Experimental investigation of RDF combustion for the optimization of CFD simulations of oxy-fuel-fired cement kilns

R. Solana Gómez¹, R. Streier², S. Pielsticker¹, R. Kneer¹ and V. Scherer²

¹Institute of Heat and Mass Transfer (WSA), RWTH Aachen University ²Institute of Energy Plant Technology, Ruhr-Universität Bochum

Motivation

- For the design of oxy-fuel kilns, reliable CFD simulation models of the complex combustion behaviour of refuse-derived fuels (RDF) are needed.
- RDF comprise a variety of fractions with different physical and chemical properties (see Fig. 1).
- ☐ In this study, the combustion of RDF is investigated. Five materials have been chosen to represent the different fractions of RDFs: beech wood, cardboard, cotton, polyvinylchloride (PVC) and polyethylene (PE)

Methodology

- ☐ As the size of RDF particles is in the centimeter range, the kinetic properties of the different materials as well as intra-particular transport phenomena have to be taken into account. Therefore, two different experimental setups are used:
 - A fluidized bed reactor is used to gather data to model the intrinsic pyrolysis kinetics of the different species.
 - A single particle reactor is used to investigate the combustion of full-scale RDF particles.

Determination of intrinsic pyrolysis kinetics

Fluidized bed reactor (FBR)[1]

- ☐ Batch-wise feeding of particle
 - □ Particle diameter ≈ 100 µm
 - Sample mass ≈ 15 mg
- mole fractions of the released gaseous species using FTIR spectroscopy
- Experiments conducted for a temperature range between 350 °C and 800 °C

Modelling of experimentally determined mass release rates

- Computation of the mass flow of released species through the measurement cell
- ☐ Fitting of kinetic models suitable for CFD calculations, for example the following two-step model:

Signal modulation between the fluidized bed and the measurement cell taken into account by convolution of the model result

Kinetic parameters

Change of the reaction rates due to temperature is modelled using an Arrhenius equation, $r = A \cdot \exp(-E_a/RT)$

Fig. 4: Ki

References

[1] Pielsticker, S., Gövert, B., Umeki, Frontiers in Energy Research 9 (2021).

[2] Liedmann B., Simulation der therm Dissertation, Bochum (2018)

Investigation of combustion of full-scale RDF

Single particle reactor^[2]

particles

- Maximum gas temperatures up to 1300 °C
- Adjustable oxygen concentration

$\mbox{\sc Measurement}$ of oxygen consumption and optical determination of particle conversion times

Optical determination of different reaction phases

- □ 0 0.9 s: Ignition delay
- □ 0.9 1.6 s: Pyrolysis and start of char burnout
- 1.6 3 s: Char burnout and decrease in pyrolysis
- 3 8 s: Char burnout

- Investigation of char burnout and gasification reactions with the FBR
- Creation and adaptation of numerical models for the combustion of a single RDF particle
- ☐ Implementation of the kinetic models in the single particle combustion models
- Comparison of the single particle experiments with single particle simulations
- Utilization of the RDF models to simulate the process inside the rotary kiln (see Fig. 9)

Acknowledgements

This work has been funded by the German Research Foundation (DFG) - project number 215035359 - within the framework of the CRC/Transregio 129 "Oxyflame".

