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We present a high-order accurate, positivity-preserving and well-balanced finite volume scheme for the shallow water equa-
tions with variable topography. An unlimited third-order scheme is combined with the recent, second-order accurate Bottom-
Surface-Gradient Method (BSGM, [5]). This is monitored by an a-posteriori MOOD (Multidimensional Optimal Order De-
tection) limiting step [2, 7-9], which detects possible local instabilities of a high-order candidate solution such as loss of
positivity or local oscillations, and switches locally to a lower order, stable and robust “parachute” scheme if necessary. We
demonstrate the accuracy, effectiveness and robustness of the proposed adaptive methodology with numerical experiments,
both for near-equilibrium and non-equilibrium depth-averaged flows.
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1 Introduction

We consider the one-dimensional shallow water equations

U + 0, F(U) =S(U,zx) (1.1)
with
h hu 0
U=|hu|, FU)=|h?+$%r*], and SU)=|—ghd,b]|, (1.2)
hv huv 0

where h is the water height, (u, v) is the velocity field, the bottom topography is given by b and the gravitational acceleration
by g. The shallow water equations are the standard model for free surface flows and are used to model the flow in rivers, lakes
and oceans. This work is part of a larger project in which we plan to couple upwelling in multi-layer ocean currents with
phytoplankton dynamics (NPZD), see e.g. [6]. Therefore our aim is to develop a simple, flexible, robust and high-order flow
solver which can be extended to multiphysics.

Our numerical approximation combines a standard third-order accurate and the recent, well-balanced and positivity pre-
serving second-order accurate finite volume scheme [5]. The switch is monitored by a number of ad-hoc indicators which have
been used successfully in the MOOD community since the original work [8, 9] for conservation laws, and extended recently
to the shallow water equations in [10, 12]. Note that there are other well established and sophisticated detectors of regularity
based, for example, on multi-resolution analysis [11, 13] or on a-posteriori error estimates [15]. There is also a multitude of
recent schemes proposing sophisticated well-balanced schemes, see e.g. [1,4,5, 10, 12, 14] and the references therein.

The aim of this contribution is to clarify if a second-order accurate scheme can be robust enough to serve as a parachute.
Our approach is closely related to [10, 12], who use a first-order scheme as parachute. Instead, we choose the BSGM, which
is positivity-preserving, well-balanced and avoids non-physical reflections from bottom reconstructions, and is more accurate
than a first-order scheme. If this stabilization should not be sufficient, we will use a first-order reserve-parachute such as [4].
Note that more generally, a “cascade” of parachutes was introduced in [2].

2 Spatial reconstruction

Let 2 C R be a one-dimensional domain. We discretize 2 = J,;
I C Z. For simplicity we choose a uniform discretization with z; 41

C; with uniform cells C; = (z;_1,2;,1) and index set
1= Ax. We define the surface level by w := h+b.

7

Let ¢;(t) for g € {h, hu, hv, b, w} be the computed cell averages.
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20f6 Section 18: Numerical methods of differential equations

2.1 Piecewise quadratic reconstruction
The third-order finite volume scheme (FV3) is based on piecewise quadratic reconstructions ¢;(x) of the quantities ¢ €
{b, h, hu, hv} which preserve the cell averages in cell C; and its neighbors,

1
—/ Gi(x)dr =¢q; for je{i—1,4,i+1}. 2.1
Az C;
The one-sided limits of the reconstructions are given by

4i—14 = Cji(xi—%)a Qitl_ = ‘ji(xm-%)- (2.2)

2.2 Piecewise linear reconstruction

To construct a second-order finite volume scheme (FV2), for each quantity ¢ € {b, w := b+h, hu, hv} we define a preliminary
piecewise linear reconstruction

Gi(z) = q; + 0:q;(x — x;) for x € Cy, (2.3)

where 0,.¢; approximates the slope of ¢ using a minmod-type limiter and z; is the center in cell C;. This gives preliminary
one-sided limits

‘Z‘f%Jr = (ji(xifé)a ‘jzur%f = ‘ji(xwé) 24
The preliminary linear reconstruction can lead to negative water heights near wet-dry fronts. A modified reconstruction of the

slopes of bottom and water surface which cures the problem was recently proposed in [5]: if, for example, there is a negative
water height at the left interface (z;_ 1), then we correct the slopes of ¢ € {w, b} by

i — 214
Azx/2
This modification shifts the front from the interior to the cell interface. See [5] for the details. Table 1 summarizes the stability

properties of the piecewise quadratic, linear and constant reconstructions. Only the piecewise constant and the piecewise
linear BSGM reconstructions are stable enough to serve as possible parachutes.

0rq; = . with Zi 1y =W + minmod (wF%Jr — w;, bF%Jr — wi). 2.5)

Table 1: Stability properties of spatial reconstructions. The BSGM scheme is denoted by FV2*.

scheme spatial positivity  oscillation
reconstruction  preserving free
FV3 quadratic no no
Fv2 minmod no yes
Fv2* BSGM* yes yes
FV1 constant yes yes

2.3 Hydrostatic reconstruction, numerical fluxes and source terms

The techniques reviewed in this section are independent of the type of piecewise polynomial reconstruction. To deal with the
non-conservative product in the source term, we use the hydrostatic reconstruction introduced by Audusse in [1] and modified
by Chen and Noelle in [4]. We calculate the hydrostatic reconstruction values for the third- and second-order scheme by

b:+% ::min(wi+%_,wi+%+,max(bi+%_,bi+%+)), h;_%i ::min(wi+éi—bf+%,hi+%i). (2.6)
The numerical fluxes at the cell interface are computed using the HLL-flux and the values of the hydrostatic reconstruction:
Fiiy = ]:HLL(U;:%—’ Ui*i%+). 2.7

Due to the hydrostatic reconstruction we also obtain two singular source terms in addition to the inner source term. As in [4],
the singular source terms for the third-order scheme and for the second-order scheme are computed by

g * * g * *
Si_14 = fm(hi7%++hi_%+)(bi_%+fbi7%+), Sipi_ = fm(h%_m%f)(b%;b%_). (2.8)

To calculate the interior source term for the third-order scheme we use the high-order quadrature rule given in [14]:

in 49 g
St = ((h@;%Jr“‘hi)(bi—%Jr_bi)“‘(hi‘*‘hw%f)(bi_bz‘+%—))_GAix(hz;%Jr‘f‘hH%f)(bi7%+_bi+%7)~ (2.9)

6Ax
For the second-order scheme, we calculate the interior source term as in [4,5] by
int ,__ g o
Si = QAJ;(hi_%++hi+%_)(bi+%_ bi—%-&-)' (2.10)
© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. Www.gamm-proceedings.com

85US017 SUOILLOD 31D 3(cfedl|ddde au A pausenob afe Saplie YO ‘88N JO S9IN 10} Areig 1 BUIIUO AB|IM UO (SUORIPUOD-pUR-SUIBY WD A8 | M ARRIq U1 |UO//SHNY) SUORIPUOD PUe SWiB | 38U} 885 *[7202/T0/ST] Uo Aeiqiauljuo A3|IM ‘8U3011q1gINYISUOOH euyey Uy Aq 262002202 Wured/Z00T 0T/I0p/wod" A ImAfeiq jpul|uoj/sdny ol pepeojumoq ‘T ‘€202 ‘T90LLTIT



PAMM - Proc. Appl. Math. Mech. 23:1 (2022) 30f6

3 Finite Volume Update

The semidiscrete scheme for the approximated cell averages U, (t) is given by

d
—U;(t) = H, 3.1
il J=H 3.1
where the spatially high-order accurate discrete operator H is given by
1 i
Hi = fA—x(F% —Fi_ 1)+ S + S+ S (3.2)

The first-order in time, higher-order in space fully discrete scheme reads
Ut = U+ AtH(U™), (3.3)

where U™ represents the vector (U[");c;. We discretize (3.3) in time with the third-order accurate strong stability preserving

Runge-Kutta scheme of Shu and Osher, where the Runge-Kutta stages U"(*) and the update are given by

Un,(o) = Un,
U +2U0m® U= U + AtH(U™),
ntl .~ T 2% i
U — 3 with Un’(g) — Un,(l) + AtH(Un(l)), 34

n, .__ TN, 3un+U™®
U@ = U@ g A (),

Depending on the choice of spatial reconstruction, (3.2) - (3.3) define the FV3 respectively the BSGM scheme. It is well-
known that under the standard CFL-condition

At . . 1
Somax (Jul [+ Johr, L) < 5 (3.5)

the FV3 scheme is third-order accurate for smooth solutions. It also preserves still water, but it is neither well-balanced
nor positivity-preserving near wet-dry fronts, and may create overshoots at discontinuities. Clearly, the FV3 scheme needs
additional stabilization, which we explore in the MOOD framework. The recent contributions [10, 12] use the first-order FV1
scheme as parachutes, since a traditional FV2 scheme has its own stability issues. On the other hand, it was proven in [5] that
the new second-order BSGM also satisfies a number of crucial stability properties:

Theorem 3.1 Under the CFL-condition (3.5) the BSGM is second-order accurate, well-balanced and positivity-preserving
and avoids non-physical reflections from bottom reconstructions.

These properties, as well as the built-in minmod stabilization, make the BSGM scheme an interesting, more slim, and
perhaps less disruptive candidate for our parachute.

4 MOOD

The previous sections proposed a high-order scheme that is also well-balanced. However, this unlimited high-order scheme
is not able to preserve the non-negativity of the water height and may create oscillations in the vicinity of shocks. The
presented second-order BSGM instead is positivity-preserving, well-balanced and does not create oscillations. Our aim is
now to combine these two schemes to get a high-order accurate and robust scheme. For this purpose we use the MOOD
approach [7-9] which is an a-posteriori limiting process and works as follows:

Suppose that the high-order, unlimited candidate solution UF({% at stage s = 1, 2, 3 of the Runge-Kutta scheme has already
been computed. We check the physical and numerical admissibility of the candidate solution locally, by using the detectors
described below. If the candidate solution does verify all the checks, we will set U n(s) = Ué@é Otherwise, if one of the
admissibility criteria is not fulfilled, a cell is flagged and the solution is locally recomputed using the second-order BSGM

scheme, which hereafter will be referred to as parachute, and we set U™ (%) := UéZ)GM and proceed with the next stage (3.4).

4.1 Detectors

We use the following detection criteria that were inspired by the works [2, 3, 8,9]. Figure 1 displays the detector chain.

Physical admissibility detector (PAD) The PAD determines whether the solution is physically admissible. In the case of
the shallow water equations this criterium fails within the cell C; if the water height is negative:

: (s)
pAD, = 4 b 1T Prvaa <0, @.1)
0, else.
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)
GM

parachute: Ujs

Fig. 1: Schematic illustration of the detection process. Note that 1 always means the detector is activated.

Numerical admissibility detector (NAD) The NAD checks for each component g € {h, hu, hv} of the candidate solution

Ué\s,)h if there arise numerical oscillations that have to be corrected. Let N (i) := {i —1,4,% + 1} be the neighborhood of cell
C;. For s = 1,2, 3 define

mi(g) == min (¢"C7Y),  Mi(g) = max (¢"C7Y). 4.2)

JEN(G) FEN(i)
The NAD now consists of three steps [2, 3]:

¢ PD (plateau): The first detector is activated in cell C; if there was no plateau region in the time step before.

1, if M;(q) —m;(q) > Ax?,

4.3
0, else. (43)

PD;(q) = {

¢ DMP (relaxed discrete maximum principle): In case the PD is activated, the next criterium determines if the candidate
solution fulfilles a relaxed discrete maximum principle. We allow the solution to overshoot the old extrema a little bit.

0, if mi(q) —e < q: . < Mi(q) +e,
DMPIL((]) — (q) qFV377, (Q) (44)
1, else.
with
€= 10_3(Mi(q) —m;(q)). 4.5)

As in [2] in this criterium the value of ¢ is chosen in such a way that the candidate solution is allowed to overshoot the
previous extrema by a small fraction of the total jump.

¢ SE (smooth extrema): If a component ql(;‘i,é of the candidate solution Uéi,é violates the DMP within the cell C; the
next detector checks if the new extremum is smooth. As done in [8,9] we compute a preliminary quadratic polynomial
reconstruction ggy3 based on the values q}(:%. Then we define the second derivative X; := 0,4 ¢rv3,; and the maximal and
minimal curvatures
A = max (X;) and X" := min (X)) (4.6
7 jEN(i)( J) ) jEN(i)( ]) )
We call an extremum smooth if the minimal and maximal curvature have the same sign so that there are no turning points,
and if the curvatures are "close" enough. Then the smoothness criterium is defined by

min

—_— {0, if ™YY S0 and ‘X— <

1
2 4.7

i

1, else.
If this criterium fails, the solution has to be recomputed locally using the BSGM parachute scheme.
To summarize, the NAD is given by
NAD; = PD; DMP; SE; (4.8)

and we choose the solution to be

(s) ; — -
() _ Upsom,i»  if PAD;, =1 or NAD,; =1, 4.9)
o) else '
FV3,i° :
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4.2 Correction of fluxes and singular source terms in unlimited neighbor cells

After having detected a trouble cell, the finite volume update in this cell will be recomputed. Due to the piecewise linear recon-
struction used in this cell now, the values at the cell interfaces change and so does the value of the hydrostatic reconstruction.
This creates an issue at the interfaces between flagged and unflagged cells. To stay conservative we have to recompute the
flux and the singular source term at this interface in the unflagged cell. Using the new value of the hydrostatic reconstruction
in (2.7) and (2.8), respectively, yields the corrected flux and the corrected singular source term, named by Fl?j"[r% and Sfi"% 4
respectively. If, for example, the solution in cell C; has to be recomputed using the BSGM and the high-order candidate
solution in cell C;_; (resp. C;41) can be kept, for s = 1, 2, 3 we compute

n,(s n,(s— At T T
@ =y (P = FR) + A4S, + 57 + 57 ) and (4.10)
€T 2 2 2 2
_ At
n,(s n,(s—1 corr corr :
Ut =op et - Ap (Ff;é — Fi+%) + At(SiJr%Jr + SHY3 + 5513%_) respectively. 4.11)

Theorem 4.1 Under the CFL-condition (3.5), the third/second-order MOOD scheme is positivity-preserving and well-
balanced for the lake at rest.

Proof. Suppose a lake at rest is given at time . Away from flagged cells we use the unlimited FV3 scheme that is
well-balanced. In a region of flagged cells we use the BSGM that is also well-balanced. Thus, to show the well-balanced
property of the MOOD scheme, now it is sufficient to consider only the transition between the cells corrected with the BSGM
parachute and their unlimited neighbor cells with flux and source term correction as mentioned in (4.10) and (4.11). We
compute the values of the quadratic reconstruction (2.2), the linear reconstruction (2.3) with BSGM-correction (2.5), and the
resulting hydrostatic reconstruction (2.6). We use these values to calculate the fluxes (2.7) and the source terms (2.8) — (2.10).
It yields that the residual #; in (3.2) vanishes both in the flagged cell that was computed using the BSGM and in the unlimited
neighbor cell. Thus, the MOOD scheme is well-balanced. O

5 Numerical examples

If h, v and b are constant and v = v(z,t) the shallow water equations reduce to the linear advection equation. For smooth
initial data, the detectors do not strike in any cell. In this case, we get third-order convergence, see Figure 2. If we flag either
one or five cells by hand the scheme still converges at full rate in the L' norm, and at order 1.7 in L°.

Next we study the advection of a step function. We compared the results of the MOOD scheme with the unlimited third-
order scheme and the second-order BSGM. The results of the different schemes are plotted in Figure 3. The solution of the
MOOD scheme is much sharper than that of the BSGM and does not produce oscillations at the shock as does the unlimited
FV3. We compared this scheme also with a third-order scheme that was equipped with a first-order parachute scheme but at
least in this test example, no significantly better accuracy could be detected by using the BSGM parachute.

r R 2.2
102 E
2

18

107k
16F
v

14
. —3rd order reference exact solution
107k —&—no flagged cells E 1.2 2nd order BSGM parachute
—&—1 manually flagged cell unlimited 3rd order scheme
5 manually flagged cells 1n 3rd/2nd order MOOD
10°® ' 0.8
10 10 -1 05 0 05 1
Az X
Fig. 2: L' convergence for smooth advection. Fig. 3: Advection of a discontinuity.

In the next example, we study perturbations of a lake at rest. The computational domain is 2 = [0, 4] and is discretized
with 200 cells. We use periodic boundary conditions. The bottom topography is a volcano crater given by

b(x) = with 7 :=2(z — 2)2. (5.1)

1—-0.8¢"", r<In(8/5),
0.8e™ ", otherwise
We set the water level to 0.45 in the interior and 0.3 in the exterior of the crater. The scheme preserves the lake-at-rest
equilibrium to machine accuracy. Next we add a step of size 0.03 to the water level in the interval [—0.25,0.25] (note that
the boundary conditions are periodic). The numerical solution at various times and the activated detectors are plotted in
Figure 4. The initial perturbation splits and travels to the left and right, with a shock upfront and a trailing rarefaction. The
NAD indicator (marked with green diamonds) flags the corners of the waves, while the PAD indicator (red circles) marks the
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wet-dry fronts. It is here where the MOOD limiter switches from the high-order unlimited scheme to the parachute BSGM
scheme. At time T' = 0.6, the perturbation is approaching the volcano, and is running up its shore at 7' = 0.9. At time
T = 1.2 it has turned around and is merging into the open water as a hydraulic jump. Not visible in the figure, the water level
inside the crater is perturbed by a numerical error which has traveled across the ridge of the volcano and seems to be of the
size of the numerical truncation error.

T=0.6 T=09 T=12

initial data | 0151 initial data 0151 initial data

w
O PAD
NAD

w
O PAD
NAD

w
O PAD
NAD

0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
X X X

Fig. 4: Volcano test: numerical solution and activated detectors at times 7' = 0.6, 7 = 0.9and T' = 1.2.

6 Conclusion and outlook

We have presented preliminary results of a new MOOD-limited high-order shallow water solver. An unlimited high-order
candidate solution is checked for physical and numerical admissibility using various detectors. If the candidate solution is
not admissible in a cell, this cell is locally corrected with a robust parachute scheme. In contrast to previous work based
on first-order parachutes [10, 12], we use the second-order accurate BSGM scheme [5] to stabilize the high-order unlimited
solution. Numerical experiments provide first promising results, but the pro’s and con’s of different parachute schemes need
to be studied in future work.

The present contribution is the first step in a larger project whose goal is to develop a simple-to-implement and robust, but
high-order accurate scheme to model ocean currents coupled with phytoplankton dynamics. Work in progress includes the
two-dimensional multilayer case, well-balancing moving equilibria, and coupling with an NPZD dynamical system.
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