𝑘
𝐾𝑖𝑗𝑘𝜏𝑧𝑖 𝜏𝑧𝑗 𝜏𝑧𝑘 + … (2.31)

This transformation, however, is not unique to MBL and can also be applied
to chaotic systems. What sets MBL apart is the quasi-local nature of the trans-
formation 𝑈 [19–21]. Quasi-locality means that the transformation 𝑈 can be
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decomposed into a product of operations acting on two sites 𝑈(2)
𝑖 , three sites

𝑈(3)
𝑖 , and so on (as shown in Fig. 2.1) with each layer of operations approaching

the identity exponentially fast with an increasing range ‖1 − 𝑈(𝑚)
𝑖 ‖2 < 𝑒−𝑚/𝜉1 ,

where ‖ ⋅ ‖ represents the operator Frobenius norm. Due to the quasi-locality of
𝑈 , the operators 𝜏𝑧𝑖 are commonly referred to as quasi-local integrals of motion
(LIOM).

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓

𝑈(2)
1 𝑈(2)

3 𝑈(2)
5 𝑈(2)

7 𝑈(2)
9

𝑈(2)
2 𝑈(2)

4 𝑈(2)
6 𝑈(2)

8

𝑈(3)
1 𝑈(3)

4 𝑈(3)
7

𝑈(3)
2 𝑈(3)

5 𝑈(3)
8

𝑈(3)
3 𝑈(3)

6

Figure 2.1: Quasi-local transformation. Graphical representation of how a quasi-
local transformation acts on a spin chain state. Here, the index 𝑖 in 𝑈(𝑚)

𝑖 denotes the
leftmost site number, ranging from 1 to 𝑁 −𝑚− 1 and𝑚 corresponds to the number of
sites acted upon by the operator

To capture the significance of the Hamiltonian in the LIOM decomposition,
we present it in a more concise form that is independent of the specific Heisen-
berg chain example:

𝐻LIOM = ∑
𝑎⃗
𝑤𝑎⃗(𝜏𝑧1 )𝑎1 … (𝜏𝑧𝑁)𝑎𝑁 . (2.32)

According to the phenomenology of MBL the coefficients 𝑤𝑎⃗ ∝ 𝑒−ℓ/𝜉2 decay
exponentially with correlation range ℓ, defined here as the maximum distance
between 2 non zero elements of ⃗𝑎.

If the system is fermionic then ⃗𝑎 are vectors where all elements are 0 or 1.
This follows from the observation that each of the LIOM squares to the identity

(𝜏𝑧𝑖 )2 = 𝑈𝑍𝑖𝑈†𝑈𝑍𝑖𝑈† = 1 (2.33)

and therefore including products with higher exponents does not add new terms
to the Hamiltonian. The situation is less trivial for the bosonic case. In gen-
eral, the squares of the LIOM can be different LIOM themselves and therefore
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we surmise that in that case the most general expression should contain higher
exponents as well. Regardless, there has been experimental evidence [22] and
theoretical studies [23–25] that confirm the existence of a bosonic MBL phase.

The astute reader might have noticed that we have written down two differ-
ent localization lengths 𝜉1 for the quasi-local transformation norm and 𝜉2 for the
coefficients of Eq. (2.32). At present, it remains unclear whether these two para-
meters are distinct or identical, and further investigation is required to determine
their relationship.

Before we conclude this section we will connect the phenomenology of MBL
to the example of dephasing that we presented in the subsection 1.1.2. The LIOM
Hamiltonian of Eq. (2.31) actually contains the Hamiltonian of Eq. (1.18) up to the
unitary transformation 𝑈 . It contains additionally longer range two-body inter-
actions, three body interactions and so on. However the dephasing mechanism
remains qualitatively similar, and we anticipate the dephasing time to be propor-
tional to 1/𝐽𝑖𝑗 (see Fig. 1.1). The benefit of having the system in the MBL phase
however is that 𝐽𝑖𝑗 is exponentially suppressed as ∼ 𝑒−(𝑗−𝑖)/𝜉2 and therefore the
dephasing time increases exponentially with localization length. Therefore by
ensuring that our system is deep in the MBL regime we can enable it to function
as a reliable quantum memory for an extended period of time.

2.3 Probes of the Transition
In the preceding sections, we introduced the concept of the chaotic phase and the
localized phase. Both of these phases require a certain level of randomness on the
system under consideration. It is natural to question whether there exist systems
that can manifest both of these two dynamical phases under suitable parameter
settings. In reality, numerous disordered systems undergo a phase transition
between the chaotic and localized phases. Although delving into the intricacies
of this transition extends beyond the scope of this thesis and remains an open
problem, quantifying this transition is relatively more straightforward. This sec-
tion focuses on presenting two commonly employed diagnostics for studying this
transition: level spacing statistics and the inverse participation ratio.

2.3.1 Level Spacing Statistics
Here we will present the level spacing statistics for both integrable and chaotic
systems. We will point out the differences between the two distributions and
summarise how they can be used to diagnose whether a system is in the localized
or the chaotic regime.
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We begin with the simpler case, the integrable systems. As we have men-
tioned in the previous section, these systems have uncorrelated eigenstates. There-
fore the distribution of the energy levels and by extension (see Lemma 4 in ap-
pendix C) the distribution of the adjacent level spacings 𝑠𝑛 = 𝐸𝑛+1 − 𝐸𝑛 will be
Poissonian

𝜌P(𝑠𝑛) = 𝑒−𝑠𝑛 . (2.34)

In order to avoid the unpleasant procedure of performing a spectral unfolding of
this distribution however we can switch our variable of level spacings 𝑠 for the
adjacent level spacing ratio defined as

𝑟 = min ( 𝑠𝑛
𝑠𝑛+1

, 𝑠𝑛+1𝑠𝑛
) . (2.35)

Furthermore this quantity is more easily comparable to what is actually meas-
ured in an experiment and therefore we re-express the distribution in terms of
this variable using Lemma 4 of appendix C

𝜌P(𝑟) = ∫∫𝑑𝑠𝑛𝑑𝑠𝑛+1𝜌P(𝑠𝑛)𝜌P(𝑠𝑛+1)𝛿 (𝑟 −min ( 𝑠𝑛
𝑠𝑛+1

, 𝑠𝑛+1𝑠𝑛
))

= ∫𝑑𝑠𝑛 𝑠𝑛𝜌P(𝑠𝑛)𝜌P(𝑟𝑠𝑛) +∫𝑑𝑠𝑛+1 𝑠𝑛+1𝜌P(𝑟𝑠𝑛+1)𝜌P(𝑠𝑛+1)

= 2∫𝑑𝑥 𝑥𝜌P(𝑥)𝜌P(𝑟𝑥) =
2

(1 + 𝑟)2 (2.36)

For the GOE the situation is more complicated and wewill only sketch the de-
rivation of the level spacing distribution here, for more information see [B5]. We
begin with the distribution of the Hamiltonians. The distribution that we write
down here will depend in general in the 𝑑(𝑑+1)/2 independent elements that are
Gaussian random variables. Furthermore the probability should not be different
between matrices within the ensemble related via an orthogonal transformation
and therefore the only natural choice for the distribution is

𝜌GOE(𝐻) ∝ 𝑒−
1

2𝜎2 Tr(𝐻
2). (2.37)

with 𝜎 an arbitrary real parameter. In order to derive the distribution of the en-
ergy levels we move to the eigenbasis of the Hamiltonian via the transformation

𝐻 = 𝑈𝐸𝑈𝑇 , (2.38)

where𝑈 is the orthogonal transformation that diagonalizes the symmetricHamilto-
nian and 𝐸 is a diagonal matrix with elements the energy levels of the system. In
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the new basis our distribution will be in general a function of the 𝑑 energy levels
and the 𝑑(𝑑 − 1) independent elements of 𝑈 and we will have

𝑑𝐻𝜌GOE(𝐻) ∝ |Δ𝑑|𝑈𝑑𝑈𝑇𝑑𝐸1 …𝑑𝐸𝑑 𝑒−
1

2𝜎2 ∑
𝑑
𝑘=1 𝐸

2
𝑘 (2.39)

where Δ𝑑 is the Vandermond determinant

Δ𝑑 =
𝑑
∏
𝑖>𝑗=1

(𝐸𝑖 − 𝐸𝑗) (2.40)

and it appears as the Jacobian of the transformation of the differential. We can
now integrate the 𝑈 dependence away trivially, since the probability density
does not depend on in due to the trace and obtain the probability distribution for
the energy levels

𝜌GOE(𝐸1, … , 𝐸𝑑) ∝
𝑑
∏
𝑖>𝑗=1

(𝐸𝑖 − 𝐸𝑗)𝑒−
1

2𝜎2 ∑
𝑑
𝑘=1 𝐸

2
𝑘 (2.41)

where without loss of generality have assumed ordered energy levels to get rid of
the absolute value. Note here that if any two levels become degenerate the prob-
ability density is vanishing. This behavior is an essential property of quantum
chaotic systems and it is called level repulsion in the literature.

From Eq. (2.41) we could integrate all but one energy levels to obtain the prob-
ability distribution of an individual energy level, from that the adjacent level spa-
cing distribution and then the adjacent level spacing ratio distribution as we did
for the Poisson distribution. Unfortunately these integrations cannot be carried
out analytically and one has to resort into semi-analytic methods to derive the
following result [26]

𝜌GOE(𝑟) =
27
8

𝑟 + 𝑟2
(1 + 𝑟 + 𝑟2)5/2 (2.42)

This is the distribution we will use when comparing the level spacing statistics
with GOE for the rest of the thesis.

However if we relax our requirements for precision an approximate analytic
expression can be derived for the level spacings distribution

𝜌W(𝑠) =
𝜋𝑠
2 𝑒

−𝜋𝑠2/4. (2.43)

This is known in the literature as the Wigner surmise, originally derived by
Wigner to describe the spectra of heavy nuclei in 1956. Using the same pro-
cedure as we did for the Poisson distribution we can express this in terms of the
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Figure 2.2: Adjacent level spacing ratio distributions. We present the probability
distributions of the three discussed distributions in this section, plotted as a function
of the adjacent level spacing ratio given by Eq. (2.35). Upon examining the plot, it be-
comes evident that the Wigner surmise, while slightly less accurate, effectively captures
all the fundamental characteristics of the GOE distribution. Additionally, we observe a
significant disparity between the localization statistics and the chaotic statistics when
the adjacent level spacing ratio 𝑟 approaches zero.

𝑟 ration of Eq. (2.35)

𝜌W(𝑟) = 2∫𝑑𝑥 𝑥𝜌W(𝑥)𝜌W(𝑟𝑥) =
4𝑟

(1 + 𝑟2)2 . (2.44)

All of the distributions we presented here are ploted in Fig. 2.2 for comparison.

2.3.2 Inverse Participation Ratio
In the preceding section, we explored the level spacing statistics as a tool for
analyzing chaotic and localized systems. However, to fully equip ourselves for
studying the transition between these two phases, we require a measure that
directly characterizes the eigenstates. Consequently, we need to examine the
distinctions between the eigenstates of the two phases.

To develop a better understanding of the diagnostic tool we are about to in-
troduce, it is helpful to compare the eigenstates of Anderson localized systems
with those of Gaussian Orthogonal Ensemble (GOE) systems. In Anderson loc-
alized states, the wavefunction 𝜓(𝑥) = ⟨𝑥|𝜓⟩ decays exponentially as we move
away from a specific position in real space. For the sake of convenience and to
align with the systems we are interested in, we will consider a lattice systemwith
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discretised coordinates. In this scenario, for a large system size or a small localiz-
ation length 𝜉, the wavefunction can be approximated as a Kronecker delta, such
that 𝜓(𝑥) ∝ 𝑒−|𝑥−𝑥0|/𝜉 ≃ 𝛿𝑥,𝑥0 , where 𝑥0 represents the chosen position.

In contrast, for eigenstates of a GOE Hamiltonian, we recall that the indi-
vidual components of the eigenstates can be treated as independent random
variables drawn from a Gaussian distribution. Consequently, we expect most
of these components to cluster around the mean value, resulting in a relatively
uniform overall eigenstate wavefunction. In other words, due to normalization,
we anticipate 𝜓(𝑥) ≃ 1/√𝑁, where 𝑁 represents the number of lattice sites in
the system. The inverse participation ration is defined as

IPR(|𝜓⟩) =
𝑁
∑
𝑥=1

|⟨𝑥|𝜓⟩|4 (2.45)

Clearly this quantity is very different for the two cases we just mentioned. For
localized eigenstates this yields a value close to 1 while for the delocalized states
of a GOE Hamiltonian it goes to 1/𝑁 or zero in the limit of large system size
𝑁 → ∞.

This definition however for the IPR is problematic for the case ofMBL. Namely,
in real space many body eigenstates are unlikely to be localized and in fact this is
usually not the case even for MBL states. Instead, in the case of MBL, localization
of a state happens within a region of Fock space. Therefore in this case it would
be more reasonable to define IPR as

IPR(|𝜓⟩) =
𝑑
∑
𝑛=1

|⟨𝑛|𝜓⟩|4 (2.46)

with 𝑛 a basis state of the 𝑑-dimensional Fock space. Of course Fock space is
infinite and therefore for practical application 𝑑 refers to the dimensionality of
the truncated Fock space.

It is remarkable that calculating the IPR of a GOE state in the Fock space,
rather than in real space, does not alter its predicted value. In fact, the choice
of basis for calculating the IPR of a chaotic state should not have any significant
impact. An intuitive way to understand this is as follows:

Assume that we have a specific Hamiltonian of the GOE for which we engin-
eer a basis in such a way that the eigenstates appear localized. For example, this
could be the eigenbasis itself. However, in order to apply the results from RMT,
we need to consider the ensemble of eigenstates from various different Hamilto-
nians. Consequently, we would also need to calculate the eigenstates of many
other Hamiltonians from the ensemble in the same chosen basis. Since the eigen-
states of these Hamiltonians are uncorrelated, for roughly every other member
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of the ensemble, the eigenstates would appear completely random in that basis.
As a result, delocalization is restored as the average behavior of the ensemble
eigenstates.

There is however an even more rigorous diagnostic that helps us get rid
of the IPR basis dependence, especially the ambiguity in the localized regime,
namely the Walsh-Hadamard transform which will be introduced in the follow-
ing chapter.



3
Walsh-Hadamard Coefficients

Here we introduce the concept of Walsh-Hadamard coefficients as a diagnostic
for MBL and a tool to recover the coefficients of the local integrals of motion
decomposition of a qubit Hamiltonian (3.1.1). We will also present the main
hurdle in obtaining the Walsh Hadamard coefficients, namely tracking the iden-
tity of the computational eigenstates as we vary the system parameters, espe-
cially across an avoided crossing, using the state fidelity (3.1.2). Next we de-
rive an analytic approximation for the Walsh-Hadamard coefficients. We do
this here for a generalised second quantization model featuring only two body-
interactions using Rayleigh-Schrodinger perturbation theory (3.2.1,3.2.2). The
perturbation parameter is the strength of the two body interactions and we ob-
tain the energy levels to second order. From the expressions for the energy levels
we will then immediately obtain the Walsh-Hadamard coefficients (3.2.3) from a
direct application of the definition. We develop this perturbation scheme in order
to downsize the computational costs of the Walsh-Hadamard coefficients from
diagonalizing fully a bosonic system to obtaining the energy levels of a fermionic
system of the same size.

3.1 Walsh-Hadamard Transformation
In subsection 2.2.2 we introduced the concept of the Local Integrals of Motion
(LIOM) and highlighted their significance in the description of the MBL phase.
Yet despite their key role in the phenomenology of MBL, obtaining them for a
practical application remains an elusive goal despite the immense effort [19, 20],
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even more so for bosonic systems like the ones that we are interested in here.
However, recovering the coefficients of the LIOM decomposition of the qubut
Hamiltonian is a much more manageable goal, and it is one that we set out to
accomplish here, at least for the effective Hamiltonian of the qubit sector of our
system.

3.1.1 Qubit Sector LIOM Decomposition

The entire scheme of quantum computation with transmons relies on our capab-
ility of setting up the system parameters such that the Hamiltonian of the system
is effectively confined within the qubit subspace. In this sector of the Fock space,
populated with states that have at most one excitation per site, the Hamiltonian
written in the eigenbasis takes the form of Eq.(2.32) for 𝜏𝑧𝑖 = 𝑍𝑖 and the summa-
tion running over the set 𝔹𝑁 , of all bit-strings of length 𝑁

𝐻 = ∑
𝑏∈𝔹𝑁

𝑤𝑏𝑍𝑏11 …𝑍𝑏𝑁𝑁 . (3.1)

This last equation in turn can be interpreted as a system of linear equations
that we need to solve with respect to the coefficients 𝑤𝑏. To do this we first
rewrite Eq. (3.1) as an element-wise equation and since both sides are diagonal
we will have for some qubit state |𝑞⟩

𝐸𝑞 = ∑
𝑏∈𝔹𝑁

𝑤𝑏⟨𝑞|𝑍𝑏11 …𝑍𝑏𝑁𝑁 |𝑞⟩ (3.2)

= ∑
𝑏∈𝔹𝑁

𝑤𝑏⟨𝑞1|𝑍𝑏11 |𝑞1⟩ … ⟨𝑞𝑁 |𝑍
𝑏𝑁
𝑁 |𝑞𝑁⟩ (3.3)

where 𝐸𝑞 = ⟨𝑞|𝐻|𝑞⟩ is the energy of eigenstate |𝑞⟩. In the usual convention of
quantum information the Pauli z matrix is expressed in the {|0⟩, |1⟩} basis where
the 0 state is not identified as the physical ground state. We do not adapt this
convention here and instead we have

𝑍 =
1
∑
𝑖=0

(−1)𝑖|𝑖⟩⟨𝑖| (3.4)

where 𝑖 denotes the flipped bit 𝑖. Substituting back into Eq. (3.3) we obtain

𝐸𝑞 = ∑
𝑏∈𝔹𝑁

𝑤𝑏(−1)𝑏⋅𝑞, (3.5)
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which can be readily identified as the 𝑁-dimensional discrete Fourier transform
of size 2 × 2 ×⋯ × 2 and immediately inverted to yield

𝑤𝑏 =
1
2𝑁 ∑

𝑞∈𝔹𝑁
(−1)𝑏⋅𝑞𝐸𝑞. (3.6)

This is the Walsh-Hadamard transform [B6] of the eigenenergies of the system
Hamiltonian 𝐻 with LIOM decomposition given by Eq. (3.1).

3.1.2 State Identity Tracking
Despite the apparent simplicity of Eq. (3.6), in order to obtain theWalsh-Hadamard
coefficients for practical applications we need to actually be able to separate the
qubit eigenstates from any other non-computational states of the full spectrum,
and also assign a unique bit-string identifier to every single one of them. Isol-
ating the qubit states is trivial for fermionic systems since every eigenstate is a
qubit state, for bosonic systems however, such as our transmon arrays, this is
a much more complicated task. Not only is the number of non-computational
states infinite, the qubit energy levels are also not well separated from the leak-
age states, in fact, even under small perturbations these can become strongly
correlated to each other.

For quantum information systems in idle mode we usually have Hamiltoni-
ans which can be broken down to two parts, a part describing the individual
degrees of freedom of the system 𝑖, the qubits, and another one that determines
the coupling between two such degrees of freedom 𝑖 and 𝑗

𝐻 =
𝑁
∑
𝑖=1

ℎ𝑖 + 𝜆
𝑁
∑
𝑖,𝑗=1
𝑖<𝑗

𝑉𝑖𝑗. (3.7)

The form of ℎ𝑖 determines the type of qubit platform under consideration while
𝑉𝑖𝑗 determines the type of coupling we have between qubits and 𝜆 is the para-
meter that determines the strength of the coupling.

For this type of systems we can always think of a particular limit were all
degrees of freedom are decoupled, for the Hamiltonian in Eq. (3.7) that would be
𝜆 → 0, and then the total spectrum of the system becomes a superposition of the
spectra of the individual qubits. In this limit, labeling a state by a bit-string can be
done unambiguously by simply identifying which qubits are in the ground state
|0⟩ and which are on the first excited state |1⟩. Once this is done then we only
need a convention that maps positions on the bit-string to our qubit positions.

As soon as there is some finite coupling however, the eigenstates of the sys-
tem, slowly but surely will start mixing into superpositions of the decoupled



Walsh-Hadamard Transformation 35

Figure 3.1: Avoided Crossings. In these plots we present an avoided crossings
between two energy levels as a functions of some arbitrary parameter 𝜆. The colored
dashed lines indicate the identities of the corresponding states. On the the left plot
we have an adiabatic avoided crossing with the implication that ⟨𝜓1(𝜆)|𝜓2(𝜆 + 𝛿𝜆)⟩ ≃
⟨𝜓2(𝜆)|𝜓1(𝜆 + 𝛿𝜆)⟩ ≃ 0 while on the right plot we have a diabatic crossing with
⟨𝜓1(𝜆)|𝜓2(𝜆 + 𝛿𝜆)⟩ ≃ ⟨𝜓2(𝜆)|𝜓1(𝜆 + 𝛿𝜆)⟩ ≃ 1.

eigenstates. Inevitably, far away from the decoupled limit the eigenstates will be-
come nearly uniform superpositions of the decoupled eigenstates, especially so
for chaotic systems, thus rendering any kind of labeling with a bit-string devoid
of all meaning. For weak coupling, for instance 𝛿𝜆 ≪ 1, the parameter depend-
ent eigenvector |𝜓𝑛(𝜆)⟩ of the 𝑛-th energy level at coupling strength 𝜆 should
not mix strongly with other states and therefore we should have approximately

|⟨𝜓𝑛(𝛿𝜆)|𝜓𝑚(0)⟩|2 ≃ 𝛿𝑛𝑚 (3.8)

This means that we can associate the weak coupling eigenstates uniquely to the
decoupled qubit states. In fact we can repeat this process recursively for small
𝛿𝜆 steps and keep track of the qubit energy levels.

This procedure works as long as Eq. (3.8) is valid which is not the case if our
spectrum reaches an avoided crossing. The involved states close to the avoided
crossing will become strongly correlated and have a non vanishing overlap with
both of the perturbed states. Tracking the identity of the states across the avoided
crossing can only be done reliably if we know the character of the avoided cross-
ings (see Fig. 3.1).

Assuming the character of the avoided crossing is known we only need to
have a way to determine when and where do the avoided crossings occur which
we can do with the fidelity susceptibility [27–29]

𝜒𝑛(𝜆) = − lim
𝛿𝜆→0

ln𝐹𝑛(𝜆)
𝛿𝜆2 , (3.9)

where 𝐹𝑛(𝜆) is the fidelity of state 𝑛 as it is usually defined in the context of
quantum information 𝐹𝑛(𝜆) = |⟨𝜓𝑛(𝜆)|𝜓𝑛(𝜆+ 𝛿𝜆)⟩|2. For sufficiently small steps
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Figure 3.2: Fidelity Susceptibility. Plots of 3 energy levels energy(top panel) for an
arbitrary Hamiltonian of the form Eq. (3.7) as function of the coupling parameter 𝜆 in
arbitrary units. Within this parameter range we detect 2 avoided crossings, in order of
appearance from left to right: between 1 and 2, between 2 and 3. The first crossing is
of diabatic nature while the second one is adiabatic. The crossings are detected as the
peaks of the eigenstate fidelity as a function of the coupling parameter. The character of
the anticrossings is reflected on the sharpness of the peaks, the first two crossings cor-
respond to sharp delta-like peaks while the last one corresponds to a lower and broader
peak.

𝛿𝜆 near an avoided crossing the fidelity should be vanishing and therefore the
susceptibility will be clearly divergent. For finite 𝛿𝜆 this divergence should mani-
fest as sharp peaks of the fidelity susceptibility which can be used as detection
events for avoided crossings. On the contrary, near a regular region of the para-
meter space with no avoided crossings the fidelity should be close to 1 and the
susceptibility is indeterminate. In practice, we will use a simplified version of
the fidelity susceptibility by expanding |𝜓𝑛(𝜆 + 𝛿𝜆)⟩ to second order in 𝛿𝜆 and
obtaining

𝜒𝑛(𝜆) = ∑
𝑚≠𝑛

|⟨𝜓𝑚(𝜆)|𝑉|𝜓𝑛(𝜆)⟩|2
(𝐸𝑛(𝜆) − 𝐸𝑚(𝜆))2

, (3.10)

with 𝑉 = ∑𝑖<𝑗 𝑉𝑖𝑗 standing for the interaction potential of Eq. (3.7). This beha-
vior is demonstrated in Fig. 3.2
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3.2 Walsh-Hadamard Perturbation Theory
We begin with a second quantization Hamiltonian of a lattice model of arbitrary
dimensions and 𝑁 sites in total

𝐻 = 𝐻0 + 𝑔𝑉𝛼𝛽𝜇𝜈𝑐†𝛼𝑐†𝛽𝑐𝜇𝑐𝜈, (3.11)

where 𝑐𝜇 and 𝑐†𝜇 are bosonic annihilation and creation operators respectively,
acting on site 𝜇 of the lattice. We have also used the following summation con-
vention and we will keep using it though out the chapter

Convention 1. Any indices that do not appear on both sides of an equation are to
be summed over the range [1, 𝑁]

For the tensor 𝑉𝛼𝛽𝜇𝜈 we assume that it is real and we impose no further re-
strictions, however there are two symmetries that will simplify our calculation
significantly without loss of generality. The first one is the fact that

∑
𝛼,𝛽,𝜇,𝜈

𝑉𝛼𝛽𝜇𝜈𝑐†𝛼𝑐†𝛽𝑐𝜇𝑐𝜈 = ∑
𝛼,𝛽,𝜇,𝜈

𝑉𝛼𝛽𝜇𝜈𝑐†𝛽𝑐
†
𝛼𝑐𝜇𝑐𝜈 = ∑

𝛼,𝛽,𝜇,𝜈
𝑉𝛽𝛼𝜇𝜈𝑐†𝛼𝑐†𝛽𝑐𝜇𝑐𝜈, (3.12)

where in the first step we used the commutativity of the bosonic operators and in
the second step we performed a summation index relabeling. Even though this
property does not guarantee that 𝑉𝛼𝛽𝜇𝜈 = 𝑉𝛽𝛼𝜇𝜈, it does suggest that if 𝑉𝛼𝛽𝜇𝜈
has an antisymmetric component with respect to the first two indices then that
component yields no contribution to the sum. Since we can always decompose
𝑉𝛼𝛽𝜇𝜈 to a symmetric and an antisymetric component it means we can assume
without loss of generality that 𝑉𝛼𝛽𝜇𝜈 can always be symmetrized with respect
to the first two indices without changing the Hamiltonian of the system. The
exact same argument can be made for the last two indices. The second argument
follows along similar lines

∑
𝛼,𝛽,𝜇,𝜈

𝑉𝛼𝛽𝜇𝜈𝑐†𝛼𝑐†𝛽𝑐𝜇𝑐𝜈 = ∑
𝛼,𝛽,𝜇,𝜈

𝑉𝛼𝛽𝜇𝜈𝑐†𝜈𝑐†𝜇𝑐𝛽𝑐𝛼 = ∑
𝛼,𝛽,𝜇,𝜈

𝑉𝜇𝜈𝛼𝛽𝑐†𝛼𝑐†𝛽𝑐𝜇𝑐𝜈, (3.13)

where in the first step we used the Hermiticity of the sum and in the second step
we performed a summation index relabeling. Once again, this does not imply
𝑉𝛼𝛽𝜇𝜈 = 𝑉𝜇𝜈𝛽𝛼, however any component antihermitian with respect to the index
pair exchange would have vanishing contribution to the sum and hence 𝑉𝛼𝛽𝜇𝜈
can be thought as symmetric with respect to the index pair exchange without
loss of generality. In summary our symmetries for the tensor are

𝑉𝛼𝛽𝜇𝜈 = 𝑉𝛽𝛼𝜇𝜈 = 𝑉𝛼𝛽𝜈𝜇 = 𝑉𝜇𝜈𝛼𝛽 (3.14)
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For the dimensionless parameter we assume 𝑔 ≪ 1 and obtain the eigenval-
ues of 𝐻 perturbatively from the known eigenvalues of 𝐻0

𝐻0 = 𝐸𝜇𝑐†𝜇𝑐𝜇. (3.15)

Since the ladder operators are bosonic the system has an infinite number of eigen-
states. However, for the Walsh-Hadamard coefficients, we are only interested in
the finite subspace of qubit states

|𝑏⟩ =
𝑁
∏
𝜇=1

(𝑐†𝜇)𝑏𝜇 |0⟩ (3.16)

where 𝑏 is a bit-string and 𝑏𝜇 is the 𝜇-th digit of 𝑏. For this family of states the
unperturbed energy levels take the form

𝐸(0)𝑏 = ⟨𝑏|𝐻0|𝑏⟩ = 𝐸𝜇𝑏𝜇 (3.17)

while for the full interacting system of Eq. (3.11) we have approximately up to
second order in 𝑔

𝐸𝑏 ≃ 𝐸(0)𝑏 + 𝑔𝐸(1)𝑏 + 𝑔2𝐸(2)𝑏 (3.18)

with𝐸(1)𝑏 and𝐸(2)𝑏 being the usual Rayleigh-Schrödinger perturbation theory first
and second order corrections respectively.

3.2.1 First Order Energy Correction
We now proceed with the calculation of the first order correction. By definition

𝐸(1)𝑏 = 𝑉𝛼𝛽𝜇𝜈⟨𝑏|𝑐†𝛼𝑐†𝛽𝑐𝜇𝑐𝜈|𝑏⟩. (3.19)

If we substitute the state of Eq. (3.16) in this definition, the calculation of the
first order correction boils down to a single vacuum expectation value, which in
turn can be evaluated by means of Wick contractions. Since this is a vacuum
expectation value only the fully contracted terms of Wick’s theorem are non
vanishing. An additional layer of complexity for this calculation is due to the fact
that the ladder operators that appear from substitution of Eq. (3.16) in Eq. (3.19)
come with an ambiguous exponent that can be either 0 or 1. We will refer to
these operators as external while the ladder operators that originate from the
perturbing potential we will refer to as internal.

Since the internal operators are already normal ordered, we cannot have
internal-internal contractions according to the standard Wick contraction rules

𝑐𝜇𝑐†𝜈 = 𝛿𝜇𝜈 and 𝑐†𝜇𝑐𝜈 = 𝑐𝜇𝑐𝜈 = 𝑐†𝜇𝑐†𝜈 = 0, (3.20)
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therefore internal operators have to be contracted with external ones. As already
stated however the external operators appear with an ambiguous exponent and
therefore we have to consider different contraction rules. For contractions in-
volving only one external operator we can distinguish the two cases

𝑐𝜇(𝑐†𝜈)𝑏𝜈 = {𝑐𝜇1 −𝒩(𝑐𝜇1) = 0, 𝑏𝜈 = 0
𝑐𝜇𝑐†𝜈 −𝒩(𝑐𝜇𝑐†𝜈) = 𝛿𝜇𝜈, 𝑏𝜈 = 1. (3.21)

where𝒩(⋅) is denoting normal ordering. The situation for ambiguous exponent
on the annihilation operator instead is completely equivalent. This expression
can be neatly summarised by

𝑐𝜇(𝑐†𝜈)𝑏𝜈 = (𝑐𝜇)𝑏𝜇𝑐†𝜈 = 𝑏𝜇𝛿𝜇𝜈. (3.22)

Finally we have to consider contractions between external operators. Since these
are only possible between operators acting on the same lattice site this condi-
tion automatically forces the exponents to be equal. If they are both 1 then we
simply have the first case in Eq. (3.20). If they are both 0, direct application of
the definition of Wick contractions would yield 0, however if they are both zero
it means we are attempting to contract two identity operators which makes no
sense, therefore we do not need to contract them in that case and instead we get
a factor of 1 again, therefore

(𝑐𝜇)𝑏𝜇(𝑐†𝜈)𝑏𝜈 = 𝛿𝜇𝜈. (3.23)

All of the above can be summarised in the following contraction rules

(𝑐𝜇)𝑏𝛼(𝑐†𝜈)𝑏𝛽 = 𝛿𝜇𝜈𝛿𝑏𝛼,𝑏𝛽 (3.24)

and all other contractions are vanishing. It is completely straightforward to
verify that this expression encompasses all of the previous cases by considering
that 𝛿𝑏𝜇,1 = 𝑏𝜇.

Equipped with the Wick contraction rules we can now return to the calcula-
tion of the amplitude of Eq. (3.19). In order to do this we need to fully contract
the operators. We will do this using the permanent method described in [30],
which consists of calculating the permanent of the matrix whose elements cor-
responding to all possible Wick contractions between an annihilation operator,
corresponding to a row, and a creation operator, corresponding to a column. Us-
ing the basis {𝑐𝜇, 𝑐𝜈, 𝑐𝑏11 , … , 𝑐

𝑏𝑁
𝑁 } for the rows and {𝑐†𝛼, 𝑐†𝛽, (𝑐

†
1)𝑏1 , … , (𝑐†𝑁)𝑏𝑁 } for
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the columns we can write Eq. (3.24) in matrix form

𝒞𝛼𝛽𝜇𝜈(𝑏) =
⎛
⎜
⎜
⎜
⎝

0 0 𝑏1𝛿𝜇,1 … 𝑏𝑁𝛿𝜇,𝑁
0 0 𝑏1𝛿𝜈,1 … 𝑏𝑁𝛿𝜈,𝑁

𝑏1𝛿𝛼,1 𝑏1𝛿𝛽,1 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑏𝑁𝛿𝛼,𝑁 𝑏𝑁𝛿𝛽,𝑁 0 … 1

⎞
⎟
⎟
⎟
⎠

. (3.25)

For the first order correction we will have from Eq. (3.19)

𝐸(1)𝑏 = 𝑉𝛼𝛽𝜇𝜈 perm (𝒞𝛼𝛽𝜇𝜈(𝑏)) . (3.26)

By definition, the permanent of a 𝑑×𝑑matrix is the sumover all possible products
consisted of 𝑑 elements of the matrix with no two of them sharing a row or
column. From the first two rows, only elements past column 2 have a non van-
ishing contribution to the product therefore, for example, if we select elements
2+𝜌 and 2+𝜎 from the first and second row respectively, we will have a factor of
𝑏𝜌𝑏𝜎𝛿𝜇𝜌𝛿𝜈𝜎 with the restriction that 𝜌 ≠ 𝜎which can be enforced bymultiplying
this expression with |𝜀𝜌𝜎| with 𝜀 denoting the fully antisymetric tensor. Having
selected an element from columns 2+𝜌 and 2+𝜎means that we have effectively
removed these entire columns and therefore at the corresponding rows the only
possible choices that lead to a non vanishing contribution are from columns 1
and 2 yielding either 𝑏𝜌𝑏𝜎𝛿𝛼𝜌𝛿𝛽𝜎 or 𝑏𝜌𝑏𝜎𝛿𝛼𝜎𝛿𝛽𝜌 . With the first two rows and
columns of the matrix removed means we can only choose elements from the
identity matrix at the bottom right of the contraction matrix. The permanent for
our two-body case yields

𝐸(1)𝑏 = 𝑉𝛼𝛽𝜇𝜈𝑏𝜌𝑏𝜎|𝜀𝜌𝜎|𝛿𝜇𝜌𝛿𝜈𝜎(𝛿𝛼𝜌𝛿𝛽𝜎 + 𝛿𝛼𝜎𝛿𝛽𝜌). (3.27)

Performing the summation with respect to 𝜌, 𝜎, 𝛼 and 𝛽 and using the symmet-
ries of the interaction potential Eq. (3.14) we obtain

𝐸(1)𝑏 = ℰ𝜇𝜈𝑏𝜇𝑏𝜈. (3.28)

where we used the tensor definition

ℰ𝜇𝜈 = 2𝑉𝜇𝜈𝜇𝜈. (3.29)

as well as the following index raising convention

Convention 2. An element for which any two of the 𝑛 ≤ 𝑚 raised indices of an
𝑚-dimensional tensorℳ take the same value is vanishing

ℳ𝑖1…𝑖𝑛
𝑖𝑛+1…𝑖𝑚 = |𝜀𝑖1…𝑖𝑛 |ℳ𝑖1…𝑖𝑚 .

Note that according to the symmetries of 𝑉𝛼𝛽𝜇𝜈 given in Eq. (3.14) the tensor
ℰ should be symmetric

ℰ𝜇𝜈 = ℰ𝜈𝜇 (3.30)
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3.2.2 Second Order Energy Correction
We now proceed with the second order correction given by

𝐸(2)𝑏 = 𝑉𝛼1𝛽1𝜇1𝜈1𝑉𝛼2𝛽2𝜇2𝜈2 ∑
𝑚≠𝑏

⟨𝑏|𝑐†𝛼1𝑐
†
𝛽1𝑐𝜇1𝑐𝜈1 |𝑚⟩⟨𝑚|𝑐

†
𝛼2𝑐

†
𝛽2𝑐𝜇2𝑐𝜈2 |𝑏⟩

𝐸𝑏 − 𝐸𝑚
. (3.31)

We have a new complication here, since the eigenstates |𝑚⟩ of the free Hamilto-
nian are not necessarily qubit states anymore and as a result Wick contraction
rules for arbitrary exponents become significantly more complicated. However
we can circumvent this using the following argument. The state resulting from
the application of 𝑐†𝛼2𝑐

†
𝛽2𝑐𝜇2𝑐𝜈2 on the qubit state |𝑏⟩ is still an eigenstate |𝑛2⟩ of

the free Hamiltonian although it might not be normalised anymore

𝑐†𝛼2𝑐
†
𝛽2𝑐𝜇2𝑐𝜈2 |𝑏⟩ = 𝜆2|𝑛2⟩. (3.32)

A similar argument follows for the bracket

⟨𝑏|𝑐†𝛼1𝑐
†
𝛽1𝑐𝜇1𝑐𝜈1 = 𝜆1⟨𝑛1|. (3.33)

and therefore we can write using Eq. (3.31)

𝐸(2)𝑏 = 𝜆1𝜆2𝑉𝛼1𝛽1𝜇1𝜈1𝑉𝛼2𝛽2𝜇2𝜈2 ∑
𝑚≠𝑏

⟨𝑛1|𝑚⟩⟨𝑚|𝑛2⟩
𝐸𝑏 − 𝐸𝑚

(3.34)

= 𝜆1𝜆2𝑉𝛼1𝛽1𝜇1𝜈1𝑉𝛼2𝛽2𝜇2𝜈2 ∑
𝑚≠𝑏

𝛿𝑛1,𝑚𝛿𝑛2,𝑚
𝐸𝑏 − 𝐸𝑚

(3.35)

= 𝜆1𝜆2𝑉𝛼1𝛽1𝜇1𝜈1𝑉𝛼2𝛽2𝜇2𝜈2
𝛿𝑛1,𝑛2

𝐸𝑏 − 𝐸𝑛2
|||𝑛2≠𝑏

(3.36)

= 𝑉𝛼1𝛽1𝜇1𝜈1𝑉𝛼2𝛽2𝜇2𝜈2
𝜆1𝜆2⟨𝑛1|𝑛2⟩
𝐸𝑏 − 𝐸𝑛2

|||𝑛2≠𝑏
. (3.37)

Finally since by definition the state |𝑛2⟩ is obtained from |𝑏⟩ by extracting two
excitations from sites 𝜇2 and 𝜈2 and adding two at sites 𝛼2 and 𝛽2 we will have

𝐸𝑛2 = 𝐸𝑏 − 𝐸𝜇2 − 𝐸𝜈2 + 𝐸𝛼2 + 𝐸𝛽2 (3.38)

and in total

𝐸(2)𝑏 = 𝑉𝛼1𝛽1𝜇1𝜈1𝑉𝛼2𝛽2𝜇2𝜈2
⟨𝑏|𝑐†𝛼1𝑐

†
𝛽1𝑐𝜇1𝑐𝜈1𝑐

†
𝛼2𝑐

†
𝛽2𝑐𝜇2𝑐𝜈2 |𝑏⟩

𝐸𝜇2 + 𝐸𝜈2 − 𝐸𝛼2 − 𝐸𝛽2

||||{𝛼2,𝛽2}≠{𝜇2,𝜈2}
, (3.39)
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where {𝛼2, 𝛽2} ≠ {𝜇2, 𝜈2} is meant in the sense of set inequality. Once again we
have an amplitude involving only a single qubit state and therefore we can use
the Wick rules from the first order calculation leading directly to the contraction
matrix

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 𝛿𝜇1𝛼2 𝛿𝜇1𝛽2 𝑏1𝛿𝜇1,1 … 𝑏𝑁𝛿𝜇1,𝑁
0 0 𝛿𝜈1𝛼2 𝛿𝜈1𝛽2 𝑏1𝛿𝜈1,1 … 𝑏𝑁𝛿𝜈1,𝑁
0 0 0 0 𝑏1𝛿𝜇2,1 … 𝑏𝑁𝛿𝜇2,𝑁
0 0 0 0 𝑏1𝛿𝜈2,1 … 𝑏𝑁𝛿𝜈2,𝑁

𝑏1𝛿𝛼1,1 𝑏1𝛿𝛽1,1 𝑏1𝛿𝛼2,1 𝑏1𝛿𝛽2,1 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑏𝑁𝛿𝛼1,𝑁 𝑏𝑁𝛿𝛽1,𝑁 𝑏𝑁𝛿𝛼2,𝑁 𝑏𝑁𝛿𝛽2,𝑁 0 … 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (3.40)

For this case, since the effective four-body interaction is not normal ordered
already, we also have internal-internal contractions. There are multiple ways
to deal with this, namely normal ordering the interaction term using the bosonic
algebra, the method of reduced permanents or considering cases as we did be-
fore for the first order correction. The results are summarised in the following
expression

𝐸(2)𝑏 = 𝒟𝛼𝛽
𝜇𝜈 𝑏𝛼𝑏𝛽 + 8(𝒟𝛼𝛽𝜇

𝜈 + 𝒮𝛼𝛽𝜇𝜈 )𝑏𝛼𝑏𝛽𝑏𝜇, (3.41)

where conventions 1 and 2 still hold and we have also introduced the tensor
definitions

𝒮𝛼𝛽𝜇𝜈 = {
2
𝑉𝛼𝜇𝛼𝜈𝑉𝛽𝜇𝛽𝜈
𝐸𝜇 − 𝐸𝜈

, 𝜇 ≠ 𝜈

0, 𝜇 = 𝜈
(3.42)

𝒟𝛼𝛽𝜇𝜈 = {
|𝑉𝛼𝛽𝜇𝜈|2

𝐸𝛼 + 𝐸𝛽 − 𝐸𝜇 − 𝐸𝜈
, {𝛼, 𝛽} ≠ {𝜇, 𝜈}

0, {𝛼, 𝛽} = {𝜇, 𝜈}.
(3.43)

Note that in the element-wise definitions of Eqs. (3.42) and (3.43) there are no
implied summations and in conjunction with Eq. (3.14) we can conclude the fol-
lowing symmetries

𝒮𝛼𝛽𝜇𝜈 = 𝒮𝛽𝛼𝜇𝜈 = −𝒮𝛼𝛽𝜈𝜇, (3.44)

𝒟𝛼𝛽𝜇𝜈 = 𝒟𝛽𝛼𝜇𝜈 = 𝒟𝛼𝛽𝜈𝜇 = −𝒟𝜇𝜈𝛼𝛽. (3.45)

The antisymmetric property of the tensors 𝒮 and𝒟 is the reason why in the
second order correction of Eq. (3.41) we have no four-bit terms. Indeed, Eq. (3.41)
is the result of the summation over all possible full contractions of the amplitude
in Eq. (3.39). The two-bit terms 𝒟𝛼𝛽

𝜇𝜈 𝑏𝛼𝑏𝛽 are the result of the full amplitude
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contractions that include two internal-internal contractions, the three-bit terms
(𝒟𝛼𝛽𝜇

𝜈 +𝒮𝛼𝛽𝜇𝜈 )𝑏𝛼𝑏𝛽𝑏𝜇 are those with only one internal-internal contraction and
finally one would expect four-bit terms since there also full amplitude contrac-
tions without any internal-internal contractions. These four-bit terms however
are of the form (𝒟𝛼𝛽𝜇𝜈 + 𝒮𝛼𝛽𝜇𝜈)𝑏𝛼𝑏𝛽𝑏𝜇𝑏𝜈, meaning we have a sum over an
anitsymmetric product which is trivially vanishing.

3.2.3 Second Order Walsh-Hadamard Coefficients
With the Rayleigh-Schrödinger perturbation theory results of Eqs. (3.28) and
(3.41) for the qubit state energy levels we are now able to derive the Walsh-
Hadamard coefficients via direct application of the definition in Eq. (3.6). Fur-
thermore, since the transformation is linear we can perform it term by term

𝑤(𝑛)
𝑏 = 1

2𝑁 ∑
𝑞∈𝔹𝑁

(−1)𝑏⋅𝑞𝐸(𝑛)𝑞 , 𝑛 ∈ {0, 1, 2}. (3.46)

We start with the zeroth order term of Eq. (3.17)

𝑤(0)
𝑏 = 1

2𝑁 ∑
𝑞∈𝔹𝑁

(−1)𝑏⋅𝑞𝐸𝜇𝑞𝜇. (3.47)

In order to carry out the Boolean summation we split the bit-string summation
over a product of bit-digit summations and use the properties

1
∑
𝑞=0

(−1)𝑏𝑞 = 2𝑏 and
1
∑
𝑞=0

(−1)𝑏𝑞𝑞 = 1. (3.48)

As an example we present the summation explicitly for zeroth order case

𝑤(0)
𝑏 =

𝐸𝜇
2𝑁 ∑

𝑞∈𝔹𝑁
(−1)𝑏⋅𝑞𝑞𝜇 (3.49)

=
𝐸𝜇
2𝑁

⎛
⎜⎜
⎝

𝑁
∏
𝜌=1
𝜌≠𝜇

1
∑
𝑞𝜌=0

(−1)𝑏𝜌⋅𝑞𝜌
⎞
⎟⎟
⎠
(

1
∑
𝑞𝜇=0

(−1)𝑏𝜇⋅𝑞𝜇𝑞𝜇) (3.50)

=
𝐸𝜇
2

𝑁
∏
𝜌=1
𝜌≠𝜇

𝑏𝜌, (3.51)
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and for the first and second order terms it follows similarly that

𝑤(1)
𝑏 = ℰ𝛼𝛽

4
𝑁
∏
𝜌=1

𝜌≠𝛼,𝛽

𝑏𝜌 (3.52)

𝑤(2)
𝑏 = 1

4𝒟
𝛼𝛽
𝜇𝜈

𝑁
∏
𝜌=1
𝑖≠𝛼,𝛽

𝑏𝜌 + (𝒟𝛼𝛽𝜇
𝜈 + 𝒮𝛼𝛽𝜇𝜈 )

𝑁
∏
𝜌=1

𝜌≠𝛼,𝛽,𝜇

𝑏𝜌. (3.53)

The products of the flipped bit digits pose a sharp cutoff for the weight of
Walsh-Hadamard coefficients we can estimate at a finite order of perturbation
theory. Namely for a bit-string 𝑏(𝑚) of weight 𝑚, the product of all flipped bit
digits excluding 𝑘, with𝑚 > 𝑘, will be vanishing for any set of excluded flipped
digits since at least one of them will be zero. Therefore, to second order in per-
turbation theory, we can only obtain corrections for the Walsh-Hadamard coef-
ficients of weight up to 3. For the non vanishing cases with 𝑚 ≤ 𝑘, assuming
that the non zero digits of the bit-string are located at positions ℓ1 through ℓ𝑚
in ascending order, the product will yield one if {ℓ1, … , ℓ𝑚} is a subset of the
excluded digits. The above can be summarised in the following expression

∏
𝜌≠𝜇1,…,𝜇𝑘

𝑏
(𝑚)
𝜌 = 𝜃(𝑘 − 𝑚) ∑

𝑠∈[𝜇1,…,𝜇𝑘]𝑚

𝑚
∏
𝑗=1

𝛿ℓ𝑗 ,𝑠(𝑗), (3.54)

with 𝜃 denoting the Heaviside step function with the convention 𝜃(0) = 1 and
[𝜇1, … , 𝜇𝑘]𝑚 denotes the set of all oriented subsets of length𝑚 of the set {𝜇1, … , 𝜇𝑛}.
As an example the flipped digit product for a bit-string of weight 𝑚 = 2 with
𝑘 = 3 excluded digits yields

∏
𝜌≠𝜇1,𝜇2,𝜇3

𝑏
(2)
𝜌 = 𝛿𝜇1ℓ1 𝛿

𝜇2
ℓ2 + 𝛿𝜇2ℓ1 𝛿

𝜇1
ℓ2 + 𝛿𝜇1ℓ1 𝛿

𝜇3
ℓ2 + 𝛿𝜇3ℓ1 𝛿

𝜇1
ℓ2 + 𝛿𝜇2ℓ1 𝛿

𝜇3
ℓ2 + 𝛿𝜇3ℓ1 𝛿

𝜇2
ℓ2 . (3.55)

We used upper indices here only for presentation purposes and no additional con-
text. We summarise the results for the Walsh-Hadamard coefficients Eqs. (3.51),
(3.52) and (3.53) using the expression for the flipped digit products in Eq. (3.54) for
all possible combinations of bit-string weight 𝑚 and number of excluded digits
𝑘 in appendix D.



4
Chaotic Fluctuations of Transmons

In this chapter we will explore the localizing effects of disorder for transmon ar-
rays. We begin by establishing that the system is subject to an MBL to chaotic
phase transition using the spectral statistics measures (4.1.1). We will demon-
strate that quantum computation is safe only deep in the MBL regime using the
Walsh-Hadamard coefficients (4.1.2). Finally we close this chapter with a brief
overview of our results for cutting edge transmon array architectures (4.2) includ-
ing 2D lattice configurations (4.2.1) and the intricate case of frequency patterns
designed with the LASIQ technique (4.2.2). We find that the results for these
cases do not differ at a qualitative level from the random disorder 1D cases and
whatever minor deviations appear are still compliant with expectation of MBL
theory. This reinforces the message that ensuring a sufficient degree of disorder
is present in quantum computation systems will be crucial for future architecture
designs.

As a general disclaimer for this chapter only: This chapter is based on our
joint paper [A1] with our colleagues from Cologne, C. Berke, S. Trebst and A. Alt-
land. All calculations reported here involving Kullback-Leibler divergence and
inverse participation ratios have been carried out by C. Berke while the Walsh-
Hadamard calculations have been carried by the author of this thesis, E. Varvelis.

4.1 Disordered Transmon Chain
The classical analogue of an array of capacitively coupled transmons is an array
of pendulums which are interacting via inerters [31], with Hamiltonian given by
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Eq. (1.35) after relabeling the parameters and substituting the variables 𝜑𝑖 and
𝑛𝑖 with position and momentum respectively. Such a system is prone to chaotic
behavior and thus according to the BGS conjecture [6, 32], we expect a quantum
chaotic phase for transmon arrays.

For actual realisations of the quantum systemwewill unavoidably have some
parameter variation from transmon to transmon. There are three parameters in
our Hamiltonian of Eq. (1.35) through which we can introduce disorder in our
model. The first possibility is the capacitive energy 𝐸C of each transmon. How-
ever this parameter is related to the capacitance of a transmon which can actu-
ally be fixed accurately to a very high percentage. Since we consider capacitively
coupled transmons, the same argument can be made for the coupling strength
parameter 𝜆with the additional technical constraint that it cannot be larger than
𝐸C. The only remaining choice is the Josephson energy 𝐸J. Until recently this
parameter had significant statistical fluctuations of the order of a few percent
and thus it is a natural candidate for being the carrier of disorder.

For our calculations we fixed the capacitive energy to a typical value of 𝐸C ≃
250MHz and coupling strength varied in the range of 𝜆 ≃ 0 − 50MHz. Joseph-
son energies are the carrier of our disorder and they will be treated as random
variables drawn from a Gaussian distribution with average value 𝐸J and standard
deviation 𝛿𝐸J, called the disorder strength in MBL literature, and they were both
allowed to vary. In order to have our results directly comparable to the available
experimental data we will also some times refer to the qubit frequency standard
deviation 𝛿𝜔 as our disorder strength. The two disorder strengths can be used
interchangeably since they can be related directly via the relation

𝛿𝜔 =
√

2𝐸C

𝐸J
𝛿𝐸J (4.1)

In order for such an array of transmons to be considered a quantum comput-
ing device we need to be able to perform logical operations on them, or gates,
and thus they need to be able to communicate. The coupling of such non-linear
oscillators in conjunction with the existence of disorder lay the groundwork for a
possible MBL phase and therefore we expect and MBL-chaotic phase transition.

For a quantum computing system it is imperative to be deep within the local-
ized regime as we will establish here. The reason for this is two-fold. First of all,
it is crucial to be able to identify qubit eigenstates accurately. Since the transmon
is only effectively a qubit system, while in reality it is a bosonic system, we need
to be able to distinguish the computational states among the ocean of leakage
states (see Fig. 4.1). As we will see later on, this cannot be done reliably in the
chaotic regime. The second reason is that we need our quantum devices to have
as long a coherence time as possible. Coherence time is related to the so called
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𝑍𝑍 coupling strength [33], which is the strength of nearest neighbor coupling in
the eigenbasis of the Hamiltonian. In other words these are the coefficients of
the LIOM decomposition of the Hamiltonian corresponding to nearest neighbor
two-body terms in Eq. (2.31). These are exponentially weak only deep within the
MBL phase.

Figure 4.1: Transmon array spectrum. Energy spectrum of a length 10, 1D capa-
citively coupled transmon array as a function of coupling strength, on varying energy
scales. Panel (a) illustrates the global structure of the spectrum, separated into energy
bundles corresponding to the total number of bosonic excitations. In panel (b) we zoom
into the 5-excitation band, which demonstrates level repulsions that become more clear
by zooming in furhter in panel (c). In panel (c) we also track the bit-label identity of
the only three computational states in this energy window, marked in red, using the
state identification protocol 4.1.2. In the last panel we single out only one of these states
which changes identity through several avoided level crossings.

4.1.1 Kullback-Leibler Divergence and Inverse Particip-
ation Ratio

We begin our effort of identifying an MBL-chaotic transition for the transmon ar-
ray described by Eq. (1.35) by looking at the spectral statistics both in the form of
level spacing statistics as well as the inverse participation ratios of the eigenstate
wavefunctions. As we have discussed before in chapter 2, if the system is in the
chaotic regime, we expect Wigner-Dyson statistics for the energy level spacings
and Poisson statistics for the MBL regime.

The standard method for determining if the system is in the chaotic or the
MBL phase in level spacing statistics studies, is by looking at the behavior of
the distribution near zero spacing. The two competing distributions have dis-
tinctively different behaviors around this region, Wigner-Dyson is vanishing
while Poisson is maximal. However since the level spacing distribution does not
change instantly at the transition fromMBL to chaotic, but rather it continuously
deforms from one to the other, near the transition the distribution will be neither
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Poisson nor Wigner-Dyson. Therefore in order to study the transition we need a
method of quantifying the distance of two distributions and the measure we em-
ployed here is the Kullback-Leibler divergence defined in the following equation

𝐷KL(𝑃|𝑄) = ∑
𝑖
𝑝𝑖 log (

𝑝𝑖
𝑞𝑖
) . (4.2)

Figure 4.2: Demonstration of KL divergence. KL Data for a chain of 𝑁 = 10
transmons versus the coupling parameter 𝜆. The average Josephson energy is fixed to
𝐸J = 44 GHz and 𝛿𝐸J = 1.17 GHz. KL divergences 𝐷KL are calculated for the distribu-
tion of ratios of consecutive level spacings 𝑟𝑛 in the energy spectrum, such as the ones
illustrated in the insets for three characteristic couplings. The KL divergences are nor-
malized such that 𝐷KL(𝑃Wigner|𝑄Poisson) = 1 and vice versa. We probe an energy bundle
of excited states, which are generated by a total of 𝑁/2 = 5 excitations. For the 𝑁 = 10
transmon chain at hand, this manifold contains a total of 2002 different states. All results
are averaged over at least 2500 disorder realizations

In case that the two distributions under comparison, 𝑃 and 𝑄, are identical
then clearly the KL divergence is vanishing since 𝑝𝑖 = 𝑞𝑖, ∀𝑖. If they are different
then it is strictly positive and its exact value is dependent on the distributions
under comparison as well as the order of comparison, i.e. 𝐷KL(𝑃|𝑄) ≠ 𝐷KL(𝑄|𝑃)
in general. This behavior is demonstrated in Fig. 4.2 where we compare the
level spacing distribution of a specific disorder realisation for a 1D transmon
array to both the Poisson and Wigner-Dyson distributions as we vary the coup-
ling strength. In the intermediate coupling region of this plot we observe that
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the level spacing distribution is neither Poisson nor Wigner-Dyson and thus it
would be complicated to identify a transition solely by looking at the distribution.
KL divergence however gives us naturally a transition point, the point where our
distribution is equidistant from both possible distributions. In Fig. 4.3 we present
the resulting phase diagram from calculating the KL divergence for varying coup-
ling strength and average Josephson energy.

Figure 4.3: Phase diagrams. KL divergence 𝐷KL with respect to the Poisson distri-
bution in the plane spanned by the Josephson energy 𝐸J and the transmon coupling
𝜆 (left panel) for weak disorder (𝛿𝜔 ≃ 0.12 GHz). The KL divergence is color coded
so that the MBL regime is denoted with blue (Poisson distribution) and the quantum
chaotic regime is denoted with red (Wigner-Dyson distribution). Wave function statist-
ics for the same parameters are presented in the right panel and are color-coded by the
mean IPR value showing a fast drop to values below 1/2 already for moderate coupling
strength. The grey lines indicate contour lines of constant IPR. All results are averaged
over at least 2000 disorder realizations. The spread of the Josephson energies varies from
𝛿𝐸J ≃ 0.4 GHz for 𝐸J = 5 GHz to 𝛿𝐸J ≃ 1.7 GHz for 𝐸J = 100 GHz.

In order to complete our statistical analysis of the transition we need to do
wavefunction statistics which we did here using the inverse participation ratio.
Since for zero coupling the eigenbasis are the Fock states, it is natural to express
our eigenvectors in the the Fock space and calculate the IPR in this representa-
tion. In order to get an overview of the system behavior we will use the averaged
IPR over all relevant eigenstates. The resulting phase diagram by calculating the
average IPR for varying coupling strength and average Josephson energy is repor-
ted in Fig. 4.3. Notice that the IPR = 1/2 critical line is reached much earlier than
the equidistant distribution line of KL divergence, as we vary coupling strength.
This is an artefact of finite size effects since we are considering relatively small
system sizes of 10 transmons or less. However even for such small systems the
number of states is exponentially large by any numerical standard. Furthermore,
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the exact position of the critical line within this region between the IPR = 1/2
line and the 𝐷KL(𝑃|𝑄Poisson) = 𝐷KL(𝑃|𝑄WD) line, which we called the ”twilight
zone”, is irrelevant for us and might be related to an intermediate phase between
MBL and chaos [34]. We are interested in locating where quantum computation
is safe and for that we need a new diagnostic which we present in the following
section.

4.1.2 Walsh-Hadamard and Avoided Crossings

As we have seen in the previous section transmon arrays do exhibit an MBL-
chaotic phase transition with an ambiguous border between the two phases.
Herewewant to consider the consequences ofMBL and chaos from a quantum in-
formation prospective. For that we look back at the LIOMHamiltonian Eq. (2.32).
The adjacent site two body terms and their effects on quantum information pro-
cessing systems have been studied copiously in the literature of quantum inform-
ation [33, 35–37], where they are usually referred to as 𝑍𝑍 couplings with 𝑍 de-
noting to the Pauli 𝑧 since these are the LIOM for a quantum memory. These 𝑍𝑍
couplings are closely related to the dephasing time of qubits and they are also an
inhibitor for precise two-qubit operations.

For static always-on coupling, which is the case we are concerned with here,
these terms cannot be completely eliminated. We will ignore for the moment
longer range and higher weight terms thus bringing our Hamiltonian to the form

𝐻𝑍𝑍 =
𝑁
∑
𝑖=1

𝜔𝑖𝑍𝑖 + ∑
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝑍𝑖𝑍𝑗. (4.3)

This is similar to the Hamiltonian of Eq. (1.18) but with bond dependent coupling
strength 𝐽𝑖𝑗 . As we have seen in subsection 1.1.2, this is not a true quantum
memory and we will repeat a sketch of that argument here. If we only had the
first term in Eq. (4.3) then we could measure in the rotating frame and therefore
completely eliminate any dynamics for our system. As soon as there is any finite
𝑍𝑍 coupling in our system however dynamics are restored and general states
will time evolve under this Hamiltonian.

From the above it should be now evident why we need to keep quantum
memories deep into themany body localized regime. Since𝑍𝑍, andworse, longer
range or higher weight correlations are inevitable we need to keep them under
control. MBL does that effectively by forcing an exponential hierarchy to these
couplings but only deep within the localization regime. On the extreme oppos-
ite of quantum chaos all the many body terms converge towards the same order
of magnitude, in an ”everyone talks to everyone” situation, rendering quantum
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Figure 4.4: Walsh coefficients exponential hierarchy. Comparison of the Walsh
coefficients for a 5-qubit chain with weak disorder, for two values of the coupling 𝜆.
Along the x-axis are all the possible values of the bit-string 𝑏 of length 5, except of the
all-zero case. We use a graphical depiction of each bitstring, as a vertical column of five
boxes, εmpty boxes correspond to zero and filled boxes to a one, read from top to bottom,
so that the first bitstring from the left is 01000, the second 00001 and so on. With this
convention it is immediately evident which of the five qubits are involved in the given
LIOM Hamiltonian coefficient. The coefficients are sorted in descending order for the
𝜆 = 2MHz data. Correlation range in this context corresponds to the maximal distance
between two 1’s in the bitstring

computation completely unreliable. We confirm that our system behavior com-
plies with this description in Fig. 4.4.

Here we quantified these many body correlations via the Walsh-Hadamard
coefficients. As we have seen in chapter 3 the Walsh-Hadamard transforma-
tion allows us to recover the effective LIOM Hamiltonian of the qubit sector.
The main hurdle we needed to overcome for the determination of the Walsh-
Hadamard coefficients was tracking the bit-label identity of each qubit state as
we varied coupling strength 𝜆. We overcame this using the identification proced-
ure presented in subsection 3.1.2 We repeat the protocol here more formally and
precisely:

State Identity Tracking Protocol.

1. Calculate the energy levels and fidelity susceptibility of Eq. (3.10) for varying
coupling strength.

2. Initially identify the qubit states simply using the ordering of the decoupled
eigenstates

3. Repeat for all qubit states:

• Repeat until all avoided crossings along the path of the qubit state have
been dealt with:
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(a) Locate the first avoided crossing involving a specific qubit state,
from the peaks of the fidelity susceptibility.

(b) Recognise the partner state for the avoided crossing by looking for
the closest matching fidelity susceptibility peak, in height, width
and location along the 𝜆 axis among the two adjacent levels to the
qubit state.

(c) Exchange the identities of the two states after the crossing.

This protocol however is not full-proof and in fact it is guaranteed to fail
eventually deep in the chaotic regime. In this region we have avoided crossings
of ambiguous character, such as soft level repulsionswith small curvature or level
repulsions between non adjacent levels, across which the state identity cannot
be tracked reliably. Yet quantum computing with transmons relies on the ability
to identify exactly these states amongst the non-computational states.

For our calculation, we can diagnose protocol failure by looking at theWalsh-
Hadamard coefficients. If they exhibit discontinuities, in the form of jumps, then
any value beyond the first jump is unreliable. However, even if the protocol is
successful the Walsh-Hadamard coefficients may still exhibit two types of irreg-
ularities in the form of sharp cusps. Downwards pointing cusps are attributed
to the Walsh-Hadamard coefficients crossing zero. Since we are presenting the
absolute value of the coefficients in logarithmic scale these downward cusps are
expected and they are completely benign. Upwards pointing cusps on the other
hand are more delicate and they are related to the diabatic change of identity
a qubit state across an avoided crossing. Qualitatively this behavior can be ex-
plained as follows. When the identity of an eigenstate changes diabaticaly across
an avoided crossing the corresponding energy level will look locally like a step
function. Since the Walsh-Hadamard transform is a special case of the discrete
Fourier transform we can expect that the result for the coefficients will look like
a Dirac delta locally. All of the above behaviours of the Walsh-Hadamard coef-
ficients as a function of the coupling strength are reported in Fig. 4.5. Since
averaging is washing out the intricate structure of the Walsh-Hadamard coeffi-
cients we also show for comparison the absolute value of the Walsh coefficient
for the specific bitstring 𝑏 = 01101.

Note that the non averaged Walsh-Hadamard coefficient becomes progress-
ively more distorted as we approach the chaotic regime by increasing strong
coupling. Yet trouble for quantum computation starts before that. Note that the
highest Walsh-Hadamard averaged family, which corresponds to the typical 𝑍𝑍
coupling, crosses the threshold of manageable 𝑍𝑍 terms according to modern
techniques (∼ 100 kHz, see [35]) at a coupling strength of about ∼ 4MHz far
away from the chaotic region. This reinforces the message of the IPR in a basis
independent way.
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Figure 4.5: Walsh coefficients as a function of coupling strength. Absolute value
of averaged Walsh coefficients for a 5-qubit chain with weak disorder as a function of
the coupling strength 𝜆. Here we have averaging with respect to two indices, one is
disorder averaging across different realizations and the other is withinWalsh-Hadamard
coefficients of the same correlation range (as defined in Fig. 4.4) depicted graphically in
the inset. Note that the correlation range 2 group, denoted by two filled boxes separated
by one empty box, contains next-nearest two-body terms (there are 3 of these in the 5-
qubit 1D chain) but also closely packed three-body terms (also 3 of these in the 5-qubit 1D
chain). The dashed line and the shading above marks the “danger zone” |𝑤𝑏| ≥ 100 kHz
indicated by recent experimental studies on 𝑍𝑍 coupling [35].

4.2 Advanced Architectures
We have established by means of three different diagnostics that 1D transmon ar-
rays with random Gaussian disorder exhibit an MBL to chaotic phase transition.
While the main message of our work has significant implications for the future
of quantum computation with transmons our employed model may seem discon-
nected from modern architectures. Here we will discuss two main extensions to
our model and their implications for the MBL-chaos transition. Employing the
tools we have already used for the 1D random Gaussian disorder model we will
study 2D lattices and a different disorder scheme relying on a laser annealing
technique for the tuning of Josephson junctions post fabrication, developed by
IBM [38]. We found that the main message of our results so far does not change
drastically but only up to some minor nuanced effects.

4.2.1 2D Arrays
While we have only discussed 1D transmon chains so far, modern quantum pro-
cessing devices have moved towards 2D configurations [3, 5, 39, 40]. There are
several advantages associated with using 2D structures, such as faster qubit ma-
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nipulation, effective error correcting with surface codes [41, 42] and higher qubit
density which allows for easier scaling. Here we present briefly the effects of 2D
architectures on the MBL-chaos transition of our system.

According to the MBL literature, the expectation is that the MBL phase be-
comes increasingly more unstable as we increase the dimensions 𝑑 of our system.
Already at 𝑑 = 3, even the existence of an MBL phase at all is questionable [43].
The intuition behind this expectation is that in 𝑑 = 1 rare instances of unusu-
ally strong disorder in some site may block effectively communication between
distant sites resulting in stronger localization. If lattice sites have higher coordin-
ation number however such rare occasions of strong on-site disorder can be cir-
cumvented more easily and transport may be restored in the system resulting in
more delocalized states.

We confirm this expectation of localization theory for our system by demon-
strating the phase diagrams of KL divergence and IPR as we did for the 1D case.
We do not employ the Walsh-Hadamard diagnostic here since its computation is
prohibitively costly for the system sizes required here. Considering that the only
difference between chain 7 and surface 7 is the inclusion of only two additional
bonds, the shifts in both the KL divergence critical line and the IPR critical line
are drastic.

4.2.2 LASIQ: Towards Frequency Pattern Engineering

As we have mentioned before, Josephson junctions were the primary source of
fluctuations for transmon qubit frequencies. Recently, with the development of a
new technique by IBM, called LASIQ [38] (Laser Annealing of Stochastically Im-
paired Qubits), it became possible to tune the Josephson energy post fabrication
to a higher degree of accuracy.

IBM has employed this technique in an attempt to enhance the fidelity of
the CR-gate by fixing the detuning of neighboring transmons within a specific
range in order to avoid signal crosstalk. A minimal working example of this
is presented in Fig. 4.7 in the form of a 2D lattice of transmons in a staggered
frequency pattern consisted of two frequencies A and B. In this configuration
and assuming perfect reproducibility of transmon frequencies we would only
have one value for detuning between adjacent sites.

However, in a realistic setup there is going to be some residual disorder on top
of the post fabrication tuning procedure. From our perspective the smallness of
the residual disorder leaves the door open for quantum chaotic behavior. While
a staggered pattern like the one in Fig. 4.7 may suppress 𝑍𝑍 crosstalk, we argue
that next-nearest neighbor terms of the LIOM Hamiltonian Eq. 2.31 may become
more relevant unless disorder strength is sufficient to localize the system.
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Figure 4.6: 2D transmon arrays - Phase diagrams. . In all of the phase diagrams we
highlight the critical line (which corresponds to a value of 0.5 for both the KL divergence
and the IPR) with a solid line and the corresponding critical line for a 1D lattice with
the same number of transmons with a dashed line. In the top two panels we present
the phase diagram of seven coupled transmons, arranged in a surface 7 (s7) geometry
(indicated in the inset of each plot). All results are averaged over at least 1500 disorder
realizations. In the bottom two panels we have the same phase diagrams for a 3×3 lattice.
All results are averaged over at least 2500 disorder realizations. For both geometries, the
on-site disorder is drawn from the same Gaussian distribution as in Fig. 4.3.

In order to investigate this possible complicationwewill incorporate disorder
in our model again via the Josephson energies of the transmons. We will treat
them as random variables drawn from a Gaussian distribution, but this time we
will have two distributions corresponding to the two different types of sites, sites
of type A with mean Josephson energy 𝐸J,A and sites of type B with mean Joseph-
son energy 𝐸J,B. The standard deviation will be 𝛿𝐸J for both types of sites.

We begin by presenting our result for the mean IPR as a function of the dis-
order strength in Fig. 4.7. On the top left we present the lattice configuration and
the frequency pattern while on the top right we present the corresponding fre-
quency distributions for lattice sites of type A (gray) and of type B (red) for two
different values of the disorder strength 𝛿𝐸J. The first distribution corresponds to
energetically well separated transmons with some residual disorder within each
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Figure 4.7: Frequency staggering and IPR. We present the average IPR of the 5-
excitation bundle eigenstates of a 3 × 3 transmon array with a staggered frequency
pattern calculated for varying disorder strength 𝛿𝐸J (bottom plot). The correspond-
ing averages for the two distributions are fixed at the values of 𝐸J,A = 12.58 GHz and
𝐸J,B = 13.80 GHz according to [38] and we vary only their standard deviation. Since dis-
order strength varies we fix the coupling strength at the typical low value of 𝜆 = 3MHz.
Results are averaged over at least 8000 disorder realizations.

subgroup and yield a local maximum of the IPR in region II. This is where IBM
typical system parameters have landed. The second distribution corresponds to
the scenario where the disorder strength is roughly equal to half the distance
between the two averages, yielding a local minimum in the IPR. Increasing the
disorder further in region I, effectively yields a single Gaussian distribution and
therefore it matches our previous results.

In region III of the plot in Fig. 4.7 we have a drop of the IPR indicating that
the system is entering the delocalized regime. We confirm this by looking at the
KL divergence in Fig. 4.8. In this plot we see indeed that the KL divergence is
vanishing for the Wigner distribution here and we also note the corresponding
lever repulsions on the top panel, typical for quantum chaotic behavior. Peculi-
arly, for vanishing disorder in region IV, none of the two distributions describe
the spectrum of the system even though the IPR suggests delocalized eigenstates.
If we examine this regime more carefully however this behavior is expected. In
the idealised case of reaching zero disorder our system becomes periodic and
therefore we expect to have delocalized Bloch states. This however does not
mean that the systems is chaotic and this is reflected in the level spacings not
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Figure 4.8: Permutationmultiplets and KL.We present a zoom in of the 5-excitation
bundle energy levels of a 3 × 3 transmon array with a staggered frequency pattern cal-
culated for varying disorder strength 𝛿𝐸J (top plot). The part of the spectrum presented
here corresponds to a particular multiplet of the 5-excitation bundle that contains all
permutations of states that include 3 A and 2 B transmons in the first excited state and
everything else in the ground state. On the bottom we present the IPR and KL diver-
gence with respect to both of the two candidate distributions (Poisson, Wigner-Dyson).
The parameters and number of realizations used are the same as in Fig. 4.7

following the Wigner distribution.
From the above it is clear that while the staggering of qubit frequencies is a

useful tool for localizing our system as well as enhancing gate fidelity one should
not go too far with removing the disorder. Arguably it is not clear whether turn-
ing disorder off completely is problematic for quantum computation, yet realist-
ically we expect that there will always be some residual disorder in the manu-
facturing of these devices, and in that case we should make sure to have enough
of it to localize our system. Finally, one may envision that using more complic-
ated qubit frequency patterns could lead to localizing transmon arrays, not with
random disorder but by a quasi-periodic or fractal pattern of qubit frequencies.
This is an intriguing possibility and it is one that we will explore in the following
chapter.



5
Quasiperiodic Potential Localization

In chapter 4, we have presented findings indicating a transition between a many-
body localized and a quantum chaotic phase in transmon qubit architectures.
Maintaining the system within the localized regime is crucial for quantum com-
putation, typically achieved through disorder in Josephson junction parameters.
We propose an alternative approach utilizing quasiperiodic patterning of para-
meters as a substitute for random fluctuations. Initially, we demonstrate the
localization of our employed model, a two-dimensional extension of the Aubry-
André model 5.1.1, in subsection 5.1.2. Following the introduction of our model
and its Anderson localization, we employ the Walsh-Hadamard diagnostic in
subsection 5.2.1 to establish the higher efficacy of quasiperiodicity in achieving
many-body localization. To investigate the localizing properties of our novel
Hamiltonian for large, experimentally relevant system sizes, we develop a many-
body perturbation theory with a computational cost that scales similarly to that
of the corresponding non-interacting system 5.2.2.

5.1 Anderson LocalizationwithQuasiperiodic
Potential

Despite immense advances in quantum computing using the superconducting
qubit platform [3–5], two-qubit gate fidelity remains a thorn in the side of further
progress with these devices. One prominent source of these errors is quantum
cross talk in the form of qubit 𝑍𝑍 couplings [44], with 𝑍 denoting the Pauli 𝑧
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operator. This cross talk is the result of always-on coupling of qubits, even in idle
mode. There are two primary strategies for dealing with these residual couplings,
tunable coupling [45] and static coupling between opposite anharmonicity qubits
[35, 46]. Each of these coming with disadvantages: additional hardware overlay
of couplers for the former and lower coherence time of capacitively shunted flux
qubits for the latter.

In real devices the presence of inherent random disorder is unavoidable and
most notably observed in the critical current of Josephson junctions. Although
modern devices allow for tuning of Josephson junctions even after fabrication
using laser annealing techniques [38], some degree of residual disorder persists,
as discussed in the previous chapter, and can be sufficient to localize the sys-
tem. Nevertheless, relying on the happenstance of random disorder to protect
our system from quantum chaos is an inefficient approach from an engineering
perspective. Thus, we will explore the possibility of localizing our system using
quasiperiodic frequency patterns. Before delving into the potential for a MBL
phase, we will first consider the simpler case of Anderson localization in our
model.

Our chosen model is a modified version of the Aubry-André model. We will
begin by introducing the one-dimensional Aubry-André model and elucidate its
well-established Anderson localized-delocalized phase transition. Subsequently,
we will introduce the Metallic-Aubry-André model, an extension of the one-
dimensional Aubry-André model capable of accommodating two-dimensional
lattices. We will conclude by demonstrating that this variant also exhibits an
Anderson localized phase.

5.1.1 1D Aubry-André Model
Here we will present some generic properties of the Aubry-André model, but in
order to keep the discussion closely related to our topic, we will do this in the
context of transmon arrays. Starting from the capacitively coupled transmon
array Hamiltonian of Eq. (1.35) and recasting it in second quantization form, ex-
panding the cosine term only up to second order and employing a rotating wave
approximation (see 1.2.2) we obtain

𝐻0 =
𝑁
∑
𝑖=1

𝜔𝑖𝑎†𝑖 𝑎𝑖 + 𝐽 ∑
⟨𝑖,𝑗⟩

𝑎†𝑖 𝑎𝑗. (5.1)

This Hamiltonian is the usual tight binding model that is used in Anderson-
localization studies [17, 47] and also in Eq. (2.20). Note that the ladder oper-
ators are bosonic — we are not restricted to the single-excitation manifold of the
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Fock space. Strictly speaking, the dressed coupling strength 𝐽 would be bond-
dependent according to Eq. (1.45). Here we have omitted this bond dependence
in order to simplify the calculations and we will instead substitute the transmon
frequencies with their mean value, yielding the relation

𝐽 = 𝜆
16 (1 +

⟨𝜔⟩
𝐸C

) . (5.2)

We find that this does not substantially alter our results.
The case of a transmon chain with frequencies that have a spatial distribution

given by
𝜔𝑖 = ⟨𝜔⟩ + 𝐴 cos(2𝜋𝛽𝑥𝑖 + 𝜙) (5.3)

with free parameters ⟨𝜔⟩, 𝐴, 𝛽 and 𝜙 and 𝑥𝑖 the spatial coordinate of lattice site 𝑖,
corresponds to the Aubry-André model [48–52]. For a 1D geometry we can have
the simple map 𝑥𝑖 = 𝑖, by setting the lattice constant to 1. Here we will focus
only on irrational values for 𝛽 for reasons that will be more clear in the following
subsection 5.1.2. What we discuss here can be extended to rational values for 𝛽
but this discussion is more nuanced and not relevant for our topic.

The Hamiltonian in Eq. (5.1) is invariant under a transformation that maps
localized states to delocalized states and vice versawith a suitable exchange of the
parameters 𝐽 and 𝐴. This property is called the Aubry-André duality [53]. When
𝐴 = 2𝐽 the Hamiltonian is self dual and this is when the transition between local-
ized and delocalized eigenstates occurs. We present this behavior by tracking the
mean IPR across all eigenstates of the Hamiltonian for varying coupling strength
in Fig. 5.1 . Specifically we plot IPR vs the ratio of the dressed coupling strength
𝐽 over the disorder strength Δ defined by the normalization

Δ = lim
𝑁→∞

√√√
√

1
𝑁

𝑁
∑
𝑖=1
(𝜔𝑖 − ⟨𝜔⟩)2 = 𝐴

√2
. (5.4)

Substituting from Eq. (5.4) we find the Aubry-André transition at 𝐽/Δ = √2/2,
but since we are going to set Δ = 2𝐸C in all our calculations we will use the
ratio of the dressed coupling over the anharmonicity 𝐸C instead and therefore
the transition will be at 𝐽/𝐸C = √2. This expectation is confirmed in Fig. 5.1.

5.1.2 Metallic-Aubry-André Model
For our application of designing a frequency pattern for our transmon arrays,
which should serve as a localizing disorder potential, the essential feature is to
make it non repeating in order to avoid resonances. Using integer-valued real
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Figure 5.1: Aubry-André Phase Transition: We plot the average eigenstate IPR
versus the ratio of the dressed coupling 𝐽 of Eq. (1.45) over the anharmonicity 𝐸C for
the tight binding approximation of a transmon chain of length 1000. Underneath this
plot we also present eigenstate probability distributions corresponding to three values
of 𝐽/𝐸C, one for high average IPR one at the transition and one at low IPR. The chosen
eigenstates are selected by requiring an eigenstate with IPR close to average and max-
imum probability closest to the center of the chain. The average frequency was set to
⟨𝜔⟩ = 5.5 GHz and the capacitive energy at 𝐸C = 0.33 GHz

space coordinate 𝑥𝑖 for site 𝑖, we could use the Aubry-André model with a peri-
odicity that is incommensurate to the lattice periodicity by making 𝛽 irrational,
for instance we can set 𝛽 equal to the golden ratio

𝜔𝑖 = ⟨𝜔⟩ + Δ√2 sin [𝜋 (1 + √5) 𝑥𝑖] . (5.5)

Here we have set the arbitrary phase 𝜙 of Eq. (5.3) to 𝜋/2without loss of general-
ity and the amplitude of the trigonometric function equal to the disorder strength
Δ times a normalization factor of √2.

We wish to generalise this frequency pattern however by allowing it to ac-
commodate 2D lattice geometries. One possible choice for this is envisioning the
generalised model as a series of Aubry-André chains that are laterally connected.
In order to avoid resonances across different chains we need to use different peri-
odicity and furthermore these periodicities need to be again incommensurate to
each other. We achieved that here by making 𝛽 a function of the 𝑦 coordinate
and the function of choice is the generating function of the family of irrational
numbers called the metallic ratios [54]

𝜔𝑖 = ⟨𝜔⟩ + Δ√2 sin [𝜋 (𝑦𝑖 +√𝑦2𝑖 + 4) 𝑥𝑖] . (5.6)
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Note that for 𝑦𝑖 = 1we recover the frequency pattern of Eq. (5.5). Furthermore as
the 𝑦𝑖 coordinate tends to infinity, the ratio of the periods of adjacent chains tends
to 1 and therefore this is not a suitable model for square lattice geometries since
it will eventually become approximately periodic along the 𝑦 axis. However here
we focus on a quasi-1D square lattice with dimensions 2×𝐿 as the one depicted in
Fig. 5.3. Such a lattice geometry is already in use for actual quantum computing
devices [55] and may also become even more relevant for future designs.

Figure 5.2: Metallic-Aubry-André Phase Transition: We plot the average eigenstate
IPR versus the ratio of the dressed coupling 𝐽 of Eq. (1.45) over the anharmonicity 𝐸C for
the tight binding approximation of a quasi-1D transmon lattice of dimensions 2 × 500.
Underneath this plot we also present eigenstate probability distributions corresponding
to three values of 𝐽/𝐸C, one for high average IPR one at the transition (of the 1D model)
and one at low IPR. The top row of panels corresponds to probability distributions as a
function of the 𝑥 coordinate with the 𝑦 coordinate fixed at 𝑦 = 1 while the bottom row
of panels corresponds to coordinate 𝑦 fixed at 𝑦 = 2. The chosen eigenstates are selected
by requiring an eigenstate with IPR close to average and maximum probability closest
to the center of the lattice. The average frequency was set to ⟨𝜔⟩ = 5.5 GHz and the
capacitive energy at 𝐸C = 0.33 GHz.

We performed the same average IPR analysis that we did for the 1D Aubry-
André and the results for this transition are shown in Fig. 5.2. We remark that
the phase transition from localized to delocalized is qualitatively different from
the one for the 1D Aubry-André. This is due to the fact that our frequency pat-
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Figure 5.3: Metallic-Aubry-André frequency pattern: Transmon frequency fre-
quency pattern 𝜔𝑖 (Eq. (5.6)) for a quasi-1D lattice of dimensions 2 × 20. We use mean
frequency ⟨𝜔⟩ = 5.5 GHz and disorder strength is set at Δ = 2𝐸C and the capacitive
energy is fixed at 𝐸C = 0.33 GHz. The on-site frequencies are color-coded according
to the given color bar and the values are given in GHz. The bottom row of the lattice
corresponds to 𝑦 = 1 and the top to 𝑦 = 2. The leftmost sites of the lattice have 𝑥 = 1
and the rightmost 𝑥 = 20.

tern breaks the Aubry-André duality. While it is possible to employ different
2D extensions of the Aubry-André model that preserve this symmetry [51] we
find that they are not as efficient in localizing the eigenstates. Notice particularly
how different the eigenstates look for the same system parameters from Fig. 5.1
to Fig. 5.2. Even deep in the delocalized regime the eigenstates of the Metallic-
Aubry-André still attain some form of weak localization (maximum probability
somewhere near the center of the lattice that decays sub-exponentially away
from it). In contrast the eigenstates of the 1D Aubry-André are already nearly
periodic in the same parameter range and are thus not localized by any sense.

5.2 Many Body Localization with Quasiperi-
odic Potential

The many body system formed by a network of 𝑁 Josephson qubits, with ran-
dom disorder and fixed coupling, is a prime candidate for quantum chaos. In the
last chapter we have established that there is in fact a phase transition between
quantum chaotic and many body localization for transmon arrays [A1] of this
type. The phenomenology of this transition can be summarised by considering
the diagonalized Hamiltonian of such a multi-qubit system in Eq. (3.1). The coef-
ficients 𝑤𝑏 with a bit-string 𝑏 consisting of only two 1s in adjacent sites corres-
pond, by definition, to the 𝑍𝑍-couplings. Longer range 𝑍𝑍 couplings or higher
weight terms have generally been neglected, a treatment which is consistent in
the MBL phase where we have an exponential hierarchy of these terms with
respect to correlation range [19, 20]. This is in stark contrast with the chaotic
regime however, where all of these terms are of the same order of magnitude.

In the following subsections, wewill expand upon the freeHamiltonian presen-
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ted in Eq.(5.1) by incorporating a many-body interaction term. Additionally, we
will employ the Metallic-Aubry-André frequency pattern described in Eq.(5.6).
TheAnderson localization of the freeHamiltonian, observed for sufficientlyweak
coupling or strong disorder, suggests the potential existence of a many-body loc-
alized (MBL) phase in the interacting Hamiltonian. Our findings confirm the
presence of such a phase in our model and demonstrate its enhanced ability to
localize the system compared to random Gaussian disorder, as evidenced by ex-
act diagonalization techniques. The identification of an MBL phase opens up
the possibility of performing a perturbative analysis within the strongly local-
ized regime. To this end, we combine our Walsh-Hadamard perturbation theory
(refer to section 3.2) with a bosonic adaptation of the Møller-Plesset perturba-
tion theory. This hybrid perturbation scheme enables us to determine the 𝑍𝑍
coefficients for significantly larger system sizes that are otherwise unattainable
through numerical computations.

5.2.1 Many Body Metallic-Aubry-André vs Gaussian
Disorder

So far we have been restricted to system sizes that are admittedly small com-
pared to the already available quantum computing devices. The main restriction
has been the exponential scaling of computational memory for numerical calcu-
lations. We wish to circumvent that here by employing some analytic method
for the analysis of our model using perturbation theory. However such a treat-
ment of the full model Eq. (1.35) seems impractical. To address this, we turn to
the framework of second quantization, which offers a more intuitive approach.
While a second quantized form of the Hamiltonian, as presented in appendix B,
is available, it remains a complex undertaking. Nevertheless, we have discovered
that by employing the Bose-Hubbard approximation described by Eq.(1.44), we
can already capture significant aspects of the model, yielding meaningful results.

We need to include many-body contributions in our model, which means
anharmonicity effects. Thus, we must further expand the cosine of Eq. (1.35)
at least to fourth order, at which point we end up (after further rotating-wave
approximations) with the Bose-Hubbard Hamiltonian

𝐻BH = 𝐻0 −
𝐸C

2
𝑁
∑
𝑖=1

𝑎†𝑖 𝑎†𝑖 𝑎𝑖𝑎𝑖, (5.7)

where 𝐻0 is the free Hamiltonian of Eq. (5.1).
Our aim was to assess the effectiveness of the Metallic-Aubry-André model

in localizing our system compared to random disorder. To conduct this analysis,
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we focused on a smaller system of size 2×3 for which exact diagonalization was
feasible. The results, depicted in Fig. 5.4, validate that our model outperforms
random disorder of the same strength. Specifically, the𝑍𝑍 coefficients associated
with the two localizing potentials consistently differ by approximately one order
of magnitude within the plotted range, indicating weaker 𝑍𝑍 correlations in the
Metallic-Aubry-André model. It is noteworthy that the adoption of a double
logarithmic scale, combined with the linearity observed for typical 𝑍𝑍 values,
suggests a power-law relationship: ⟨|𝑍𝑍|⟩ ∝ (𝐽/𝐸C)2. However, determining
origin of this behavior lies beyond the scope of our current work. Finally, the IPR
plot reveals that both cases exhibit localization, yet Gaussian disorder exhibits a
more rapid departure from localization.

Figure 5.4: Random Gaussian disorder vs Metallic-Aubry-André: Exact diagonal-
ization results depicting the averaged absolute values of 𝑍𝑍 coefficients (left panel) and
the averaged inverse participation ratio (right panel) as a function of the ratio between
the dressed coupling of Eq. (1.45) and the anharmonicity 𝐸C, consideringMetallic-Aubry-
André disorder and randomGaussian disorder with matching disorder strengthΔ = 2𝐸C.
The averaging is performed over the absolute values of Walsh-Hadamard coefficients
with weight 2 and a correlation range ℓ = 1 (nearest neighbor, 𝑍𝑍), while for the IPR,
averaging is done over all eigenstates. In the case of Gaussian random disorder, an ad-
ditional averaging is conducted over 100 different realizations. Additionally on the left
panel we have besides the averaged absolute value of 𝑍𝑍 the maximal coefficient (dashed
line) and theminimal coefficient (dotted line). Their colormatches the solid line that they
correspond to. The parameter values utilized are 𝐸C = 0.33 GHz, ⟨𝜔⟩ = 5.5 GHz, and
the coupling 𝐽 is varied within the range of 0 to 1.4MHz. The chosen range for 𝐽 avoids
the initial avoided crossings, which emerge as early as 𝐽 ≃ 1.5MHz. The system size for
both cases is 2 × 3.

Given the established presence of many-body localization (MBL) in our sys-
tem, which exhibits higher effectiveness compared to the random disorder model,
we can now employ an analytic approach. We will utilize the Hamiltonian de-
scribed by Eq. (5.7) as an effective description of our system. In the subsequent
subsection, we will determine the Walsh-Hadamard coefficients perturbatively
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in the anharmonicity. Although the capacitive energy 𝐸C may not be the smal-
lest energy scale in our system, the application of perturbation theory is justified

within the transmon regime 𝐸C/𝜔𝑖 ∼ √𝐸C/𝐸J𝑖 ≪ 1.

5.2.2 Møller-Plesset Analysis of theManyBodyMetallic-
Aubry-André Model

We develop a new bosonic variant of Møller-Plesset perturbation theory [56]
to treat the localized regime, obtaining the energy levels of the qubit sector of
the system. This perturbation theory directly determines the coefficients 𝑤𝑏 of
Eq. (3.1) via the Walsh-Hadamard transform Eq. (3.6). Here we will justify why
our system Hamiltonian is of the form of Eq. (3.11) using an argument similar
to the Hartree-Fock approximation and then directly draw conclusions by sub-
stituting in the results of section 3.2.

For the Walsh-Hadamard coefficients we only need to obtain the perturbed
energy levels that correspond to qubit states |𝑏⟩ with 𝑏 standing for a bit-string
of length equal to the number of lattice sites 𝑁. Therefore, before we proceed
with any calculation it is crucial to address the issue of how to identify the qubit
states |𝑏⟩ and distinguish them from non-computational states.

Labeling a state with a bit-string might misleadingly imply that it is an ei-
genstate of the local particle number operator 𝑎†𝑖 𝑎𝑖 of the bare basis in Eq. (5.7).
But |𝑏⟩ is rather an eigenstate of the non-interacting Hamiltonian 𝐻0 (Eq. (5.1)).
Therefore |𝑏⟩ is an eigenstate of the local particle number operator in the dressed
basis

|𝑏⟩ =
𝑁
∏
𝜇=1

(𝑐†𝜇)𝑏𝜇 |0⟩, (5.8)

where 𝑏𝜇 is the 𝜇-th digit of bit-string 𝑏 and 𝑐†𝜇 is the creation operator of single-
excitation eigenstate 𝜇 of 𝐻0

𝐻0 =
𝑁
∑
𝜇=1

𝐸𝜇𝑐†𝜇𝑐𝜇. (5.9)

For sufficiently weak transmon coupling 𝐽 our system should be localised
and the dressed basis should be nearly identical to the bare basis 𝑐†𝜇 ≃ 𝑎†𝜇. By
definition

𝑐†𝜇|0⟩
!= (

𝑁
∑
𝑖=1

𝜓𝜇(𝑥𝑖, 𝑦𝑖)𝑎†𝑖 ) |0⟩, (5.10)
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meaning that 𝑐†𝜇 generates a single-excitation eigenstate |𝜓𝜇⟩ of 𝐻0, which is
exponentially localised around lattice site 𝜇 with coordinates (𝑥𝜇, 𝑦𝜇). To avoid
any possible confusion we will reserve Latin indices for the bare basis and Greek
indices for the dressed basis.

Starting from Eq. (5.10) it is straightforward to find the inverse transforma-
tion, as demonstrated here

𝑁
∑
𝑖=1

𝜓𝜇(𝑥𝑖, 𝑦𝑖)𝑎†𝑖 = 𝑐†𝜇 ⇒
𝑁
∑
𝜇=1

𝑁
∑
𝑖=1

𝜓𝜇(𝑥𝑖, 𝑦𝑖)𝜓∗𝜇(𝑥𝑗, 𝑦𝑗)𝑎†𝑖 =
𝑁
∑
𝜇=1

𝜓∗𝜇(𝑥𝑗, 𝑦𝑗)𝑐†𝜇 (5.11)

⇒ 𝑎†𝑗 =
𝐿
∑
𝜇=1

𝜓∗𝜇(𝑥𝑗, 𝑦𝑗)𝑐†𝜇 (5.12)

and express every term of the perturbative expansion in the dressed basis. In the
second step we have used the unitarity of the transformation. Using this relation
we can express the Hamiltonian in the dressed basis

𝐻BH = 𝐸𝜇𝑐†𝜇𝑐𝜇 −
𝐸C

2 ⟨𝜓𝛼𝜓𝛽𝜓𝜇𝜓𝜈⟩𝑐
†
𝛼𝑐†𝛽𝑐𝜇𝑐𝜈 (5.13)

where we have used again the summation convention 1 and we introduced the
notation for the 4 point function

⟨𝜓𝛼𝜓𝛽𝜓𝜇𝜓𝜈⟩ =
𝑁
∑
𝑖=1

𝜓𝛼(𝑥𝑖, 𝑦𝑖)𝜓𝛽(𝑥𝑖, 𝑦𝑖)𝜓𝜇(𝑥𝑖, 𝑦𝑖)𝜓𝜈(𝑥𝑖, 𝑦𝑖). (5.14)

Note that the Hamiltonian of Eq. (5.13) is identical to the one in Eq. (3.11) and
therefore we can use the results of Eqs. (3.51),(3.52) and (3.53) of section 3.2 imme-
diately by identifying the factor−𝐸C⟨𝜓𝛼𝜓𝛽𝜓𝜇𝜓𝜈⟩/2 as 𝑉𝛼𝛽𝜇𝜈 with corresponding
tensors

ℰ𝜇𝜈 = −𝐸C⟨𝜓2𝜇𝜓2𝜈⟩ (5.15)

𝒮𝛼𝛽𝜇𝜈 = {
𝐸2C
2
⟨𝜓2𝛼𝜓𝜇𝜓𝜈⟩⟨𝜓2𝛽𝜓𝜇𝜓𝜈⟩

𝐸𝜇 − 𝐸𝜈
, 𝜇 ≠ 𝜈

0, 𝜇 = 𝜈
(5.16)

𝒟𝛼𝛽𝜇𝜈 = {
𝐸2C
4

⟨𝜓𝛼𝜓𝛽𝜓𝜇𝜓𝜈⟩2
𝐸𝛼 + 𝐸𝛽 − 𝐸𝜇 − 𝐸𝜈

, {𝛼, 𝛽} ≠ {𝜇, 𝜈}

0, {𝛼, 𝛽} = {𝜇, 𝜈}.
(5.17)

In order to carry out this calculation we therefore only need to obtain the
single-particle sector eigenenergies 𝐸𝜇 and eigenstates |𝜓𝜇⟩. Since we are only
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interested in the localised regime of the system, we could obtain those perturb-
atively as well in the coupling 𝐽. However this adds one additional layer of com-
plexity for our final expressions without leading into any particular new insights.
Therefore we choose to obtain the single-particle sector spectrum numerically
and use these results as input to our derived analytic expressions from second
order perturbation theory in the anharmonicity 𝐸C.

The energy denominators of perturbation theory are notoriously known to
cause issues with accuracy, particularly when the involved basis states are res-
onant (i.e. when denominators are vanishing). Even though these denominators
involve energy levels of the dressed basis, in the localised regime these are es-
sentially indistinguishable from the bare basis energy levels 𝐸𝜇 ≃ 𝜔𝜇. Therefore
we can straightforwardly associate spatial coordinates (𝑥𝑖, 𝑦𝑖) on our lattice to
them. From the form of the perturbing potential in the dressed basis, it is clear
that only states which are two hops apart can have a non vanishing amplitude.
Thus the energy denominator can involve between 2, 3, or 4 different sites. The
terms involving only 2 sites can be thought of as effectively single hops and are
all included in 𝒮. These resonances we will refer to as site resonances or simply
resonances. The terms involving 3 or 4 sites can only be described as double hop-
ing terms and are all included in 𝒟. These resonances we will refer to as mode
resonances.

With the introduction of the Μetallic-Aubry-André scheme, our motivation
has been to set up a quasi-random disorder potential without resonances and
withwell separated near-resonant sites. However a direct implication of Eq. (5.17)
is that this consideration is not sufficient to successfully localize the system.
Granted that having such a denominator vanishing or being much smaller than
𝐸C does not necessarily mean that our system is chaotic but it does suggest
strong hybridization between certain modes which is certainly not desirable for
quantum computation. While the denominator of 𝒟𝛼𝛽𝜇𝜈 creates these dangers
for perturbation theory, its numerators have a counteracting effect. They are pro-
portional to the square of the 4 point function ⟨𝜓𝜇𝜓𝜈𝜓𝛼𝜓𝛽⟩ of the single particle
wavefunctions involving the same states as the ones in the denominator. Ander-
son localization theory shows that these correlations decay exponentially with
range.

Our next goal is to obtain Walsh-Hadamard coefficients for a much larger
system of dimensions 2 × 20. Before doing that however we need to know the
accuracy of our perturbation theory by comparing it with exact diagonalization
results. For this comparison, still restricted to the 2 × 3 system size, see Fig. 5.5.
It is evident that the agreement of the two results is restricted to a rather small
parameter range and that range is strongly dependent on the disorder strength.
Even though the second order perturbation theory is very accurate for the energy
levels, with an error of∼ 10−1 kHz for eigenenergies spanning a few tens of GHz,
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Figure 5.5: Exact diagonalization vs perturbation theory: Plots of all the Walsh-
Hadamard coefficients of weight 2 and correlation range ℓ = 1 (𝑍𝑍 coefficients) as a
function of ratio of the dressed coupling of Eq. (1.45) over the anharmonicity 𝐸C using
exact diagonalization (solid) and perturbation theory (dashed). For the left panel we
have set disorder strength at Δ = 2𝐸C while for the right panel we have set Δ = 𝐸C.
For both plots we used ⟨𝜔⟩ = 5.5 GHz, 𝐽 = 1MHz and 𝐸C is varying in the range of
0.05 to 0.5GHz. Coefficients are color-coded to match the lattice representation of the
𝑍𝑍-correlated sites in the legend. System size is 2 × 3.

the error is of the same order of magnitude as the Walsh-Hadamard coefficients
of weight 2, and is about 2 orders of magnitude larger that coefficients of weight
3. This is why we only report the weight 2 coefficients here. Unfortunately the
accuracy of the energy levels is not found to be improved by introducing higher
order terms [57]; our perturbation theory is equivalent to that of the 𝜑4 theory,
which is known to have a vanishing radius of convergence. Already at third order
of perturbation theory the disagreement with the exact diagonalization results
starts to increase.

Despite these difficulties, meaningful results about theWalsh-Hadamard coef-
ficients can be obtained deep in the localized regime and the order of magnitude
is correct within the specified parameter range in Fig. 5.5. Therefore we deem
it informative to obtain the weight 2 coefficients using perturbation theory for
the much larger 2 × 20 system, far beyond the size that is accessible by exact
diagonalization. The results for this calculation are reported in Fig. 5.6. They
confirm the expectation that these Walsh-Hadamard coefficients exhibit a hier-
archy of values, decreasing exponentially with range; this is as expected within
many body localization theory (see [A1]).

We have demonstrated that it is possible to localize a many body quantum
computing system without the use of random disorder but rather with a determ-
inistically designed, quasi-periodic potential. We believe that the disorder po-
tential we studied here is not yet optimal and that meticulous frequency pattern
engineering should play a crucial role in the design of future quantum computing
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Figure 5.6: Walsh-Hadamard exponential hierarchy: Plot of averaged Walsh-
Hadamard coefficients of weight 2 as a function of the correlation range ℓ for a 2 × 20
quasi-1D lattice. Averaging is done amongWalsh-Hadamard coefficients of the same cor-
relation range. The parameter values used here are 𝐽 = 1MHz, ⟨𝜔⟩ = 5.4 GHz, Δ = 2𝐸C
and 𝐸C = 0.33 GHz. The inset is a visual representation for a sample of some Walsh-
Hadamard coefficients corresponding to bit-strings 𝑏 with correlation range ℓ = 1 on
the lattice. Red corresponds to 0 and orange to 1 of the bitstring 𝑏.

architectures. Our new perturbation-theory scheme can be used as a guide for
the properties a frequency pattern should possess or avoid. Despite the limited
accuracy of our perturbation scheme, we have demonstrated that it is possible
to obtain useful analytical results for the Walsh-Hadamard coefficients of large
many-body systems. We believe that accuracy can ultimately be improved with
a renormalized perturbation theory. Finally, we need to stress out that the res-
ults for the 2 × 20 lattice are well beyond the realm of what is attainable with
exact diagonalization techniques. The main impediment for increasing the size
further is the exponential scaling of the number of Walsh-Hadamard coefficients
themselves, which is 2𝑁 . However, if we instead restrict the calculation to only
low-weight coefficients with small correlation range, then the main hurdle is the
calculation of the tensors 𝒮 and 𝒟 which scale only polynomially with lattice
size, but with a high power ∼ 𝑁4.



Outlook

We have observed that transmon arrays with Gaussian disorder demonstrate a
transition from chaotic behavior to a MBL phase. Although the traditional dia-
gnostics of level spacing distribution and IPR disagree on the exact location of
this transition, our innovative technique utilizing the Walsh-Hadamard trans-
formation has provided us with a basis-independent probe to showcase that
quantum computation is secure only deep into the MBL phase, where the 𝑍𝑍
interactions can be effectively managed.

As was anticipated byMBL theory increasing the coordination number of the
lattice destabilizes the MBL phase further. Furthermore, we have demonstrated
that caution should be exercised when employing qubit frequency engineered
patterns in the transmon architecture using the LASIQ technique. Although
simple configurations such as a staggered pattern with a limited set of frequen-
cies can still effectively localize the system, thanks to the presence of residual
disorder, reducing the strength of disorder even further can bring the system
uncomfortably close to the chaotic regime.

While using LASIQ to create a simple frequency pattern can be unreliable
from a localization prospective, the ability to tune Josephson junctions to a higher
precision, even post fabrication, opens up an intriguing avenue for designing
fractal or quasi-periodic frequency patterns that mimic random disorder. We
have seen that by employing a quasi-periodic pattern based on the Aubry-André
model we were able to localize a quasi-1D transmon lattice. Even more aston-
ishing was the fact that the quasi-periodic system demonstrated an even higher
degree of localization from a similar system with Gaussian disorder. Further-
more, employing our perturbation theory scheme allowed us to obtain theWalsh-
Hadamard coefficients for a large-scale system, comparable to experimental devices.
The observed exponential hierarchy in theWalsh-Hadamard coefficients provides
compelling evidence of the sustained localization of the system.

We acknowledge that our study of MBL as a protective measure against deco-
herence for quantum memories should be thought of as a first attempt to bridge
the fields of quantum information and MBL, and it does not come without limita-
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tions. For the first part of our approach we employed a purely numerical method
for characterizing the system and therefore this limits the size of systems that
we can study. In addition, the transmons are bosonic systems with an infinite
number of eigenstates. In turn, this forces us to use a Hilbert space truncation
scheme. Regardless the dimensionality of Hilbert spaces that we considered was
immense by any computational standards and it suffices for the convergence of
our statistics.

For the second part we relied on an effective Hamiltonian description of the
system, the Bose-Hubbard approximation, which is suitable for the transmon
regime, however it is only an approximate description within a finite energy
window. The perturbation scheme employed there is also suffering from the
pathogenies of the 𝜑4 theory which also limits the parameter range for which
our approximation is working.

In both approaches we have not considered tunable coupling [45] which is
also a reasonable approach to counter decoherence. Despite these difficulties our
core message, that transmons can avoid thermalization and thus be protected
from decoherence via MBL, is still valid and one that warrants further investiga-
tion.

It is important to note that our analysis thus far has focused exclusively on
static systems with time-independent Hamiltonians, disregarding the dynamic
aspects of the system. However, it is worth exploring how the dynamics of the
system are influenced byMBL and quantum chaos, as they are dynamic phases of
matter. A compelling question arises: How doMBL and quantum chaos manifest
themselves in the system’s dynamics, and what diagnostic tools can be employed
to investigate this transition?

Finally, it is worth noting that the perturbation theory scheme we employed
for obtaining theWalsh-Hadamard coefficients in theMetallic-Aubry-Andrémodel
has proven valuable for studying the localization properties of large systems
beyond the limitations of exact diagonalization. However, it is important to ac-
knowledge that this perturbation theory scheme has a limited parameter range in
which it can be applied effectively. To address this limitation, one intriguing solu-
tion would be to utilize a renormalized version of the perturbation theory, which
is known to improve the radius of convergence in theories such as the 𝜑4 the-
ory. Alternatively, one could consider employing the full form of the transmon
Hamiltonian, as given in Eq. (B.13), at the moment however it remains unclear
how to achieve that.



Appendices



A
Identities of Bosonic Operators

In this appendix we will prove some properties of bosonic ladder operators that
we have used throughout the thesis.

Lemma 1. For bosonic operators 𝑎, 𝑎† with [𝑎, 𝑎†] = 1 we have

(𝑎†𝑎)𝑛𝑎𝑘 = 𝑎𝑘(𝑎†𝑎 − 𝑘)𝑛 and (𝑎†𝑎)𝑛𝑎†𝑘 = 𝑎†𝑘(𝑎†𝑎 + 𝑘)𝑛. (A.1)

with 𝑛, 𝑘 ∈ ℕ.

Proof. We will prove this with double induction. Once on of the two relations is
proved the other follows from complex conjugation as well. First we will prove
that

(𝑎†𝑎)𝑎𝑘 = 𝑎𝑘(𝑎†𝑎 − 𝑘). (A.2)

Assuming that this hold for 𝑘 + 1 as well we obtain

(𝑎†𝑎)𝑎𝑘+1 = (𝑎†𝑎)𝑎𝑘𝑎 = 𝑎𝑘(𝑎†𝑎 − 𝑘)𝑎
= 𝑎𝑘(𝑎†𝑎𝑎 − 𝑘𝑎) = 𝑎𝑘(𝑎𝑎†𝑎 − 𝑎 − 𝑘𝑎)
= 𝑎𝑘+1(𝑎†𝑎 − 𝑘 − 1) (A.3)

and the induction is complete. Now for the general case of Eq. (A.1), assuming it
hold for 𝑛 + 1 we will have

(𝑎†𝑎)𝑛+1𝑎𝑘 = 𝑎†𝑎(𝑎†𝑎)𝑛𝑎𝑘 = 𝑎𝑘(𝑎†𝑎 − 𝑘)(𝑎†𝑎 − 𝑘)𝑛 = 𝑎𝑘(𝑎†𝑎 − 𝑘)𝑛+1 (A.4)



Lemma 2. For bosonic operators 𝑎, 𝑎† with [𝑎, 𝑎†] = 1 we have

𝑎†𝑘𝑎𝑘 =
𝑘−1
∏
𝑚=0

(𝑎†𝑎 − 𝑚) = Γ(𝑎†𝑎 + 1)
Γ(𝑎†𝑎 − 𝑘 + 1), (A.5)

where Γ(𝑥) = (𝑥 − 1)! is the Gamma function [B3] and 𝑘 ∈ ℕ.

Proof. We will prove this inductively. Assuming Eq. (A.5) is true then

𝑎†(𝑘+1)𝑎(𝑘+1) = 𝑎†𝑘(𝑎†𝑎)𝑎𝑘. (A.6)

Using Lemma 1 we can write this as

𝑎†(𝑘+1)𝑎(𝑘+1) = (𝑎†𝑎 − 𝑘)𝑎†𝑘𝑎𝑘 =
𝑘
∏
𝑚=0

(𝑎†𝑎 − 𝑚). (A.7)

Lemma 3. For bosonic operators 𝑎, 𝑎† with [𝑎, 𝑎†] = 1 we have

𝑒𝑖𝛽𝑎†𝑎𝑎𝑚𝑒−𝑖𝛽𝑎†𝑎 = 𝑒−𝑖𝛽𝑚𝑎𝑚 (A.8)

with 𝛽 ∈ ℝ and 𝑚 ∈ ℕ

Proof. We expand the second exponential to write

𝑒𝑖𝛽𝑎†𝑎𝑎𝑚𝑒−𝑖𝛽𝑎†𝑎 = 𝑒𝑖𝛽𝑎†𝑎
∞
∑
𝑘=0

(−𝑖𝛽)𝑘
𝑘! 𝑎𝑚(𝑎†𝑎)𝑘. (A.9)

Using again Lemma 1 we obtain

𝑒𝑖𝛽𝑎†𝑎𝑎𝑚𝑒−𝑖𝛽𝑎†𝑎 = 𝑒𝑖𝛽𝑎†𝑎 (
∞
∑
𝑘=0

(−𝑖𝛽)𝑘
𝑘! (𝑎†𝑎 − 𝑚)𝑘) 𝑎𝑚

= 𝑒𝑖𝛽𝑎†𝑎𝑒−𝑖𝛽𝑎†𝑎𝑒−𝑖𝛽𝑚𝑎𝑚 = 𝑒−𝑖𝛽𝑚𝑎𝑚. (A.10)



B
Second Quantization Form of the

Charge Qubit Hamiltonian

Here we will derive a second quantization Hamiltonian for the transmon qubit.
Starting from the Hamiltonian of Eq. (1.31) and setting 𝑛𝑔 = 0 we can perform
the canonical transformation of Eq. (1.37) to write

𝐻CQ = −√
𝐸C𝐸J

2 (𝑎† − 𝑎)2 − 𝐸J cos [4

√
2𝐸J

𝐸C
(𝑎† + 𝑎)] (B.1)

We will expand the cosine again, but this time we will not truncate the ex-
pansion keeping the full series

cos𝜑 =
∞
∑
𝑛=0

𝑐𝑛(𝑎† + 𝑎)2𝑛 =
∞
∑
𝑛=0

(−1)𝑛
2𝑛/2(2𝑛)! (

𝐸C

𝐸J
)
𝑛/2

(𝑎† + 𝑎)2𝑛. (B.2)

Now we need to deal with the powers of the bosonic operator. In general, if we
expand the 2𝑛-th power we will obtain 22𝑛. We will normal order each of these
terms using Wick’s theorem

𝐴𝐵𝐶𝐷⋯ = 𝒩(𝐴𝐵𝐶𝐷… )+ ∑
1 contraction

𝒩(𝐴𝐵𝐶𝐷… )+ ∑
2 contractions

𝒩(𝐴𝐵𝐶𝐷… )+…

(B.3)
where𝒩(⋅) implies normal ordering and operators connected by an overline are
to be contracted according to the Wick contraction rules of Eq. (3.20).



In order to do this efficiently it will prove beneficial to divide the terms of (𝑎†+
𝑎)2𝑛 in three categories, termswith an equal number of creation and annihilation
operators 𝐶𝑛

0 , terms with an excess of creation operators 𝐶𝑛
+ and terms with an

excess of annihilation operators 𝐶𝑛
−

(𝑎† + 𝑎)2𝑛 = 𝐶𝑛
0 + 𝐶𝑛

+ + 𝐶𝑛
− (B.4)

Since 𝜑 is Hermitian, the cosine in total should also be Hermitian and therefore
(𝐶𝑛

+)† = 𝐶𝑛
− since 𝐶𝑛

0 is Hermitian as well.
We treat the 𝐶𝑛

0 terms first. Applying Wick’s theorem we see that

𝐶𝑛
0 = 𝑤𝑛0𝑎†𝑛𝑎𝑛 + 𝑤𝑛1𝑎†(𝑛−1)𝑎𝑛−1 +⋯+𝑤𝑛𝑛 =

𝑛
∑
𝑘=0

𝑤𝑛𝑘𝑎†(𝑛−𝑘)𝑎(𝑛−𝑘) (B.5)

with𝑤𝑛𝑘 the combinatorial factor accounting for howmany 𝑘 simultaneous con-
tractions are possible among all the permutations of the product 𝑎†𝑛𝑎𝑛.

Since we have all the permutations of 𝑎†𝑛𝑎𝑛 to consider it is obvious that all
possible contractions that can appear, will appear. So we can reverse the problem
by building up each term contraction by contraction. Consider the following
counting problem:

…

1 2 3 4 2𝑛 − 1 2𝑛

…

1 2 3 4 2𝑛 − 1 2𝑛

𝑎 𝑎†
(2𝑛)!

2!(2𝑛−2)!

…

1 2 3 4 2𝑛 − 1 2𝑛

𝑎 𝑎†𝑎 𝑎†
1
2

(2𝑛)!
2!(2𝑛−2)!

(2𝑛−2)!
2!(2𝑛−4)!

Figure B.1: Counting of Wick contractions. Graphic representation of the proced-
ure of building up 𝑘 contractions for an operator product with 2𝑛 ladder operators, by
iteratively adding a pair and counting the possible ways to it.

Assumewe start with 2𝑛 empty slots. For a termwith 𝑘 contractions we need
to distribute 𝑘 pairs of 𝑎, 𝑎† in this order. To insert the first pair we just need to
choose 2 out of 2𝑛 available slots, therefore we have (2𝑛

2
) initial contractions and

(2𝑛2 ) =
(2𝑛)!

2(2𝑛 − 2)! (B.6)



is the binomial coefficient.
Now there are 2𝑛 − 2 slots available to place the next contraction therefore

we have (2𝑛−2
2
) choices and in total (2𝑛

2
)(2𝑛−2

2
) choices for two pairs and so on

until we place 𝑘 contractions. In total we will have

𝑘−1
∏
𝑝=0

(2𝑛 − 2𝑝
2 ) = (2𝑛)!

2𝑘(2𝑛 − 2𝑘)! (B.7)

pairs of contractions. Of course in this way we have distinguished between the
different permutations of the same set of contractions so we have to divide with
the symmetry factor of 𝑘!. Finally there are 2𝑛 − 2𝑘 positions to be filled and
since we are looking at terms with an equal number of creation and annihilation
operators it means we are left with 𝑛 − 𝑘 of each. There are of course (2𝑛−2𝑘

𝑛−𝑘
)

ways to distribute them and so in total

𝑤𝑛𝑘 =
(2𝑛)!

2𝑘𝑘!(𝑛 − 𝑘)!2 . (B.8)

Similarly for 𝐶𝑛
+ we will have from Wick’s theorem

𝐶𝑛
+ = (𝐶𝑛

−)† =
∞
∑
𝑚=1

𝐶(𝑛,𝑚)
+ =

∞
∑
𝑚=1

𝑎†2𝑚
𝑛−𝑚
∑
𝑘=0

𝑤𝑚
𝑛𝑘𝑎†(𝑛−𝑚−𝑘)𝑎(𝑛−𝑚−𝑘) (B.9)

with an excess of 2𝑚 creation operators. The reason the excess has to be even is
given by the following argument: Assume the number of annihilation operators
is 𝑥 and that the creation operators have an excess of 𝑦. The number of creation
operators should then be 𝑥 + 𝑦 and in total we need to have 2𝑛 operators per
product. In other words (𝑥 + 𝑦) + 𝑥 = 2𝑛 and so the excess 𝑦 = 2(𝑛 − 𝑥) is an
even number.

Now we have the Wick coefficients 𝑤𝑚
𝑛𝑘 accounting for how many 𝑘 sim-

ultaneous contractions are possible among all the permutations of the product
𝑎†(𝑛+2𝑚)𝑎𝑛. The steps for the derivation of 𝑤𝑚

𝑛𝑘 are identical to the ones for 𝑤𝑛𝑘
of 𝐶𝑛

0 with the only difference in the last step. For the case of excess creation
operators we be left with 𝑛+𝑚−𝑘 creation and 𝑛−𝑚−𝑘 annihilation operators
to be distributed in 2𝑛 − 2𝑘 slots thus a factor of ( 2𝑛−2𝑘

𝑛+𝑚−𝑘
) leading to

𝑤𝑚
𝑛𝑘 =

(2𝑛)!
2𝑘𝑘!(𝑛 + 𝑚 − 𝑘)!(𝑛 − 𝑚 − 𝑘)! . (B.10)

We now combine everything back into Eq. (B.2)

cos𝜑 = Λ0(𝑎†𝑎) +
∞
∑
𝑚=0

(𝑎†2𝑚Λ𝑚(𝑎†𝑎) + Λ𝑚(𝑎†𝑎)𝑎2𝑚) . (B.11)



Figure B.2: Elements of the Λ functions. We plot the first 200 diagonal elements of
the Λ𝑚 function of Eq. (B.12) for 𝑚 = 0, 1, 2 and 3. The ratio 𝐸C/𝐸J is fixed at 20.

where we defined the function

Λ𝑚(𝑎†𝑎) =
∞
∑
𝑛=0

𝑛−𝑚
∑
𝑘=0

𝑐𝑛𝑤𝑚
𝑛𝑘𝑎†(𝑛−𝑚−𝑘)𝑎(𝑛−𝑚−𝑘)

= (−1)𝑚 ( 𝐸C

2𝐸J
)
𝑚/2

𝑒
− 1

2√
𝐸C
2𝐸J 𝐹1 1 (𝑎†𝑎, 2𝑚 + 1,

√
𝐸C

2𝐸J
) (B.12)

and 𝐹1 1 is the regularized confluent hypergeometric function [B3].
In conclusion the Hamiltonian can be written in the form

𝐻CQ = √2𝐸C𝐸J𝑎†𝑎 − 𝐸JΛ0(𝑎†𝑎) − 𝐸J

∞
∑
𝑚=0

(𝑎†2𝑚Λ̃𝑚(𝑎†𝑎) + Λ̃𝑚(𝑎†𝑎)𝑎2𝑚)

(B.13)
where we modified slightly the definition of the Λ𝑚 function as

Λ̃𝑚(𝑎†𝑎) = Λ𝑚(𝑎†𝑎) +√
𝐸C

2𝐸J
𝛿𝑚,1. (B.14)

If we employ a RWA the Hamiltonian is diagonalized in the Fock basis

𝐻CQ
RWA≃ √2𝐸C𝐸J𝑎†𝑎 − 𝐸JΛ0(𝑎†𝑎). (B.15)



C
Moments of Polynomial Functions
with Random Gaussian Variables

In this appendix we present several derivations of distributions for functions
which take Gaussian random variables as arguments.

Lemma 4. Given the random variables 𝑋1, 𝑋2, … , 𝑋𝑛 drawn from a distribution
𝜌𝑋(𝑥), the probability distribution of variable 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛) is given by

𝜌𝑌 (𝑦) = ∫
ℝ𝑛
𝑑𝑥1𝑑𝑥2 …𝑑𝑥𝑛𝜌𝑋(𝑥1)𝜌𝑋(𝑥2) … 𝜌𝑋(𝑥𝑛)𝛿 (𝑦 − 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛))

(C.1)

Proof. Assume the variable 𝑌 which is defined as

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛). (C.2)

The distribution of the random variable 𝑌 is related to the cumulative probability
of taking a value less than why 𝑦 in the following way

𝜌𝑌 (𝑦) =
𝑑
𝑑𝑦𝑃(𝑌 < 𝑦) = 𝑑

𝑑𝑦𝑃(𝑓(𝑋1, 𝑋2, … , 𝑋𝑛) < 𝑦)

= 𝑑
𝑑𝑦 ∫ℝ𝑛

𝑑𝑥1𝑑𝑥2 …𝑑𝑥𝑛𝜌𝑋(𝑥1)𝜌𝑋(𝑥2) … 𝜌𝑋(𝑥𝑛)𝜃 (𝑦 − 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛))

(C.3)



where 𝜃 is the Heaviside function and its derivative is the Dirac delta distribution
therefore we can write

𝜌𝑌 (𝑦) = ∫
ℝ𝑛
𝑑𝑥1𝑑𝑥2 …𝑑𝑥𝑛𝜌𝑋(𝑥1)𝜌𝑋(𝑥2) … 𝜌𝑋(𝑥𝑛)𝛿 (𝑦 − 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)) .

(C.4)
This formula offers a very intuitive definition of the distribution for the function
𝑓 by integrating out all the parts of the product of the probability distributions
of the individual variables that are not on the surface 𝑓(𝑥1, … , 𝑥𝑛) = 𝑦.

Lemma 5. For 𝑋1 and 𝑋2 two random variables drawn from a Gaussian distribu-
tion

𝜌𝑋(𝑥) =
1

√2𝜋
𝑒−𝑥2/2. (C.5)

We have the following moments for the product

𝑋𝑚
1 𝑋𝑚

2 = {0 𝑚 odd
[(𝑚 − 1)!!]2 𝑚 even.

(C.6)

Proof. Assume a variable 𝑌 which is defined as

𝑌 = 𝑋1𝑋2 (C.7)

The probability distribution for the variable 𝑌 will be according to the result of
Lemma 4

𝜌𝑌 (𝑦) = ∫
ℝ2
𝑑𝑥1𝑑𝑥2𝜌𝑋(𝑥1)𝜌𝑋(𝑥2)𝛿 (𝑦 − 𝑥1𝑥2) (C.8)

using the Dirac delta property

𝛿 (𝑦 − 𝑥1𝑥2) =
1
|𝑥1|

𝛿 ( 𝑦𝑥1
− 𝑥2) (C.9)

and substituting the Gaussian distribution we obtain

𝜌𝑌 (𝑦) =
1
2𝜋 ∫ℝ

𝑑𝑥1
|𝑥1|

𝑒−𝑥21/2𝑒−𝑦2/(2𝑥21) = 𝐺2(𝑦2/4)
2𝜋 (C.10)

with 𝐺2(𝑧) the simplified Meijer G function defined as

𝐺𝑛(𝑦) =
1
2𝜋𝑖 ∫ℝ

𝑑𝑥Γ(𝑥)𝑛𝑦−𝑥 (C.11)



With the probability distribution at hand we can calculate the moments and con-
firm

𝑌2𝑘−1 = 𝑋2𝑘−1
1 𝑋2𝑘−1

2 = 1
2𝜋 ∫ℝ

𝑑𝑦 𝑦2𝑘−1𝐺2(𝑦2/4) = 0 (C.12)

𝑌2𝑘 = 𝑋2𝑘
1 𝑋2𝑘

2 = 1
2𝜋 ∫ℝ

𝑑𝑦 𝑦2𝑘𝐺2(𝑦2/4) = [(2𝑘 − 1)!!]2 (C.13)

for 𝑘 ∈ ℕ and 𝑘 ≥ 1

Lemma 6. The variable

𝑌 = 1
𝑑𝑚

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗𝑋𝑚
𝑖 𝑋𝑚

𝑗 (C.14)

with 𝑂1, … , 𝑂𝑑 some fixed real parameters and 𝑋1, … , 𝑋𝑑 a set of random variables
drawn from the same Gaussian distribution

𝜌𝑋(𝑥) =
1

√2𝜋
𝑒−𝑥2/2, (C.15)

has an average value of

𝑌 = {
(2𝑚−1)!!
𝑑𝑚−1 𝑂2 𝑚 odd

(2𝑚−1)!!−[(𝑚−1)!!]2

𝑑𝑚−1 𝑂2 + [(𝑚−1)!!]2

𝑑𝑚−2 𝑂
2

𝑚 even.
(C.16)

Proof. The average of 𝑌 according to the definition will be

𝑌 = 1
𝑑𝑚

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗𝑋𝑚
𝑖 𝑋𝑚

𝑗 . (C.17)

One might be tempted to use Lemma 5 immediately however for the summands
that 𝑖 = 𝑗 this result is not valid and these are in fact themoments of the Gaussian
distribution therefore we need to separate the two cases first and then apply the
lemma

𝑌 = 1
𝑑𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 𝑋2𝑚

𝑖 + 1
𝑑𝑚

𝑑
∑

𝑖≠𝑗=1
𝑂𝑖𝑂𝑗𝑋𝑚

𝑖 𝑋𝑚
𝑗

= (2𝑚 − 1)!!
𝑑𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 +

1
𝑑𝑚

𝑑
∑

𝑖≠𝑗=1
𝑂𝑖𝑂𝑗𝑋𝑚

𝑖 𝑋𝑚
𝑗 . (C.18)



We now consider the two cases for 𝑚 separately. For odd 𝑚 the proof is com-
pleted immediately

𝑌 = (2𝑚 − 1)!!
𝑑𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 =

(2𝑚 − 1)!!
𝑑𝑚−1 𝑂2. (C.19)

While for even 𝑚 we have

𝑌 = (2𝑚 − 1)!!
𝑑𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 +

[(𝑚 − 1)!!]2
𝑑𝑚

𝑑
∑

𝑖≠𝑗=1
𝑂𝑖𝑂𝑗 (C.20)

and in order to complete the proof we add and subtract the diagonal of the second
sum

𝑌 = (2𝑚 − 1)!! − [(𝑚 − 1)!!]2
𝑑𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 +

[(𝑚 − 1)!!]2
𝑑𝑚

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗

= (2𝑚 − 1)!! − [(𝑚 − 1)!!]2
𝑑𝑚−1 𝑂2 + [(𝑚 − 1)!!]2

𝑑𝑚−2 𝑂
2

(C.21)

Lemma 7. For 𝑋1, 𝑋2, 𝑋3 and 𝑋4 4 random variables drawn from a Gaussian dis-
tribution

𝜌𝑋(𝑥) =
1

√2𝜋
𝑒−𝑥2/2. (C.22)

We have the following moments for the product

𝑋𝑚
1 𝑋𝑚

2 𝑋𝑚
3 𝑋𝑚

4 = {0 𝑚 odd
[(𝑚 − 1)!!]4 𝑚 even.

(C.23)

Proof. Assume the variables 𝑌1 and 𝑌2 defined as

𝑌1 = 𝑋1𝑋2 𝑌2 = 𝑋3𝑋4 (C.24)

and their product 𝑍 = 𝑌1𝑌2 The probability distribution for the variable 𝑍 will
be according to the result of Lemma 4

𝜌𝑍(𝑧) = ∫
ℝ2
𝑑𝑦1𝑑𝑦2𝜌𝑌 (𝑦1)𝜌𝑌 (𝑦2)𝛿 (𝑧 − 𝑦1𝑦2) (C.25)

using the Dirac delta property

𝛿 (𝑧 − 𝑦1𝑦2) =
1
|𝑦1|

𝛿 ( 𝑧𝑦1
− 𝑦2) (C.26)



and substituting the distribution of the 𝑌 variables from Lemma 5 we obtain

𝜌𝑌 (𝑦) =
1
4𝜋2 ∫ℝ

𝑑𝑥1
|𝑥1|

𝐺2(𝑦21/4)𝐺2(𝑧2/(4𝑦21 )) =
𝐺4(𝑧2/16)

4𝜋2 (C.27)

With the probability distribution at hand we can calculate the moments and con-
firm

𝑍2𝑘−1 = 𝑋2𝑘−1
1 𝑋2𝑘−1

2 𝑋2𝑘−1
3 𝑋2𝑘−1

3 = 1
4𝜋2 ∫ℝ

𝑑𝑧 𝑧2𝑘−1𝐺4(𝑧2/16) = 0 (C.28)

𝑍2𝑘 = 𝑋2𝑘
1 𝑋2𝑘

2 𝑋2𝑘
3 𝑋2𝑘

4 = 1
4𝜋2 ∫ℝ

𝑑𝑧 𝑧2𝑘𝐺4(𝑧2/16) = [(2𝑘 − 1)!!]4

(C.29)

for 𝑘 ∈ ℕ and 𝑘 ≥ 1
Lemma 8. The variable

Ζ = 1
𝑑2𝑚

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗𝑋𝑚
𝑖 𝑋𝑚

𝑗 𝑌𝑚
𝑖 𝑌𝑚

𝑗 (C.30)

with 𝑂1, … , 𝑂𝑑 some fixed real parameters and 𝑋1, … , 𝑋𝑑 and 𝑌1, … , 𝑌𝑑 two sets of
random variables drawn from the same Gaussian distribution

𝜌𝑋(𝑠) = 𝜌𝑌 (𝑠) =
1

√2𝜋
𝑒−𝑠2/2, (C.31)

has an average value of

𝑍 = {
[(2𝑚−1)!!]2

𝑑2𝑚−1 𝑂2 𝑚 odd
[(2𝑚−1)!!]2−[(𝑚−1)!!]4

𝑑2𝑚−1 𝑂2 + [(𝑚−1)!!]4

𝑑2𝑚
𝑂
2

𝑚 even.
(C.32)

Proof. The average of 𝑍 according to the definition will be

𝑍 = 1
𝑑𝑚

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗𝑋𝑚
𝑖 𝑋𝑚

𝑗 𝑌𝑚
𝑖 𝑌𝑚

𝑗 . (C.33)

Similarly to the proof of Lemma 6 we cannot apply Lemma 7 immediately there-
fore we need to separate the two cases of 𝑖 = 𝑗 and 𝑖 ≠ 𝑗 first and then apply the
appropriate Lemmas

𝑍 = 1
𝑑2𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 𝑋2𝑚

𝑖 𝑌 2𝑚
𝑖 + 1

𝑑2𝑚
𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗𝑋𝑚
𝑖 𝑋𝑚

𝑗 𝑌𝑚
𝑖 𝑌𝑚

𝑗

= [(2𝑚 − 1)!!]2
𝑑2𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 +

1
𝑑2𝑚

𝑑
∑

𝑖≠𝑗=1
𝑂𝑖𝑂𝑗𝑋𝑚

𝑖 𝑋𝑚
𝑗 𝑌𝑚

𝑖 𝑌𝑚
𝑗 . (C.34)



We now consider the two cases for 𝑚 separately. For odd 𝑚 the proof is com-
pleted immediately

𝑍 = [(2𝑚 − 1)!!]2
𝑑2𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 =

[(2𝑚 − 1)!!]2
𝑑2𝑚−1 𝑂2. (C.35)

While for even 𝑚 we have

𝑍 = [(2𝑚 − 1)!!]2
𝑑2𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 +

[(𝑚 − 1)!!]4
𝑑2𝑚

𝑑
∑

𝑖≠𝑗=1
𝑂𝑖𝑂𝑗 (C.36)

and in order to complete the proof we add and subtract the diagonal of the second
sum

𝑍 = [(2𝑚 − 1)!!]2 − [(𝑚 − 1)!!]4
𝑑2𝑚

𝑑
∑
𝑖=1

𝑂2
𝑖 +

[(𝑚 − 1)!!]4
𝑑2𝑚

𝑑
∑
𝑖,𝑗=1

𝑂𝑖𝑂𝑗

= [(2𝑚 − 1)!!]2 − [(𝑚 − 1)!!]4
𝑑2𝑚−1 𝑂2 + [(𝑚 − 1)!!]4

𝑑2𝑚 𝑂
2

(C.37)



D
Explicit Second Order Perturbation

Theory Walsh-Hadamard coefficients

We will present the Walsh-Hadamard coefficient results from perturbation the-
ory of section 3.2 in an explicit form. We will make use of all the conventions
in that section and additionally we will use a different notation for the Walsh-
Hadamard coefficients. Specifically assuming some coefficient 𝑤 corresponding
to a bitstring of weight 𝑚 with non-zero digits at positions ℓ1 through ℓ𝑚, we
will denote the 𝑛-th order correction to that coefficient as 𝑤(𝑛)

ℓ1…ℓ𝑚 .
Perturbation terms of the weight zero bitstrings:

𝑤(0)
0 =

𝐸𝜇
2 (D.1)

𝑤(1)
0 = 1

4|𝜀𝜇𝜈|ℰ𝜇𝜈 (D.2)

𝑤(2)
0 = (14|𝜀𝛼𝛽| + |𝜀𝛼𝛽𝜇|)𝒟𝛼𝛽𝜇𝜈 + |𝜀𝛼𝛽𝜇|𝒮𝛼𝛽𝜇𝜈 (D.3)

Perturbation terms of the weight one bitstrings:

𝑤(0)
ℓ1 =

𝐸ℓ1
2 (D.4)

𝑤(1)
ℓ1 = 1

2|𝜀𝜇ℓ1 |ℰ𝜇ℓ1 (D.5)

𝑤(2)
ℓ1 = (12|𝜀ℓ1𝛽| + 2|𝜀ℓ1𝛽𝜇| − |𝜀ℓ1𝜇𝜈|)𝒟ℓ1𝛽𝜇𝜈 + |𝜀ℓ1𝛽𝜇| (2𝒮ℓ1𝛽𝜇𝜈 + 𝒮𝛽𝜇𝜈ℓ1)

(D.6)



Perturbation terms of the weight two bitstrings:

𝑤(0)
ℓ1ℓ2 = 0 (D.7)

𝑤(1)
ℓ1ℓ2 =

1
2ℰℓ1ℓ2 (D.8)

𝑤(2)
ℓ1ℓ2 = (12 + |𝜀ℓ1ℓ2𝜇|)𝒟ℓ1ℓ2𝜇𝜈 + 2 (|𝜀ℓ1ℓ2𝜇| − |𝜀ℓ1ℓ2𝜈|)𝒟𝜇ℓ1ℓ2𝜈

+ 2|𝜀ℓ1ℓ2𝜇| (𝒮ℓ1ℓ2𝜇𝜈 + 𝒮𝜇ℓ1ℓ2𝜈 + 𝒮𝜇ℓ2ℓ1𝜈) (D.9)

Perturbation terms of the weight three bitstrings:

𝑤(0)
ℓ1ℓ2ℓ3 = 0 (D.10)

𝑤(1)
ℓ1ℓ2ℓ3 = 0 (D.11)

𝑤(2)
ℓ1ℓ2ℓ3 = 2 (𝒟ℓ1ℓ2ℓ3𝜈 +𝒟ℓ1ℓ3ℓ2𝜈 +𝒟ℓ2ℓ3ℓ1𝜈 + 𝒮ℓ1ℓ2ℓ3𝜈 + 𝒮ℓ1ℓ3ℓ2𝜈 + 𝒮ℓ2ℓ3ℓ1𝜈)

(D.12)
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