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Abstract
In general, the overall macroscopic material behavior of any structural com-
ponent is directly dependent on its underlying microstructure. For metal
components, the associated microstructure is given in terms of a polycrystal.
To enable the simulation of the related microstructural and overall elasto-
viscoplastic material behavior, a two-scale simulation approach can be used. In
this context,weuse a FE-FFT-based two-scalemethod,which is an efficient alter-
native to the classical FE2 method for the simulation of periodicmicrostructures.
In addition, we consider a thermomechanically coupled framework to account
for both thermal and mechanical loads. Finally, we incorporate a model order
reduction technique based on a coarsely discretizedmicrostructure to develop an
efficient two-scale simulation technique. As a demonstration of the feasibility of
the proposed simulation framework, a numerical example will be investigated.

1 INTRODUCTION

When studying the overall material behavior of a structural component, this behavior is directly determined by the under-
lyingmicrostructure and its properties. For example, when analyzingmetals, themicroscale is represented by a polycrystal
and its characteristics. In order to investigate both the macroscopic as well as the microscopic material behavior in a high
resolution manner, several multiscale approaches have been developed [1]. The most common in this context is the appli-
cation of the FE2 method, which refers to the use of the finite element method on both scales [2, 3]. An alternative to
this two-scale method is the FE-FFT-based method introduced in [4]. In this approach, the finite element simulation on
the microscale is replaced by a Fast Fourier Transform (FFT)-based approach [5, 6]. This two-scale simulation method
has been applied to the multiscale simulation of polycrystalline microstructures at small strains in [7] and generalized to
finite strains in [8, 9]. Furthermore, an extension considering additionally a thermomechanical coupling with a constant
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temperature field on the microscale at finite strains was introduced in [10]. A general review on FE-FFT-based two-scale
methods is given in [11].
Considering only the microscale simulation, the FFT-based method was first applied to the simulation of polycrys-

talline microstructures considering rigid-viscoplastic material behavior at small strains in [12] and was found to be an
efficient solution method for the simulation of periodic microstructures compared to the finite element method [13, 14].
A generalization of this approach to elasto-viscoplastic material behavior at small strains and further to finite strains can
be found in [15] and [16], respectively. To increase the accuracy and efficiency of an FFT-based microscale simulation,
several methods have been introduced. To mention some of them, finite difference approximations can be used to reduce
the effect of Gibbs oscillations [17, 18] or efficient solvers such as conjugate gradient based solvers are applied to reduce
the computational effort either in a small strain setting [19, 20] or in a finite strain setting [21]. A comprehensive review
of the FFT-based microscale simulation technique can be found in [22, 23].
Since two-scale simulation methods are generally computationally demanding, several efficient solution strategies and

model order reduction techniques have been developed to reduce this computational burden. Efficient solution strate-
gies include methods based on a coarsely discretized microstructure for the two-scale simulation, while high-resolution
results can be generated in a postprocessing step [24, 25], or methods using a pre-calculated database in general, while the
high-resolution two-scale simulation is performed only in macroscopic critical areas [26]. Other model order reduction
techniques reduce the computational effort at either themacro- ormicroscale. Sincemodel order reduction techniques are
widely used for macroscale simulations, only specific model order reduction techniques applied to FFT-based microscale
simulations are addressed here. In this context, the computational costs of FFT-based microscale simulations have been
reduced using proper orthogonal decomposition [27], low-rank tensor approximations [28], or a reduced set of Fourier
modes [29] with a fixed [29], geometrically adapted [30], or strain-based [31] sampling pattern, or additionally combined
with a clustered microstructure [32].
In this work, we use the thermomechanically coupled FE-FFT-based two-scale method incorporating finite strains

introduced in [10] to compute fluctuating temperature fields at themicroscale, similar to what was done in [33, 34], using a
FE-basedmicrostructure simulation. Here, the FFT-basedmicroscale simulation is utilized and optimized using the finite
difference approximation presented in [18] and a Newton–Krylov solver as introduced in [21]. In addition, the efficient
solution strategy based on a coarsely discretized microstructure for the two-scale simulation [24, 25] is applied.
The paper is organized as follows: in Section 2, the thermomechanically coupled two-scale boundary value problem

is briefly discussed. This is followed by the introduction of the microstructural constitutive relations in Section 3. After
discussing the microscale simulation using spectral solvers in Section 4 and the numerical results in Section 5, the paper
ends with a conclusion and an outlook in Section 6.

2 TWO-SCALE BOUNDARY VALUE PROBLEM

To perform a thermomechanically coupled two-scale simulation, the balance of linear momentum and the balance of
internal energy must be solved at the macroscale as well as the microscale. Considering finite strains, these balance equa-
tions with respect to the reference configuration are given below, while a sketch of the two-scale boundary value problem
considering deformed bodies is given on the left:
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Here 𝑿 represents the position vector, 𝑭 is the deformation gradient, 𝑬 is the Green–Lagrange strain, 𝑺 is the second
Piola–Kirchhoff stress, 𝒇0 is an external body force, 𝒕0 is a surface traction, 𝑒 is the total energy, 𝒒0 is the heat flux, 𝑟ext

0
and 𝑟int

0 define the external and internal heat sources, and 𝜁𝑘 represents a set of internal variables. The bar above any
quantity refers to the macroscale, and the absence of the bar therefore refers to the microscale. Furthermore the macro-
scopic balance equations must be fulfilled within the body ̄0 and satisfy the macroscopic boundary conditions as given
on 𝜕̄0, while the microscopic balance equations must be fulfilled within the unit cell 0 assuming periodic boundary
conditions. Finally, 𝑯̃ and 𝜃̃ are the microscopic fluctuating displacement gradient and temperature, which denote the
primary unknowns.
As introduced in [33], the microscopic boundary value problem is solved in a staggered manner. First, the balance of

linear momentum is solved by applying 𝑭̄ and considering the temperature field 𝜃 = 𝜃̄ to be constant, to compute the
averaged stress 𝑺̄ and internal heat sources 𝑟int

0 (which are involved in the macroscopic balance of internal energy; cf.
Equation (6)). Then, the balance of internal energy is solved by employing the macroscopic temperature gradientGrad(𝜃̄)

to compute the averaged heat flux 𝒒̄0. However, since we only consider an isotropic and homogeneous conductivity 𝐾𝜃

within the microstructure, the microstructural fluctuations can be neglected. Thus, in contrast to [33], the macroscopic
heat flux 𝒒̄0 can be computed directly from themacroscopic quantities without solving themicroscopic balance of internal
energy. Therefore, the scale transition back to the macroscale is performed by calculating only the macroscopic second
Piola–Kirchhoff stress 𝑺̄ and themacroscopic heat sources 𝑟int

0 as volume averages of theirmicroscopic counterparts, where
0 is the volume of the microstructure:

𝑺̄(𝑿̄) =
1

0 ∫0

𝑺(𝑿̄, 𝑿) d and 𝑟int
0 (𝑿̄) =

1

0 ∫0

𝑟int
0 (𝑿̄, 𝑿) d .

3 MICROSTRUCTURAL CONSTITUTIVEMODEL

Considering a two-scale simulation ofmetals, the associatedmicrostructure is defined as a polycrystal. Taking into account
finite deformations, the deformation gradient 𝑭 = 𝑭𝑒𝑭𝑝 is multiplicatively split into an elastic part 𝑭𝑒 and a plastic part
𝑭𝑝. Furthermore, in the context of crystal plasticity, where dislocation slip is assumed to be the only plastic deformation
process, the plastic velocity gradient 𝑳𝑝 = 𝑭̇𝑝𝑭−1

𝑝 is given as the sum of each shear rate 𝛾̇𝛼 over all slip systems 𝑛𝛼 defined
by the slip plane normal 𝒏𝛼 and the slip plane direction 𝒅𝛼 [35, 36]:

𝑳𝑝 =

𝑛𝛼∑
𝛼

𝛾̇𝛼 𝒅𝛼 ⊗ 𝒏𝛼 . (1)

Since elastic deformations in metals are generally small, we applied a St. Venant–Kirchhoff law, taking into account the
effect of temperature changes, which defines the elastic second Piola–Kirchhoff stress in the intermediate configuration
as

𝑺𝑒 = ℂgra ∶ 𝑬𝑒 − ℂgra ∶ 𝑨𝑡 (𝜃 − 𝜃ref ) . (2)

In the previous equation, the rotated cubic anisotropic elasticity tensorℂgra depending on the grain orientation, the elastic
Green–Lagrange strain 𝑬𝑒, the reference temperature 𝜃ref , and the thermal expansion tensor 𝑨𝑡 = 𝛼𝑡𝑰 were introduced
with 𝛼𝑡 denoting the thermal expansion coefficient and 𝑰 referring to the second-order identity tensor. Furthermore, we
considered an isotropic hardening 𝑞𝑝(𝛾acc) of Voce-type plus an additional linear term depending on the accumulated
plastic slip 𝛾acc, which is defined as the time integral over the sum of all shear rates. Finally, the evolution equation for
the shear rate in each slip system is assumed to be of Perzyna-type yielding

𝛾̇𝛼 =

⎧⎪⎨⎪⎩
0 if𝜏𝛼 ≤ 𝜏𝑐

sgn(𝜏𝛼) 𝛾̇0

(|𝜏𝛼|−𝜏𝑐

𝜏𝐷

)𝑝

if𝜏𝛼 > 𝜏𝑐
, (3)

with the resolved shear stress 𝜏𝛼 = 𝑴𝑒 ∶ (𝒅𝛼 ⊗ 𝒏𝛼) in slip system 𝛼, the critical shear stress 𝜏𝑐, the drag stress 𝜏𝐷 , the rate
sensitivity parameter 𝑝, and the reference shear rate 𝛾̇0.
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4 MICROSCALE SIMULATION USING A SPECTRAL SOLVER

Since solving the macroscopic boundary value problem by means of the finite element method is a very common pro-
cedure, in the following we will focus only on solving the microscopic boundary value problem by means of a spectral
solver. As mentioned before, the solutions of the mechanical and thermal boundary value problems are computed in a
staggered manner. Starting from the mechanical boundary value problem and using the FFT-based simulation approach
[5, 6], themicroscopic balance equation has to be reformulated by introducing the polarization stress 𝝉 [37], which defines
the difference between the stress in the real microstructure and the stress in an isotropic homogeneous referencematerial
defined by the stiffness tensor ℂ0:

Div
(
𝝉 + ℂ0 ∶ 𝑭

)
= 𝟎 in0

𝝉 = 𝑭𝑺 − ℂ0 ∶ 𝑭

𝑭 = 𝑭̄ + 𝑯̃

This reformulated boundary value can be solved using the Lippmann–Schwinger equation [38] yielding

𝑭 = 𝑭̄ − 𝚪0 ∗ 𝝉 , (4)

where 𝚪0 is the Green’s operator and ∗ represents the convolution of the Green’s operator and the polarization stress,
which considers the influence of 𝝉 on 𝑭 at each position. Transferring this equation in Fourier space results in

𝑭̂(𝝃 ) =

{
−𝚪̂0(𝝃 ) ∶ 𝝉̂(𝝃 ) for 𝝃 ≠ 𝟎

𝑭̄ for 𝝃 = 𝟎
. (5)

Here, the hat over any quantity refers to its Fourier transform depending on the Fourier modes 𝝃 . In Fourier space, the
convolution results in a simple multiplication and the Green’s operator is explicitly known in Fourier space, depending
only on the reference material behavior and the Fourier modes. In order to solve this equation, we use a Newton–Krylov
solver as introduced in [21].
To compute microstructural fluctuations in the temperature field, the thermal boundary value problem is also solved

in Fourier space. Therefore the balance of internal energy with respect to the reference configuration is reformulated as

−𝜃
𝜕2𝜓̌

𝜕𝜃2
𝜃̇ = 𝜃

𝜕𝑺

𝜕𝜃
∶ 𝑬̇

⏟⎴⏟⎴⏟
𝑟𝑒
0

+

[
𝑛∑

𝛼=1

𝛾̇𝛼

(
𝜏𝛼 − 𝜃

𝜕𝜏𝛼

𝜕𝜃

)]
−

(
𝑞𝑝 − 𝜃

𝜕𝑞𝑝

𝜕𝜃

)
𝛾̇acc

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑟
𝑝
0

−Div(𝒒0) . (6)

with the total energy 𝜓̌. By considering a constant temperature field in time during the microscale simulation and by
neglecting the elastic heat sources 𝑟𝑒

0, while simplifying the plastic heat sources 𝑟
𝑝
0 to

𝑟
𝑝
0 ≈ 𝛽

(
𝑛∑

𝛼=1

𝛾̇𝛼 𝜏𝛼 − 𝑞𝑝 𝛾̇acc

)
(7)

using the Taylor–Quinney coefficient 𝛽 [39], the balance of internal energy in the current configuration reduces to

div(𝒒) − 𝑟𝑝 = 0 (8)

with 𝑟𝑝 = 1∕det(𝑭) 𝑟
𝑝
0 . Considering 𝒒 = −𝐾𝜃 grad(𝜃) and an isotropic and homogeneous conductivity𝐾𝜃 for each crystal,

this equation can directly be solved in Fourier space:

𝜃̂(𝝃 ) =

⎧⎪⎨⎪⎩
−

𝑟𝑝(𝝃 )

𝐾𝜃 𝝃 ⋅ 𝝃
for 𝝃 ≠ 𝟎

𝜃̄ for 𝝃 = 𝟎

(9)

and later transferred back to real space.
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F IGURE 1 Macroscopic boundary value problem with dimensions, boundary conditions, and discretization of the four-point bending
test and orientation of the first Euler angle of the polycrystalline microstructure.

5 NUMERICAL RESULTS

To demonstrate the applicability of the thermomechanically coupled FE-FFT-based two-scale method, we investigate
the multiscale simulation of a four-point bending test considering a polycrystalline microstructure and the material
parameters of copper, chosen in line with the literature. The dimensions, boundary conditions, and discretization of the
macroscopic boundary value problem are depicted in Figure 1. The polycrystalline microstructure with the orientation
of the first Euler angle is shown on the right. A displacement of 𝑢2 = 0.5mm is applied within 1 s, and the simulation is
performed at room temperature

𝜃ref = 293.15K.
The two-scale simulation is performed using Abaqus, with the FFT-based microstructure simulation implemented as a

user material. On the macroscale, a fully coupled thermomechanical finite element analysis is performed. In this context,
a plane strain setting and reduced integration with hourglass stabilization are considered.
Regarding the microscale simulation, we use an efficient solution strategy [24, 25] based on using only a coarsely dis-

cretized microstructure during the two-scale simulation, which is attached to each macroscopic integration point. Since
this only provides accurate macroscopic results, highly resolved microstructural results are generated in a postprocess-
ing step by applying the macroscopic deformation gradient of any integration point of particular interest to a finely
discretized microstructure.
The results of the two-scale simulation are given in Figure 2. At themacroscale, the logarithmic strain 𝐿𝐸11, the Cauchy

stress 𝜎̄11, the accumulated plastic slip 𝛾̄acc, and the change in the temperature Δ𝜃̄= 𝜃̄ − 𝜃ref are shown, whereas at the
microscale, the Green–Lagrange strain 𝐸11, the Cauchy stress 𝜎11, the accumulated plastic slip 𝛾acc, and the fluctuating
temperature field 𝜃̃ are plotted. The microsopic results are generated for the highlighted element at the macroscale.
As expected, the maximum values within the macroscopic fields are located between the two loads and are more or less

constant in the four-point bending test. Looking at the strain in horizontal direction, the compressive strains are located
at the top of the specimen, while the tensile strains occur at the bottom of the specimen. This behavior is similar for the
stress. Considering the accumulated plastic slip, it can be seen that a higher amount of plastic deformation occurs in the
tensile regime. Since the temperature change in our model only depends on the evolution of the plastic deformations,
the maximum temperature change in the specimen is directly related to the presence of the accumulated plastic slip.
The microscopic results reveal that due to grain boundaries there are local peaks with values significantly higher than
the average for strain, stress and accumulated plastic slip. Additionally, the correlation between plastic deformations and
the temperature evolution is again clearly visible. Since the changes within the temperature field are rather small, only
the fluctuating temperature field 𝜃̃ = 𝜃 − 𝜃̄ is plotted. Hence, the field fluctuates around zero. This explains the negative
values, which are not related to a cooling.

6 CONCLUSION AND OUTLOOK

In this work, we presented a thermomechanically coupled FE-FFT-based two-scale model for the simulation of poly-
crystalline microstructures. We considered not only fluctuating mechanical fields such as the strain, but also fluctuating
thermal fields. The applicability of the model is demonstrated by considering the two-scale simulation of a four-point
bending test of a copper specimen. It shows that due to plastic deformation, heat is generated in the specimen, which
fluctuates as desired on the microscale.
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F IGURE 2 Macroscopic and microscopic results for the marked element of the strain, Cauchy stress, accumulated plastic slip as well as
the change in the macroscopic temperature and microscopically fluctuating temperature field are shown for the maximum applied
displacement.

However, the evolution of heat on the macroscale as well as the local fluctuations of the temperature on the microscale
are rather small. Therefore, future work will deal with the investigation of different materials, such as shape memory
alloys. In this context, microscopic phenomena such as martensitic phase transformations occur and will be modeled
(e.g., shown for mechanically induced phase transformations in [40]). These martensitic phase transformations lead to
an additional heat generation and therefore the temperature evolution is expected to be much higher. Vice versa, phase
transformations induced by the temperature will also occur in this context (see e.g. [41]) and have to be captured.
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