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Abstract

Land use and land cover changes and the terrestrial carbon sink are two important components of the
global carbon budget. Several methodological approaches exist to measure fluxes of CO;, and other
greenhouse gases between ecosystems and the atmosphere. With an accurate quantification of these
fluxes, it is possible to compare carbon source and sink strengths between different land covers and
to evaluate environmental influences on these terms. Out of those methods, the eddy covariance
technique has the advantage of providing direct and quasi-continuous turbulent flux observations at
the ecosystem scale. However, to compare eddy covariance data to, e.g., top-down methods and to
achieve spatially gapless data sets, these point measurements with a relatively small footprint require
a spatial upscaling with statistical methods such as machine learning and ancillary remote sensing data.

Another issue with eddy covariance data sets is the underrepresentation of certain ecosystem types
and climatic regions. Recently disturbed ecosystems belong to this group, but usually also exhibit non-
ideal characteristics for eddy covariance measurements such as abrupt surface changes and
heterogeneous regrowth. Therefore, it is important to assess the uncertainty of eddy covariance
measurements for disturbed ecosystems in regard to different choices of measurement design and
processing and thus to improve the interpretability of such measurements.

Onthe other hand, a changing climate can also enforce a reduced sink strength on ecosystems through,
e.g., heat and drought. In this way, eddy covariance derived data on CO, uptake in combination with
other environmental measurements and advanced statistical analyses can reveal limiting conditions
for photosynthesis and thus a reduced efficiency to use light for CO; assimilation. In this dissertation,
these three issues, i) spatial upscaling of eddy covariance data, ii) methodological uncertainties of
obtaining flux data at disturbed sites, and iii) environmental impacts on ecosystem-scale
photosynthesis, are addressed within the TERENO Eifel/Lower Rhine Valley Observatory, which
comprises the Rur catchment, mostly located in western Germany.

In a first study, eddy covariance CO; flux data from different land covers within the Rur catchment
were upscaled to the whole catchment area using a random forest machine learning model
incorporating MODIS remote sensing and COSMO-REAG6 reanalysis data. For this task, state-of-the-art
predictor variable selection methods for machine learning models were evaluated. Results of this study
show that combining eddy covariance flux data with remote sensing products and reanalysis data is a
feasible way to upscale CO, flux information to the regional scale at a relatively high spatial resolution
(250 m) and across various land covers. The study further indicates that averaging multiple model runs
in the feature selection process can improve these results. Although an R? of 0.41 is in the range of
other studies using a spatial cross validation scheme, this value reveals that there is still room for
improvement. Main limitations of the analysis include a low prediction performance on high
magnitude fluxes as a narrower range was predicted than observed, and the fact that differences
between land cover classes were also narrower in the upscaled product than between eddy covariance
stations.

The further analyses were confined to a subregion within the Rur catchment, the Wiistebach site in
the northern Eifel low mountain range. The site encompasses the Wiistebach headwater region and is
mostly composed of a planted spruce forest but also contains a deforested area of 8.6 ha with
unmanaged regrowth. This fast-growing vegetation requires a regular adjustment of the eddy
covariance measurement height in order to ensure a stable flux source area in the long run and to
prevent high spectral losses. In a second study, CO, and H,O fluxes were hence measured over the
deforested area with eddy covariance systems in two different heights and were processed with five



different spectral corrections. In this way, the uncertainty from measurement height and choice of
spectral correction was assessed, and insights were gained in the trade-offs that must be considered
at a site with non-ideal characteristics. For the deforested site, results show that at the lower height
spectral corrections were higher and had a higher standard deviation among methods compared to
the upper height for both CO, and H,0 fluxes. The average standard deviation between heights was
even higher than between spectral corrections at the same height (24.8% of CO; flux; 9.7% of H,0 flux).
Furthermore, the energy balance closure was on average about 9% better for the upper system than
for the lower system. On the other hand, the modelled footprints of both heights did not match the
average footprint of the previous years at the lower height. Hence, the study indicates a difficulty of
achieving a stable flux source area over longer time periods for fast growing vegetation but also
emphasizes the importance of a carefully adjusted measurement height. Although the study improved
the interpretability of flux measurements for a disturbed site, its main limitation comprises the
difficulty to apply one of the common footprint models to estimate the flux source area for this site
with complex flow, especially over the forest edges.

A third study concerned the Wiistebach spruce forest. For this site gross primary productivity derived
from eddy covariance CO; flux data was combined with measurements of green canopy absorbed
photosynthetically active radiation (APARg), sap flow, and other meteorological and plant physiological
data. In this way, water-limiting conditions for photosynthesis and the light use efficiency of a spruce
forest were evaluated. In addition, the importance of environmental variables for the prediction of
gross primary productivity was assessed with state-of-the-art machine learning variable importance
measures. In this study, data from the 2021 growing season was analyzed, for which the light use
efficiency of green parts of the forest was on average 4.0 £ 2.3% and showed a unimodal relation to
air temperature with a maximum around 15 °C. For modelling gross primary productivity with tree-
based machine learning models, canopy chlorophyll content likely as a seasonal variable for
photosynthetic capacity and APAR; likely as a diurnal variable for energy supply were the most
important variables. On days with high vapor pressure deficit, tree-scale sap flow and ecosystem-scale
gross primary productivity both shifted to a clockwise hysteretic response to APAR,. It is demonstrated
that the onset of such a clockwise hysteretic pattern of sap flow to APAR; can be a useful indicator of
afternoon stomatal closure related to water-limiting conditions. However, the main limitation of this
case study is its limited extent, as just one comparatively cool and wet growing season at a single site
with a single dominant tree species, Picea abies, was investigated.

Overall, this dissertation highlights the use of direct flux measurements and machine learning methods
for both the evaluation of land cover changes and the impact of changing environmental conditions
on the CO; source and sink strengths of terrestrial ecosystems.



Zusammenfassung

Landbedeckungs- und Landnutzungsanderungen sowie die terrestrische Kohlenstoffsenke sind zwei
wichtige Komponenten im globalen Kohlenstoffhaushalt. Es existieren mehrere methodische Ansatze
zur Messung von CO,- und anderen Treibhausgasfliissen zwischen Okosystemen und der Atmosphire.
Mit einer genauen Quantifizierung dieser Flisse ist es moglich, Kohlenstoffquellen und -senken
zwischen verschiedenen Landbedeckungen zu vergleichen und Umwelteinfllisse auf diese Terme zu
bewerten. Von diesen Methoden hat der Eddy Kovarianz Ansatz den Vorteil, direkte und quasi-
kontinuierliche turbulente Flussmessungen auf der Okosystemebene zu erméglichen. Um jedoch Eddy
Kovarianz Daten mit z.B. top-down Methoden zu vergleichen und liickenlose Daten zu generieren,
erfordern diese Punkt-Messungen mit einem relativ kleinen Quellgebiet eine rdaumliche
Hochskalierung mit statistischen Methoden wie z.B. maschinellem Lernen und begleitenden
Fernerkundungsdaten.

Ein weiteres Problem von Eddy Kovarianz Datensdtzen ist die Unterreprasentation bestimmter
Okosystemtypen und Klimaregionen. Okosysteme, die kiirzlich Stérungen erfahren haben, gehéren zu
dieser Gruppe, weisen aber in der Regel auch nicht ideale Eigenschaften fiir Eddy Kovarianz Messungen
auf, wie z.B. abrupte Rauigkeitsdanderungen und heterogene nachwachsende Vegetation. Daher ist es
wichtig, die Unsicherheit von Eddy Kovarianz Messungen fiir gestérte Okosysteme in Bezug auf
verschiedene Messdesigns und Prozessierungsmethoden bewerten und interpretieren zu kénnen. Auf
der anderen Seite kann der Klimawandel auch durch z.B. Hitze und Diirre auf Okosysteme riickwirken
und eine verringerte CO, Senkenstarke verursachen. Auf diese Weise kénnen von Eddy Kovarianz
Messungen abgeleitete Daten zur CO,-Aufnahme in Kombination mit anderen Umweltmessungen und
fortgeschrittenen statistischen Analysen limitierende Bedingungen fiir die Photosynthese aufdecken
und somit eine reduzierte Effizienz bei der Verwendung von Licht zur CO,-Assimilation identifizieren.
In dieser Dissertation werden diese drei Themen, i) raumliches Hochskalieren von Eddy Kovarianz
Daten, ii) methodische Unsicherheiten von Flussmessungen in gestérten Okosystemen, und iii)
Umwelteinflisse auf die Photosyntheseleistung, im Rahmen der TERENO Eifel/Lower Rhine Valley
Observatory behandelt, welche das Rur-Einzugsgebiet im Westen Deutschlands umfasst.

In einer ersten Studie wurden CO,-Flussdaten mittels Eddy Kovarianz Messungen von verschiedenen
Landbedeckungen im Rur-Einzugsgebiet mit Hilfe eines Random Forest Machine Learning Modells
unter Verwendung von MODIS-Fernerkundungsdaten und COSMO-REA6-Reanalysedaten auf das
gesamte Einzugsgebiet hochskaliert. Fiir diese Aufgabe wurden zudem neuste Methoden zur Auswahl
von Vorhersagevariablen flir Machine Learning Modelle evaluiert. Die Ergebnisse dieser Studie zeigen,
dass die Kombination von Eddy Kovarianz Flussdaten mit Fernerkundungsprodukten und
Reanalysedaten eine praktikable Moglichkeit ist, um CO,-Flussinformationen auf die regionale Ebene
mit relativ hoher rdumlicher Auflésung (250 m) und Uber verschiedene Landbedeckungen
hochzuskalieren. Die Studie zeigt weiterhin, dass das Mitteln mehrerer Modellldufe im Feature-
Auswahlprozess die Ergebnisse verbessern kann. Obwohl ein R? von 0,41 im Bereich anderer Studien
mit einem raumlichen Kreuzvalidierungsschema liegt, zeigt dieser Wert, dass noch viele Moglichkeiten
zur Verbesserung bestehen. Die Hauptbeschrankungen der Analyse umfassen eine niedrige
Vorhersageleistung bei hohen Flussmagnituden, da eine engere Bandbreite vorhergesagt als
beobachtet wurde, sowie die Tatsache, dass die Unterschiede zwischen Landbedeckungsklassen im
hochskalierten Produkt kleiner waren als zwischen Eddy Kovarianz Stationen.

Die weiteren Analysen beschranken sich auf eine Teilregion des Rur-Einzugsgebiets, den Standort
Woistebach in der nordlichen Eifel. Dieser Standort umfasst die Quellregion des Wiistebachs und
besteht hauptsachlich aus einem gepflanzten Fichtenforsts, enthalt aber auch eine entwaldete Flache



von 8,6 ha mit unkontrolliertem Nachwuchs. Diese schnell wachsende Vegetation erfordert eine
regelmalige Anpassung der Messhohe der Eddy Kovarianz Messungen, um eine stabile Quellregion
der turbulenten Flisse auf lange Sicht sicherzustellen und hohe spektrale Verluste zu vermeiden. In
einer zweiten Studie wurden daher CO,- und H,O-Fliisse Uber der entwaldeten Flache mit der Eddy
Kovarianz Methode in zwei verschiedenen Hohen gemessen und mit flinf verschiedenen spektralen
Korrekturen prozessiert. Auf diese Weise wurde die Unsicherheit der Messhohe und der Wahl der
spektralen Korrektur bewertet und die Abwagungen beleuchtet, die an einem Standort mit nicht
idealen Eigenschaften berlicksichtigt werden miussen. Fir den entwaldeten Standort zeigen die
Ergebnisse, dass fir die untere Messhohe die spektralen Korrekturen héher waren und diese eine
hohere Standardabweichung zwischen den Methoden aufwiesen als bei der oberen Hohe, sowohl fiir
CO5- als auch fiir H,0O-Flusse. Die durchschnittliche Standardabweichung zwischen den Hohen war
sogar hoher als zwischen den spektralen Korrekturen in derselben Hohe (24,8% des CO,-Flusses; 9,7%
des H,O-Flusses). Darliber hinaus war die SchlieRung der Energiebilanz fiir das obere System im
Durchschnitt um etwa 9% besser als fiir das untere. Andererseits stimmten die modellierten Footprints
beider Hohen nicht mit dem durchschnittlichen Footprint der Vorjahre auf der niedrigeren Héhe
Gberein. Daher bestéatigt die Studie die Schwierigkeit, Uber langere Zeitrdume einen stabile Footprint
fir schnell wachsende Vegetation zu erreichen, unterstreicht aber auch die Wichtigkeit einer sorgfaltig
angepassten Messhohe. Obwohl durch diese Studie Interpretierbarkeit von Flussmessungen fiir ein
gestortes Okosystem verbessert wurde, besteht ihre Hauptbeschriankung aus der Schwierigkeit eines
der gangigen Footprint-Modelle anzuwenden, um den Quellbereich der turbulenten Flisse fiir diesen
Standort mit komplexem Stromungseigenschaften abzuschatzen, was insbesondere fir die
Waldrander zutrifft.

Eine dritte Studie betrifft den Fichtenforst am Wistebach. Dort wurden Informationen zur Brutto-
primarproduktion (BPP), abgeleitet aus Eddy Kovarianz basierten CO,-Flussdaten, mit Messungen der
von griinen Blattern absorbierten photosynthetisch aktiven Strahlung (APAR,), dem Saftfluss und
anderen meteorologischen und pflanzenphysiologischen Daten kombiniert. Auf diese Weise wurden
wasserlimitierende Bedingungen fiir die Photosynthese sowie die Lichtnutzungseffizienz eines
Fichtenwaldes untersucht. Darliber hinaus wurde die Bedeutung einzelner Umweltvariablen fiir die
Vorhersage der BPP mit neusten Machine Learning Methoden bewertet. Fiir diese Studie wurden
Daten der Vegetationsperiode 2021 analysiert. Die Lichtnutzungseffizienz der griinen Bestandteile des
Fichtenwaldes betrug hierfiir im Durchschnitt 4,0 £ 2,3% und zeigte eine unimodale Beziehung zur
Lufttemperatur mit einem Maximum bei etwa 15 °C. Fiir die Modellierung der BPP mit Machine
Learning Modellen waren Canopy Chlorophyll Content vermutlich als saisonale Variable fir die
photosynthetische Kapazitdt und APAR; vermutlich als tageszyklische Variable fiir das Energiedargebot
die wichtigsten Variablen. An Tagen mit hohem Sattigungsdefizit von Wasserdampf in der Luft wiesen
sowohl der Saftfluss auf Baumebene als auch die BPP auf Okosystemebene eine in Bezug auf APAR; im
Uhrzeigersinn verschobene hysteretische Reaktion auf. Es wurde somit gezeigt, dass das Einsetzen
einer solchen im Uhrzeigersinn verschobenen Hystereseschleife des Saftflusses in Bezug auf APAR; ein
guter Indikator fur das nachmittigliche Schliefen der Stomata aufgrund von wasserlimitierenden
Bedingungen sein kann. Die Hauptlimitierung dieser Fallstudie besteht jedoch in ihrem begrenzten
Umfang, da nur eine vergleichsweise kiihle und feuchte Vegetationsperiode an einem einzigen
Standort mit einer einzigen dominanten Baumart, Picea abies, untersucht wurde.

Zusammenfassend wurde durch diese Dissertation der Nutzen direkter Flussmessungen und
Methoden des maschinellen Lernens sowohl fur die Quantifizierung von Landnutzungsanderungen als
auch fir den Einfluss sich andernder Umweltbedingungen auf die CO, Quellen- und Senkenstarken
terrestrischer Okosysteme herausgestellt.
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Content (CCC) (a) and diffuse fraction (d/l) against the difference of the R/FR ratio above and
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1 Introduction

1.1 Rationale and Objectives

Carbon dioxide (CO;) that is emitted by fossil combustion and net land use and land cover change
accumulates either (i) in the atmosphere, (ii) on the land surface mainly as organic carbon via
photosynthesis, or (iii) in oceans as dissolved CO, or organic carbon (Canadell et al., 2021). Out of these
two source and three sink terms, land use/cover change emissions as well as the terrestrial carbon sink
are driven by various anthropogenic and natural processes on the Earth’s surface and thus are of
special interest from a geographic point of view.

Cumulative net carbon emissions from land use changes for 1850—-2020 were ca. 200 + 65 Gt C, about
30% of total emissions (Friedlingstein et al., 2022). However, different carbon bookkeeping models still
vary a lot in their estimates with 140 Gt C (Houghton & Nassikas, 2017), 270 Gt C (BLUE; Hansis et al.,
2015), and 195 Gt C (OSCAR; Gasser et al., 2020). In contrast to increasing fossil emissions, net land
use change emissions were relatively constant or slightly decreasing in the last decades (from 1.3 £0.7
Gt Cyr'1970-1999 to 1.1 £ 0.7 Gt C yr! 2011-2020; Friedlingstein et al., 2022). In absolute terms, net
land use change emissions peaked at a value of 1.61 + 0.55 Gt Cyr? in 1959 (Gasser et al., 2020).
Nevertheless, with 80 + 45 Gt C during the period 1960-2020, net land use change emissions still
accounted for 18% of total emissions (Friedlingstein et al., 2022). Gross emissions are about 2-4 times
larger than net emissions, with a slight increase from 3.4 + 0.9 Gt C yr! in the 1960s to 3.8 £ 0.6 Gt C
yr'tin the 2010s. Gross removals due to land use change, however, increased even more from 1.9 +
0.4 Gt Cyrtinthe 1960s to 2.7 £ 0.4 Gt Cyr? in the 2010s (Friedlingstein et al., 2022).

Main components of these gross emissions include deforestation, e.g., for wood harvest or conversion
to cropland or pasture, as well as peatland draining and burning. Gross removals, on the other hand,
are slower processes and are mainly related to afforestation and regrowth and concomitant soil
regeneration following wood harvest or on abandoned agricultural land (Hansis et al., 2015; Pongratz
et al., 2021; Friedlingstein et al., 2022). The global forest area has declined by 81.7 million ha from
1960 to 2019, with a forest loss of 437.3 million ha outweighing a forest gain of 355.6 million ha
(Estoque et al., 2022). Deforestation is mostly confined to tropical areas resulting from an expansion
of agricultural land (Houghton & Nassikas, 2017), with 25% of global land use change emissions being
related to beef and other red meat production (Hong et al., 2021). Afforestation was highest in Europe
during the last centuries with an increase of forested area by 484,000 km? since 1600, mainly from
coniferous trees (McGrath et al., 2015). Globally, afforestation at suitable land has an estimated
further mitigation potential of about 4.9 Gt CO; yr! (Doelman et al., 2019). However, afforestation
oftentimes causes a reduction of surface albedo, depending on the afforested land cover (Kirschbaum
et al., 2011; Mykleby et al., 2017). In this way, the increased absorbed radiation can counteract the
increased CO; fixation in terms of a cooling effect (Luyssaert et al., 2018). Because of this, accurate
light use efficiency estimates are required for forest ecosystems in order to quantify and potentially
minimize the absorbed radiation not used for photosynthesis in afforestation projects (Genesio et al.,
2021).

Out of total anthropogenic carbon emissions of 10.6 + 0.8 Gt C yr! from 2011-2020 (including fossil
combustion and net land use change emissions), 3.1 + 0.6 Gt C yr! (ca. 29%) were assimilated by
terrestrial vegetation. The global land sink increased to this value from just 1.2 + 0.5 Gt C yr! during
the 1960s (Friedlingstein et al., 2022), which can mainly be attributed to CO, fertilization effects
(Dusenge et al., 2018). Peatlands are considered one of the few persistent terrestrial carbon sinks,
having accumulated about 600 Gt of carbon since the last glacial period despite covering only about
3% of the land surface (Yu et al., 2011; Gorham et al., 2012). With ongoing climate change and related
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water table depth changes, it is uncertain whether these ecosystems will continue to sequester carbon,
or their huge carbon pool will be respired (Malhotra et al., 2016; Alexandrov et al., 2020). Global
forests, on the other hand, store about 861 + 66 Gt of carbon, with 44% of it in soil, 42% in live biomass
and 13% in litter and deadwood (Pan et al., 2011). Regrowing forest stands sequester about
1.3 Gt Cyr! and even old growth forest stands do not eventually reach a carbon neutral state but
remain a carbon sink by sequestering about 0.85 Gt C yr? globally (Pugh et al., 2019), likely due to
carbon accumulation in soils, coarse woody debris and charcoal (Luyssaert et al., 2008). However, with
increasing warming and moisture stress, forest ecosystems such as the Amazon rainforest could turn
into a carbon source (Baccini et al., 2017; Gatti et al., 2021). In the Amazon, forest degradation even
exceeds deforestation, with 337,427 km? of degraded forest compared to 308,311 km? of deforested
area between 1992 and 2014 (Matricardi et al., 2020), and degradation contributing to 73% of above-
ground biomass loss compared to 27% from deforestation (Qin et al., 2021). Other regions such as the
southwest USA, southeast Europe and South Africa are already modelled a carbon source linked to
reduced rainfall, and globally climate change is estimated to have reduced the terrestrial sink by 0.45
+0.39 Gt Cyr? for 2011-2020 (Friedlingstein et al., 2022). With an expected shift from energy-limited
to water-limited conditions for most terrestrial ecosystems due to climate change (Denissen et al.,
2022), the combination of heat and drought is a major concern for the decrease of gross primary
productivity (GPP) and the efficiency of which light is used for photosynthesis (Zhang et al., 2015;
Stocker et al., 2018; von Buttlar et al., 2018). In Europe, the 2018 drought caused a modelled reduction
of GPP of 130-340 Mt C (Smith et al., 2020) and resulted in unprecedented levels of forest disturbances
(Senf & Seidl, 2021). As a consequence thereof, the drought decreased net CO, uptake by 17.8% among
micrometeorological flux stations (Graf et al., 2020), and turned temperate regions of Europe to a
carbon neutral state or even a small carbon source in summer 2018 (Thompson et al., 2020). These
observations confirm the concern of an eventual positive feedback between increased atmospheric
CO; and a reduced global carbon uptake (Friedlingstein et al., 2001).

Therefore, accurate estimates of the atmosphere — biosphere CO, exchange of different and especially
transitioning land covers and under different climatic extremes are necessary to provide insights into
regional carbon budgets and to counsel promising mitigation efforts against climate change (Ciais et
al.,, 2022). Methods to estimate the carbon exchange can generally be divided into top-down and
bottom-up approaches. Atmospheric inversion approaches are top-down methods, which estimate the
surface exchange from atmospheric transport models and CO; concentration measurements, either
from surface stations or total column data from satellites such as GOSAT and OCO-2 (Wang et al.,
2019a). Bottom-up methods to estimate carbon stock changes include repeated biomass estimates
such as from forest inventories and remote sensing data. However, these methods usually include only
above-ground biomass stock changes and inventories have a low (e.g., annual) temporal resolution
(Pongratz et al., 2021; Ciais et al., 2022). Remotely sensed vegetation properties such as leaf area and
chlorophyll content are nevertheless important for empirical modelling of carbon uptake (Croft et al.,
2015). Process-based models like the global TRENDY application (Sitch et al., 2015), on the other hand,
are not tightly driven by observational data, but these are in few cases only used to calibrate model
parameters. Such dynamic global vegetation models conserve mass and provide a gridded carbon
exchange output, but also can differ substantially from observations (Ciais et al., 2022). Networks of
eddy covariance stations are an approach of direct and quasi-continuous CO; flux measurements at
the ecosystem scale (Baldocchi, 2014). Besides CO,, the water vapor flux (evapotranspiration) is
commonly measured with the eddy covariance method, which can also be used to assess fluxes of
other greenhouse gases such as CHs and N;O. Hence eddy covariance measurements are
recommended to be used within elaborated carbon cycle projects such as RECCAP-2 (Ciais et al., 2022),
but the small spatial footprint of such point measurements is required to be upscaled to gridded
products with data driven models incorporating remote sensing and meteorological data in order to
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be comparable to e.g., inversion products (Kondo et al., 2015). However, eddy covariance sites are not
randomly distributed over the globe but exhibit a sampling bias of overrepresented and
underrepresented regions and ecosystems. The incorporation of relatively few recently disturbed
ecosystems in global flux data bases likely is one reason for the mismatch between upscaled eddy
covariance products such as FLUXCOM and other global carbon budgets (Zscheischler et al., 2017; Ciais
et al., 2022).

Based on those considerations, the general goal of this dissertation is to contribute to the knowledge
of ecosystem—atmosphere exchange processes of CO, and H,0 for an exemplary study area by applying
eddy covariance and machine learning methods. Experiments were conducted in a nested approach,
mainly concerning a partly deforested spruce forest at the upper Wistebach stream in the Eifel
mountains in western Germany, but also spanning over the higher-order Rur catchment area. In order
to tackle this goal, three general research questions are formulated, which are approached in three
studies within this dissertation, each with more specific research questions, hypotheses or objectives:

1) How accurate can CO; fluxes from eddy covariance stations be upscaled to the Rur catchment across
different land covers using machine learning with state-of-the-art feature selection methods?

2) How are eddy covariance measurements over a deforested, fetch-limited site with unmanaged
regrowth affected by choices of measurement height and spectral correction?

3) How are different environmental conditions related to the light use efficiency and gross primary
productivity of a temperate spruce forest?

The first research question is addressed for the whole Rur catchment area, while the second research
question is addressed for an 8.6 ha deforested area at the upper Wiistebach, and the third research
question for a spruce forest next to it. All of these sites are part of a long-term TERENO (TERrestrial
ENvironmental Observatories) research program to observe Global Change consequences at
representative terrestrial ecosystems (Zacharias et al., 2011).

In order to approach these research questions, the presented dissertation is structured in seven main
chapters. Besides a general introduction giving reasons for the outlined research questions, Chapter 1
also comprises background information about the total carbon exchange at the ecosystem scale,
definitions of its compartments and their measurability with the eddy covariance method. In addition,
the chapter describes energy pathways of absorbed radiation at the leaf scale as the processual basis
of the terrestrial carbon sink. Chapter 2 summarizes the nested research area in terms of land use,
climate, vegetation, geology and soils, as well as instrumentation and the embedment in the general
TERENO long-term project. Chapter 3 elucidates the general concepts, constraints and advantages of
the two main methods applied for this dissertation, first the eddy covariance method for
experimentally assessing greenhouse gas fluxes, and second tree-based machine learning techniques
for prediction and inference.

The following three Chapters 4, 5 and 6 are the core part of this dissertation and approach the three
research questions respectively. Chapter 4, published in Journal of Geophysical Research:
Biogeosciences (Reitz et al., 2021a), concerns the spatial upscaling of eddy covariance derived CO; flux
measurements to the regional scale across different land covers. Therefore, state-of-the-art training
approaches were evaluated for a random forest machine learning model, which was trained with
several predictor variables including remotely sensing vegetation indices and reanalysis data. Chapter
5, published in Boundary-Layer Meteorology (Reitz et al., 2022), concerns the uncertainty of eddy
covariance measurements over a fetch-limited, deforested area with near-natural regrowth in regard
to experimental design and data processing. For this site with non-ideal characteristics for eddy
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covariance measurements, two measurement heights and five different spectral corrections were
compared. In this way, the uncertainty of measurements at recently disturbed ecosystems can be
better evaluated and the flux data better interpreted for further potential applications such as the
comparison to other land covers. And in Chapter 6, published in Journal of Geophysical Research:
Biogeosciences (Reitz et al., 2023), the light use efficiency and GPP of a temperate spruce forest were
assessed with in-situ measurements. These were related to meteorological and forest canopy
conditions, by applying, among others, state-of-the-art variable importance measures for machine
learning models. Furthermore, water-limiting conditions for photosynthesis were identified by
analyzing hysteretic responses of tree-scale sap flow measurements and ecosystem-scale
photosynthesis estimates to meteorological variables. And finally, Chapter 7 includes a synthesis of the
conducted research and gives an outlook for future research possibilities in the field of atmosphere-
biosphere interactions.

1.2 The Ecosystem Scale Carbon Exchange — Definitions and Limitations

The exchange between a surface and the atmosphere is measured as a flux and is defined as the
integral of an entity that passes through a Gaussian surface per unit of time (Burba, 2022). A surface is
considered a source if the net flux leaves it (goes upwards), and a sink if the net flux goes toward the
surface (downwards). In the context of eddy covariance measurements, the net ecosystem exchange
(NEE) is the total CO; exchange of turbulent fluxes adjusted by a storage term but does not include
other carbon transport processes. In this way, a negative NEE corresponds to a CO; sink, and a positive
NEE to a CO; source. NEE is commonly expressed in umol CO, m? s at the half-hourly scale and in g C
m2 d? at the daily scale. Net ecosystem production (NEP) describes the same quantity as NEE but
rather from an annual ecosystem stock change point of view and thus with opposite signs (NEP = -NEE;
Kirschbaum et al., 2001). The two components of NEE are GPP and ecosystem respiration (Reco). GPP
refers to the fixated carbon by photosynthesis minus the CO; lost by photorespiration, and Reco refers
to the respired CO; by autotrophic (Ra or Reiant) and heterotrophic organisms (Ru) (Kirschbaum et al.,
2001). Soil respiration (Rsoi) instead combines Ra of plant roots and Ry of decomposing soil organisms
(Bond-Lamberty et al., 2004). Hence, NEE equals Reco - GPP (Tramontana et al., 2020). Net primary
productivity (NPP), on the other hand, refers to the net growth of plant organic carbon, which is GPP
minus the carbon respired by plants themselves (NPP = GPP — Ry; Kirschbaum et al., 2001). Hence, Reco,
GPP and NPP all range from zero to positive values only.

However, several carbon fluxes are not included in this definition of NEE as a full assessment of all
components is not achievable with a single method. Fluxes of reduced C compounds such as CH4, CO
and other volatile organic compounds (VOCs) can make up a substantial part of the total carbon
exchange, depending on the ecosystem. Out of those, CH, is a potent greenhouse gas itself, and all
reduced C compounds eventually oxidize to CO; in the atmosphere (Ciais et al., 2022). Although less
widespread than CO, due to being more cost-intensive, a CH4 flux network of eddy covariance stations
exists (Delwiche et al., 2021), and first attempts to measure VOC fluxes with the eddy covariance
method have also been made (Fischer et al., 2021). Neither included in NEE are lateral carbon fluxes
which are fundamentally not measurable with the eddy covariance method due to not being
transported by turbulent motions. Such lateral fluxes include transport and consumption of trade
items such as wood, crops or hay, which are especially important for carbon budgets of managed lands,
runoff of eroded soils and dissolved carbon, or animal grazing (Chapin et al., 2009; Ciais et al., 2022).
The combustion of organic carbon by wildfires theoretically is included in measured NEE by eddy
covariance systems but experiments have shown an underestimation of released CO, (Clark et al.,
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2009), and the transport of soot is neither measured. Advective fluxes of CO; such as large-scale
circulations and nocturnal drainage flows, on the other hand, are strived to be minimized due to an
optimal eddy covariance site and setup, which are described in more detail in Chapter 3.1.

1.3 Energy Pathways of Absorbed Radiation at the Leaf Scale

The light use efficiency is on the one hand an important concept for modelling GPP (Pei et al., 2022),
and on the other hand an important measure for quantifying and potentially reducing the absorbed
energy not used for CO; assimilation (Genesio et al., 2021). Therefore, it is relevant to point out the
energy pathways of absorbed radiation within and around a leaf and the environmental controls on
these pathways, which determine the light use efficiency and in this way are the processual basis for
the terrestrial carbon sink.

Only one of these pathways, which energy from photosynthetically active radiation that is absorbed
by a green leaf (APAR;) can take, ultimately results in the fixation of CO,. At first, radiation can be
absorbed by non-photosynthetic molecules such as cuticular wax, water, or other pigments such as
anthocyanins as a protection against ultraviolet light (Ustin & Jacquemoud, 2020). This energy can
either be re-emitted as long wave radiation, transported as sensible heat by turbulent motions or is
used for the vaporization of liquid water and the transpiration of water vapor through open stomata
or the evaporation of intercepted water on the leaf surface.

APARg that actually is absorbed by chlorophyll a & b induces the light reaction and also fluorescence,
which is typically only 1-2% of total absorbed light (Maxwell & Johnson, 2000). Within the light
reaction, adenine triphosphate (ATP) as an energy storage molecule and the reduced form of
nicotinamide adenine dinucleotide phosphate (NADPH) as a hydrogen carrier are synthetized through
an electron transport chain (Schopfer & Brennicke, 2010). However, during periods of high light
intensity, water stress or cold temperatures, more light energy is harvested than can be used for the
fixation of CO,. To prevent harm from the leaf structures, excess energy is dissipated as heat via non-
photochemical quenching (NPQ) in the xanthophyll cycle (Jahns & Holzwarth, 2012), which at full light
makes up about 50-70% of all absorbed energy by the photosystems (Heldt & Piechulla, 2015).

ATP and NADPH as products from the light reaction are finally utilized for the assimilation and
reduction of CO; to glucose through the Calvin cycle, also called dark reaction as it is not directly
dependent on light (Verma et al., 2017). However, photorespiration is also a possible result of the
Calvin cycle in C3 plants and much less in C4 and CAM plants. In this way, photosynthetic energy is
wasted as the enzyme RuBisCO assimilates O, instead of CO,, which in turn is released as a by-product.
The probability of photorespiration increases with an increased ratio of the O, to CO; content in
solution, which in turn increases with higher temperatures (Foyer et al., 2009). Then again, the
probability of photorespiration also depends on the CO, to O, ratio in the atmosphere, and in this way
increased atmospheric CO; also has the potential to suppress photorespiration (Serk et al., 2021).

In summary, different environmental conditions influence the energy pathways of absorbed radiation,
the most important being air temperature, water content in soil and air, the amount of (excess)
absorbed radiation, atmospheric CO,, and the availability of nutrients such as nitrogen and
phosphorus.



2 Study Area: The Wistebach Research Site within the Eifel/Lower
Rhine Valley Observatory
2.1 The Eifel/Lower Rhine Valley Observatory

The Eifel/Lower Rhine Valley Observatory, coordinated by Forschungszentrum lJilich, is one of four
terrestrial environmental observatories of the TERENO project in Germany and covers the Rur
catchment in western Germany with small portions in Belgium and the Netherlands (Bogena et al.,
2018). TERENO is a long-term research program of four Helmholtz Research Centers and provides long
time-series of system variables to observe Global Change consequences for terrestrial ecosystems.
More specifically, the complex implications and feedbacks from climate and land use changes on, e.g.,
water balance, CO, exchange, soil fertility, regional climate and biodiversity of terrestrial systems are
investigated for four German regions being representative for Central Europe (Zacharias et al., 2011).
The Eifel/Lower Rhine Valley Observatory hereby represents the north-western part of the Central
European low mountain area and also the transitional area towards the northern Central European
lowlands. All data collected within the TERENO program are distributed with free access via the open
GIS-platform TEODOOR (Kunkel et al., 2013).

The Rur catchment covers an area of 2354 km? and exhibits significant north—south gradients in
elevation, temperature, precipitation, land use, soil properties and geology (Bogena et al., 2018). The
southern half of the Rur catchment is part of the Eifel low mountain range with elevations up to 680 m
above sea level (asl), while the northern half is a flat lowland area with an average elevation of about
100 m asl down to about 20 m asl at the mouth of the Rur river (excluding the open pit mines of the
Rhenish lignite coal area). The northern lowland area is a fertile loess plain and is dominated by arable
land of which in 2011 41% was winter wheat (Triticum aestivum), 28% sugar beet (Beta vulgaris) and
10% maize (Zea mays) as the most common crops (Reichenau et al., 2016). Settlements are mainly
located in the northern and central parts of the catchment. The upland areas instead are dominated
by coniferous and deciduous forests, pastures and fenlands (Lussem & Herbrecht, 2019; see also Fig.
4.1 in Sect. 4.2). The Eifel mountains of the upper Rur catchment are part of the Rhenish Massif and
are mostly composed of Paleozoic consolidated rocks with some Mesozoic sandstone and limestone
outcroppings near the south-eastern border of the catchment. The northern half is dominated by
unconsolidated Tertiary sediments covered by Pleistocene terrace deposits of the Meuse and Rur
rivers and by aeolian loess deposits with significant portions of anthropogenic spoil tips (Bogena et al.,
2018). Fluvisols, Gleysols and Eutric Cambisols are major soils of the southern upland area, while the
fertile arable land is dominated by Haplic Luvisols and Cumulic Anthrosols with a silt loam texture and
high field capacities above 200 mm (Korres et al., 2015; Bogena et al., 2018).

For the most recent climatological normal 1991-2020, the highest mean annual temperatures (MAT)
inthe Rur catchment were recorded in the northern lowlands, for example 10.9 °C at the station Elsdorf
and 10.7 °C at Heinsberg-Schleiden (DWD, 2022). The lowest MAT is expected in the highest parts of
the Eifel mountains. Schneifelforsthaus, located about 13 km south of the Rur catchment and at 649
asl, which is similar to the highest parts of the catchment, had a MAT of 7.3 °C, and the highest official
station within the Rur catchment, Kall-Sistig at 505 m asl, had a MAT of 8.3 °C (DWD, 2022). Mean
annual precipitation (MAP) exhibits not only a north—south gradient, but also a decreasing gradient
from west to east, especially in the southern half (Bogena et al., 2005). In the northern lowlands, MAP
was 681 mm at Heinsberg-Schleiden, while in the southern uplands MAP ranges from 1253 mm at
Hellenthal-Udenbreth in the windward southwestern corner to 783 mm at Kall-Sistig in a leeward area
just 13 km away (DWD, 2022). This steep precipitation gradient is also evident in Fig. 2.1, showing a
precipitation difference over 400 mm between Wiistebach and Kall-Sistig for the period 2011-2021.
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Resulting from the dominating south-western wind directions, the lowest MAP of the Rur catchment
was recorded in the leeward areas along the Rur river with 616 mm at Diiren (DWD, 2022). The relation
between winter and summer precipitation also is not equally distributed over the catchment, with
approximately 15% higher winter precipitation in the southern upland regions and about 10% higher

summer precipitation in the northern lowland regions (Bogena et al., 2005).

Heingberg-Schlaiden [Lat: 51.04, Lon: 6.10] (57 m)
2011 10 2021 11aC

=

o —T LI e
12 3 4 5 6 F B 9 10 1 12

Wiistabach [Lat: 50.5, Lon: 6.3] (515 )
2011 ta 2021 BEC 1103 mm

9 - 300
C mm

50 100

40 - 80

S0°50

s0eanA

Elevation in m
High ; eg8

-

@ Intersive Ressarch Sites.
@ LongtomOWD Stsions

[

4
g

Nideggen-Schmidt [Lat: 50.67. Lon: 6.42] (350 m)
2011 to 2021 10C 785mm

4 300
c mm

100

an - 80

B ~ &0

20 + - an

10 - 20

e O
12 3 4 5 6 7 8B 8 10 11 12

Kall-Sistig [Lat: 50.50, Lon: 6.53] (505 m}

2011 to 2021 B5C  692mm

300
G mm

50 100

30 - - 60 T

s0aane

20 4 - 40

10 - 20

Ll n o i
0 —— T T e ORS: WGS B4, UTH 32N

1 2 3 4 5 6 7 8 8 10 11 12 s &0E B10E B0 &30E e

1.2 3 4 5 & 7 8 8 10 11 12

Figure 2.1 Elevation of the Rur catchment area from SRTM data (Jarvis et al., 2008) and Walter and Lieth climate diagrams
for the TERENO Wiistebach site and three weather stations from the German Weather Service (DWD, 2022), all for the years
2011-2021 to match the Wiistebach time series.

Instrumentation is distributed over the observatory in a nested multiscale approach, with (i) sparse
measurements of runoff gauging stations scattered over the whole Rur catchment, (ii) moderate
instrumentation within three subcatchments (Ellenbach, Kall, Erkensruhr), and (iii) intensive
instrumentation at three research sites (Selhausen, Rollesbroich, Wistebach) within these
subcatchments (Bogena et al., 2018). The Selhausen site (50.865°N, 6.447°E) at about 100 to 110 m asl
in the northeastern part of the catchment represents the agricultural landscape with spatiotemporally
varying crops (Schmidt et al., 2012). The Rollesbroich site (50.622°N, 6.303°E) from 474 to 518 m asl
covers a 20 ha managed grassland area in the Eifel mountains with different fields that are individually
fertilized and cut (Borchard et al., 2015). The Wiistebach site (50.504°N, 6.333°E) partly covers a spruce
monoculture and a deforested area with undisturbed regrowth around the Wiustebach headwater
region in the Eifel mountains and is described in more detail in the next section.

At each research site, energy and CO, fluxes are measured by an eddy covariance tower, which are
part of the Integrated Carbon Observation System (ICOS; Heiskanen et al., 2022). Besides continuous
eddy covariance data, additional trace gas measurements include tunnel flux chambers (Graf et al.,
2013) and elevator-based profile measurements (Ney & Graf, 2018). Further measurements at each
site include meteorological parameters such as air temperature and humidity, precipitation, short-and
long-wave radiation, wind speed and direction, as well as soil temperature and water content sensors
connected to the wireless sensor network SoilNet (Bogena et al., 2010). Soil moisture is additionally
estimated at the field scale by 10 cosmic-ray neutron stations (Baatz et al., 2014; Andreasen et al.,
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2017). This method was also applied for mobile surveys (Jakobi et al., 2020) and soil moisture data
were assimilated within land surface models to predict evapotranspiration at the regional scale (Baatz
et al., 2017). At each research site one to three lysimeter stations were installed to observe actual
evapotranspiration across the catchment and are part of the SOILCan network (Pitz et al., 2016).
Recent remote sensing activities for the Rur catchment include Sentinel-2 based monitoring of spruce
stands using cloud computing infrastructures (Montzka et al., 2021) and biomass estimations from
Light Detection And Ranging (LiDAR) sensors on unmanned aircraft vehicles (Bates et al., 2022).
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Figure 2.2 The Wiistebach intensive research site with instrumentation and aerial images demonstrating the deforested area.
Figure adapted without changes from Bogena et al. (2018), under CC BY-NC-ND 4.0.

2.2 The Wistebach Research Site

The research site is situated within the Eifel National Park and encompasses the upper Wistebach
catchment including an unnamed tributary catchment to the north serving as an unaffected reference
(see Figure 2.2). The upper Wiistebach research site covers an area of 38.5 ha and ranges between
elevations of 596 m asl at the northern outflow of the stream to 629 m asl at the eastern corner with
an average slope of 3.6 % and a maximum slope of 10.4% (Bogena et al., 2015). The bedrock consists
of Devonian shales which are superimposed by periglacial solifluction layers. Cambisols and Planosols
with a silty-clay loam texture are the dominant soil types on hillslopes while Gleysols and Histosols
(half-bogs) have formed along the stream under groundwater influence (Bogena et al., 2018).

The site has a long history of human impact. During medieval and early modern times, beech forests
in the northern Eifel were cut for pastureland and charcoal production used in iron melting industries.
This resulted in a largely deforested landscape until reforestation with spruce trees was initiated in the
19'" century under Prussian rule (Suck, 1999). Following area-wide devastation during the Battle of the
Bulge in 1944-1945, which included heavy fighting at the Wistebach site with remaining trenches and
explosion craters, the area was planted again mostly (ca. 90%) with Picea abies in the 1950s (Lehmkuhl
et al., 2010; Borchardt, 2012). In 2009, the catchment had an average canopy height of 25 m, a tree
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density of 370 trees ha and a dry biomass of 310.5 t ha* corresponding to about 3670 t of carbon
(Etmann, 2009). The potential natural vegetation of the Wiistebach site is classified as a montane base-
poor wood rush/beech forest (Suck et al., 2014). Following the National Park’s approach to convert the
spruce monoculture to a near-natural beech forest, a deforestation experiment was conducted in
September 2013, for which an area of 8.6 ha around the stream was clear-cut with the exception of
few alder stocks. Only about 3% of the original biomass remained on site, mostly stumps, litter and
individual trunks (Baatz et al., 2015). After deforestation the area was left without plantings for
undisturbed regrowth, and a fence was erected around a core area against animal browsing. In the
remaining parts of the Wistebach site, however, the spruce monoculture was not cut and beech
saplings were planted in the understory to impede natural regeneration of spruce trees with process
conservation as the long-term goal (Nationalparkverwaltung Eifel, 2014).

Figure 2.3 Photography of the 38 m Wiistebach tower, mounted with an eddy covariance system and sensors for
photosynthetically active radiation, among others. Published with the kind permission of the authors Carsten Montzka and
Jordan Bates, Forschungszentrum Jilich.

The research site contains two eddy covariance systems, one installed on a 38 m high tower in 2010 to
observe fluxes of the spruce forest to the west of the stream (Fig. 2.3), and one for the deforested area
installed in 2013 (Fig. 5.1c). The spruce monoculture was a significant carbon sink from 2010 to 2017
with a NEE of -660 g C m2y™ (Ney et al., 2019). In comparison, the clear-cut area changed from a strong
carbon source (NEE of 521 g C m2 y'!) in the initial year after deforestation towards an almost neutral
NEE of 83 g C m?2 y! in the fourth year after deforestation, mostly due to an increase of GPP by
regrowing vegetation (Ney et al., 2019). In 2020, the vegetation of the clear-cut area was dominated

9



by various grasses (e.g., Deschampsia spec., Molinia spec.), shrubs and bushes of different size (e.g.,
Cytisus scoparius, Calluna vulgaris, Epilobium angustifolium), and young trees (Sorbus aucuparia,
Betula pubescens, Picea abies). Regarding hydrological effects, the deforestation caused a decrease of
evapotranspiration, which in turn caused an increase of soil water storage and discharge, especially in
summer (Wiekenkamp et al., 2016). Furthermore, the concentration of most ions (Na*, Ca?*, Mg*', CI-
, and SO4") in the stream water showed a decreasing trend after deforestation (Ptaczkowska et al.,
2022). In the forested part of the research site, physiological processes of three spruce trees are
intensively monitored by dendrometers and sap flow sensors. The major drought of 2018 caused the
spruce trees to halt their hydraulic systems and photosynthesis, resulting in a narrower tree-ring width
(Neuwirth et al., 2021). For future research, the Wiistebach site will be one of four German pilot areas
to establish a standardized monitoring system for assessing growth reactions of important Central
European tree species under climatic extremes.
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3 Methods
3.1 Eddy Covariance

For this dissertation, turbulent fluxes were experimentally assessed with the eddy covariance (EC)
technique. This method is a micrometeorological approach to measure the turbulent flux of
momentum, energy and scalars such as the greenhouse gases H,0, CO;, CH4, and N,O between a
surface and the atmosphere within the atmospheric boundary layer. These scalars are transported in
all three directions in the atmosphere by turbulent whirls of varying size, also called eddies (Eugster &
Merbold, 2015). In order to describe turbulent motions, a modification of the Navier-Stokes equations
is required. An approximate solution of these equations is realized by applying Reynolds
decomposition, i.e., by decomposing a time series of a variable into its average and fluctuating
components to enable a statistical representation of turbulent motions (Reynolds, 1895). Hence, a
vertical flux F of a constituent in the atmosphere can be represented as

F =Paws = (Pg + P)(W +w)E +s"), (Eqg.3.1)

where P; is air density, w is vertical wind speed, and s the dry mole fraction of a gas of interest, for
which the overbars represent averages and the primes instantaneous deviations (Burba, 2022). After
opening the parentheses, the equation can be simplified by deleting terms considering averaged
deviations from an average are zero, and assuming that (i) air density fluctuations are negligible, and
(ii) mean vertical flow is negligible over flat, horizontally homogeneous surfaces (Burba, 2022). The
resulting eddy flux can then be described as

F~P;w's, (Eq.3.2)

where w's’ is the statistical covariance between vertical wind speed and a scalar of interest. However,
this application is only valid under certain conditions, otherwise the surface flux is not properly
represented by the formula in Eq. 3.2. Following the ergodic hypothesis, which states that time
averages are equivalent to ensemble averages and in this way time averages of a sampling volume can
be related to a surface area, fluxes have to be stationary over the averaging period and homogeneous
over the surface area to remain representative (Katul et al., 2004; Foken et al., 2012). A test for
stationarity for example examines whether the averages of shorter averaging intervals do not differ by
more than 30% from the whole averaging interval (Foken & Wichura, 1996). In practice, fluctuations
are oftentimes assessed every 0.1 or 0.05 seconds (10 or 20 Hz) and values are averaged over 30
minutes or one hour because this domain falls into a spectral gap between turbulent fluctuations and
mesoscale diurnal cycles and thus facilitates stationarity. Stationarity and homogeneity can be violated
by intermittency in the very stable boundary layer (Mahrt, 2014). In such conditions, turbulence is
usually not sustained due to buoyant damping, but for example Kelvin-Helmholtz instabilities can
temporarily and locally increase the flow shear and thus create limited patches of active turbulence in
time and space (Aubinet, 2008; Finnigan, 2008).

Air density fluctuations are assumed to be negligible, which is usually valid near sea level, but those
can be significant at high altitudes and high wind speeds (Massman & Lee, 2002). The method further
assumes a negligible mean vertical flow. This basically requires an adequately flat and homogeneous
surface to exclude flow divergence and convergence and thus advective processes. In this way, it has
always to be ensured that turbulence is the dominant transport mechanism and other processes such
as advection and molecular diffusion are negligible. Advective mechanisms that result in a non-zero
mean vertical wind can be summarized to i) convection as stationary cells during periods of low
mechanical turbulence, ii) synoptic scale subsidence due to high pressure systems and iii) local
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circulations driven by surface heterogeneity including drainage flows, which are especially important
for CO; budgets (Lee, 1998). Well-developed turbulence is usually assessed by friction velocity
thresholds (Goulden et al., 1996), though more sophisticated approaches to detect vertical decoupling
also exist (e.g., Peltola et al., 2021a). Turbulent exchange is impeded especially during calm nights with
stable stratification, which in terms of CO, budgets carry the risk of underestimating nighttime
respiration. In such cases, respired CO, either accumulates below the observation height and is
transported upwards after turbulence develops again, is transported downslope by gravitational force
without being measured by the EC system, or a combination of both (Aubinet, 2008). Hence, the total
CO; exchange between an ecosystem and the atmosphere consists of a turbulent flux, an advective
flux and a storage term. Ideally, the advective flux has to be assessed separately through the
measurement of vertical and horizontal gradients, though this is not feasible as a routine procedure
(Finnigan, 2008).

Another constraint of the method concerns the measurement height, as an inadequate height results
in fluxes not being representative of the ecosystem of interest. Instruments have to be placed high
enough in the well-mixed layer not to be influenced by individual roughness elements, to cover a
representative source area, and to be not subject to high spectral losses (Schmid & Lloyd, 1999;
Munger et al., 2012). On the other hand, flux measurements have to be low enough within the
atmospheric boundary layer to not become significantly affected by the linear flux decrease with
height until the flux vanishes at the inversion layer. The decrease at a given measurement height also
depends on the boundary layer height, which is why in stable nights with a low boundary layer height
the missed flux at tall towers can be significant (Eugster & Merbold, 2015). In addition, in real world
cases the ecosystem of interest extends only to a certain distance in the upwind direction and is not
perfectly homogeneous in all directions. Hence, it has also to be ensured that the footprint of the
instruments is to a large extent congruent with the ecosystem of interest, which also depends on
atmospheric stability and surface roughness. This is further limiting the measurement height and
requires an assessment of the flux source area in order to interpret the signals (Rannik et al., 2012).

For daytime conditions, the energy balance closure is a common way to estimate the validity of EC flux
measurements. With an ideal set-up the sum of sensible and latent heat fluxes measured by an EC
system should equal the net radiation minus soil heat flux, energy used for photosynthesis, and energy
stored in the air below measurement height (Wilson, 2002). The fact that EC measurements
consistently underestimate energy fluxes is attributed to low frequency eddies associated with
convection not detectable by EC sensors (Foken, 2008).

Despite these constraints and general limitations concerning the total carbon exchange stated in Sect.
1.2, the EC method holds marked advantages, making it a widely applied technique to estimate net
ecosystem exchange. It is a direct method to measure flux densities, it causes only minor disturbances
to the vegetation or soil (such as shading and maintenance-related soil compaction), yields a quasi-
continuous time series, and represents an area at the ecosystem scale (Baldocchi, 2014). With a large
network of stations and some time series now exceeding 20 years of data, the breathing of the
biosphere in respect to changing environmental conditions can be better understood (Baldocchi,
2019). Alternative methods include leaf, soil and canopy chambers for smaller scale measurements,
gradient-based models such as the Bowen Ratio method for similar ecosystem scale applications, or
remote sensing products of the total column gas concentration dynamics at the global scale (Burba,
2022).

In order to calculate the covariance between fluctuations of vertical wind velocity and, e.g., CO,, two
sensors recording at a high enough frequency of at least 10-20 Hz are required. Sonic anemometers
are used for measurements of wind speed and sonic temperature. The underlying principle is to

12



measure the transit time of an ultrasound wave burst between three pairs of transducers being a
known distance apart. The transit time between them depends on the speed of sound and the assumed
uniform velocity of the air in their path. As the speed of sound does not depend on the direction, the
wind speed in three directions can be deduced by calculating differences of the measured transit times
between both directions for all three opposing pairs (Kaimal & Businger, 1963; Munger et al., 2012).
On the other hand, the speed of sound can be calculated from the sum of transit times. And since the
speed of sound is temperature dependent — besides humidity and atmospheric pressure, which are
usually also measured —, the sonic temperature and thus the sensible heat flux can also be deduced
from sonic anemometers (Schotanus et al.,, 1983). As sonic anemometers in the field cannot be
perfectly aligned perpendicular to the mean flow, w is usually contaminated by the two horizontal
wind vectors (Rebmann et al., 2012). Two common corrections for this error exist, the first being
coordinate rotation to set w = 0. Over more complex surfaces, however, half-hourly w cannot always
be considered zero. For such cases, the planar fit method establishes a hypothetical plane fitted to the
streamlines in different wind directions from measurements over several weeks to months and only
assumes w = 0 for these time periods (Wilczak et al., 2001).

Infrared gas analyzers measure the molar densities of e.g., H,O and CO; by detecting the intensity
reduction of an infrared beam caused by the absorption of H,0 and CO; in a sampling volume (Munger
et al., 2012). With an open-path design, such as used for this dissertation, sensors are exposed to
ambient conditions and the air is moved through the sensor path by the wind. In this way, gas density
measurements are affected by temperature, humidity and air pressure fluctuations. In order to exclude
the influence from such air expansions or contractions and to relate the measured changes only to the
gas flux, the Webb-Pearman-Leuning terms have to be added (Webb et al., 1980). With these terms
accounted for, measured molar densities, i.e., the amount of material per unit volume in mol m~3, can
be converted to the required dry mole fractions, i.e., the ratio of the constituent to the dry air with
this constituent in mol mol™* (Burba, 2022). Moreover, the anemometer and gas analyzer exhibit a time
delay resulting from their physical separation and thus asynchronous signal acquisition. Their time
series are usually aligned by maximizing the covariance between them within a certain time window
(Mauder & Foken, 2011). Spectral corrections to account for high frequency losses mainly due to (for
open path designs) a limited frequency response, sensor separation and path averaging of the sensors
are an important step in the processing chain. These corrections are described in detail in Chapter 5.2.3
and are usually applied by comparing actual spectra or cospectra to those of a hypothetical ideal
system under given ambient conditions or to, for example, measured sensible heat flux cospectra as
an approximation of unattenuated cospectra. In addition, spectral corrections also account for low
frequency losses mainly due to block averaging (Moncrieff et al., 2004).

In recent years, efforts have been made to unify processing schemes and create huge datasets of
comparable flux data such as the worldwide FLUXNET database (Pastorello et al., 2020), the 1COS
network in Europe (Rebmann et al., 2018), or the TERENO network in Germany (Mauder et al., 2013).
However, remote and tropical regions in particular are still underrepresented in such networks and
upscaling techniques combining remote sensing and machine learning methods are required to
achieve spatiotemporal gapless flux information. In addition, these EC networks also need to be
expanded in regard to other greenhouse gases such as CH, and N,O (Baldocchi, 2019).
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3.2 Tree-based Machine Learning

Machine learning, or statistical learning, is a set of algorithms to learn from relationships between
data. By fitting a model on a training data set, general knowledge can be extracted inductively even
for complex cases when a thorough understanding of relationships is not achievable beforehand
(Mailund, 2017; Dramsch; 2020). Machine learning algorithms can be classified into two general
approaches, each with different aims, supervised and unsupervised learning. For supervised learning,
there is a target variable that is predicted using a set of predictor variables. Hence for each observation
of a predictor variable there is an associated observation of the target variable. If the target variable is
numerical, the modelling is called regression, and classification if the target variable is categorical
(James et al., 2021). In the machine learning context, predicting should be distinguished from
forecasting, as models do not necessarily aim to predict into the future (Meyer et al., 2018). For
unsupervised learning, there are no associated target observations and the model instead learns
patterns such as clusters in the data without predefined goals (Mailund, 2017). For this dissertation,
only supervised approaches for regression were applied.

The aims for modelling can be further distinguished between prediction and inference. For prediction,
the goal is accurately predicting the target variable for new cases, while for inference the goal is a
better understanding of the relation between target and predictor variables (James et al, 2021).
Unfortunately, for almost all complex cases there is a trade-off between model accuracy and
interpretability. Restrictive models such as linear regression have a low prediction performance in
complex, non-linear cases but are relatively easy to interpret. In this way, a linear model can be used
to infer model parameters, i.e., to falsify whether there was a significant linear relationship between
target and predictor (Mailund, 2017). Flexible models such as neural networks, on the other hand,
usually have a better accuracy but are also difficult to interpret, i.e., how their outcome is related to
individual predictors (James et al, 2021). However, variable importance metrics can improve the
interpretability of flexible models such as random forest (Grémping, 2009; Williamson et al., 2021).
Machine learning models were applied with the focus on prediction in Chapter 4 and with the focus
on inference in Chapter 6.

Another important issue for machine learning approaches is the trade-off between bias and variance
as it is difficult for a model to exhibit both, a low bias and a low variance. A bias error results from an
underfitted model with erroneous approximations about the relationship of predictor and target
variables. A variance error refers to the high sensitivity of a model to variations of the training data.
Ideally, a model should not vary much by different samples of training data in order to avoid modelling
random noise. Otherwise, the model is overfitted to a specific training sample. Flexible models are
prone to overfitting and thus require certain hyperparameters that can be fitted in an internal cross
validation with independent test data within the model building process. In order to assess the overall
model performance, an additional external cross validation with validation data fully excluded from
the whole model building process is also required (James et al., 2021). However, for spatiotemporal
prediction tasks, a random partition of data into training and validation sets is not sufficient, but
validation should be conducted with spatial and temporal blocking to prevent an overoptimistic model
assessment (Roberts et al., 2017). This is because common predictor variables that vary in space but
not in time such as elevation, land cover or soil properties together act as a unique ID for each location
with training data and the model is thus prone to overfitting (Meyer et al., 2018). In order to solve this
issue, a feature selection with an internal spatial cross validation strategy can be conducted to exclude
such spatially autocorrelated predictor variables (Meyer et al., 2019).
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Decision trees form the basis of different tree-based machine learning methods such as random forest,
gradient boosting or AdaBoost. The general principle of regression trees is to split the predictor space
into several smaller, more homogeneous subgroups. The if-then rules constituting the model can be
represented by a binary tree structure (Bergen et al., 2019; see Fig. 3.1). Hence at each node the data
is split into two groups and each leaf is a terminal of the decision tree, at which observations are not
further split. At each node the training data is split into two groups as homogeneous as possible by a
threshold of a predictor variable. The predictor variable and its threshold are determined by the
smallest sum of squared residuals of the observed target values to the averages of each group. The
final prediction then is the average target value of all observations in the respective leaf. For typical
decision trees, overfitting is reduced by a minimum number of observations required to be within a
node to allow a further split. Pruning large trees, i.e., replacing a split by a leaf containing the average
of both former groups, is another method to reduce overfitting (Kubat, 2017). To find the optimal size
of the pruned tree, a penalty parameter for each additional leaf is introduced that can be tuned within
the model building process.

Single decision trees usually are weak learners, but the prediction accuracy can be highly improved by
ensemble methods such as random forest. This method consists of many decision trees (usually at
least 500) and was introduced by Breiman (2001). The general concept is based on bootstrap
aggregating or bagging. Here, each tree is grown with a random bootstrap sample of the training set
with replacement (Efron, 1979). These trees are not pruned, and hence each individual tree has a low
bias but a high variance. Results from all trees are averaged for the final prediction, in this way reducing
the variance of the whole random forest model. A side-effect of this procedure is the possibility to
calculate the out-of-bag error of the model as a quick substitute for cross validation. For this, the target
value of each observation can be predicted only by the bagged trees that did not include the
observation for fitting (James et al., 2021). Another method to decorrelate individual trees is to allow
only a random subset of predictors as split candidates for each node in a decision tree. Although
appearing limiting, without that restriction most or all trees would use the strongest variable in the
first split, yielding similar trees with correlated predictions. Averaging uncorrelated predictions,
however, reduces variance far more efficiently than averaging correlated ones (James et al., 2021).
The number of variables allowed as split candidates is the most important hyperparameter that can
be tuned in the model building process. Advantages of random forest are the few hyperparameters
that have to be tuned and the higher interpretability due to variable importance measures compared
to more opaque methods like neural networks. The latter is especially important if physical insights
into the analyzed system should be gained (Bergen et al., 2021). Comparison studies of different
machine learning methods for environmental science applications have shown that the performance
of random forest was consistent or even better than neural networks or kernel methods (Appelhans
et al., 2015; Tramontana et al., 2016).

Gradient boosting is also a tree-based method but unlike random forest the decision trees are not
grown independently but additively with information from previous trees. The method was developed
by Friedman (2002) and is not based on bagging. Instead, it starts with a single leaf containing the
target variable average of the whole training data. Then a size restricted tree is built to predict the
residuals of the previous tree instead of the raw target variable. That means, the second tree predicts
the deviations of the predictions of the first tree from the target variable observations and a third tree
would predict the residuals from the second tree and so on. This procedure is repeated until a given
maximum number of trees is reached or the loss function is not improved anymore. In addition, a
learning rate between 0 and 1 is introduced as a tuning parameter and is multiplied with the residual
prediction of each tree. In this way only gradual improvements to a better prediction are forced upon
the algorithm in order to reduce overfitting (James et al., 2021).
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Figure 3.1 Schematic depiction of a single decision tree with arbitrary variables and values in each node (blue rectangles) and
leaf (green circles). The values in the leaves are the average target values of all training samples that fall within the respective
leaf. For random forest, the predictions of all trees are averaged. For gradient boosting, predictions from the last tree are
taken.

In environmental science the quantity and complexity of gathered data is increasing nearly
exponentially which requires advanced data analysis techniques (Zhong et al., 2021). The combination
of increasing computing power including cloud computing and the rapid progress in the field of
machine learning with open-source framewaorks is a promising precondition to apply machine learning
for analyzing large environmental and spatiotemporal datasets (Bergen et al., 2019). The applications
for machine learning within environmental science can be summarized to three inter-related goals: (i)
automation of complex prediction tasks such as spatiotemporal interpolation, (ii) improving the
understanding of complex relationships between environmental variables as conducted with variable
important measures, and (iii) the discovery of unanticipated or counter-intuitive patterns and
structures, e.g., finding new materials for CO, adsorption (Bergen et al., 2021; Zhong et al., 2021). In
this way machine learning can be applied as a faster surrogate of numerical simulations that require
even higher computation resources (Chen et al., 2020). It is also possible to incorporate physical
knowledge or constraints within machine learning models e.g., by partial differential equations
(Tramontana et al., 2020). Recent outstanding applications of machine learning in the field of
biosphere-atmosphere interactions exemplary include scaling of carbon and energy fluxes to the global
scale (Jung et al., 2019, 2020), continental scale (Ichii et al., 2017), predicting circumpolar methane
emissions (Peltola et al., 2019), and gap filling of eddy covariance methane flux measurements (Kim et
al., 2019). However, machine learning models always require a careful investigation whether their
predictions are consistent with fundamental principles and experimental knowledge of environmental
science (Zhong et al., 2020). In this way, inference results from machine learning in general are prone
to spurious correlations, and by no means they should be taken as causal relations but rather can
initiate more in-depth research. Other challenges include scarcity and quality of training data such as
non-uniform data sampling strategies and small sample sizes (Zhong et al., 2020). Hence recent
developments focus on the integration of machine learning with mechanistic models to improve model
interpretability and the creation of large and open science benchmark datasets with uniform sampling
strategies such as the FLUXNET database for eddy covariance data.
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Abstract

This paper discusses different feature selection methods and CO, flux data sets with a varying quality-
quantity balance for the application of a Random Forest model to predict daily CO; fluxes at 250 m
spatial resolution for the Rur catchment area in western Germany between 2010 and 2018.
Measurements from eddy covariance stations of different ecosystem types, remotely sensed
vegetation data from MODIS, and COSMO-REA6 reanalysis data were used to train the model and
predictions were validated by a spatial and temporal validation scheme. Results show the capabilities
of a backwards feature elimination to remove irrelevant variables and an importance of high-quality-
low-quantity flux data set to improve predictions. However, results also show that spatial prediction is
more difficult than temporal prediction by reflecting the mean value accurately though
underestimating the variance of CO, fluxes. Vegetated parts of the catchment acted as a CO; sink
during the investigation period, net capturing about 237 g C m2yL. Croplands, coniferous forests,
deciduous forests and grasslands were all sinks on average. The highest uptake was predicted to occur
in late spring and early summer, while the catchment was a CO; source in fall and winter. In conclusion,
the Random Forest model predicted a narrower distribution of CO; fluxes, though our methodological
improvements look promising in order to achieve high resolution net ecosystem exchange data sets at
the regional scale.

Plain Language Summary

Whether ecosystems absorb or emit CO, plays a major role in the global carbon cycle and impacts
climate change. This exchange is already measured at scattered stations, but creating spatially resolved
data sets remains a challenge. In this paper, we used satellite images of vegetation and meteorological
data to predict the CO; exchange of the Rur catchment area near the German-Dutch-Belgian border
for every day from 2010 to 2018. In order to assess the prediction quality, we compared actual
measurements from several stations within the catchment with the predictions at the locations of
these stations. Results show that our method could increase prediction quality compared to previous
process-based models, though the error remains rather high. Vegetated parts of the catchment
including coniferous forests, deciduous forests, grasslands and croplands were all CO; sinks on average.
In late spring and early summer, they were the strongest sink, but in fall and winter a CO; source.
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4.1 Introduction

Land use changes are important drivers of anthropogenic climate change. For example, deforestation
or afforestation can highly affect the carbon uptake and storage capacities of an ecosystem (Schimel
et al., 2001). Net ecosystem exchange (NEE), the difference between carbon dioxide (CO,) uptake
through photosynthesis and respiration within an ecosystem (Luyssaert et al., 2007), represents a
major feature of the global carbon cycle and, thus, helps to assess ecosystem services and the impact
of land use changes on them (negative NEE = CO, uptake, positive NEE = CO; emission) (Abdalla et al.,
2013; Schmitt et al., 2010; Xu et al., 2017).

The eddy covariance (EC) technique is the most direct way of measuring CO; fluxes, however, it
provides point measurements from a sparse network of stations each representing a footprint with an
along-wind extent typically less than 800 m (Chen et al., 2009). Top-down approaches for spatial NEE
assessment include global atmospheric inversion models from satellites such as GOSAT and OCO-2
(Wang et al., 2019a), which are especially useful for areas with limited or no EC coverage (Kondo et al.,
2015) but are restricted to a coarse spatial resolution. Thus, bottom-up approaches scaling up EC
measurements are expedient to quantify CO, fluxes for larger areas (Denman et al., 2007; J. Xiao et al.,
2012), though they are also challenging due to the high spatiotemporal variability of those fluxes
(Borchard et al., 2015; Kondo et al., 2017).

Process-based biogeochemical models have been widely applied for this purpose (e.g., Post et al.,
2018; J. Xiao et al., 2011), but subject to assumptions and model parametrizations. Data driven
machine learning techniques such as Random Forest (RF) are another promising approach to predict
NEE as they can grasp even highly nonlinear relationships to explanatory variables as is usual in
environmental data (Cutler et al., 2007). Previous attempts using statistical modeling include
nonspatial predictions of NEE at the EC tower scale (Dou et al., 2018; Safa et al., 2019; Zhou et al.,
2019). Other attempts aimed at upscaling of carbon fluxes to the continental or national scale (Papale
et al., 2015; Sun et al., 2011; J. Xiao et al., 2008) or the globe, most notably the FLUXCOM approach
(Bodesheim et al., 2018; Jung et al.,, 2011, 2020). Upscaling to the regional scale at high spatial
resolution has rarely been done although NEE estimates of heterogeneous regional and local
ecosystems are of high value for assessing ecosystem services in spatial planning (Tammi et al., 2017).
Furthermore, products at a finer spatial resolution are less prone to contain mixed pixels with
contamination of the main land use class by e.g. roads, settlements or tree rows (Zhang et al., 2011)
developed a regression model for the U.S. Great Plains based on EC towers representing grassland
only. Post et al. (2018) already upscaled NEE to the study area of this analysis, though with a process-
based model.

Spatial cross validation, that is, excluding whole locations from model training and testing the model
on them, is crucial for a realistic assessment of the reliability of spatial predictions beyond the locations
of training data. A substantial performance decrease is to be expected in comparison to a random split
of data points into training and test sets, which hence overrates model performance due to spatial
autocorrelation (Meyer et al.,, 2018; Roberts et al., 2017). Tramontana et al. (2016) conducted a
profound cross validation analysis for spatial predictions of various carbon and energy fluxes with the
conclusion that NEE is especially difficult to predict. Feature selection of explanatory variables, on the
other hand, can considerably improve data driven model performance as it reduces overfitting and
removes irrelevant or redundant variables (Hall & Smith, 1999). Meyer (2018) proposed a sequential
feature selection algorithm based on spatial cross validation to remove spatially autocorrelated
predictors. In contrast to this, conventional feature selection as implemented in the caret package
(Classification And REgression Training, Kuhn, 2020) is based on internal cross validations within the
training data, and hence fails to improve model performance when testing on locations not used for
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model training (Meyer et al., 2019). Genetic algorithms like the Guided Hybrid Genetic Algorithm
(GHGH, Jung & Zscheischler, 2013) are useful for very large numbers of features (>100), though
generally they do not rely on spatial cross validation. Quality of EC data is another issue for upscaling
attempts, especially when aggregating half-hourly to daily fluxes. While data quality improves when
excluding low-confidence values based on quality control, too small data sets also limit the learning
capacities of machine learning algorithms (Lief et al., 2012). A common practice is to indicate daily
data as missing if more than 20% of half-hourly values are missing or of low quality (Tramontana et al.,
2016; Yuan et al., 2010). However, to our knowledge a sensitivity analysis to different percentages has
not been done before.

In conclusion, NEE upscaling with data driven methods at high spatiotemporal resolutions and
incorporating different land uses remains a major task to be handled in order to approach the goal of
flux information “everywhere, all of the time” (Baldocchi, 2014). Thus, the objectives of this paper are
i) to perform upscaling of daily NEE over heterogeneous landscapes of the Rur catchment in western
Germany for the years 2010 -2018 with a RF model incorporating EC measurements, remote sensing
and reanalysis data and ii) to assess the impact of EC data quality and feature selection on the model
performance.
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Figure 4.1 Elevation from SRTM data (Jarvis et al., 2008) and eddy covariance stations used for training within the Rur
catchment area (left), the location of the study area and the FLUXNET stations within Germany (middle) and simplified land
cover classes after Lussem and Herbrecht for the Rur catchment (2019) (right).

4.2 Data and Methods
4.2.1 Study Area

The Eifel/Lower Rhine Valley Observatory covers the Rur catchment located near the German-Belgian-
Dutch border and is one of four TERrestrial ENvironmental Observatories (TERENO) in Germany
(Zacharias et al., 2011). These areas were selected for the TERENO network because they are
representative of typical landscapes found in Central Europe (Bogena et al., 2016). The catchment
covers an area of 2,354 km? and can be divided into a northern lowland part with intensive agriculture
and a relatively high proportion of built-up areas and a southern low mountain part where pastures
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and forests prevail, as shown in Figure 4.1. Based on a simplified land cover classification by Lussem
and Herbrecht (2019), the catchment consists of 27.6% grassland, 25.7% cropland, 17.7% deciduous
forest, 8.5% coniferous forest, and 20.4% other land cover types including urban areas, open cast
mines and water bodies. Mean annual temperatures range from about 7.5 -10.2 °C, increasing from
south to north. Mean annual precipitation decreases from 1,200 mm in the southern low mountain
parts to 700 mm in the north (Baatz et al., 2014).

Table 4.1 Description of the Eddy Covariance Stations Providing CO, Flux Data Used for Model Training.

Sensing Ecosystem Elevation

Name ID Period Type (m) Latitude Longitude Documentation

TERENO
05/2011 -

Merzenhausen  ME 12/2018 Cropland 92 50.9297879 6.2969924 Eder et al. (2015)
05/2011 -

Rollesbroich RO 12/2018 Grassland 514 50.6219142 6.3041256 Gebler et al. (2015)
10/2011 - Schmidt & Schween

Ruraue RU1 08/2017 Grassland 101 50.8636289 6.4274571 (2018)
08/2012 -

Engelsdorf RU2 10/2012 Cropland 108 50.9115426 6.3088546 Schmidt (2019)
08/2012 -

Kall-Sistig RU3 07/2013 Grassland 499  50.5026827 6.525401 Postetal. (2015)
04/2013 -

Niederzier RU4 07/2013 Cropland 101 50.8795149 6.4498871 Schmidt (2014)
04/2011 -

Selhausen SE 12/2018 Cropland 101 50.8658521 6.4473198 Schmidt et al. (2012)

Woistebach 06/2010 - Coniferous

forest Wwu1l 12/2018 forest 624 50.5049269 6.33096248 Graf et al. (2014)

Wiistebach 09/2013 -

deforested wu2 12/2018 Deforested 628 50.50305 6.33596 Wiekenkamp et al. (2016)

FLUXNET
01/2002-

Gebesee DE-Geb 12/2014 Cropland 162 51.09973 10.91463 10.18140/FLX/1440146
01/2004-

Grillenburg DE-Gri 12/2014 Grassland 385 50.95004 13.51259 10.18140/FLX/1440147
01/2002- Deciduous

Hainich DE-Hai 12/2012 Forest 430 >1.07921 10.45217 10.18140/FLX/1440148
01/2002- Deciduous

Leinefelde DE-Lnf 12/2012 Forest 451 51.32822 10.3678 10.18140/FLX/1440150
01/2008- Coniferous

Oberbédrenburg  DE-Obe 12/2014 Forest 734 50.78666 13.72129 10.18140/FLX/1440151
01/2002- Coniferous

Tharandt DE-Tha 12/2014 Forest 385 50.96256 13.56515 10.18140/FLX/1440152

4.2.2 Eddy Covariance Data

CO; flux measurements from nine EC stations covering different land cover types and elevations within
the study area have been used for model training and prediction (see Table 1 for details and
abbreviations). The nine stations are all part of the TERENO network (Zacharias et al., 2011).
Measurements from these stations were processed with the TK3 software (Mauder & Foken, 2011);
20 Hz frequency data were hereby processed to 30 min fluxes and corrected for storage terms to obtain
NEE values. All processing and quality-control schemes were carried out according to the standardized
strategy presented by Mauder et al. (2013), which also includes a test on developed turbulence after
Foken and Wichura (1996). Detailed measurement and processing descriptions can be found in the
references listed in Table 1, a short description of each site is given here.
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RO is an extensively managed grassland site, which is cut several times per year and mostly consists of
ryegrass and smooth meadow grass (Lolium perenne, Poa pratensis). The EC tower was placed in the
middle of two neighboring pastures with slightly different management regimes (Borchard et al., 2015;
Korres et al., 2010). RU3 is a grassland site with similar characteristics (Post et al., 2015), while RU1 is
a grassland site at significantly lower elevation (Lussem & Herbrecht, 2019). SE, ME, RU2 and RU4 are
cropland sites with rotating crops, mostly sugar beet, winter wheat and winter barley (Eder et al., 2015;
Lussem & Herbrecht, 2019; Post et al., 2015; Schmidt et al., 2012). WU1 is located above a planted
spruce forest (Picea abies) of uniform height (Graf et al., 2014), while nearby WU2 is placed in an 8.6 ha
area which was deforested in 2013 to allow a natural succession toward a European beech forest (Ney
et al., 2019; Wiekenkamp et al., 2016). Currently (2020), spontaneous vegetation of the deforested
area consists mostly of grass, shrubs (e.g., Cytisus scoparius) and young trees (Sorbus aucuparius,
Betula pubescens).

EC data were aggregated from half-hourly fluxes to daily data. As only high to moderate quality EC data
were used (quality flags 0 and 1), frequent gaps were created. The number (n) of days containing all
48 half-hourly intervals (100%) was only 386 for all TERENO stations combined, which is about 3.2% of
all possible days and constitutes the first data set. Additional data sets were created with a varying
number of missing 30 min intervals allowed: minimum 45/48 (93.75%) intervals of high to moderate
quality (n =1,035; 8.5% of possible days), 42/48 (87.5%) (n = 2,032; 16.6% of possible days), and 36/48
(75%) (n =3,996; 32.7% of possible days). For the calculation of these daily NEE values, gap-filled data
inferred with the REddyProc package (Wutzler et al., 2018) were used. In case gap-filled data were not
available, the mean was calculated of all nonfilled values of each respective day. Based on the
minimum of reliable half-hourly values included, these data sets are referred to in this paper as 48, 45,
42 and 36, respectively.

Forest sites were underrepresented in the TERENO data, as only one coniferous forest site and no
deciduous forest site were included. To achieve a better representation of each ecosystem type and
to broaden the environmental envelope, we added daily NEE data with variable ustar-thresholds of six
further stations (two coniferous forest, two deciduous forest, one grassland, one cropland site) from
the FLUXNET2015 database (Pastorello et al., 2020), as shown in Table 1. Because quality-flag schemes
may have differed among these sites, we filtered the FLUXNET data according to the relative
uncertainty instead. In order to create data sets of equal proportions as the 48, 45, 42 and 36 data
sets, we took the X days with the lowest relative uncertainty, with X being 3.2%, 8.5%, 16.6% and
32.7%, respectively. Finally, these FLUXNET data sets, were added to the 48, 45, 42 and 36 data sets.
The sensitivity of each of these data sets with a varying quality-quantity balance to the RF performance
was then further evaluated with the feature selection and cross validation strategies described below.

4.2.3 Raster Data

Explanatory variables were compiled from various sources and were of different spatial and temporal
resolutions, as shown in Table 2. These variables were chosen because they are regarded to potentially
affect NEE, and were selected by availability for the whole time period 2010-2018. Vitale et al. (2016)
showed that variations of vegetation indices such as Leaf Area Index (LAIl) can highly influence carbon
fluxes. Ishtiaq and Abdul-Aziz (2015) concluded that meteorological parameters have a strong linkage
with CO; fluxes, especially “radiation-energy” components. Datetime variables such as Day of Year can
also be a useful proxy for estimating CO, fluxes (Acosta et al. 2018). We used the following remotely
sensed MODIS Version 6 products: MCD18A1 for downward shortwave radiation (2018 only) (Wang,
2017), MOD44B for percent tree cover, percent nontree vegetation and percent nonvegetated land
cover (Dimiceli et al., 2015), MCD15A2H for LAl and Fraction of Absorbed Photosynthetically Active
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Radiation (fAPAR) (Myneni et al., 2015), and MYD13Q1 and MOD13Q1 for Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) (Didan, 2015). All of these data sets were
quality controlled to exclude contaminated pixels with the quality assurance raster included in the
MODIS products. Subsequently, for NDVI, EVI, LAl and fAPAR a Whittaker smoother (Atzberger & Eilers,
2011) was applied to fill gaps and smooth out noise in the data occurring from undetected clouds.
Finally, these vegetation data sets were linearly interpolated in time from 8-day to daily data.

Daily gridded data for the meteorological variables air temperature and relative humidity in 2 m, soil
temperature, precipitation, zonal and meridional wind speed in 10 m, long wave upward and
downward radiation at the surface and net shortwave and longwave radiation at the surface were
obtained from the COSMO REAG6 regional reanalysis data set (Bollmeyer et al.,, 2015) and were
regridded with Climate Data Operators (Schulzweida, 2019). Furthermore, daily downward shortwave
radiation from 2010 to 2017 was acquired from the Heliosat (SARAH-2) Surface Solar Radiation Data
Set (Pfeifroth et al., 2019), other variables include a digital elevation model from the Shuttle Radar
Topography Mission (Jarvis et al., 2008), and soil moisture and potential evapotranspiration from the
German Weather Service (DWD, 2019) based on Lopmeier (1994).

Raster data were used and further processed at two different steps in the analysis, to i) extract values
at the coordinates of each site for model training and validation, and ii) predict NEE for the entire
catchment area. For the latter, all raster sets were homogenized to the same extent and same spatial
resolution of 250 m with bilinear interpolation of the raster package in R (Hijmans, 2020).

Table 4.2 Predictor Variables Used for Model Training.

Nr. ID Name Source Temporal Spatial Unit
Resolution Resolution

1 NDVI Normalized Difference Vegetation MODIS 8 days 250 m
Index

2 EVI Enhanced Vegetation Index MODIS 8 days 250 m

3 LAI Leaf Area Index MODIS 8 days 500 m m?/m?
Fraction of absorbed

4 FAPAR Photosynthetic Active Radiation MODIS 8 days >00m %

5 Tree Percent_Tree_Cover MODIS yearly 250 m %

6 NonTree Percent_NonTree_Vegetation MODIS yearly 250 m %

7 NonVeget  Percent_NonVegetated MODIS yearly 250 m %

Heliosat (2010 - 0.05°
8 SWI Downward Shortwave Radiation 2017) daily (Heliosat) 5 W/m?
MODIS (2018) km (MODIS)

9 SWB Net Shortwave Radiation COSMO-REA6 daily 6 km W/m?

10 LWiI Downward Longwave Radiation COSMO-REA6 daily 6 km W/m?

11 LwWu Upward Longwave Radiation COSMO-REA6 daily 6 km W/m?

12 LWB Net Longwave Radiation COSMO-REA6 daily 6 km W/m?

13 Precip Precipitation COSMO-REA6 daily 6 km mm

14 Tair Air Temperature (2 m) COSMO-REA6 daily 6 km K

15 Tsoil Soil Temperature COSMO-REAb6 daily 6 km K

16 rH Relative Humidity (2 m) COSMO-REA6 daily 6 km %

17 u Zonal Wind Speed (10 m) COSMO-REA6 daily 6 km m/s

18 v Meridional Wind Speed COSMO-REA6  daily 6 km m/s
(10 m)

19 ETpot Potential Evapotranspiration DWD daily 1km mm

20 Soilm Soil Moisture DWD daily 1 km %

21 Month Month monthly static

22 Season Season 3 months static

23 DoY Day of Year daily static

24 DEM Elevation SRTM static 30 m m
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4.2.4 Random Forest Model

RF is a machine learning method based on an ensemble of many binary decision trees. The algorithm
was introduced by Breiman (2001) and is widely used for classification and regression in ecology (e.g.,
Aide et al., 2012; Prasad et al., 2006; Tramontana et al., 2016). Each decision tree is grown with a
random subsample with replacement of the input data, called bootstrapping (Efron, 1979). At each
node in the decision tree, a threshold of a randomly selected explanatory variable is ascertained to
split the data into the two most homogeneous subgroups, i.e. with the lowest variance. The leaf nodes
at the end of the tree do not further split the data but contain predictions of the target variable. This
value is the mean of the target variable of all elements in the corresponding subgroup. For the final
prediction, results of all trees (in this case 500) are averaged to overcome weaknesses of single trees.
One consequence of this algorithm, however, is that predictions cannot be out of bounds of the
training range. In this study, we used the implementation of the RF code in the randomForest package
in R by Liaw and Wiener (2002) to predict NEE in a regression approach. In order to identify an ideal
number of predictor variables used at each split node (“mtry”), model tuning was conducted with the
caret package, which is a wrapper to perform model tuning for various predictive models.

In order to perform feature selection, we first split the data into spatial and temporal folds (described
in the next section in detail) with the CAST package (Meyer, 2018). In a next step, we applied the
forward feature selection (FFS) procedure of this package with Root Mean Squared Error (RMSE) as
performance metric to punish high errors in particular. The advantage of CAST FFS is that feature
selection results are based on spatiotemporal cross validation rather than on training data only.
However, as FFS sometimes selected very few variables with unsatisfactory performance (see Section
3.1), a slightly modified version of this procedure has been devised and compared to FFS. We applied
a backward feature elimination (BFE), which starts with all features and iteratively removes the worst
feature based on a spatial or temporal cross-validation. Conversely, FFS iteratively adds features to the
best combination of two features. Since RF relies on randomization, results can significantly differ
between model runs. Hence, each iteration within BFE was repeated five times to average out such
randomization effects. This leads, however, to a significant increase in computation time. The general
algorithm of the BFE procedure is described in Table 3. To illustrate the impact of these two feature
selection procedures on model performance, model runs without any feature selection were evaluated
too.
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Table 4.3 General Algorithm of the Backward Feature Elimination (BFE), the Indications in Square Brackets Refer to the R-
Packages Used for the Respective Step.

Algorithm 1

01: Split data into spatial or temporal folds [CAST]

02: Do 5 times with all predictor variables:

03: Train and test model with a leave-one fold-out cross validation [caret]
04: Calculate RMSE over all folds

05: Get previous € Averaged RMSE over 5 repetitions

06: For each remaining predictor variable do:

07: Exclude variable

08: Do 5 times:

09: Train and test model with a leave-one fold-out cross validation [caret]
10: Calculate RMSE over all folds

11: Average RMSE over 5 repetitions

12: Get bestSubset € variable subset with lowest average RMSE
13: Get bestRMSE € RMSE of bestSubset

14: If bestRMSE < previous: stop

15: Else: previous €< bestRMSE

16: repeat from step 06 onwards with bestSubset
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Figure 4.2 Schematic depiction of the spatial and temporal cross validation (CV) strategies that have been applied for this
analysis. t1, t2 and t3 refer to three different time steps (years in our case), while ta refers to the FLUXNET data which are
outside the timespan of TERENO data (prior to 2010) and tb refers to the years included in the TERENO data (2010-2014).
The figure was recreated and modified after Meyer et al. (2018).

4.2.5 Cross Validation

In order to assess RF performance beyond the scope of training data, NEE predictions have been cross-
validated for (a) spatially and (b) temporally independent test sets. The additional FLUXNET data from
outside the catchment were only used for training, whereas the TERENO data were used for training
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and testing. Figure 4.2 displays the cross-validation strategies in a schematic way. Especially spatially
independent test sets may be important for the assessment of the upscaled NEE predictions presented
in Section 3.2 because they simulate predictions for pixels without any information used for model
training. These cross validation strategies have been performed for all different NEE data sets and
feature selection methods.

a) Data were split into folds by station ID. Stations were only considered for leave-out if they i)
were not the only station of their land cover class to ensure that the class was still contained
in the training data when excluding the station and ii) had data spanning over at least three
years to ensure representative results. Therefore, five stations (SE, RU1, ME, RO, WU1) were
regarded, though all other stations were included for training.

b) Data were split into folds by year. Each fold containing one year of data was left out once and
predicted by a model trained with the other years. 2010 has only been regarded for training
and not for testing as only data from one TERENO site was available for 2010.

We used the coefficient of determination (R?), the mean absolute error (MAE) and the root mean
square error (RMSE) as metrics to evaluate model performance.

The relative importance of selected variables for model building was assessed through RF’s internal
variable importance metric implemented in the randomForest package. For this, data points of each
variable are randomly permutated and the relative increase of the mean squared error (MSE) based
on an internal cross validation within in the training data is measured. This error is assumed to increase
if the variable is important.

4.3 Results
4.3.1 Cross Validation Results

We evaluated NEE predictions with a leave-one-fold-out cross validation by withholding either sites
(spatial cross validation) or years (temporal cross validation). Table 4 summarizes the spatial and
temporal cross validation results of different NEE data sets and feature selection methods. The results
indicate that spatial prediction was generally more difficult than temporal prediction. Models trained
with the 48 data set had the lowest RMSE values, though with the 45 data set slightly higher R? could
be obtained. Especially for temporal cross validation, RMSE/MAE and R? did not coincide well with
each other. The feature selection methods FFS and BFE were either closely in line with each other or
BFE gave considerably better results than FFS. In these cases, FFS always selected less variables than
BFE. Furthermore, BFE always performed better than no feature selection, indicating that BFE is more
suitable than FFS or no feature selection for this analysis. Few patterns can be observed regarding
selected variables, most notably that elevation was selected for every model with temporal cross
validation, though very seldom for spatial prediction. The variables LAI, fAPAR and Precip, however,
were almost always excluded. For the final upscaling we selected the model with the best RMSE by
spatial cross-validation in order to optimize it for spatial prediction and avoiding high errors. Hence,
we chose the model trained with the 48 data set and tuned with BFE.

The relative importance of selected variables was assessed by the importance function of the
randomForest package. As shown in Table 5, the most important variables were EVI and ETpot. Figure
4.3 displays an assessment of the quality of NEE predictions in comparison to observed TERENO
validation data. While predictions and observations have almost the same mean values (-2.31 and -2.3
g C m2d?) and rather similar median values (-1.84 and -1.33 g C m2d), and the regression line a slope
close to 1 (y = 0.15 + 1.06x; Fig. 4.3a), the standard deviation of predictions (2.5 g C m2d?) is much

25



lower compared to observations (3.73 g C m2d?). The interquartile range of predictions is also
narrower than of observations (-3.96 to -0.27 compared to -4.49 to 0.29 g C m2d; Fig. 4.3b). As for
predictions, values from about -5 to 1 g C m2d™? were more frequent, and outside of that range less
frequent than in observations, resulting in a narrower distribution of values (Fig. 4.3c). This results in
higher absolute errors for high flux magnitudes, especially for positive fluxes (Fig. 4.3d).

Table 4.4 Cross Validation Results for Different NEE Data Sets and Different Feature Selection Methods.

Cross Data Feature RMSE MAE R? n Var Variables selected
Validation Set Selection
spatial
48 FFS 2.96 2.25 0.35 6 9,12,19,22,24
BFE 2.72 1.9 0.41 15 2,5:7,10:12,14:20,22
none 3.01 2.19 0.34 24 1:24
45 FFS 2.88 2.07 043 10 2,5,7,8,12,14,19:21,23
BFE 2.84 2.07 042 10 5,7,11,12,14,17,19:22
none 3.16 2.24 0.34 24 1:24
42 FFS 3.18 2.23 0.34 9 1,25,7,8,12,15,21,22
BFE 3.2 2.25 0.33 14 1,2,5:8,12,14,:16,19,21,23
none 3.32 237 031 24 1:24
36 FFS 3.4 2.42 0.32 10 1,2,5:9,11,21,22
BFE 3.4 241 0.32 17 1:3,5:9,11,14:18,20:22
none 3.51 2.54 0.3 24 1:24
temporal
48 FFS 2.54 1.89 0.31 8 5,6,8,9,16,19,22,24
BFE 255 178 0.32 11 1,5,8,14,16,19,21:24
none 2.91 2.02 0.24 24 1:24
45 FFS 2.67 1.84 0.46 8 1,5,10,17,19,21,23:24
BFE 259 179 05 15 1,5:8,11,12,15,17,19:24
none 2.66 1.82 0.46 24 1:24
42 FFS 3.01 2.08 0.44 12 1,2,6:9,14,17:19,23:24
BFE 295 205 0.45 14 2,5:9,11,14,15,17,18,21:22,24
none 3.06 2.1 0.43 24 1:24
36 FFS 3.34 232 044 13 1:3,5:8,11,17:19,21,24
BFE 3.32 2.28 0.44 16 2,3,5:11,14,17,18,21:22,24
none 3.41 239 042 24 1:24

Note. RMSE, MAE and R? values are reported as averages of the respective folds. Performance is displayed as Root Mean
Squared Error (RMSE; in g C m'2d'1), Mean Absolute Error (MAE; in g C m2d1) and coefficient of determination (R?). n
Var gives the number of selected variables, Variables selected lists which variables were selected by the Nr. stated in

Table 2
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Table 4.5 Importance of Each Variable Selected by BFE for the 48 Data Set.

Variable %IncMSE
EVI 13.85
ETpot 12.29
Season 3.49
rH 3.02
LWB 2.70
Tree 2.55
LwWu 2.26
LWI 2.24
Tsoil 2.18
NonTree 2.11
Tair 2.06
Soilm 1.74
v 1.11
NonVeget 1.01
u 0.60

Note: %IncMSE describes the percental increase of the mean squared
error after permutation as implemented in the randomForest package
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Figure 4.3 Assessment of prediction quality in comparison to observations from TERENO test data. (a) scatter plot with
regression line (blue) and identity line (black); (b) boxplots with mean values displayed as crosses; (c) density plot of
predicted (blue) and observed (red) NEE values; (d) absolute error by observed NEE. The vertical line at zero marks the
border between CO; sinks (left) and CO; sources (right).

4.3.2 Upscaling Results

We predicted daily NEE data at 250 m spatial resolution for the Rur catchment from 2010 to 2018.
According to the results of the previous section, the 48 NEE data set and explanatory variables selected
with spatial BFE were used for model training. Table 6 shows the upscaled results aggregated by land
cover class and season. To put these results into perspective, such aggregations over actual
measurements within the catchment are also included in Table 6. Pixels classified as urban or built-up
were excluded from the analysis because anthropogenic CO, emissions were not represented in the
training data. Results show that vegetated areas of the Rur catchment were on average a CO; sink
between 2010 and 2018 with about -0.65 g C md. Grasslands and deciduous forests were the
strongest sink (-0.76 g C m2d* and -0.72 g C m2d’}, respectively), while croplands captured the least
net amount of CO, (-0.56 g C m2d?). During winter (December-February) and fall (September-
November), the Rur catchment was a CO, source (0.86 g C m2d? and 0.75 g C m2d™, respectively),
while in spring (March-May) it was a strong sink (-2.14 g C m2d), closely followed by summer (June-
August; -2.02 g C m2d™). Figure 4.4 shows yearly courses of predicted NEE aggregated by land cover
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for the investigation period. Additionally, daily NEE raster were aggregated by season and the whole
investigation period (Fig. 4.5). These results show that all land cover classes were a CO, source in fall
and winter and sink in spring and summer, although the CO, uptake started decreasing in summer
already. Croplands were the earliest to become a sink in spring and also to turn into a source after day
of year 200. This NEE sink capacity decrease of croplands from spring to summer is also observable in
Figure 4.5 as croplands prevail in the northern half of the catchment. Forests were a stronger source
than croplands and grasslands in fall and winter, though deciduous forests were also the strongest sink
with average NEE below -5 g C m2d? around day of year 170. However, coniferous forests and
especially deciduous forests were a greater sink in summer in actual measurements, and no CO; source
in fall. In contrast, grasslands were predicted to be a greater sink in summer compared to actual
measurements. Differences between land cover classes were in general less pronounced in upscaled
predictions than in measurements.

Table 4.6 NEE in g C m2d-1 Aggregated by Land Cover and Season of Upscaled Data Over Vegetated Parts of the Rur
Catchment (above) and of eddy covariance (EC) Measurements Within the Catchment Described in Table 1 (below).

Upscaling Results

Land Cover Winter Spring Summer Fall Year
Coniferous F.  0.92 -1.75 -2.54 0.9 -0.63
Deciduous F. 1.07 -1.99 -2.77 0.85 -0.72
Grassland 0.87 -2.14 -2.35 0.6 -0.76
Cropland 0.67 -2.41 -1.17 0.74 -0.56
Study Area 0.86 -2.14 -2.02 0.75 -0.65

EC Tower Measurements

Land Cover Winter Spring Summer Fall Year
Coniferous F.  0.46 -2.36 -35 -1.1 -1.63
Deciduous F.* 1.15 -0.95 -6.11 -0.64 -1.64
Grassland 0.56 -1.71 -0.83 0.55 -0.36
Cropland 0.38 -3.08 -1.79 0.76 -0.93

Note. *Values for the class deciduous forest were calculated from the two FLUXNET stations De-Hai and De-Lnf as no
measurements of that class were available within the catchment.
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Figure 4.4 Yearly courses of predicted net ecosystem exchange (NEE) aggregated by each land cover class for the period
2010-2018 (points), and smoothed by a loess function (lines; above). Standard deviation () for each of those lines

separately (gray bands; below).
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Figure 4.5 Predicted net ecosystem exchange (NEE) of the Rur catchment aggregated for the whole investigation period
2010-2018 and for each season. Mean values for each map are 0.86 g C m-2d'! (winter), -2.14 (spring), -2.02 (summer), 0.75
(fall) and -0.65 (year).

4.4  Discussion

The results of the study showed that a data-driven upscaling of NEE to the regional scale predicted the
average NEE well though underestimated the variance (Fig. 4.3b). Feature selection and the right
quality-quantity balance of NEE data, however, can improve model performance. Similar to our results,
high errors for NEE upscaling have also been observed in other studies (Jung et al., 2011; Tramontana
et al., 2016). J. Xiao et al. (2011) showed that an ecosystem model predicted NEE with an R? between
0 and 0.66, depending on the site. Richardson et al. (2012) demonstrated increasing random errors
with flux magnitude for half-hourly CO, flux measurements. The absolute errors displayed in Figure
4.3d show a similar pattern, indicating that high flux magnitudes may be difficult to predict and validate
because actual measurements in those ranges are already error-prone.

Meyer et al. (2018) demonstrated that random cross validation lead to an overoptimistic view of the
model performance compared to spatial cross validation. In our case, RMSE could be improved to 1.85
g C m2d?* and R? up to 0.82 with a random cross validation, indicating that mere data reproduction is
much easier than actual spatial prediction. Elevation was named as a typical example of a spatially
autocorrelated predictor by Meyer et al. (2019). Hence, it is reasonable that it was removed by FFS
and BFE for spatial cross validation, but not for temporal cross validation. Besnard et al. (2019)
concluded that integrating memory effects of past disturbances in a recurrent neural network
outperforms nondynamic statistical models like RF. So not including memory effects in our study might
limit the prediction capacities.

One intrinsic feature of RF is to not extrapolate beyond the input data due to the prediction being the
average target value of the subgroup within a leaf node. Although we attempted to overcome this
limitation by including sites from outside the catchment and hence broadening the environmental
envelope, outliers with high flux magnitudes were still underpredicted. A portion of the prediction
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error can also be attributed to uncertainties in the raster data sets used for model training and
predictions. Some of the most important variables such as ETpot, Tair and rH were also measured in-
situ at the EC stations SE, RO, WU1 and WU2. Averaged over these four stations, Tair from Cosmo-
REAG6 coincided very well with in-situ Tair (R? = 0.99); the same applies to rH (R? = 0.88) and modeled
ETpot (R?=0.93). SWI was combined from two different sources without data overlap but both sources
also agree well with in-situ measurements (Heliosat: R? of 0.96; MODIS: R? of 0.92). However, we
assume that MODIS-based vegetation indices did not capture smallscale vegetation structures well and
hence contributed to prediction errors. A possibility to improve vegetation data to inform the RF model
would be to use remote sensing data with a higher spatial resolution such as Sentinel-2 (Drusch et al.,
2012), which was not used here because it did not cover the whole investigation period. Another
limitation of our study comprises the exclusion of 20.4% of the land area from the analysis because
anthropogenic fluxes were not measured. This high proportion results from the high population
density in the northern part of the catchment and the relatively large (13 km?) Inden open pit mine.
However, only small biospheric net fluxes are to be expected from these areas as they are to a large
extent non vegetated and thus may not contribute much to the overall biospheric fluxes of the
catchment.

The results indicate that smaller data sets incorporating only few (< 6.25%) or no low-quality intervals
in the aggregated daily fluxes are more beneficial than larger data sets with more low-quality data.
Small data sets can increase overfitting of a predictive model, however the ensemble characteristic of
RF of averaging multiple trees also counteracts overfitting. Thus, it seems reasonable for RF to select
for small data sets with higher quality. Although a standardized quality-flag scheme was used on the
TERENO-data set, it should be noted that quality-flagging is not fully standardized in the flux-
community yet. Thus, our thresholds may not be transferable to other schemes.

As uncertainty is correlated with flux magnitude, filtering the FLUXNET data by small relative
uncertainties has the side-effect to favor large NEE values and discriminate small ones, whereas quality
flags are not correlated with magnitude. However, the distribution of the TERENO NEE magnitudes
shows that, naturally, small fluxes occur much more frequent than large fluxes (Fig. 4.3c). Such
imbalanced data is a problem for RF, which requires about equally sized domains in the training data
to not overpredict the largest domains (Krawczyk, 2016; Torgo et al., 2015). Therefore, favoring large
fluxes in the FLUXNET data improves their representation in the training data sets. The test data sets,
however, consisting only of quality-flag filtered data, remained unbiased and are thus regarded
suitable for model cross validation. Even so, Figure 4.3c shows that the maximum around NEE=0 in the
training data was still overpredicted and rare domains underpredicted, indicating that the training data
probably was still not balanced enough.

The performance differences between BFE and FFS can partly be explained by local optima of variable
subsets, as sequential feature selection algorithms are prone to being trapped in such local optima (Liu
& Motoda, 2008). In these cases, the first local optimum trap for BFE is much closer or even identical
to the absolute optimum than the first local optimum trap for FFS. Hence, a BFE is regarded superior
in such cases. The relatively high variance between RF model runs increased fluctuations and can thus
amplify this effect by creating artificial local optima, leading to a suboptimal variable selection.
Averaging five model runs reduced the variance within 100 model runs by about 76%, generally leading
to more robust results. However, it should be noted that variance between model runs can be lower
for other machine learning algorithms and that repeating and averaging is computationally expensive
and therefore not suitable for large numbers of variables to select from. For such cases, a genetic
algorithm like GHGA (Jung & Zscheischler, 2013) may be more appropriate.

The relatively high elevations of forests and grasslands in the catchment resulted in lower average
annual temperatures in years 2010-2018 (coniferous forests: 8.9 °C, deciduous forests: 9.6 °C,
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grasslands: 9.5 °C) compared to croplands (10.8 °C), and hence a later start of the growing season
might be an explanation for croplands being an earlier CO; sink. Deciduous trees, on the other hand,
first need to build-up the canopy leaf area to utilize suitable conditions for photosynthesis, though
having higher photosynthetic capacities when fully leafed. However, differences between land cover
types were less pronounced in upscaled results than in actual measurements (Table 6). One
explanation for this might be mixed pixels in MODIS EVI (250 m spatial resolution) containing spectral
responses from different land cover types.

The catchment was a slightly stronger CO; sink in spring than in summer. Lindroth et al. (2008) stated
that net CO; uptake in Swedish spruce forests is shifted toward the earlier parts of the growing season
because respiration was still low while radiation was already high. Managed grasslands on the other
hand, usually are cut several times during summer. For example, Rollesbroich was cut three times in
the growing season of 2013 (Borchard et al., 2015) and each defoliation had the potential to turn
grassland temporally into a CO, source (Wohlfahrt et al., 2008). Croplands showed the largest decrease
of CO, uptake in late summer. Schmidt et al. (2012) analyzed vegetation parameters of a winter wheat
field in the catchment over the course of two years. LAl of living/green leaves reached the maximum
in early May, plant senescence (LAl of brown leaves) already started in late April and reached its peak
in July. Although these patterns can differ for other crops, the results still indicate that specific
croplands uptake the most CO; in spring. The EC aggregations in Table 6 further confirm a decrease of
CO; uptake in summer for croplands and grasslands. In comparison, the aggregated EVI of the whole
Rur catchment started slowly increasing in late February, peaked in early June, and declined afterward.
Graf et al. (2020) showed that the exceptional drought and heat across Central Europe during the 2018
growing season resulted in a reduced net CO; uptake for many drought-affected EC stations, including
SE, RO and WUL1. The whole catchment was predicted to be a significantly weaker CO; sink in summer
2018 (-0.89 g C m2d?) compared to 2010-2017 (-2.16 + 0.45 g C m2dY). Whereas in spring 2018 the
sink capacity decrease to 2010-2017 was less distinct (-1.92 g Cm2dt in 2018 compared to -2.16 + 0.51
g C m2d? 2010-2017), indicating that the seasonal averages may be influenced by one exceptional
year. In view of these findings, we consider the seasonal variations of upscaled NEE as largely plausible.

4.5 Conclusion

In this study, we scaled up daily EC NEE data to the regional scale at 250 m spatial resolution with a RF
model integrating remote sensing and reanalysis data. Furthermore, we evaluated the impact of
feature selection and NEE data quality-quantity balance on the model performance. We conclude that
upscaling results can be improved with a BFE to remove unnecessary predictors and by incorporating
no or only small (< 6.25%) amounts of low-quality intervals in the aggregated daily NEE data.
Therewith, we provided a data-driven approach for predicting spatial NEE data sets which can be used
for assessing the CO, uptake of heterogeneous local and regional ecosystems or calibrating and
validating process-based models. However, the spread of NEE observations and differences between
land cover types were underestimated.

Vegetated parts of the Rur catchment acted as a CO, sink between 2010 and 2018 with
about -0.65 g C m2d!. The catchment was predicted to be a slightly stronger sink in spring than in
summer probably partly due to the onset of plant senescence in summer in cropland and grassland
ecosystems, while it was a CO; source during fall and winter. In future work, a model incorporating
emissions from urban and built-up areas should be implemented to produce spatially continuous NEE
data sets. Furthermore, remotely sensed vegetation products with a higher spatial resolution are likely
to improve model accuracy as they would allow to distinguish small-scale vegetation structures.
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4.6 Data Availability Statement

Data used in this study are freely available from the TERENO (https://www.tereno.net/ddp/) and TR32
(https://www.tr32db.uni-koeln.de/) portals, the FLUXNET2015 database
(https://fluxnet.org/data/fluxnet2015-dataset/), the LP DAAC Catalog (https://lpdaac.usgs.gov/), the
German Weather Service (ftp://opendata.dwd.de), the EUMETSAT Navigator
(https://navigator.eumetsat.int/start), and CGIAR-CSI (http://srtm.csi.cgiar.org/srtmdata/). Upscaled
daily NEE data for the Rur catchment are stored at http://doi.org/10.5281/zenodo0.3776011.
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Abstract

Flux measurements over heterogeneous surfaces with growing vegetation and a limited fetch are a
difficult task, as measurement heights that are too high or too low above the canopy adversely affect
results. The aim of this study is to assess implications from measurement height in regard to low-pass
filtering, footprint representativeness, and energy balance closure for a clear-cut site with regrowing
vegetation of varying height. For this, measurements from two open-path eddy-covariance systems at
different heights are compared over the course of one growing season. Particular attention is paid to
low-pass-filtering corrections, for which five different methods are compared. Results indicate
significant differences between fluxes from the upper and lower systems, which likely result from
footprint differences and an insufficient spectral correction for the lower system. Different low-pass-
filtering corrections add an uncertainty of 3.4% (7.0%) to CO; fluxes and 1.4% (3.0%) to H,O fluxes for
the upper (lower) system, also leading to considerable differences in cumulative fluxes. Despite
limitations in the analysis, which include the difficulty of applying a footprint model at this study site
and the likely influence of advection on the total exchange, the analysis confirms that information
about the choice of spectral correction method and measurement height changes are critical for
interpreting data at complex sites.
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5.1 Introduction

With the establishment of the eddy-covariance technique over wide ranges of ecosystems and
applications, more research is focused on sites with non-ideal heterogeneous characteristics (Griebel
et al.,, 2020; Chu et al., 2021). This challenges basic assumptions of the method and can imply unknown
modifications on measured fluxes as well as reducing the energy balance closure (Stoy et al., 2013).
Furthermore, internal boundary layers form over surfaces with heterogeneous roughness or a limited
fetch. It has been shown that they alter wind and friction velocity (u,) profiles depending on the type
of roughness transition (Jegede & Foken 1999; Dellwik & Jensen 2005). However, most footprint
models, such as the one after Kljun et al. (2015), do not consider these non-ideal conditions inducing
horizontally heterogeneous flow.

A particular difficulty is the growth of vegetation, which demands a regular adjustment of the
measurement height to ensure flux contributions from the same source area (Munger et al., 2012).
Sensors too far above the canopy are susceptible to measured contributions from fluxes originating
outside the area of interest when the fetch is limited (Gash 1986; Nicolini et al., 2017). In addition,
steep roughness changes, such as forest edges, can induce recirculation areas behind the edge (Detto
et al., 2008), further constraining the available fetch for measurements in forest clearings. On the other
hand, multiple issues can result from measurements too close to the canopy. Measurements within
the roughness layer may not be representative of the average ecosystem, rather sensors detect a near-
field contribution of individual roughness elements leading to flux biases (Katul et al., 1999; Moureaux
et al., 2012). Over inhomogeneous surfaces, a small source area resulting from a measurement height
below the blending height can also induce a location bias, which is not representative of the average
ecosystem flux (Schmid & Lloyd 1999). Lastly, spectral attenuation in the high frequency range, also
called low-pass filtering (LPF), is expected to increase with a lower height of eddy-covariance sensors.
This increase occurs because smaller eddies, which prevail closer to the ground, are more attenuated
than larger eddies by individual LPF causes. For open-path systems, these causes mainly are sensor
separation, time response, and path averaging (Burba 2013). A number of correction schemes exist to
compensate for LPF, such as fully analytical methods modelling individual sources of attenuation (e.g.,
Moore 1986; Moncrieff et al., 1997; Massman 2000), in situ methods incorporating scalar spectra (e.g.,
Ibrom et al., 2007; Fratini et al., 2012), and fully experimental methods using the ratio of cospectral
densities (e.g., Su et al., 2004; Polonik et al., 2019). Despite the availability of a variety of approaches
and corresponding software packages, which in turn have different options, only a few studies have
conducted a comparison of different LPF corrections (Fratini and Mauder 2014; Polonik et al., 2019),
and no comparison of multiple corrections exists. Different LPF corrections are deemed suitable for
specific set-ups. For example, Ibrom et al. (2007) proved good performance of their method for
measurements taken high above a rough forest surface, while Fratini et al. (2012) showed
improvements of their method for measurements taken low over a smooth clover field. For
measurements taken low over a regrowing clear-cut area, the contribution of high-frequency
turbulence likely is important too, but in such a case the surface is comparatively rough. Thus it has to
be investigated if the method of Fratini et al. (2012) also performs well compared to other corrections
for such conditions.

Besides previous research at the deforested site of this study (Wiekenkamp et al., 2016, 2019; Ney et
al., 2019), observations at a single height focusing on carbon budgets have been conducted at wind-
thrown sites, either for the growing season following a storm (Lindroth et al., 2009) or long term
(Lindauer et al., 2014; Matthews et al., 2017). Vickers and Mahrt (2006) investigated mean vertical
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motions above a forest clearing, indicating horizontal divergence. Peltola et al. (2015) analyzed the
spatial representativeness of CH, fluxes over extensive and homogeneous grassland, while Nicolini et
al. (2017) measured fluxes at two heights above a fetch limited crop field. However, the influence of
measurement height on fluxes over heterogeneous surfaces with limited fetch, such as forest
clearings, is still not sufficiently known.

For this study, we added an eddy-covariance system at a second height of 5.4 m to an already existing
one at 2.7 m above a deforested site, which has a relatively inhomogeneous surface created by
undisturbed vegetation growth. We hypothesize that (i) flux data from the old and new measurement
heights can seamlessly be used together to estimate the cumulative carbon uptake and
evapotranspiration from the clear-cut area, and (ii) the choice of LPF correction methods available in
EddyPro®© significantly affects flux results. In this respect, we also evaluated the performance of each
method for data with high expected flux loss.

5.2 Materials and Methods
5.2.1 Site Description

Measurements took place at the upper Wiistebach catchment, located in the Eifel National Park near
the Belgian border (50.50305 N, 6.33596 E, 618 m elevation; see Fig. 5.1). The site is part of the TERENO
(TERrestrial ENvironmental Observatories) Eifel/Lower Rhine Valley observatory, which is one of four
observatories in Germany to analyze long-term impacts of climate and land-use changes (Zacharias et
al.,, 2011). Mean annual precipitation is 1332 mm and mean annual temperature 7 °C during the
reference period 1981-2010 (Ney et al., 2019). Cambisols are the dominant soil type in the north-
eastern part of the study area, whereas Gleysols and Histosols prevail in a boggy area in the southern
part and near the stream (Bogena et al., 2015). Elevation within the target area ranges between 596
m at the outflow of the Wiistebach stream in the north-west, and 628 m at the eastern edge, with an
average slope of 4°.

The site mostly consisted of spruce monoculture (Picea abies and Picea sitchensis) until 2013, when an
8.6 ha area of it was cut to allow for natural succession towards a European beech forest. The only
major exception to this were isolated alder stocks near the stream, which were not cut. The eddy-
covariance station is located approximately in the center of the clear-cut with the forest edge closest
to the north and north-east, with a minimum distance of 72 m, and farthest to the west, with a
maximum distance of about 292 m (see Fig. 5.1a). Only 3% of the original biomass remained on site
(Baatz et al., 2015), mostly tree stumps, litter, and a few tree trunks. In 2020, the vegetation of the
clear-cut area consisted of various grasses (e.g., Deschampsia spec., Molinia spec.), shrubs and bushes
of different size (e.g., Cytisus scoparius, Calluna vulgaris, Epilobium angustifolium), and young trees
(Sorbus aucuparia, Betula pubescens, Picea abies), some of which are typical pioneer species. In
general, regrown vegetation inside the fence, which had been established against browsing damage,
was denser than outside. After the 2020 growing season, young trees within the clear-cut had an
average height of 1.60 + 0.89 m. The spruce trees demarcating the forest edge had a uniform height
of about 25 m and measured alder trees near the stream heights between 8.0 m and 18.3 m. These
characteristics resulted in a very heterogeneous study site with vegetation of different height and
composition and scattered coarse woody debris, which is expected to result in heterogeneous source
and sink areas for CO; and energy fluxes.

The site heterogeneity can be further characterized by flow tilt angles, calculated as tan™1(W /U),
where W is the vertical wind component and U is horizontal wind speed during neutral conditions (z/L
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< 0.1, where z is the measurement height and L is the Obukhov length) and U > 1 m s, For flow tilt
angles shown in Fig. 5.2a, we applied a yaw rotation on unrotated u and v wind components to include
both horizontal wind components in U. Positive flow tilt angles prevailed from western wind directions
and likely originated from the sloping terrain. On the other hand, negative flow tilt angles from the
north and northeast possibly originated from the nearby forest edge. Figure 5.2b shows flow tilt angles
after the application of a sector-wise planar fit rotation of wind components after Wilczak et al. (2001)
for each 45° sector. Here, flow tilt angles were largely diminished, especially for the prevailing western
wind directions. A significant influence of the alder trees is not evident, which might be attributed to
the fact that the lower elevation next to the creek prevents the tree tops from protruding considerably
above the canopy surface around the station and on the far side of the creek. Issues with the northern
wind sector between about 325° and 025° are indicated by large u, discrepancies between the upper
and lower system from the north after planar fit rotation (Fig. 5.2c), indicating distortions from the
nearby forest edge on the measurements at the upper height.
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Figure 5.1 Location of the study area in EPSG:32632 (a), vegetation heights of woody plants from a 2017 vegetation mapping
in inside the fence (b), and view of the eddy-covariance (EC) tower looking north (c).
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Figure 5.2 Binned means of flow tilt angles by wind direction during near-neutral conditions calculated from yaw-rotated
wind components (a) and after application of a sector-wise planar fit rotation (b), as well as the u, ratio between the upper
and lower system after planar fit rotation, with binned mean values displayed in red and the distorted sector shaded in grey
(c). Vertical dotted lines indicate the direction of the tower.

5.2.2 Eddy-Covariance Set-Up and Processing

Turbulent fluxes of latent heat (LE), sensible heat (H), and CO, have been measured at the study site
with an eddy-covariance system since 2013. In April 2020, a second eddy-covariance system was
established to replace the first one at its current height of 2.7 m, which in turn was moved to a new
height of 5.4 m due to vegetation growth. The upper system consisted of a CSAT3 sonic anemometer
(Campbell Scientific, Logan, Utah, USA) and a LI-7500 open-path gas analyzer (LI-COR, Lincoln,
Nebraska, USA). The lower system also consisted of a CSAT3, and a LI-7500RS open-path gas analyzer,
which features optical hardware improvements compared to the LI-7500. Both systems had an
orientation of 224°, while the upper system had a sensor separation of 22 cm and the lower system of
19 cm to account for higher LPF. In addition, a net radiometer (NRO1, Hukseflux Thermal Sensors, Delft,
Netherlands) at 4.54 m and two heat flux plates (HFPO1, Hukseflux Thermal Sensors, Delft,
Netherlands) at -8 cm were installed to provide 10-min averages of net radiation and soil heat flux.
Measurements taken between 17 April and 30 September during the 2020 growing season were

analyzed for this work.
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Raw data of wind components (u, v, w), sonic temperature (T), and H,O and CO; densities logged at
20 Hz were corrected and processed to 30-min fluxes using the software EddyPro®© (v7.04, LI-COR,
Lincoln, Nebraska, USA). A sectorial planar fit rotation for 45° sectors after Wilczak et al. (2001) was
applied for tilt correction of an anemometer misalignment and to account for inclination of the ground
(see Fig. 5.2). Time lags between the anemometer and gas analyzer were compensated for with the
Covariance maximization with default method, which uses a default value if no covariance maximum
can be attained within a time-lag window. A high-pass-filtering correction (Moncrieff et al., 2004) was
applied to account for attenuation resulting from block averaging. As LPF is expected to have a stronger
impact on the lower system, emphasis was put on LPF correction methods. Hence, all five methods
implemented in EddyPro© were selected and compared. These are the corrections after Moncrieff et
al. (1997), Massman (2000) and Massman (2001), Horst (1997), Ibrom et al. (2007), and Fratini et al.
(2012) (hereafter referred to by the first authors’ names). A short description of each method and their
implementation in this study is given in the next section. Lastly, the density correction of Webb et al.
(1980) was added to the fluxes and the 0-1-2 flagging policy after Mauder and Foken (2004) was
applied. The latter includes spike removal, a steady state test, and a test on developed turbulence after
Foken and Wichura (1996). Fluxes were further separated for daytime conditions based on sunrise and
sunset times to exclude several potential problems at night, such as advection and drainage flows
(Aubinet 2008). Besides that, u, filtering implemented in the REddyProc library (Wutzler et al., 2018)
was applied to remove remaining low-turbulence data. Furthermore, data from the northern wind
sector between 325° and 025° were fully excluded because of likely distortions from the nearby forest
edge (see Fig. 5.2c). Finally, data were rejected for which the source area originated to less than 70%
inside the target area (see Sect. 2.5). For further analysis, only such timestamps were considered, for
which the respective flux had the highest quality (flag 0) and all further criteria were also met
simultaneously at both systems.

Surface heat correction for the LI-7500 of the upper system after Burba et al. (2008) was not applied
because the correction was intended for vertically adjusted sensors while the gas analyzers had an
inclination of 45°. Furthermore, errors from self-heating are expected to be significant during very cold
conditions (< -10 °C) whereas only data during the growing season were analyzed here. Ney et al.
(2019) previously compared annual sums of surface heat corrected and uncorrected net ecosystem
exchange values at this site, and also opted for uncorrected fluxes.

5.2.3 Low-Pass-Filtering Correction

Out of the five methods applied here, the ones after Moncrieff and Massman are fully analytical,
meaning that filtering is described as individual spectral transfer functions, which are deduced from a
priori knowledge of the system’s properties, such as sensor separation, the instruments’ time
responses and path lengths, atmospheric conditions, and site characteristics. Flux attenuation is then
estimated using a cospectral model, i.e., after Kaimal et al. (1972), as a reference of ideal cospectra.
The method after Horst is also based on an analytical formulation but is parametrized using an in situ
assessment of the system’s cut-off frequency with measured spectra. The methods after Ibrom and
Fratini rely on an empirical determination of the cut-off frequency from the ratio of ensemble gas
spectra to ensemble normalized temperature spectra as a proxy of ideal gas spectra. For the Ibrom
method, the correction factor is then parametrized using the cut-off frequency, average wind speed,
and atmospheric stratification. The Fratini method uses this parametrization in a slightly different way
only for small fluxes. For large fluxes, the correction factor is calculated using the cut-off frequency
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and sensible heat cospectrum instead. The resulting correction factor of each method is then
multiplied by the uncorrected flux to correct for spectral attenuation.

For the corrections after Horst, Ibrom and Fratini, binned (co)spectra were calculated for every 30 min
using EddyPro©. They were filtered according to the statistical tests after Vickers and Mahrt (1997),
the micrometeorological quality tests after Mauder and Foken (2004), and by friction velocity (u,> 0.2
m s!) and flux magnitude (H >20 W m%;, AE > 20 W m™%; CO; flux > 2 umol m? s!) before they were
ensemble averaged for unstable stratifications (-650 < L < 0; predefined in EddyPro®©). For all
correction methods and gas spectra, the frequency range for fitting the in situ transfer function was
set from 0.005 to 2 Hz. As the methods after Ibrom and Fratini compensate for LPF on the scalar signal
only and thus do not account for sensor separation, the correction after Horst and Lenschow (2009)
was applied in addition. However, it was only applied for crosswind and vertical wind components, as
along-wind sensor separation was already compensated by the time delay correction using covariance
maximization. In addition, H cospectra were preliminarily corrected for small losses due to
anemometer path averaging and time response before using them for the Fratini method.

5.2.4 Energy Balance

The energy balance closure was calculated for each 30-min interval to estimate the performance of
different spectral corrections and to compare the flux results of the upper and lower system. Ideally,
the sum of sensible and latent heat flux measured by an eddy-covariance system should equal the
available energy, that is net radiation minus ground heat flux and energy stored in the air and biomass
(Wilson et al., 2002). Hence, the equation is

R,—G—P—S=H+ AE, (Eg. 5.1)

where R,, is the net radiation, G is the ground heat flux, P energy used for photosynthesis, and S the
change of energy stored in the air below the eddy-covariance measurements. As measurements were
taken relatively close to the surface, S was neglected for this study. P was also not measured but can
be considered small compared to the other terms (Oncley et al., 2007). The terms H, AE, and R,, were
measured directly, and G was assessed by correcting the soil heat flux for the estimated change in heat
stored between the soil surface and the heat-flux plate according to Graf et al. (2020). Two energy
balance parameters were calculated on a 30 min basis: i) the energy balance ratio (EBR) as the sum of
turbulent fluxes divided by the available energy and ii) the energy balance closure (EBC) as the
regression between the sum of turbulent fluxes and available energy. Here, a reduced major axis
regression was used instead of an ordinary regression. In this way it is possible to handle likely random
errors of available energy by evaluating the slope as the geometric mean of an ordinary regression and
one with switched dependent and independent variables (Wilson et al., 2002). For net radiation, the
maximum error was estimated at about 25 W m (Kohsiek et al., 2007).

5.2.5 Footprint Estimation

Prior to footprint determination, roughness length z; and displacement height d were first estimated
for each wind direction quadrant using wind velocities from the two systems during neutral conditions
(z/L < 0.1). This was done by solving the logarithmic law after z, and d according to the Integrated
Surface Flux System Guide (UCAR/NCAR 1990):
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Zp = (Eg. 5.3)
where k is the von Karman constant (0.41), U; and U, the wind speeds at measurement height z; and
Z,, and u, the mean of both heights. Values for d ranged from 1.07 m (north-east), 0.61 m (south-
east), 0.53 m (south-west) to 0.51 m (north-west), and for z,; from 0.29 m (north-east), 0.16 m (south-
east), 0.24 m (south-west) to 0.18 m (north-west). The relatively small values for d compared to z,
generally match the patchy structure of the study area well.

The two-dimensional footprint model of Kljun et al. (2015) was then applied to estimate the footprint
for both heights for every 30 min, as well as a footprint climatology over the whole timeframe. The
planetary boundary-layer height was hereby derived according to Appendix B in the respective paper.
To analyze modelled source area differences between the two systems, footprint rasters for individual
30 min at the lower system were subtracted from the ones at the upper system in order to achieve
patterns displaying if a pixel was more important for the upper or for the lower system. Two datasets
were then created, for which negative (positive) pixels were set to 0 and remaining values converted
to absolute values to show only pixels that were more important for the upper (lower) system. Lastly,
the datasets were averaged over all timesteps to two raster images.

5.3 Results
5.3.1 Spectral Analysis

Ensemble cospectra for the upper and lower system were calculated after the time delay correction
was applied and are displayed in Fig. 5.3 for unstable conditions. Figure 5.3a and 5.3c show a clear
attenuation of w'C’ and w'q’ cospectra at high frequencies (where Cand g are the CO; and H,0 mixing
ratios) compared to w'T,’ cospectra at both systems. The w'T,’ cospectra can be used as reference
cospectra because the sonic temperature is considered as an unfiltered scalar although it is also
affected to a small extent by LPF due to path averaging and limited time response of the anemometer
(e.g., lbrom et al., 2007). Hence, the ratio of gas cospectra divided by w'T,’ cospectra gives an
experimental transfer function describing the spectral loss of CO; and H,0 fluxes. Both cospectra, w'C’
and w'q’, start diverging from w'T,’ cospectra already at lower frequencies for the lower system
compared to the upper system (Fig. 5.3b, d), resulting in a larger frequency loss and a higher demand
for correction. The integral of w'C’ cospectra in the inertial subrange (vertical lines in Fig. 5.3a, ¢) is
67% of the w'T,’ cospectra integral for the upper system. For the lower system, this share is only 60%.
Furthermore, ensemble sonic temperature spectra have a maximum density at 0.014 Hz for the upper
system and at 0.02 Hz for the lower system, demonstrating a shift to higher frequencies for turbulent
fluxes at the lower measurement height and thus a higher susceptibility to LPF. Likewise, the infinite
impulse response filter cut-off frequency after Ibrom et al. (2007) is 1.1 Hz for the upper system and
1.0 Hz for the lower system.
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Figure 5.3 Ensemble cospectra (Co) during unstable conditions of fluxes measured at the upper system (a), and at the lower
system (c), as well as the ratio between w'C’ and w'Ts’ cospectra (b), and w'q’ flux and w'T's’ cospectra (d). The normalized
frequency is the natural frequency in Hz multiplied with z and divided by U. Vertical dotted lines indicate the range used for
calculating integrals.

5.3.2 Correction Factors

Correction factors of the five applied spectral correction methods for CO; fluxes of the upper and lower
system are shown in Fig. 5.4. The correction factors across different spectral correction methods were
similar with slightly higher values for the Fratini method. Correction factors for CO, fluxes were on
average smaller for the upper system than for the lower system, with 1.06 (Moncrieff), 1.05
(Massman), 1.06 (Horst), 1.05 (Ibrom), and 1.08 (Fratini) for the upper system compared to 1.11
(Moncrieff), 1.07 (Massman), 1.10 (Horst), 1.09 (Ilbrom), and 1.15 (Fratini) for the lower system.
Correction factors for H,O were almost identical to those for CO; and are thus not displayed separately.
The outliers of high correction factors from the Moncrieff and Massman methods are associated with
low U, for which the high-pass-filtering correction increased correction factors. For the Fratini method,
not constraining correction factors to the bounds of Eq. 9 in Ibrom et al. (2007) but depending on the
stochastic nature of turbulence by incorporating H cospectra may have led to the outliers.
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Figure 5.4 Boxplots of CO; flux correction factors at the upper system (a) and lower system (b) for each spectral correction
method.

Furthermore, U is considered an important factor for spectral attenuation as high wind speeds favour
high-frequency eddies and therefore correction factors might be expected to increase with U
(Moncrieff et al., 1997). The dependency of the CO; correction factors on U is shown in Fig. 5.5 for the
different LPF methods and for both systems. The correction factors after Moncrieff, Horst, Ibrom, and
Fratini slightly raised with increasing U, more pronounced for the lower system than for the upper one.
The correction factors after Massman, however, do not show any dependence on high U at all.
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Figure 5.5 CO; flux correction factors (CF) of the low-pass filtering correction methods against wind speed (U) for the upper
system (black dots) and the lower system (red dots).

5.3.3 Flux Results

Out of 4729 possible daytime 30 min intervals, 1992 (42%) CO, flux data points passed the quality tests
at both heights simultaneously (AE: 47%; H: 47%). A substantial part of missing data does not result
from quality control but is caused by a data acquisition failure of the upper system during 20 days in
July. Table 1 lists mean values of LPF-corrected and uncorrected fluxes for those selected 30 min
intervals. It can be noted that higher H and especially AE were measured at the upper system
compared to the lower one. CO; fluxes, however, were slightly more negative at the lower system,
especially after corrections were applied. As expected, uncorrected H values differ only slightly from
corrected ones, whereas the CO; flux and AE differ more strongly, especially at the lower system. A
reduced major axis regression between 30-min flux values of the upper and lower system corrected
after Moncrieff gives slopes of 1.14 (R? = 0.71), 1.23 (R? = 0.93) and 1.03 (R? = 0.97) for CO,, AE, and
H fluxes, respectively. For CO; fluxes, the two least correlated LPF corrections were Massman against
Fratini at the lower system with a slope of 0.86 and an R? of 0.95. The average Bowen ratio is 0.83 for
the upper system and 0.98 for the lower system.
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Table 5.1 Mean daytime values of 30 min H, LE, and CO; fluxes that passed the quality tests for both systems and each LPF
correction method with cumulative fluxes in parentheses. For CO,, u,-filtered night-time values are also given.

None Moncrieff  Massman Horst Ibrom Fratini
Upper System
H [W m?] 89.9 90.4 91.0 90.5 90.4 90.4
(IMJ m™2]) (360.5) (362.4) (364.9) (362.8) (362.4) (362.4)
AE [W m?) 106.2 111.6 110.1 110.8 110.9 113.3
(IMJ m2)) (422.5) (444.1) (438.1) (441.1) (441.3) (450.8)
CO; [umol m2s7) -4.4 -4.8 -4.6 -4.7 -4.7 -5.0
([e C m?]) (-187.4) (-205.9) (-199.0) (-201.8) (-203.4) (-213.8)
CO2 night [umol m? s 4.2 4.7 4.5 4.8 4.6 4.7
([g Cm?]) (44.8) (49.8) (47.9) (50.6) (49.1) (50.1)
Lower System
H [W m?] 88.3 89.5 89.7 89.5 89.5 89.5
(IMJ m2]) (353.9) (358.1) (359.5) (358.8) (358.8) (385.8)
AE [W m?] 86.2 94.6 91.4 94.4 93.3 98.8
(IMJ m3]) (343.1) (376.7) (363.8) (375.5) (371.1) (393.4)
COz [umol m2s!] -4.8 -5.7 -5.3 -5.6 -5.5 -6.1
(lgCcm?) (-205.5)  (-243.6) (-227.3) (-240.5) (-235.8)  (-264.2)
COz night [umol m2s1] 4.4 5.2 4.8 5.2 5.0 5.2
([g Cm?]) (46.3) (55.3) (51.3) (55.5) (53.1) (55.4)

The uncertainty induced from the choice of LPF corrections was calculated as the standard deviation
between fluxes of the five LPF corrections averaged over all 30-min intervals. For CO; fluxes of the
upper system, the average flux with uncertainty of the five LPF corrections was -4.75 + 0.16 pmol m™
s1(3.4%), for the lower system it was -5.63 + 0.35 umol m?2 s (7.0%). For AE, these values were 111.33
+ 1.51 W m? (1.4%) for the upper system and 94.50 + 2.91 W m™ (3.0%) for the lower system (the
percentages represent the size of this uncertainty compared to the flux, averaged over all time steps).
Likewise, the uncertainty from the two measurement heights was on average 24.8% of CO, fluxes and
9.7% of AE, averaged over all LPF corrections. As a comparison between the two most contrasting LPF
corrections, CO, (ALE) fluxes corrected after Fratini were on average 7.4% (2.9%) higher than after
Massman at the upper system and 16.2% (8.1%) higher at the lower system. In contrast, CO, fluxes
averaged over all LPF corrections were 18.3% higher at the lower system, whereas AE was 17.8%
higher at the upper system. For comparison, random errors were estimated according to Finkelstein
and Sims (2001) on a 30 min basis and were on average 34.2% (26.3%) of CO, fluxes of the upper
(lower) system and 16.2% (10.6%) of AE.

Figure 5.6 shows the frequency of the CO; flux and AE corrected after Moncrieff separated for 10°
wind direction sectors. Wind generally prevailed from western directions, whereas wind from southern
and especially northern directions was less frequent. For western wind directions, a slight clockwise
wind direction shift from the lower to the upper system is also noticeable. At both heights, the highest
average CO; uptake was detected from wind directions between 225° and 270°, with a CO; flux of -
5.85 (-6.43) umol m s at the upper (lower) system. The smallest CO, uptake was recorded from 090~
135° (-3.30 umol m? s?) at the upper system and from 180-225° (-3.59 pmol m? s?) at the lower
system. The highest CO; flux differences between the two systems were recorded from 45-90°, both
on average (1.14 pmol m? s?) and summed up (8.17 g C m?). For AE, the highest average flux was
recorded from 135-180° (131.0 W m) at the upper system, and from 180-225° (107.3 W m™) at the
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lower system. The highest AE differences between the two systems occurred on average from 135—
180° (131.0 W m?2), and summed up from 225-270° (16.36 mm), as it was a more frequent wind

direction.
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Figure 5.6 CO; fluxes and LE aggregated by wind direction for the upper system (a, c) and the lower system (b, d). The shaded
area indicates excluded data from northern wind directions.

Fluxes of both daytime and night-time conditions are visualized as cumulative fluxes in Fig. 5.7 for the
corrections after Massman and Fratini, as examples of an analytical and an in situ method, as well as
without correction. Cumulated H,O fluxes were 23% higher at the upper system than at the lower one
without LPF correction, but this discrepancy was smaller after corrections were applied (14% higher
after Fratini). For cumulative CO, sequestration, in contrast, the lower system yielded larger
cumulative fluxes (12% without correction), and corrections even increased this discrepancy (28% after
Fratini). The correction after Fratini produced larger fluxes than the correction after Massman of both
CO; (upper system: 8%, lower system: 19%) and H,0 (upper system: 3%, lower system: 8%). Relations
between the upper and lower system and between correction schemes remained consistent over the
vegetation period.
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Figure 5.7 Cumulative non gap-filled evapotranspiration (a) and CO; fluxes (b) including both daytime and night-time
situations that passed quality control. Up and Lo stand for the upper and lower system, respectively.

5.3.4 Energy Balance Closure

An ideal EBC would be represented by a slope of 1 and an intercept of 0 from a linear regression of the
sum of turbulent fluxes versus available energy, and an ideal EBR would be 1. Table 2 demonstrates
that EBC and EBR were generally better at the upper system than at the lower system with a higher
EBR of about 0.09, though at both heights the sum of turbulent energy fluxes was lower than the
available energy. All correction methods improved the EBC as well as the EBR and had relatively similar
results, with Fratini performing slightly better especially for the lower system (EBR of 0.81). However,
R? of the reduced major axis regression was slightly higher at the lower system than at the upper one.
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Table 5.2 Energy balance coefficients from reduced major axis regression, as well as its coefficient of determination (R?),

and energy balance ratio (EBR).

Slope Intercept [W m?] R? EBR
Upper System
None 0.86 -6.8 0.91 0.84
Moncrieff 0.88 -5.8 0.91 0.86
Massman 0.88 -6.4 0.91 0.86
Horst 0.88 -5.6 0.90 0.86
Ibrom 0.88 -6.0 0.91 0.86
Fratini 0.89 -6.4 0.91 0.87
Lower System
None 0.77 -6.4 0.94 0.75
Moncrieff 0.81 -4.7 0.93 0.79
Massman 0.80 -5.5 0.94 0.77
Horst 0.80 -4.7 0.93 0.79
Ibrom 0.80 -5.1 0.93 0.78
Fratini 0.83 -6.7 0.92 0.81

5.3.5 Footprint

The footprint climatology estimations are displayed in Fig. 5.8 and show footprints for the upper

system extending about 2.5 times as far from the tower than for the lower system. The 90% cumulative

footprint contour line contains forest outside the target area, whereas the 90% line of the lower system

is still within the target area. Only 0.8% of all 30 min intervals of the lower system originated to less

than 70% within the target area, whereas for the upper system that value was 4.2%. When considering

daytime conditions only, these values dropped to 0.1% for the lower system and 0.2% for the upper

system. A 70% threshold was used for flux filtering to be in line with a previous study at the research

site (Ney et al., 2019), discarding all affected values from the further analysis. The general shape of the

footprints extends in the east—west direction, with long upwind distances resulting from prevailing

winds from western directions.
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Figure 5.8 Cumulative flux footprint estimates for daytime situations and all wind directions of the upper system (a) and the
lower system (b) in 10% steps from 10 to 90%. The shaded area indicates excluded wind directions for data filtering.
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Wind direction changes between the upper and lower system are expressed in the averaged footprint
differences between the two systems (Fig. 9). The upper system recorded more wind from north-
western and north-eastern directions, while the lower system recorded more wind from western and
south-eastern directions. The relatively large wind frequency differences between the heights from
north-western wind directions, however, did not yield to analogous AE or CO, flux differences from
these directions. The modelled results further indicate that source area differences between the two
systems mostly originated from within the fence not farther than about 130 m from the tower, while
the area in the direct vicinity (< 20 m) around the tower was more important for the lower system.
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Figure 5.9 Relative importance of pixels more important for the upper system (a) and pixels more important for the lower
system (b), without observations from north. Please note the different colour scales for the subplots, which were expedient
to visualize the relatively smaller importance of individual pixels in (a) compared to (b). The coordinate origin is at the eddy-
covariance station and the white line delineates the fence for orientation.

5.4 Discussion

5.4.1 Assessment of Measurement Height

The higher daytime CO, uptake observed at the lower system despite lower evapotranspiration is a
counterintuitive result that requires clarification. One possible explanation is that within the source
area of the upper system more evaporation without accompanied photosynthesis occurs. Such an area
could be the wetter and temporarily flooded Gleysols and Histosols in the southern part of the clear-
cut and near the stream to the west. The soil moisture measurements of Wiekenkamp et al. (2016)
show that soil moisture was about 30% higher there compared to the direct vicinity of the tower in
summer 2014. Furthermore, Graf et al. (2020) showed that peatlands responded with a
disproportionately low ratio of CO, uptake to evapotranspiration compared to other ecosystems
during drought conditions. For the study site, this was the case in the previous two years and may have
affected fluxes in 2020. Accordingly, the highest mean AE and CO; flux were recorded from different
wind directions, and the highest AE differences between the two systems were recorded from south-
south-east on average, while cumulative differences were largest from west-south-west due to more
observations from there. The ratio between CO, uptake and evapotranspiration was also the lowest
from 135-180° compared to other wind directions at both systems. However, it remains not fully
explained why the south-south-east sector stands out compared to south-western wind directions
with similar or even wetter soil properties (Wiekenkamp et al., 2016). Figures 5.8 and 5.9 also indicate
that source area differences between the two heights mostly originated from within the fence, thus
not clearly demonstrating a strong influence of the boggy area outside of it. The lower system, on the
other hand, could have a location bias of young, fast-growing trees located in the direct vicinity of the
tower (see Fig. 5.1b), which could have increased CO; uptake there.
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The energy balance could not be closed with either LPF correction for both systems but was generally
better for the upper system. A number of studies demonstrated that even with very carefully applied
eddy-covariance set-ups, the sum of turbulent energy fluxes remained below the amount of available
energy (Foken et al., 2010; Stoy et al., 2013). It is assumed that this results from low frequency eddies
not detectable by eddy-covariance systems because of a limited averaging period (Foken 2008). In
addition, closure of the energy balance cannot be expected for a heterogeneous exchange surface
inducing advection (Mauder et al., 2020). Hence, the lower sums of H + AE compared to the available
energy are in line with expectations based on previous research. Since advection could be present even
in rigorously filtered data, it could have both increased or decreased the EBR at both systems. Vickers
and Mahrt (2006) showed that a mass continuity approach indicated long-term sinking motions above
a forest clearing. Tilt corrections such as planar fit, however, remove the mean vertical motion, hence
partially not taking into account vertical advection in the flux averaging period. Such long-term sinking
motions above the study area may be induced by the rough-to-smooth surface change or by drainage
flows following the sloped terrain (Lee 1998). On the other hand, Vickers and Mahrt (2006) also
pointed out that vertical advection of CO, based on mass continuity was a large term of net ecosystem
exchange mainly on weak mixing nights, which were excluded for this analysis altogether. Besides that,
the EBR discrepancies between the upper and lower system can have multiple causes. G can differ
within the footprint of each system from the measurements beneath the tower as soil properties are
not uniform throughout the deforested area (Bogena et al., 2015). However, it is expected that average
G of the lower system’s smaller footprint is more similar to measured G than that of the upper system.
The same applies to possible differences in net radiation, in particular due to different surface albedos.
The energy stored in the air and biomass was investigated to be negligible for similar vegetation heights
(Oncley et al., 2007). If anything, the error induced by disregarding the energy storage in the air should
be higher for the upper system, where the air column beneath is larger compared to the radiometer.
Hence, EBC might be poorer at the lower system partially because high frequency attenuation is not
fully compensated by spectral corrections, as indicated by considerably lower AE at the lower system
in Table 1. This raises the question of whether the CO, flux at the lower system is likewise
underestimated, given the spectral similarity between CO; and H,O fluxes. Thus, insufficient LPF
corrections at the lower system may also have contributed to the counterintuitive flux results
described above.

Spectral corrections might be insufficient for the lower system because sensors are not placed high
enough in the inertial sublayer. Moore (1986) stated that for his analytical correction the measurement
height above d should be at least 10 times the sensor separation. For the lower system this means
2.58 m above ground, which was barely met in our case. Measurements in the roughness layer can
yield the CO; flux and AE representing only local disturbances and thus being spatially variable within
the same ecosystem (Katul et al., 1999). However, a precise definition of the roughness layer height
and thus an appropriate measurement height is still lacking. For structurally complex ecosystems,
Munger et al. (2012) recommended z = d + 4(h, — d), where h_ is the average canopy height. Since
rough estimates of the average h. are generally accepted (Rebmann et al., 2018), we calculated it as
d/0.67 according to the EddyPro© manual, which results in z = 2.48 m above ground. For shrublands,
however, Munger et al. (2012) recommended a fixed height of about 6 m, which in our case was barely
satisfied by the upper system. Nicolini et al. (2017) accomplished feasible measurements as low as 0.9
m above d, though over a homogeneous surface. Although these recommended heights can only be
seen as very rough estimates, they indicate that the lower system might be at best at the lower end of
the suitable range of z and will be in the roughness layer with further expected vegetation growth.
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The footprint estimates revealed that the source area of the upper system was to a large extent within
the target area and therefore only few observations were removed. However, during 2014-2017 the
90% cumulative footprint of the lower system had a maximum distance of about 200 m from the tower
(Ney et al., 2019). In 2020, this distance decreased to 123 m, while the 90% footprint of the upper
system had a maximum distance of about 311 m. This result indicates that the source area of both
systems differed from previous observations, but with further vegetation growth it is expected that
the upper system’s source area will approximate that of previous measurements by the lower system.
The footprint model of Kljun et al. (2015) assumes horizontal homogeneity of the flow and thus has
limited applicability to the study area. The complex flow over the forest edge particularly cannot be
resolved, for which large-eddy simulations or, as a less computationally intensive solution, turbulence
closure models such as SCADIS would be more suited (Sogachev & Lloyd 2004). This model was also
able to indicate source hotspots in contrast to analytical footprint models in heterogeneous areas
(Sogachev & Dellwik 2017). A recirculation area behind the edge inducing downward flows can be
expected for a distance of 2-5 times the forest canopy height (Detto et al., 2008), corresponding to a
distance between 50 and 125 m at the study site. This is a problem for northern wind directions where
the forest edge is within this distance, and distortion of the mean flow is indicated by much higher u,
at the upper system (see Fig. 5.2c). On the other hand, for the prevailing western wind directions, such
edge turbulence effects were not detected. Roughness changes were also roughly taken into account
for footprint modelling by including z, for each wind direction quadrant. Hence, the footprint results
might be useful for a first approximation of the source area and for testing spatial representativeness
of the fluxes.

Despite these general considerations, the presented results strongly speak against the first hypothesis.
The large differences between fluxes of the two heights (see Table 1 and Fig. 5.7) prevent a seamless
use of data from both time series and likely result from a different source area within the
heterogeneous clear-cut area and insufficient LPF corrections for the lower system. Instead, in any
future analysis of CO; fluxes at the clear-cut, the period with two simultaneous measurements heights
can be used to estimate the uncertainty from measurement height choice, which can then be
compared to long-term trends or differences between sites.

5.4.2 Spectral Corrections

The higher average correction factors for the lower system throughout all methods are in line with the
higher spectral attenuation observed there compared to the upper system (see Fig. 5.3c, d). This
observed shift to higher frequencies with a lower sensor height coincides well with other experiments
and well-known theoretical considerations (e.g., Moncrieff et al., 1997; Foken et al., 2012; Zhao et al.,
2019). The correction factors after Moncrieff and Massman show a clear dependence on U because
specific quantities of transfer functions are defined as functions of U there. However, correction
factors actually decrease initially with increasing U, since attenuation dominates in the low frequency
range due to block averaging at U < 0.5 m st but becomes less important with increasing U in unstable
conditions. An insensitivity of correction factors to U can be observed for the Massman method
because for open-path systems, time constant equivalents from path averaging and sensor separation
decrease with increasing U, and thus were assumed to compensate the shift to high frequency eddies
(Massman 2000). These comparatively small correction factors at higher wind speeds resulted in
slightly smaller AE and CO; fluxes at both systems for the Massman method.
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Polonik et al. (2019) concluded that the Fratini correction is not well-suited for open-path analysers
because it accounts only for scalar attenuation, as it does not consider sensor separation, and
therefore produced smaller fluxes than Massman. However, with the additional correction after Horst
and Lenschow (2009), this limitation was not an issue for our analysis. The fluxes of the lower system
corrected after Fratini had a higher magnitude and better energy balance closure compared to
Massman or other methods, confirming its applicability to low measurement heights, even for a
comparatively rough surface. Polonik et al. (2019) did not apply the correction after Horst and
Lenschow (2009) because it produced unrealistically high correction factors in stable conditions, but
in our case this correction increased the correction factor only by 0.07 for the upper system and 0.13
for the lower system during stable conditions. Nonetheless, in a few cases it added large values up to
0.7 to the correction factor. In unstable conditions, the maximum value added was 0.07 for the upper
system and 0.24 for the lower system.

Fratini and Mauder (2014) found a difference of about 3% in AE and CO; fluxes caused by the use of
spectral corrections either after Moore (1986) or Horst (1997), which contributed most to
discrepancies between flux processing in EddyPro© and TK3. In our analysis, the highest differences
(16.2%) were found between CO, fluxes at the lower system corrected after Fratini and Massman. In
contrast, Rannik et al. (2020) assessed that differences in fluxes from the choice of coordinate rotation
were less than 10%. Nevertheless, it should be kept in mind when comparing different spectral
correction schemes that spectral corrections are not the last step in the processing chain of EddyPro©,
but density correction terms (Webb et al.,, 1980) are further added, which in addition can be
implemented differently in other software (Fratini & Mauder 2014). It is also important to assess the
importance of sources of uncertainty, such as measurement height and LPF correction, against the
magnitude of real fluxes between sites or years that are the target of past and future studies on carbon
budgets of forests and clear-cuts. For example, for annual net ecosystem exchange over the first four
years after deforestation, Ney et al. (2019) found a source-towards-neutral change of 439 g Cm™, and
differences of more than 600 g C m2 compared to the surrounding spruce forest. The largest
differences of daytime cumulative growing season C uptake resulting from combinations of LPF
correction and measurement height in our study, 65 g C m between Massman of the upper system
and Fratini of the lower system, would not change these results fundamentally but account for a non-
negligible additional relative uncertainty.

The uncertainty resulting from the choice of LPF correction can be subsumed under systematic errors
associated with data processing in the classification scheme of Mauder et al. (2013). Other sources of
uncertainty include systematic errors from instrumental calibration and random errors due to changes
in footprint, instrumental noise, or the stochastic nature of turbulence. Stochastic errors estimated
according to Finkelstein and Sims (2001) were considerably larger than the differences induced by the
choice of a LPF correction method on a 30 min basis. Over longer time periods, however, random errors
are cancelled out, whereas systematic differences from LPF corrections add up, as is illustrated in Fig.
5.7. These discrepancies of different LPF corrections were stronger at the lower system, where LPF and
concurrent correction factors were higher than at the upper system. Therefore, the results support the
hypothesized importance of the choice of LPF correction, although flux differences between the two
measurement heights were larger than even between the two most contrasting LPF corrections.
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5.5 Conclusion

We compared turbulent flux measurements at two heights above a clear-cut site, demonstrating the
trade-offs that have to be considered when choosing the measurement height above a fetch-limited
heterogeneous surface. Major limitations of these results include potential advection biasing the EBR
at both heights and the limited applicability of the Kljun et al. (2015) footprint model to a study site
with heterogeneous flow. However, the footprint model has shown a limited utility for estimating the
influence of source and sink heterogeneities within the clearing. The upper system, with its larger
footprint, is more influenced by the forest and edge turbulence effects from the northern sector, while
the lower system likely lacks representativeness of the clearing and is susceptible to higher LPF. These
effects resulted in significant flux discrepancies between the two heights, which oppose the first
hypothesis that a seamless use of the data from both time series is acceptable. We also evaluated
different LPF correction schemes. The differences between the methods after Moncrieff, Massman,
Horst, Ibrom, and Fratini induced a systematic uncertainty to the fluxes, which was stronger for the
lower system (COz: 7.0%, H.0: 3.0%) than for the upper system (CO2: 3.4%, H,O: 1.4%). The flux
discrepancies of the different correction methods added up over time and hence support the second
hypothesis. Compared to other methods, the Fratini approach yielded higher fluxes and a better
energy balance closure for the lower system. Hence, our analysis confirms that for long-term single-
point flux observations above forest clearings, information about changes of measurement height are
critical for interpreting the data, and that it is also important to consider the spectral correction
method when comparing fluxes between sites.
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Abstract

Various environmental variables drive gross primary productivity (GPP) and light use efficiency (LUE)
of forest ecosystems. However, due to their intertwined nature and the complexity of measuring
absorbed photosynthetically active radiation (APAR) of forest canopies, the assessment of LUE and the
importance of its environmental drivers are difficult. Here, we present a unique combination of
measurements during the 2021 growing season including eddy covariance derived GPP, sap flow,
Sentinel-2 derived canopy chlorophyll content and in situ measured APAR. The importance of
environmental variables for GPP models is quantified with state-of-the-art machine learning
techniques. A special focus is put on photosynthesis-limiting conditions, which are identified by a
comparison of GPP and sap flow hysteretic responses to vapor pressure deficit and APAR. Results
demonstrate that a) LUE of the canopy’s green part was on average 4.0% * 2.3%, b) canopy chlorophyll
content as a seasonal variable for photosynthetic capacity was important for GPP predictions, and c)
on days with high vapor pressure deficit, tree-scale sap flow and ecosystem-scale GPP both shift to a
clockwise hysteretic response to APAR. We demonstrate that the onset of such a clockwise hysteretic
pattern of sap flow to APAR is a good indicator of stomatal closure related to water-limiting conditions
at the ecosystem-scale.

Plain Language Summary

The efficiency by which a forest uses sunlight to perform photosynthesis is an important feature for
climate and ecosystem modeling. However, the light that is actually captured by forests and is useable
for photosynthesis is difficult to assess. Here, we show a sophisticated approach to estimate the light
use efficiency of a spruce forest in Germany and analyze environmental influences on it and on
photosynthesis. Our results indicate that about 4% of the light useable for photosynthesis was actually
used by the forest during the 2021 growing season and that seasonal variations of chlorophyll in the
canopy are a good indicator for carbon capture.
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6.1 Introduction

The gross primary productivity (GPP) of terrestrial ecosystems, of which forests are the dominant
factor (Pan et al., 2011), is a key element of the global carbon cycle (Canadell et al., 2021). The resulting
biomass further is important for human demands of food, energy, and construction materials (Taye et
al., 2021). The assimilation of atmospheric CO, via photosynthesis is primarily driven by
photosynthetically active radiation (PAR), though it is also sensitive to intertwined environmental and
physiological variables, such as temperature, water and nutrient availability, or chlorophyll content of
the canopy (Anav et al., 2015; Bao et al., 2022; Keenan et al., 2012).

The light use efficiency (LUE) concept was established by Monteith (1972) and describes how efficiently
solar energy is converted to chemical energy. It can be expressed as the ratio of GPP to the absorbed
PAR (APAR). Under optimal conditions, a linear relation between GPP and APAR is assumed (Monteith,
1972), and LUE models utilize this logic for estimating GPP based on APAR and sensitivity functions for
environmental conditions limiting LUE (e.g., Horn & Schulz, 2011; Stocker et al., 2020; Wang et al.,
2018). The shape of these functions representing the response of LUE to meteorological variables,
however, varies widely between approaches (Bao et al., 2022). Although LUE models are widely used
to predict GPP, such as for the MODIS GPP product (Running & Zhao, 2015), they rely on accurate APAR
measurements. For most sites with GPP data, these are only available from remote sensing derived
fraction of APAR (fAPAR) products (Garbulsky et al., 2010). For forest ecosystems, however, fAPAR
differed among satellite products (Tao et al., 2015) and deviated from in situ fAPAR measurements,
especially for temperate coniferous forests (Putzenlechner et al., 2019a). On the other hand, in situ
measurements of fAPAR are laborious, especially for forest canopies, because of the high
spatiotemporal variability of their light transmissivity (Leuchner et al., 2011; Vesala et al., 2000), which
requires a sophisticated network of PAR sensors to capture the variability of different flux terms
(Putzenlechner et al., 2019b; Widlowski, 2010). Hence, few studies investigated environmental
controls of LUE for forest ecosystems based on in-situ APAR measurements (Goulden et al., 1997;
Urban et al., 2012).

With climate change, a shift from energy-limited to water-limited conditions is expected for many
terrestrial ecosystems (Denissen et al.,, 2022), making it important to accurately identify and
distinguish those conditions. Vapor pressure deficit (VPD) was found to be a dominant control for
stomatal conductance and, thus, for limiting photosynthesis (Katul et al., 2003; Castro et al., 2018). Sap
flow sensors measure the transport of water through the xylem and in this way provide a continuous
proxy of stomatal conductance (Ewers et al., 2007; Kostner et al., 1998; Steppe et al., 2015). Brinkmann
et al. (2016) compared the sap flow response to drying conditions of different European tree species
and showed that the sap flow of Picea abies was especially sensitive to limited water availability.
Hence, despite being promising for analyzing limiting conditions of photosynthesis, as shown by the
usefulness of sap flow to estimate GPP (Klein et al., 2016), a combination of sap flow and GPP
measurements has rarely been performed to show that the tree-scale sap flow response is analogous
to that of the ecosystem-scale GPP.

Furthermore, the ratio of available light in the red to light in the far-red domain (R/FR) is a measure of
light quality (Ammer, 2003; Turnbull, 1991) and can adapt chlorophyll content, though a direct relation
to CO; assimilation could not be found (Heraut-Bron et al., 1999). Besides meteorological drivers,
canopy nitrogen and leaf mass per area were shown to be important to explain the variation in LUE
across species and environments (Green et al., 2003), though both are rarely considered in LUE models.
The canopy chlorophyll content (CCC) incorporates both of these measures and showed a stronger
relationship to GPP than leaf area index (LAI) or leaf chlorophyll content (Ca) alone (Croft et al., 2015).
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GPP seasonality of a soybean field was further dominated by CCC, while APAR and sun induced
chlorophyll fluorescence peaked about two weeks earlier (Wu et al., 2022). In view of such a plethora
of environmental controls on GPP, variable importance measures of machine-learning models are a
valuable tool to quantify the model importance of individual highly non-linear sensitivities that are
otherwise difficult to quantify (Archer & Kimes, 2008; Gromping, 2009; Williamson et al., 2021).

For this study, a multitude of environmental data were collected for a European spruce forest,
including eddy covariance derived GPP, APAR from a network of PAR sensors, sap flow of three trees,
and various environmental variables including satellite derived CCC. Based on these data, our goals
were threefold, to (i) assess the LUE of a spruce forest and analyze the impact of various environmental
drivers on it, (ii) quantify the importance of single environmental variables for machine-learning GPP
models, and (iii) identify limiting conditions of photosynthesis by linking tree-scale sap flow
measurements to ecosystem-scale GPP and meteorological data.
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Figure 6.1 Light Detection And Ranging (LiDAR) derived canopy heights from the Wistebach forest site, western Germany.
LiDAR data collected on a March 2022 measurement campaign and were used for visualization only.
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6.2 Materials and Methods
6.2.1 Study Area Description

Measurements took place between April 28 and September 30, 2021 at the Wistebach forest site
(50°30'16"N, 6°19'50"E), Germany, which is part of the TERENO network (TERrestrial ENvironmental
Observatories; Bogena et al., 2018). The forest lies at 600-620 m asl within the Eifel National Park near
the Belgian border and is a spruce monoculture (Picea abies (L.) H. Karst.) planted in 1946 with an
overall tree density of 370 trees/ha (Etmann, 2009) and an average canopy height of 25 m. The
understory mostly consisted of young beech plantings (Fagus sylvatica L.), Vaccinium myrtillus L., ferns
(e.g., Struthiopteris spicant (L.) Roth) and various mosses. The dominant soil types are Cambisols and
Planosols (Graf et al., 2014) and the dominant soil textures are silt loam and silty clay loam (Borchardt,
2012). During April — September 2021 the site had a mean temperature of 12.2 °C, and received 629
mm of precipitation. At the nearest long-term official weather station Kall-Sistig of the German
Weather Service, about 13 km to the east, this period was 0.6 °C colder and had 158% of the
precipitation compared to the 1991-2020 averages. April and May were especially cold (-3.2 and -2.4 °C
deviation, respectively) and July was especially wet (347% of average), while June was significantly
warmer than average (+2.4 °C).

6.2.2 Eddy Covariance, Meteorological, and Sap Flow Measurements

Turbulent fluxes of CO,, water vapor and sensible heat were measured with an eddy covariance system
consisting of a sonic anemometer (CSAT-3, Campbell Scientific, Logan, Utah, USA) and an open-path
infrared gas analyzer (LI-7500, LI-COR, Lincoln, Nebraska) with 15 cm sensor separation. The
instruments were mounted at 38 m above ground on a tower above the forest canopy (Fig 1). Raw
data recorded at 20 Hz were processed to 30-min fluxes with the software TK3 (Mauder & Foken,
2011), applying the strategy for quality control after Mauder et al. (2013), which includes tests for
stationarity, well-developed turbulence, and source area representativeness. Following this, only data
of the highest quality (flag 0) were retained and a storage flux estimated from single point CO;
measurements was added. Post-processing was carried out using the REddyProc software package
(Wutzler et al., 2018), which includes friction velocity filtering, gap filling and partitioning of net
ecosystem exchange of CO; into ecosystem respiration (Reco) and GPP. For partitioning, the method
after Reichstein et al. (2005) was applied, which determines the temperature sensitivity of Reco from
nighttime data and extrapolates this to daytime.

Further environmental variables used for the analysis include measurements of global radiation (1) and
diffuse radiation (d) measured at 34 m (NRO1, Hukseflux Thermal Sensors, Delft, Netherlands), from
which the diffuse fraction (d/I) was calculated. In addition, air temperature (T.ir) and relative humidity
(rH) were measured at 38 m (HMP45, Vaisala Inc., Helsinki, Finland), from which VPD was derived.
From measurements of soil water content (SWC) in 2 cm, 5 cm, 10 cm, 20 cm, 50 cm and 80 cm depth
(CS616, Campbell Scientific, Logan, Utah, USA) a root zone SWC weighted by thickness of layer was
calculated as SWCyyg = (SWCyy ¥ 3+ SWCys ¥4 + SWCig*7 + SWCy *20 + SWCs * 30 +
SWCg * 36) /100, where each subscript denotes the depth in cm to account for dynamic root growth
(Wang et al., 2021).

As an indicator of stomatal responses, sap flow density (Js) was derived from three spruce trees about
20 m to the southeast of the tower (Fig. 6.1). Each tree was instrumented with a Granier sensor
comprising four needles (Ecomatik SF-L, Ecomatik, Dachau, Germany), mounted at 1.5 m height, from
which the average Js of the trees was derived from the temperature difference between two probes
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(Bogena et al., 2015, Neuwirth et al., 2021). The respective equation follows empirical relations
(Granier, 1987):

ATmax—AT)1'231
)

Js = 119 x (Fnex (Eq. 6.1)

where Js is the sap flow density (g m?2 s?), AT is the actual temperature gradient between the two
probes and ATmax the maximum temperature gradient measured between the probes in a given time
period. The length of this time period depends on the prevailing environmental conditions, because
ATmax represents a state of zero sap flow. According to the manufacturer’s recommendations
(Ecomatik, 2005) we identified ATmax as the maximum AT of the vegetation period representing no
radial tree-trunk increment and an rH of 100% with transpiration tending to zero. With these
measurements, the relationships between Js, VPD, and APAR were then analyzed to identify energy-
limited and water-limited conditions for photosynthesis.

6.2.3 Sentinel-2 Derived Vegetation Indices

The normalized difference vegetation index (NDVI) was used for the estimation of APAR by green
vegetation and CCC was used as an indicator of photosynthetic capacity to incorporate nutrient
availability and past environmental conditions, especially the delayed response of chlorophyll content
to suitable meteorological conditions in the early growing season (Gitelson et al., 2014). In order to
estimate NDVI and CCC, Sentinel Level-2A bottom of atmosphere images between April and October
2021 were downloaded from Google Cloud via sen2r (Ranghetti et al., 2020). A mask was applied to
filter out clouds and shadows, and the images were further visually inspected to exclude scenes with
undetected clouds or cloud shadows over the study area, after which 13 scenes well distributed over
the growing season remained. NDVI was calculated as

NDVI = (Bgsz — Bess) / (Bgaz + Bees), (6.2)

where the subscript denotes the wavelength in nm of the respective Sentinel-2 band (B), i.e. band 8
(near infra-red) for Bss; and band 4 (red) for Bess. For CCC, the 13 scenes were resampled to 20 m spatial
resolution and processed with the Biophysical Processor in SNAP
(https://step.esa.int/main/toolboxes/snap/) to vyield LAl and C,, products. The algorithm for
biophysical variables included in SNAP consists of an artificial neural network trained with PROSAIL
radiative transfer model input variables (Weiss et al., 2020). CCC was then derived by multiplying LAI
with Cap and for both NDVI and CCC pixel values of the woodlot were averaged. Finally, values from the
13 scenes were linearly interpolated to a daily scale.

6.2.4 PAR and R/FR Measurements

PAR was recorded instantaneously every 10 min with full-spectrum quantum sensors (SQ-521-SS,
Apogee Instruments, Logan, Utah, USA) measuring the photon flux in the spectral range from 389 to
692 £ 5 nm. The sensors’ error due to temperature response is below 2% for prevalent temperatures
of the 2021 growing season (5 °C-30 °C). The R/FR ratio was recorded likewise with $2-431-SS sensors
(Apogee Instruments, Logan, Utah, USA) measuring red light from 645 to 665 nm + 5 and far-red light
from 720 to 740 nm + 5 nm. All PAR and R/FR sensors were connected to the wireless sensor network
SoilNet (Bogena et al., 2010). Incident PAR (PAR») and outgoing PAR (PAR,.t) and incident R/FR (R/FRin)
were measured with two opposite PAR sensors and one R/FR sensor above the forest canopy on a
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tower at 38 m above ground (Fig. 6.1). In order to find a suitable field for measurements of transmitted
PAR (PARgans) and R/FR (R/FRwans) below the canopy, several criteria were set. According to these, the
field had to be: (i) within the 50% cumulative source area of the eddy covariance station as calculated
after Kormann and Meixner (2001), (ii) at least 80 m away from the forest edge to minimize the
influence of lateral radiation fluxes, and (iii) representative of the general woodlot comprising the 50%
footprint area in terms of canopy density. For the latter, a LiDAR (Light Detection And Ranging) point
cloud from Geobasis NRW (2019) was used and the ratio of above ground to total LiDAR points for
each 30-m cell of the woodlot was calculated. A representative cell was identified as being within one
standard deviation from the mean ratio of the whole woodlot. Based on these criteria, a measurement
field 70 m to the southwest of the tower was chosen (Fig. 6.1). There, 10 PAR sensors were mounted
on tripods in 1.3 m height and arranged with 10 m distance in two hexagons to maximize the sensing
area (Putzenlechner et al., 2019b) and one of these hexagons was also equipped with six R/FR sensors.

For calculating APAR, cases with PARtans > PARi, were excluded as a sign of cloud cover only above the
tower. High wind speeds can induce an increase of the sampling error of PARtans measurements from
a limited number of sensors during direct light conditions (Putzenlechner et al., 2019b). This sampling
error is caused by the high spatial variability of forest canopies (Leuchner et al., 2011; Widlowski,
2010). Therefore, the fAPAR was calculated first and filtered for low wind speeds (< 5 m s?), and data
gaps were linearly interpolated. We also considered reducing the sampling error further by filtering
for diffuse light conditions (d/I > 0.9). However, important conditions such as the highest VPD typically
occur during direct light conditions, and only considering diffuse light would also ignore the bowl-
shaped diurnal cycle of fAPAR during direct light (Widlowski, 2010). The domain-level fAPAR was
calculated as a two-flux product instead of a three-flux product because in this way the bias to fAPAR
from all four flux terms is expected to be smaller (Putzenlechner et al., 2020; Widlowski, 2010):

fAPAR = ~¥71 — PAR(rqns,/PAR:y, (Eq. 6.3)

where iis the sensor location of each PARans Sensor, however, without measurements from one sensor
due to malfunctioning (n=9). APAR of green parts of the tree canopy was then calculated as

APAR, = PAR;, * fAPAR * NDVI, (Eq. 6.4)

for which each 10-min values of PAR;» and fAPAR were linked to the NDVI values of the corresponding
day. NDVI was used for the proportion of green vegetation because of its normalized nature and utility
in previous research to estimate APAR; (Nestola et al., 2016).

Data from the six R/FR sensors were averaged for the calculation of R/FRians. As R/FR is strongly
dependent on solar elevation and the precipitable water vapor in the atmosphere, which attenuates
light in the far-red but not in the red domain (Doroszewski et al., 2015; Kotilainen et al., 2020), we also
calculated the difference between the R/FR ratios above and below the canopy as R/FRyirr =
Ry /FRiy — Rirans/FRerans to represent the change of the spectral ratio caused by the canopy alone.
All radiation data were filtered for daytime conditions (PARi» > 10 umol m™ s*) and linked to GPP
estimates by aggregating them to 30-min values. Finally, green LUE was calculated as

LUE, = GPP/ APAR,. (Eq. 6.5)
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6.2.5 Evaluation of Environmental Drivers

LUE; was calculated at the half-hourly scale and at the daily scale from daytime integrals of GPP and
APAR;. Half-hourly LUEg, however, has the problem of being skewed because a ratio is more affected
by changes of the denominator (APARg), especially if it is low (Hedges et al., 1999). At the daily scale,
the range of APAR; was much smaller, and hence the dependence on APAR; was not as dominant (see
Fig. 6.8). For this reason it is necessary to present half-hourly LUE; with a log10-transformed y-axis so
that LUE; is affected equally by changes of the numerator and denominator. However, Feng et al.
(2014) stated to use log-transformations with caution as statistical modeling on those data may not be
relevant for the original data. Therefore, we also provide an alternative approach in the supporting
information, that uses deviations of GPP from a year- and site-specific optimal GPP (GPPq) in relation
to APAR; instead (see Text S1 and Fig. 6.9 and 6.10).

In order to robustly quantify the importance of environmental variables for predicting half-hourly
daytime GPP, two different feature importance measures based on different machine-learning
algorithms were applied. First, permutation importance based on random forest (RF; Breiman, 2001),
and second, SHAP values (SHapley Additive exPlanations; Lundberg & Lee, 2017) based on gradient
boosting (GB; Friedman, 2002). Both RF and GB have the advantage of capturing even highly non-linear
relations between target and predictors and are based on an ensemble of decision trees. For RF, all
trees are grown independently with a random subsample of data, while the trees for GB are built based
on the errors of the previous tree in order to minimize a loss function. The permutation importance is
assessed by randomly shuffling the values of each variable and measuring the decrease in prediction
accuracy. To avoid a bias from correlated predictors, we used the conditional permutation scheme of
Strobl et al. (2008), where values are permuted within a grid of correlated variables. For this, we
applied the latest version of this algorithm in the permimp package in R, which also considers non-
linear dependence between variables (Debeer & Strobl, 2020), based on the conditional inference
trees implementation of RF in cforest (Hothorn et al., 2006). SHAP is a local method to explain the
importance for individual predictions by unifying various Shapley value methods, which use equations
from game theory to fairly allocate rewards. For this study, we applied SHAP via SHAPforxgboost (Liu
& Just, 2021) based on the XGBoost implementation of GB (Chen & Guestrin, 2016). For both models,
only non-gap-filled values were considered and hyperparameter tuning and a random 5-fold cross-
validation was conducted with caret (Kuhn, 2008). As RF and GB are subject to random variation, the
procedures were repeated 10 times and results were averaged to produce more robust estimations.
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Figure 6.2 Gross primary productivity (GPP) against green canopy absorbed photosynthetically active radiation (APARg) during
the 2021 growing season, colored by canopy chlorophyll content (CCC) and dot sizes by vapor pressure deficit (VPD).
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Figure 6.3 Time series of daily averaged daytime values of (a) green canopy light use efficiency (LUEg), (b) gross primary
productivity (GPP), (c) green canopy absorbed photosynthetically active radiation (APARg), (d) canopy chlorophyll content
(CCQ), (e) air temperate (Tai), (f) vapor pressure deficit (VPD), (g) soil water content (SWCavc), and (h) sap flow density (Js)
from April 20 to September 30. For LUEg and GPP, only those days with at least 25% non-gap-filled GPP data were considered.

6.3 Results

6.3.1 Interpretation of Environmental Drivers

The efficiency by which APAR; is used for photosynthesis is observed by a light response curve of GPP
(Fig. 6.2). For each APAR; domain, a wide range of GPP values was recorded. Low GPP values at a
particular APAR, corresponded well with a low CCC, indicating a limiting effect on photosynthetic
capacity. In general, GPP displays an increasing trend with increasing APAR; until about 600 umol m=
s’1, after which a saturation of APAR occurred. The larger circles further show that many of the lowest
GPP values at high APAR coincided with high VPD, most of them during a warm and dry spell in June.

The good agreement between CCC and GPP can also be seen in time series (Fig. 6.3b,c) and a
scatterplot (Fig. 6.11a). In Fig. 6.3, no significant increase of GPP, LUE; or CCC can be noticed until mid-
June. In mid-July and mid-August, however, LUE; exhibited two marked peaks with a minimum in
between. APAR; and Js had a high day-to-day variation while T, and VPD peaked in mid June. Over the
whole research period, daily LUE; was 4.0% % 2.3%, with daily values ranging from 0.7% to 12.1%. Out
of total APAR, the LUE was 3.1% on average, and of PAR, just 2.8%.

In general, the response to environmental drivers was similar for half-hourly and daily LUEg. T, had a
relatively clear optimum around 15 °C for both 30 min and daytime averages, though even around
15 °C low LUEg values were observed (Fig. 6.4a, b). Half-hourly LUE; was rather insensitive to VPD until
it reached values above about 7.5 hPa, after which a decrease was noticeable. For daily LUE; a similar
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pattern was evident, although the decrease started at daytime averaged VPD > 3 hPa (Fig. 6.4c, d).
Half-hourly and especially daily LUE; were higher during diffuse compared to direct light conditions.
Similarly, they tended to be higher when R/FRgi was lower (Fig. 6.4e-h), meaning that the ratio was
shifted comparatively less to the far-red spectrum after passing the canopy. However, neither showed
a clear response to SWCavs (Fig. 6.4i, j).
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Figure 6.4 Green canopy light use efficiency (LUEg) at a half-hourly scale with log10-transformed y-axes (left) and at a daytime
scale (right) against air temperature (a,b), vapor pressure deficit (c,d), diffuse fraction (e,f), red to far-red ratio difference
between above and below canopy (g,h), and soil water content (i, j), each with a LOESS (locally estimated scatterplot
smoothing) function in blue and a 0.95 confidence interval in grey. For daily LUEg, only those days with at least 25% non-gap-
filled GPP data were considered.

64



ccc |

APARg _—

R/FRin H

Tair H

SWCavg H

VPD H

R/FRdiff H

R/FRtrans H

dil H

6
Conditional Permutation Importance

CCC | 4.683 e e S50 e o W @ %0 GIEE N CEENIEe S EED W mmmLEE

APARg | 4.074 =
SWCavg | 1.430
R/FRdiff | 0.930
Tair | 0.618
R/FRin | 0.611
VPD | 0.566
R/FRtrans | 0.375

Feature value |, High
d

0.336

12

-0 0 10 20
SHAP value (impact on model output)

Figure 6.5 Average conditional permutation importance (unitless) of environmental variables for a random forest gross
primary productivity (GPP) model with error bars displaying one standard deviation between 10 iterations (a), and SHAP
values of those variables for a gradient boosting GPP-model (b). The more values deviate from 0, the more important was
the respective variable for the prediction, with negative values related to low GPP outcomes. Numbers on the left show the
average absolute SHAP value (unitless) of each variable. R? of a random 5-fold cross-validation of the models was 0.83 for
random forest and 0.84 for gradient boosting.

6.3.2 Importance of Environmental Drivers for Machine Learning Models

The results from permutation importance and SHAP agree well, indicating that the importance
estimations can be considered robust. For both approaches, CCC was the most valuable feature for
predicting GPP closely followed by APAR; (see Fig. 6.5). Though only according to SHAP, SWCays had a
higher importance than the remainder variables. RF and GB both could reproduce GPP well within a 5-
fold random cross-validation, resulting in an R? of 0.83 for RF and 0.84 for GB (Fig. 6.12), though this
does not tell how good the models are for spatiotemporal extrapolation. However, when replacing
APAR; and CCC by the rough proxies of solar zenith angle (SZA) and day of year (DOY), the RF model
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performance drops only to an R? of 0.81 with SZA and DOY as the most important variables (see Fig.
6.13). A RF model with neither of them, on the other hand, has only an R? of 0.56. This leads to the
impression that the diurnal and seasonal information contained in APAR; and CCC are more important
than their specific quantities.

The analysis of individual SHAP values further revealed that high CCC values yielded higher GPP
predictions and the limiting effect of low APAR was also evident. Dependence plots of SHAP values of
each variable give a more detailed view, especially for variables with a rather small range of SHAP
values (see Fig. 6.14). Here, it is notable that both very low and high VPD yielded a low GPP outcome,
while high and low SWCavg values are related to high GPP outcomes.
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Figure 6.6 Sap flow density (Js) against gross primary productivity (GPP) colored by daily maximum vapor pressure deficit

(VPDmyx) (a) and Js against VPD colored by canopy chlorophyll content (CCC) (b). The star symbols in panel (b) represent
observations with solar zenith angle > 70° and VPD > 5 hPa.
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Figure 6.7 Hysteresis plots between sap flow density (Js) and vapor pressure deficit (VPD) (a-d), gross primary productivity
(GPP) and VPD (e-h), Js and green canopy absorbed photosynthetically active radiation (APARg) (i-1), and GPP and APARg (m-
p), averaged for four different daily maximum VPD classes (columns). A clockwise (anti-clockwise) pattern occurs if afternoon
and evening values of Js or GPP are higher (lower) than in the morning at the same VPD or APAR.

6.3.3 Sap Flow — GPP Relationship and their Response to Environmental Drivers

The correlation of Js to GPP in relation of VPD and CCC is shown in Fig. 6.6. Half-hourly periods with
high GPP despite very low Js (< 0.025 ml cm™ min!) occurred on very low maximum daily VPD (VPDumy)
days (Fig. 6.6a), indicating that Js and GPP were not correlated when photosynthesis required little
transpiration. For a given value of Js above 0.05 ml cm min’, GPP was generally lower on high VPDx
days and likewise for the same GPP, a higher Js occurred on high VPDnx days. In the relation to VPD, Js
showed a strong increase with increasing VPD until about 7.5 hPa were reached, after which Js seems
to be capped and even showed a slightly decreasing trend for VPD > 12.5 hPa (Fig. 6.6b). However,
even at low VPDs, Js was within a broad range of about 0.1 ml cm min. Lower Js values corresponded
well to low CCC, indicating a limiting influence on sap flow potential. Extraordinarily low Js values stand
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out at moderate VPD values of about 10 hPa. These values correspond to low sun angles (SZA > 70°;
star symbol in Fig. 6.6b) and occurred in the early morning after nights during which VPD remained
relatively high but APAR and thus Js were still low.

The hysteretic responses of Js and GPP to VPD and APAR; are shown in Fig. 6.7 for different VPDmx
classes. The averaged hysteresis of Js to VPD showed markedly different patterns for different VPDmx
domains. For VPDmx < 1.5 hPa (not shown), a chaotic pattern generally dominated, though for days
with VPDmy between 1.5 and 5 hPa, an anti-clockwise pattern with higher Js later in the day at same
VPD could be observed (Fig. 6.7a). A transitional pattern occurred for days with VPDy between 5 and
9 hPa without a clear hysteresis or just a clockwise loop around midday (Fig. 6.7b). On VPDnx days
between 9 and 15 hPa, instead, a clear clockwise pattern with lower Js later in the day at the same VPD
levels was visible (Fig. 6.7c). For days with VPDmy above 15 hPa, the clockwise hysteresis was even more
pronounced, and a decreasing Js despite further rising VPD in the early afternoon occurred (Fig. 6.7d).
GPP, on the other hand, always showed a clockwise response to VPD independent of the VPDny scale
(Fig. 6.7e-h). In the response to APAR;, however, Js and GPP both showed a clockwise pattern on high
VPDmx days. Though on lower VPDmy days, GPP did not have a time lag towards APARg, while Js had an
anti-clockwise pattern that shifted towards a clockwise pattern with increasing VPDmy (Fig. 6.7i-p).

6.4 Discussion
6.4.1 Identification of Photosynthesis Limiting Conditions

Besides this study, an anti-clockwise hysteretic response of Js to VPD was reported only for P. sylvestris
growing in a wet and cool climate (Wang et al., 2019b). This hysteretic response has not been found
for plants in tropical (Motzer et al., 2005; Roddy, 2013) or semi-arid climates (Li et al., 2016; Zha et al.,
2017). A delayed response of Js to VPD can be explained by the use of water stored in the upper stem
during the morning hours (Goldstein et al., 1998; Peramaki et al., 2005). Stored water is only sufficient
on low VPD and APAR; days, and is not detected by sap flow measurements usually carried out at 1-
1.5 m height (Wang et al., 2019b). We hence interpret the shift of the Js response to VPD from anti-
clockwise to clockwise as a sign of non-sufficient water storage in the upper plant. Main possible
reasons for afternoon stomatal closure causing a clockwise response of Js to VPD given by previous
studies (O’Brien et al., 2004; Zeppel et al., 2004; Q. Zhang et al., 2014) can be summarized to: (i) a
declined soil-root conductance due to decreased SWC, (ii) a higher stomatal sensitivity to VPD due to
changed water potential gradients or xylem sap chemical composition, and (iii) decreased APAR,,
caused by the delay of VPD to radiation resulting in higher APAR; values earlier in the day at a given
VPD (see Fig. 6.15).

Given that GPP showed a clockwise response to VPD even on very low VPDmy days, we conclude that a
decrease of APARg and hence stomatal closure induced by energy limitations is the main cause for such
cases at this particular site. This means that for higher VPDn days a clockwise Js-VPD pattern by itself
is not a sufficient indicator for water stress or atmospheric demand induced stomatal closure. The
decrease of Js despite increasing VPD only on the highest VPDmy days can be considered a clearer sign
of such conditions. As photosynthesis is primarily driven by APAR,, the non-hysteretic response of GPP
to APARg on low VPDny days seems reasonable. Since Js is likewise driven by APAR,, but also scaled by
VPD, which is typically highest in the afternoon, a slight anti-clockwise response to APAR, can be
expected (Zeppel et al., 2004) that is also enhanced by the use of stem water in the morning. Hence,
the shift to a clockwise pattern of both GPP and Jsto APARg only on the highest VPDmy days can be
regarded as a good indicator of stomatal closure related to high atmospheric water demand at this site
and year. Water-limited conditions, however, also depend on soil water potential, which can only be
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roughly estimated for this site. According to the soil water retention curve for the dominant silt loam
texture after Tuller and Or (2004), even the minimum SWCayvc of 20.3% during the 2021 growing season
would have resulted in a pressure head of no less than about -10 m.

Limiting conditions for photosynthesis can also be identified by a time series of the relevant variables
(see Fig. 6.3 and Fig. 6.16). For example, June 12 saw a marked minimum of APAR; around noon, which
was likewise evident for VPD, Js and GPP, demonstrating an energy-limited response. During a high
APAR; period from June 14-19 with the highest VPD values (21.5 hPa) recorded during the whole
growing season, both Js and GPP were lower than during June 25-28 with distinctively lower VPD (<
12.5 hPa). This could be interpreted as a water-limited response. However, the photosynthetic capacity
also increased markedly from mid to late June (Fig. 6.3d), complicating the analysis. For the hysteretic
response differing CCC is not an issue as GPP and Js are compared within the same day. In summary,
the analysis of the Js response especially to APARg can reveal useful information to identify
photosynthesis limiting conditions, although GPP and Js are not always related as shown by
discrepancies during very low VPD conditions.

6.4.2 Environmental Drivers

Both machine learning analyses show the consistency of CCC as the most important environmental
variable for GPP. This high ranking also reveals that even for evergreen trees, meteorological drivers
alone may not be sufficient to explain the variability in GPP. Moreover, a variable containing seasonal
information about photosynthetic capacity will be also required. Our results are in agreement with
previous research for mixed forests and maize crops (Croft et al., 2015; Gitelson et al., 2014; Peng et
al., 2011). The higher importance of CCC even over APAR; agrees with the results from Wu et al. (2022).
However, other variables influencing photosynthetic capacity, such as atmospheric CO,
concentrations, were not included in the analysis (Dusenge et al., 2019; Farquhar et al., 1980).
Furthermore, Cabon et al. (2022) showed that wood growth in contrast to GPP is more limited by water
stress than temperature-related leaf phenology.

As for environmental drivers of LUE;, we found a unimodal response to Tair with decreasing LUE; at
high temperatures. With this analysis, however, it is not possible to single out the effect of a specific
variable on LUE, because co-dependencies between variables occur. High values of T.ir were strongly
correlated to high VPD values (89% of T.ir > 25 °C had VPD > 15 hPa). Nevertheless, the observed
decrease of LUE; can also be caused by high T.ir alone due to higher photorespiration in relation to
photosynthesis with increasing leaf temperatures (Long, 1991), a process which also relates to high
APAR;. Likewise, as summarized by Bao et al. (2022), the temperature sensitivity has been represented
by bell-shaped functions many times in LUE-models though with differing optimum ranges (e.g., Horn
& Schulz, 2011; Stocker et al., 2020; X. Xiao et al., 2004). Otherwise, it was also modeled by a linearly
increasing function that reaches a plateau at ca. 16 °C (Méakela et al., 2008).

VPD was overall not a very important variable for machine learning models despite its impact on
stomatal conductance as shown by the sap flow analysis. This discrepancy can be attributed to the fact
that the site is typically energy- rather than water-limited (Graf et al., 2014) with a particular cool and
wet 2021 growing season. This resulted in many low VPD observations that were rather indifferent to
LUEg, though nonetheless some high VPD days occurred that restricted stomatal conductance. The wet
growing season probably also explains the relatively low importance of SWC, which reacts slower to
dry periods with increasing depth (Xu et al., 2021). In comparison, for a drought-affected tropical dry
forest, a high importance of VPD and latent heat flux to explain GPP was detected by Castro et al.
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(2018). A similar response to VPD as ours, i.e., a decrease of LUE only at VPD above ca. 5 hPa, was
found by Horn and Schulz (2011), while others found an immediate decrease of LUE with increasing
VPD (Kalliokoski et al., 2018; Wang et al., 2018). Likewise, Fu et al. (2021) showed that during soil
moisture dry downs, the covariance between GPP and VPD was positive at first, and changed to
negative only after a certain soil moisture threshold was surpassed. The low LUE; values even within
the optimum range of environmental variables such as T, shows those are necessary but not sufficient
conditions. During the occurrence of highest GPP and LUE; values in mid-July and mid-August all or
most environmental drivers likely were within their optimal range.

While half-hourly LUE; showed only a modest increase with d/I, which is also reflected in a low
importance for machine learning models, daily LUE; was significantly higher during diffuse light
conditions (Fig. 6.4f). A similar response was observed to low R/FR4ir and both were highly correlated
(correlation coefficient of -0.92; see also Fig. 6.11b). This is probably linked to lower APAR, values
during diffuse light and therefore less excessive light. Besides that, an enhancement of LUE; under
diffuse conditions has been linked to a smaller fraction of the canopy in deep shade (Williams et al.,
2014) and previous research showed that coniferous forests can also be larger CO; sinks under diffuse
conditions (Law et al., 2002; Urban et al., 2007, 2012). A linear increase between cloudiness and LUE
was hence included in LUE-models (Wang et al., 2018), though Bao et al. (2022) found an exponential
increase more suitable that also fits better with our results. As the R/FR ratio was always shifted to FR
after passing the canopy but less so during diffuse conditions, obscured parts of the canopy received
not only a higher light quantity, but also a higher light quality than under clear skies. Such a vertical
R/FR profile was shown for spruce trees by previous research (Dengel et al., 2015; Hertel et al., 2011),
and in this way the higher LUE, at small R/FRg4i might not be attributed to higher d/I and less excessive
light alone.

6.4.3 Variability and Uncertainties of LUEg Estimates

Variation of LUE; shown in Fig. 6.3a can primarily be attributed to variations of APAR; and GPP. APAR,
was predominantly dependent on fluctuating cloud cover patterns, while GPP likely was influenced by
various current and past environmental drivers (see sect. 3.2). LUEgremained within a rather low range
between late April and late June. This can be attributed to below average temperatures in April and
May with a subsequent low CCC well into June, as well as a warm and dry period with comparatively
high VPD values in mid-June probably causing water-related stomatal closure (see sect. 3.3). As the
first peak of GPP corresponds to an increase of CCC as well as low VPD, we attribute this peak to the
probably first suitable growing conditions after cold temperatures in May and dryness in June. The first
LUEg drop in late July saw decreasing APARg, GPP, T, and CCC (although from few observations) and
thus may be related to energy-limited conditions. The second GPP and LUE; peak did not occur during
the same days. A peak of GPP occurred from Aug 12—15 but was associated with relatively high APAR,
values and thus did not result in a high LUE,. The LUE; peak instead occurred from Aug 16—19 with only
moderate GPP (1.03—-1.24 mol m™ d?) during the rapid onset of very low and consistent APAR; in
consequence of the passage of the low pressure system Luciano. Explaining why GPP did not likewise
decrease to lower values is beyond this analysis. However, the low amounts of PAR;, were perhaps still
enough to sustain a moderate GPP. The last drop of GPP in late August then is accompanied by a
continuous decrease of CCC, which can be interpreted as the onset to the end of the growing season.

GPP derived from eddy covariance measurements is subject to well-known limitations including the
difficulty of estimating a storage term without a vertical CO; profile (Montagnani et al., 2018), the
identification of vertically decoupled flows (Peltola et al., 2021a), and the uncertainty from partitioning
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net ecosystem exchange into GPP and Rec (Raj et al., 2016). PARtans measurements from a limited
number of sensors were subject to a sampling error during direct light conditions, as indicated by a
non-flattening curve of the coefficient of variation as a function of the number of sensors (see Fig.
6.17). Additionally, a bias to an ideal APAR calculated from all PAR flux terms can be expected
(Widlowski, 2010). In our case, we did not measure horizontal and ground-reflected PAR fluxes. Green
APAR has the advantage over total APAR that only light actually usable for photosynthesis is
considered. In this way, the effect of short-term drivers such as VPD and Tair on the partitioning of
energy in photosynthesis and, e.g., transpiration, non-photochemical quenching and fluorescence can
be investigated. However, environmental conditions causing a reduction of NDVI such as drought,
insect infestation or wind storms will not properly be reflected in a decreased LUE,. With total APAR,
these conditions would decrease LUE as long as the canopy surface area is not reduced. Chlorophyll
content, on the other hand, can be low despite an apparently ‘green’ leaf (Gitelson & Gamon, 2015).
Hence it is important for GPP models that PAR absorbable by chlorophyll might still be overestimated
by NDVI-based APAR; and thus LUE; underestimated. The Sentinel-2 derived NDVI estimates induce a
further uncertainty to APAR,, although a validation with in-situ measurements showed the reliability
of Sentinel-2 NDVI (Lange et al., 2017). By measuring PARwans in 1.3 m, the light used for photosynthesis
by the ground vegetation was not included in fAPAR, though their productivity was included in GPP.
The contribution of ground vegetation to GPP, however, can be expected minor in an old growth forest
stand (Kulmala et al., 2011). Excluding photosynthesis of ground vegetation would hence slightly
decrease LUEg, which is a counterweight to the former limitation. Although calculating LUE as in Eqn 5
is most straightforward and commonly used (e.g., Gitelson & Gamon, 2015; Martini et al., 2022;
Wieneke et al., 2018), LUE can also be assessed by metrics of the light response curve, such as the
initial slope or the half saturation point (Williams et al., 2014). In addition, the SQ-521-SS sensors
measured PAR from 389 to 692 nm, though Zhen and Bugbee (2020) argued to include FR light (701-
750 nm) in the definition of PAR, as FR causes a balanced excitation of the two photosystems, and
hence improves photochemical efficiency.

6.5 Conclusions

Our study found that i) a seasonal variable such as CCC is consistently necessary for accurate GPP
estimations by machine learning models and hence should be considered as a possible improvement
for LUE-based approaches and ii) tree-scale Js and ecosystem-scale GPP showed a congruent clockwise
hysteretic response to APAR; on high VPD days, thus likely being a good indicator of water stress
induced stomatal closure. In this way, this novel dual-scale comparison of hysteretic cycles has the
potential to be of general value for identifying photosynthesis-limiting conditions. We anticipate these
findings will be valuable for the development of GPP-modeling approaches, and can serve as a basis to
be confirmed by multi-site and multi-year studies across different environments and climate zones.

6.6 Data Availability Statement

Associated data are available at http://doi.org/10.5281/zenodo.7014604. LiDAR data used in this
study can be freely accessed at

https://www.opengeodata.nrw.de/produkte/geobasis/hm/3dm | las/3dm | las/ and Sentinel-2
data can be freely accessed at https://scihub.copernicus.eu/.
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6.8 Supporting Information
6.8.1 Text S1. Calculation of GPPgey

Deviations of GPP from a year- and site-specific optimal GPP (GPP) in relation to APAR, are presented
here as an alternative approach to a half-hourly LUE ratio. For GPP.p, a generalized additive model
(Hastie & Tibshirani, 1990) was fitted to the maximum non-gap-filled GPP values of each 20 umol m?
st APAR; interval until the overall maximum GPP value was reached (Fig. 6.9). After that, maximum
GPP was kept constant, assuming that this maximum value (52.8 umol m?s) can theoretically also be
reached at higher APAR, values. The deviation of observed GPP (GPPgev) from GPP,,: was then related
to different environmental variables. This approach thus has the advantage of factoring out the limiting
influence of non-saturated APAR; without additional log-transformations. A disadvantage, however, is
that the results depend on a specific model fit. Fig. 6.10 thus compares GPPg., to the log10-transformed
LUE ratio, and shows no fundamental differences in regard to the influence of environmental drivers.
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6.8.2 Figures
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Figure 6.8 Light use efficiency of green parts of the canopy (LUEg) by absorbed photosynthetically active radiation of green
parts of the canopy (APARg) for half-hourly values (a) and daytime averaged values (b).
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green parts of the canopy (APARg), colored by canopy chlorophyll content (CCC) and dot sizes by vapor pressure deficit
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Figure 6.10 Deviations from optimal gross primary productivity (GPPgey) (left columns) and green canopy light use efficiency
(LUEg) with a log10-transformed y-axis (right column) at a half-hourly scale against time (a, b), air temperature (Tai) (c, d),
vapor pressure deficit (VPD) (e, f), diffuse fraction (d/1) (g, h), the difference of the red to far-red ratios between above and
below canopy (R/FRgif) (i, j) and soil water content (SWCava) (k, 1).
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Figure 6.11 Scatterplots of daily gross primary productivity (GPP) and Canopy Chlorophyll Content (CCC) (a) and diffuse
fraction (d/I) against the difference of the R/FR ratio above and below the canopy (R/FRai) (b), with a LOESS (locally
estimated scatterplot smoothing) function in blue and a 0.95 confidence interval in grey.
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Figure 6.12 Scatterplot of observed against predicted gross primary productivity (GPP) by a random forest model (a) and a

gradient boosting model (b) with a linear fit displayed in blue.
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7 Synthesis and Outlook

In this chapter, the general research questions outlined in Chapter 1 are addressed and the main
conclusions from the research presented in Chapters 4, 5 and 6 are summarized. Moreover,
suggestions for possible and planned future research are outlined accompanied by a critical evaluation
of the results in this work. In summary, the research presented in this doctoral dissertation concerned
(i) the expansion of eddy covariance flux data with machine learning models to generate
spatiotemporal flux information for a whole river catchment (Chapter 4), (ii) methodological aspects
for a better interpretability of obtained flux data at a deforested site (Chapter 5), and (iii) the use of
eddy covariance based products, among other measurements, and machine learning to improve the
understanding of plant physiology and plant-atmosphere interactions (Chapter 6).

Research question 1 was how accurate CO; fluxes from eddy covariance stations can be upscaled to
the Rur catchment across different land covers using machine learning with state-of-the-art feature
selection methods. In general, the random forest approach with spatiotemporal feature selection
methods and a combination of eddy covariance CO, flux data, MODIS vegetation indices and
meteorological reanalysis data provided promising upscaling results at the regional scale. One main
conclusion is that, despite being computationally more expensive, averaging five model runs in the
feature selection process could significantly decrease the risk of being trapped in a local maximum.
Furthermore, spatial cross validation results could be improved by using smaller flux training data sets
with strict quality control rather than larger ones incorporating also days with more gap-filled data.
Although an R? of just 0.41 is in the range of other approaches with a spatial cross validation scheme
(Shi et al., 2022), there is still room for improvement that should be addressed in future research.
Results showed that differences between land cover classes were narrower in the upscaled product
than between eddy covariance stations (Table 4.6). Separate models for each land cover class might
improve this limitation but would require more flux stations per class to perform a spatial cross
validation. With separate models by land cover class, training data of managed land covers could
further be adjusted for lateral fluxes. In the current implementation, the model was fitted to eddy
covariance data only. Hence, inherent limitations of the eddy covariance method, such as the omission
of lateral fluxes, are automatically reproduced by the machine learning models.

MODIS remote sensing products have the advantage of a high temporal resolution. Though with a
spatial resolution of 250 m at best, they are also prone to contain mixed pixels, i.e., spectral responses
from various land covers in the same pixel, which probably contributed to the above-mentioned
limitation. Within the spatial cross validation, predicted NEE displayed also a narrower range than
observed NEE (Fig. 4.3). This underestimation of rare cases can be attributed to the natural imbalance
in the training data between rare and most frequent cases, which can be tackled by further enriching
the environmental envelope of the training data or by using, e.g., synthetic minority over-sampling
techniques (Torgo et al., 2015). For random forest specifically, this problem is enhanced by the
averaging of many trees, which might be less pronounced in algorithms without averaging such as
neural networks or gradient boosting. However, the study presented in Chapter 4 was also part of a
meta-analysis comparing different NEE upscaling approaches (Shi et al., 2022). The authors showed
that random forest and support vector machines performed better than other algorithms and that
half-hourly models were more accurate (average R? of 0.73) than daily models (average R? of 0.50).
Further impact of the paper is evident in Zhang et al. (2021), which used the research framework of
the study as a role model to estimate actual evapotranspiration at northern Chinese weather stations.
The aforementioned issue regarding the environmental envelope of training data was addressed in
detail by Meyer and Pebesma (2021). They introduced a method to assess an area of applicability
where a machine learning model can be reliably applied for spatial predictions. In Chapter 4, urban
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areas were manually excluded from the analysis because different CO, exchange processes (i.e., fuel
combustion) were assumed to dominate the total CO; flux, and which would require other predictor
variables. With an area of applicability analysis, such areas and maybe others that are non-intuitive
might be excluded with a more quantitative justification. The importance of predictor variables for the
final model are presented in Table 4.5. However, further insight into the use of variable importance
measures presented in Chapter 6 showed that possible correlations between predictors should be
taken into account for future variable importance analyses (Debeer & Strobl, 2020), which was realized
only at a later stage of the doctoral work and after the publication of Chapter 4. Moreover, future
upscaling approaches should make use of the FluxnetEO data set, which is a standardized procedure
to extract, quality control and gap-fill MODIS and Landsat spectral information for 338 FLUXNET and
ICOS sites (Walther et al., 2022). Besides MODIS, reanalysis data were an important source of predictor
variables for the upscaling in Chapter 4. In order to account for spatiotemporal uncertainties in such
reanalysis products, spatiotemporal lagging of meteorological predictors was indicated advantageous
in machine learning NEE modelling approaches (Kdmarainen et al., 2023).

Another task for future research is the comparison of regional upscaling products to regional process-
based model simulations such as from the Community Land Model (Lawrence et al., 2019). A high
agreement between those would imply a higher-order validation of the gridded NEE product than just
a cross validation with eddy covariance measurements, which themselves are prone to uncertainties,
especially at high flux magnitudes (Richardson et al., 2012). On the global scale, an eddy covariance-
based upscaling product obtained a significantly larger terrestrial CO, sink (by about 10 Pg C yr') than
a process-based global budget (Zscheischler et al., 2017). This mismatch was partly attributed to an
underrepresentation of recently disturbed ecosystems in global flux datasets (Ciais et al., 2022). Those
ecosystems are, however, in particular prone to high flux uncertainties due to their oftentimes non-
ideal characteristics for eddy covariance measurements. Consequently, research question 2 was how
eddy covariance measurements over a deforested, fetch-limited site with unmanaged regrowth are
affected by choices of measurement height and spectral corrections. The results demonstrate the
trade-offs that have to be considered in the eddy covariance measurement design for a site with non-
ideal characteristics. By comparing two measurement heights, it was shown that at the lower height
LPF corrections were higher and differed more among methods (Fig. 5.4). On the other hand, the
estimated footprints of both heights did not match the average footprint of the previous years at the
lower height. Hence, the study supports the difficulty of achieving a stable flux source area over longer
time periods for fast growing vegetation with infrequent stepwise height changes. Results further
showed that flux differences resulting from the choice of LPF correction and measurement height
induced a non-negligible uncertainty to daytime fluxes, although those differences had a relatively
small magnitude of NEE differences between the deforested and forested flux site at Wiistebach (11%
at most). Hence, the choice of LPF correction likely would not invert the general CO; sink comparison
between these land covers, but still is one important factor in the accurate quantification of NEE, that
should always be explicitly stated, especially for sites with high spectral corrections. Furthermore,
FLUXNET only unifies the post processing such as u*-filtering, gap-filling and partitioning of flux data,
but the actual processing of high frequency measurements to half-hourly fluxes is not unified yet
within the FLUXNET data set (Pastorello et al., 2020). Hence, the uncertainty from different processing
choices is of importance not only for disturbed ecosystems but for all sites in general. Such choices
concern, for example, the detrending method and the quality control policy, for which different
methods exist (e.g., Gockede et al., 2006; Mauder et al., 2013). Rannik et al. (2020) already evaluated
the impact of different coordinate rotations on fluxes, but an overarching analysis for a site with almost
ideal conditions for eddy covariance measurements could reveal whether such choices add up to a
large systematic uncertainty. Within the comparison of different LPF corrections, five different
analytical and empirical approaches were applied. The comparison could be further enriched by the
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inclusion of direct approaches relying on measured cospectra only, which are not yet implemented in
EddyPro© (e.g., Polonik et al., 2019). If the comparison of different LPF corrections is transferred to
closed-path gas analyzer designs, existing LPF corrections should also be revised in order to account
for overestimated travel times in the sampling tube due to interrelated time delay and frequency
response corrections (Peltola et al., 2021b).

Flux differences, however, were even larger between the two measurement heights than between LPF
corrections at the same height, with standard deviations between fluxes of the two heights of 24.8%
for CO; and 9.7% for H,0. This probably resulted at least partly from different flux source areas within
the heterogeneous site. These results imply that the measurement height and the footprint should be
carefully evaluated for small, disturbed ecosystems with a limited fetch and heterogeneous, fast-
growing vegetation. For these sites, however, conventional footprint models (e.g., Kormann &
Meixner, 2001; Kljun et al., 2015) cannot account for the high surface heterogeneity and especially
cannot resolve the complex flow over forest edges. Because of this, future research on such sites
should consider applying large-eddy simulations (e.g., Auvinen et al., 2017), turbulence closure models
(e.g., Sogachev et al., 2002) or artificial tracer experiments (e.g., Arriga et al., 2017). Moreover, vertical
and horizontal CO; concentration profile measurements, as well as the application of cold air drainage
models such as KLAM_21 (Sievers & Kossmann, 2016), could help to identify advective processes
influencing the CO, budget at the deforested site.

In this way, flux data from the deforested site can be more accurately interpreted and used for
comparisons to flux data from other land covers such as the Wistebach forest site, as well as for other
applications such as upscaling. Although the measurement height at the deforested site was regularly
adjusted by rule of thumb even before the 2020 experiment, the possibility that data used for the
upscaling in Chapter 4 may partly not be representative of the deforested site cannot be fully ruled
out. For the NEE data from the forested site at Wiistebach used to derive GPP in Chapter 6, a regular
adjustment of measurement height is a minor (albeit non-negligible) issue due to the slower growing
rate of the mature trees. Regarding this spruce forest, research question 3 was how different
environmental conditions are related to its light use efficiency and gross primary productivity. To
address this question, the difficulty of assessing the LUE of forest canopies first had to be approached.
In general, the research highlighted the utility of ecosystem-scale flux information and machine
learning for the analysis of environmental influences on plant physiological processes and thus on the
terrestrial carbon sink. In this way, eddy covariance derived GPP was used in combination with in-situ
measured APAR to assess the LUE of the Wistebach spruce forest. Over the whole growing season,
LUE of green parts of the canopy was 4.0 + 2.3% and showed a unimodal response to air temperature
with a maximum LUE at about 15 °C and a higher LUE during diffuse than during direct light conditions,
indicating excessive light in such cases. However, for comparing LUE and its environmental drivers
among different studies, the definition of LUE should be carefully taken into account (Gitelson &
Gamon, 2015). Photosynthesis defined either as GPP or NPP can be related to global radiation,
incoming PAR, absorbed PAR, or absorbed PAR by green parts of the canopy. Each definition of LUE
will have different responses to certain environmental controls, such as those that change the canopy
chlorophyll content but not likewise the canopy surface. Hence, for the analysis of instantaneous
meteorological conditions on LUE, future research should focus on an LUE definition that is scaled by
the photosynthetic capacity to achieve accurate comparisons between different phenological stages.
Though for investigating long-term environmental drivers, it should be focused on an LUE definition
which excludes the photosynthetic capacity. In this way it is ensured that a change of photosynthetic
capacity due to, for example, insect infestation results in a change of LUE. In Chapter 6, the NDVI was
used to calculate green-canopy APAR and LUE due to its simplicity to reckon up the product as it is
normalized from 0 to 1 for non-water surfaces. However, the high importance of CCC indicates that it
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is worthwhile to develop an APAR product that incorporates CCC for the analysis of instantaneous
meteorological conditions. This LUE study could be further enhanced by the investigation of other
pathways besides utilization in the Calvin cycle that energy from absorbed PAR can take. Out of these
other biochemical processes, dissipation as heat from non-photochemical quenching can be
monitored via remote sensing with the photochemical reflectance index (Gamon et al., 1997;
Garbulsky et al., 2011). In this way, a downregulation of LUE due to high light intensity, water stress or
extreme temperatures can be observed. Another possibility is the observation of solar-induced
chlorophyll fluorescence (SIF) from remote sensing or in-situ measurements (Verma et al., 2017;
Mohammed et al.,, 2019; Morozumi et al., 2023). As SIF basically is a leakage of photons from
photosynthetic membranes, which depends on the flux of photons absorbed by chlorophyll, it can be
used as a proxy measure of the actual PAR absorbed by photosynthetic pigments (Gonsamo & Chen,
2018). In order to achieve a complete assessment of influencing factors on GPP and LUE, further
variables should be investigated, which include atmospheric CO, content, availability of nutrients such
as nitrates and phosphates, and memory effects of past conditions such as drought, frost or pest
infestation (Desai, 2014; Aubinet et al., 2018; Besnard et al., 2019).

Besides atmospheric water deficit and soil water content, considering the actual vegetation water
content, such as derived from microwave satellite missions, is also promising for future studies on
photosynthetic performance (Cosh et al., 2019; Pei et al., 2022). Water-limiting conditions for
photosynthesis were also identified in Chapter 6 by the analysis of mutual hysteretic responses of
ecosystem-scale GPP and tree-scale sap flow density to VPD and APAR,. Here, it was demonstrated
that a standardly anticlockwise hysteretic pattern of sap flow to APAR; under non water stress
conditions shifted to a clockwise pattern on high VPD days, which happened likewise for GPP. Hence,
a clockwise hysteretic pattern of sap flow to radiation was indicated as a potential indicator for
afternoon stomatal closure. In this way, eddy covariance based data could help to confirm insights to
plant physiological responses to environmental conditions. Possible constraints of the applied Granier
type sap flow measurements include flow obstructions through wound effects around the sensor
needles, which possibly result in an underestimation of sap flow, especially if the two needles are close
to each other (Steppe et al., 2015; Wiedemann et al., 2016). The hysteretic results should also be
validated by investigations of plants with different water stress responses, i.e. anisohydric and
isohydric strategies or C; and C4 plants (Sade et al., 2012).

In contrast to Chapter 4, where machine learning was applied with a focus on prediction, it was applied
in Chapter 6 with a focus on inference. Here, the importance of various potential environmental drivers
as predictor variables to model GPP was assessed by the application of two different variable
importance measures. Both agreed that CCC followed by APAR, were the most important variables for
the prediction of GPP by tree-based machine learning models, which thus can be considered a
relatively robust result. However, it should be noted that the variable importance results do not prove
any causal relations, although they were in line with processual knowledge. Accordingly, results also
showed that the model performance was insignificantly worse if CCC and APAR; were replaced by the
more general variables DOY and SZA. This indicates that CCC and APARg rather are important as general
representatives of seasonal variables for photosynthetic capacity and diurnal variables for energy
supply. Nevertheless, it should be noted that results of this work are based on a single growing season,
and it should be verified whether DOY still is a viable replacement of CCC if the respective days
correspond to different phenological stages in different growing seasons. In addition, the results of
this chapter in general are only based on a single research site dominated by a single tree species,
Picea abies. Consequently, they have to be confirmed for other tree species growing in different
climates, and more years encompassing different environmental conditions. This will be accomplished
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by an ongoing project, which expands the general research framework of Chapter 6 to other tree
species along climatic gradients in Germany.

Overall, this work i) applied and refined state-of-the-art spatiotemporal feature selection schemes for
the regional upscaling of eddy covariance flux measurements, ii) assessed the uncertainty of flux
measurements over a deforested site in regard to measurement height and the choice of LPF
correction, and iii) used a unique set of elaborate measurements and methods to assess and analyze
the LUE and limiting conditions for photosynthesis of a temperate spruce forest. Thus, the dissertation
contributed to the general goal of accurately quantifying the effect of land cover changes and of
environmental influences on the CO; source and sink strengths of terrestrial ecosystems, as well as to
generate experimentally based spatiotemporal flux information.
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