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Abstract 
 

Land use and land cover changes and the terrestrial carbon sink are two important components of the 

global carbon budget. Several methodological approaches exist to measure fluxes of CO2 and other 

greenhouse gases between ecosystems and the atmosphere. With an accurate quantification of these 

fluxes, it is possible to compare carbon source and sink strengths between different land covers and 

to evaluate environmental influences on these terms. Out of those methods, the eddy covariance 

technique has the advantage of providing direct and quasi-continuous turbulent flux observations at 

the ecosystem scale. However, to compare eddy covariance data to, e.g., top-down methods and to 

achieve spatially gapless data sets, these point measurements with a relatively small footprint require 

a spatial upscaling with statistical methods such as machine learning and ancillary remote sensing data. 

Another issue with eddy covariance data sets is the underrepresentation of certain ecosystem types 

and climatic regions. Recently disturbed ecosystems belong to this group, but usually also exhibit non-

ideal characteristics for eddy covariance measurements such as abrupt surface changes and 

heterogeneous regrowth. Therefore, it is important to assess the uncertainty of eddy covariance 

measurements for disturbed ecosystems in regard to different choices of measurement design and 

processing and thus to improve the interpretability of such measurements. 

On the other hand, a changing climate can also enforce a reduced sink strength on ecosystems through, 

e.g., heat and drought. In this way, eddy covariance derived data on CO2 uptake in combination with 

other environmental measurements and advanced statistical analyses can reveal limiting conditions 

for photosynthesis and thus a reduced efficiency to use light for CO2 assimilation. In this dissertation, 

these three issues, i) spatial upscaling of eddy covariance data, ii) methodological uncertainties of 

obtaining flux data at disturbed sites, and iii) environmental impacts on ecosystem-scale 

photosynthesis, are addressed within the TERENO Eifel/Lower Rhine Valley Observatory, which 

comprises the Rur catchment, mostly located in western Germany. 

In a first study, eddy covariance CO2 flux data from different land covers within the Rur catchment 

were upscaled to the whole catchment area using a random forest machine learning model 

incorporating MODIS remote sensing and COSMO-REA6 reanalysis data. For this task, state-of-the-art 

predictor variable selection methods for machine learning models were evaluated. Results of this study 

show that combining eddy covariance flux data with remote sensing products and reanalysis data is a 

feasible way to upscale CO2 flux information to the regional scale at a relatively high spatial resolution 

(250 m) and across various land covers. The study further indicates that averaging multiple model runs 

in the feature selection process can improve these results. Although an R² of 0.41 is in the range of 

other studies using a spatial cross validation scheme, this value reveals that there is still room for 

improvement. Main limitations of the analysis include a low prediction performance on high 

magnitude fluxes as a narrower range was predicted than observed, and the fact that differences 

between land cover classes were also narrower in the upscaled product than between eddy covariance 

stations. 

The further analyses were confined to a subregion within the Rur catchment, the Wüstebach site in 

the northern Eifel low mountain range. The site encompasses the Wüstebach headwater region and is 

mostly composed of a planted spruce forest but also contains a deforested area of 8.6 ha with 

unmanaged regrowth. This fast-growing vegetation requires a regular adjustment of the eddy 

covariance measurement height in order to ensure a stable flux source area in the long run and to 

prevent high spectral losses. In a second study, CO2 and H2O fluxes were hence measured over the 

deforested area with eddy covariance systems in two different heights and were processed with five 
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different spectral corrections. In this way, the uncertainty from measurement height and choice of 

spectral correction was assessed, and insights were gained in the trade-offs that must be considered 

at a site with non-ideal characteristics. For the deforested site, results show that at the lower height 

spectral corrections were higher and had a higher standard deviation among methods compared to 

the upper height for both CO2 and H2O fluxes. The average standard deviation between heights was 

even higher than between spectral corrections at the same height (24.8% of CO2 flux; 9.7% of H2O flux). 

Furthermore, the energy balance closure was on average about 9% better for the upper system than 

for the lower system. On the other hand, the modelled footprints of both heights did not match the 

average footprint of the previous years at the lower height. Hence, the study indicates a difficulty of 

achieving a stable flux source area over longer time periods for fast growing vegetation but also 

emphasizes the importance of a carefully adjusted measurement height. Although the study improved 

the interpretability of flux measurements for a disturbed site, its main limitation comprises the 

difficulty to apply one of the common footprint models to estimate the flux source area for this site 

with complex flow, especially over the forest edges. 

A third study concerned the Wüstebach spruce forest. For this site gross primary productivity derived 

from eddy covariance CO2 flux data was combined with measurements of green canopy absorbed 

photosynthetically active radiation (APARg), sap flow, and other meteorological and plant physiological 

data. In this way, water-limiting conditions for photosynthesis and the light use efficiency of a spruce 

forest were evaluated. In addition, the importance of environmental variables for the prediction of 

gross primary productivity was assessed with state-of-the-art machine learning variable importance 

measures. In this study, data from the 2021 growing season was analyzed, for which the light use 

efficiency of green parts of the forest was on average 4.0 ± 2.3% and showed a unimodal relation to 

air temperature with a maximum around 15 °C. For modelling gross primary productivity with tree-

based machine learning models, canopy chlorophyll content likely as a seasonal variable for 

photosynthetic capacity and APARg likely as a diurnal variable for energy supply were the most 

important variables. On days with high vapor pressure deficit, tree-scale sap flow and ecosystem-scale 

gross primary productivity both shifted to a clockwise hysteretic response to APARg. It is demonstrated 

that the onset of such a clockwise hysteretic pattern of sap flow to APARg can be a useful indicator of 

afternoon stomatal closure related to water-limiting conditions. However, the main limitation of this 

case study is its limited extent, as just one comparatively cool and wet growing season at a single site 

with a single dominant tree species, Picea abies, was investigated. 

Overall, this dissertation highlights the use of direct flux measurements and machine learning methods 

for both the evaluation of land cover changes and the impact of changing environmental conditions 

on the CO2 source and sink strengths of terrestrial ecosystems. 
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Zusammenfassung 
 

Landbedeckungs- und Landnutzungsänderungen sowie die terrestrische Kohlenstoffsenke sind zwei 

wichtige Komponenten im globalen Kohlenstoffhaushalt. Es existieren mehrere methodische Ansätze 

zur Messung von CO2- und anderen Treibhausgasflüssen zwischen Ökosystemen und der Atmosphäre. 

Mit einer genauen Quantifizierung dieser Flüsse ist es möglich, Kohlenstoffquellen und -senken 

zwischen verschiedenen Landbedeckungen zu vergleichen und Umwelteinflüsse auf diese Terme zu 

bewerten. Von diesen Methoden hat der Eddy Kovarianz Ansatz den Vorteil, direkte und quasi-

kontinuierliche turbulente Flussmessungen auf der Ökosystemebene zu ermöglichen. Um jedoch Eddy 

Kovarianz Daten mit z.B. top-down Methoden zu vergleichen und lückenlose Daten zu generieren, 

erfordern diese Punkt-Messungen mit einem relativ kleinen Quellgebiet eine räumliche 

Hochskalierung mit statistischen Methoden wie z.B. maschinellem Lernen und begleitenden 

Fernerkundungsdaten. 

Ein weiteres Problem von Eddy Kovarianz Datensätzen ist die Unterrepräsentation bestimmter 

Ökosystemtypen und Klimaregionen. Ökosysteme, die kürzlich Störungen erfahren haben, gehören zu 

dieser Gruppe, weisen aber in der Regel auch nicht ideale Eigenschaften für Eddy Kovarianz Messungen 

auf, wie z.B. abrupte Rauigkeitsänderungen und heterogene nachwachsende Vegetation. Daher ist es 

wichtig, die Unsicherheit von Eddy Kovarianz Messungen für gestörte Ökosysteme in Bezug auf 

verschiedene Messdesigns und Prozessierungsmethoden bewerten und interpretieren zu können. Auf 

der anderen Seite kann der Klimawandel auch durch z.B. Hitze und Dürre auf Ökosysteme rückwirken 

und eine verringerte CO2 Senkenstärke verursachen. Auf diese Weise können von Eddy Kovarianz 

Messungen abgeleitete Daten zur CO2-Aufnahme in Kombination mit anderen Umweltmessungen und 

fortgeschrittenen statistischen Analysen limitierende Bedingungen für die Photosynthese aufdecken 

und somit eine reduzierte Effizienz bei der Verwendung von Licht zur CO2-Assimilation identifizieren. 

In dieser Dissertation werden diese drei Themen, i) räumliches Hochskalieren von Eddy Kovarianz 

Daten, ii) methodische Unsicherheiten von Flussmessungen in gestörten Ökosystemen, und iii) 

Umwelteinflüsse auf die Photosyntheseleistung, im Rahmen der TERENO Eifel/Lower Rhine Valley 

Observatory behandelt, welche das Rur-Einzugsgebiet im Westen Deutschlands umfasst. 

In einer ersten Studie wurden CO2-Flussdaten mittels Eddy Kovarianz Messungen von verschiedenen 

Landbedeckungen im Rur-Einzugsgebiet mit Hilfe eines Random Forest Machine Learning Modells 

unter Verwendung von MODIS-Fernerkundungsdaten und COSMO-REA6-Reanalysedaten auf das 

gesamte Einzugsgebiet hochskaliert. Für diese Aufgabe wurden zudem neuste Methoden zur Auswahl 

von Vorhersagevariablen für Machine Learning Modelle evaluiert. Die Ergebnisse dieser Studie zeigen, 

dass die Kombination von Eddy Kovarianz Flussdaten mit Fernerkundungsprodukten und 

Reanalysedaten eine praktikable Möglichkeit ist, um CO2-Flussinformationen auf die regionale Ebene 

mit relativ hoher räumlicher Auflösung (250 m) und über verschiedene Landbedeckungen 

hochzuskalieren. Die Studie zeigt weiterhin, dass das Mitteln mehrerer Modellläufe im Feature-

Auswahlprozess die Ergebnisse verbessern kann. Obwohl ein R² von 0,41 im Bereich anderer Studien 

mit einem räumlichen Kreuzvalidierungsschema liegt, zeigt dieser Wert, dass noch viele Möglichkeiten 

zur Verbesserung bestehen. Die Hauptbeschränkungen der Analyse umfassen eine niedrige 

Vorhersageleistung bei hohen Flussmagnituden, da eine engere Bandbreite vorhergesagt als 

beobachtet wurde, sowie die Tatsache, dass die Unterschiede zwischen Landbedeckungsklassen im 

hochskalierten Produkt kleiner waren als zwischen Eddy Kovarianz Stationen. 

Die weiteren Analysen beschränken sich auf eine Teilregion des Rur-Einzugsgebiets, den Standort 

Wüstebach in der nördlichen Eifel. Dieser Standort umfasst die Quellregion des Wüstebachs und 

besteht hauptsächlich aus einem gepflanzten Fichtenforsts, enthält aber auch eine entwaldete Fläche 
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von 8,6 ha mit unkontrolliertem Nachwuchs. Diese schnell wachsende Vegetation erfordert eine 

regelmäßige Anpassung der Messhöhe der Eddy Kovarianz Messungen, um eine stabile Quellregion 

der turbulenten Flüsse auf lange Sicht sicherzustellen und hohe spektrale Verluste zu vermeiden. In 

einer zweiten Studie wurden daher CO2- und H2O-Flüsse über der entwaldeten Fläche mit der Eddy 

Kovarianz Methode in zwei verschiedenen Höhen gemessen und mit fünf verschiedenen spektralen 

Korrekturen prozessiert. Auf diese Weise wurde die Unsicherheit der Messhöhe und der Wahl der 

spektralen Korrektur bewertet und die Abwägungen beleuchtet, die an einem Standort mit nicht 

idealen Eigenschaften berücksichtigt werden müssen. Für den entwaldeten Standort zeigen die 

Ergebnisse, dass für die untere Messhöhe die spektralen Korrekturen höher waren und diese eine 

höhere Standardabweichung zwischen den Methoden aufwiesen als bei der oberen Höhe, sowohl für 

CO2- als auch für H2O-Flüsse. Die durchschnittliche Standardabweichung zwischen den Höhen war 

sogar höher als zwischen den spektralen Korrekturen in derselben Höhe (24,8% des CO2-Flusses; 9,7% 

des H2O-Flusses). Darüber hinaus war die Schließung der Energiebilanz für das obere System im 

Durchschnitt um etwa 9% besser als für das untere. Andererseits stimmten die modellierten Footprints 

beider Höhen nicht mit dem durchschnittlichen Footprint der Vorjahre auf der niedrigeren Höhe 

überein. Daher bestätigt die Studie die Schwierigkeit, über längere Zeiträume einen stabile Footprint 

für schnell wachsende Vegetation zu erreichen, unterstreicht aber auch die Wichtigkeit einer sorgfältig 

angepassten Messhöhe. Obwohl durch diese Studie Interpretierbarkeit von Flussmessungen für ein 

gestörtes Ökosystem verbessert wurde, besteht ihre Hauptbeschränkung aus der Schwierigkeit eines 

der gängigen Footprint-Modelle anzuwenden, um den Quellbereich der turbulenten Flüsse für diesen 

Standort mit komplexem Strömungseigenschaften abzuschätzen, was insbesondere für die 

Waldränder zutrifft. 

Eine dritte Studie betrifft den Fichtenforst am Wüstebach. Dort wurden Informationen zur Brutto-

primärproduktion (BPP), abgeleitet aus Eddy Kovarianz basierten CO2-Flussdaten, mit Messungen der 

von grünen Blättern absorbierten photosynthetisch aktiven Strahlung (APARg), dem Saftfluss und 

anderen meteorologischen und pflanzenphysiologischen Daten kombiniert. Auf diese Weise wurden 

wasserlimitierende Bedingungen für die Photosynthese sowie die Lichtnutzungseffizienz eines 

Fichtenwaldes untersucht. Darüber hinaus wurde die Bedeutung einzelner Umweltvariablen für die 

Vorhersage der BPP mit neusten Machine Learning Methoden bewertet. Für diese Studie wurden 

Daten der Vegetationsperiode 2021 analysiert. Die Lichtnutzungseffizienz der grünen Bestandteile des 

Fichtenwaldes betrug hierfür im Durchschnitt 4,0 ± 2,3% und zeigte eine unimodale Beziehung zur 

Lufttemperatur mit einem Maximum bei etwa 15 °C. Für die Modellierung der BPP mit Machine 

Learning Modellen waren Canopy Chlorophyll Content vermutlich als saisonale Variable für die 

photosynthetische Kapazität und APARg vermutlich als tageszyklische Variable für das Energiedargebot 

die wichtigsten Variablen. An Tagen mit hohem Sättigungsdefizit von Wasserdampf in der Luft wiesen 

sowohl der Saftfluss auf Baumebene als auch die BPP auf Ökosystemebene eine in Bezug auf APARg im 

Uhrzeigersinn verschobene hysteretische Reaktion auf. Es wurde somit gezeigt, dass das Einsetzen 

einer solchen im Uhrzeigersinn verschobenen Hystereseschleife des Saftflusses in Bezug auf APARg ein 

guter Indikator für das nachmittägliche Schließen der Stomata aufgrund von wasserlimitierenden 

Bedingungen sein kann. Die Hauptlimitierung dieser Fallstudie besteht jedoch in ihrem begrenzten 

Umfang, da nur eine vergleichsweise kühle und feuchte Vegetationsperiode an einem einzigen 

Standort mit einer einzigen dominanten Baumart, Picea abies, untersucht wurde. 

Zusammenfassend wurde durch diese Dissertation der Nutzen direkter Flussmessungen und 

Methoden des maschinellen Lernens sowohl für die Quantifizierung von Landnutzungsänderungen als 

auch für den Einfluss sich ändernder Umweltbedingungen auf die CO2 Quellen- und Senkenstärken 

terrestrischer Ökosysteme herausgestellt. 
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1 Introduction 

1.1 Rationale and Objectives 
 

Carbon dioxide (CO2) that is emitted by fossil combustion and net land use and land cover change 

accumulates either (i) in the atmosphere, (ii) on the land surface mainly as organic carbon via 

photosynthesis, or (iii) in oceans as dissolved CO2 or organic carbon (Canadell et al., 2021). Out of these 

two source and three sink terms, land use/cover change emissions as well as the terrestrial carbon sink 

are driven by various anthropogenic and natural processes on the Earth’s surface and thus are of 

special interest from a geographic point of view. 

Cumulative net carbon emissions from land use changes for 1850–2020 were ca. 200  65 Gt C, about 

30% of total emissions (Friedlingstein et al., 2022). However, different carbon bookkeeping models still 

vary a lot in their estimates with 140 Gt C (Houghton & Nassikas, 2017), 270 Gt C (BLUE; Hansis et al., 

2015), and 195 Gt C (OSCAR; Gasser et al., 2020). In contrast to increasing fossil emissions, net land 

use change emissions were relatively constant or slightly decreasing in the last decades (from 1.3  0.7 

Gt C yr-1 1970–1999 to 1.1  0.7 Gt C yr-1 2011–2020; Friedlingstein et al., 2022). In absolute terms, net 

land use change emissions peaked at a value of 1.61 ± 0.55 Gt C yr-1 in 1959 (Gasser et al., 2020). 

Nevertheless, with 80  45 Gt C during the period 1960–2020, net land use change emissions still 

accounted for 18% of total emissions (Friedlingstein et al., 2022). Gross emissions are about 2-4 times 

larger than net emissions, with a slight increase from 3.4  0.9 Gt C yr-1 in the 1960s to 3.8  0.6 Gt C 

yr-1 in the 2010s. Gross removals due to land use change, however, increased even more from 1.9  

0.4 Gt C yr-1 in the 1960s to 2.7  0.4 Gt C yr-1 in the 2010s (Friedlingstein et al., 2022). 

Main components of these gross emissions include deforestation, e.g., for wood harvest or conversion 

to cropland or pasture, as well as peatland draining and burning. Gross removals, on the other hand, 

are slower processes and are mainly related to afforestation and regrowth and concomitant soil 

regeneration following wood harvest or on abandoned agricultural land (Hansis et al., 2015; Pongratz 

et al., 2021; Friedlingstein et al., 2022). The global forest area has declined by 81.7 million ha from 

1960 to 2019, with a forest loss of 437.3 million ha outweighing a forest gain of 355.6 million ha 

(Estoque et al., 2022). Deforestation is mostly confined to tropical areas resulting from an expansion 

of agricultural land (Houghton & Nassikas, 2017), with 25% of global land use change emissions being 

related to beef and other red meat production (Hong et al., 2021). Afforestation was highest in Europe 

during the last centuries with an increase of forested area by 484,000 km² since 1600, mainly from 

coniferous trees (McGrath et al., 2015). Globally, afforestation at suitable land has an estimated 

further mitigation potential of about 4.9 Gt CO2 yr-1 (Doelman et al., 2019). However, afforestation 

oftentimes causes a reduction of surface albedo, depending on the afforested land cover (Kirschbaum 

et al., 2011; Mykleby et al., 2017). In this way, the increased absorbed radiation can counteract the 

increased CO2 fixation in terms of a cooling effect (Luyssaert et al., 2018). Because of this, accurate 

light use efficiency estimates are required for forest ecosystems in order to quantify and potentially 

minimize the absorbed radiation not used for photosynthesis in afforestation projects (Genesio et al., 

2021). 

Out of total anthropogenic carbon emissions of 10.6  0.8 Gt C yr-1 from 2011-2020 (including fossil 

combustion and net land use change emissions), 3.1  0.6 Gt C yr-1 (ca. 29%) were assimilated by 

terrestrial vegetation. The global land sink increased to this value from just 1.2  0.5 Gt C yr-1 during 

the 1960s (Friedlingstein et al., 2022), which can mainly be attributed to CO2 fertilization effects 

(Dusenge et al., 2018). Peatlands are considered one of the few persistent terrestrial carbon sinks, 

having accumulated about 600 Gt of carbon since the last glacial period despite covering only about 

3% of the land surface (Yu et al., 2011; Gorham et al., 2012). With ongoing climate change and related 
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water table depth changes, it is uncertain whether these ecosystems will continue to sequester carbon, 

or their huge carbon pool will be respired (Malhotra et al., 2016; Alexandrov et al., 2020). Global 

forests, on the other hand, store about 861  66 Gt of carbon, with 44% of it in soil, 42% in live biomass 

and 13% in litter and deadwood (Pan et al., 2011). Regrowing forest stands sequester about 

1.3 Gt C yr--1 and even old growth forest stands do not eventually reach a carbon neutral state but 

remain a carbon sink by sequestering about 0.85 Gt C yr-1 globally (Pugh et al., 2019), likely due to 

carbon accumulation in soils, coarse woody debris and charcoal (Luyssaert et al., 2008). However, with 

increasing warming and moisture stress, forest ecosystems such as the Amazon rainforest could turn 

into a carbon source (Baccini et al., 2017; Gatti et al., 2021). In the Amazon, forest degradation even 

exceeds deforestation, with 337,427 km2 of degraded forest compared to 308,311 km2 of deforested 

area between 1992 and 2014 (Matricardi et al., 2020), and degradation contributing to 73% of above-

ground biomass loss compared to 27% from deforestation (Qin et al., 2021). Other regions such as the 

southwest USA, southeast Europe and South Africa are already modelled a carbon source linked to 

reduced rainfall, and globally climate change is estimated to have reduced the terrestrial sink by 0.45 

 0.39 Gt C yr-1 for 2011-2020 (Friedlingstein et al., 2022). With an expected shift from energy-limited 

to water-limited conditions for most terrestrial ecosystems due to climate change (Denissen et al., 

2022), the combination of heat and drought is a major concern for the decrease of gross primary 

productivity (GPP) and the efficiency of which light is used for photosynthesis (Zhang et al., 2015; 

Stocker et al., 2018; von Buttlar et al., 2018). In Europe, the 2018 drought caused a modelled reduction 

of GPP of 130–340 Mt C (Smith et al., 2020) and resulted in unprecedented levels of forest disturbances 

(Senf & Seidl, 2021). As a consequence thereof, the drought decreased net CO2 uptake by 17.8% among 

micrometeorological flux stations (Graf et al., 2020), and turned temperate regions of Europe to a 

carbon neutral state or even a small carbon source in summer 2018 (Thompson et al., 2020). These 

observations confirm the concern of an eventual positive feedback between increased atmospheric 

CO2 and a reduced global carbon uptake (Friedlingstein et al., 2001).  

Therefore, accurate estimates of the atmosphere – biosphere CO2 exchange of different and especially 

transitioning land covers and under different climatic extremes are necessary to provide insights into 

regional carbon budgets and to counsel promising mitigation efforts against climate change (Ciais et 

al., 2022). Methods to estimate the carbon exchange can generally be divided into top-down and 

bottom-up approaches. Atmospheric inversion approaches are top-down methods, which estimate the 

surface exchange from atmospheric transport models and CO2 concentration measurements, either 

from surface stations or total column data from satellites such as GOSAT and OCO-2 (Wang et al., 

2019a). Bottom-up methods to estimate carbon stock changes include repeated biomass estimates 

such as from forest inventories and remote sensing data. However, these methods usually include only 

above-ground biomass stock changes and inventories have a low (e.g., annual) temporal resolution 

(Pongratz et al., 2021; Ciais et al., 2022). Remotely sensed vegetation properties such as leaf area and 

chlorophyll content are nevertheless important for empirical modelling of carbon uptake (Croft et al., 

2015). Process-based models like the global TRENDY application (Sitch et al., 2015), on the other hand, 

are not tightly driven by observational data, but these are in few cases only used to calibrate model 

parameters. Such dynamic global vegetation models conserve mass and provide a gridded carbon 

exchange output, but also can differ substantially from observations (Ciais et al., 2022). Networks of 

eddy covariance stations are an approach of direct and quasi-continuous CO2 flux measurements at 

the ecosystem scale (Baldocchi, 2014). Besides CO2, the water vapor flux (evapotranspiration) is 

commonly measured with the eddy covariance method, which can also be used to assess fluxes of 

other greenhouse gases such as CH4 and N2O. Hence eddy covariance measurements are 

recommended to be used within elaborated carbon cycle projects such as RECCAP-2 (Ciais et al., 2022), 

but the small spatial footprint of such point measurements is required to be upscaled to gridded 

products with data driven models incorporating remote sensing and meteorological data in order to 
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be comparable to e.g., inversion products (Kondo et al., 2015). However, eddy covariance sites are not 

randomly distributed over the globe but exhibit a sampling bias of overrepresented and 

underrepresented regions and ecosystems. The incorporation of relatively few recently disturbed 

ecosystems in global flux data bases likely is one reason for the mismatch between upscaled eddy 

covariance products such as FLUXCOM and other global carbon budgets (Zscheischler et al., 2017; Ciais 

et al., 2022). 

Based on those considerations, the general goal of this dissertation is to contribute to the knowledge 

of ecosystem–atmosphere exchange processes of CO2 and H2O for an exemplary study area by applying 

eddy covariance and machine learning methods. Experiments were conducted in a nested approach, 

mainly concerning a partly deforested spruce forest at the upper Wüstebach stream in the Eifel 

mountains in western Germany, but also spanning over the higher-order Rur catchment area. In order 

to tackle this goal, three general research questions are formulated, which are approached in three 

studies within this dissertation, each with more specific research questions, hypotheses or objectives: 

1) How accurate can CO2 fluxes from eddy covariance stations be upscaled to the Rur catchment across 

different land covers using machine learning with state-of-the-art feature selection methods? 

2) How are eddy covariance measurements over a deforested, fetch-limited site with unmanaged 

regrowth affected by choices of measurement height and spectral correction?  

3) How are different environmental conditions related to the light use efficiency and gross primary 

productivity of a temperate spruce forest? 

The first research question is addressed for the whole Rur catchment area, while the second research 

question is addressed for an 8.6 ha deforested area at the upper Wüstebach, and the third research 

question for a spruce forest next to it. All of these sites are part of a long-term TERENO (TERrestrial 

ENvironmental Observatories) research program to observe Global Change consequences at 

representative terrestrial ecosystems (Zacharias et al., 2011). 

In order to approach these research questions, the presented dissertation is structured in seven main 

chapters. Besides a general introduction giving reasons for the outlined research questions, Chapter 1 

also comprises background information about the total carbon exchange at the ecosystem scale, 

definitions of its compartments and their measurability with the eddy covariance method. In addition, 

the chapter describes energy pathways of absorbed radiation at the leaf scale as the processual basis 

of the terrestrial carbon sink. Chapter 2 summarizes the nested research area in terms of land use, 

climate, vegetation, geology and soils, as well as instrumentation and the embedment in the general 

TERENO long-term project. Chapter 3 elucidates the general concepts, constraints and advantages of 

the two main methods applied for this dissertation, first the eddy covariance method for 

experimentally assessing greenhouse gas fluxes, and second tree-based machine learning techniques 

for prediction and inference. 

The following three Chapters 4, 5 and 6 are the core part of this dissertation and approach the three 

research questions respectively. Chapter 4, published in Journal of Geophysical Research: 

Biogeosciences (Reitz et al., 2021a), concerns the spatial upscaling of eddy covariance derived CO2 flux 

measurements to the regional scale across different land covers. Therefore, state-of-the-art training 

approaches were evaluated for a random forest machine learning model, which was trained with 

several predictor variables including remotely sensing vegetation indices and reanalysis data. Chapter 

5, published in Boundary-Layer Meteorology (Reitz et al., 2022), concerns the uncertainty of eddy 

covariance measurements over a fetch-limited, deforested area with near-natural regrowth in regard 

to experimental design and data processing. For this site with non-ideal characteristics for eddy 
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covariance measurements, two measurement heights and five different spectral corrections were 

compared. In this way, the uncertainty of measurements at recently disturbed ecosystems can be 

better evaluated and the flux data better interpreted for further potential applications such as the 

comparison to other land covers. And in Chapter 6, published in Journal of Geophysical Research: 

Biogeosciences (Reitz et al., 2023), the light use efficiency and GPP of a temperate spruce forest were 

assessed with in-situ measurements. These were related to meteorological and forest canopy 

conditions, by applying, among others, state-of-the-art variable importance measures for machine 

learning models. Furthermore, water-limiting conditions for photosynthesis were identified by 

analyzing hysteretic responses of tree-scale sap flow measurements and ecosystem-scale 

photosynthesis estimates to meteorological variables. And finally, Chapter 7 includes a synthesis of the 

conducted research and gives an outlook for future research possibilities in the field of atmosphere-

biosphere interactions. 

 

1.2 The Ecosystem Scale Carbon Exchange – Definitions and Limitations 
 

The exchange between a surface and the atmosphere is measured as a flux and is defined as the 

integral of an entity that passes through a Gaussian surface per unit of time (Burba, 2022). A surface is 

considered a source if the net flux leaves it (goes upwards), and a sink if the net flux goes toward the 

surface (downwards). In the context of eddy covariance measurements, the net ecosystem exchange 

(NEE) is the total CO2 exchange of turbulent fluxes adjusted by a storage term but does not include 

other carbon transport processes. In this way, a negative NEE corresponds to a CO2 sink, and a positive 

NEE to a CO2 source. NEE is commonly expressed in mol CO2 m-2 s-1 at the half-hourly scale and in g C 

m-2 d-1 at the daily scale. Net ecosystem production (NEP) describes the same quantity as NEE but 

rather from an annual ecosystem stock change point of view and thus with opposite signs (NEP = -NEE; 

Kirschbaum et al., 2001). The two components of NEE are GPP and ecosystem respiration (Reco). GPP 

refers to the fixated carbon by photosynthesis minus the CO2 lost by photorespiration, and Reco refers 

to the respired CO2 by autotrophic (RA or RPLANT) and heterotrophic organisms (RH) (Kirschbaum et al., 

2001). Soil respiration (RSOIL) instead combines RA of plant roots and RH of decomposing soil organisms 

(Bond-Lamberty et al., 2004). Hence, NEE equals Reco - GPP (Tramontana et al., 2020). Net primary 

productivity (NPP), on the other hand, refers to the net growth of plant organic carbon, which is GPP 

minus the carbon respired by plants themselves (NPP = GPP – RA; Kirschbaum et al., 2001). Hence, Reco, 

GPP and NPP all range from zero to positive values only. 

However, several carbon fluxes are not included in this definition of NEE as a full assessment of all 

components is not achievable with a single method. Fluxes of reduced C compounds such as CH4, CO 

and other volatile organic compounds (VOCs) can make up a substantial part of the total carbon 

exchange, depending on the ecosystem. Out of those, CH4 is a potent greenhouse gas itself, and all 

reduced C compounds eventually oxidize to CO2 in the atmosphere (Ciais et al., 2022). Although less 

widespread than CO2 due to being more cost-intensive, a CH4 flux network of eddy covariance stations 

exists (Delwiche et al., 2021), and first attempts to measure VOC fluxes with the eddy covariance 

method have also been made (Fischer et al., 2021). Neither included in NEE are lateral carbon fluxes 

which are fundamentally not measurable with the eddy covariance method due to not being 

transported by turbulent motions. Such lateral fluxes include transport and consumption of trade 

items such as wood, crops or hay, which are especially important for carbon budgets of managed lands, 

runoff of eroded soils and dissolved carbon, or animal grazing (Chapin et al., 2009; Ciais et al., 2022). 

The combustion of organic carbon by wildfires theoretically is included in measured NEE by eddy 

covariance systems but experiments have shown an underestimation of released CO2 (Clark et al., 
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2009), and the transport of soot is neither measured. Advective fluxes of CO2 such as large-scale 

circulations and nocturnal drainage flows, on the other hand, are strived to be minimized due to an 

optimal eddy covariance site and setup, which are described in more detail in Chapter 3.1. 

 

1.3 Energy Pathways of Absorbed Radiation at the Leaf Scale 
 

The light use efficiency is on the one hand an important concept for modelling GPP (Pei et al., 2022), 

and on the other hand an important measure for quantifying and potentially reducing the absorbed 

energy not used for CO2 assimilation (Genesio et al., 2021). Therefore, it is relevant to point out the 

energy pathways of absorbed radiation within and around a leaf and the environmental controls on 

these pathways, which determine the light use efficiency and in this way are the processual basis for 

the terrestrial carbon sink. 

Only one of these pathways, which energy from photosynthetically active radiation that is absorbed 

by a green leaf (APARg) can take, ultimately results in the fixation of CO2. At first, radiation can be 

absorbed by non-photosynthetic molecules such as cuticular wax, water, or other pigments such as 

anthocyanins as a protection against ultraviolet light (Ustin & Jacquemoud, 2020). This energy can 

either be re-emitted as long wave radiation, transported as sensible heat by turbulent motions or is 

used for the vaporization of liquid water and the transpiration of water vapor through open stomata 

or the evaporation of intercepted water on the leaf surface. 

APARg that actually is absorbed by chlorophyll a & b induces the light reaction and also fluorescence, 

which is typically only 1-2% of total absorbed light (Maxwell & Johnson, 2000). Within the light 

reaction, adenine triphosphate (ATP) as an energy storage molecule and the reduced form of 

nicotinamide adenine dinucleotide phosphate (NADPH) as a hydrogen carrier are synthetized through 

an electron transport chain (Schopfer & Brennicke, 2010). However, during periods of high light 

intensity, water stress or cold temperatures, more light energy is harvested than can be used for the 

fixation of CO2. To prevent harm from the leaf structures, excess energy is dissipated as heat via non-

photochemical quenching (NPQ) in the xanthophyll cycle (Jahns & Holzwarth, 2012), which at full light 

makes up about 50-70% of all absorbed energy by the photosystems (Heldt & Piechulla, 2015). 

ATP and NADPH as products from the light reaction are finally utilized for the assimilation and 

reduction of CO2 to glucose through the Calvin cycle, also called dark reaction as it is not directly 

dependent on light (Verma et al., 2017). However, photorespiration is also a possible result of the 

Calvin cycle in C3 plants and much less in C4 and CAM plants. In this way, photosynthetic energy is 

wasted as the enzyme RuBisCO assimilates O2 instead of CO2, which in turn is released as a by-product. 

The probability of photorespiration increases with an increased ratio of the O2 to CO2 content in 

solution, which in turn increases with higher temperatures (Foyer et al., 2009). Then again, the 

probability of photorespiration also depends on the CO2 to O2 ratio in the atmosphere, and in this way 

increased atmospheric CO2 also has the potential to suppress photorespiration (Serk et al., 2021).  

In summary, different environmental conditions influence the energy pathways of absorbed radiation, 

the most important being air temperature, water content in soil and air, the amount of (excess) 

absorbed radiation, atmospheric CO2, and the availability of nutrients such as nitrogen and 

phosphorus. 
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2 Study Area: The Wüstebach Research Site within the Eifel/Lower 

Rhine Valley Observatory 

2.1 The Eifel/Lower Rhine Valley Observatory 
 

The Eifel/Lower Rhine Valley Observatory, coordinated by Forschungszentrum Jülich, is one of four 

terrestrial environmental observatories of the TERENO project in Germany and covers the Rur 

catchment in western Germany with small portions in Belgium and the Netherlands (Bogena et al., 

2018). TERENO is a long-term research program of four Helmholtz Research Centers and provides long 

time-series of system variables to observe Global Change consequences for terrestrial ecosystems. 

More specifically, the complex implications and feedbacks from climate and land use changes on, e.g., 

water balance, CO2 exchange, soil fertility, regional climate and biodiversity of terrestrial systems are 

investigated for four German regions being representative for Central Europe (Zacharias et al., 2011). 

The Eifel/Lower Rhine Valley Observatory hereby represents the north-western part of the Central 

European low mountain area and also the transitional area towards the northern Central European 

lowlands.  All data collected within the TERENO program are distributed with free access via the open 

GIS-platform TEODOOR (Kunkel et al., 2013). 

The Rur catchment covers an area of 2354 km² and exhibits significant north–south gradients in 

elevation, temperature, precipitation, land use, soil properties and geology (Bogena et al., 2018). The 

southern half of the Rur catchment is part of the Eifel low mountain range with elevations up to 680 m 

above sea level (asl), while the northern half is a flat lowland area with an average elevation of about 

100 m asl down to about 20 m asl at the mouth of the Rur river (excluding the open pit mines of the 

Rhenish lignite coal area). The northern lowland area is a fertile loess plain and is dominated by arable 

land of which in 2011 41% was winter wheat (Triticum aestivum), 28% sugar beet (Beta vulgaris) and 

10% maize (Zea mays) as the most common crops (Reichenau et al., 2016). Settlements are mainly 

located in the northern and central parts of the catchment. The upland areas instead are dominated 

by coniferous and deciduous forests, pastures and fenlands (Lussem & Herbrecht, 2019; see also Fig. 

4.1 in Sect. 4.2). The Eifel mountains of the upper Rur catchment are part of the Rhenish Massif and 

are mostly composed of Paleozoic consolidated rocks with some Mesozoic sandstone and limestone 

outcroppings near the south-eastern border of the catchment. The northern half is dominated by 

unconsolidated Tertiary sediments covered by Pleistocene terrace deposits of the Meuse and Rur 

rivers and by aeolian loess deposits with significant portions of anthropogenic spoil tips (Bogena et al., 

2018). Fluvisols, Gleysols and Eutric Cambisols are major soils of the southern upland area, while the 

fertile arable land is dominated by Haplic Luvisols and Cumulic Anthrosols with a silt loam texture and 

high field capacities above 200 mm (Korres et al., 2015; Bogena et al., 2018). 

For the most recent climatological normal 1991–2020, the highest mean annual temperatures (MAT) 

in the Rur catchment were recorded in the northern lowlands, for example 10.9 °C at the station Elsdorf 

and 10.7 °C at Heinsberg-Schleiden (DWD, 2022). The lowest MAT is expected in the highest parts of 

the Eifel mountains. Schneifelforsthaus, located about 13 km south of the Rur catchment and at 649 

asl, which is similar to the highest parts of the catchment, had a MAT of 7.3 °C, and the highest official 

station within the Rur catchment, Kall-Sistig at 505 m asl, had a MAT of 8.3 °C (DWD, 2022). Mean 

annual precipitation (MAP) exhibits not only a north–south gradient, but also a decreasing gradient 

from west to east, especially in the southern half (Bogena et al., 2005). In the northern lowlands, MAP 

was 681 mm at Heinsberg-Schleiden, while in the southern uplands MAP ranges from 1253 mm at 

Hellenthal-Udenbreth in the windward southwestern corner to 783 mm at Kall-Sistig in a leeward area 

just 13 km away (DWD, 2022). This steep precipitation gradient is also evident in Fig. 2.1, showing a 

precipitation difference over 400 mm between Wüstebach and Kall-Sistig for the period 2011–2021. 
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Resulting from the dominating south-western wind directions, the lowest MAP of the Rur catchment 

was recorded in the leeward areas along the Rur river with 616 mm at Düren (DWD, 2022). The relation 

between winter and summer precipitation also is not equally distributed over the catchment, with 

approximately 15% higher winter precipitation in the southern upland regions and about 10% higher 

summer precipitation in the northern lowland regions (Bogena et al., 2005). 

 

 

Figure 2.1 Elevation of the Rur catchment area from SRTM data (Jarvis et al., 2008) and Walter and Lieth climate diagrams 
for the TERENO Wüstebach site and three weather stations from the German Weather Service (DWD, 2022), all for the years 
2011-2021 to match the Wüstebach time series. 

Instrumentation is distributed over the observatory in a nested multiscale approach, with (i) sparse 

measurements of runoff gauging stations scattered over the whole Rur catchment, (ii) moderate 

instrumentation within three subcatchments (Ellenbach, Kall, Erkensruhr), and (iii) intensive 

instrumentation at three research sites (Selhausen, Rollesbroich, Wüstebach) within these 

subcatchments (Bogena et al., 2018). The Selhausen site (50.865°N, 6.447°E) at about 100 to 110 m asl 

in the northeastern part of the catchment represents the agricultural landscape with spatiotemporally 

varying crops (Schmidt et al., 2012). The Rollesbroich site (50.622°N, 6.303°E) from 474 to 518 m asl 

covers a 20 ha managed grassland area in the Eifel mountains with different fields that are individually 

fertilized and cut (Borchard et al., 2015). The Wüstebach site (50.504°N, 6.333°E) partly covers a spruce 

monoculture and a deforested area with undisturbed regrowth around the Wüstebach headwater 

region in the Eifel mountains and is described in more detail in the next section. 

At each research site, energy and CO2 fluxes are measured by an eddy covariance tower, which are 

part of the Integrated Carbon Observation System (ICOS; Heiskanen et al., 2022). Besides continuous 

eddy covariance data, additional trace gas measurements include tunnel flux chambers (Graf et al., 

2013) and elevator-based profile measurements (Ney & Graf, 2018). Further measurements at each 

site include meteorological parameters such as air temperature and humidity, precipitation, short- and 

long-wave radiation, wind speed and direction, as well as soil temperature and water content sensors 

connected to the wireless sensor network SoilNet (Bogena et al., 2010). Soil moisture is additionally 

estimated at the field scale by 10 cosmic-ray neutron stations (Baatz et al., 2014; Andreasen et al., 
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2017). This method was also applied for mobile surveys (Jakobi et al., 2020) and soil moisture data 

were assimilated within land surface models to predict evapotranspiration at the regional scale (Baatz 

et al., 2017). At each research site one to three lysimeter stations were installed to observe actual 

evapotranspiration across the catchment and are part of the SOILCan network (Pütz et al., 2016). 

Recent remote sensing activities for the Rur catchment include Sentinel-2 based monitoring of spruce 

stands using cloud computing infrastructures (Montzka et al., 2021) and biomass estimations from 

Light Detection And Ranging (LiDAR) sensors on unmanned aircraft vehicles (Bates et al., 2022). 

 

 

Figure 2.2 The Wüstebach intensive research site with instrumentation and aerial images demonstrating the deforested area. 
Figure adapted without changes from Bogena et al. (2018), under CC BY-NC-ND 4.0. 

 

2.2 The Wüstebach Research Site 
 

The research site is situated within the Eifel National Park and encompasses the upper Wüstebach 

catchment including an unnamed tributary catchment to the north serving as an unaffected reference 

(see Figure 2.2). The upper Wüstebach research site covers an area of 38.5 ha and ranges between 

elevations of 596 m asl at the northern outflow of the stream to 629 m asl at the eastern corner with 

an average slope of 3.6 % and a maximum slope of 10.4% (Bogena et al., 2015). The bedrock consists 

of Devonian shales which are superimposed by periglacial solifluction layers. Cambisols and Planosols 

with a silty-clay loam texture are the dominant soil types on hillslopes while Gleysols and Histosols 

(half-bogs) have formed along the stream under groundwater influence (Bogena et al., 2018). 

The site has a long history of human impact. During medieval and early modern times, beech forests 

in the northern Eifel were cut for pastureland and charcoal production used in iron melting industries. 

This resulted in a largely deforested landscape until reforestation with spruce trees was initiated in the 

19th century under Prussian rule (Suck, 1999). Following area-wide devastation during the Battle of the 

Bulge in 1944-1945, which included heavy fighting at the Wüstebach site with remaining trenches and 

explosion craters, the area was planted again mostly (ca. 90%) with Picea abies in the 1950s (Lehmkuhl 

et al., 2010; Borchardt, 2012). In 2009, the catchment had an average canopy height of 25 m, a tree 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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density of 370 trees ha-1 and a dry biomass of 310.5 t ha-1 corresponding to about 3670 t of carbon 

(Etmann, 2009). The potential natural vegetation of the Wüstebach site is classified as a montane base-

poor wood rush/beech forest (Suck et al., 2014). Following the National Park’s approach to convert the 

spruce monoculture to a near-natural beech forest, a deforestation experiment was conducted in 

September 2013, for which an area of 8.6 ha around the stream was clear-cut with the exception of 

few alder stocks. Only about 3% of the original biomass remained on site, mostly stumps, litter and 

individual trunks (Baatz et al., 2015). After deforestation the area was left without plantings for 

undisturbed regrowth, and a fence was erected around a core area against animal browsing. In the 

remaining parts of the Wüstebach site, however, the spruce monoculture was not cut and beech 

saplings were planted in the understory to impede natural regeneration of spruce trees with process 

conservation as the long-term goal (Nationalparkverwaltung Eifel, 2014).  

 

 

Figure 2.3 Photography of the 38 m Wüstebach tower, mounted with an eddy covariance system and sensors for 
photosynthetically active radiation, among others. Published with the kind permission of the authors Carsten Montzka and 
Jordan Bates, Forschungszentrum Jülich. 

 

The research site contains two eddy covariance systems, one installed on a 38 m high tower in 2010 to 

observe fluxes of the spruce forest to the west of the stream (Fig. 2.3), and one for the deforested area 

installed in 2013 (Fig. 5.1c). The spruce monoculture was a significant carbon sink from 2010 to 2017 

with a NEE of -660 g C m-2 y-1 (Ney et al., 2019). In comparison, the clear-cut area changed from a strong 

carbon source (NEE of 521 g C m-2 y-1) in the initial year after deforestation towards an almost neutral 

NEE of 83 g C m-2 y-1 in the fourth year after deforestation, mostly due to an increase of GPP by 

regrowing vegetation (Ney et al., 2019). In 2020, the vegetation of the clear-cut area was dominated 
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by various grasses (e.g., Deschampsia spec., Molinia spec.), shrubs and bushes of different size (e.g., 

Cytisus scoparius, Calluna vulgaris, Epilobium angustifolium), and young trees (Sorbus aucuparia, 

Betula pubescens, Picea abies). Regarding hydrological effects, the deforestation caused a decrease of 

evapotranspiration, which in turn caused an increase of soil water storage and discharge, especially in 

summer (Wiekenkamp et al., 2016). Furthermore, the concentration of most ions (Na+, Ca2+, Mg2+, Cl–

, and SO4
–) in the stream water showed a decreasing trend after deforestation (Płaczkowska et al., 

2022). In the forested part of the research site, physiological processes of three spruce trees are 

intensively monitored by dendrometers and sap flow sensors. The major drought of 2018 caused the 

spruce trees to halt their hydraulic systems and photosynthesis, resulting in a narrower tree-ring width 

(Neuwirth et al., 2021). For future research, the Wüstebach site will be one of four German pilot areas 

to establish a standardized monitoring system for assessing growth reactions of important Central 

European tree species under climatic extremes. 
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3 Methods 

3.1 Eddy Covariance 
 

For this dissertation, turbulent fluxes were experimentally assessed with the eddy covariance (EC) 

technique. This method is a micrometeorological approach to measure the turbulent flux of 

momentum, energy and scalars such as the greenhouse gases H2O, CO2, CH4, and N2O between a 

surface and the atmosphere within the atmospheric boundary layer. These scalars are transported in 

all three directions in the atmosphere by turbulent whirls of varying size, also called eddies (Eugster & 

Merbold, 2015). In order to describe turbulent motions, a modification of the Navier-Stokes equations 

is required. An approximate solution of these equations is realized by applying Reynolds 

decomposition, i.e., by decomposing a time series of a variable into its average and fluctuating 

components to enable a statistical representation of turbulent motions (Reynolds, 1895). Hence, a 

vertical flux F of a constituent in the atmosphere can be represented as  

𝐹 = 𝑃𝑑𝑤𝑠̅̅ ̅̅ ̅̅ ̅ = (𝑃𝑑 + 𝑃𝑑
′ )(𝑤 + 𝑤′)(𝑠 + 𝑠′),                 (Eq. 3.1) 

where 𝑃𝑑 is air density, w is vertical wind speed, and s the dry mole fraction of a gas of interest, for 

which the overbars represent averages and the primes instantaneous deviations (Burba, 2022). After 

opening the parentheses, the equation can be simplified by deleting terms considering averaged 

deviations from an average are zero, and assuming that (i) air density fluctuations are negligible, and 

(ii) mean vertical flow is negligible over flat, horizontally homogeneous surfaces (Burba, 2022). The 

resulting eddy flux can then be described as 

𝐹 ≈ 𝑃𝑑
  𝑤 

′𝑠 
′,                     (Eq. 3.2) 

where 𝑤′𝑠′ is the statistical covariance between vertical wind speed and a scalar of interest. However, 

this application is only valid under certain conditions, otherwise the surface flux is not properly 

represented by the formula in Eq. 3.2. Following the ergodic hypothesis, which states that time 

averages are equivalent to ensemble averages and in this way time averages of a sampling volume can 

be related to a surface area, fluxes have to be stationary over the averaging period and homogeneous 

over the surface area to remain representative (Katul et al., 2004; Foken et al., 2012). A test for 

stationarity for example examines whether the averages of shorter averaging intervals do not differ by 

more than 30% from the whole averaging interval (Foken & Wichura, 1996). In practice, fluctuations 

are oftentimes assessed every 0.1 or 0.05 seconds (10 or 20 Hz) and values are averaged over 30 

minutes or one hour because this domain falls into a spectral gap between turbulent fluctuations and 

mesoscale diurnal cycles and thus facilitates stationarity. Stationarity and homogeneity can be violated 

by intermittency in the very stable boundary layer (Mahrt, 2014). In such conditions, turbulence is 

usually not sustained due to buoyant damping, but for example Kelvin-Helmholtz instabilities can 

temporarily and locally increase the flow shear and thus create limited patches of active turbulence in 

time and space (Aubinet, 2008; Finnigan, 2008). 

Air density fluctuations are assumed to be negligible, which is usually valid near sea level, but those 

can be significant at high altitudes and high wind speeds (Massman & Lee, 2002). The method further 

assumes a negligible mean vertical flow. This basically requires an adequately flat and homogeneous 

surface to exclude flow divergence and convergence and thus advective processes. In this way, it has 

always to be ensured that turbulence is the dominant transport mechanism and other processes such 

as advection and molecular diffusion are negligible. Advective mechanisms that result in a non-zero 

mean vertical wind can be summarized to i) convection as stationary cells during periods of low 

mechanical turbulence, ii) synoptic scale subsidence due to high pressure systems and iii) local 
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circulations driven by surface heterogeneity including drainage flows, which are especially important 

for CO2 budgets (Lee, 1998). Well-developed turbulence is usually assessed by friction velocity 

thresholds (Goulden et al., 1996), though more sophisticated approaches to detect vertical decoupling 

also exist (e.g., Peltola et al., 2021a). Turbulent exchange is impeded especially during calm nights with 

stable stratification, which in terms of CO2 budgets carry the risk of underestimating nighttime 

respiration. In such cases, respired CO2 either accumulates below the observation height and is 

transported upwards after turbulence develops again, is transported downslope by gravitational force 

without being measured by the EC system, or a combination of both (Aubinet, 2008). Hence, the total 

CO2 exchange between an ecosystem and the atmosphere consists of a turbulent flux, an advective 

flux and a storage term. Ideally, the advective flux has to be assessed separately through the 

measurement of vertical and horizontal gradients, though this is not feasible as a routine procedure 

(Finnigan, 2008). 

Another constraint of the method concerns the measurement height, as an inadequate height results 

in fluxes not being representative of the ecosystem of interest. Instruments have to be placed high 

enough in the well-mixed layer not to be influenced by individual roughness elements, to cover a 

representative source area, and to be not subject to high spectral losses (Schmid & Lloyd, 1999; 

Munger et al., 2012). On the other hand, flux measurements have to be low enough within the 

atmospheric boundary layer to not become significantly affected by the linear flux decrease with 

height until the flux vanishes at the inversion layer. The decrease at a given measurement height also 

depends on the boundary layer height, which is why in stable nights with a low boundary layer height 

the missed flux at tall towers can be significant (Eugster & Merbold, 2015). In addition, in real world 

cases the ecosystem of interest extends only to a certain distance in the upwind direction and is not 

perfectly homogeneous in all directions. Hence, it has also to be ensured that the footprint of the 

instruments is to a large extent congruent with the ecosystem of interest, which also depends on 

atmospheric stability and surface roughness. This is further limiting the measurement height and 

requires an assessment of the flux source area in order to interpret the signals (Rannik et al., 2012). 

For daytime conditions, the energy balance closure is a common way to estimate the validity of EC flux 

measurements. With an ideal set-up the sum of sensible and latent heat fluxes measured by an EC 

system should equal the net radiation minus soil heat flux, energy used for photosynthesis, and energy 

stored in the air below measurement height (Wilson, 2002). The fact that EC measurements 

consistently underestimate energy fluxes is attributed to low frequency eddies associated with 

convection not detectable by EC sensors (Foken, 2008). 

Despite these constraints and general limitations concerning the total carbon exchange stated in Sect. 

1.2, the EC method holds marked advantages, making it a widely applied technique to estimate net 

ecosystem exchange. It is a direct method to measure flux densities, it causes only minor disturbances 

to the vegetation or soil (such as shading and maintenance-related soil compaction), yields a quasi-

continuous time series, and represents an area at the ecosystem scale (Baldocchi, 2014). With a large 

network of stations and some time series now exceeding 20 years of data, the breathing of the 

biosphere in respect to changing environmental conditions can be better understood (Baldocchi, 

2019). Alternative methods include leaf, soil and canopy chambers for smaller scale measurements, 

gradient-based models such as the Bowen Ratio method for similar ecosystem scale applications, or 

remote sensing products of the total column gas concentration dynamics at the global scale (Burba, 

2022). 

In order to calculate the covariance between fluctuations of vertical wind velocity and, e.g., CO2, two 

sensors recording at a high enough frequency of at least 10-20 Hz are required. Sonic anemometers 

are used for measurements of wind speed and sonic temperature. The underlying principle is to 
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measure the transit time of an ultrasound wave burst between three pairs of transducers being a 

known distance apart. The transit time between them depends on the speed of sound and the assumed 

uniform velocity of the air in their path. As the speed of sound does not depend on the direction, the 

wind speed in three directions can be deduced by calculating differences of the measured transit times 

between both directions for all three opposing pairs (Kaimal & Businger, 1963; Munger et al., 2012). 

On the other hand, the speed of sound can be calculated from the sum of transit times. And since the 

speed of sound is temperature dependent – besides humidity and atmospheric pressure, which are 

usually also measured –, the sonic temperature and thus the sensible heat flux can also be deduced 

from sonic anemometers (Schotanus et al., 1983). As sonic anemometers in the field cannot be 

perfectly aligned perpendicular to the mean flow, w is usually contaminated by the two horizontal 

wind vectors (Rebmann et al., 2012). Two common corrections for this error exist, the first being 

coordinate rotation to set 𝑤 = 0. Over more complex surfaces, however, half-hourly 𝑤 cannot always 

be considered zero. For such cases, the planar fit method establishes a hypothetical plane fitted to the 

streamlines in different wind directions from measurements over several weeks to months and only 

assumes 𝑤 = 0 for these time periods (Wilczak et al., 2001). 

Infrared gas analyzers measure the molar densities of e.g., H2O and CO2 by detecting the intensity 

reduction of an infrared beam caused by the absorption of H2O and CO2 in a sampling volume (Munger 

et al., 2012). With an open-path design, such as used for this dissertation, sensors are exposed to 

ambient conditions and the air is moved through the sensor path by the wind. In this way, gas density 

measurements are affected by temperature, humidity and air pressure fluctuations. In order to exclude 

the influence from such air expansions or contractions and to relate the measured changes only to the 

gas flux, the Webb-Pearman-Leuning terms have to be added (Webb et al., 1980). With these terms 

accounted for, measured molar densities, i.e., the amount of material per unit volume in mol m--3, can 

be converted to the required dry mole fractions, i.e., the ratio of the constituent to the dry air with 

this constituent in mol mol-1 (Burba, 2022). Moreover, the anemometer and gas analyzer exhibit a time 

delay resulting from their physical separation and thus asynchronous signal acquisition. Their time 

series are usually aligned by maximizing the covariance between them within a certain time window 

(Mauder & Foken, 2011). Spectral corrections to account for high frequency losses mainly due to (for 

open path designs) a limited frequency response, sensor separation and path averaging of the sensors 

are an important step in the processing chain. These corrections are described in detail in Chapter 5.2.3 

and are usually applied by comparing actual spectra or cospectra to those of a hypothetical ideal 

system under given ambient conditions or to, for example, measured sensible heat flux cospectra as 

an approximation of unattenuated cospectra. In addition, spectral corrections also account for low 

frequency losses mainly due to block averaging (Moncrieff et al., 2004). 

In recent years, efforts have been made to unify processing schemes and create huge datasets of 

comparable flux data such as the worldwide FLUXNET database (Pastorello et al., 2020), the ICOS 

network in Europe (Rebmann et al., 2018), or the TERENO network in Germany (Mauder et al., 2013). 

However, remote and tropical regions in particular are still underrepresented in such networks and 

upscaling techniques combining remote sensing and machine learning methods are required to 

achieve spatiotemporal gapless flux information. In addition, these EC networks also need to be 

expanded in regard to other greenhouse gases such as CH4 and N2O (Baldocchi, 2019). 
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3.2 Tree-based Machine Learning 
 

Machine learning, or statistical learning, is a set of algorithms to learn from relationships between 

data. By fitting a model on a training data set, general knowledge can be extracted inductively even 

for complex cases when a thorough understanding of relationships is not achievable beforehand 

(Mailund, 2017; Dramsch; 2020). Machine learning algorithms can be classified into two general 

approaches, each with different aims, supervised and unsupervised learning. For supervised learning, 

there is a target variable that is predicted using a set of predictor variables. Hence for each observation 

of a predictor variable there is an associated observation of the target variable. If the target variable is 

numerical, the modelling is called regression, and classification if the target variable is categorical 

(James et al., 2021). In the machine learning context, predicting should be distinguished from 

forecasting, as models do not necessarily aim to predict into the future (Meyer et al., 2018). For 

unsupervised learning, there are no associated target observations and the model instead learns 

patterns such as clusters in the data without predefined goals (Mailund, 2017). For this dissertation, 

only supervised approaches for regression were applied. 

The aims for modelling can be further distinguished between prediction and inference. For prediction, 

the goal is accurately predicting the target variable for new cases, while for inference the goal is a 

better understanding of the relation between target and predictor variables (James et al, 2021). 

Unfortunately, for almost all complex cases there is a trade-off between model accuracy and 

interpretability. Restrictive models such as linear regression have a low prediction performance in 

complex, non-linear cases but are relatively easy to interpret. In this way, a linear model can be used 

to infer model parameters, i.e., to falsify whether there was a significant linear relationship between 

target and predictor (Mailund, 2017).  Flexible models such as neural networks, on the other hand, 

usually have a better accuracy but are also difficult to interpret, i.e., how their outcome is related to 

individual predictors (James et al, 2021). However, variable importance metrics can improve the 

interpretability of flexible models such as random forest (Grömping, 2009; Williamson et al., 2021). 

Machine learning models were applied with the focus on prediction in Chapter 4 and with the focus 

on inference in Chapter 6.  

Another important issue for machine learning approaches is the trade-off between bias and variance 

as it is difficult for a model to exhibit both, a low bias and a low variance. A bias error results from an 

underfitted model with erroneous approximations about the relationship of predictor and target 

variables. A variance error refers to the high sensitivity of a model to variations of the training data. 

Ideally, a model should not vary much by different samples of training data in order to avoid modelling 

random noise. Otherwise, the model is overfitted to a specific training sample. Flexible models are 

prone to overfitting and thus require certain hyperparameters that can be fitted in an internal cross 

validation with independent test data within the model building process. In order to assess the overall 

model performance, an additional external cross validation with validation data fully excluded from 

the whole model building process is also required (James et al., 2021). However, for spatiotemporal 

prediction tasks, a random partition of data into training and validation sets is not sufficient, but 

validation should be conducted with spatial and temporal blocking to prevent an overoptimistic model 

assessment (Roberts et al., 2017). This is because common predictor variables that vary in space but 

not in time such as elevation, land cover or soil properties together act as a unique ID for each location 

with training data and the model is thus prone to overfitting (Meyer et al., 2018). In order to solve this 

issue, a feature selection with an internal spatial cross validation strategy can be conducted to exclude 

such spatially autocorrelated predictor variables (Meyer et al., 2019). 
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Decision trees form the basis of different tree-based machine learning methods such as random forest, 

gradient boosting or AdaBoost. The general principle of regression trees is to split the predictor space 

into several smaller, more homogeneous subgroups. The if-then rules constituting the model can be 

represented by a binary tree structure (Bergen et al., 2019; see Fig. 3.1). Hence at each node the data 

is split into two groups and each leaf is a terminal of the decision tree, at which observations are not 

further split. At each node the training data is split into two groups as homogeneous as possible by a 

threshold of a predictor variable. The predictor variable and its threshold are determined by the 

smallest sum of squared residuals of the observed target values to the averages of each group. The 

final prediction then is the average target value of all observations in the respective leaf. For typical 

decision trees, overfitting is reduced by a minimum number of observations required to be within a 

node to allow a further split. Pruning large trees, i.e., replacing a split by a leaf containing the average 

of both former groups, is another method to reduce overfitting (Kubat, 2017). To find the optimal size 

of the pruned tree, a penalty parameter for each additional leaf is introduced that can be tuned within 

the model building process. 

Single decision trees usually are weak learners, but the prediction accuracy can be highly improved by 

ensemble methods such as random forest. This method consists of many decision trees (usually at 

least 500) and was introduced by Breiman (2001). The general concept is based on bootstrap 

aggregating or bagging. Here, each tree is grown with a random bootstrap sample of the training set 

with replacement (Efron, 1979). These trees are not pruned, and hence each individual tree has a low 

bias but a high variance. Results from all trees are averaged for the final prediction, in this way reducing 

the variance of the whole random forest model. A side-effect of this procedure is the possibility to 

calculate the out-of-bag error of the model as a quick substitute for cross validation. For this, the target 

value of each observation can be predicted only by the bagged trees that did not include the 

observation for fitting (James et al., 2021). Another method to decorrelate individual trees is to allow 

only a random subset of predictors as split candidates for each node in a decision tree. Although 

appearing limiting, without that restriction most or all trees would use the strongest variable in the 

first split, yielding similar trees with correlated predictions. Averaging uncorrelated predictions, 

however, reduces variance far more efficiently than averaging correlated ones (James et al., 2021). 

The number of variables allowed as split candidates is the most important hyperparameter that can 

be tuned in the model building process. Advantages of random forest are the few hyperparameters 

that have to be tuned and the higher interpretability due to variable importance measures compared 

to more opaque methods like neural networks. The latter is especially important if physical insights 

into the analyzed system should be gained (Bergen et al., 2021). Comparison studies of different 

machine learning methods for environmental science applications have shown that the performance 

of random forest was consistent or even better than neural networks or kernel methods (Appelhans 

et al., 2015; Tramontana et al., 2016). 

Gradient boosting is also a tree-based method but unlike random forest the decision trees are not 

grown independently but additively with information from previous trees. The method was developed 

by Friedman (2002) and is not based on bagging. Instead, it starts with a single leaf containing the 

target variable average of the whole training data. Then a size restricted tree is built to predict the 

residuals of the previous tree instead of the raw target variable. That means, the second tree predicts 

the deviations of the predictions of the first tree from the target variable observations and a third tree 

would predict the residuals from the second tree and so on. This procedure is repeated until a given 

maximum number of trees is reached or the loss function is not improved anymore. In addition, a 

learning rate between 0 and 1 is introduced as a tuning parameter and is multiplied with the residual 

prediction of each tree. In this way only gradual improvements to a better prediction are forced upon 

the algorithm in order to reduce overfitting (James et al., 2021). 
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Figure 3.1 Schematic depiction of a single decision tree with arbitrary variables and values in each node (blue rectangles) and 

leaf (green circles). The values in the leaves are the average target values of all training samples that fall within the respective 

leaf. For random forest, the predictions of all trees are averaged. For gradient boosting, predictions from the last tree are 

taken. 

In environmental science the quantity and complexity of gathered data is increasing nearly 

exponentially which requires advanced data analysis techniques (Zhong et al., 2021). The combination 

of increasing computing power including cloud computing and the rapid progress in the field of 

machine learning with open-source frameworks is a promising precondition to apply machine learning 

for analyzing large environmental and spatiotemporal datasets (Bergen et al., 2019). The applications 

for machine learning within environmental science can be summarized to three inter-related goals: (i) 

automation of complex prediction tasks such as spatiotemporal interpolation, (ii) improving the 

understanding of complex relationships between environmental variables as conducted with variable 

important measures, and (iii) the discovery of unanticipated or counter-intuitive patterns and 

structures, e.g., finding new materials for CO2 adsorption (Bergen et al., 2021; Zhong et al., 2021). In 

this way machine learning can be applied as a faster surrogate of numerical simulations that require 

even higher computation resources (Chen et al., 2020). It is also possible to incorporate physical 

knowledge or constraints within machine learning models e.g., by partial differential equations 

(Tramontana et al., 2020). Recent outstanding applications of machine learning in the field of 

biosphere-atmosphere interactions exemplary include scaling of carbon and energy fluxes to the global 

scale (Jung et al., 2019, 2020), continental scale (Ichii et al., 2017), predicting circumpolar methane 

emissions (Peltola et al., 2019), and gap filling of eddy covariance methane flux measurements (Kim et 

al., 2019). However, machine learning models always require a careful investigation whether their 

predictions are consistent with fundamental principles and experimental knowledge of environmental 

science (Zhong et al., 2020). In this way, inference results from machine learning in general are prone 

to spurious correlations, and by no means they should be taken as causal relations but rather can 

initiate more in-depth research. Other challenges include scarcity and quality of training data such as 

non-uniform data sampling strategies and small sample sizes (Zhong et al., 2020). Hence recent 

developments focus on the integration of machine learning with mechanistic models to improve model 

interpretability and the creation of large and open science benchmark datasets with uniform sampling 

strategies such as the FLUXNET database for eddy covariance data.  
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Abstract 

This paper discusses different feature selection methods and CO2 flux data sets with a varying quality-
quantity balance for the application of a Random Forest model to predict daily CO2 fluxes at 250 m 
spatial resolution for the Rur catchment area in western Germany between 2010 and 2018. 
Measurements from eddy covariance stations of different ecosystem types, remotely sensed 
vegetation data from MODIS, and COSMO-REA6 reanalysis data were used to train the model and 
predictions were validated by a spatial and temporal validation scheme. Results show the capabilities 
of a backwards feature elimination to remove irrelevant variables and an importance of high-quality-
low-quantity flux data set to improve predictions. However, results also show that spatial prediction is 
more difficult than temporal prediction by reflecting the mean value accurately though 
underestimating the variance of CO2 fluxes. Vegetated parts of the catchment acted as a CO2 sink 
during the investigation period, net capturing about 237 g C m-2y-1. Croplands, coniferous forests, 
deciduous forests and grasslands were all sinks on average. The highest uptake was predicted to occur 
in late spring and early summer, while the catchment was a CO2 source in fall and winter. In conclusion, 
the Random Forest model predicted a narrower distribution of CO2 fluxes, though our methodological 
improvements look promising in order to achieve high resolution net ecosystem exchange data sets at 
the regional scale. 

 

Plain Language Summary 

 
Whether ecosystems absorb or emit CO2 plays a major role in the global carbon cycle and impacts 

climate change. This exchange is already measured at scattered stations, but creating spatially resolved 

data sets remains a challenge. In this paper, we used satellite images of vegetation and meteorological 

data to predict the CO2 exchange of the Rur catchment area near the German-Dutch-Belgian border 

for every day from 2010 to 2018. In order to assess the prediction quality, we compared actual 

measurements from several stations within the catchment with the predictions at the locations of 

these stations. Results show that our method could increase prediction quality compared to previous 

process-based models, though the error remains rather high. Vegetated parts of the catchment 

including coniferous forests, deciduous forests, grasslands and croplands were all CO2 sinks on average. 

In late spring and early summer, they were the strongest sink, but in fall and winter a CO2 source. 

https://doi.org/10.1029/2020JG005814
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4.1 Introduction 
 

Land use changes are important drivers of anthropogenic climate change. For example, deforestation 

or afforestation can highly affect the carbon uptake and storage capacities of an ecosystem (Schimel 

et al., 2001). Net ecosystem exchange (NEE), the difference between carbon dioxide (CO2) uptake 

through photosynthesis and respiration within an ecosystem (Luyssaert et al., 2007), represents a 

major feature of the global carbon cycle and, thus, helps to assess ecosystem services and the impact 

of land use changes on them (negative NEE = CO2 uptake, positive NEE = CO2 emission) (Abdalla et al., 

2013; Schmitt et al., 2010; Xu et al., 2017). 

The eddy covariance (EC) technique is the most direct way of measuring CO2 fluxes, however, it 

provides point measurements from a sparse network of stations each representing a footprint with an 

along-wind extent typically less than 800 m (Chen et al., 2009). Top-down approaches for spatial NEE 

assessment include global atmospheric inversion models from satellites such as GOSAT and OCO-2 

(Wang et al., 2019a), which are especially useful for areas with limited or no EC coverage (Kondo et al., 

2015) but are restricted to a coarse spatial resolution. Thus, bottom-up approaches scaling up EC 

measurements are expedient to quantify CO2 fluxes for larger areas (Denman et al., 2007; J. Xiao et al., 

2012), though they are also challenging due to the high spatiotemporal variability of those fluxes 

(Borchard et al., 2015; Kondo et al., 2017). 

Process-based biogeochemical models have been widely applied for this purpose (e.g., Post et al., 

2018; J. Xiao et al., 2011), but subject to assumptions and model parametrizations. Data driven 

machine learning techniques such as Random Forest (RF) are another promising approach to predict 

NEE as they can grasp even highly nonlinear relationships to explanatory variables as is usual in 

environmental data (Cutler et al., 2007). Previous attempts using statistical modeling include 

nonspatial predictions of NEE at the EC tower scale (Dou et al., 2018; Safa et al., 2019; Zhou et al., 

2019). Other attempts aimed at upscaling of carbon fluxes to the continental or national scale (Papale 

et al., 2015; Sun et al., 2011; J. Xiao et al., 2008) or the globe, most notably the FLUXCOM approach 

(Bodesheim et al., 2018; Jung et al., 2011, 2020). Upscaling to the regional scale at high spatial 

resolution has rarely been done although NEE estimates of heterogeneous regional and local 

ecosystems are of high value for assessing ecosystem services in spatial planning (Tammi et al., 2017). 

Furthermore, products at a finer spatial resolution are less prone to contain mixed pixels with 

contamination of the main land use class by e.g. roads, settlements or tree rows (Zhang et al., 2011) 

developed a regression model for the U.S. Great Plains based on EC towers representing grassland 

only. Post et al. (2018) already upscaled NEE to the study area of this analysis, though with a process-

based model.  

Spatial cross validation, that is, excluding whole locations from model training and testing the model 

on them, is crucial for a realistic assessment of the reliability of spatial predictions beyond the locations 

of training data. A substantial performance decrease is to be expected in comparison to a random split 

of data points into training and test sets, which hence overrates model performance due to spatial 

autocorrelation (Meyer et al., 2018; Roberts et al., 2017). Tramontana et al. (2016) conducted a 

profound cross validation analysis for spatial predictions of various carbon and energy fluxes with the 

conclusion that NEE is especially difficult to predict. Feature selection of explanatory variables, on the 

other hand, can considerably improve data driven model performance as it reduces overfitting and 

removes irrelevant or redundant variables (Hall & Smith, 1999). Meyer (2018) proposed a sequential 

feature selection algorithm based on spatial cross validation to remove spatially autocorrelated 

predictors. In contrast to this, conventional feature selection as implemented in the caret package 

(Classification And REgression Training, Kuhn, 2020) is based on internal cross validations within the 

training data, and hence fails to improve model performance when testing on locations not used for 
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model training (Meyer et al., 2019). Genetic algorithms like the Guided Hybrid Genetic Algorithm 

(GHGH, Jung & Zscheischler, 2013) are useful for very large numbers of features (>100), though 

generally they do not rely on spatial cross validation. Quality of EC data is another issue for upscaling 

attempts, especially when aggregating half-hourly to daily fluxes. While data quality improves when 

excluding low-confidence values based on quality control, too small data sets also limit the learning 

capacities of machine learning algorithms (Ließ et al., 2012). A common practice is to indicate daily 

data as missing if more than 20% of half-hourly values are missing or of low quality (Tramontana et al., 

2016; Yuan et al., 2010). However, to our knowledge a sensitivity analysis to different percentages has 

not been done before. 

In conclusion, NEE upscaling with data driven methods at high spatiotemporal resolutions and 

incorporating different land uses remains a major task to be handled in order to approach the goal of 

flux information “everywhere, all of the time” (Baldocchi, 2014). Thus, the objectives of this paper are 

i) to perform upscaling of daily NEE over heterogeneous landscapes of the Rur catchment in western 

Germany for the years 2010 –2018 with a RF model incorporating EC measurements, remote sensing 

and reanalysis data and ii) to assess the impact of EC data quality and feature selection on the model 

performance. 

 

 

Figure 4.1 Elevation from SRTM data (Jarvis et al., 2008) and eddy covariance stations used for training within the Rur 
catchment area (left), the location of the study area and the FLUXNET stations within Germany (middle) and simplified land 
cover classes after Lussem and Herbrecht for the Rur catchment (2019) (right). 

 

4.2 Data and Methods 

4.2.1 Study Area 
 

The Eifel/Lower Rhine Valley Observatory covers the Rur catchment located near the German-Belgian-

Dutch border and is one of four TERrestrial ENvironmental Observatories (TERENO) in Germany 

(Zacharias et al., 2011). These areas were selected for the TERENO network because they are 

representative of typical landscapes found in Central Europe (Bogena et al., 2016). The catchment 

covers an area of 2,354 km² and can be divided into a northern lowland part with intensive agriculture 

and a relatively high proportion of built-up areas and a southern low mountain part where pastures 
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and forests prevail, as shown in Figure 4.1. Based on a simplified land cover classification by Lussem 

and Herbrecht (2019), the catchment consists of 27.6% grassland, 25.7% cropland, 17.7% deciduous 

forest, 8.5% coniferous forest, and 20.4% other land cover types including urban areas, open cast 

mines and water bodies. Mean annual temperatures range from about 7.5 –10.2 °C, increasing from 

south to north. Mean annual precipitation decreases from 1,200 mm in the southern low mountain 

parts to 700 mm in the north (Baatz et al., 2014). 

Table 4.1 Description of the Eddy Covariance Stations Providing CO2 Flux Data Used for Model Training. 

Name ID 
Sensing 
Period 

Ecosystem 
Type 

Elevation 
(m) Latitude Longitude Documentation 

TERENO        

Merzenhausen ME 
05/2011 - 
12/2018 Cropland 92 50.9297879 6.2969924 Eder et al. (2015) 

Rollesbroich RO 
05/2011 - 
12/2018 Grassland 514 50.6219142 6.3041256 Gebler et al. (2015) 

Ruraue RU1 
10/2011 - 
08/2017 Grassland 101 50.8636289 6.4274571 

Schmidt & Schween 
(2018) 

Engelsdorf RU2 
08/2012 - 
10/2012 Cropland 108 50.9115426 6.3088546 Schmidt (2019) 

Kall-Sistig RU3 
08/2012 - 
07/2013 Grassland 499 50.5026827 6.525401 Post et al. (2015) 

Niederzier RU4 
04/2013 - 
07/2013 Cropland 101 50.8795149 6.4498871 Schmidt (2014) 

Selhausen SE 
04/2011 - 
12/2018 Cropland 101 50.8658521 6.4473198 Schmidt et al. (2012) 

Wüstebach 
forest WU1 

06/2010 - 
12/2018 

Coniferous 
forest 624 50.5049269 6.33096248 Graf et al. (2014) 

Wüstebach 
deforested WU2 

09/2013 - 
12/2018 Deforested 628 50.50305 6.33596 Wiekenkamp et al. (2016) 

FLUXNET        

Gebesee DE-Geb 
01/2002-
12/2014 Cropland 162 51.09973 10.91463 10.18140/FLX/1440146 

Grillenburg DE-Gri 
01/2004-
12/2014 Grassland 385 50.95004 13.51259 10.18140/FLX/1440147 

Hainich DE-Hai 
01/2002-
12/2012 

Deciduous 
Forest 430 

51.07921 10.45217 
10.18140/FLX/1440148 

Leinefelde DE-Lnf 
01/2002-
12/2012 

Deciduous 
Forest 451 51.32822 10.3678 10.18140/FLX/1440150 

Oberbärenburg DE-Obe 
01/2008-
12/2014 

Coniferous 
Forest 734 50.78666 13.72129 10.18140/FLX/1440151 

Tharandt DE-Tha 
01/2002-
12/2014 

Coniferous 
Forest 385 50.96256 13.56515 10.18140/FLX/1440152 

 

4.2.2 Eddy Covariance Data 
 

CO2 flux measurements from nine EC stations covering different land cover types and elevations within 

the study area have been used for model training and prediction (see Table 1 for details and 

abbreviations). The nine stations are all part of the TERENO network (Zacharias et al., 2011). 

Measurements from these stations were processed with the TK3 software (Mauder & Foken, 2011); 

20 Hz frequency data were hereby processed to 30 min fluxes and corrected for storage terms to obtain 

NEE values. All processing and quality-control schemes were carried out according to the standardized 

strategy presented by Mauder et al. (2013), which also includes a test on developed turbulence after 

Foken and Wichura (1996). Detailed measurement and processing descriptions can be found in the 

references listed in Table 1, a short description of each site is given here. 

http://dx.doi.org/10.18140/FLX/1440146
http://dx.doi.org/10.18140/FLX/1440147
http://dx.doi.org/10.18140/FLX/1440148
http://dx.doi.org/10.18140/FLX/1440150
http://dx.doi.org/10.18140/FLX/1440151
http://dx.doi.org/10.18140/FLX/1440152
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RO is an extensively managed grassland site, which is cut several times per year and mostly consists of 

ryegrass and smooth meadow grass (Lolium perenne, Poa pratensis). The EC tower was placed in the 

middle of two neighboring pastures with slightly different management regimes (Borchard et al., 2015; 

Korres et al., 2010). RU3 is a grassland site with similar characteristics (Post et al., 2015), while RU1 is 

a grassland site at significantly lower elevation (Lussem & Herbrecht, 2019). SE, ME, RU2 and RU4 are 

cropland sites with rotating crops, mostly sugar beet, winter wheat and winter barley (Eder et al., 2015; 

Lussem & Herbrecht, 2019; Post et al., 2015; Schmidt et al., 2012). WU1 is located above a planted 

spruce forest (Picea abies) of uniform height (Graf et al., 2014), while nearby WU2 is placed in an 8.6 ha 

area which was deforested in 2013 to allow a natural succession toward a European beech forest (Ney 

et al., 2019; Wiekenkamp et al., 2016). Currently (2020), spontaneous vegetation of the deforested 

area consists mostly of grass, shrubs (e.g., Cytisus scoparius) and young trees (Sorbus aucuparius, 

Betula pubescens).  

EC data were aggregated from half-hourly fluxes to daily data. As only high to moderate quality EC data 

were used (quality flags 0 and 1), frequent gaps were created. The number (n) of days containing all 

48 half-hourly intervals (100%) was only 386 for all TERENO stations combined, which is about 3.2% of 

all possible days and constitutes the first data set. Additional data sets were created with a varying 

number of missing 30 min intervals allowed: minimum 45/48 (93.75%) intervals of high to moderate 

quality (n = 1,035; 8.5% of possible days), 42/48 (87.5%) (n = 2,032; 16.6% of possible days), and 36/48 

(75%) (n = 3,996; 32.7% of possible days). For the calculation of these daily NEE values, gap-filled data 

inferred with the REddyProc package (Wutzler et al., 2018) were used. In case gap-filled data were not 

available, the mean was calculated of all nonfilled values of each respective day. Based on the 

minimum of reliable half-hourly values included, these data sets are referred to in this paper as 48, 45, 

42 and 36, respectively.  

Forest sites were underrepresented in the TERENO data, as only one coniferous forest site and no 

deciduous forest site were included. To achieve a better representation of each ecosystem type and 

to broaden the environmental envelope, we added daily NEE data with variable ustar-thresholds of six 

further stations (two coniferous forest, two deciduous forest, one grassland, one cropland site) from 

the FLUXNET2015 database (Pastorello et al., 2020), as shown in Table 1. Because quality-flag schemes 

may have differed among these sites, we filtered the FLUXNET data according to the relative 

uncertainty instead. In order to create data sets of equal proportions as the 48, 45, 42 and 36 data 

sets, we took the X days with the lowest relative uncertainty, with X being 3.2%, 8.5%, 16.6% and 

32.7%, respectively. Finally, these FLUXNET data sets, were added to the 48, 45, 42 and 36 data sets. 

The sensitivity of each of these data sets with a varying quality-quantity balance to the RF performance 

was then further evaluated with the feature selection and cross validation strategies described below. 

 

4.2.3 Raster Data 
 

Explanatory variables were compiled from various sources and were of different spatial and temporal 

resolutions, as shown in Table 2. These variables were chosen because they are regarded to potentially 

affect NEE, and were selected by availability for the whole time period 2010-2018. Vitale et al. (2016) 

showed that variations of vegetation indices such as Leaf Area Index (LAI) can highly influence carbon 

fluxes. Ishtiaq and Abdul-Aziz (2015) concluded that meteorological parameters have a strong linkage 

with CO2 fluxes, especially “radiation-energy” components. Datetime variables such as Day of Year can 

also be a useful proxy for estimating CO2 fluxes (Acosta et al. 2018). We used the following remotely 

sensed MODIS Version 6 products: MCD18A1 for downward shortwave radiation (2018 only) (Wang, 

2017), MOD44B for percent tree cover, percent nontree vegetation and percent nonvegetated land 

cover (Dimiceli et al., 2015), MCD15A2H for LAI and Fraction of Absorbed Photosynthetically Active 
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Radiation (fAPAR) (Myneni et al., 2015), and MYD13Q1 and MOD13Q1 for Normalized Difference 

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) (Didan, 2015). All of these data sets were 

quality controlled to exclude contaminated pixels with the quality assurance raster included in the 

MODIS products. Subsequently, for NDVI, EVI, LAI and fAPAR a Whittaker smoother (Atzberger & Eilers, 

2011) was applied to fill gaps and smooth out noise in the data occurring from undetected clouds. 

Finally, these vegetation data sets were linearly interpolated in time from 8-day to daily data. 

Daily gridded data for the meteorological variables air temperature and relative humidity in 2 m, soil 

temperature, precipitation, zonal and meridional wind speed in 10 m, long wave upward and 

downward radiation at the surface and net shortwave and longwave radiation at the surface were 

obtained from the COSMO REA6 regional reanalysis data set (Bollmeyer et al., 2015) and were 

regridded with Climate Data Operators (Schulzweida, 2019). Furthermore, daily downward shortwave 

radiation from 2010 to 2017 was acquired from the Heliosat (SARAH-2) Surface Solar Radiation Data 

Set (Pfeifroth et al., 2019), other variables include a digital elevation model from the Shuttle Radar 

Topography Mission (Jarvis et al., 2008), and soil moisture and potential evapotranspiration from the 

German Weather Service (DWD, 2019) based on Löpmeier (1994). 

Raster data were used and further processed at two different steps in the analysis, to i) extract values 

at the coordinates of each site for model training and validation, and ii) predict NEE for the entire 

catchment area. For the latter, all raster sets were homogenized to the same extent and same spatial 

resolution of 250 m with bilinear interpolation of the raster package in R (Hijmans, 2020). 

Table 4.2 Predictor Variables Used for Model Training. 

Nr. ID Name Source Temporal 
Resolution 

Spatial 
Resolution 

Unit 

1 NDVI 
Normalized Difference Vegetation 
Index 

MODIS 8 days 250 m  

2 EVI Enhanced Vegetation Index MODIS 8 days 250 m  
3 LAI Leaf Area Index MODIS 8 days 500 m m²/m² 

4 fAPAR 
Fraction of absorbed 
Photosynthetic Active Radiation 

MODIS 8 days 500 m % 

5 Tree Percent_Tree_Cover MODIS yearly 250 m % 
6 NonTree Percent_NonTree_Vegetation MODIS yearly 250 m % 
7 NonVeget Percent_NonVegetated MODIS yearly 250 m % 

8 SWI Downward Shortwave Radiation 
Heliosat (2010 -
2017) 
 MODIS (2018) 

daily 
0.05° 
(Heliosat) 5 
km (MODIS) 

W/m² 

9 SWB Net Shortwave Radiation COSMO-REA6 daily 6 km W/m² 
10 LWI Downward Longwave Radiation COSMO-REA6 daily 6 km W/m² 
11 LWU Upward Longwave Radiation COSMO-REA6 daily 6 km W/m² 
12 LWB Net Longwave Radiation COSMO-REA6 daily 6 km W/m² 
13 Precip Precipitation COSMO-REA6 daily 6 km mm 
14 Tair Air Temperature (2 m) COSMO-REA6 daily 6 km K 
15 Tsoil Soil Temperature COSMO-REA6 daily 6 km K 
16 rH Relative Humidity (2 m) COSMO-REA6 daily 6 km % 
17 u Zonal Wind Speed (10 m) COSMO-REA6 daily 6 km m/s 

18 v 
Meridional Wind Speed 
(10 m) 

COSMO-REA6 daily 6 km m/s 

19 ETpot Potential Evapotranspiration DWD daily 1 km mm 
20 Soilm Soil Moisture DWD daily 1 km % 
21 Month Month  monthly static  
22 Season Season  3 months static  
23 DoY Day of Year  daily static  
24 DEM Elevation SRTM static 30 m m 
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4.2.4 Random Forest Model 
 

RF is a machine learning method based on an ensemble of many binary decision trees. The algorithm 

was introduced by Breiman (2001) and is widely used for classification and regression in ecology (e.g., 

Aide et al., 2012; Prasad et al., 2006; Tramontana et al., 2016). Each decision tree is grown with a 

random subsample with replacement of the input data, called bootstrapping (Efron, 1979). At each 

node in the decision tree, a threshold of a randomly selected explanatory variable is ascertained to 

split the data into the two most homogeneous subgroups, i.e. with the lowest variance. The leaf nodes 

at the end of the tree do not further split the data but contain predictions of the target variable. This 

value is the mean of the target variable of all elements in the corresponding subgroup. For the final 

prediction, results of all trees (in this case 500) are averaged to overcome weaknesses of single trees. 

One consequence of this algorithm, however, is that predictions cannot be out of bounds of the 

training range. In this study, we used the implementation of the RF code in the randomForest package 

in R by Liaw and Wiener (2002) to predict NEE in a regression approach. In order to identify an ideal 

number of predictor variables used at each split node (“mtry”), model tuning was conducted with the 

caret package, which is a wrapper to perform model tuning for various predictive models. 

In order to perform feature selection, we first split the data into spatial and temporal folds (described 

in the next section in detail) with the CAST package (Meyer, 2018). In a next step, we applied the 

forward feature selection (FFS) procedure of this package with Root Mean Squared Error (RMSE) as 

performance metric to punish high errors in particular. The advantage of CAST FFS is that feature 

selection results are based on spatiotemporal cross validation rather than on training data only. 

However, as FFS sometimes selected very few variables with unsatisfactory performance (see Section 

3.1), a slightly modified version of this procedure has been devised and compared to FFS. We applied 

a backward feature elimination (BFE), which starts with all features and iteratively removes the worst 

feature based on a spatial or temporal cross-validation. Conversely, FFS iteratively adds features to the 

best combination of two features. Since RF relies on randomization, results can significantly differ 

between model runs. Hence, each iteration within BFE was repeated five times to average out such 

randomization effects. This leads, however, to a significant increase in computation time. The general 

algorithm of the BFE procedure is described in Table 3. To illustrate the impact of these two feature 

selection procedures on model performance, model runs without any feature selection were evaluated 

too. 
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Table 4.3 General Algorithm of the Backward Feature Elimination (BFE), the Indications in Square Brackets Refer to the R-
Packages Used for the Respective Step. 

Algorithm 1 

01: Split data into spatial or temporal folds [CAST] 
02: Do 5 times with all predictor variables: 
03:  Train and test model with a leave-one fold-out cross validation [caret] 
04:  Calculate RMSE over all folds 
05: Get previous  Averaged RMSE over 5 repetitions 
06: For each remaining predictor variable do: 
07:  Exclude variable 
08:  Do 5 times: 
09:   Train and test model with a leave-one fold-out cross validation [caret] 
10:   Calculate RMSE over all folds 
11:  Average RMSE over 5 repetitions 
12: Get bestSubset  variable subset with lowest average RMSE 
13: Get bestRMSE  RMSE of bestSubset 
14: If bestRMSE < previous: stop 
15: Else: previous  bestRMSE 
16:  repeat from step 06 onwards with bestSubset 
 

 

 

Figure 4.2 Schematic depiction of the spatial and temporal cross validation (CV) strategies that have been applied for this 
analysis. t1, t2 and t3 refer to three different time steps (years in our case), while ta refers to the FLUXNET data which are 
outside the timespan of TERENO data (prior to 2010) and tb refers to the years included in the TERENO data (2010–2014). 
The figure was recreated and modified after Meyer et al. (2018). 

 

4.2.5 Cross Validation 
 

In order to assess RF performance beyond the scope of training data, NEE predictions have been cross-

validated for (a) spatially and (b) temporally independent test sets. The additional FLUXNET data from 

outside the catchment were only used for training, whereas the TERENO data were used for training 
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and testing. Figure 4.2 displays the cross-validation strategies in a schematic way. Especially spatially 

independent test sets may be important for the assessment of the upscaled NEE predictions presented 

in Section 3.2 because they simulate predictions for pixels without any information used for model 

training. These cross validation strategies have been performed for all different NEE data sets and 

feature selection methods. 

a) Data were split into folds by station ID. Stations were only considered for leave-out if they i) 

were not the only station of their land cover class to ensure that the class was still contained 

in the training data when excluding the station and ii) had data spanning over at least three 

years to ensure representative results. Therefore, five stations (SE, RU1, ME, RO, WU1) were 

regarded, though all other stations were included for training. 

b) Data were split into folds by year. Each fold containing one year of data was left out once and 

predicted by a model trained with the other years. 2010 has only been regarded for training 

and not for testing as only data from one TERENO site was available for 2010. 

 

We used the coefficient of determination (R²), the mean absolute error (MAE) and the root mean 

square error (RMSE) as metrics to evaluate model performance. 

The relative importance of selected variables for model building was assessed through RF’s internal 

variable importance metric implemented in the randomForest package. For this, data points of each 

variable are randomly permutated and the relative increase of the mean squared error (MSE) based 

on an internal cross validation within in the training data is measured. This error is assumed to increase 

if the variable is important. 

 

4.3 Results 

4.3.1 Cross Validation Results 
 

We evaluated NEE predictions with a leave-one-fold-out cross validation by withholding either sites 

(spatial cross validation) or years (temporal cross validation). Table 4 summarizes the spatial and 

temporal cross validation results of different NEE data sets and feature selection methods. The results 

indicate that spatial prediction was generally more difficult than temporal prediction. Models trained 

with the 48 data set had the lowest RMSE values, though with the 45 data set slightly higher R² could 

be obtained. Especially for temporal cross validation, RMSE/MAE and R² did not coincide well with 

each other. The feature selection methods FFS and BFE were either closely in line with each other or 

BFE gave considerably better results than FFS. In these cases, FFS always selected less variables than 

BFE. Furthermore, BFE always performed better than no feature selection, indicating that BFE is more 

suitable than FFS or no feature selection for this analysis. Few patterns can be observed regarding 

selected variables, most notably that elevation was selected for every model with temporal cross 

validation, though very seldom for spatial prediction. The variables LAI, fAPAR and Precip, however, 

were almost always excluded. For the final upscaling we selected the model with the best RMSE by 

spatial cross-validation in order to optimize it for spatial prediction and avoiding high errors. Hence, 

we chose the model trained with the 48 data set and tuned with BFE. 

The relative importance of selected variables was assessed by the importance function of the 

randomForest package. As shown in Table 5, the most important variables were EVI and ETpot. Figure 

4.3 displays an assessment of the quality of NEE predictions in comparison to observed TERENO 

validation data. While predictions and observations have almost the same mean values (-2.31 and -2.3 

g C m-2d-1) and rather similar median values (-1.84 and -1.33 g C m-2d-1), and the regression line a slope 

close to 1 (y = 0.15 + 1.06x; Fig. 4.3a), the standard deviation of predictions (2.5 g C m-2d-1) is much 
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lower compared to observations (3.73 g C m-2d-1). The interquartile range of predictions is also 

narrower than of observations (-3.96 to -0.27 compared to -4.49 to 0.29 g C m-2d-1; Fig. 4.3b). As for 

predictions, values from about -5 to 1 g C m-2d-1 were more frequent, and outside of that range less 

frequent than in observations, resulting in a narrower distribution of values (Fig. 4.3c). This results in 

higher absolute errors for high flux magnitudes, especially for positive fluxes (Fig. 4.3d). 

 

Table 4.4 Cross Validation Results for Different NEE Data Sets and Different Feature Selection Methods. 

Cross 
Validation 

Data 
Set 

Feature 
Selection 

RMSE MAE R² n Var Variables selected 

spatial 
 48 FFS 2.96 2.25 0.35 6 9,12,19,22,24 
  BFE 2.72 1.9 0.41 15 2,5:7,10:12,14:20,22 
  none 3.01 2.19 0.34 24 1:24 
 45 FFS 2.88 2.07 0.43 10 2,5,7,8,12,14,19:21,23 
  BFE 2.84 2.07 0.42 10 5,7,11,12,14,17,19:22 
  none 3.16 2.24 0.34 24 1:24 
 42 FFS 3.18 2.23 0.34 9 1,2,5,7,8,12,15,21,22 
  BFE 3.2 2.25 0.33 14 1,2,5:8,12,14,:16,19,21,23 
  none 3.32 2.37 0.31 24 1:24 
 36 FFS 3.4 2.42 0.32 10 1,2,5:9,11,21,22 
  BFE 3.4 2.41 0.32 17 1:3,5:9,11,14:18,20:22 
  none 3.51 2.54 0.3 24 1:24 
temporal 
 48 FFS 2.54 1.89 0.31 8 5,6,8,9,16,19,22,24 
  BFE 2.55 1.78 0.32 11 1,5,8,14,16,19,21:24 
  none 2.91 2.02 0.24 24 1:24 
 45 FFS 2.67 1.84 0.46 8 1,5,10,17,19,21,23:24 
  BFE 2.59 1.79 0.5 15 1,5:8,11,12,15,17,19:24 
  none 2.66 1.82 0.46 24 1:24 
 42 FFS 3.01 2.08 0.44 12 1,2,6:9,14,17:19,23:24 
  BFE 2.95 2.05 0.45 14 2,5:9,11,14,15,17,18,21:22,24 
  none 3.06 2.1 0.43 24 1:24 
 36 FFS 3.34 2.32 0.44 13 1:3,5:8,11,17:19,21,24 
  BFE 3.32 2.28 0.44 16 2,3,5:11,14,17,18,21:22,24 
  none 3.41 2.39 0.42 24 1:24 
Note. RMSE, MAE and R² values are reported as averages of the respective folds. Performance is displayed as Root Mean 

Squared Error (RMSE; in g C m-2d-1), Mean Absolute Error (MAE; in g C m-2d-1 ) and coefficient of determination (R²). n 

Var gives the number of selected variables, Variables selected lists which variables were selected by the Nr. stated in 

Table 2 
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Table 4.5 Importance of Each Variable Selected by BFE for the 48 Data Set. 

Variable %IncMSE 

EVI 13.85 

ETpot 12.29 

Season 3.49 

rH 3.02 

LWB 2.70 

Tree 2.55 

LWU 2.26 

LWI 2.24 

Tsoil 2.18 

NonTree 2.11 

Tair 2.06 

Soilm 1.74 

v 1.11 

NonVeget 1.01 

u 0.60 

Note: %IncMSE describes the percental increase of the mean squared 
error after permutation as implemented in the randomForest package 
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Figure 4.3 Assessment of prediction quality in comparison to observations from TERENO test data. (a) scatter plot with 
regression line (blue) and identity line (black); (b) boxplots with mean values displayed as crosses; (c) density plot of 
predicted (blue) and observed (red) NEE values; (d) absolute error by observed NEE. The vertical line at zero marks the 
border between CO2 sinks (left) and CO2 sources (right). 

 

4.3.2 Upscaling Results 
 

We predicted daily NEE data at 250 m spatial resolution for the Rur catchment from 2010 to 2018. 

According to the results of the previous section, the 48 NEE data set and explanatory variables selected 

with spatial BFE were used for model training. Table 6 shows the upscaled results aggregated by land 

cover class and season. To put these results into perspective, such aggregations over actual 

measurements within the catchment are also included in Table 6. Pixels classified as urban or built-up 

were excluded from the analysis because anthropogenic CO2 emissions were not represented in the 

training data. Results show that vegetated areas of the Rur catchment were on average a CO2 sink 

between 2010 and 2018 with about -0.65 g C m-2d-1. Grasslands and deciduous forests were the 

strongest sink (-0.76 g C m-2d-1 and -0.72 g C m-2d-1, respectively), while croplands captured the least 

net amount of CO2 (-0.56 g C m-2d-1). During winter (December-February) and fall (September-

November), the Rur catchment was a CO2 source (0.86 g C m-2d-1 and 0.75 g C m-2d-1, respectively), 

while in spring (March-May) it was a strong sink (-2.14 g C m-2d-1), closely followed by summer (June-

August; -2.02 g C m-2d-1). Figure 4.4 shows yearly courses of predicted NEE aggregated by land cover 
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for the investigation period. Additionally, daily NEE raster were aggregated by season and the whole 

investigation period (Fig. 4.5). These results show that all land cover classes were a CO2 source in fall 

and winter and sink in spring and summer, although the CO2 uptake started decreasing in summer 

already. Croplands were the earliest to become a sink in spring and also to turn into a source after day 

of year 200. This NEE sink capacity decrease of croplands from spring to summer is also observable in 

Figure 4.5 as croplands prevail in the northern half of the catchment. Forests were a stronger source 

than croplands and grasslands in fall and winter, though deciduous forests were also the strongest sink 

with average NEE below -5 g C m-2d-1 around day of year 170. However, coniferous forests and 

especially deciduous forests were a greater sink in summer in actual measurements, and no CO2 source 

in fall. In contrast, grasslands were predicted to be a greater sink in summer compared to actual 

measurements. Differences between land cover classes were in general less pronounced in upscaled 

predictions than in measurements. 

 

Table 4.6 NEE in g C m-2d-1 Aggregated by Land Cover and Season of Upscaled Data Over Vegetated Parts of the Rur 
Catchment (above) and of eddy covariance (EC) Measurements Within the Catchment Described in Table 1 (below). 

Upscaling Results 

Land Cover Winter Spring Summer Fall Year 

Coniferous F. 0.92 -1.75 -2.54 0.9 -0.63 
Deciduous F. 1.07 -1.99 -2.77 0.85 -0.72 
Grassland 0.87 -2.14 -2.35 0.6 -0.76 
Cropland 0.67 -2.41 -1.17 0.74 -0.56 

Study Area 0.86 -2.14 -2.02 0.75 -0.65 

      
EC Tower Measurements 

Land Cover Winter Spring Summer Fall Year 

Coniferous F. 0.46 -2.36 -3.5 -1.1 -1.63 
Deciduous F.* 1.15 -0.95 -6.11 -0.64 -1.64 
Grassland 0.56 -1.71 -0.83 0.55 -0.36 
Cropland 0.38 -3.08 -1.79 0.76 -0.93 
Note. *Values for the class deciduous forest were calculated from the two FLUXNET stations De-Hai and De-Lnf as no 
measurements of that class were available within the catchment. 
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Figure 4.4 Yearly courses of predicted net ecosystem exchange (NEE) aggregated by each land cover class for the period 
2010-2018 (points), and smoothed by a loess function (lines; above). Standard deviation (±) for each of those lines 
separately (gray bands; below). 
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Figure 4.5 Predicted net ecosystem exchange (NEE) of the Rur catchment aggregated for the whole investigation period 
2010-2018 and for each season. Mean values for each map are 0.86 g C m-2d-1 (winter), -2.14 (spring), -2.02 (summer), 0.75 
(fall) and -0.65 (year). 

 

4.4 Discussion 
 

The results of the study showed that a data-driven upscaling of NEE to the regional scale predicted the 

average NEE well though underestimated the variance (Fig. 4.3b). Feature selection and the right 

quality-quantity balance of NEE data, however, can improve model performance. Similar to our results, 

high errors for NEE upscaling have also been observed in other studies (Jung et al., 2011; Tramontana 

et al., 2016). J. Xiao et al. (2011) showed that an ecosystem model predicted NEE with an R² between 

0 and 0.66, depending on the site. Richardson et al. (2012) demonstrated increasing random errors 

with flux magnitude for half-hourly CO2 flux measurements. The absolute errors displayed in Figure 

4.3d show a similar pattern, indicating that high flux magnitudes may be difficult to predict and validate 

because actual measurements in those ranges are already error-prone. 

Meyer et al. (2018) demonstrated that random cross validation lead to an overoptimistic view of the 

model performance compared to spatial cross validation. In our case, RMSE could be improved to 1.85 

g C m-2d-1 and R² up to 0.82 with a random cross validation, indicating that mere data reproduction is 

much easier than actual spatial prediction. Elevation was named as a typical example of a spatially 

autocorrelated predictor by Meyer et al. (2019). Hence, it is reasonable that it was removed by FFS 

and BFE for spatial cross validation, but not for temporal cross validation. Besnard et al. (2019) 

concluded that integrating memory effects of past disturbances in a recurrent neural network 

outperforms nondynamic statistical models like RF. So not including memory effects in our study might 

limit the prediction capacities. 

One intrinsic feature of RF is to not extrapolate beyond the input data due to the prediction being the 

average target value of the subgroup within a leaf node. Although we attempted to overcome this 

limitation by including sites from outside the catchment and hence broadening the environmental 

envelope, outliers with high flux magnitudes were still underpredicted. A portion of the prediction 
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error can also be attributed to uncertainties in the raster data sets used for model training and 

predictions. Some of the most important variables such as ETpot, Tair and rH were also measured in-

situ at the EC stations SE, RO, WU1 and WU2. Averaged over these four stations, Tair from Cosmo-

REA6 coincided very well with in-situ Tair (R² = 0.99); the same applies to rH (R² = 0.88) and modeled 

ETpot (R² = 0.93). SWI was combined from two different sources without data overlap but both sources 

also agree well with in-situ measurements (Heliosat: R² of 0.96; MODIS: R² of 0.92). However, we 

assume that MODIS-based vegetation indices did not capture smallscale vegetation structures well and 

hence contributed to prediction errors. A possibility to improve vegetation data to inform the RF model 

would be to use remote sensing data with a higher spatial resolution such as Sentinel-2 (Drusch et al., 

2012), which was not used here because it did not cover the whole investigation period. Another 

limitation of our study comprises the exclusion of 20.4% of the land area from the analysis because 

anthropogenic fluxes were not measured. This high proportion results from the high population 

density in the northern part of the catchment and the relatively large (13 km²) Inden open pit mine. 

However, only small biospheric net fluxes are to be expected from these areas as they are to a large 

extent non vegetated and thus may not contribute much to the overall biospheric fluxes of the 

catchment. 

The results indicate that smaller data sets incorporating only few (< 6.25%) or no low-quality intervals 

in the aggregated daily fluxes are more beneficial than larger data sets with more low-quality data. 

Small data sets can increase overfitting of a predictive model, however the ensemble characteristic of 

RF of averaging multiple trees also counteracts overfitting. Thus, it seems reasonable for RF to select 

for small data sets with higher quality. Although a standardized quality-flag scheme was used on the 

TERENO-data set, it should be noted that quality-flagging is not fully standardized in the flux-

community yet. Thus, our thresholds may not be transferable to other schemes. 

As uncertainty is correlated with flux magnitude, filtering the FLUXNET data by small relative 

uncertainties has the side-effect to favor large NEE values and discriminate small ones, whereas quality 

flags are not correlated with magnitude. However, the distribution of the TERENO NEE magnitudes 

shows that, naturally, small fluxes occur much more frequent than large fluxes (Fig. 4.3c). Such 

imbalanced data is a problem for RF, which requires about equally sized domains in the training data 

to not overpredict the largest domains (Krawczyk, 2016; Torgo et al., 2015). Therefore, favoring large 

fluxes in the FLUXNET data improves their representation in the training data sets. The test data sets, 

however, consisting only of quality-flag filtered data, remained unbiased and are thus regarded 

suitable for model cross validation. Even so, Figure 4.3c shows that the maximum around NEE=0 in the 

training data was still overpredicted and rare domains underpredicted, indicating that the training data 

probably was still not balanced enough. 

The performance differences between BFE and FFS can partly be explained by local optima of variable 

subsets, as sequential feature selection algorithms are prone to being trapped in such local optima (Liu 

& Motoda, 2008). In these cases, the first local optimum trap for BFE is much closer or even identical 

to the absolute optimum than the first local optimum trap for FFS. Hence, a BFE is regarded superior 

in such cases. The relatively high variance between RF model runs increased fluctuations and can thus 

amplify this effect by creating artificial local optima, leading to a suboptimal variable selection. 

Averaging five model runs reduced the variance within 100 model runs by about 76%, generally leading 

to more robust results. However, it should be noted that variance between model runs can be lower 

for other machine learning algorithms and that repeating and averaging is computationally expensive 

and therefore not suitable for large numbers of variables to select from. For such cases, a genetic 

algorithm like GHGA (Jung & Zscheischler, 2013) may be more appropriate. 

The relatively high elevations of forests and grasslands in the catchment resulted in lower average 

annual temperatures in years 2010-2018 (coniferous forests: 8.9 °C, deciduous forests: 9.6 °C, 
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grasslands: 9.5 °C) compared to croplands (10.8 °C), and hence a later start of the growing season 

might be an explanation for croplands being an earlier CO2 sink. Deciduous trees, on the other hand, 

first need to build-up the canopy leaf area to utilize suitable conditions for photosynthesis, though 

having higher photosynthetic capacities when fully leafed. However, differences between land cover 

types were less pronounced in upscaled results than in actual measurements (Table 6). One 

explanation for this might be mixed pixels in MODIS EVI (250 m spatial resolution) containing spectral 

responses from different land cover types. 

The catchment was a slightly stronger CO2 sink in spring than in summer. Lindroth et al. (2008) stated 

that net CO2 uptake in Swedish spruce forests is shifted toward the earlier parts of the growing season 

because respiration was still low while radiation was already high. Managed grasslands on the other 

hand, usually are cut several times during summer. For example, Rollesbroich was cut three times in 

the growing season of 2013 (Borchard et al., 2015) and each defoliation had the potential to turn 

grassland temporally into a CO2 source (Wohlfahrt et al., 2008). Croplands showed the largest decrease 

of CO2 uptake in late summer. Schmidt et al. (2012) analyzed vegetation parameters of a winter wheat 

field in the catchment over the course of two years. LAI of living/green leaves reached the maximum 

in early May, plant senescence (LAI of brown leaves) already started in late April and reached its peak 

in July. Although these patterns can differ for other crops, the results still indicate that specific 

croplands uptake the most CO2 in spring. The EC aggregations in Table 6 further confirm a decrease of 

CO2 uptake in summer for croplands and grasslands. In comparison, the aggregated EVI of the whole 

Rur catchment started slowly increasing in late February, peaked in early June, and declined afterward. 

Graf et al. (2020) showed that the exceptional drought and heat across Central Europe during the 2018 

growing season resulted in a reduced net CO2 uptake for many drought-affected EC stations, including 

SE, RO and WU1. The whole catchment was predicted to be a significantly weaker CO2 sink in summer 

2018 (-0.89 g C m-2d-1) compared to 2010-2017 (-2.16 ± 0.45 g C m-2d-1). Whereas in spring 2018 the 

sink capacity decrease to 2010-2017 was less distinct (-1.92 g C m-2d-1 in 2018 compared to -2.16 ± 0.51 

g C m-2d-1 2010-2017), indicating that the seasonal averages may be influenced by one exceptional 

year. In view of these findings, we consider the seasonal variations of upscaled NEE as largely plausible. 

 

4.5 Conclusion 
 

In this study, we scaled up daily EC NEE data to the regional scale at 250 m spatial resolution with a RF 

model integrating remote sensing and reanalysis data. Furthermore, we evaluated the impact of 

feature selection and NEE data quality-quantity balance on the model performance. We conclude that 

upscaling results can be improved with a BFE to remove unnecessary predictors and by incorporating 

no or only small (< 6.25%) amounts of low-quality intervals in the aggregated daily NEE data. 

Therewith, we provided a data-driven approach for predicting spatial NEE data sets which can be used 

for assessing the CO2 uptake of heterogeneous local and regional ecosystems or calibrating and 

validating process-based models. However, the spread of NEE observations and differences between 

land cover types were underestimated. 

Vegetated parts of the Rur catchment acted as a CO2 sink between 2010 and 2018 with 

about -0.65 g C m-2d-1. The catchment was predicted to be a slightly stronger sink in spring than in 

summer probably partly due to the onset of plant senescence in summer in cropland and grassland 

ecosystems, while it was a CO2 source during fall and winter. In future work, a model incorporating 

emissions from urban and built-up areas should be implemented to produce spatially continuous NEE 

data sets. Furthermore, remotely sensed vegetation products with a higher spatial resolution are likely 

to improve model accuracy as they would allow to distinguish small-scale vegetation structures. 
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4.6 Data Availability Statement 
 

Data used in this study are freely available from the TERENO (https://www.tereno.net/ddp/) and TR32 

(https://www.tr32db.uni-koeln.de/) portals, the FLUXNET2015 database 

(https://fluxnet.org/data/fluxnet2015-dataset/), the LP DAAC Catalog (https://lpdaac.usgs.gov/), the 

German Weather Service (ftp://opendata.dwd.de), the EUMETSAT Navigator 

(https://navigator.eumetsat.int/start), and CGIAR-CSI (http://srtm.csi.cgiar.org/srtmdata/). Upscaled 

daily NEE data for the Rur catchment are stored at http://doi.org/10.5281/zenodo.3776011. 
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Abstract  

Flux measurements over heterogeneous surfaces with growing vegetation and a limited fetch are a 

difficult task, as measurement heights that are too high or too low above the canopy adversely affect 

results. The aim of this study is to assess implications from measurement height in regard to low-pass 

filtering, footprint representativeness, and energy balance closure for a clear-cut site with regrowing 

vegetation of varying height. For this, measurements from two open-path eddy-covariance systems at 

different heights are compared over the course of one growing season. Particular attention is paid to 

low-pass-filtering corrections, for which five different methods are compared. Results indicate 

significant differences between fluxes from the upper and lower systems, which likely result from 

footprint differences and an insufficient spectral correction for the lower system. Different low-pass-

filtering corrections add an uncertainty of 3.4% (7.0%) to CO2 fluxes and 1.4% (3.0%) to H2O fluxes for 

the upper (lower) system, also leading to considerable differences in cumulative fluxes. Despite 

limitations in the analysis, which include the difficulty of applying a footprint model at this study site 

and the likely influence of advection on the total exchange, the analysis confirms that information 

about the choice of spectral correction method and measurement height changes are critical for 

interpreting data at complex sites. 

  

https://doi.org/10.1007/s10546-022-00700-1
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5.1 Introduction 
 

With the establishment of the eddy-covariance technique over wide ranges of ecosystems and 

applications, more research is focused on sites with non-ideal heterogeneous characteristics (Griebel 

et al., 2020; Chu et al., 2021). This challenges basic assumptions of the method and can imply unknown 

modifications on measured fluxes as well as reducing the energy balance closure (Stoy et al., 2013). 

Furthermore, internal boundary layers form over surfaces with heterogeneous roughness or a limited 

fetch. It has been shown that they alter wind and friction velocity (𝑢∗) profiles depending on the type 

of roughness transition (Jegede & Foken 1999; Dellwik & Jensen 2005). However, most footprint 

models, such as the one after Kljun et al. (2015), do not consider these non-ideal conditions inducing 

horizontally heterogeneous flow.  

A particular difficulty is the growth of vegetation, which demands a regular adjustment of the 

measurement height to ensure flux contributions from the same source area (Munger et al., 2012). 

Sensors too far above the canopy are susceptible to measured contributions from fluxes originating 

outside the area of interest when the fetch is limited (Gash 1986; Nicolini et al., 2017). In addition, 

steep roughness changes, such as forest edges, can induce recirculation areas behind the edge (Detto 

et al., 2008), further constraining the available fetch for measurements in forest clearings. On the other 

hand, multiple issues can result from measurements too close to the canopy. Measurements within 

the roughness layer may not be representative of the average ecosystem, rather sensors detect a near-

field contribution of individual roughness elements leading to flux biases (Katul et al., 1999; Moureaux 

et al., 2012). Over inhomogeneous surfaces, a small source area resulting from a measurement height 

below the blending height can also induce a location bias, which is not representative of the average 

ecosystem flux (Schmid & Lloyd 1999). Lastly, spectral attenuation in the high frequency range, also 

called low-pass filtering (LPF), is expected to increase with a lower height of eddy-covariance sensors. 

This increase occurs because smaller eddies, which prevail closer to the ground, are more attenuated 

than larger eddies by individual LPF causes. For open-path systems, these causes mainly are sensor 

separation, time response, and path averaging (Burba 2013). A number of correction schemes exist to 

compensate for LPF, such as fully analytical methods modelling individual sources of attenuation (e.g., 

Moore 1986; Moncrieff et al., 1997; Massman 2000), in situ methods incorporating scalar spectra (e.g., 

Ibrom et al., 2007; Fratini et al., 2012), and fully experimental methods using the ratio of cospectral 

densities (e.g., Su et al., 2004; Polonik et al., 2019). Despite the availability of a variety of approaches 

and corresponding software packages, which in turn have different options, only a few studies have 

conducted a comparison of different LPF corrections (Fratini and Mauder 2014; Polonik et al., 2019), 

and no comparison of multiple corrections exists. Different LPF corrections are deemed suitable for 

specific set-ups. For example, Ibrom et al. (2007) proved good performance of their method for 

measurements taken high above a rough forest surface, while Fratini et al. (2012) showed 

improvements of their method for measurements taken low over a smooth clover field. For 

measurements taken low over a regrowing clear-cut area, the contribution of high-frequency 

turbulence likely is important too, but in such a case the surface is comparatively rough. Thus it has to 

be investigated if the method of Fratini et al. (2012) also performs well compared to other corrections 

for such conditions. 

Besides previous research at the deforested site of this study (Wiekenkamp et al., 2016, 2019; Ney et 

al., 2019), observations at a single height focusing on carbon budgets have been conducted at wind-

thrown sites, either for the growing season following a storm (Lindroth et al., 2009) or long term 

(Lindauer et al., 2014; Matthews et al., 2017). Vickers and Mahrt (2006) investigated mean vertical 
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motions above a forest clearing, indicating horizontal divergence. Peltola et al. (2015) analyzed the 

spatial representativeness of CH4 fluxes over extensive and homogeneous grassland, while Nicolini et 

al. (2017) measured fluxes at two heights above a fetch limited crop field. However, the influence of 

measurement height on fluxes over heterogeneous surfaces with limited fetch, such as forest 

clearings, is still not sufficiently known. 

For this study, we added an eddy-covariance system at a second height of 5.4 m to an already existing 

one at 2.7 m above a deforested site, which has a relatively inhomogeneous surface created by 

undisturbed vegetation growth. We hypothesize that (i) flux data from the old and new measurement 

heights can seamlessly be used together to estimate the cumulative carbon uptake and 

evapotranspiration from the clear-cut area, and (ii) the choice of LPF correction methods available in 

EddyPro© significantly affects flux results. In this respect, we also evaluated the performance of each 

method for data with high expected flux loss. 

 

5.2 Materials and Methods 

5.2.1 Site Description 
 

Measurements took place at the upper Wüstebach catchment, located in the Eifel National Park near 

the Belgian border (50.50305 N, 6.33596 E, 618 m elevation; see Fig. 5.1). The site is part of the TERENO 

(TERrestrial ENvironmental Observatories) Eifel/Lower Rhine Valley observatory, which is one of four 

observatories in Germany to analyze long-term impacts of climate and land-use changes (Zacharias et 

al., 2011). Mean annual precipitation is 1332 mm and mean annual temperature 7 °C during the 

reference period 1981–2010 (Ney et al., 2019). Cambisols are the dominant soil type in the north-

eastern part of the study area, whereas Gleysols and Histosols prevail in a boggy area in the southern 

part and near the stream (Bogena et al., 2015). Elevation within the target area ranges between 596 

m at the outflow of the Wüstebach stream in the north-west, and 628 m at the eastern edge, with an 

average slope of 4°. 

The site mostly consisted of spruce monoculture (Picea abies and Picea sitchensis) until 2013, when an 

8.6 ha area of it was cut to allow for natural succession towards a European beech forest. The only 

major exception to this were isolated alder stocks near the stream, which were not cut. The eddy-

covariance station is located approximately in the center of the clear-cut with the forest edge closest 

to the north and north-east, with a minimum distance of 72 m, and farthest to the west, with a 

maximum distance of about 292 m (see Fig. 5.1a). Only 3% of the original biomass remained on site 

(Baatz et al., 2015), mostly tree stumps, litter, and a few tree trunks. In 2020, the vegetation of the 

clear-cut area consisted of various grasses (e.g., Deschampsia spec., Molinia spec.), shrubs and bushes 

of different size (e.g., Cytisus scoparius, Calluna vulgaris, Epilobium angustifolium), and young trees 

(Sorbus aucuparia, Betula pubescens, Picea abies), some of which are typical pioneer species. In 

general, regrown vegetation inside the fence, which had been established against browsing damage, 

was denser than outside. After the 2020 growing season, young trees within the clear-cut had an 

average height of 1.60  0.89 m. The spruce trees demarcating the forest edge had a uniform height 

of about 25 m and measured alder trees near the stream heights between 8.0 m and 18.3 m. These 

characteristics resulted in a very heterogeneous study site with vegetation of different height and 

composition and scattered coarse woody debris, which is expected to result in heterogeneous source 

and sink areas for CO2 and energy fluxes. 

The site heterogeneity can be further characterized by flow tilt angles, calculated as tan−1(𝑊/𝑈), 

where 𝑊 is the vertical wind component and 𝑈 is horizontal wind speed during neutral conditions (𝑧/𝐿 
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< 0.1, where 𝑧 is the measurement height and 𝐿 is the Obukhov length) and 𝑈 > 1 m s-1. For flow tilt 

angles shown in Fig. 5.2a, we applied a yaw rotation on unrotated 𝑢 and 𝑣 wind components to include 

both horizontal wind components in 𝑈. Positive flow tilt angles prevailed from western wind directions 

and likely originated from the sloping terrain. On the other hand, negative flow tilt angles from the 

north and northeast possibly originated from the nearby forest edge. Figure 5.2b shows flow tilt angles 

after the application of a sector-wise planar fit rotation of wind components after Wilczak et al. (2001) 

for each 45° sector. Here, flow tilt angles were largely diminished, especially for the prevailing western 

wind directions. A significant influence of the alder trees is not evident, which might be attributed to 

the fact that the lower elevation next to the creek prevents the tree tops from protruding considerably 

above the canopy surface around the station and on the far side of the creek. Issues with the northern 

wind sector between about 325° and 025° are indicated by large 𝑢∗ discrepancies between the upper 

and lower system from the north after planar fit rotation (Fig. 5.2c), indicating distortions from the 

nearby forest edge on the measurements at the upper height. 

 
Figure 5.1 Location of the study area in EPSG:32632 (a), vegetation heights of woody plants from a 2017 vegetation mapping 
in inside the fence (b), and view of the eddy-covariance (EC) tower looking north (c). 
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Figure 5.2 Binned means of flow tilt angles by wind direction during near-neutral conditions calculated from yaw-rotated 
wind components (a) and after application of a sector-wise planar fit rotation (b), as well as the 𝑢∗ ratio between the upper 
and lower system after planar fit rotation, with binned mean values displayed in red and the distorted sector shaded in grey 
(c). Vertical dotted lines indicate the direction of the tower. 

 

5.2.2 Eddy-Covariance Set-Up and Processing 
 

Turbulent fluxes of latent heat (𝐸), sensible heat (𝐻), and CO2 have been measured at the study site 

with an eddy-covariance system since 2013. In April 2020, a second eddy-covariance system was 

established to replace the first one at its current height of 2.7 m, which in turn was moved to a new 

height of 5.4 m due to vegetation growth. The upper system consisted of a CSAT3 sonic anemometer 

(Campbell Scientific, Logan, Utah, USA) and a LI-7500 open-path gas analyzer (LI-COR, Lincoln, 

Nebraska, USA). The lower system also consisted of a CSAT3, and a LI-7500RS open-path gas analyzer, 

which features optical hardware improvements compared to the LI-7500. Both systems had an 

orientation of 224°, while the upper system had a sensor separation of 22 cm and the lower system of 

19 cm to account for higher LPF. In addition, a net radiometer (NR01, Hukseflux Thermal Sensors, Delft, 

Netherlands) at 4.54 m and two heat flux plates (HFP01, Hukseflux Thermal Sensors, Delft, 

Netherlands) at -8 cm were installed to provide 10-min averages of net radiation and soil heat flux. 

Measurements taken between 17 April and 30 September during the 2020 growing season were 

analyzed for this work. 
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Raw data of wind components (𝑢, 𝑣, 𝑤), sonic temperature (𝑇𝑠), and H2O and CO2 densities logged at 

20 Hz were corrected and processed to 30-min fluxes using the software EddyPro© (v7.04, LI-COR, 

Lincoln, Nebraska, USA). A sectorial planar fit rotation for 45° sectors after Wilczak et al. (2001) was 

applied for tilt correction of an anemometer misalignment and to account for inclination of the ground 

(see Fig. 5.2). Time lags between the anemometer and gas analyzer were compensated for with the 

Covariance maximization with default method, which uses a default value if no covariance maximum 

can be attained within a time-lag window. A high-pass-filtering correction (Moncrieff et al., 2004) was 

applied to account for attenuation resulting from block averaging. As LPF is expected to have a stronger 

impact on the lower system, emphasis was put on LPF correction methods. Hence, all five methods 

implemented in EddyPro© were selected and compared. These are the corrections after Moncrieff et 

al. (1997), Massman (2000) and Massman (2001), Horst (1997), Ibrom et al. (2007), and Fratini et al. 

(2012) (hereafter referred to by the first authors’ names). A short description of each method and their 

implementation in this study is given in the next section. Lastly, the density correction of Webb et al. 

(1980) was added to the fluxes and the 0-1-2 flagging policy after Mauder and Foken (2004) was 

applied. The latter includes spike removal, a steady state test, and a test on developed turbulence after 

Foken and Wichura (1996). Fluxes were further separated for daytime conditions based on sunrise and 

sunset times to exclude several potential problems at night, such as advection and drainage flows 

(Aubinet 2008). Besides that, 𝑢∗ filtering implemented in the REddyProc library (Wutzler et al., 2018) 

was applied to remove remaining low-turbulence data. Furthermore, data from the northern wind 

sector between 325° and 025° were fully excluded because of likely distortions from the nearby forest 

edge (see Fig. 5.2c). Finally, data were rejected for which the source area originated to less than 70% 

inside the target area (see Sect. 2.5). For further analysis, only such timestamps were considered, for 

which the respective flux had the highest quality (flag 0) and all further criteria were also met 

simultaneously at both systems. 

Surface heat correction for the LI-7500 of the upper system after Burba et al. (2008) was not applied 

because the correction was intended for vertically adjusted sensors while the gas analyzers had an 

inclination of 45°. Furthermore, errors from self-heating are expected to be significant during very cold 

conditions (< -10 °C) whereas only data during the growing season were analyzed here. Ney et al. 

(2019) previously compared annual sums of surface heat corrected and uncorrected net ecosystem 

exchange values at this site, and also opted for uncorrected fluxes. 

 

5.2.3 Low-Pass-Filtering Correction 
 

Out of the five methods applied here, the ones after Moncrieff and Massman are fully analytical, 

meaning that filtering is described as individual spectral transfer functions, which are deduced from a 

priori knowledge of the system’s properties, such as sensor separation, the instruments’ time 

responses and path lengths, atmospheric conditions, and site characteristics. Flux attenuation is then 

estimated using a cospectral model, i.e., after Kaimal et al. (1972), as a reference of ideal cospectra. 

The method after Horst is also based on an analytical formulation but is parametrized using an in situ 

assessment of the system’s cut-off frequency with measured spectra. The methods after Ibrom and 

Fratini rely on an empirical determination of the cut-off frequency from the ratio of ensemble gas 

spectra to ensemble normalized temperature spectra as a proxy of ideal gas spectra. For the Ibrom 

method, the correction factor is then parametrized using the cut-off frequency, average wind speed, 

and atmospheric stratification. The Fratini method uses this parametrization in a slightly different way 

only for small fluxes. For large fluxes, the correction factor is calculated using the cut-off frequency 
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and sensible heat cospectrum instead. The resulting correction factor of each method is then 

multiplied by the uncorrected flux to correct for spectral attenuation.  

For the corrections after Horst, Ibrom and Fratini, binned (co)spectra were calculated for every 30 min 

using EddyPro©. They were filtered  according to the statistical tests after Vickers and Mahrt (1997), 

the micrometeorological quality tests after Mauder and Foken (2004), and by friction velocity (𝑢∗> 0.2 

m s-1) and flux magnitude (𝐻 > 20 W m-2; 𝐸 > 20 W m-2; CO2 flux > 2 mol m-2 s-1) before they were 

ensemble averaged for unstable stratifications (-650 < 𝐿 < 0; predefined in EddyPro©). For all 

correction methods and gas spectra, the frequency range for fitting the in situ transfer function was 

set from 0.005 to 2 Hz. As the methods after Ibrom and Fratini compensate for LPF on the scalar signal 

only and thus do not account for sensor separation, the correction after Horst and Lenschow (2009) 

was applied in addition. However, it was only applied for crosswind and vertical wind components, as 

along-wind sensor separation was already compensated by the time delay correction using covariance 

maximization. In addition, 𝐻 cospectra were preliminarily corrected for small losses due to 

anemometer path averaging and time response before using them for the Fratini method. 

 

5.2.4 Energy Balance 
 

The energy balance closure was calculated for each 30-min interval to estimate the performance of 

different spectral corrections and to compare the flux results of the upper and lower system. Ideally, 

the sum of sensible and latent heat flux measured by an eddy-covariance system should equal the 

available energy, that is net radiation minus ground heat flux and energy stored in the air and biomass 

(Wilson et al., 2002). Hence, the equation is 

𝑅𝑛 − 𝐺 − 𝑃 − 𝑆 = 𝐻 +  𝐸,                   (Eq. 5.1) 

where 𝑅𝑛 is the net radiation, 𝐺 is the ground heat flux, 𝑃 energy used for photosynthesis, and 𝑆 the 

change of energy stored in the air below the eddy-covariance measurements. As measurements were 

taken relatively close to the surface, 𝑆 was neglected for this study. 𝑃 was also not measured but can 

be considered small compared to the other terms (Oncley et al., 2007). The terms 𝐻, 𝐸, and 𝑅𝑛 were 

measured directly, and G was assessed by correcting the soil heat flux for the estimated change in heat 

stored between the soil surface and the heat-flux plate according to Graf et al. (2020). Two energy 

balance parameters were calculated on a 30 min basis: i) the energy balance ratio (EBR) as the sum of 

turbulent fluxes divided by the available energy and ii) the energy balance closure (EBC) as the 

regression between the sum of turbulent fluxes and available energy. Here, a reduced major axis 

regression was used instead of an ordinary regression. In this way it is possible to handle likely random 

errors of available energy by evaluating the slope as the geometric mean of an ordinary regression and 

one with switched dependent and independent variables (Wilson et al., 2002). For net radiation, the 

maximum error was estimated at about 25 W m-2 (Kohsiek et al., 2007). 

 

5.2.5 Footprint Estimation 

Prior to footprint determination, roughness length 𝑧0 and displacement height 𝑑 were first estimated 

for each wind direction quadrant using wind velocities from the two systems during neutral conditions 

(𝑧/𝐿 < 0.1). This was done by solving the logarithmic law after 𝑧0 and 𝑑 according to the Integrated 

Surface Flux System Guide (UCAR/NCAR 1990): 
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𝑑 =  𝑧1 −
𝑧2−𝑧1

exp(𝑘(𝑈2−𝑈1)/𝑢∗)−1
,                  (Eq. 5.2) 

𝑧0 =  
𝑧2−𝑧1

exp(𝑘𝑈2/𝑢∗)−exp(𝑘𝑈1/𝑢∗)
,                  (Eq. 5.3) 

where 𝑘 is the von Kármán constant (0.41), 𝑈1 and 𝑈2 the wind speeds at measurement height 𝑧1 and 

𝑧2, and 𝑢∗ the mean of both heights. Values for 𝑑 ranged from 1.07 m (north-east), 0.61 m (south-

east), 0.53 m (south-west) to 0.51 m (north-west), and for 𝑧0 from 0.29 m (north-east), 0.16 m (south-

east), 0.24 m (south-west) to 0.18 m (north-west). The relatively small values for 𝑑 compared to 𝑧0 

generally match the patchy structure of the study area well. 

The two-dimensional footprint model of Kljun et al. (2015) was then applied to estimate the footprint 

for both heights for every 30 min, as well as a footprint climatology over the whole timeframe. The 

planetary boundary-layer height was hereby derived according to Appendix B in the respective paper. 

To analyze modelled source area differences between the two systems, footprint rasters for individual 

30 min at the lower system were subtracted from the ones at the upper system in order to achieve 

patterns displaying if a pixel was more important for the upper or for the lower system. Two datasets 

were then created, for which negative (positive) pixels were set to 0 and remaining values converted 

to absolute values to show only pixels that were more important for the upper (lower) system. Lastly, 

the datasets were averaged over all timesteps to two raster images. 

 

5.3 Results 

5.3.1 Spectral Analysis 
 

Ensemble cospectra for the upper and lower system were calculated after the time delay correction 

was applied and are displayed in Fig. 5.3 for unstable conditions. Figure 5.3a and 5.3c show a clear 

attenuation of 𝑤′C′ and 𝑤′q′ cospectra at high frequencies  (where C and q are the CO2 and H2O mixing 

ratios) compared to 𝑤′𝑇𝑠′ cospectra at both systems. The 𝑤′𝑇𝑠′ cospectra can be used as reference 

cospectra because the sonic temperature is considered as an unfiltered scalar although it is also 

affected to a small extent by LPF due to path averaging and limited time response of the anemometer 

(e.g., Ibrom et al., 2007). Hence, the ratio of gas cospectra divided by 𝑤′𝑇𝑠′ cospectra gives an 

experimental transfer function describing the spectral loss of CO2 and H2O fluxes. Both cospectra, 𝑤′C′ 

and 𝑤′𝑞′, start diverging from 𝑤′𝑇𝑠′ cospectra already at lower frequencies for the lower system 

compared to the upper system (Fig. 5.3b, d), resulting in a larger frequency loss and a higher demand 

for correction. The integral of 𝑤′C′ cospectra in the inertial subrange (vertical lines in Fig. 5.3a, c) is 

67% of the 𝑤′𝑇𝑠′ cospectra integral for the upper system. For the lower system, this share is only 60%. 

Furthermore, ensemble sonic temperature spectra have a maximum density at 0.014 Hz for the upper 

system and at 0.02 Hz for the lower system, demonstrating a shift to higher frequencies for turbulent 

fluxes at the lower measurement height and thus a higher susceptibility to LPF. Likewise, the infinite 

impulse response filter cut-off frequency after Ibrom et al. (2007) is 1.1 Hz for the upper system and 

1.0 Hz for the lower system. 
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Figure 5.3 Ensemble cospectra (Co) during unstable conditions of fluxes measured at the upper system (a), and at the lower 
system (c), as well as the ratio between 𝑤′𝐶′  and 𝑤′𝑇𝑠′ cospectra (b), and 𝑤′𝑞′ flux and 𝑤′𝑇𝑠′ cospectra (d). The normalized 
frequency is the natural frequency in Hz multiplied with 𝑧 and divided by 𝑈. Vertical dotted lines indicate the range used for 
calculating integrals. 

 

5.3.2 Correction Factors 
 

Correction factors of the five applied spectral correction methods for CO2 fluxes of the upper and lower 

system are shown in Fig. 5.4. The correction factors across different spectral correction methods were 

similar with slightly higher values for the Fratini method. Correction factors for CO2 fluxes were on 

average smaller for the upper system than for the lower system, with 1.06 (Moncrieff), 1.05 

(Massman), 1.06 (Horst), 1.05 (Ibrom), and 1.08 (Fratini) for the upper system compared to 1.11 

(Moncrieff), 1.07 (Massman), 1.10 (Horst), 1.09 (Ibrom), and 1.15 (Fratini) for the lower system. 

Correction factors for H2O were almost identical to those for CO2 and are thus not displayed separately. 

The outliers of high correction factors from the Moncrieff and Massman methods are associated with 

low 𝑈, for which the high-pass-filtering correction increased correction factors. For the Fratini method, 

not constraining correction factors to the bounds of Eq. 9 in Ibrom et al. (2007) but depending on the 

stochastic nature of turbulence by incorporating 𝐻 cospectra may have led to the outliers. 
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Figure 5.4 Boxplots of CO2 flux correction factors at the upper system (a) and lower system (b) for each spectral correction 
method. 

 

Furthermore, 𝑈 is considered an important factor for spectral attenuation as high wind speeds favour 

high-frequency eddies and therefore correction factors might be expected to increase with 𝑈 

(Moncrieff et al., 1997). The dependency of the CO2 correction factors on 𝑈 is shown in Fig. 5.5 for the 

different LPF methods and for both systems. The correction factors after Moncrieff, Horst, Ibrom, and 

Fratini slightly raised with increasing 𝑈, more pronounced for the lower system than for the upper one. 

The correction factors after Massman, however, do not show any dependence on high 𝑈 at all. 
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Figure 5.5 CO2 flux correction factors (CF) of the low-pass filtering correction methods against wind speed (U) for the upper 
system (black dots) and the lower system (red dots). 

 

5.3.3 Flux Results 
 

Out of 4729 possible daytime 30 min intervals, 1992 (42%) CO2 flux data points passed the quality tests 

at both heights simultaneously (𝐸: 47%;  𝐻: 47%). A substantial part of missing data does not result 

from quality control but is caused by a data acquisition failure of the upper system during 20 days in 

July. Table 1 lists mean values of LPF-corrected and uncorrected fluxes for those selected 30 min 

intervals. It can be noted that higher 𝐻 and especially 𝐸 were measured at the upper system 

compared to the lower one. CO2 fluxes, however, were slightly more negative at the lower system, 

especially after corrections were applied. As expected, uncorrected 𝐻 values differ only slightly from 

corrected ones, whereas the CO2 flux and 𝐸 differ more strongly, especially at the lower system. A 

reduced major axis regression between 30-min flux values of the upper and lower system corrected 

after Moncrieff gives slopes of 1.14 (𝑅2 = 0.71), 1.23 (𝑅2 = 0.93) and 1.03 (𝑅2 = 0.97) for CO2, 𝐸, and 

𝐻 fluxes, respectively. For CO2 fluxes, the two least correlated LPF corrections were Massman against 

Fratini at the lower system with a slope of 0.86 and an 𝑅2 of 0.95. The average Bowen ratio is 0.83 for 

the upper system and 0.98 for the lower system. 
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Table 5.1 Mean daytime values of 30 min 𝐻, 𝐸, and CO2 fluxes that passed the quality tests for both systems and each LPF 
correction method with cumulative fluxes in parentheses. For CO2, 𝑢∗-filtered night-time values are also given. 

 None Moncrieff Massman Horst Ibrom Fratini 

Upper System       

𝐻 [W m-2] 

([MJ m-2]) 

89.9 

(360.5) 

90.4 

(362.4) 

91.0 

(364.9) 

90.5 

(362.8) 

90.4 

(362.4) 

90.4 

(362.4) 

𝐸 [W m-2] 

([MJ m-2]) 

106.2 

(422.5) 

111.6 

(444.1) 

110.1 

(438.1) 

110.8 

(441.1) 

110.9 

(441.3) 

113.3 

(450.8) 

CO2 [mol m-2 s-1] 

([g C m-2]) 

-4.4 

(-187.4) 

-4.8 

(-205.9) 

-4.6 

(-199.0) 

-4.7 

(-201.8) 

-4.7 

(-203.4) 

-5.0 

(-213.8) 

CO2 night [mol m-2 s-1] 

([g C m-2]) 

4.2 

(44.8) 

4.7 

(49.8) 

4.5 

(47.9) 

4.8 

(50.6) 

4.6 

(49.1) 

4.7 

(50.1) 

Lower System       

𝐻 [W m-2] 

([MJ m-2]) 

88.3 

(353.9) 

89.5 

(358.1) 

89.7 

(359.5) 

89.5 

(358.8) 

89.5 

(358.8) 

89.5 

(385.8) 

𝐸 [W m-2] 

([MJ m-2]) 

86.2 

(343.1) 

94.6 

(376.7) 

91.4 

(363.8) 

94.4 

(375.5) 

93.3 

(371.1) 

98.8 

(393.4) 

CO2 [mol m-2 s-1] 

([g C m-2]) 

-4.8 

(-205.5) 

-5.7 

(-243.6) 

-5.3 

(-227.3) 

-5.6 

(-240.5) 

-5.5 

(-235.8) 

-6.1 

(-264.2) 

CO2 night [mol m-2 s-1] 

([g C m-2]) 

4.4 

(46.3) 

5.2 

(55.3) 

4.8 

(51.3) 

5.2 

(55.5) 

5.0 

(53.1) 

5.2 

(55.4) 

 

The uncertainty induced from the choice of LPF corrections was calculated as the standard deviation 

between fluxes of the five LPF corrections averaged over all 30-min intervals. For CO2 fluxes of the 

upper system, the average flux with uncertainty of the five LPF corrections was -4.75  0.16 mol m-2 

s-1 (3.4%), for the lower system it was -5.63  0.35 mol m-2 s-1 (7.0%). For 𝐸, these values were 111.33 

 1.51 W m-2 (1.4%) for the upper system and 94.50  2.91 W m-2 (3.0%) for the lower system (the 

percentages represent the size of this uncertainty compared to the flux, averaged over all time steps). 

Likewise, the uncertainty from the two measurement heights was on average 24.8% of  CO2 fluxes and 

9.7% of 𝐸, averaged over all LPF corrections. As a comparison between the two most contrasting LPF 

corrections, CO2 (𝐸) fluxes corrected after Fratini were on average 7.4% (2.9%) higher than after 

Massman at the upper system and 16.2% (8.1%) higher at the lower system. In contrast, CO2 fluxes 

averaged over all LPF corrections were 18.3% higher at the lower system, whereas 𝐸 was 17.8% 

higher at the upper system. For comparison, random errors were estimated according to Finkelstein 

and Sims (2001) on a 30 min basis and were on average 34.2% (26.3%) of CO2 fluxes of the upper 

(lower) system and 16.2% (10.6%) of 𝐸. 

Figure 5.6 shows the frequency of the CO2 flux and 𝐸 corrected after Moncrieff separated for 10° 

wind direction sectors. Wind generally prevailed from western directions, whereas wind from southern 

and especially northern directions was less frequent. For western wind directions, a slight clockwise 

wind direction shift from the lower to the upper system is also noticeable. At both heights, the highest 

average CO2 uptake was detected from wind directions between 225° and 270°, with a CO2 flux of -

5.85 (-6.43) mol m-2 s-1 at the upper (lower) system. The smallest CO2 uptake was recorded from 090–

135° (-3.30 mol m-2 s-1) at the upper system and from 180–225° (-3.59 mol m-2 s-1) at the lower 

system. The highest CO2 flux differences between the two systems were recorded from 45–90°, both 

on average (1.14 mol m-2 s-1) and summed up (8.17 g C m-2). For 𝐸, the highest average flux was 

recorded from 135–180° (131.0 W m-2) at the upper system, and from 180–225° (107.3 W m-2) at the 
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lower system. The highest 𝐸 differences between the two systems occurred on average from 135–

180° (131.0 W m-2), and summed up from 225–270° (16.36 mm), as it was a more frequent wind 

direction. 

 
Figure 5.6 CO2 fluxes and 𝐸 aggregated by wind direction for the upper system (a, c) and the lower system (b, d). The shaded 
area indicates excluded data from northern wind directions. 

 

Fluxes of both daytime and night-time conditions are visualized as cumulative fluxes in Fig. 5.7 for the 

corrections after Massman and Fratini, as examples of an analytical and an in situ method, as well as 

without correction. Cumulated H2O fluxes were 23% higher at the upper system than at the lower one 

without LPF correction, but this discrepancy was smaller after corrections were applied (14% higher 

after Fratini). For cumulative CO2 sequestration, in contrast, the lower system yielded larger 

cumulative fluxes (12% without correction), and corrections even increased this discrepancy (28% after 

Fratini). The correction after Fratini produced larger fluxes than the correction after Massman of both 

CO2 (upper system: 8%, lower system: 19%) and H2O (upper system: 3%, lower system: 8%). Relations 

between the upper and lower system and between correction schemes remained consistent over the 

vegetation period. 
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Figure 5.7 Cumulative non gap-filled evapotranspiration (a) and CO2 fluxes (b) including both daytime and night-time 
situations that passed quality control. Up and Lo stand for the upper and lower system, respectively. 

 

5.3.4 Energy Balance Closure 
 

An ideal EBC would be represented by a slope of 1 and an intercept of 0 from a linear regression of the 

sum of turbulent fluxes versus available energy, and an ideal EBR would be 1. Table 2 demonstrates 

that EBC and EBR were generally better at the upper system than at the lower system with a higher 

EBR of about 0.09, though at both heights the sum of turbulent energy fluxes was lower than the 

available energy. All correction methods improved the EBC as well as the EBR and had relatively similar 

results, with Fratini performing slightly better especially for the lower system (EBR of 0.81). However, 

𝑅2 of the reduced major axis regression was slightly higher at the lower system than at the upper one. 
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Table 5.2 Energy balance coefficients from reduced major axis regression, as well as its coefficient of determination (𝑅2), 
and energy balance ratio (EBR). 

 Slope Intercept [W m-2] R² EBR 

Upper System     

None 0.86 -6.8 0.91 0.84 

Moncrieff 0.88 -5.8 0.91 0.86 

Massman 0.88 -6.4 0.91 0.86 

Horst 0.88 -5.6 0.90 0.86 

Ibrom 0.88 -6.0 0.91 0.86 

Fratini 0.89 -6.4 0.91 0.87 

Lower System     

None 0.77 -6.4 0.94 0.75 

Moncrieff 0.81 -4.7 0.93 0.79 

Massman 0.80 -5.5 0.94 0.77 

Horst 0.80 -4.7 0.93 0.79 

Ibrom 0.80 -5.1 0.93 0.78 

Fratini 0.83 -6.7 0.92 0.81 

 

5.3.5 Footprint 
 

The footprint climatology estimations are displayed in Fig. 5.8 and show footprints for the upper 

system extending about 2.5 times as far from the tower than for the lower system. The 90% cumulative 

footprint contour line contains forest outside the target area, whereas the 90% line of the lower system 

is still within the target area. Only 0.8% of all 30 min intervals of the lower system originated to less 

than 70% within the target area, whereas for the upper system that value was 4.2%. When considering 

daytime conditions only, these values dropped to 0.1% for the lower system and 0.2% for the upper 

system. A 70% threshold was used for flux filtering to be in line with a previous study at the research 

site (Ney et al., 2019), discarding all affected values from the further analysis. The general shape of the 

footprints extends in the east–west direction, with long upwind distances resulting from prevailing 

winds from western directions. 

 
Figure 5.8 Cumulative flux footprint estimates for daytime situations and all wind directions of the upper system (a) and the 
lower system (b) in 10% steps from 10 to 90%. The shaded area indicates excluded wind directions for data filtering. 

 



 

50 
 

 

Wind direction changes between the upper and lower system are expressed in the averaged footprint 

differences between the two systems (Fig. 9). The upper system recorded more wind from north-

western and north-eastern directions, while the lower system recorded more wind from western and 

south-eastern directions. The relatively large wind frequency differences between the heights from 

north-western wind directions, however, did not yield to analogous 𝐸 or CO2 flux differences from 

these directions. The modelled results further indicate that source area differences between the two 

systems mostly originated from within the fence not farther than about 130 m from the tower, while 

the area in the direct vicinity (< 20 m) around the tower was more important for the lower system. 

 

 
Figure 5.9 Relative importance of pixels more important for the upper system (a) and pixels more important for the lower 
system (b), without observations from north. Please note the different colour scales for the subplots, which were expedient 
to visualize the relatively smaller importance of individual pixels in (a) compared to (b). The coordinate origin is at the eddy-
covariance station and the white line delineates the fence for orientation. 

 

5.4 Discussion 

5.4.1 Assessment of Measurement Height 
 

The higher daytime CO2 uptake observed at the lower system despite lower evapotranspiration is a 

counterintuitive result that requires clarification. One possible explanation is that within the source 

area of the upper system more evaporation without accompanied photosynthesis occurs. Such an area 

could be the wetter and temporarily flooded Gleysols and Histosols in the southern part of the clear-

cut and near the stream to the west. The soil moisture measurements of Wiekenkamp et al. (2016) 

show that soil moisture was about 30% higher there compared to the direct vicinity of the tower in 

summer 2014. Furthermore, Graf et al. (2020) showed that peatlands responded with a 

disproportionately low ratio of CO2 uptake to evapotranspiration compared to other ecosystems 

during drought conditions. For the study site, this was the case in the previous two years and may have 

affected fluxes in 2020. Accordingly, the highest mean 𝐸 and CO2 flux were recorded from different 

wind directions, and the highest 𝐸 differences between the two systems were recorded from south-

south-east on average, while cumulative differences were largest from west-south-west due to more 

observations from there. The ratio between CO2 uptake and evapotranspiration was also the lowest 

from 135–180° compared to other wind directions at both systems. However, it remains not fully 

explained why the south-south-east sector stands out compared to south-western wind directions 

with similar or even wetter soil properties (Wiekenkamp et al., 2016). Figures 5.8 and 5.9 also indicate 

that source area differences between the two heights mostly originated from within the fence, thus 

not clearly demonstrating a strong influence of the boggy area outside of it. The lower system, on the 

other hand, could have a location bias of young, fast-growing trees located in the direct vicinity of the 

tower (see Fig. 5.1b), which could have increased CO2 uptake there. 
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The energy balance could not be closed with either LPF correction for both systems but was generally 

better for the upper system. A number of studies demonstrated that even with very carefully applied 

eddy-covariance set-ups, the sum of turbulent energy fluxes remained below the amount of available 

energy (Foken et al., 2010; Stoy et al., 2013). It is assumed that this results from low frequency eddies 

not detectable by eddy-covariance systems because of a limited averaging period (Foken 2008). In 

addition, closure of the energy balance cannot be expected for a heterogeneous exchange surface 

inducing advection (Mauder et al., 2020). Hence, the lower sums of 𝐻 + 𝐸 compared to the available 

energy are in line with expectations based on previous research. Since advection could be present even 

in rigorously filtered data, it could have both increased or decreased the EBR at both systems. Vickers 

and Mahrt (2006) showed that a mass continuity approach indicated long-term sinking motions above 

a forest clearing. Tilt corrections such as planar fit, however, remove the mean vertical motion, hence 

partially not taking into account vertical advection in the flux averaging period. Such long-term sinking 

motions above the study area may be induced by the rough-to-smooth surface change or by drainage 

flows following the sloped terrain (Lee 1998). On the other hand, Vickers and Mahrt (2006) also 

pointed out that vertical advection of CO2 based on mass continuity was a large term of net ecosystem 

exchange mainly on weak mixing nights, which were excluded for this analysis altogether. Besides that, 

the EBR discrepancies between the upper and lower system can have multiple causes. 𝐺 can differ 

within the footprint of each system from the measurements beneath the tower as soil properties are 

not uniform throughout the deforested area (Bogena et al., 2015). However, it is expected that average 

𝐺 of the lower system’s smaller footprint is more similar to measured 𝐺 than that of the upper system. 

The same applies to possible differences in net radiation, in particular due to different surface albedos. 

The energy stored in the air and biomass was investigated to be negligible for similar vegetation heights 

(Oncley et al., 2007). If anything, the error induced by disregarding the energy storage in the air should 

be higher for the upper system, where the air column beneath is larger compared to the radiometer. 

Hence, EBC might be poorer at the lower system partially because high frequency attenuation is not 

fully compensated by spectral corrections, as indicated by considerably lower 𝐸 at the lower system 

in Table 1. This raises the question of whether the CO2 flux at the lower system is likewise 

underestimated, given the spectral similarity between CO2 and H2O fluxes. Thus, insufficient LPF 

corrections at the lower system may also have contributed to the counterintuitive flux results 

described above. 

Spectral corrections might be insufficient for the lower system because sensors are not placed high 

enough in the inertial sublayer. Moore (1986) stated that for his analytical correction the measurement 

height above 𝑑 should be at least 10 times the sensor separation. For the lower system this means 

2.58 m above ground, which was barely met in our case. Measurements in the roughness layer can 

yield the CO2 flux and 𝐸 representing only local disturbances and thus being spatially variable within 

the same ecosystem (Katul et al., 1999). However, a precise definition of the roughness layer height 

and thus an appropriate measurement height is still lacking. For structurally complex ecosystems, 

Munger et al. (2012) recommended 𝑧 ≈ 𝑑 + 4(ℎ𝑐 − 𝑑), where ℎ𝑐 is the average canopy height. Since 

rough estimates of the average ℎ𝑐 are generally accepted (Rebmann et al., 2018), we calculated it as 

𝑑/0.67 according to the EddyPro© manual, which results in 𝑧  2.48 m above ground. For shrublands, 

however, Munger et al. (2012) recommended a fixed height of about 6 m, which in our case was barely 

satisfied by the upper system. Nicolini et al. (2017) accomplished feasible measurements as low as 0.9 

m above 𝑑, though over a homogeneous surface. Although these recommended heights can only be 

seen as very rough estimates, they indicate that the lower system might be at best at the lower end of 

the suitable range of 𝑧 and will be in the roughness layer with further expected vegetation growth. 
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The footprint estimates revealed that the source area of the upper system was to a large extent within 

the target area and therefore only few observations were removed. However, during 2014–2017 the 

90% cumulative footprint of the lower system had a maximum distance of about 200 m from the tower 

(Ney et al., 2019). In 2020, this distance decreased to 123 m, while the 90% footprint of the upper 

system had a maximum distance of about 311 m. This result indicates that the source area of both 

systems differed from previous observations, but with further vegetation growth it is expected that 

the upper system’s source area will approximate that of previous measurements by the lower system. 

The footprint model of Kljun et al. (2015) assumes horizontal homogeneity of the flow and thus has 

limited applicability to the study area. The complex flow over the forest edge particularly cannot be 

resolved, for which large-eddy simulations or, as a less computationally intensive solution, turbulence 

closure models such as SCADIS would be more suited (Sogachev & Lloyd 2004). This model was also 

able to indicate source hotspots in contrast to analytical footprint models in heterogeneous areas 

(Sogachev & Dellwik 2017). A recirculation area behind the edge inducing downward flows can be 

expected for a distance of 2–5 times the forest canopy height (Detto et al., 2008), corresponding to a 

distance between 50 and 125 m at the study site. This is a problem for northern wind directions where 

the forest edge is within this distance, and distortion of the mean flow is indicated by much higher 𝑢∗ 

at the upper system (see Fig. 5.2c). On the other hand, for the prevailing western wind directions, such 

edge turbulence effects were not detected. Roughness changes were also roughly taken into account 

for footprint modelling by including 𝑧0 for each wind direction quadrant. Hence, the footprint results 

might be useful for a first approximation of the source area and for testing spatial representativeness 

of the fluxes. 

Despite these general considerations, the presented results strongly speak against the first hypothesis. 

The large differences between fluxes of the two heights (see Table 1 and Fig. 5.7) prevent a seamless 

use of data from both time series and likely result from a different source area within the 

heterogeneous clear-cut area and insufficient LPF corrections for the lower system. Instead, in any 

future analysis of CO2 fluxes at the clear-cut, the period with two simultaneous measurements heights 

can be used to estimate the uncertainty from measurement height choice, which can then be 

compared to long-term trends or differences between sites. 

 

5.4.2 Spectral Corrections 
 

The higher average correction factors for the lower system throughout all methods are in line with the 

higher spectral attenuation observed there compared to the upper system (see Fig. 5.3c, d). This 

observed shift to higher frequencies with a lower sensor height coincides well with other experiments 

and well-known theoretical considerations (e.g., Moncrieff et al., 1997; Foken et al., 2012; Zhao et al., 

2019). The correction factors after Moncrieff and Massman show a clear dependence on 𝑈 because 

specific quantities of transfer functions are defined as functions of 𝑈 there. However, correction 

factors actually decrease initially with increasing 𝑈, since attenuation dominates in the low frequency 

range due to block averaging at 𝑈 < 0.5 m s-1 but becomes less important with increasing 𝑈 in unstable 

conditions. An insensitivity of correction factors to 𝑈 can be observed for the Massman method 

because for open-path systems, time constant equivalents from path averaging and sensor separation 

decrease with increasing 𝑈, and thus were assumed to compensate the shift to high frequency eddies 

(Massman 2000). These comparatively small correction factors at higher wind speeds resulted in 

slightly smaller 𝐸 and CO2 fluxes at both systems for the Massman method. 
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Polonik et al. (2019) concluded that the Fratini correction is not well-suited for open-path analysers 

because it accounts only for scalar attenuation, as it does not consider sensor separation, and 

therefore produced smaller fluxes than Massman. However, with the additional correction after Horst 

and Lenschow (2009), this limitation was not an issue for our analysis. The fluxes of the lower system 

corrected after Fratini had a higher magnitude and better energy balance closure compared to 

Massman or other methods, confirming its applicability to low measurement heights, even for a 

comparatively rough surface. Polonik et al. (2019) did not apply the correction after Horst and 

Lenschow (2009) because it produced unrealistically high correction factors in stable conditions, but 

in our case this correction increased the correction factor only by 0.07 for the upper system and 0.13 

for the lower system during stable conditions. Nonetheless, in a few cases it added large values up to 

0.7 to the correction factor. In unstable conditions, the maximum value added was 0.07 for the upper 

system and 0.24 for the lower system. 

Fratini and Mauder (2014) found a difference of about 3% in 𝐸 and CO2 fluxes caused by the use of 

spectral corrections either after Moore (1986) or Horst (1997), which contributed most to 

discrepancies between flux processing in EddyPro© and TK3. In our analysis, the highest differences 

(16.2%) were found between CO2 fluxes at the lower system corrected after Fratini and Massman. In 

contrast, Rannik et al. (2020) assessed that differences in fluxes from the choice of coordinate rotation 

were less than 10%. Nevertheless, it should be kept in mind when comparing different spectral 

correction schemes that spectral corrections are not the last step in the processing chain of EddyPro©, 

but density correction terms (Webb et al., 1980) are further added, which in addition can be 

implemented differently in other software (Fratini & Mauder 2014). It is also important to assess the 

importance of sources of uncertainty, such as measurement height and LPF correction, against the 

magnitude of real fluxes between sites or years that are the target of past and future studies on carbon 

budgets of forests and clear-cuts. For example, for annual net ecosystem exchange over the first four 

years after deforestation, Ney et al. (2019) found a source-towards-neutral change of 439 g C m-2, and 

differences of more than 600 g C m-2 compared to the surrounding spruce forest. The largest 

differences of daytime cumulative growing season C uptake resulting from combinations of LPF 

correction and measurement height in our study, 65 g C m-2 between Massman of the upper system 

and Fratini of the lower system, would not change these results fundamentally but account for a non-

negligible additional relative uncertainty. 

The uncertainty resulting from the choice of LPF correction can be subsumed under systematic errors 

associated with data processing in the classification scheme of Mauder et al. (2013). Other sources of 

uncertainty include systematic errors from instrumental calibration and random errors due to changes 

in footprint, instrumental noise, or the stochastic nature of turbulence. Stochastic errors estimated 

according to Finkelstein and Sims (2001) were considerably larger than the differences induced by the 

choice of a LPF correction method on a 30 min basis. Over longer time periods, however, random errors 

are cancelled out, whereas systematic differences from LPF corrections add up, as is illustrated in Fig. 

5.7. These discrepancies of different LPF corrections were stronger at the lower system, where LPF and 

concurrent correction factors were higher than at the upper system. Therefore, the results support the 

hypothesized importance of the choice of LPF correction, although flux differences between the two 

measurement heights were larger than even between the two most contrasting LPF corrections. 
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5.5 Conclusion 
 

We compared turbulent flux measurements at two heights above a clear-cut site, demonstrating the 

trade-offs that have to be considered when choosing the measurement height above a fetch-limited 

heterogeneous surface. Major limitations of these results include potential advection biasing the EBR 

at both heights and the limited applicability of the Kljun et al. (2015) footprint model to a study site 

with heterogeneous flow. However, the footprint model has shown a limited utility for estimating the 

influence of source and sink heterogeneities within the clearing. The upper system, with its larger 

footprint, is more influenced by the forest and edge turbulence effects from the northern sector, while 

the lower system likely lacks representativeness of the clearing and is susceptible to higher LPF. These 

effects resulted in significant flux discrepancies between the two heights, which oppose the first 

hypothesis that a seamless use of the data from both time series is acceptable. We also evaluated 

different LPF correction schemes. The differences between the methods after Moncrieff, Massman, 

Horst, Ibrom, and Fratini induced a systematic uncertainty to the fluxes, which was stronger for the 

lower system (CO2: 7.0%, H2O: 3.0%) than for the upper system (CO2: 3.4%, H2O: 1.4%). The flux 

discrepancies of the different correction methods added up over time and hence support the second 

hypothesis. Compared to other methods, the Fratini approach yielded higher fluxes and a better 

energy balance closure for the lower system. Hence, our analysis confirms that for long-term single-

point flux observations above forest clearings, information about changes of measurement height are 

critical for interpreting the data, and that it is also important to consider the spectral correction 

method when comparing fluxes between sites. 
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Abstract 

Various environmental variables drive gross primary productivity (GPP) and light use efficiency (LUE) 

of forest ecosystems. However, due to their intertwined nature and the complexity of measuring 

absorbed photosynthetically active radiation (APAR) of forest canopies, the assessment of LUE and the 

importance of its environmental drivers are difficult. Here, we present a unique combination of 

measurements during the 2021 growing season including eddy covariance derived GPP, sap flow, 

Sentinel-2 derived canopy chlorophyll content and in situ measured APAR. The importance of 

environmental variables for GPP models is quantified with state-of-the-art machine learning 

techniques. A special focus is put on photosynthesis-limiting conditions, which are identified by a 

comparison of GPP and sap flow hysteretic responses to vapor pressure deficit and APAR. Results 

demonstrate that a) LUE of the canopy’s green part was on average 4.0%  2.3%, b) canopy chlorophyll 

content as a seasonal variable for photosynthetic capacity was important for GPP predictions, and c) 

on days with high vapor pressure deficit, tree-scale sap flow and ecosystem-scale GPP both shift to a 

clockwise hysteretic response to APAR. We demonstrate that the onset of such a clockwise hysteretic 

pattern of sap flow to APAR is a good indicator of stomatal closure related to water-limiting conditions 

at the ecosystem-scale. 

Plain Language Summary 

The efficiency by which a forest uses sunlight to perform photosynthesis is an important feature for 

climate and ecosystem modeling. However, the light that is actually captured by forests and is useable 

for photosynthesis is difficult to assess. Here, we show a sophisticated approach to estimate the light 

use efficiency of a spruce forest in Germany and analyze environmental influences on it and on 

photosynthesis. Our results indicate that about 4% of the light useable for photosynthesis was actually 

used by the forest during the 2021 growing season and that seasonal variations of chlorophyll in the 

canopy are a good indicator for carbon capture. 
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6.1 Introduction 
 

The gross primary productivity (GPP) of terrestrial ecosystems, of which forests are the dominant 

factor (Pan et al., 2011), is a key element of the global carbon cycle (Canadell et al., 2021). The resulting 

biomass further is important for human demands of food, energy, and construction materials (Taye et 

al., 2021). The assimilation of atmospheric CO2 via photosynthesis is primarily driven by 

photosynthetically active radiation (PAR), though it is also sensitive to intertwined environmental and 

physiological variables, such as temperature, water and nutrient availability, or chlorophyll content of 

the canopy (Anav et al., 2015; Bao et al., 2022; Keenan et al., 2012). 

The light use efficiency (LUE) concept was established by Monteith (1972) and describes how efficiently 

solar energy is converted to chemical energy. It can be expressed as the ratio of GPP to the absorbed 

PAR (APAR). Under optimal conditions, a linear relation between GPP and APAR is assumed (Monteith, 

1972), and LUE models utilize this logic for estimating GPP based on APAR and sensitivity functions for 

environmental conditions limiting LUE (e.g., Horn & Schulz, 2011; Stocker et al., 2020; Wang et al., 

2018). The shape of these functions representing the response of LUE to meteorological variables, 

however, varies widely between approaches (Bao et al., 2022). Although LUE models are widely used 

to predict GPP, such as for the MODIS GPP product (Running & Zhao, 2015), they rely on accurate APAR 

measurements. For most sites with GPP data, these are only available from remote sensing derived 

fraction of APAR (fAPAR) products (Garbulsky et al., 2010). For forest ecosystems, however, fAPAR 

differed among satellite products (Tao et al., 2015) and deviated from in situ fAPAR measurements, 

especially for temperate coniferous forests (Putzenlechner et al., 2019a). On the other hand, in situ 

measurements of fAPAR are laborious, especially for forest canopies, because of the high 

spatiotemporal variability of their light transmissivity (Leuchner et al., 2011; Vesala et al., 2000), which 

requires a sophisticated network of PAR sensors to capture the variability of different flux terms 

(Putzenlechner et al., 2019b; Widlowski, 2010). Hence, few studies investigated environmental 

controls of LUE for forest ecosystems based on in-situ APAR measurements (Goulden et al., 1997; 

Urban et al., 2012). 

With climate change, a shift from energy-limited to water-limited conditions is expected for many 

terrestrial ecosystems (Denissen et al., 2022), making it important to accurately identify and 

distinguish those conditions. Vapor pressure deficit (VPD) was found to be a dominant control for 

stomatal conductance and, thus, for limiting photosynthesis (Katul et al., 2003; Castro et al., 2018). Sap 

flow sensors measure the transport of water through the xylem and in this way provide a continuous 

proxy of stomatal conductance (Ewers et al., 2007; Köstner et al., 1998; Steppe et al., 2015). Brinkmann 

et al. (2016) compared the sap flow response to drying conditions of different European tree species 

and showed that the sap flow of Picea abies was especially sensitive to limited water availability. 

Hence, despite being promising for analyzing limiting conditions of photosynthesis, as shown by the 

usefulness of sap flow to estimate GPP (Klein et al., 2016), a combination of sap flow and GPP 

measurements has rarely been performed to show that the tree-scale sap flow response is analogous 

to that of the ecosystem-scale GPP. 

Furthermore, the ratio of available light in the red to light in the far-red domain (R/FR) is a measure of 

light quality (Ammer, 2003; Turnbull, 1991) and can adapt chlorophyll content, though a direct relation 

to CO2 assimilation could not be found (Heraut-Bron et al., 1999). Besides meteorological drivers, 

canopy nitrogen and leaf mass per area were shown to be important to explain the variation in LUE 

across species and environments (Green et al., 2003), though both are rarely considered in LUE models. 

The canopy chlorophyll content (CCC) incorporates both of these measures and showed a stronger 

relationship to GPP than leaf area index (LAI) or leaf chlorophyll content (Cab) alone (Croft et al., 2015). 
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GPP seasonality of a soybean field was further dominated by CCC, while APAR and sun induced 

chlorophyll fluorescence peaked about two weeks earlier (Wu et al., 2022). In view of such a plethora 

of environmental controls on GPP, variable importance measures of machine-learning models are a 

valuable tool to quantify the model importance of individual highly non-linear sensitivities that are 

otherwise difficult to quantify (Archer & Kimes, 2008; Grömping, 2009; Williamson et al., 2021). 

For this study, a multitude of environmental data were collected for a European spruce forest, 

including eddy covariance derived GPP, APAR from a network of PAR sensors, sap flow of three trees, 

and various environmental variables including satellite derived CCC. Based on these data, our goals 

were threefold, to (i) assess the LUE of a spruce forest and analyze the impact of various environmental 

drivers on it, (ii) quantify the importance of single environmental variables for machine-learning GPP 

models, and (iii) identify limiting conditions of photosynthesis by linking tree-scale sap flow 

measurements to ecosystem-scale GPP and meteorological data. 

 

Figure 6.1 Light Detection And Ranging (LiDAR) derived canopy heights from the Wüstebach forest site, western Germany. 
LiDAR data collected on a March 2022 measurement campaign and were used for visualization only. 
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6.2 Materials and Methods 

6.2.1 Study Area Description 
 

Measurements took place between April 28 and September 30, 2021 at the Wüstebach forest site 

(50°30'16"N, 6°19'50"E), Germany, which is part of the TERENO network (TERrestrial ENvironmental 

Observatories; Bogena et al., 2018). The forest lies at 600-620 m asl within the Eifel National Park near 

the Belgian border and is a spruce monoculture (Picea abies (L.) H. Karst.) planted in 1946 with an 

overall tree density of 370 trees/ha (Etmann, 2009) and an average canopy height of 25 m. The 

understory mostly consisted of young beech plantings (Fagus sylvatica L.), Vaccinium myrtillus L., ferns 

(e.g., Struthiopteris spicant (L.) Roth) and various mosses. The dominant soil types are Cambisols and 

Planosols (Graf et al., 2014) and the dominant soil textures are silt loam and silty clay loam (Borchardt, 

2012). During April – September 2021 the site had a mean temperature of 12.2 °C, and received 629 

mm of precipitation. At the nearest long-term official weather station Kall-Sistig of the German 

Weather Service, about 13 km to the east, this period was 0.6 °C colder and had 158% of the 

precipitation compared to the 1991-2020 averages. April and May were especially cold (-3.2 and -2.4 °C 

deviation, respectively) and July was especially wet (347% of average), while June was significantly 

warmer than average (+2.4 °C). 

 

6.2.2 Eddy Covariance, Meteorological, and Sap Flow Measurements 
 

Turbulent fluxes of CO2, water vapor and sensible heat were measured with an eddy covariance system 

consisting of a sonic anemometer (CSAT-3, Campbell Scientific, Logan, Utah, USA) and an open-path 

infrared gas analyzer (LI-7500, LI-COR, Lincoln, Nebraska) with 15 cm sensor separation. The 

instruments were mounted at 38 m above ground on a tower above the forest canopy (Fig 1). Raw 

data recorded at 20 Hz were processed to 30-min fluxes with the software TK3 (Mauder & Foken, 

2011), applying the strategy for quality control after Mauder et al. (2013), which includes tests for 

stationarity, well-developed turbulence, and source area representativeness. Following this, only data 

of the highest quality (flag 0) were retained and a storage flux estimated from single point CO2 

measurements was added. Post-processing was carried out using the REddyProc software package 

(Wutzler et al., 2018), which includes friction velocity filtering, gap filling and partitioning of net 

ecosystem exchange of CO2 into ecosystem respiration (Reco) and GPP. For partitioning, the method 

after Reichstein et al. (2005) was applied, which determines the temperature sensitivity of Reco from 

nighttime data and extrapolates this to daytime. 

Further environmental variables used for the analysis include measurements of global radiation (I) and 

diffuse radiation (d) measured at 34 m (NR01, Hukseflux Thermal Sensors, Delft, Netherlands), from 

which the diffuse fraction (d/I) was calculated. In addition, air temperature (Tair) and relative humidity 

(rH) were measured at 38 m (HMP45, Vaisala Inc., Helsinki, Finland), from which VPD was derived. 

From measurements of soil water content (SWC) in 2 cm, 5 cm, 10 cm, 20 cm, 50 cm and 80 cm depth 

(CS616, Campbell Scientific, Logan, Utah, USA) a root zone SWC weighted by thickness of layer was 

calculated as 𝑆𝑊𝐶𝐴𝑉𝐺 = (𝑆𝑊𝐶02 ∗ 3 + 𝑆𝑊𝐶05  ∗ 4 +  𝑆𝑊𝐶10 ∗ 7 +  𝑆𝑊𝐶20 ∗ 20 +  𝑆𝑊𝐶50 ∗ 30 +

 𝑆𝑊𝐶80 ∗ 36) /100, where each subscript denotes the depth in cm to account for dynamic root growth 

(Wang et al., 2021). 

As an indicator of stomatal responses, sap flow density (JS) was derived from three spruce trees about 

20 m to the southeast of the tower (Fig. 6.1). Each tree was instrumented with a Granier sensor 

comprising four needles (Ecomatik SF-L, Ecomatik, Dachau, Germany), mounted at 1.5 m height, from 

which the average JS of the trees was derived from the temperature difference between two probes 
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(Bogena et al., 2015, Neuwirth et al., 2021). The respective equation follows empirical relations 

(Granier, 1987): 

𝐽𝑆 = 119 ∗ (
∆𝑇𝑚𝑎𝑥−∆𝑇

∆𝑇
)

1.231
,                   (Eq. 6.1) 

where JS is the sap flow density (g m-2 s-1), ΔT is the actual temperature gradient between the two 

probes and ΔTmax the maximum temperature gradient measured between the probes in a given time 

period. The length of this time period depends on the prevailing environmental conditions, because 

ΔTmax represents a state of zero sap flow. According to the manufacturer’s recommendations 

(Ecomatik, 2005) we identified ΔTmax as the maximum ΔT of the vegetation period representing no 

radial tree-trunk increment and an rH of 100% with transpiration tending to zero. With these 

measurements, the relationships between JS, VPD, and APAR were then analyzed to identify energy-

limited and water-limited conditions for photosynthesis. 

 

6.2.3 Sentinel-2 Derived Vegetation Indices 
 

The normalized difference vegetation index (NDVI) was used for the estimation of APAR by green 

vegetation and CCC was used as an indicator of photosynthetic capacity to incorporate nutrient 

availability and past environmental conditions, especially the delayed response of chlorophyll content 

to suitable meteorological conditions in the early growing season (Gitelson et al., 2014). In order to 

estimate NDVI and CCC, Sentinel Level-2A bottom of atmosphere images between April and October 

2021 were downloaded from Google Cloud via sen2r (Ranghetti et al., 2020). A mask was applied to 

filter out clouds and shadows, and the images were further visually inspected to exclude scenes with 

undetected clouds or cloud shadows over the study area, after which 13 scenes well distributed over 

the growing season remained. NDVI was calculated as 

𝑁𝐷𝑉𝐼 =  (𝐵842 − 𝐵665) / (𝐵842 + 𝐵665),           (6.2) 

where the subscript denotes the wavelength in nm of the respective Sentinel-2 band (B), i.e. band 8 

(near infra-red) for B842 and band 4 (red) for B665. For CCC, the 13 scenes were resampled to 20 m spatial 

resolution and processed with the Biophysical Processor in SNAP 

(https://step.esa.int/main/toolboxes/snap/) to yield LAI and Cab products. The algorithm for 

biophysical variables included in SNAP consists of an artificial neural network trained with PROSAIL 

radiative transfer model input variables (Weiss et al., 2020). CCC was then derived by multiplying LAI 

with Cab and for both NDVI and CCC pixel values of the woodlot were averaged. Finally, values from the 

13 scenes were linearly interpolated to a daily scale. 

 

6.2.4 PAR and R/FR Measurements 
 

PAR was recorded instantaneously every 10 min with full-spectrum quantum sensors (SQ-521-SS, 

Apogee Instruments, Logan, Utah, USA) measuring the photon flux in the spectral range from 389 to 

692 ± 5 nm. The sensors’ error due to temperature response is below 2% for prevalent temperatures 

of the 2021 growing season (5 °C–30 °C). The R/FR ratio was recorded likewise with S2-431-SS sensors 

(Apogee Instruments, Logan, Utah, USA) measuring red light from 645 to 665 nm ± 5 and far-red light 

from 720 to 740 nm ± 5 nm. All PAR and R/FR sensors were connected to the wireless sensor network 

SoilNet (Bogena et al., 2010). Incident PAR (PARin) and outgoing PAR (PARout) and incident R/FR (R/FRin) 

were measured with two opposite PAR sensors and one R/FR sensor above the forest canopy on a 
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tower at 38 m above ground (Fig. 6.1). In order to find a suitable field for measurements of transmitted 

PAR (PARtrans) and R/FR (R/FRtrans) below the canopy, several criteria were set. According to these, the 

field had to be: (i) within the 50% cumulative source area of the eddy covariance station as calculated 

after Kormann and Meixner (2001), (ii) at least 80 m away from the forest edge to minimize the 

influence of lateral radiation fluxes, and (iii) representative of the general woodlot comprising the 50% 

footprint area in terms of canopy density. For the latter, a LiDAR (Light Detection And Ranging) point 

cloud from Geobasis NRW (2019) was used and the ratio of above ground to total LiDAR points for 

each 30-m cell of the woodlot was calculated. A representative cell was identified as being within one 

standard deviation from the mean ratio of the whole woodlot. Based on these criteria, a measurement 

field 70 m to the southwest of the tower was chosen (Fig. 6.1). There, 10 PAR sensors were mounted 

on tripods in 1.3 m height and arranged with 10 m distance in two hexagons to maximize the sensing 

area (Putzenlechner et al., 2019b) and one of these hexagons was also equipped with six R/FR sensors. 

For calculating APAR, cases with PARtrans > PARin were excluded as a sign of cloud cover only above the 

tower. High wind speeds can induce an increase of the sampling error of PARtrans measurements from 

a limited number of sensors during direct light conditions (Putzenlechner et al., 2019b). This sampling 

error is caused by the high spatial variability of forest canopies (Leuchner et al., 2011; Widlowski, 

2010). Therefore, the fAPAR was calculated first and filtered for low wind speeds (< 5 m s-1), and data 

gaps were linearly interpolated. We also considered reducing the sampling error further by filtering 

for diffuse light conditions (d/I > 0.9). However, important conditions such as the highest VPD typically 

occur during direct light conditions, and only considering diffuse light would also ignore the bowl-

shaped diurnal cycle of fAPAR during direct light (Widlowski, 2010). The domain-level fAPAR was 

calculated as a two-flux product instead of a three-flux product because in this way the bias to fAPAR 

from all four flux terms is expected to be smaller (Putzenlechner et al., 2020; Widlowski, 2010): 

𝑓𝐴𝑃𝐴𝑅 =
1

𝑛
∑ 1 −𝑛

𝑖  𝑃𝐴𝑅𝑡𝑟𝑎𝑛𝑠𝑖
/𝑃𝐴𝑅𝑖𝑛,                  (Eq. 6.3) 

where i is the sensor location of each PARtrans sensor, however, without measurements from one sensor 

due to malfunctioning (n=9). APAR of green parts of the tree canopy was then calculated as 

𝐴𝑃𝐴𝑅𝑔 = 𝑃𝐴𝑅𝑖𝑛 ∗ 𝑓𝐴𝑃𝐴𝑅 ∗ 𝑁𝐷𝑉𝐼,                  (Eq. 6.4) 

for which each 10-min values of PARin and fAPAR were linked to the NDVI values of the corresponding 

day. NDVI was used for the proportion of green vegetation because of its normalized nature and utility 

in previous research to estimate APARg (Nestola et al., 2016). 

Data from the six R/FR sensors were averaged for the calculation of R/FRtrans. As R/FR is strongly 

dependent on solar elevation and the precipitable water vapor in the atmosphere, which attenuates 

light in the far-red but not in the red domain (Doroszewski et al., 2015; Kotilainen et al., 2020), we also 

calculated the difference between the R/FR ratios above and below the canopy as 𝑅/𝐹𝑅𝑑𝑖𝑓𝑓 =

𝑅𝑖𝑛/𝐹𝑅𝑖𝑛 − 𝑅𝑡𝑟𝑎𝑛𝑠/𝐹𝑅𝑡𝑟𝑎𝑛𝑠 to represent the change of the spectral ratio caused by the canopy alone. 

All radiation data were filtered for daytime conditions (PARin > 10 mol m-2 s-1) and linked to GPP 

estimates by aggregating them to 30-min values. Finally, green LUE was calculated as 

𝐿𝑈𝐸𝑔 = 𝐺𝑃𝑃/ 𝐴𝑃𝐴𝑅𝑔.                    (Eq. 6.5) 
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6.2.5 Evaluation of Environmental Drivers 
 

LUEg was calculated at the half-hourly scale and at the daily scale from daytime integrals of GPP and 

APARg. Half-hourly LUEg, however, has the problem of being skewed because a ratio is more affected 

by changes of the denominator (APARg), especially if it is low (Hedges et al., 1999). At the daily scale, 

the range of APARg was much smaller, and hence the dependence on APARg was not as dominant (see 

Fig. 6.8). For this reason it is necessary to present half-hourly LUEg with a log10-transformed y-axis so 

that LUEg is affected equally by changes of the numerator and denominator. However, Feng et al. 

(2014) stated to use log-transformations with caution as statistical modeling on those data may not be 

relevant for the original data. Therefore, we also provide an alternative approach in the supporting 

information, that uses deviations of GPP from a year- and site-specific optimal GPP (GPPopt) in relation 

to APARg instead (see Text S1 and Fig. 6.9 and 6.10).  

In order to robustly quantify the importance of environmental variables for predicting half-hourly 

daytime GPP, two different feature importance measures based on different machine-learning 

algorithms were applied. First, permutation importance based on random forest (RF; Breiman, 2001), 

and second, SHAP values (SHapley Additive exPlanations; Lundberg & Lee, 2017) based on gradient 

boosting (GB; Friedman, 2002). Both RF and GB have the advantage of capturing even highly non-linear 

relations between target and predictors and are based on an ensemble of decision trees. For RF, all 

trees are grown independently with a random subsample of data, while the trees for GB are built based 

on the errors of the previous tree in order to minimize a loss function. The permutation importance is 

assessed by randomly shuffling the values of each variable and measuring the decrease in prediction 

accuracy. To avoid a bias from correlated predictors, we used the conditional permutation scheme of 

Strobl et al. (2008), where values are permuted within a grid of correlated variables. For this, we 

applied the latest version of this algorithm in the permimp package in R, which also considers non-

linear dependence between variables (Debeer & Strobl, 2020), based on the conditional inference 

trees implementation of RF in cforest (Hothorn et al., 2006). SHAP is a local method to explain the 

importance for individual predictions by unifying various Shapley value methods, which use equations 

from game theory to fairly allocate rewards. For this study, we applied SHAP via SHAPforxgboost (Liu 

& Just, 2021) based on the XGBoost implementation of GB (Chen & Guestrin, 2016). For both models, 

only non-gap-filled values were considered and hyperparameter tuning and a random 5-fold cross-

validation was conducted with caret (Kuhn, 2008). As RF and GB are subject to random variation, the 

procedures were repeated 10 times and results were averaged to produce more robust estimations. 
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Figure 6.2 Gross primary productivity (GPP) against green canopy absorbed photosynthetically active radiation (APARg) during 
the 2021 growing season, colored by canopy chlorophyll content (CCC) and dot sizes by vapor pressure deficit (VPD). 
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Figure 6.3 Time series of daily averaged daytime values of (a) green canopy light use efficiency (LUEg), (b) gross primary 
productivity (GPP), (c) green canopy absorbed photosynthetically active radiation (APARg), (d) canopy chlorophyll content 
(CCC), (e) air temperate (Tair), (f) vapor pressure deficit (VPD), (g) soil water content (SWCAVG), and (h) sap flow density (JS) 
from April 20 to September 30. For LUEg and GPP, only those days with at least 25% non-gap-filled GPP data were considered. 

 

6.3 Results 

6.3.1 Interpretation of Environmental Drivers 
 

The efficiency by which APARg is used for photosynthesis is observed by a light response curve of GPP 

(Fig. 6.2). For each APARg domain, a wide range of GPP values was recorded. Low GPP values at a 

particular APARg corresponded well with a low CCC, indicating a limiting effect on photosynthetic 

capacity. In general, GPP displays an increasing trend with increasing APARg until about 600 mol m-2 

s-1, after which a saturation of APAR occurred. The larger circles further show that many of the lowest 

GPP values at high APAR coincided with high VPD, most of them during a warm and dry spell in June. 

The good agreement between CCC and GPP can also be seen in time series (Fig. 6.3b,c) and a 

scatterplot (Fig. 6.11a). In Fig. 6.3, no significant increase of GPP, LUEg or CCC can be noticed until mid-

June. In mid-July and mid-August, however, LUEg exhibited two marked peaks with a minimum in 

between. APARg and JS had a high day-to-day variation while Tair and VPD peaked in mid June. Over the 

whole research period, daily LUEg was 4.0%  2.3%, with daily values ranging from 0.7% to 12.1%. Out 

of total APAR, the LUE was 3.1% on average, and of PARin just 2.8%. 

In general, the response to environmental drivers was similar for half-hourly and daily LUEg. Tair had a 

relatively clear optimum around 15 °C for both 30 min and daytime averages, though even around 

15 °C low LUEg values were observed (Fig. 6.4a, b). Half-hourly LUEg was rather insensitive to VPD until 

it reached values above about 7.5 hPa, after which a decrease was noticeable. For daily LUEg a similar 
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pattern was evident, although the decrease started at daytime averaged VPD > 3 hPa (Fig. 6.4c, d). 

Half-hourly and especially daily LUEg were higher during diffuse compared to direct light conditions. 

Similarly, they tended to be higher when R/FRdiff was lower (Fig. 6.4e-h), meaning that the ratio was 

shifted comparatively less to the far-red spectrum after passing the canopy. However, neither showed 

a clear response to SWCAVG (Fig. 6.4i, j). 

 

 

Figure 6.4 Green canopy light use efficiency (LUEg) at a half-hourly scale with log10-transformed y-axes (left) and at a daytime 
scale (right) against air temperature (a,b), vapor pressure deficit (c,d), diffuse fraction (e,f), red to far-red ratio difference 
between above and below canopy (g,h), and soil water content (i, j), each with a LOESS (locally estimated scatterplot 
smoothing) function in blue and a 0.95 confidence interval in grey. For daily LUEg, only those days with at least 25% non-gap-
filled GPP data were considered. 
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Figure 6.5 Average conditional permutation importance (unitless) of environmental variables for a random forest gross 
primary productivity (GPP) model with error bars displaying one standard deviation between 10 iterations (a), and SHAP 
values of those variables for a gradient boosting GPP-model (b). The more values deviate from 0, the more important was 
the respective variable for the prediction, with negative values related to low GPP outcomes. Numbers on the left show the 
average absolute SHAP value (unitless) of each variable. R² of a random 5-fold cross-validation of the models was 0.83 for 
random forest and 0.84 for gradient boosting. 

 

6.3.2 Importance of Environmental Drivers for Machine Learning Models 
 

The results from permutation importance and SHAP agree well, indicating that the importance 

estimations can be considered robust. For both approaches, CCC was the most valuable feature for 

predicting GPP closely followed by APARg (see Fig. 6.5). Though only according to SHAP, SWCAVG had a 

higher importance than the remainder variables. RF and GB both could reproduce GPP well within a 5-

fold random cross-validation, resulting in an R² of 0.83 for RF and 0.84 for GB (Fig. 6.12), though this 

does not tell how good the models are for spatiotemporal extrapolation. However, when replacing 

APARg and CCC by the rough proxies of solar zenith angle (SZA) and day of year (DOY), the RF model 
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performance drops only to an R² of 0.81 with SZA and DOY as the most important variables (see Fig. 

6.13). A RF model with neither of them, on the other hand, has only an R² of 0.56. This leads to the 

impression that the diurnal and seasonal information contained in APARg and CCC are more important 

than their specific quantities. 

The analysis of individual SHAP values further revealed that high CCC values yielded higher GPP 

predictions and the limiting effect of low APAR was also evident. Dependence plots of SHAP values of 

each variable give a more detailed view, especially for variables with a rather small range of SHAP 

values (see Fig. 6.14). Here, it is notable that both very low and high VPD yielded a low GPP outcome, 

while high and low SWCAVG values are related to high GPP outcomes. 

 

Figure 6.6 Sap flow density (JS) against gross primary productivity (GPP) colored by daily maximum vapor pressure deficit 
(VPDmx) (a) and JS against VPD colored by canopy chlorophyll content (CCC) (b). The star symbols in panel (b) represent 
observations with solar zenith angle > 70° and VPD > 5 hPa. 
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Figure 6.7 Hysteresis plots between sap flow density (JS) and vapor pressure deficit (VPD) (a-d), gross primary productivity 
(GPP) and VPD (e-h), JS and green canopy absorbed photosynthetically active radiation (APARg) (i-l), and GPP and APARg (m-
p), averaged for four different daily maximum VPD classes (columns). A clockwise (anti-clockwise) pattern occurs if afternoon 
and evening values of JS or GPP are higher (lower) than in the morning at the same VPD or APARg. 

 

6.3.3 Sap Flow – GPP Relationship and their Response to Environmental Drivers 
 

The correlation of JS to GPP in relation of VPD and CCC is shown in Fig. 6.6. Half-hourly periods with 

high GPP despite very low JS (< 0.025 ml cm-2 min-1) occurred on very low maximum daily VPD (VPDmx) 

days (Fig. 6.6a), indicating that JS and GPP were not correlated when photosynthesis required little 

transpiration. For a given value of JS above 0.05 ml cm-2 min-1, GPP was generally lower on high VPDmx 

days and likewise for the same GPP, a higher JS occurred on high VPDmx days. In the relation to VPD, JS 

showed a strong increase with increasing VPD until about 7.5 hPa were reached, after which JS seems 

to be capped and even showed a slightly decreasing trend for VPD > 12.5 hPa (Fig. 6.6b). However, 

even at low VPDs, JS was within a broad range of about 0.1 ml cm-2 min-1. Lower JS values corresponded 

well to low CCC, indicating a limiting influence on sap flow potential. Extraordinarily low JS values stand 
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out at moderate VPD values of about 10 hPa. These values correspond to low sun angles (SZA > 70°; 

star symbol in Fig. 6.6b) and occurred in the early morning after nights during which VPD remained 

relatively high but APAR and thus JS were still low. 

The hysteretic responses of JS and GPP to VPD and APARg are shown in Fig. 6.7 for different VPDmx 

classes. The averaged hysteresis of JS to VPD showed markedly different patterns for different VPDmx 

domains. For VPDmx < 1.5 hPa (not shown), a chaotic pattern generally dominated, though for days 

with VPDmx between 1.5 and 5 hPa, an anti-clockwise pattern with higher JS later in the day at same 

VPD could be observed (Fig. 6.7a). A transitional pattern occurred for days with VPDmx between 5 and 

9 hPa without a clear hysteresis or just a clockwise loop around midday (Fig. 6.7b). On VPDmx days 

between 9 and 15 hPa, instead, a clear clockwise pattern with lower JS later in the day at the same VPD 

levels was visible (Fig. 6.7c). For days with VPDmx above 15 hPa, the clockwise hysteresis was even more 

pronounced, and a decreasing JS despite further rising VPD in the early afternoon occurred (Fig. 6.7d). 

GPP, on the other hand, always showed a clockwise response to VPD independent of the VPDmx scale 

(Fig. 6.7e-h). In the response to APARg, however, JS and GPP both showed a clockwise pattern on high 

VPDmx days. Though on lower VPDmx days, GPP did not have a time lag towards APARg, while JS had an 

anti-clockwise pattern that shifted towards a clockwise pattern with increasing VPDmx (Fig. 6.7i-p). 

 

6.4 Discussion 

6.4.1 Identification of Photosynthesis Limiting Conditions 
 

Besides this study, an anti-clockwise hysteretic response of JS to VPD was reported only for P. sylvestris 

growing in a wet and cool climate (Wang et al., 2019b). This hysteretic response has not been found 

for plants in tropical (Motzer et al., 2005; Roddy, 2013) or semi-arid climates (Li et al., 2016; Zha et al., 

2017). A delayed response of JS to VPD can be explained by the use of water stored in the upper stem 

during the morning hours (Goldstein et al., 1998; Perämäki et al., 2005). Stored water is only sufficient 

on low VPD and APARg days, and is not detected by sap flow measurements usually carried out at 1–

1.5 m height (Wang et al., 2019b). We hence interpret the shift of the JS response to VPD from anti-

clockwise to clockwise as a sign of non-sufficient water storage in the upper plant. Main possible 

reasons for afternoon stomatal closure causing a clockwise response of JS to VPD given by previous 

studies (O’Brien et al., 2004; Zeppel et al., 2004; Q. Zhang et al., 2014) can be summarized to: (i) a 

declined soil–root conductance due to decreased SWC, (ii) a higher stomatal sensitivity to VPD due to 

changed water potential gradients or xylem sap chemical composition, and (iii) decreased APARg, 

caused by the delay of VPD to radiation resulting in higher APARg values earlier in the day at a given 

VPD (see Fig. 6.15). 

Given that GPP showed a clockwise response to VPD even on very low VPDmx days, we conclude that a 

decrease of APARg and hence stomatal closure induced by energy limitations is the main cause for such 

cases at this particular site. This means that for higher VPDmx days a clockwise JS-VPD pattern by itself 

is not a sufficient indicator for water stress or atmospheric demand induced stomatal closure. The 

decrease of JS despite increasing VPD only on the highest VPDmx days can be considered a clearer sign 

of such conditions. As photosynthesis is primarily driven by APARg, the non-hysteretic response of GPP 

to APARg on low VPDmx days seems reasonable. Since JS is likewise driven by APARg, but also scaled by 

VPD, which is typically highest in the afternoon, a slight anti-clockwise response to APARg can be 

expected (Zeppel et al., 2004) that is also enhanced by the use of stem water in the morning. Hence, 

the shift to a clockwise pattern of both GPP and JS to APARg only on the highest VPDmx days can be 

regarded as a good indicator of stomatal closure related to high atmospheric water demand at this site 

and year. Water-limited conditions, however, also depend on soil water potential, which can only be 
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roughly estimated for this site. According to the soil water retention curve for the dominant silt loam 

texture after Tuller and Or (2004), even the minimum SWCAVG of 20.3% during the 2021 growing season 

would have resulted in a pressure head of no less than about -10 m. 

Limiting conditions for photosynthesis can also be identified by a time series of the relevant variables 

(see Fig. 6.3 and Fig. 6.16). For example, June 12 saw a marked minimum of APARg around noon, which 

was likewise evident for VPD, JS and GPP, demonstrating an energy-limited response. During a high 

APARg period from June 14-19 with the highest VPD values (21.5 hPa) recorded during the whole 

growing season, both JS and GPP were lower than during June 25-28 with distinctively lower VPD (< 

12.5 hPa). This could be interpreted as a water-limited response. However, the photosynthetic capacity 

also increased markedly from mid to late June (Fig. 6.3d), complicating the analysis. For the hysteretic 

response differing CCC is not an issue as GPP and JS are compared within the same day. In summary, 

the analysis of the JS response especially to APARg can reveal useful information to identify 

photosynthesis limiting conditions, although GPP and JS are not always related as shown by 

discrepancies during very low VPD conditions. 

 

6.4.2 Environmental Drivers 
 

Both machine learning analyses show the consistency of CCC as the most important environmental 

variable for GPP. This high ranking also reveals that even for evergreen trees, meteorological drivers 

alone may not be sufficient to explain the variability in GPP. Moreover, a variable containing seasonal 

information about photosynthetic capacity will be also required. Our results are in agreement with 

previous research for mixed forests and maize crops (Croft et al., 2015; Gitelson et al., 2014; Peng et 

al., 2011). The higher importance of CCC even over APARg agrees with the results from Wu et al. (2022). 

However, other variables influencing photosynthetic capacity, such as atmospheric CO2 

concentrations, were not included in the analysis (Dusenge et al., 2019; Farquhar et al., 1980). 

Furthermore, Cabon et al. (2022) showed that wood growth in contrast to GPP is more limited by water 

stress than temperature-related leaf phenology. 

As for environmental drivers of LUEg, we found a unimodal response to Tair with decreasing LUEg at 

high temperatures. With this analysis, however, it is not possible to single out the effect of a specific 

variable on LUEg because co-dependencies between variables occur. High values of Tair were strongly 

correlated to high VPD values (89% of Tair > 25 °C had VPD > 15 hPa). Nevertheless, the observed 

decrease of LUEg can also be caused by high Tair alone due to higher photorespiration in relation to 

photosynthesis with increasing leaf temperatures (Long, 1991), a process which also relates to high 

APARg. Likewise, as summarized by Bao et al. (2022), the temperature sensitivity has been represented 

by bell-shaped functions many times in LUE-models though with differing optimum ranges (e.g., Horn 

& Schulz, 2011; Stocker et al., 2020; X. Xiao et al., 2004). Otherwise, it was also modeled by a linearly 

increasing function that reaches a plateau at ca. 16 °C (Mäkelä et al., 2008). 

VPD was overall not a very important variable for machine learning models despite its impact on 

stomatal conductance as shown by the sap flow analysis. This discrepancy can be attributed to the fact 

that the site is typically energy- rather than water-limited (Graf et al., 2014) with a particular cool and 

wet 2021 growing season. This resulted in many low VPD observations that were rather indifferent to 

LUEg, though nonetheless some high VPD days occurred that restricted stomatal conductance. The wet 

growing season probably also explains the relatively low importance of SWC, which reacts slower to 

dry periods with increasing depth (Xu et al., 2021). In comparison, for a drought-affected tropical dry 

forest, a high importance of VPD and latent heat flux to explain GPP was detected by Castro et al. 
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(2018). A similar response to VPD as ours, i.e., a decrease of LUE only at VPD above ca. 5 hPa, was 

found by Horn and Schulz (2011), while others found an immediate decrease of LUE with increasing 

VPD (Kalliokoski et al., 2018; Wang et al., 2018). Likewise, Fu et al. (2021) showed that during soil 

moisture dry downs, the covariance between GPP and VPD was positive at first, and changed to 

negative only after a certain soil moisture threshold was surpassed. The low LUEg values even within 

the optimum range of environmental variables such as Tair shows those are necessary but not sufficient 

conditions. During the occurrence of highest GPP and LUEg values in mid-July and mid-August all or 

most environmental drivers likely were within their optimal range. 

While half-hourly LUEg showed only a modest increase with d/I, which is also reflected in a low 

importance for machine learning models, daily LUEg was significantly higher during diffuse light 

conditions (Fig. 6.4f). A similar response was observed to low R/FRdiff and both were highly correlated 

(correlation coefficient of -0.92; see also Fig. 6.11b).  This is probably linked to lower APARg values 

during diffuse light and therefore less excessive light. Besides that, an enhancement of LUEg under 

diffuse conditions has been linked to a smaller fraction of the canopy in deep shade (Williams et al., 

2014) and previous research showed that coniferous forests can also be larger CO2 sinks under diffuse 

conditions (Law et al., 2002; Urban et al., 2007, 2012). A linear increase between cloudiness and LUE 

was hence included in LUE-models (Wang et al., 2018), though Bao et al. (2022) found an exponential 

increase more suitable that also fits better with our results. As the R/FR ratio was always shifted to FR 

after passing the canopy but less so during diffuse conditions, obscured parts of the canopy received 

not only a higher light quantity, but also a higher light quality than under clear skies. Such a vertical 

R/FR profile was shown for spruce trees by previous research (Dengel et al., 2015; Hertel et al., 2011), 

and in this way the higher LUEg at small R/FRdiff might not be attributed to higher d/I and less excessive 

light alone. 

 

6.4.3 Variability and Uncertainties of LUEg Estimates 
 

Variation of LUEg shown in Fig. 6.3a can primarily be attributed to variations of APARg and GPP. APARg 

was predominantly dependent on fluctuating cloud cover patterns, while GPP likely was influenced by 

various current and past environmental drivers (see sect. 3.2). LUEg remained within a rather low range 

between late April and late June. This can be attributed to below average temperatures in April and 

May with a subsequent low CCC well into June, as well as a warm and dry period with comparatively 

high VPD values in mid-June probably causing water-related stomatal closure (see sect. 3.3). As the 

first peak of GPP corresponds to an increase of CCC as well as low VPD, we attribute this peak to the 

probably first suitable growing conditions after cold temperatures in May and dryness in June. The first 

LUEg drop in late July saw decreasing APARg, GPP, Tair and CCC (although from few observations) and 

thus may be related to energy-limited conditions. The second GPP and LUEg peak did not occur during 

the same days. A peak of GPP occurred from Aug 12–15 but was associated with relatively high APARg 

values and thus did not result in a high LUEg. The LUEg peak instead occurred from Aug 16–19 with only 

moderate GPP (1.03–1.24 mol m-2 d-1) during the rapid onset of very low and consistent APARg in 

consequence of the passage of the low pressure system Luciano. Explaining why GPP did not likewise 

decrease to lower values is beyond this analysis. However, the low amounts of PARin were perhaps still 

enough to sustain a moderate GPP. The last drop of GPP in late August then is accompanied by a 

continuous decrease of CCC, which can be interpreted as the onset to the end of the growing season. 

GPP derived from eddy covariance measurements is subject to well-known limitations including the 

difficulty of estimating a storage term without a vertical CO2 profile (Montagnani et al., 2018), the 

identification of vertically decoupled flows (Peltola et al., 2021a), and the uncertainty from partitioning 
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net ecosystem exchange into GPP and Reco (Raj et al., 2016). PARtrans measurements from a limited 

number of sensors were subject to a sampling error during direct light conditions, as indicated by a 

non-flattening curve of the coefficient of variation as a function of the number of sensors (see Fig. 

6.17). Additionally, a bias to an ideal APAR calculated from all PAR flux terms can be expected 

(Widlowski, 2010). In our case, we did not measure horizontal and ground-reflected PAR fluxes. Green 

APAR has the advantage over total APAR that only light actually usable for photosynthesis is 

considered. In this way, the effect of short-term drivers such as VPD and Tair on the partitioning of 

energy in photosynthesis and, e.g., transpiration, non-photochemical quenching and fluorescence can 

be investigated. However, environmental conditions causing a reduction of NDVI such as drought, 

insect infestation or wind storms will not properly be reflected in a decreased LUEg. With total APAR, 

these conditions would decrease LUE as long as the canopy surface area is not reduced. Chlorophyll 

content, on the other hand, can be low despite an apparently ‘green’ leaf (Gitelson & Gamon, 2015). 

Hence it is important for GPP models that PAR absorbable by chlorophyll might still be overestimated 

by NDVI-based APARg and thus LUEg underestimated. The Sentinel-2 derived NDVI estimates induce a 

further uncertainty to APARg, although a validation with in-situ measurements showed the reliability 

of Sentinel-2 NDVI (Lange et al., 2017). By measuring PARtrans in 1.3 m, the light used for photosynthesis 

by the ground vegetation was not included in fAPAR, though their productivity was included in GPP. 

The contribution of ground vegetation to GPP, however, can be expected minor in an old growth forest 

stand (Kulmala et al., 2011). Excluding photosynthesis of ground vegetation would hence slightly 

decrease LUEg, which is a counterweight to the former limitation. Although calculating LUE as in Eqn 5 

is most straightforward and commonly used (e.g., Gitelson & Gamon, 2015; Martini et al., 2022; 

Wieneke et al., 2018), LUE can also be assessed by metrics of the light response curve, such as the 

initial slope or the half saturation point (Williams et al., 2014). In addition, the SQ-521-SS sensors 

measured PAR from 389 to 692 nm, though Zhen and Bugbee (2020) argued to include FR light (701-

750 nm) in the definition of PAR, as FR causes a balanced excitation of the two photosystems, and 

hence improves photochemical efficiency. 

 

6.5 Conclusions 
 

Our study found that i) a seasonal variable such as CCC is consistently necessary for accurate GPP 

estimations by machine learning models and hence should be considered as a possible improvement 

for LUE-based approaches and ii) tree-scale JS and ecosystem-scale GPP showed a congruent clockwise 

hysteretic response to APARg on high VPD days, thus likely being a good indicator of water stress 

induced stomatal closure. In this way, this novel dual-scale comparison of hysteretic cycles has the 

potential to be of general value for identifying photosynthesis-limiting conditions. We anticipate these 

findings will be valuable for the development of GPP-modeling approaches, and can serve as a basis to 

be confirmed by multi-site and multi-year studies across different environments and climate zones. 
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data can be freely accessed at https://scihub.copernicus.eu/. 
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6.8 Supporting Information 

6.8.1 Text S1. Calculation of GPPdev 
 

Deviations of GPP from a year- and site-specific optimal GPP (GPPopt) in relation to APARg are presented 

here as an alternative approach to a half-hourly LUE ratio. For GPPopt, a generalized additive model 

(Hastie & Tibshirani, 1990) was fitted to the maximum non-gap-filled GPP values of each 20 mol m-2 

s-1 APARg interval until the overall maximum GPP value was reached (Fig. 6.9). After that, maximum 

GPP was kept constant, assuming that this maximum value (52.8 mol m-2 s-1) can theoretically also be 

reached at higher APARg values. The deviation of observed GPP (GPPdev) from GPPopt was then related 

to different environmental variables. This approach thus has the advantage of factoring out the limiting 

influence of non-saturated APARg without additional log-transformations. A disadvantage, however, is 

that the results depend on a specific model fit. Fig. 6.10 thus compares GPPdev to the log10-transformed 

LUE ratio, and shows no fundamental differences in regard to the influence of environmental drivers. 
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6.8.2 Figures 
 

         

 
Figure 6.8 Light use efficiency of green parts of the canopy (LUEg) by absorbed photosynthetically active radiation of green 
parts of the canopy (APARg) for half-hourly values (a) and daytime averaged values (b). 
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Figure 6.9 Gross primary productivity (GPP) plotted against green canopy absorbed photosynthetically active radiation by 
green parts of the canopy (APARg), colored by canopy chlorophyll content (CCC) and dot sizes by vapor pressure deficit 
(VPD). The black line denotes an upper limit of GPP in relation to APARg bins (GPPopt) as modelled by a generalized additive 
model. 
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Figure 6.10 Deviations from optimal gross primary productivity (GPPdev) (left columns) and green canopy light use efficiency 
(LUEg) with a log10-transformed y-axis (right column) at a half-hourly scale against time (a, b), air temperature (Tair) (c, d), 
vapor pressure deficit (VPD) (e, f), diffuse fraction (d/I) (g, h), the difference of the red to far-red ratios between above and 
below canopy (R/FRdiff) (i, j) and soil water content (SWCAVG) (k, l).
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Figure 6.11 Scatterplots of daily gross primary productivity (GPP) and Canopy Chlorophyll Content (CCC) (a) and diffuse 
fraction (d/I) against the difference of the R/FR ratio above and below the canopy (R/FRdiff) (b), with a LOESS (locally 
estimated scatterplot smoothing) function in blue and a 0.95 confidence interval in grey. 
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Figure 6.12 Scatterplot of observed against predicted gross primary productivity (GPP) by a random forest model (a) and a 
gradient boosting model (b) with a linear fit displayed in blue. 
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Figure 6.13 Variable importance results for predictors but in contrast to Fig. 6.4 with solar zenith angle (SZA) and day pf 
year (DOY) instead of absorbed photosynthetically active radiation and canopy chlorophyll content. Average conditional 
permutation importance (unitless) for a random forest gross primary productivity model with error bars displaying one 
standard deviation between 10 iterations (a), and SHAP values of those variables for a gradient boosting GPP model (b). 
Numbers on the left show the average absolute SHAP value (unitless) of each variable. 
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Figure 6.14 SHAP values of each predictor of Fig. 6.4b against the predictor values, with a locally estimated scatterplot 
smoothing (LOESS) function in red. 
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Figure 6.15 Hysteresis plot for vapor pressure deficit (VPD) in relation to green canopy absorbed photosynthetically active 
radiation (APARg), averaged over all days of the 2021 growing season. 
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Figure 6.16 Time series of half-hourly green canopy absorbed photosynthetically active radiation (APARg) (a), vapor 
pressure deficit (VPD) (b), sap flow density (JS) (c), gross primary productivity (GPP) (d) and soil water content (SWCAVG) (e) 
between June 12 and June 29, 2021. 
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Figure 6.17 Maximum coefficient of variation (CV) of fraction of absorbed photosynthetically active radiation (fAPAR) by the 
number of canopy-transmitted PAR sensors and for different dataset filtered by diffuse fraction (d/I), solar zenith angle 
(SZA) and wind speed (WS). Calculation of CV was conducted analogous to Putzenlechner et al. 2019b. 
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7 Synthesis and Outlook 
 

In this chapter, the general research questions outlined in Chapter 1 are addressed and the main 

conclusions from the research presented in Chapters 4, 5 and 6 are summarized. Moreover, 

suggestions for possible and planned future research are outlined accompanied by a critical evaluation 

of the results in this work. In summary, the research presented in this doctoral dissertation concerned 

(i) the expansion of eddy covariance flux data with machine learning models to generate 

spatiotemporal flux information for a whole river catchment (Chapter 4), (ii) methodological aspects 

for a better interpretability of obtained flux data at a deforested site (Chapter 5), and (iii) the use of 

eddy covariance based products, among other measurements, and machine learning to improve the 

understanding of plant physiology and plant-atmosphere interactions (Chapter 6). 

Research question 1 was how accurate CO2 fluxes from eddy covariance stations can be upscaled to 

the Rur catchment across different land covers using machine learning with state-of-the-art feature 

selection methods. In general, the random forest approach with spatiotemporal feature selection 

methods and a combination of eddy covariance CO2 flux data, MODIS vegetation indices and 

meteorological reanalysis data provided promising upscaling results at the regional scale. One main 

conclusion is that, despite being computationally more expensive, averaging five model runs in the 

feature selection process could significantly decrease the risk of being trapped in a local maximum. 

Furthermore, spatial cross validation results could be improved by using smaller flux training data sets 

with strict quality control rather than larger ones incorporating also days with more gap-filled data. 

Although an R² of just 0.41 is in the range of other approaches with a spatial cross validation scheme 

(Shi et al., 2022), there is still room for improvement that should be addressed in future research. 

Results showed that differences between land cover classes were narrower in the upscaled product 

than between eddy covariance stations (Table 4.6). Separate models for each land cover class might 

improve this limitation but would require more flux stations per class to perform a spatial cross 

validation. With separate models by land cover class, training data of managed land covers could 

further be adjusted for lateral fluxes. In the current implementation, the model was fitted to eddy 

covariance data only. Hence, inherent limitations of the eddy covariance method, such as the omission 

of lateral fluxes, are automatically reproduced by the machine learning models. 

MODIS remote sensing products have the advantage of a high temporal resolution. Though with a 

spatial resolution of 250 m at best, they are also prone to contain mixed pixels, i.e., spectral responses 

from various land covers in the same pixel, which probably contributed to the above-mentioned 

limitation. Within the spatial cross validation, predicted NEE displayed also a narrower range than 

observed NEE (Fig. 4.3). This underestimation of rare cases can be attributed to the natural imbalance 

in the training data between rare and most frequent cases, which can be tackled by further enriching 

the environmental envelope of the training data or by using, e.g., synthetic minority over-sampling 

techniques (Torgo et al., 2015). For random forest specifically, this problem is enhanced by the 

averaging of many trees, which might be less pronounced in algorithms without averaging such as 

neural networks or gradient boosting. However, the study presented in Chapter 4 was also part of a 

meta-analysis comparing different NEE upscaling approaches (Shi et al., 2022). The authors showed 

that random forest and support vector machines performed better than other algorithms and that 

half-hourly models were more accurate (average R² of 0.73) than daily models (average R² of 0.50). 

Further impact of the paper is evident in Zhang et al. (2021), which used the research framework of 

the study as a role model to estimate actual evapotranspiration at northern Chinese weather stations. 

The aforementioned issue regarding the environmental envelope of training data was addressed in 

detail by Meyer and Pebesma (2021). They introduced a method to assess an area of applicability 

where a machine learning model can be reliably applied for spatial predictions. In Chapter 4, urban 
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areas were manually excluded from the analysis because different CO2 exchange processes (i.e., fuel 

combustion) were assumed to dominate the total CO2 flux, and which would require other predictor 

variables. With an area of applicability analysis, such areas and maybe others that are non-intuitive 

might be excluded with a more quantitative justification. The importance of predictor variables for the 

final model are presented in Table 4.5. However, further insight into the use of variable importance 

measures presented in Chapter 6 showed that possible correlations between predictors should be 

taken into account for future variable importance analyses (Debeer & Strobl, 2020), which was realized 

only at a later stage of the doctoral work and after the publication of Chapter 4. Moreover, future 

upscaling approaches should make use of the FluxnetEO data set, which is a standardized procedure 

to extract, quality control and gap-fill MODIS and Landsat spectral information for 338 FLUXNET and 

ICOS sites (Walther et al., 2022). Besides MODIS, reanalysis data were an important source of predictor 

variables for the upscaling in Chapter 4. In order to account for spatiotemporal uncertainties in such 

reanalysis products, spatiotemporal lagging of meteorological predictors was indicated advantageous 

in machine learning NEE modelling approaches (Kämäräinen et al., 2023). 

Another task for future research is the comparison of regional upscaling products to regional process-

based model simulations such as from the Community Land Model (Lawrence et al., 2019). A high 

agreement between those would imply a higher-order validation of the gridded NEE product than just 

a cross validation with eddy covariance measurements, which themselves are prone to uncertainties, 

especially at high flux magnitudes (Richardson et al., 2012). On the global scale, an eddy covariance-

based upscaling product obtained a significantly larger terrestrial CO2 sink (by about 10 Pg C yr-1) than 

a process-based global budget (Zscheischler et al., 2017). This mismatch was partly attributed to an 

underrepresentation of recently disturbed ecosystems in global flux datasets (Ciais et al., 2022). Those 

ecosystems are, however, in particular prone to high flux uncertainties due to their oftentimes non-

ideal characteristics for eddy covariance measurements. Consequently, research question 2 was how 

eddy covariance measurements over a deforested, fetch-limited site with unmanaged regrowth are 

affected by choices of measurement height and spectral corrections. The results demonstrate the 

trade-offs that have to be considered in the eddy covariance measurement design for a site with non-

ideal characteristics. By comparing two measurement heights, it was shown that at the lower height 

LPF corrections were higher and differed more among methods (Fig. 5.4). On the other hand, the 

estimated footprints of both heights did not match the average footprint of the previous years at the 

lower height. Hence, the study supports the difficulty of achieving a stable flux source area over longer 

time periods for fast growing vegetation with infrequent stepwise height changes. Results further 

showed that flux differences resulting from the choice of LPF correction and measurement height 

induced a non-negligible uncertainty to daytime fluxes, although those differences had a relatively 

small magnitude of NEE differences between the deforested and forested flux site at Wüstebach (11% 

at most). Hence, the choice of LPF correction likely would not invert the general CO2 sink comparison 

between these land covers, but still is one important factor in the accurate quantification of NEE, that 

should always be explicitly stated, especially for sites with high spectral corrections. Furthermore, 

FLUXNET only unifies the post processing such as u*-filtering, gap-filling and partitioning of flux data, 

but the actual processing of high frequency measurements to half-hourly fluxes is not unified yet 

within the FLUXNET data set (Pastorello et al., 2020). Hence, the uncertainty from different processing 

choices is of importance not only for disturbed ecosystems but for all sites in general. Such choices 

concern, for example, the detrending method and the quality control policy, for which different 

methods exist (e.g., Göckede et al., 2006; Mauder et al., 2013). Rannik et al. (2020) already evaluated 

the impact of different coordinate rotations on fluxes, but an overarching analysis for a site with almost 

ideal conditions for eddy covariance measurements could reveal whether such choices add up to a 

large systematic uncertainty. Within the comparison of different LPF corrections, five different 

analytical and empirical approaches were applied. The comparison could be further enriched by the 
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inclusion of direct approaches relying on measured cospectra only, which are not yet implemented in 

EddyPro© (e.g., Polonik et al., 2019). If the comparison of different LPF corrections is transferred to 

closed-path gas analyzer designs, existing LPF corrections should also be revised in order to account 

for overestimated travel times in the sampling tube due to interrelated time delay and frequency 

response corrections (Peltola et al., 2021b). 

Flux differences, however, were even larger between the two measurement heights than between LPF 

corrections at the same height, with standard deviations between fluxes of the two heights of 24.8% 

for CO2 and 9.7% for H2O. This probably resulted at least partly from different flux source areas within 

the heterogeneous site. These results imply that the measurement height and the footprint should be 

carefully evaluated for small, disturbed ecosystems with a limited fetch and heterogeneous, fast-

growing vegetation. For these sites, however, conventional footprint models (e.g., Kormann & 

Meixner, 2001; Kljun et al., 2015) cannot account for the high surface heterogeneity and especially 

cannot resolve the complex flow over forest edges. Because of this, future research on such sites 

should consider applying large-eddy simulations (e.g., Auvinen et al., 2017), turbulence closure models 

(e.g., Sogachev et al., 2002) or artificial tracer experiments (e.g., Arriga et al., 2017). Moreover, vertical 

and horizontal CO2 concentration profile measurements, as well as the application of cold air drainage 

models such as KLAM_21 (Sievers & Kossmann, 2016), could help to identify advective processes 

influencing the CO2 budget at the deforested site. 

In this way, flux data from the deforested site can be more accurately interpreted and used for 

comparisons to flux data from other land covers such as the Wüstebach forest site, as well as for other 

applications such as upscaling. Although the measurement height at the deforested site was regularly 

adjusted by rule of thumb even before the 2020 experiment, the possibility that data used for the 

upscaling in Chapter 4 may partly not be representative of the deforested site cannot be fully ruled 

out. For the NEE data from the forested site at Wüstebach used to derive GPP in Chapter 6, a regular 

adjustment of measurement height is a minor (albeit non-negligible) issue due to the slower growing 

rate of the mature trees. Regarding this spruce forest, research question 3 was how different 

environmental conditions are related to its light use efficiency and gross primary productivity. To 

address this question, the difficulty of assessing the LUE of forest canopies first had to be approached. 

In general, the research highlighted the utility of ecosystem-scale flux information and machine 

learning for the analysis of environmental influences on plant physiological processes and thus on the 

terrestrial carbon sink. In this way, eddy covariance derived GPP was used in combination with in-situ 

measured APAR to assess the LUE of the Wüstebach spruce forest. Over the whole growing season, 

LUE of green parts of the canopy was 4.0  2.3% and showed a unimodal response to air temperature 

with a maximum LUE at about 15 °C and a higher LUE during diffuse than during direct light conditions, 

indicating excessive light in such cases. However, for comparing LUE and its environmental drivers 

among different studies, the definition of LUE should be carefully taken into account (Gitelson & 

Gamon, 2015). Photosynthesis defined either as GPP or NPP can be related to global radiation, 

incoming PAR, absorbed PAR, or absorbed PAR by green parts of the canopy. Each definition of LUE 

will have different responses to certain environmental controls, such as those that change the canopy 

chlorophyll content but not likewise the canopy surface. Hence, for the analysis of instantaneous 

meteorological conditions on LUE, future research should focus on an LUE definition that is scaled by 

the photosynthetic capacity to achieve accurate comparisons between different phenological stages. 

Though for investigating long-term environmental drivers, it should be focused on an LUE definition 

which excludes the photosynthetic capacity. In this way it is ensured that a change of photosynthetic 

capacity due to, for example, insect infestation results in a change of LUE. In Chapter 6, the NDVI was 

used to calculate green-canopy APAR and LUE due to its simplicity to reckon up the product as it is 

normalized from 0 to 1 for non-water surfaces. However, the high importance of CCC indicates that it 
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is worthwhile to develop an APAR product that incorporates CCC for the analysis of instantaneous 

meteorological conditions. This LUE study could be further enhanced by the investigation of other 

pathways besides utilization in the Calvin cycle that energy from absorbed PAR can take. Out of these 

other biochemical processes, dissipation as heat from non-photochemical quenching can be 

monitored via remote sensing with the photochemical reflectance index (Gamon et al., 1997; 

Garbulsky et al., 2011). In this way, a downregulation of LUE due to high light intensity, water stress or 

extreme temperatures can be observed. Another possibility is the observation of solar-induced 

chlorophyll fluorescence (SIF) from remote sensing or in-situ measurements (Verma et al., 2017; 

Mohammed et al., 2019; Morozumi et al., 2023). As SIF basically is a leakage of photons from 

photosynthetic membranes, which depends on the flux of photons absorbed by chlorophyll, it can be 

used as a proxy measure of the actual PAR absorbed by photosynthetic pigments (Gonsamo & Chen, 

2018). In order to achieve a complete assessment of influencing factors on GPP and LUE, further 

variables should be investigated, which include atmospheric CO2 content, availability of nutrients such 

as nitrates and phosphates, and memory effects of past conditions such as drought, frost or pest 

infestation (Desai, 2014; Aubinet et al., 2018; Besnard et al., 2019). 

Besides atmospheric water deficit and soil water content, considering the actual vegetation water 

content, such as derived from microwave satellite missions, is also promising for future studies on 

photosynthetic performance (Cosh et al., 2019; Pei et al., 2022). Water-limiting conditions for 

photosynthesis were also identified in Chapter 6 by the analysis of mutual hysteretic responses of 

ecosystem-scale GPP and tree-scale sap flow density to VPD and APARg. Here, it was demonstrated 

that a standardly anticlockwise hysteretic pattern of sap flow to APARg under non water stress 

conditions shifted to a clockwise pattern on high VPD days, which happened likewise for GPP. Hence, 

a clockwise hysteretic pattern of sap flow to radiation was indicated as a potential indicator for 

afternoon stomatal closure. In this way, eddy covariance based data could help to confirm insights to 

plant physiological responses to environmental conditions. Possible constraints of the applied Granier 

type sap flow measurements include flow obstructions through wound effects around the sensor 

needles, which possibly result in an underestimation of sap flow, especially if the two needles are close 

to each other (Steppe et al., 2015; Wiedemann et al., 2016). The hysteretic results should also be 

validated by investigations of plants with different water stress responses, i.e. anisohydric and 

isohydric strategies or C3 and C4 plants (Sade et al., 2012). 

In contrast to Chapter 4, where machine learning was applied with a focus on prediction, it was applied 

in Chapter 6 with a focus on inference. Here, the importance of various potential environmental drivers 

as predictor variables to model GPP was assessed by the application of two different variable 

importance measures. Both agreed that CCC followed by APARg were the most important variables for 

the prediction of GPP by tree-based machine learning models, which thus can be considered a 

relatively robust result. However, it should be noted that the variable importance results do not prove 

any causal relations, although they were in line with processual knowledge. Accordingly, results also 

showed that the model performance was insignificantly worse if CCC and APARg were replaced by the 

more general variables DOY and SZA. This indicates that CCC and APARg rather are important as general 

representatives of seasonal variables for photosynthetic capacity and diurnal variables for energy 

supply. Nevertheless, it should be noted that results of this work are based on a single growing season, 

and it should be verified whether DOY still is a viable replacement of CCC if the respective days 

correspond to different phenological stages in different growing seasons. In addition, the results of 

this chapter in general are only based on a single research site dominated by a single tree species, 

Picea abies. Consequently, they have to be confirmed for other tree species growing in different 

climates, and more years encompassing different environmental conditions. This will be accomplished 
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by an ongoing project, which expands the general research framework of Chapter 6 to other tree 

species along climatic gradients in Germany. 

Overall, this work i) applied and refined state-of-the-art spatiotemporal feature selection schemes for 

the regional upscaling of eddy covariance flux measurements, ii) assessed the uncertainty of flux 

measurements over a deforested site in regard to measurement height and the choice of LPF 

correction, and iii) used a unique set of elaborate measurements and methods to assess and analyze 

the LUE and limiting conditions for photosynthesis of a temperate spruce forest. Thus, the dissertation 

contributed to the general goal of accurately quantifying the effect of land cover changes and of 

environmental influences on the CO2 source and sink strengths of terrestrial ecosystems, as well as to 

generate experimentally based spatiotemporal flux information.  
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