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Abstract

In response to the rising demand for memory performance and capacity, memory
heterogeneity in HPC systems increased. In particular, technologies such as high-
bandwidth memory (HBM) and high-capacity memory (HCM) are employed in ad-
dition to DRAM. While the power consumption of the memory subsystem was
often neglected in node-level power optimizations in the past, the increased power
consumption by HCM motivates studying the energy consumption of heterogeneous
memory on the latest architectures under workloads with different memory access
patterns.

A method for measuring the memory energy consumption using hardware instru-
mentation of memory slots is described and implemented. Measurements using this
approach are compared to RAPL, a software interface for limiting and controlling
power consumption on Intel systems. Results show that RAPL energy measure-
ments for the memory domain can differ significantly - up to 120% - from reference
measurements on Intel Ice Lake-SP systems. A discussion of possible reasons yields
that the RAPL memory domain may include losses at the voltage regulator level.
The accuracy of the reference measurements was validated by comparing the results
from the literature to results obtained from a similar architecture (Broadwell-EP).

This thesis presents the new metrics DEL and DES for heterogeneous memory
energy evaluation using different memory access patterns. Additionally, the BpW
metric was utilized for memory energy efficiency characterization. The metrics are
based on the instrumented energy measurements conducted on the Ice Lake archi-
tecture equipped with DRAM and Intel Optane Persistent Memory (PMem). The
results demonstrate that the memory access pattern and the concurrency in memory
accesses significantly impact the memory’s dynamic energy consumption. Further-
more, it shows that PMem is more energy efficient per capacity than DRAM at idle
and is better suited for storing rarely accessed data. When PMem is under load,
DRAM is more energy efficient.

The proposed metrics are then used to estimate the energy consumption of real-
world applications, followed by a discussion on the applicability of this approach
and potential improvements.

Keywords: HPC, Heterogeneous Memory, RAPL validation, Energy Efficiency,
Performance Metrics, Intel Optane Persistent Memory, Dynamic Energy per Load,
Dynamic Energy per Store, Bandwidth per Watt






Kurzfassung

Als Reaktion auf die steigende Nachfrage nach Speicherkapazitit und -performance
hat die Heterogenitéit des Arbeitsspeichers im Hochleistungsrechnen zugenommen.
Insbesondere werden neben DRAM auch Technologien wie High-Capacity Memory
(HCM) und High-Bandwidth Memory (HBM) eingesetzt. Wéahrend der Energiever-
brauch von DRAM in der Vergangenheit oft bei der Energieoptimierung auf Kno-
tenebene vernachlédssigt wurde, motiviert der erhohte Energieverbrauch von HCM
die Untersuchung des Energieverbrauchs von heterogenem Speicher auf aktuellen
Architekturen mit unterschiedlichen Zugriffsmustern.

Es wird eine Methode zur Messung des Energieverbrauchs des Speichers durch
Hardware-Instrumentierung der Speichersteckplétze beschrieben und implementiert.
Die so durchgefiihrten Messungen werden mit RAPL verglichen, einem Interface zur
Begrenzung und Messung des Energieverbrauchs auf Intel Systemen. Die Ergebnisse
zeigen, dass die RAPL Messungen fiir den Arbeitsspeicher erheblich - um bis zu 120%
- von Referenzmessungen auf Intel Ice Lake-SP Systemen abweichen. Eine Diskussion
moglicher Griinde ergab, dass die RAPL-Speicherdoméne moglicherweise Verluste
auf der Spannungsreglerebene enthélt. Die Genauigkeit der Referenzmessungen wur-
de durch den Vergleich von Ergebnissen aus der Literatur mit den Ergebnissen auf
einer ahnlichen Architektur (Broadwell-EP) im Rahmen dieser Arbeit validiert.

In dieser Arbeit werden die neuen Metriken DEL und DES fiir die Bewertung
des Energieverbrauchs von heterogenem Arbeitsspeicher unter Berticksichtigung der
Zugriffsmuster vorgestellt. Zusatzlich wurde die BpW-Metrik fiir die Charakterisie-
rung der Speicherenergieeffizienz verwendet. Die Metriken basieren auf Energiemes-
sungen, die auf der Ice Lake-Architektur mit DRAM und Intel Optane Persistent
Memory (PMem) durchgefiihrt wurden. Die Ergebnisse zeigen, dass das Zugriffsmus-
ter und die Anzahl der gleichzeitigen Speicherzugriffe den dynamischen Energiever-
brauch erheblich beeinflussen. Auflerdem zeigt sich, dass PMem im Idle-Betrieb pro
Kapazitit energieeffizienter als DRAM ist und sich somit besser fiir die Speiche-
rung selten bendtigter Daten eignet. Unter Last ist DRAM aber energieeffizienter
als PMem.

Die présentierten Metriken werden dann zur Schatzung des Energieverbrauchs
realer Anwendungen verwendet, gefolgt von einer Diskussion iiber die Anwendbar-
keit dieses Ansatzes und Verbesserungsmoglichkeiten.

Stichworter: HPC, Heterogener Arbeitsspeicher, RAPL Validation, Energieeffi-
zienz, Performancemetriken, Intel Optane Persistent Memory, Dynamic Energy per
Load, Dynamic Energy per Store, Bandwidth per Watt

vii






Contents

[List of Figures| xi
List of Tables xiii
[List of Listings| xiii
(1. _Introduction| 1
[2. Background| 3
[2.1. Modern Processors’ Memory Architectures| . . . . . . ... ... ... 3
[2.1.1. Cache Hierarchy| . . . . . ... ... ... ... .. ...... 3

[2.1.2. Memory Hierarchy| . . . . . .. ... .. ... ... ...... 3

[2.1.3. Dynamic Random Access Memory (DRAM) and Dual Inline |

| Memory Modules (DIMM)| . . . . . ... ... ... ...... 4
[2.1.4. Intel® Optane™ Persistent Memory (PMem)|. . . . . . .. .. 7

[2.2. Memory Access Pattern Classification|. . . . . . . . . ... ... ... 10
[2.3. Power Measurement Techniques| . . . . . . . . .. .. ... ... ... 11
[2.3.1. Power Consumption Basics|. . . . . . . . ... ... ... ... 11

[2.3.2. Running Average Power Limit (RAPL)| . . . . . .. ... ... 12

[2.3.3. Physical Power Measurements| . . . . . . ... .. ... .... 15

[2.4. Platform Power Delivery| . . . . .. ... ... ... ... ... 18
3. Related Work 21
[3.1. Workload-specific Power Consumption Analysis| . . . . . . ... . .. 21
[3.2. Validation of RAPL Energy Measurements| . . . . . . ... ... ... 21
[3.3. Memory Power Modeling| . . . . .. ... ... ... ... ....... 24
[3.4. HPC Energy Metrics| . . . . . ... .. ... ... .. ... ...... 24

% Validaii FRAPL M Intel Tce Lake Archi | 27
[4.1. Test System| . . . . . . . .. 27
[4.2. Update Interval of RAPL Counters| . . . . .. ... ... ....... 28
[4.2.1. Experimental Results . . . . . . .. ... ... .. ... ... 29

M22. Discussionl . . . . . . . ..o 30

4.3. Accuracy of RAPL for the Memory Domain| . . . . . . .. ... ... 30
“.3.1. Hardware Instrumentation for Reference Power Measurements |

I of DIMMS . . . . . . . . . 31
[4.3.2.  Experimental Setup Validationl . . . .. ... ... ... ... 38

[4.3.3. Evaluation Experiments| . . . . ... .. ... ... ... ... 40

X



Contents

[4.3.4. Experimental Results| . . . . . .. ... ... ... ... .... 42

4.3.5. RAPL Error Analysis|. . . . .. ... ... ... .. ... .. 49

44, Discussionl . . . . . . ..o 54

[6. Performance Metrics for Energy Consumption of Memory| 57
[5.1. Dynamic Energy per Load/Store Metrics| . . . . . . . ... ... ... 57
[5.2. Energy Measurement Methodology| . . . . . .. ... ... ... ... 58
[5.2.1. Physical DIMM Energy Measurements| . . . . . ... ... .. 58

[5.3. Synthetic Workloads for Measuring Instruction Level Memory Energy |

[ Consumption| . . . . . . . . .. L 60
[>.4. Experimental Results| . . . . . .. ... ... ... ... 0. 61
[>.4.1. Sequential Access| . . . . . . . ... 62

h.4.2. Strided Access. . . . ..o 64

b.4.3. Random Accessl . . . . . . ... ... 66

H.4.4. DRAM vs. PMem Comparison| . . . .. ... ... ... ... 67

b0, Discussionl . . . . . ..o 68
[5.5.1. Sequential Access| . . . . . . . ..o 69

H.0.2. Strided Access. . . . . ..o 69

H.0.3. Random Accessl . . . . . ... ... Lo 70

[5.5.4. Energy Efficiency of Intel Optane PMem| . . . . . . . . .. .. 71

[6. Memory Access Pattern-based Energy Estimation & Metrics Evaluation| 73
[6.1. Metrics-based Energy Estimation| . . . . . . ... ... ... ... .. 73
6.2. Case Study: Sparse Matrix Vector Product (SpMV)[. . . . . ... .. 75
6.3. Case Study: Conjugate Gradient ([CQ)) for Solving Poisson Equation|. 77
6.4. Discussion| . . . . . . . .. 78
(. Conclusions & Future Work| 81
[c.1. Future Workl. . . . . . . . ... 82

[A. Additional Background Information| 85
[A.1. Memory Allocation on Heterogeneous Memory Architectures| . . . . . 85
[A.2. Performance Countersl . . . .. ... ... ... ... ... ... .. 87
[B._Additional Material for RAPL Validation| 89
[B.1. Experimental Setup|. . . . . . .. ... ... 0000 89
[B.2. Experiments Reproduction Guide] . . . . . . . ... ... ... .. .. 95

[C. Dynamic Energy per Load and Store Data) 99
107
109
[References| 111



List of Figures

[2.1. Schematic visualization of a cache-coherent NUMA system| . . . . . . 4
[2.2. Logical view on operation modes of Intel® Optane™ Persistent Memory| 8
[2.3. RAPL power planes on recent Intel architectures|. . . . . . . . . . .. 12
[2.4. High-side vs. Low-side current-sense resistor placement| . . . . . . . . 15
[2.5. MCC 128 voltage measurement DAQ HA'T' for Raspberry Pi . . . . . 17
[2.6. Schematic visualization of CPU and memory power delivery on Intel |
| Ice Lake-SP server systems|. . . . . . ... ... .. ... ... ... 19
[2.7. Output current vs. efficiency for the R18120 voltage regulator| . . . . 19
4.1. RAPL update interval distribution for RAPL package and memory |
| domains on the Intel Ice Lake, Broadwell, and KNL plattorms| . . . . 29
1.2, Front of Adex DDR4 riser card - Revision 3 . . . . . ... ... ... 31
{4.3. INA2180-A4 current-sense amplifier evaluation module used for am- |
| plifying 12V and 2.5 V. Gain: 200[. . . . . . ... ... .. ... ... 32
“.4. MCP2221 USB to 12C/UART converter with GPIO| . . . . . .. . .. 34
[4.5. DIMM hardware instrumentation on the Ice Lake system| . . . . . . . 36
{4.6. "Theoretical RSS error of INA2180 vs. INA296 in high-side current |
| SENSING] . . . . . . . o 40
[4.7. RAPL memory measurements vs. reference on Intel Ice Lake system: |
| DRAMonlyl . . . . . . . . . 43

4.8.  RAPL memory measurements vs. reterence on Intel Icel Lake system| 45
{4.9. RAPL memory measurements vs. reference on Intel Ice Lake system |
I over time: 1x32 GB DDR4l . . . . ... ... ..o 46
{4.10. RAPL memory measurements vs. reference on Intel Ice Lake system |
| over time: 1x32 GB DDR4 + 1x128GB PMem in AppDirect Mode. |
| PMem memory allocation| . . . . .. ... ... ... ...... ... 46
{4.11. RAPL vs. reference power measurements on the Intel Ice Lake sys- |
| tem with 1x32GB DDR4 DRAM on each socket and reterence power |

L measurements at both DIMMs at idle statel. . . . . . ... ... ... 46
{4.12. RAPL memory measurements vs. reterence on socket 0 of Intel Broad- |
| well system: 1x16GB DDR4.}. . . . . ... ... ... ... ... ... 47
{4.13. RAPL memory measurements vs. reference on Intel Broadwell system [
| over time. 1x16GB DDRA4 per socket. Measurements on socket 0. . . 48
{4.14. PXE1410CDM voltage regulator controller chip on the Intel M50CY P25B |
| server boardl . . . . ... L L 51

xi



List of Figures

[5.1. Dynamic Energy per Load (DEL) with standard deviation for sequen-

[ tial access at different numbers of threads . . . .. ... ... .. .. 62
[>.2. Bandwidth per Watt (BpW)) for sequential loads at different numbers |
[ of threads) . . . . . . . . . . 63
[5.3. Dynamic Energy per Store (DES]) with standard deviation for sequen- |
[ tial access at different number of threads). . . . . . . . ... ... .. 63
[5.4. Bandwidth per Watt (BpW)) for sequential stores at different numbers |
[ of threads| . . . . . . . . .. 64
[5.5. Dynamic Energy per Load (DEL) for different stride lengths and |
[ thread counts . . . . . . . . . ..o 65
5.6. Bandwidth per Watt (BpW) for strided loads with 8 threads| . . . . . 65
5.7. Dynamic Energy per Store (DES) for different stride lengths and |
[ thread countsl . . . . . . . . . ... 66
5.8. Bandwidth per Watt (BpW) for strided stores with 8 threads|. . . . . 66
5.9. Dynamic Energy per Load (DEL) for different thread counts for ran- |
[ dom accessl. . . . . . 67
[5.10. Bandwidth per Watt (BpW) for random loads at different numbers |
[ of threads| . . . . . . . . . . 67
[5.11. Average energy per load and store instructions comparison between |
[ DRAM and PMem on an exponential scale.| . . . .. ... ... ... 68
[B.1. Hardware instrumentation of the Ice Lake system| . . . . . . . . . .. 89
[B.2. Installed riser with a PMem module and probing wires solder to the |
[ shunts) . . . . . . L 90
[B.3. Custom through-hole board for distributing power and ground to the |
[ different components| . . . . . .. ... 90
[B.4. Hardware instrumentation of the Broadwell system| . . . . . . . . .. 91
[B.5. Schematic for current-sensing circuit with two DIMMs (1xDRAM, |
| IxPMem)| . . . ... 92
[C.1. Screenshot of the energy estimation calculator, provided as a Jupyter |
[ notebookl . . ..o 106

xii



List of Tables

2.1. DRAM Generations . . . . . . . . . . ... oo 5
[2.2. RAPL power planes support on different Intel server micro-architectures| 13
[3.1. Studies on RAPL validation using external power measurements| . . . 23
[4.1. Memory modules used for experiments| . . . . .. .. ... ... ... 27
{4.2. Detault hardware configuration of the Ice Lake, Broadwell, and KNL |
systems| . . ... 28

[4.3. Voltage drop and power dissipation at shunts on DDRA4 riser card| . . 38
[4.4. Memory access latency comparison between the operation with and |
without risers used for DRAM and PMem. Mean of 5 measurements |
[ with standard deviation] . . . . . .. ... ... o000 39
.o, Kernels used for RAPL validationl . . . . . ... ... ... ... ... 41
{4.6. RAPL error comparison between the Ice Lake and Broadwell systems| 49
[6.1. Exemplary dynamic energy estimation for Gather kernel with 8 threads |
Y elements accessed) . . . . . ... 74

[6.2. Dynamic energy estimation for SpMV computation on the Flan 1565 |
matrix with T" =4, N =1,564,794, N, =59,485,419 . . . . . . . .. 76

[6.3. Dynamic energy of sparse matrix-vector product - measurements vs. |
RAPL vs. prediction for 1, 4, and 8 threads] . . . . . ... ... ... 7

[6.4. Number of memory loads and stores with memory difterent access |
patterns for the kernels in the [CGlapplicationl . . . . . . .. ... .. 78

[6.5. Measured dynamic energy consumption and execution time of the CG |
application. Mean of 5 repetitions.| . . . . . ... ... ... ... .. 78

[B.1. Different voltage regulators along with supported VR standards and [
current sensing features|. . . . . . . . . ... 93

(C.1. DEL and DES for sequential access to DRAM and PMem| . . . . .. 99

[C.2. DEL and DES for strided access with 1 thread to DRAM and PMem| 100

xiii



List of Listings

List of Listings

[2.1. Example output for PMem power measurements with ipmctl] 10
[>.1. Code instrumentation for energy measurements of a specific kernel| . . 59
[6.1.  Example parallelized Gather kernel consisting ot sequential loads and |
[ stores and random oads . . . . . .. .. ... 0L
[6.2. Sparse matrix-vector product in Coordinate Format (COOl)|. . . . . . ;g
[B.1. Adopted RAPL update interval measurement codef. . . . . . . . . .. 94

Xiv



1. Introduction

The continuously increasing complexity and data intensity of HPC applications raise
the demand for performance-optimized, energy-efficient, cost-effective, and high-
capacity memory. In response to this, especially with exascale computing in mind,
the memory heterogeneity in HPC is increasing. An emerging class of heterogeneous
memory is high-capacity memory (HCM]), which provides higher memory capacities
than traditional [Dynamic Random Access Memory| (DRAM)]), often with persistence
features.

One of the first commercially available types of [HCM] is [Intel Optane Persis]
tent Memory| (PMeml), a non-volatile, byte-addressable [Dual Inline Memory Mod-|
ule] (DIMM) with a performance similar to regular DRAM [PMeml still requires
[DRAMI to be installed on the system, resulting in two memory types with different
features and characteristics to be present on a single system.

In the past, node-level power optimizations mainly focused on optimizing CPU
and GPU power, and the memory system was often neglected due to its minor con-
tribution to total power consumption. However, in modern, heterogeneous memory
systems, particularly with [HCM| the memory domain can have a power consump-
tion similar to the CPU. For instance, a dual-socket node with 512 GB of [DRAMI
and 2 TB of PMem| has a peak CPU power consumption of 410 W, while the memory
can consume up to 432 W]

With energy consumption being a limiting factor in HPC, especially in terms of
costs, carbon footprint, and power availability, the increased energy demand for the
memory subsystem cannot be neglected anymore and needs to be considered in node-
level energy efficiency optimization. The energy consumption of memory, especially
the impact of the memory access pattern, has yet to be investigated thoroughly.

The objective of this thesis is to gain a deeper understanding of memory power
consumption, particularly how the memory access pattern impacts the power con-
sumption and how it differs between [DRAM] and [PMeml So far, no performance
metrics have been well-established for heterogeneous memory energy consumption
analysis. This thesis proposes performance metrics that enable a quantitative com-
parison between the memory energy efficiency of different memory types and access
patterns and uses them for evaluating DDR4 and 2nd-generation [PMeml|

This requires measuring the energy consumption of the memory accurately. A
prominent technique for this is [Running Average Power Limit| (RAPL), an interface
for limiting and measuring power consumption on Intel systems. The accuracy of

'The 16 [PMeml modules have a TDP of 15W each. For the DRAM, no TDP values are provided
by the manufacturers. This computation assumes a modest TDP of 3 W for 8 GB of DDR4 [6].
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[RAPIJs memory domain has been assessed as overall accurate on the Haswell [10]
and Skylake [23] platforms. Many studies in the past relied on these results and
used [RAPT] for memory measurements and energy consumption modeling. As the
CPU and system architecture has undergone several changes since the Skylake ar-
chitecture, in particular, the added support for PMeml and associated changes in
power delivery, evaluating the accuracy of DRAM]| and [PMeml energy measurements
using [RAPT] on recent platforms is highly motivated before using them.

This thesis makes the following main contributions:

o Design and implementation of an experimental setup to accurately measure
the power consumption of and synchronize the measurements with
the execution of an application.

o Validation of RAPII memory energy measurements against reference measure-
ments on an Intel IceLake-SP system with [PMeml and an Intel Broadwell-EP
system as a reference point for older architectures.

o Design and computation of the [DEL] [DES] and BpW| metrics using energy
measurements of DRAM and [PMem] [DIMMd

o Energy efficiency evaluation and comparison between [DRAM] and [PMem]| with
varying memory access patterns.

o Design of an energy estimation model for [DRAM and [PMeml using access
pattern-aware metrics and evaluating its accuracy with real-world applications.

The remaining part of the thesis is structured a follows: The extensive background
information is provided in [chapter 2] followed by a discussion on related work in
[chapter 3| [Chapter 4] covers an analysis of RAPL concerning temporal resolution
and accuracy. In [chapter 5] the new metrics for heterogeneous memory energy
efficiency analysis are proposed. It also includes the results from the memory en-
ergy consumption measurements under different workloads used for a per-instruction
energy characterization. describes how these metrics can be used for es-
timating the memory energy consumption of real-world applications, along with an
evaluation using two case studies. The results are concluded with a summary and

an outlook to future work in [chapter 7}




2. Background

This chapter starts with a description of modern processors and system architec-
tures. Next, we review different memory types that are used in current HPC systems
with respective performance and power characteristics. Then, common memory
access pattern classifications are discussed. In this thesis, we focus on
|Average Power Limit| (RAPL) and explain the foundations for an external power
measurement technique to validate RAPLI's accuracy on the latest Intel server sys-
tem. Finally, a discussion on power distribution on such systems concludes the
chapter.

2.1. Modern Processors’ Memory Architectures

This section describes basic concepts in HPC architectures and the memory tech-
nologies DRAM and Intel Optane PMem that are referenced in this thesis.

2.1.1. Cache Hierarchy

In modern applications, different types of memory access patterns can be observed.
To reduce the memory access latency, modern systems employ a layered hierarchy
of small but fast caches. Regarding cache efficiency, two general locality paradigms
for memory accesses can be defined [21]:

Spatial locality: A memory location that is close to the current memory location will
be accessed soon.

Temporal locality: The current memory location will be reaccessed in the near future.

2.1.2. Memory Hierarchy

A shared-memory parallel computer is a computing system with multiple CPUs or
CPU cores and a common physical memory address space. These systems can be
classified into two memory access architectures based on how memory accesses are
organized.

The Uniform Memory Access (UMAD model exhibits a flat memory model in which
each processor can access the memory with approximately the same latency and
bandwidth. In most systems, this is realized by connecting each processor to a
global memory through a shared memory bus. However, this results in scaling is-
sues with increasing numbers of processor cores. Thus, modern HPC systems employ
a different memory access paradigm, especially those with multiple sockets [21].
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CPU Core CPU Core CPU Core CPU Core

Registers Registers Registers Registers

L1-D L1-l L1-D L1-l L1-D L1-1 L1-D L1-l

Cache-
coherent

Memory
Controller T —— Controller

Memory

Memory Memory Memory Memory
Module Module Module Module

Figure 2.1.: Schematic visualization of a cache-coherent [NUMA| system

In a Non-uniform Memory Access system, the complete memory is still
mapped to a single global address space. However, the processor cores are separated
into different locality domains with a local memory attached to each domain. The
cores of such a locality domain can still access the memory of another locality domain
through an interconnect but with limited bandwidth and higher latency compared
to local memory access [21].

In most multi-socket systems, each socket forms a locality domain with its local
memory as visualized schematically in Thus, the access to memory from
the own socket is significantly faster compared to remote access, requiring aware-
ness from developers to ensure that they get adequate memory performance. If
multiple types of heterogeneous memory, for example, high-bandwidth memory or
high-capacity memory (see are installed in the system, these might
be exposed as separate NUMA nodes as well. The exact NUMA topology can be
inspected using the numactl -H command on unix-based systems. Detailed in-
formation on controlling memory allocations on NUMA systems can be found in

ppend A

2.1.3. Dynamic Random Access Memory (DRAM) and Dual
Inline Memory Modules (DIMM)

[Dynamic Random Access Memory (DRAM) is the technology of choice for the main
memory in desktop computers and most HPC systems currently. DRAM is available
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in many generations, variants, and form factors, which can be confused easily. To
remove complexity, we will first clarify the terminology based on DDR4 SDRAM
- RDIMM as an example, which contains three different concepts: DDR/ is the
generation of the memory, SDRAM refers to the actual memory technology, and
DIMM is the form factor of the memory.

is an integrated circuit that stores the actual data in volatile memory.
Each DRAM chip consists of multiple banks that can operate concurrently. These
banks are further divided into rows and columns for per-byte access granularity.
Multiple DRAM chips can also be grouped into ranks [4, 16]. DRAM requires
periodic refresh of the capacitors that store the data, resulting in a non-negligible
static power consumption of the memory and making DRAM volatile - if power to
the DRAM is interrupted, the stored data will be lost.

DRAM Generations Different generations of DRAM have been established in the
last two decades and are listed in [table 2.1 Significant performance improvements
have been achieved with each generation, mainly by increasing the number of bytes
sent at once (burst size) and usually doubling the transfer rate with each generation.
At the same time, the supply voltage has been constantly reduced to achieve lower
power consumption. A significant difference between Double Data Rate (DDRI)
and Single Data Rate (SDRI) is that data is sent both on the rising and the falling
edge of the clock signal, effectively doubling the transfer rate at the same clock
speed compared to the The transfer rate is an essential criterion for memory
performance, even within different generations of DRAM, but is often misreported
as the clock frequency. However, the clock frequency is half of the transfer rate.

Release Date | Transfer Rate | Supply Voltage | Burst Size
SDR | 1993 66-133 MT/s 3.3V 1
DDR | 1998 200-400 MT/s 25V 2
DDR3 | 2003 400-1066 MT/s | 1.8V 4
DDR3 | 2007 800-2666 MT/s | 1.5V 8
DDR4 | 2014 1500-5333 MT/s | 1.2V 8
DDR5 | 2020 4800-8000 MT/s | 1.1V 16

Table 2.1.: DRAM Generations [4, |7, |18} |80]

Although DDR5 memory became commercially available in 2020, it is still con-
sidered as a new technology that is subject to improvements in the upcoming years.
As of 2023, most HPC installations are still using DDR4 [96] memory, but new
installations will likely use DDR5 memory in the future. To cover special-purpose
use-cases, different variants of DRAM have been developed, with the most impor-
tant ones being GDDR and LPDDR. GGDR, for example, GDDR5X is a highly
optimized and high bandwidth version mainly used as the main memory of GPUs.
In contrast, Low Power DRAM (LPDDR) is a variant targeting mobile devices such
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as smartphones or laptops and is optimized for lower power consumption and smaller
module dimensions.

In this thesis, we will focus on DDR4-DRAM as it is the most used main memory
type in HPC currently, in fact, most architectures listed in Top500 do not support
DDR5 memory as of June 2023 [96] and the next 4th generation Intel Xeon code-
named Sapphire Rapids supporting DDR5 it is not widely available to the public
yet.

[Dual Inline Memory Module| (DIMM]) is a form factor commonly used
for modern memory modules both in HPC and desktop computers. The
modules can be plugged into the corresponding DIMM slots on the mainboard of the
computer to ensure a close connection to the CPU while maintaining replaceability.

DIMMs are also available in different variants. In contrast to unbuffered DIMMs
(UDIMMs), which are mainly used in consumer-grade systems, registered DIMMs
(RDIMMSs) feature an additional register between the memory register and the
memory modules to improve the reliability of the memory, reduce stress on the
memory controller, and to allow higher module capacities. Load-reduced DIMMs
(LRDIMMS) can support additional memory capacity by reducing the load on the
memory even further compared to RDIMMs.

For all of these types, power supply and data communication between the
computer and the memory is provided through multiple pins, e.g., 288 for DDR4,
in the DIMM connector. The exact role of each of these pins is standardized by the
JEDEC organization [306].

Power Supply of DDR4 RDIMMs

Most of the 288 pins are used as digital data rails. In addition, the following power-
delivery related voltages are provided to the DIMM [36]:

o VDD is the main power supply for the SDRAM. It is provided through several,
redundant pins and operates at 1.2 V. The maximum expected power drawn
from this supply is about 14 W.

« VPP is the activation power supply/word-line boost for the SDRAM and op-
erates at 2.5 V. The maximum expected power drawn from this pin is about
9W.

e 12V is a pin for optionally providing 12V to the DIMM. It is unused on
RDIMMs.

o VDDSPD is the power supply for the serial presence detect (SPD)E] of the mem-
ory. It does not relate to the other voltages and is not considered relevant
after the system has started.

ISPD stores essential information such as speed, capacity, manufacturer of the memory and
provides it to the system for memory detection, configuration, and training purposes [36].
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 VTT is the power supply of the I/O termination of the SDRAM.
» VREFCA is the reference voltage for digital signals (usually % VDD).
e VSS is the ground.

Some of these pins have no or just a minor impact on the total power consumption
of the DIMM. Thus, it is sufficient to measure the power consumption of VDD and
VPP in order to measure the power consumption of a complete DDR4 DIMM [10].

2.1.4. Intel® Optane™ Persistent Memory (PMem)

Intel Optane Persistent Memory (a.k.a PMem, DCPMM, “Optanes“) is a type of
non-volatile, byte-addressable, high-capacity memory based on Intel’s 3D XPoint
technology. In contrast to the 3D XPoint SSDs, the Optane modules are available
in a DIMM form factor with the same interface as DDR4 RDIMMs. However,
they cannot be used interchangeably with DRAM and require specific support by
the mainboard and the CPU, which was introduced with 2nd and 3rd Generation
Intel Xeon Scalable Processors (codenamed Cascade Lake and Ice Lake respectively).
Optane PMem modules are currently available in three different generations, namely
100, 200, and 300 series. In this thesis, we focus on the 200 series compatible with
Ice Lake CPUs as 300 series supported by the Sapphire Rapids CPU are out of our
reach currently.

Intel Optane PMem 200 series modules are available with 128GB, 256GB, and
512GB capacity and feature a transfer speed of 3200MT /s on dual-socket systemsﬂ
at a [Thermal Design Power| (TDP]) of 15 W per module [30].

Operation Modes

In order to operate PMem, DRAM modules still have to be mounted on the sys-
tem [31]. Depending on the use case, PMem can be configured in two operation
modes: Memory Mode and AppDirect mode [30]:

In Memory mode, the capacity of only PMem (far memory) is available as a
directly addressable memory. As it features a lower bandwidth and higher latency
than DRAM, the DRAM (near memory) is used as a cache to the far memory.
Consequently, a memory access that can be satisfied by the DRAM cache has the
same performance characteristics in terms of latency and bandwidth as plain DRAM.
Memory mode is a choice in scenarios in which the available memory capacity has to
be increased and existing programs should remain unmodified. While the underlying
Optane media is persistent, a data loss will occur on a power failure in Memory mode
due to cache coherency.

In AppDirect mode, both DRAM and PMem are available as directly address-
able memories and the persistence features of PMem can be utilized. If configured

24-socket compatible 3rd Generation Intel Scalable CPUs (codenamed Cooper Lake) only sup-
port a transfer speed of 2666 MT /s for PMem [30]. This also limits DRAM to 2666 MT/s.
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Application Application

DRAM
(as cache)

Optane Persistent

Optane
Persistent

Memory Memory

Volatile Memory Pool
(a) App-Direct mode (b) Memory mode

Figure 2.2.: Logical view on operation modes of Intel® Optane™ Persistent Mem-

ory ,

accordingly, both memory types are available as individual NUMA nodes and de-
velopers can explicitly control allocations on DRAM and PMem. This, however,
requires modifications of the application to properly allocate memory on the dif-
ferent memory types depending on the use cases. A detailed explanation on how
allocations can be controlled is given in

A schematic visualization of the operation modes is given in [figure 2.2] In this
thesis, is used in AppDirect mode as we are interested in using [PMeml as a
large-capacity and as a directly addressable memory. In order to configure
PMem as separate NUMA nodes in AppDirect mode, the open-source tools ndctl
and daxctl are required. This configuration process has been described by Steve
Scargall [79]. Furthermore, ipmctl is a tool for configuring and monitoring Intel
persistent memory modules .

Performance Characteristics

While PMem shares the same form factor as DDR4 modules and suggests DRAM-
like performance, it features some key performance characteristics.

The underlying 3D XPoint media has a minimum access granularity of 256 Bytes.
This way, a read of a single Byte requires 256 Bytes to be read from the media, which
is unproblematic in sequential access as the data loaded from the media is cached
but can lead to a significant overhead for small, random accesses. A write access
of a single Byte requires reading 256 Bytes, modifying the single Byte in this 256
Byte buffer, and writing the whole 256 Byte buffer back to the storage media [103],
resulting in a significant write-amplification. The DIMM itself only supports accesses
of a 64 Byte cache-line granularity but an on-dimm buffer (XPBuffer) can combine
multiple 64 Byte accesses into a single 256 Bytes write to the media. An
important performance metric is the Effective Write Ratio (EWRI), which is the
number of Bytes written by the memory controller divided by the number of actual
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Bytes written to the 3D XPoint media. An[EWR]less than 1 means that writes are
inefficient [103].

In addition, PMem shows a decreasing performance with a higher number of
threads accessing memory concurrently [45, 98, [100]. Possible reasons for this are a
contention at the read and write queues at the integrated memory controller ({MC)
of the CPU and a contention of the XPBuffer [103].

Experiments by Kozhokanova et al. [45] revealed that PMem has a latency twice
as high compared to DRAM with one thread and more than three times higher
compared to with 32 threads in sequential access. For random access, the PMem
latency can be more than eight times higher than DRAM in recommended system
configurations. The bandwidth penalties when using PMem compared to DRAM
are in the same order of magnitude.

Module Population Rules

PMem still requires traditional DRAM installed on the system - usually, a ratio be-
tween 4:1 and 16:1 between PMem and DRAM capacity is recommended for Mem-
ory mode. While, in theory, a single DDR4 DIMM paired with one PMem module
is sufficient to operate PMem in AppDirect mode, mainboards may support only
specific module combinations. For example, our Intel Server Board M50CYP2SB
requires at least 6 DRAM modules installed to operate a single PMem DIMM in
AppDirect mode per socket according to the technical product specification [31].
Other supported configurations are, for example, 4xDRAM + 4xPMem, 8xDRAM
+ 1xPMem, and 12xDRAM + 2xPMem. However, we found out that booting with
1xDRAM + 1xPMem also works with AppDirect mode, although it is not specif-
ically recommended. In particular, the statement that “each memory channel |..]
must be populated with at least one DRAM DIMM* regarding 1st generation PMem
modules does not hold anymore for 2nd generation PMem [100].

Power Supply of Optane PMem

While the PMem modules share the same physical interface with normal DDR4
RDIMMs, its power supply is inherently different and not specified in detail in
publicly available datasheets or documentation.

As described in [section 2.1.3) DDR4 RDIMMs are powered primarily via an 1.2V
VDD line and an additional 2.5V word-line boost rail called VPP. The main power to
the PMem modules is delivered via a 12V line, specified in the DDR4 interface but
unused in normal RDIMMs. This 12V rail powers a Power-Management Integrated
Circuit (PMIC]) that generates a number of different voltages required for the Optane
Media, the Optane Controller, and the energy-storage supercapf] directly on the
module [55]. This is a key difference to RDIMMs, which do not have any power
conversion directly on the moduld] The 1.2V VDD rail is also used by PMem but

3These capacitors provide power to flush write queues on a power-loss
4DDR5 modules have an on-DIMM PMIC.



2. Background

only shows a minor contribution to the total power consumption of the moduleﬂ

Power Control and Monitoring using ipmctl

Similarly to Intel’s RAPL (see7 Intel Optane PMem 200 Series modules
feature detailed power limitation and reporting features, that can be controlled using
the ipmctl command-line interface. This tool supports setting different properties
for each DIMM. However, each DIMM within a system is recommended to be
configured identically.

The average power consumption can be accessed for the 12V and the 1.2V rail
individually by querying the Averagel2vPower and Averagel 2vPower property
respectively. The averaging interval is 1000 ms by default and can be increased in
steps of 100 ms by modifying the AveragePowerReportingTimeConstant property.
An example for querying the power for a single PMem module with id 0x001 is
shown in This query, however, results in a latency of 1-2 seconds on our
test system.

$ ipmctl show -ddrt -d AveragePower,Averagel2vPower,Averagel 2vPower
< —dimm 0x001
AveragePower=3485 mW
Averagel2vPower=2468 mW
Averagel 2vPower=1017 mW

Listing 2.1: Example output for PMem power measurements with ipmctl

The power consumption of the module can also be limited by modifying the Avg-
PowerLimit property, which is set to 15 W by default. Using the MemoryBandwidth-
BoostMaxPowerLimit a higher power limit for a short period can be specified. By
default, 18 W can be drawn for up to 15 seconds [53].

2.2. Memory Access Pattern Classification

The presented memory types and memory hierarchies are expected to perform dif-
ferently depending on how the memory accesses are organized. While the number
of access patterns is practically unlimited, accesses are usually classified into four
general patterns [67]. The constant memory access pattern is the simplest and
best-performing access pattern. It occurs if the same memory location is accessed
repeatedly, for example, in each loop iteration. Typically, the compiler places this
memory value in a register, the fastest type of memory in a computer, and thus it
can be accessed with very low latency. This pattern exhibits an excellent temporal
locality but no spatial locality.

In sequential memory access, consecutive memory locations are accessed after each
other. This pattern exhibits an ideal spatial locality but generally a poor temporal

SYPP consumes about 1 mW at idle and 1.25 mW under load according to our measurements

10
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locality. Due to the organization of the memory into cache lines in combination with
prefetching techniques, these memory accesses perform well on modern systems.

In a strided memory access, consecutive memory locations with a fixed gap, also
called stride, in between are accessed. If the stride is 1, this is equivalent to the
sequential memory access. A small stride with subsequent memory accesses that are
in the same cache line will also result in good performance. However, a larger stride
will decrease spatial locality, and if larger than a cache line or even greater than the
memory page size will significantly impact performance.

An irregular access pattern, also called random access, is a sequence of memory ac-
cesses that is unpredictable or inherently irregular. These patterns usually exhibit a
bad spatial locality and, thus, poor cache-line utilization. This increases the latency
of each memory access, which usually cannot be hidden by pipelining techniques and
thus decreases performance. A prominent example of irregular memory accesses is
pointer-chasing. In such algorithms, the computation of the next memory access
location depends on the value at the previous location. Another example is a linked
data structure, e.g., linked lists of items in which each item contains the pointer to
the next item or operations on sparse matrices, such as in compressed-row storage
format.

2.3. Power Measurement Techniques

In this section, we describe different techniques to measure the power consumption
of HPC systems on a node level. We distinguish between integrated power measure-
ment techniques that can be accessed from the system under test without additional
hardware and external measurement techniques that require the instrumentation of
the system with physical power and energy sensors [23].

2.3.1. Power Consumption Basics

The two terms power and energy are often used interchangeably but describe differ-
ent concepts. The power P, with units in Watts [W], is the rate at which energy is
dissipated. By integrating the power P over time, we can compute the energy E in
Joules [J] or Watt-Hours [Wh] units [77]. In an electrical circuit, the instantaneous
power consumption can be computed using P = U x [ with U being the voltage
and [ being the current.

The power consumption of computer components can be divided into static power
and dynamic power. Static power (Ps) is the constant power required to maintain
the operation at no computational load. The dynamic power (Fy) is the power drawn
by the actual computational load, e.g., on CPUs, it scales with the CPU frequency.

11
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2.3.2. Running Average Power Limit (RAPL)

[Running Average Power Limit| (RAPL) is an interface developed by Intel with two
main functionalities. It allows measuring the energy consumption of different hard-
ware components at a sampling rate of about 1ms and supports capping their
energy consumption within a time window to ensure that a system stays within
certain power and thermal limits. RAPL was first introduced on the Intel Sandy-
bridge micro-architecture in 2011 and evolved over different Intel architectures in
the past . Starting with the AMD Zen micro-architecture, AMD implemented a
semi-compatible version of RAPL 81].

RAPL groups different system components into so-called power planes (also called
domains) and reports the aggregated energy consumption for each of these groups.

- DRAM . PSys - Package- PPO (CPU Cores) - PP1 (Uncore)

Figure 2.3.: RAPL power planes on recent Intel architectures ,

visualizes the power planes supported by RAPL. The power-planes
defined by Intel are , :

o The Package (PKG) power plane reports the energy consumption of the CPU
package. This includes power consumption of CPU cores, integrated graphics,
and some uncore components, such as memory controllers and last-level caches.

« The PowerPlane 0 (PPO0) covers the power consumption of the CPU cores.

12
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o The PowerPlane 1 (PP1) is only available on desktop CPUs and covers the
power consumed by uncore components such as integrated graphics.

o« The DRAM power plane reports the energy consumption of RAM directly
connected to the memory controller of the package. Although the name does
not suggest it, this also covers other DIMM types than DRAM, for example,
Intel® Optane™ Persistent Memory. To reduce confusion, we will refer to this
domain as the Memory Domain.

o The PSys power plane reports the energy consumed by the complete System-
on-a-Chip (Sal) on single-socket systems. This includes the package and other
domains, such as the Platform Control Hub or the system agent.

Multi-socket systems report these power planes separately for each socket. On Intel
systems, the available power planes differ between server and desktop CPUs and
different micro-architectures. The Package domain is the only one supported on
every Intel system. shows an overview of the RAPL support on important
Intel server micro-architectures [28]. Current HPC systems overall only support the
package and memory power planes and, while the PSys domain is specified in theory,
we did not find any HPC system that supports it.

Memory /

Architecture Package | PPO | PP1 DRAM

PSys

Knights Landing
Sandybridge-EP
Haswell-EP
Broadwell-EP
Skylake-SP
Cascade Lake-SP
Ice Lake-SP
Sapphire Rapids

SNENENR®
X | X | X| X

¥ Supported
* Not supported
() Support depends on vendor-specific power delivery

Table 2.2.: RAPL power planes support on different Intel server
micro-architectures [28§].

Model-specific Registers

Low-level access to the RAPL measurements is provided through model-specific reg-
isters (MSRs), which are 32-bit special-purpose registers that are specific to certain
processor generations. On Intel x86 systems, these registers are documented in the
“Intel® 64 and TA-32 Architectures Software Developer’s Manual“ [27].

13
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For each power plane, a set of MSRs is available to access power measurements
and control the power capping. Each power plane features a set of MSRs that are
similar across different power planes. As an example, the set of MSRs from the
package (PKG) power plane is described below:

o MSR_PKG_ENERGY_STATUS is a dynamic, read-only register that contains the
energy consumed since the start of the system and is updated approximately
every 1 ms. To get the energy consumption in Joule, this value must be multi-
plied with the platform-specific energy unit, which can be read from the MSR_-
RAPL_POWER_UNIT register. For example, the energy unit on Intel Skylake and
Ice Lake is 61.04 pJ. As the energy consumption is stored as a 32-bit unsigned
integer, regular counter overflows must be expected and handled accordingly.

o MSR_PKG_POWER_LIMIT is a read/write register to control the power capping
functionality. Two different limitation rules can be individually specified using
four attributes here:

— Whether the power limitation rule is enabled.

— The average power usage limit in a time frame specified in the following

fieldf]
— The wall time the power limit applies toIZ].

— A binary flag to control if power states that are lower than requested by
the operating system can be entered in the given time window.

o MSR_PKG_POWER_INFO is a static, read-only register that contains four values:

— The system’s thermal specification power (similar to [TDP)) as a discrete
value 8.

— The minimum and maximum power limit values for a window9.

— The maximum time window for power limitingm.

o MSR_PKG_PERF_STATUS is a dynamic, read-only register containing the last
time the package was throttled due to power limits.

Accessing these MSRs requires elevated privileges, which usually are only available
to the root user. The energy consumption reported by RAPL is not associated
with any timestamps, and the sampling frequency of it is subject to jitter [22] (see
section 4.2)). Thus, oversampling of the energy readouts, which might introduce a
significant overhead [43], is required to counter this.

RAPL measurements have been integrated into several performance measurement

tools such as LIKWID, PAPI [59], and perf [52]. Injappendix A.2| we describe how
these tools can be used for higher-level access to RAPL measurements.

6Value needs to be multiplied by the power unit specified in MSR_RAPL_POWER_UNIT
"Value needs to be multiplied by the time unit specified in MSR_RAPL_POWER_UNIT
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2.3.3. Physical Power Measurements

If no suitable integrated power measurement techniques are available, the only fea-
sible solution is often using an external power measurement sensor. Two popular
techniques in direct current (DCJ) circuits are direct measurements by integrating a
current-sense resistor in the circuit or indirect measurements using a[Hall Effect Cur-]
[rent Sensor] each with different application scenarios. The latter technique utilizes
the magnetic field induced by current flow to measure the current without invasive
circuit modifications. This thesis only focuses on current sensing using resistors and
describes how this can be implemented in detail.

Current Sensing using Resistors

A current-sense resistor ([CSRI) is a resistor with a very low resistance, often also
called a shunt. The shunt is placed in the circuit to measure the power consumption
of the consumers in the circuit. Due to the known resistance R of the shunt, a
voltage drop AU will occur at the resistor. As this voltage drop AU is proportional
to the electrical current I, Ohm’s law can be used to compute the current in the
circuit: [ = A—éj. Using the formula P = U x I, the power can be computed with I
being the current calculated from the voltage drop and U being the voltage before
the shunt drop [77]. For example, if we measure a voltage drop of AU = 10mV
across a HmS) current-sense resistor in a 5V circuit, the current drawn by the load
in the circuit will be A = &Y = 150mm§\2/ = 2 A. The power drawn by the load can then

be computed: P=U x I =5V x2A=10W.

High-side vs. Low-side Sensing In DC circuits, the shunt can be either placed
on the high side (positive rail) or the low side of the load (negative rail or ground)
for current measurements, which is visualized in [figure 2.4]

L 1

Current
Seljse Load
Resistor
Current
Sense
Load Resistor
(a) High-side current sensing ) Low-side current sensing

Figure 2.4.: High-side vs. Low-side current-sense resistor placement [5]

Choice of Current Sense Resistors The correct choice of the resistor is crucial
for correct power measurement results [5].
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First, the resistance of the[CSR]is important as a high resistance will also induce a
high voltage drop that can affect the other components of the circuit. For example,
using a 1€ resistor and having 2 A of current flowing through the resistor will create
a voltage drop of 2V. In a 5V circuit, for example, on a computer’s mainboard,
this will mean that only 3V instead of 5V are available to the device we want to
measure the power for. To reduce the impact on other components, the resistance
of the shunt needs to be very low, usually in the order of milliohms.

Second, the voltage drop at the resistor will cause a power dissipation of P =
U x I = I? x R in the form of heat, which needs to be lower than the resistor’s
power rating. For example, a 5m() resistor with a power rating of 0.5 W will only
sustain a maximum current of 10 A.

Third, the exact resistance of the shunt needs to be known to compute the current
I. Resistors are usually specified with a nominal resistance and a relative tolerance.
For instance, a 1k resistor with 5% tolerance has an actual resistance between
0.995 k(2 and 1.005kS2. As this error is linearly propagated in power measurements,
resistors with a low tolerance should be selected.

Voltage-drop Amplification

While very low resistance of the shunt and the resulting low voltage drop is required
to limit the impact on the circuit, it also introduces the challenge of accurately
measuring this voltage drop [93]. As most measurement devices, especially in lower
price ranges, only offer accurate measurements in the order of millivolts, the voltage
drop needs to be amplified, i.e., transformed to a voltage that is proportional to the
voltage drop but also in a voltage range that can be measured well.

For this, instrumentation amplifiers (in-amps) or current-sense amplifiers can be
used [93]. Both types are small integrated circuits (ICs), which usually take a differ-
ential voltage signal between two pins as an input and output a voltage proportional
to the difference to another pin. The factor by which the voltage difference is am-
plified is called gain. These ICs also require a separate power supply.

Terminology for Amplification ICs While the basic concept of these amplifiers is
inherently simple, several parameters need to be considered to ensure correct mea-
surements and device compatibility. For this, some terminology has to be defined.
The common-mode voltage (Ucys) between two differential voltages U_, U, is defined
as the voltage that is common between them, i.e, the average of them Ugy, = %
The common-mode rejection ratio is the ratio to which the common-mode signal is
rejected and should be as high as possible. Similarly, the power-supply rejection ra-
tio describes by which degree the supply voltage is suppressed in the output. Input
Bias Current Ig is the current flowing through the input pins of the amplifier and
should be as low as possible. Typical values are in the order of pico to microampere.
The quiescent current I is the current for powering the amplifier. Amplifiers only
guarantee accurate amplification until a specific frequency in the input signal. At
higher frequencies, the gain gradually reduces. Usually, at higher configured gains,
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the maximum supported input frequency drops. The slew rate is closely related to
this and determines how fast the output voltage can change. It is usually given
in the unit %, i.e., it describes by how many volts the output voltage can change
within a microsecond [38§].

Current Sense Amplifiers and Instrumentation Amplifiers Both current-sense
amplifiers (cs-amps) and instrumentation amplifiers (in-amps) can amplify a voltage
drop at a shunt for digital current sensing. The critical difference between them is the
input topology: Cs-amps support common-mode voltages significantly higher than
supply voltages, while in-amps feature a higher input impedance and, thus, lower
bias current. A high bias current can introduce significant measurement errors at
low load currents. While most current-sense amplifiers have a fixed gain, the gain
of many in-amps can be configured by connecting a gain resistor to the Integrated
circuit (IC)). The value of this resistor defines the gain, which increases flexibility
but also introduces another source of errors (88,90} [92].

Data Acquisition

To measure the power consumption of the load in
the circuit, both the voltage drop at the resistor
(AU) and the common-mode voltage (U) need
to be measured. Both voltages need to be con-
verted to a discrete, digital voltage value for fur-
ther digital processing, such as integrating power
over time to report the energy consumption or
power sampling over time. Here, many devices,
such as analog-digital coverters (ADC) ICs, data
acquisition cards, high-quality digital multime-
ters, and oscilloscopes, are available, each with
different use cases, precision, sampling intervals, Figure 2.5.: MCC 128 voltage

and cost. measurement  DAQ
The MCC 128 is a data acquisition (DAQ) HAT for Raspberry
device for monitoring analog voltages on eight Pi |@|

single-ended channels at an aggregated sampling
rate of 100,000 samples per second . Singe-ended means that the voltage is
measured between the pin for a channel and ground. It also supports differential
measurements in which the difference between two pins is measured, resulting in up
to 4 differential channels. The device can be installed as a HAT on a Raspberry
Pi, which also controls the data acquisition (see . A special pin of the
MCC128 can be configured to trigger the measurements when a configurable digital
signal (e.g., a rising edge) is detected.

Some products facilitate the energy measurements using CSRs. For example, the
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LTCQ%?F_;] combines the shunt, analog to digital conversion, and accumulated energy
reporting into a single device. This way, the energy consumption over time and the
minimum and maximum power consumption can be accessed easily as well. Other
manufacturers offer comparable products, for example, the INA,%‘OE] digital power
monitor.

Current-sense resistors are a favorable choice in many use cases due to their low
cost, excellent integrability, and high accuracy. However, the power and heat dissi-
pation of the resistor can quickly become problematic. Thus, other solutions, such
as hall-effect sensors, need to be considered if power dissipation exceeds the rating
of the resistor.

2.4. Platform Power Delivery

After introducing how [RAPT] can be used for power measurements and budgeting,
we now explain how power is delivered to the different components on modern
servers. This is important for understanding how works internally. Modern
HPC nodes feature a large number of components, each requiring specific DC supply
voltages, which need to be provided by the platform’s power delivery system. For
this, the 110V to 240V alternating circuit (AC]) input from the wall socket or the
power-distribution unit (PDU]) is first converted into 12V DC by the power-supply
unit (PSU)) [31], which then is converted into a set of different voltages to power
the CPU package, the memory, and many more consumers including disks, fans,
network-interface cards (NICs), and the baseboard management controller (BMC).

The power delivery on a dual-socket Intel Ice Lake server system is schematically
visualized in [figure 2.6] which we created based on several sources and documen-
tations. Traditional CPUs require several voltages delivered by the mainboard for
different on-die components, such as CPU cores, 10, and other uncore components.
However, the Intel Haswell and Ice Lake architectures feature a Fully Integrated
Voltage Regulator (ETVRI) on the CPU socket. Such a [FIVR] takes a single voltage,
usually 1.8 V produced by another voltage regulator on the mainboard, as an input
and converts it to all voltages required by on-package components, requiring less
power delivery components on the mainboard and granting more control of power
delivery to the CPU. However, this also increases the temperature dissipation on
the CPU die [18] [26].

On the Intel M50CYP |31] server, which supports eight memory channels with 2
DIMM slots each per socket, the channels 0 to 3 and 4 to 7 are powered independently
by the mainboard. For this, the 12V input from the [PSU]is converted into 1.2V
VDD, 2.5V VPP, and 12V by a voltage regulator module (VRM) (see [figure 2.6).
An additional 0.6V termination voltage (VIT) is generated from the 1.2V line.
In addition, a 1.2V supply voltage is fed into the CPU package. While it is not

Shttps://www.analog.com/en/products/1tc2947 .html
9https://www.ti.com/product/de-de/INA260
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Figure 2.6.: Schematic visualization of CPU and memory power delivery on Intel Ice
Lake-SP server systems |18, |26]

explicitly specified, it can be expected that this supply voltage is also provided by
the same voltage regulators that power the memory modules.

[DCHtoDC| Power Converters The conversion

of the 12V line to lower voltages requires 100 -
todDCl power conversion. A widely used type gl
of these converters is a Buck Converter, which 8
steps down an input voltage, for example, 12V, jz [
to a constant, usually configurable output volt- ol
age, for instance, 3.3V. Such a converter con- 65 I
sists of a high-side MOSFET] that switches be- .,
tween outputting a 12V and 0V voltage at a 50 :

high frequency. This voltage then passes a low- S gutputéineméf) e
pass filter, which consists of an inductor and a

capacitor, to produce a smooth output voltage,

Efficiency (%)

Vin = Vee = 12V, Vout = 1.5V

Figure 2.7.: Output current vs.

and an additional low-side[MOSFET](or a diode) efficiency ~ for the
ensuring that current can flow through the fil- RTS8120 voltage

ter [18]. regulator [74]

[Buck Converters| can achieve a high efficiency
of up to 90% at higher currents, but efficiency drops significantly at lower load
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currents as shown in [18]. Multiphase Buck Converters are often used in
scenarios with higher current demand and smooth output voltage requirements, for
example, delivering power to memory or the CPU. This is achieved by combining
multiple buck converters coupled with a controller chip that produces the switching
signal for the high-side MOSFET] of the different converters and ensures that the
signals are phase shifted, in particular, that at most one of the signals is high
simultaneously. Controllers of modern multiphase converters often feature phase
shedding, which automatically turns off phases at a low output current to ensure
high conversion efficiency even at low load.

Overall, buck converters have become highly optimized and complex components
that are important in energy-efficient power delivery on mainboards. For this thesis,
only a fundamental understanding of buck converters and their energy efficiency
characteristics is required [18].

Communication between VR and CPU On Intel server systems, Voltage Regula-
tors (VRs) used to power CPUs or the memory are required to implement the
[Voltage Identification| (SVID]) interface. This bus protocol enables communication
between the VR controller on the mainboard and the CPU package. sets the
required voltage that the VR outputs to a specific rail, which is essential for CPU
power management. Furthermore, supports reporting voltages and current
at the VR to the CPU for monitoring purposes. This forms the base for
[RAPT] (see [section 2.3.2), which provides power measurements based on current
and voltage measurements at the VR and implements power limiting based on these
measurements |18 32]. shows the communication paths of the bus
schematically on the Ice Lake-SP platform. The specific mechanism behind
and [RAPT] is not specified publicly and is probably highly platform-dependent. In-
tel specifies the exact requirements for voltage regulators (VRs) on mainboards for
the Ice Lake platform in the VR 13.HC document, which is a version of VR 13 with
support for monitoring higher currents [26].

Apart from [SVID| a couple of other bus protocols are often used for commu-
nication between system components, particularly for power monitoring and man-
agement. The Power Management Bus (PMBud) is a bus protocol that is based
on an protocol for monitoring, e.g., the input and output voltage and current
of compatible PSUs. System Management Bus (SMBus) is a similar protocol for
lightweight communication between different platform components, particularly for
system monitoring and control. It is also used for reporting temperature sensor
readings, for example, at DIMMs or voltage regulators, and power measurement
data from compatible voltage regulators similar to SVID. Monitoring data from
both buses is usually processed and exposed through the Intelligent Platform Man-
agement Interface (IPMI) [18].

All this background is required to understand how power measurements using
[RAPT] work internally and how we can physically measure the power consumption

of the memory by instrumenting to validate RAPLL

20



3. Related Work

This chapter provides a comprehensive overview of the research conducted on power
consumption analysis of different workloads, RAPL validation, power models for
memory, and energy metrics in the field of HPC.

3.1. Workload-specific Power Consumption Analysis

Arafa et al. [2] measured the energy consumption of different instructions on GPUs
of four distinct architectures. The energy consumption is measured using different
software interfaces that were validated using physical power measurements at the
GPU with current clamps at the ATX power connector and PCle power supply via
a custom PCle extender. Allen et al. [1] evaluated the power drawn by a GPU for
different types of memory accesses, such as sequential and random reads or writes.
Ghose et al. [16] studied the energy consumption of different generations and low-
power variants of DRAM on multiple workloads. They used power models based
on power specifications from memory vendors for energy consumption estimations.
The same authors also assessed that these power models are unreliable because
the actual current drawn by the memory can differ significantly from the current
specified in the memory’s datasheet and that other parameters, such as the kind
of data read, e.g., whether only ones or zeros are read from memory, affects power
consumption [17].

Schone et al. [83] evaluated how data access to different types of caches and the
main memory affects the cache access rate, the instructions per cycle, and the total
system power consumption.

3.2. Validation of RAPL Energy Measurements

This section describes previous work in validating the performance and accuracy of
RAPL.

Desrochers et al. [10] evaluated the accuracy of the RAPL package and memory
domains individually on different Intel Haswell platforms by instrumenting it with
power measurement sensors. They measured the power consumption drawn by the
CPU by instrumenting the P4 power connector, i.e., the cable that powers the
CPU from the power supply, with [Hall Effect Current Sensorsl Server systems
usually do not feature such a connector, so the authors did not measure the power
consumption of server CPUs. In addition, the authors used DIMM riser cards both
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for DDR3 and DDR4 memory with current-sense resistors on the VDD and VPP pins to
measure the power consumption of a single memory DIMM. The voltage drop at the
resistor, which is proportional to the current flowing through the pin, was amplified
by a factor of 100 for VDD and 300 for VPP using a Tezas Instruments INA 122
instrumentation amplifier and then fed into a USB-1208FS-Plus data acquisition
device. Power drawn from the wall socket is measured using the WattsUpPro USB
power measurement device. All connections are made on breadboards. These three
power measurements are collected by a Raspberry Pi and synchronized with RAPL
measurements of the package and memory power plane by outputting a signal over
a serial port to the data acquisition device when RAPL measurements are started
on the machine under test. The authors collected measurements using the
perf tool at a comparably low frequency of 10 Hz (100 ms sampling interval) due to
a higher overhead of this tool at higher sampling rates. They proposed the use of a
different interface for measuring RAPL (e.g., LIKWID) or directly reading the RAPL
MSRs for lower overhead access. Their results showed that RAPL measurements
match the actual power consumption by a margin of at most 20% for 8 GB DDR4
memory and by a margin of less than 6% for 16 GB modules under load on the
Haswell-EP server platform. At idle, this error is significantly higher and can exceed
75%. For Haswell desktop systems, the error of RAPL is significantly higher and
either subject to a constant offset or the RAPL memory power consumption is not
modeled well overall depending on the memory modules used [10].

Hackenberg et al. [20] evaluated the accuracy of the RAPL measurements on Intel
SandyBridge-EP with DDR3 memory and on Intel Haswell-EP with DDR4 memory.
For this, the power drawn by the whole system was measured using the LMG450
AC power analyzer and was compared to the sum of power reported by the RAPL
package and memory power planes for different workloads. As the external power
measurements also included off-package power consumption, a good fit was defined
as the existence of a continuous function between both measurements. While this
was not the case on the SandyBridge-EP platform for some workloads, a strong
agreement between these values was assessed for the Haswell-EP platform. The
authors also carried out this evaluation on an AMD Zen 2 system [81], which offers
a power-limiting and reporting interface semi-compatible with Intel’s RAPL. Here,
similarly to the Intel Sandybridge-EP platform, a poor correlation has been observed
for most workloads, indicating that RAPL readouts were modeled and not measured.

T. Ilsche’s dissertation on the topic “Energy Measurements of High Performance
Computing Systems: From Instrumentation to Analysis® [23] includes - apart from
many other contributions - techniques to instrument HPC systems for detailed and
high-resolution power measurements. This includes the instrumentation of different
DC consumers on the mainboard, such as voltage regulators, processor power con-
nectors, ATX mainboard power supply, SATA connectors, fans, and memory DIMMs
for power measurements. The accuracy of RAPL counters for package and memory
was validated on Intel SandyBridge and Skylake architectures by instrumenting the
12V voltage lines to the CPU and memory with the LMG670 power analyzer. The
author also presents a novel approach for synchronization between power traces of
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different systems, for example, a server under load and a microcontroller collecting
external power measurements of that server, using correlation sequences. This is
achieved by generating a distinctive pattern in the power consumption signal of the
machine under test before and after the execution of the actual compute kernel.
Identifying this pattern in the power traces ensures a tight synchronization between
both traces.

Pitz et al. |[70] analyzed the accuracy of different power sensors on an AMD Zen
3 system with different NVIDIA Tesla GPUs by comparing the measurements of
integrated sensors with reference measurements conducted using a ZES Zimmer
LMG671 power analyzer that measured the total power drawn by the redundant
power supplies of the server. They also included package power measurements using
the zenpower3 driver, which is based on [RAPI}Hike measurements on AMD-based
systems. The authors conclude that sensor measurements can increase the system'’s
power consumption and that platform power sensors, i.e., sensors that measure the
power drawn by the whole node, feature an insufficient sampling rate. Addition-
ally, they point out that an accuracy analysis of power sensors is mandatory for
conducting meaningful measurements and optimizing energy efficiency.

In addition to the named work, we list several other evaluations conducted on the

accuracy of RAPL measurements in [table 3.1]

Authors Year Platform Power Measurement
Plane Methodology
Dongarra et al. [12] 2012  Sandy Bridge (SBI) Pkg PowerPack
Demmel et al. [9] 2012 [SB Pkg, Wall power mea-
Memory surements
Pkg,
Rotem et al. [78] 2012 [SB CPU, Wall power mea-
Graphics surements
Mazouz et al. [58] 2014 Brid Pkg Wall power mea-
vy Bridge (IB) surements
Thomas et al. [72] 2014 [SBi Pkg ATX connector
Khan et al. [42] 2016  Haswell (HSWI), Pke, Smart Wall Plug
Memory
Paniego et al. [68] 2018 [HSW] Pkg 12V connector
using Hall sen-
sor
Fahad et al. [15] 2019 [HSWI Skylake (SKI)) Pkg WattsUpPro

Table 3.1.: Studies on RAPL validation using external power measurements

Several other works evaluated [RAPILI's other aspects. Khan et al. |41, |43] con-
ducted a more general evaluation of RAPL. They assessed that the update interval
of the RAPL CPU counter (PP0) is around 60yus on Intel Skylake compared to
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1000 ps on Intel Haswell and that the counter update rate is subject to significant
jitter. Furthermore, they discussed the limitations of RAPL, such as a possible over-
flow of registers, the lack of timestamps associated with RAPL, and unpredictable
timings of RAPL register updates. Héahnel et al. [22] discussed how RAPL can be
used for power profiling of short code kernels.

Overall, RAPL measurements are inaccurate up to the Intel Sandybridge archi-
tecture or Intel Haswell desktop systems. The reason for this is that the energy
consumption provided by RAPL was based on a calibrated energy model based on
performance counters [8], often also referred to as a digital power meter (DPM) [1§].
While an initial evaluation from Intel [§8] showed an overall good approximation
within 1% to reference measurements, later evaluations assessed that it can be inac-
curate for certain workloads. With RAPL being based on actual measurements on
more recent architectures, it is considered overall “useful“ and “valuable® in the lit-
erature |10, 20]. However, the accuracy of the RAPLl memory domain has not been
evaluated yet on modern architectures, such as 3rd Generation Intel Xeon Scalable
CPUs (e.g., Ice Lake-SP) with different power distribution topologies than previous
architectures and high-capacity memory support.

3.3. Memory Power Modeling

Micron provides a technical note on how the power consumption of DDR4 SDRAM
memory can be estimated based on the signals and commands sent to the memory.
This is based on the current flowing through the 1.2V VDD and 2.5V VPP pins
specified in the IDD section in the DIMM'’s datasheet. This computation requires a
deep understanding of how DDR4 SDRAM works internally and is difficult for deter-
mining the power consumption of system applications [62]. In addition, the specified
IDD values have been shown to differ significantly from the actual current by Goose
et al. and that power modeling based on these values can be subject to errors as high
as 160.6% [17]. Instead, the authors propose the VAMPIRE DRAM power model
that estimates DRAM power consumption at a mean absolute percentage error of at
most 7.1%. In response to the pessimistic /DD values in the datasheets, Mathew et
al. [56] developed a bank-wise DRAM power model based on calibration data from
their own measurements. Zhang et al. [105] developed a Dynamic Adaptive Model
of CPU and memory power based on hardware performance counters. Overall, we
are not ware of other approaches utilizing an access-pattern-based memory energy
prediction.

3.4. HPC Energy Metrics

In HPC, performance metrics play an important role in quantifying the perfor-
mance of an application, a hardware component, a compute node, or even a whole
supercomputer. Prominent examples are, for example, the number of floating-point
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operations per second, the arithmetic intensity, or the sustained memory bandwidth.

With increasing awareness regarding energy efficiency, energy or power consump-
tion has been fused with existing metrics that assess compute performance. The
most popular metric of this type is the number of floating-point operations per
power consumption, i.e., GFlops/Watt, which is used as the primary metric for
ranking supercomputers by their energy efficiency in the Green 500 ranking [95].
The energy-delay product (EDP) is a well-established metric for assessing an appli-
cation’s energy efficiency. It is a fused metric that is based on the time-to-solution
T, i.e., the wall time required to solve the problem, and the energy-to-solution E,
i.e., the energy for solving the problem [47]:

EDP=ExT"

The scalar w is a hyperparameter to describe the impact of the performance to the
metric. In scenarios where a higher performance is more important than low energy
consumption, w can be increased, usually in the range of 1 to 3 [47]. Roberts et
al. [76] argue that the class of EDP metrics is “unsuitable for energy-aware software
optimization*.

Zhang et al. |[104] characterized the memory energy efficiency (MEE) using the
Bandwidth per Watt (BpW]) metric, which is the perceived memory bandwidth
divided by the memory power consumption:

Bandwidth[M B/ s]
MemoryPower|[W]

MEE = BpW =

Several studies used the Energy per Instruction (EPI)) |[19] metric, defined as the
CPU or GPU’s energy consumption to execute a specific instruction, or variants
of it. Kulkarni et al. [46] presented an approach for measuring the instruction-
level power consumption in battery-operated embedded systems. Molka et al. [63]
characterized the energy consumption of the CPU for memory transfer instructions
to different layers of the memory hierarchy on Intel Westmere and AMD Istanbul
systems based on external node-level power measurements. Overall, we did not
identify any previous work that developed metrics characterizing the dynamic energy
consumption of the memory.
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4. Validation of RAPL
Measurements on Intel Ice Lake
Architecture

As described in numerous researchers previously evaluated the accuracy of
the RAPL package power measurements on different Intel and AMD architectures.
Two studies also evaluated the accuracy of RAPL energy values for the memory
domain |10} [23]. However, no work validating RAPL on the Intel Ice Lake platform
equipped with DRAM or non-volatile memory such as Intel® Optane™ Persistent
Memory is available. In this chapter, we validate the memory power measurements
using RAPL on the Intel Ice Lake platform. We evaluate the timing of RAPL
updates and validate the RAPL power measurements of the memory domain against
reference measurements at the memory DIMMs by instrumenting the memory slot
with a riser card.

4.1. Test System

The main test system on which we conduct our experiments is a dual-socket Intel Ice
Lake system from the Intel Optane Cluster that is part of the RWTH HPC cluster. In
addition, we conduct measurements on older Intel Broadwell and KNL systems as a
reference point. Specifications of these systems with the default memory populations
are given in Three different kinds of DIMMSs, as shown in [table 4.1] are

available for installation on these systems.

. Transfer

Vendor | Name Capacity Rate Part Number

DDR4 SDRAM 1
Samsung ECC RDIMM 32GB 3200 MT/s | M393A4K40DB3-CWE

.| DDR4 SDRAM u
SK hynix RDIMM 16GB 2400 MT/s | HMA42GR7AFR4N|87]
™
Intel Optanc™ PMem |00 | 3900 MT/s | NMBIXXD128GPSUA4!
200 Series

! No datasheets are available publicly.

Table 4.1.: Memory modules used for experiments
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Intel architecture | Ice Lake-SP Broadwell-EP Knight Landing

Mainboard Intel Supermicro Supermicro K1SPi
M50CYP2SB! X10DRT-H

No. sockets 2 2 1

CPU model Xeon Gold 6338 Xeon E5-2650 v4 | Xeon Phi 7210

Base frequency 2.0 GHz 2.2 GHz 1.3 GHz

Cores 32 12 642

L1-D Cache 48 kB

L1-T Cache 32kB 64kB 4MB

L2 Cache 2.8 MB 3MB 32MB

L3 Cache 48 MB 30MB -

TDP] 205 W 105 W 215 W

Main memory 16x32GB Sam- | 8x16GB SK hynix | 6x32GB SK hynix
sung DDR4 3200 | DDR4 2400 MT/s | DDR4 2133 MT/s
MT/s

Other memory 16x128GB Intel® | - 4x4GB MC-
Optane™ PMem DRAM 6400

MT/s

Power governor performance powersave

OS Rocky Linux 8.8 (Green Obsidian) CENTOS 7.9

Kernel 6.4.3-1.el8.elrepo 3.10.0-1160.95.1.el7

! Engineering sample

2 Sub-NUMA Clustering enabled

Table 4.2.: Default hardware configuration of the Ice Lake, Broadwell, and KNL
systems

4.2. Update Interval of RAPL Counters

According to the official documentation by Intel |27], RAPL values should update
approximately every 1ms. As previous work on other architectures showed a consid-
erable variance and jitter in the update rate [41}, [84], conducting the same validations
on the architectures we use in this thesis, namely Intel Ice Lake and older platforms
such as Intel Knights Landing (KNL) and Intel Broadwell, is highly motivated. For
this, we used the code by Schone et al. [81], that busy waits for an update of the
RAPL MSRs and measures the number of cycled!| between each update. A code
snippet can be found in [listing B.I] We convert the number of clock cycles between
each counter update into a wall time delay by multiplying it with the clock speed
and present the results for these experiments in the following.

!The timestamp counter using the RDTSCP instruction is used for low overhead measurements.
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Figure 4.1.: RAPL update interval distribution for RAPL package and memory do-
mains on the Intel Ice Lake, Broadwell, and KNL platforms

4.2.1. Experimental Results

The described experiments have been executed five times on Intel Ice Lake, Broad-
well, and KNL systems (see . The results here cover a short yet represen-
tative excerpt of the data to facilitate visualization. The results of the experiments
are shown in [figure 4.1, Each plot shows the gap between consecutive RAPL counter
updates in milliseconds for 1000 counter updates observed. The black line shows
the running average of 20 data points.
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4.2.2. Discussion

For the Ice Lake system, the RAPL counters for both the package domain
and the memory domain (figure 4.1b)) are updated every 1ms on average.
However, the update interval is subject to significant jitter, with almost no update
observed at an exact 1 ms gap. Instead, most updates are registered either after a
gap of about 1.4 ms or after 0.8 ms averaging 1 ms. While this is consistent with the
documentation and previous work, the jitter is more significant than on the Skylake
or Haswell platform [41].

The results for the KNL system are inherently different. As shown in [figure 4.1d
the RAPL counter for the package domain is updated roughly every 1 ms with some
updates being delayed by several microseconds and a couple of updates coming in
earlier after a delay of about 0.95ms. This is more consistent than on the Ice Lake
system. In contrast, the measurements for the RAPL memory counters on the KNL
platform shown in show that this counter is not updated every 1ms
on average. While a majority of the updates is observed either after 0.95ms or
1.05 ms, some significant outliers either at about 2ms or a few microseconds can be
observed. This means that some updates are skipped while sometimes two updates
come in basically at the same time. The repetitive execution of the same experiments
showed this consistently. On the Broadwell system (figures 4.1e|and |4.1f), the update
interval is similar to the KNL but more evenly distributed between 0.9 ms and 1.1 ms.

Possible reasons for this variation are overhead introduced by oversampling the
RAPL counters, inaccurate updates of the CPU timestamp counter, or jitter intro-
duced by the operating system. In any of these cases, RAPL counters cannot be
expected to be updated or read continuously at a sampling interval of 1 ms, mainly
because the updates are not associated with any timestamps. However, for most
use cases, a lower sampling rate is sufficient as the updates come in about every
millisecond on average. Nevertheless, users sampling RAPL counters at high rates
need to be aware that updates of counters can be delayed by up to 1 ms. We expect
that the exact update interval and variation is highly platform-specific.

4.3. Accuracy of RAPL for the Memory Domain

This section describes how the accuracy of the RAPL memory domain can be as-
sessed. For this, we measure the power consumption of the memory DIMMs by
instrumenting the system with power sensors. As mentioned in [section 3.2 mainly
two instrumentation points for this have been used in the past: T. Ilsche [23] in-
strumented the voltage regulators (VR) on the mainboard that deliver power to
the memory, while Desrochers et al. [10] used DIMM riser cards with integrated
current-sense shunts. As the instrumentation at the VRs is more invasive and re-
quires soldering cables directly onto the mainboard, we chose the second approach.

We carried our or experiments on the Ice Lake and Broadwell systems (see
but used different memory populations by physically exchanging the modules
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in the memory slots. The exact memory slot population with memory modules from
is specified for each experiment individually.

4.3.1. Hardware Instrumentation for Reference Power
Measurements of DIMMs

This section describes our experimental setup for collecting reference power mea-
surements of DIMMs.

Power Measurements using DIMM Riser

Both DDR4 DRAM and Intel Optane Persistent Memory modules come in the same
DIMM format and are plugged into the mainboard through memory slots. In order
to measure the power consumption of the memory modules through a current-sense
shunt (see[section 2.3.3)), such a shunt needs to be installed at the pins of the DIMM.
However, the pins plug into the memory slot of the mainboard and are inaccessible.
To solve this problem, we used DDRA4 riser cards that plug into the regular memory
slots of the mainboard and forward all traces to the pins of the memory module that
is plugged into the riser. We chose the DDR4-rev3-L-CSR riser by Adex Electronicsﬂ
which is depicted in [figure 4.2|

H mrmAnm

el InIn
RVOD g @ |¥) |5 154 7L S

Figure 4.2.: Front of Adex DDRA4 riser card - Revision 3

This riser card has 5m{2, 1% tolerance current-sense shunts with a power rating of
0.5 W at several pins, namely VDD, VPP, 12V, VPPSPD, VTT, and VREFCA. On the VDD
pin, two of these shunts are installed in parallel. Redundant pins are connected to
the same shunt. This doubles the maximum supported power drawn from VDD and
enables support for modern and high-capacity DDR4 modules with a significantly
higher power consumption than early generations of DDR4 memory. In the work by
Desrochers et al. [10], revision 2 of the riser card has been used, which only has one
shunt at the VDD pin. As only VDD, VPP, and 12V show a relevant contribution to
the overall power consumption during runtime, we only consider these pins for our
measurements and conduct high-side current sensing by measuring the voltage drop

Zhttps://www.adexelec.com/ddrd-3
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at the current-sense shunt, which is proportional to the current flowing through the
pin (see . Our Ice Lake test system automatically trains and configures
the memory modules when the system boots. If the system successfully initialized
the memory with exactly the same memory configuration, in particular also the
identical DIMMs, during the previous boot, the initialization is partially skipped
and the system boots significantly faster. When we booted the system without any
riser cards and then rebooted in the same memory configuration, except that one
PMem module was plugged into the memory slot using a riser, the system did not
boot successfully. After a successful Baseboard Management Controller (BMC]) and
memory initialization according to the video output of the server, the server was
stuck at the POST code EE 00 and did not proceed. At some point, the CPU fault
LED turned on and the system shut off. A possible reason for this is the increased
contact and trace resistance caused by the riser card resulting in an invalid memory
configuration, which is not detected by the system as the memory module and the
mainboard did not change. Thus, a retraining of the memory needs to be forced
whenever risers are added or removed. One option for this is to remove the module
first, boot the system once, and then insert the module with the riser and boot as
usual.

Current-sense Amplification To measure the voltage
drop at the shunts at the VDD, VPP, and 12V pins, we
soldered cables to each side of these resistors. As this
voltage can be too low for correct measurements us-
ing most analog-to-digital converters, e.g. 0.4mV for a
power draw of 1 W at VDD, we amplify the voltage by a
factor of 100 for VDD and by 200 for VPP and 12V. We
use the INA2180 current-sense amplifier evaluation
board for this. These evaluation boards have a fixed
gain of 20, 50, 100, or 200, support the amplification
on two channels, and have decoupling capacitors directly .
installed [92]. A picture of the variant with a gain of R
100 is shown in [figure 4.3] In our case, we powered them
using the 5V voltage line from the Raspberry Pi. Figure 4.3.. INA2180-
We also tried different types of instrumentation ampli- A4 current-sense ampli-
fiers such as the INA122 used by Desrochers et al. [10], fier evaluation module
the INA128 [91], and the LT1167 used by T. Tische [23]. used for amplifying 12V
The INA 122, which was our first choice, did not amplify and 2.5 V. Gain: 200
the voltage drop as expected. In a manual experiment in
which we installed the INA 122 on a breadboard and generated different stable input
signals using voltage divider networks, the in-amp amplified this signal as expected.
However, when we used the INA122 for measuring the VDD signal, the resulting am-
plified voltage was about 15% less than expected. As this error directly propagates
to the power consumption calculation, the power consumption of the DIMM was
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underestimated with the INA122. A possible reason for this is the high frequency
of the power signal, which can be in the order of kHz |23 p. 62f]. The INA122 has
a limited bandwidth and a slew rate of only 0.08 % This causes a drop in gain at
input frequencies higher than 2kHz at a configured gain of 100, which decreases to
effectively 10 at an input frequency of about 50 kHz [90, p. 4]. The higher the gain
is configured, the lower the cutoff frequency at which the gain drops is [90, p. 2ff].

The INA2180 shows significantly better results and amplifies the voltage drop as
expected. A reason for this could be the significantly higher slew rate of 2 %, which
supports a bandwidth greater than 100 kHz for each supported gain. We confirmed
this again using a voltage divider network on a breadboard, and by measuring the
input voltage and the output voltage to the amplifier using a multimeter while the
amplifier was connected to the current-sense resistor of the DIMM.

Analog-to-Digital Conversion This amplified signal was then measured using an
MCC-128 data acquisition HAT [60], which was mounted on a Raspberry Pi 3B and
used to log up to 8 analog voltage signals concurrently at an aggregated sampling
rate of up to 100,000 samples per second. The internal analog-digital conversion
features a 16b resolution and different input voltage ranges. We configured it to
sample the voltages every 1ms at a voltage range between 0V and 5.0V.

In order to measure the power drawn by a single pin of a DIMM, measuring two
voltages is required: The voltage drop at the current-sense resistor (seesection 2.3.3))
and the voltage at the pin, which can either be measured before or after the voltage
drop at the shunt. As we are dealing with relatively low voltages (1.2V to 12V) and
higher currents (up to 11 A), we decided to conduct voltage-correct measurements
by measuring the voltage before the shunt. More information on this is discussed by
T. Tlsche |23 pp. 13ff]. When measuring DDR4 DRAM DIMMs, both voltage and
current of the 1.2V VDD and 2.5V VPP pins are monitored. For PMem modules, the
1.2V VDD and the 12V supply rails are measured. VPP is not measured here as our
measurement infrastructure only supports two channels per DIMM. We measured
that the power consumption at the VPP pin is well below 15mW for PMem and
can be neglected. As four voltages need to be measured per DIMM, the power
consumption of up to 2 DIMMs can be measured by a single MCC-128 device at a
time [

Measurement Synchronization While the data of the physical measurements is
collected by the Raspberry Pi, the RAPL measurements need to be performed by the
system under test itself, introducing the challenge of synchronizing the timestamps

3This can be extended to up to 16 memory modules by stacking 8 MCC-128 modules on the
same Raspberry Pi. One option to reduce the number of required channels would be using current-
sense amplifiers with reference inputs. This way, the current of multiple rails of the same voltage
can be summed up by the analog circuit, and only one signal needs to be processed digitally. In our
case, this would allow us to measure the power of infinitely many DRAM and PMem modules with
only six data-acquisition channels, but per-module spatial resolution will be lost. Furthermore, a
sophisticated circuit design, ideally on a Printed Circuit Board (PCBI), would be required.
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of measurement samples between both devices. However, it is crucial to associate
the power samples of RAPL with corresponding power samples collected by the
Raspberry Pi. Several approaches have been used to solve this problem. For exam-
ple, T. Ilsche generated a distinctive pattern in the power consumption profile
of the memory before and after the measurements, which is then detected in the
collected power traces and used to line up both measurements. Another option is to
directly synchronize the clocks of the Pi and the server under the test, for example,
using the Network Time Protocol (NTP).

For this work, an MCP2221
Integrated circuit ([C]), which is con-
nected to a male USB-A port and
plugged into the host machine, is uti-
lized. This [C] which is depicted in [fig-]
ure 4.4] features a serial [UART] inter-

face, an interface, and four [GPIO|
pins. When the RAPL measurements

are started on the machine under test,
it outputs an 1 to one of the [GPIO] pins,
that is connected to the digital trigger

Figure 4.4.: MCP2221 USB to input of the MCC128 data acquisition
UART| converter with card. This device has been configured to
@ automatically start measurements when

a rising edgeﬁ is detected at the trigger
input with a latency of 1 ps . Once the measurements end, the is set back
to 0, which is then handled by the Pi to stop the measurements. The latency to
stop the measurements is significantly higher compared to the start synchronization
using the digital trigger pin. However, the stop of measurements does not need to
be synchronized tight for our purposes.

Another challenge was that corresponding RAPL measurements and reference
measurements had to be merged after the measurements were done. To facilitate
this, each workload was identified by a unique ID, which was transmitted to the
Pi using the [UART] serial interface of the MCP2221 along with the name of the
workload. This serial interface is exposed by the Linux kernel as a virtual file, for
example, located in /dev/ttyACMO, which can be read and written from to transmit
data between the Raspberry Pi and the machine under test.

Common Reference Ground between Circuits In the described measurement
setup, we have two different AC power sources: The power supply that powers the
Raspberry Pi and the redundant power supplies of the machine under test. Although
all power supplies are connected in the same building, the ground potential of both
DC circuits might differ significantly, usually between 10 mV to 200 mV . When
measuring single-ended analog voltages, e.g., voltages with respect to ground, of two

4rising edge: Digital signal switches from 0 to 1
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different devices, this can severely impact the quality of the measurements. This
could result in a significant offset between the actual voltage and measured voltage.
Thus, the analog ground input of the MCC128 HAT is connected to the ground
pin of the MCP2221 USB device to establish a common reference point for the
measurements.

Engineering Aspects of Measurement Setup In our first prototypes, we used a
breadboard to connect all components, similar to Desrochers et al. [10] did. How-
ever, the breadboard was not making reliable connections in our case and made
the circuit unstable and very sensitive to external influences, in particular, the high
airflow produced by nearby fans of the server. Thus, we soldered all connections
whenever possible to maintain reliable and low-impedance connections. To maintain
the replaceability of the components, we also added screw terminals to the current-
sense amplification boards and created a custom perf-board that provides power and
ground to the different components and handles the digital trigger signal.

Special care must be paid to the wires transferring the voltage drop signal of
the current sense-shunts and the bus voltages. Ideally, these connections would be
realized using short [PCBltraces, which was infeasible for our setup. The voltage drop
at the probing wires, which we realized through kelvin Connectionﬂ, is expected to
be very low due to a high input impedance of the amplifiers and a low bias current.
Still, the pairs of wires used for probing the voltage drop at the shunts should ideally
be the same length, as short as possible, and low-impedant to ensure correct current
measurements. In our case, we were using solid, tinned, 20 AWGH copper wires with
approximately the same length for each pair of probes.

Because the 12V bus voltage used for powering PMem exceeds the 10V input
limit of the MCC128 device, we use a custom voltage divider realized using an
8150 and a 26802 resistor, each with 0.1% tolerance to regulate a nominal 12V
power line down to about 2.8 V, which is well within the configured 5V input range
of the DAQ devicd}

A circuit schematic of all components and connections can be found in
in the appendix. Furthermore, a guide on reproducing these experiments and how
the setup can be modified for measuring the power consumption of DDR5 memory
can be found in jappendix B.2l [Figure 4.5 shows annotated photos of the data
processing and voltage amplification as well as the instrumentation of a DDR4 and
a PMem module on the Ice Lake system. Additional photos of the hardware setup
are shown in for the Ice Lake system and for the Broadwell

system in the appendix.

5In Kelvin sensing, also called four-terminal sensing, an additional pair of probes is used for
measuring the voltage drop at the shunt. The current in these probes is very low, so the voltage
drop in the probes is usually neglectable.

60.81 mm inner cable diameter

"The input range can be configured to a lower limit than 10V if all input voltages are lower.
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RAPL Measurements To validate the accuracy of RAPL measurements, we need
to sample the RAPL energy counter for the memory domain regularly and compare
it to the reference power measurements with the riser card. Because RAPL provides
an energy counter rather than instantaneous power consumption, we need to divide
the energy consumption of the sampling interval by the length of that interval to
get the average power consumption.

As described in [section 2.3.2] there are several high-level tools and libraries to
access RAPL counters. Similar to Desrochers et al. [10], we first used the perf
stat command, which is part of the Linux kernel tools, to sample RAPL counters
regularly. We modified the tool to output an 1 to a GPIO pin of the MCP2221 when
the measurements start and set it back to 0 when measurements are completed for
synchronization purposes. This approach faced two problems: First, perf was not
able to sample RAPL counters at precise time intervals at sampling rates greater
than 100 Hz. Second, the delay between setting the GPIO to 1 and starting the
actual RAPL sampling was too high, resulting in a noticeable shift of about 150 ms
between the RAPL measurements and reference measurements.

To counter both problems, we decided to use a low-level approach and wrote a
tool that directly reads the [MSRI values for RAPL. This tool is based on a popular
C script by V. Weaver [99], which we extended with support for Intel Ice Lake and
regular sampling of RAPL counters. Furthermore, our tool takes a bash command
as an input and executes it in a subprocess. When the subprocess terminates, the
sampling of the RAPL counters is stopped and the results are written to a file. As
the exact timing of RAPL updates cannot be predicted [41] (see [section 4.2)), we
use a sampling interval of 5 ms as a trade-off between unpredictable timings and low
sampling rate.

Data Post-processing The previously described measurement method produced
raw measurement data for the reference measurements and the sampled RAPL
counter values, which had to be further processed to compare the power consumption
measured by reference measurements and RAPL.

For the reference measurements, we have a file with the voltages measured
by the MCC128 data acquisition HAT at each measurement clock tick, namely the
amplified voltage drop AU* at the shunt and the supply voltage U for the measured
line, e.g., VDD. We divide AU* by the gain used for the respective pin, e.g. G = 100
for VDD, to get the unamplified voltage drop AU. Then, we can compute the current
at the pin using [ = A—RU with R being the known resistance of the shunt. For VPP
and 12V, we can use the value R = 5mS) but for VDD, we need to consider that we
have two 5m{2 shunts in parallel. The resistance of both shunts in parallel can be
computed as follows: R = (75 + z05) " = 2.5mQ 77, p. 35f]. Power can then be
computed using P =U X [I.

The RAPL measurements are also written to a [CSV]file. Each sample contains
the energy consumption since the previous one and the time elapsed since the start
of the measurements in seconds as a floating-point value. By dividing the energy
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consumption by the delay to the previous sample, the average power during this
interval can be computed.

The different sampling rates for the reference measurements (1 ms) and the RAPL
measurements (5 ms) require resampling both measurements to a common interval in
order to compare values of both measurements at the same time. In our case, when-
ever required, we resampled the data to 200 ms intervals by averaging all samples
within this interval.

4.3.2. Experimental Setup Validation

This section describes the validation of the experimental setup with respect to power
limits, overhead, and accuracy.

Power Limits of the Riser Cards The current-sense shunts on the riser card have
a very low resistance of 5m() to limit the impact on the system. Still, the shunts
cause a voltage drop at each pin, which can be computed using AU = I x R and
should not bring the voltage below the minimum operating voltage of the memory.
In addition, the power dissipated at the resistor must not exceed its power rating,
which is 0.5 W in this case, and should also leave some tolerances. This power
dissipation can be computed using P = U x [ = I? x R. shows the
voltage drop and the power dissipation at the highest expected current specified by
the JEDEC standard for RDIMMs [36].

Typical | o0 e | M Voltage | Power | Shunt
Voltage & Rating

Pin Voltage
tance | rent g Drop Dissipation

VDD 1.21V | 25m | 11.7A | 1.16 V 0.029V | 0.3422W 0.5W
VPP 250V 5mf2 | 3.75A | 241V 0.019V | 0.0703 W 0.5W
12V 12.00V 5m2 | 1.17A | 10.2V 0.0056V | 0.0068 W 0.5W

Table 4.3.: Voltage drop and power dissipation at shunts on DDRA4 riser card

As the voltage after the drop is above the minimum expected voltage and the
maximum power dissipation is below the rating of the resistor, it is safe to operate
the riser with DDR4 RDIMMs. However, it needs to be ensured that the mainboard
provides the typical voltage, especially for the VDD rail because a voltage close to
the minimum supported voltage provided by the mainboard can result in an under-
voltage supply with the riser card. The PMem modules can be safely operated as
they are primarily powered using the 12V rail, which offers a large margin for both
voltage drop and power dissipation as the current is 10 times lower compared to a
1.2V supply.

DIMM Riser Overhead The DDR4 riser cards increase the length of the traces
to the memory and also introduce an additional contact resistance. In addition,
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the case of the server needs to stay open when the risers are installed due to the
increase in height. This leads to poor airflow in the system. Both could result in
degraded performance for the memory access, which we evaluated by running the
Intel Memory Latency Checker (MLC) [29] with no risers installed in a closed case
and then compared the benchmark results to the results obtained with one riser
installed on both sockets and the rear side of the top case cover open. Two memory
configurations were considered: 1x32GB Samsung DDR4 on both sockets and a
riser installed on socket 0, as well as 1x128GB Optane PMem + 1x32GB DRAM
per socket and the PMem module on socket 0 being mounted using a riser. The
results of both runs are shown in [table 4.4

(a) DRAM (b) PMem
No Riser With Riser | No Riser With Riser
Case closed Case open | Case closed Case open

Local 61.5+0.1ns 61.4+05ns | 183.84+0.1ns 183.4 + 0.3 ns
Latency
Remote | o0 0 L 01ns 1204+ 0.3ns | 252.3 + 1.3ns  252.0 + 1.2 s
Latency

Table 4.4.: Memory access latency comparison between the operation with and with-
out risers used for DRAM and PMem. Mean of 5 measurements with
standard deviation.

As shown in [table 4.4] the risers and the opened case do not significantly impact
the memory performance. The minor differences between the results are well within
statistical variations and can be ignored for our experiments in accordance with the
results by Desrochers et al. [10].

Error Margin Analysis To correctly interpret the results of the physical power
measurements, we need to conduct an error margin analysis. Three primary error
sources can affect the power measurements here: The tolerance of the shunt at the
riser card, the current-sense amplifier, and the MCC128 data acquisition device.
Texas Instruments provides an Excel tool to compute an upper error bound for
their current-sensing products [89], which we utilized to get an error estimation for
the 12V and VDD pins for the cs-amps INA2180 and INA296.

As shown in the current-sensing is subject to an increasing total error
at low current for the INA2180. In our case, the minimal expected current is about
1.5 A for the 1.2V line and 0.3 A for the 12V line, at which the theoretical maximum
error is about 30% for both rails. The INA296, which is represented by the dashed
lines, shows a significantly lower error here and converges to the tolerance of the
shunt at a load current of less than 0.25 A and should be preferred over the INA2180
in terms of accuracy. Unfortunately, the INA296 showed some problems in practice,
mainly caused by a constant offset in output voltage - possibly caused by a wrong
reference voltage. When we were able to get reliable results with the INA296 at
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Figure 4.6.: Theoretical residual sum of squares (RSS)) error of INA2180 vs. INA296
in high-side current sensing at 25°C. V, = 5.1V Shunt Tolerance: 1%.
Comparison between Voyr = 12V, Rapune = dmS2, Gain = 200 and
Veorr = 1.2V, Rapunt = 2.5m§ Gain = 100

some point, only a minor difference to the measurements with the other amplifier
was observed. This indicates that the error model is more of a theoretical nature
and that the actual error is lower in practice. As we were not able to get consistent
and reliable results with the INA296, we decided to use the INA2180 regardless of
the error. The INA2180 also supports amplifying two channels at once, while the
other amplifier only has single-channel support. This allows measuring two DIMMs
at the same time.

In addition to the sensing error, which includes errors caused by amplification
and the shunt itself, a maximum absolute error of 3mV is introduced by the analog-
digital conversion at the data acquisition device at 25°C room temperature [60].
If we assume a current of 2A at the CSR for VDD, a voltage drop of 5mV, which
is amplified to 1V, is measured by the DAQ device. This results in a relative
error in the A/D conversion of 0.3%. The voltage divider for the 12V line uses
resistors with 0.1% tolerance and introduces an error of at most 0.154% to the
power measurements.

4.3.3. Evaluation Experiments

For validating RAPL, we need to compare the RAPL measurements with reference
power measurements for different workloads. These workloads can be classified
into three types: idle workloads, CPU-intensive workloads, and memory-intensive
workloads. As we are only interested in the energy consumption of the heterogeneous
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memory domain, the focus lies on the memory-centric workloads. A collection of

kernels is given in [table 4.5]

Workload Boundness Threads (DRAM) Threads (PMem)
Stream (All) Memory 32 4
Stream (Copy) Memory 1,4,8,16,24,32 1,2,4
Stream (Scale) Memory 32 4
Stream (Add)  Memory 32 4
Stream (Triad) Memory 32 4
Mem Write Memory 32 4
Mem Copy Memory 32 4
Dot Product Memory 1 1
SSE2 ADD Compute 1 1
SSE2 MUL Compute 1 1
B[StE 1\1\/511\111&. Compute 1 1
Sleep Idle 1 1
Busy wait Idle 1 1

Table 4.5.: Kernels used for RAPL validation

For idle measurements, the sleep() system call and busy waiting were used.
Some CPU-intensive workloads were extracted from the roco2f| workload-generation
tool, which was used to validate the accuracy of node-level RAPL measurements by
Schone et al. [81]. In addition, the four separate kernels from the STREAM bench-
mark with different numbers of threads were used as memory-intensive workloads.
The different thread count is essential as the power consumption of the memory will
increase with more threads. As we only consider configurations with a single PMem
DIMM, we limited the number of threads concurrently accessing PMem to 4. For
higher thread counts, the performance and bandwidth would drop significantly.

We performed these experiments on the Ice Lake and Broadwell systems as de-
scribed in [table 4.2 OpenMP threads are pinned to the CPU cores for all experi-
ments using OMP_PLACES=cores and OMP_PROC_BIND=true. Using the numactl -m
0 -N 0 command, the threads are placed on socket 0, and all allocations are forced
on the DRAM of socket 0. For allocations on PMem, numactl -m 2 -N 0 is used to
allocate memory on the local PMem memory attached to socket 0. The GCC 8.5.0
compiler with default flags is used for compiling the binaries.

8https://github.com /tud-zih-energy /roco2/
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4.3.4. Experimental Results

The experimental instrumentation setup was used for power measurements of up to
two DIMMs and the comparison to RAPL. DRAM-only configurations on Intel Ice
Lake and Broadwell systems and configurations with both PMem and DRAM on
the Ice Lake system were considered.

Intel Ice Lake-SP

shows the correlation between RAPL and the reference measurements
for the workloads described in with different memory module populations.
The graphs have been created by resampling both the RAPL and reference measure-
ment samples to a common interval of 200 ms by averaging all measurements in this
interval. At most 100 samples, each corresponding to a 200 ms interval, are shown
for each workload to aid visualization. shows results with a single 16GB
DRAM module per socket, [figure 4.7 with a single 32GB DRAM module per socket,
and for 2x32GB DRAM modules per socket. The power consumption of
modules installed in socket 0 is measured with the risers and compared to RAPL
measurements of socket 0.

Results from show a significant offset between RAPL measurements of
the memory domain and our reference measurements consistently throughout all
memory populations we investigated. For the population with a single 32GB Sam-
sung DDR4 module (figure 4.7b)), RAPL reports almost twice the power reported by
the reference measurements when the memory is idle or under light load. At higher
load, this gap slightly reduces and the relative error decreases.

In addition, an increased variation in power consumption can be observed for
RAPL measurements. For example, RAPL reports between 3.5 W and 4.3 W for
idle workloads, while our reference measurements report a power consumption be-
tween 1.6 W and 1.9 W. This gap decreases at higher power consumption. In general,
a monotonicity in the correlation between RAPL and reference measurements can
be observed: If reference power measurements increase significantly, the power con-
sumption reported by RAPL increases significantly, too. As indicated by the red
curve, the relationship between RAPL and reference measurements can be roughly
approximated linearly for all three memory populations. The absolute offset be-
tween the measurements decreases at higher power consumption, and, in particular,
with higher memory capacities installed. An evaluation of higher memory capaci-
ties would be of interest here but is limited by our measurement setup, which only
supports measuring two DIMMs at onceﬂ

9We also ran the measurements with 4, 6, and 8 DRAM DIMMs per socket and measured
the power consumption of only two using risers. We assumed that the power consumption of all
DIMMs of the same model is identical under the same workload and computed an estimation
for all memory modules based on measurements of the two DIMMSs accordingly. However, under
this assumption, RAPL would underestimate the reference power measurements. As the power
consumption between the two measured DIMMs differed significantly under load, we concluded
that this assumption is invalid. That is in line with previous work [17].
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Figure 4.7.: RAPL memory measurements vs. reference on Intel Ice Lake system:

DRAM only

Results for experiments with 1x32GB DDR4 and 1x128GB PMem per socket are

shown in with the power of both the DRAM and the PMem modules
of socket 0 measured using riser cards. For [figure 4.8a] allocations were made on
DRAM, while in on local PMem. When allocating on DRAM, the cor-
relation between RAPL and reference measurements is similar to when no PMem is
installed (see . However, an overall higher power consumption is reported
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and RAPL measurements are again spread wider at low load on memory. When
allocating on PMem, the overall variance in power consumption is lower. Work-
loads with little load on memory consume about 5.2 W, the Dot Product kernel
consumes 11.8 W, and the Memory Read workload consumes the highest power of
about 13 W. All other workloads consume approximately 12.5 £+ 0.3 W.
shows RAPL and reference measurements for socket 0 on the Ice Lake platform
populated with 1x32GB DRAM when idle and during execution of the STREAM
triad kernel with 32 threads. When idle, the reference measurements report a power
between 1.6 W and 1.9 W, while the power reported by RAPL is more than two
times higher and varies between 3.5 W and 5W. In addition, RAPL reports peaks
in the power consumption, e.g., between 1300 ms to 2600 ms, which are not reflected
in reference measurements. Overall, no strong correlation between small changes
in the reference measurements and RAPL measurements can be observed. During
the execution of the STREAM triad kernel with 32 threads, reference measurements
report about 5.75 W, while RAPL reports around 7W. Here, large spikes in power
consumption are reflected in both the reference and RAPL measurements, for ex-
ample, during the first 300 ms. shows the RAPL measurements and
reference measurements for socket 0 on the Ice Lake platform with 1x32GB DRAM
and 1x128GB PMem. Allocations are done on PMem and results are shown for
when idle and during the execution of the STREAM triad kernel with 4 threads.
The green, dotted curve is the sum of the power consumption of DRAM (shown in
blue) and PMem (shown in orange) and should be compared to the purple curve
that represents corresponding RAPL measurements. For the DRAM, the power
consumption is similar at idle compared to when PMem is under load. At idle, the
DRAM consumes about 1.8 W while the PMem module consumes 3.4 W. When the
STREAM triad benchmark is executed with 4 threads, RAPL reports about 2.0 W
to 3.0 W more than what reference measurements report. In addition, the RAPL
measurements are again subject to temporal variations.

compares RAPL with reference measurements on both sockets of the
Ice Lake system when idle. Each socket was populated with a single 32GB DDR4
module installed through a riser for power measurements. The reference measure-
ments report about 1.8 W for the DRAM modules on each socket, with a slightly
higher temporal variation on socket 0. For socket 0, RAPL reports between 3.7 W
and 4.5 W for the memory domain, while, in contrast, for socket 1 RAPL reports be-
tween 5.25 W and 5.7 W. While RAPL diverges, reference measurements are overall
close between both sockets. This is reinforced on the same system with full DIMM
population (see for which [RAPT] reports 35.37 W for the memory domain
of socket 0 and 41.93 W for socket 1 when idle[™]

10Measured repeatedly using perf stat -e power/energy-ram/ -I10000 -per-socket, i.e.,
averaging over 10 seconds for each socket.
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Figure 4.8.: RAPL memory measurements vs. reference on Intel Icel Lake system
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Figure 4.9.: RAPL memory measurements vs. reference on Intel Ice Lake system
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Figure 4.10.: RAPL memory measurements vs. reference on Intel Ice Lake system

over time: 1x32 GB DDR4 + 1x128GB PMem in AppDirect Mode.
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Figure 4.11.: RAPL vs. reference power measurements on the Intel Ice Lake system
with 1x32GB DDR4 DRAM on each socket and reference power mea-
surements at both DIMMs at idle state

46



4.3. Accuracy of RAPL for the Memory Domain

Intel Broadwell-EP

We conducted the same experiments as on the Ice Lake system also on the Intel
Broadwell-EP system (see in order to verify the accuracy of our reference
measurements with the results from a similar platform from the literature [10]. Due
to the position and orientation of the memory slots on the mainboard and the limited
space available in the case, only one riser card could be used per socket. In our case,
the D1 slot of socket 0 and the F1 slot of socket 1 have been populated with a riser
card for power measurements and 16GB of SK hynix DDR4 memory. All other slots
remain unpopulated. The correlation between RAPL measurements and reference

measurements on socket 0 when allocating on socket 0 is shown in [figure 4.12, When
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Figure 4.12.: RAPL memory measurements vs. reference on socket 0 of Intel Broad-
well system: 1x16GB DDRA4.

the system was idle, the reference measurements differed significantly and inconsis-
tently from what RAPL reported. For workloads with low load on the memory,
such as Busy Waiting, DGEMM, the Add Kernel, and the Multiplication kernel,
only minor variations in the power consumption were observed. Here, the reference
measurements report about 1.6 W, while RAPL reports 1.7 W. For the dot product
kernel, both RAPL and reference measurements reported about 3.3 W with minor
variations very similar to the Memory Read kernel, for which both RAPL and refer-
ence measurements reported about 3.7 W. For workloads that consumed more than
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4 W, RAPL reported slightly less power and a wider spread of RAPL measurements
could be observed while reference measurements were more consistent. The single-
threaded STREAM copy, for example, consumed about 4.1 W according to reference
measurements, while RAPL reported a varying power consumption between 3.7 W
and 4 W. In addition, some outliers for which RAPL reported significantly more
power than reference measurements could be observed for the STREAM copy ker-
nel with up to 24 threads.

shows corresponding RAPL and reference measurements for socket 0
over time during idle and during the execution of Memory Copy with 32 threads.
When idle, RAPL reports a consistent, repetitive pattern of a negative spike to 0.6 W
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Figure 4.13.: RAPL memory measurements vs. reference on Intel Broadwell system
over time. 1x16GB DDR4 per socket. Measurements on socket 0.

followed by a positive spike up to 1.6 W and a roughly constant power consumption of
1.25 W for 300 ms—400 ms. The reference measurements match this pattern partially
after 4400 ms. In particular, the power consumption peaks are present in RAPL and
reference measurements and align. In addition, reference measurements report about
0.2 W less during the constant power phase.

When executing the Memory Copy kernel with 32 threads, RAPL and reference
measurements both report a power consumption of around 4.1 W with spikes be-
tween 3.5 W and 4.6 WI| These spikes line up between both measurement methods.

To better compare the RAPL error between the Ice Lake and the Broadwell-
EP platform across the different workloads, the total energy-to-solution has been
computed by integrating the power samples over timdﬂ. For the Ice Lake platform,
three different DRAM-only memory populations have been considered. The relative
energy difference between RAPL and reference measurements is shown in [table 4.6]
A positive value indicates that RAPL overestimates the actual energy consumption,
while a negative value indicates underestimation.

" For other workloads that put stress on the memory, a slightly larger gap between RAPL and
reference measurements can be observed (see .

12The energy-to-solution includes both the average power and the execution time. This way,
we can compare both systems quantitatively, although the execution time might differ.
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Ice Lake Broadwell

2x32GB 32GB 16GB 16GB

DDR4 DDR4 DDRA4 DDR4

Busy Wait 50% 107% 118% 8%
Sleep 58% 118% 122% 35%
Mat. Mult. 50% 112% 119% 8%
Dot Product 33% 55% 58% 4%
Memory Read 45% 8%  102% 0%
SSE 128 ADD 46% 113% 119% 8%
SSE 128 MUL 49% 109% 116% 8%
Stream Copy (1 Thr.) 23% 43% 46% -2%
Stream Copy (8 Thr.) 10% 29% 33% -9%
Stream Copy (32 Thr.) 8% 23% 27% -10%

Table 4.6.: RAPL error comparison between the Ice Lake and Broadwell systems

As shown in [table 4.6] the relative error of RAPL decreases with increasing memory
capacity. For example, the error during sleep with 2x32GB DDR4 installed is 58%
compared to 122% with only 16GB of memory installed. At higher load, this error
decreases to less than 10% with 2x32GB memory and less than 20% with 16GB of
memory. Nevertheless, RAPL overshoots in every case on the Ice Lake system. On
the Broadwell-EP system, the RAPL error is significantly lower and less consistent:
The error can reach up to 35% at idle, while RAPL overestimates by up to 10%
at low load and underestimates by up to 10% at high load. An absolute error
of less than 2% can be observed for a medium load on the memory, for example,
single-threaded, memory-bound workloads.

4.3.5. RAPL Error Analysis

The results for the RAPL validation show that [RAPI] reports a significantly higher
power consumption for the memory domain than physical measurements at the
DIMM on the Intel Ice Lake-SP platform both for DRAM and PMem in all tested
memory populations. The absolute difference decreases slightly at higher current
demand, and as a result, the relative offset decreases to about 10%. In contrast,
[RAPIL] matches the reference measurements significantly better on Broadwell-EP,
which is similar to the Haswell-EP architecture, which was evaluated by Desrochers
et al. [10]. Additionally, we have shown that [RAPL] measurements are inconsistent
between different sockets of the Ice Lake-SP system. As shown in the ref-
erence measurements at the DIMM report roughly the same power consumption for
both sockets while the corresponding measurements with [RAPI] differ significantly
between both sockets. In contrast, [RAPI] memory measurements are consistent
between both sockets on the Broadwell-EP system.
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As indicated in our reference measurements cannot be considered
as a ground truth as they can be subject to a significant theoretical error as high
as 30% when the load on the memory is low. However, for the population with a
single 16GB SK hynix DDR4 module (see our reference measurements
report between 1.6 W and 1.8 W when idle. This matches the 1.7W active standby
power consumption according to the DIMM’s datasheet [87, p.74]. Thus, our mea-
surements are in the correct order of magnitude and match the expected power
consumption significantly better compared to [RAPIl For the other memory mod-
ules, such datasheets are not available publicly. Furthermore, different current-sense
amplifiers with significantly lower theoretical errors gave us very similar results, indi-
cating that this high error margin from is more of a theoretical nature.

Our results only cover configurations with up to two DIMMs populated per socket,
which is well below the maximum number of 16 DIMMs supported per socket on our
Ice Lake system. At least one DIMM for each memory channel, i.e., eight DIMMs per
socket in this case, would be considered relevant for use in production. In particular,
our memory configuration is synthetic and would not be used in production. While
our approach could be easily extended to measure 16 DIMMs at the same time, it
would require 16 DDR4 riser cards and 8 MCC-128 data acquisition devices. In
addition, the extended footprint of the riser cards and the attached wires prevents
us from placing two risers in slots next to each other.

As extending our measurement infrastructure in a way that we could measure all
DIMMs in a real-world memory population of the server is infeasible, we discuss
possible reasons for the large gap between [RAPI] and reference measurements for
single and dual DIMM population. We aim to reverse engineer how RAPL works
internally and explain how this knowledge can be applied to a system with full
memory population.

Possible Reasons for RAPL Inaccuracy

As discussed previously, RAPL has been shown to significantly overestimate the
power consumption of memory in the tested configurations on the Ice Lake-SP sys-
tem. In contrast, the results with the same measurement setup on the Broadwell-EP
system are closer to RAPL and match the observations by Desrochers et al. [10]
closely. To explain these differences, several possible reasons that can explain the
variations have been identified and will be explained in the following.

Intel SGX/Energy Filtering In previous work, the RAPL energy readouts were
successfully used for side-channel attacks, e.g., monitoring the control flow of ap-
plications or accessing cryptographic keys |54]. To prevent this, Intel implemented
Energy Filtering, which adds random noise to the measured power and randomly
changes the update interval of counters if Intel Software Guard Extensions (SGX))
are enabled or energy filtering is explicitly switched onlE. The platform still uses the

13Energy filtering can be switched on explicitly until the next processor reset by setting a specific
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unfiltered measurements for power management. While this filtering added an error
of up to 50% with the initial patch by Intel in 2020, this error was reduced with
an update from 2021 to 2% at sampling intervals of 1 second or up to 15% when
sampling RAPL every 100ms [32]. As stated by Intel, this filtering only affects the
package and PPO RAPL domain, however, the 3rd Generation Scalable CPUs (e.g.,
Ice Lake-SP) are not explicitly listed as affected CPUs. On the systems used in this
thesis, both Intel and explicit energy filtering are disabled. Thus, the filtering
cannot explain the high gap between RAPL and reference measurements.

Sensing Point at Voltage Regulator As described in [figure 2.6, memory DIMMs
are primarily powered by the voltage regulators (VRs) on the mainboard, even on
systems with a Fully Integrated Voltage Regulator (FIVRI). Such a [VRI] internally
measures the current and voltage and communicates it to the CPU package over
SVIDI (see [section 2.4)), which utilizes this data for [RAPI] This feature is called
[[MONand usually refers to the measurement of the output current of the[VRl In this
case, power measurements based on it would be expected to be close to our reference
measurements, which are based on measurements directly at the DIMM pins. The
exact specification of the demands of voltage regulators and their current sensing
capabilities are specified by Intel in the non-disclosed VR 13 / VR 13.HC standard
for the Ice Lake platform. The latest published version of the VR specification is
available for the VR 11.1 standard from 200@ According to this document,
[[MON explicitly measures the “output load current“ of the voltage regulator.
After an inspection of the server board of the
Ice Lake system, the PXE1,10CDM-G003 VR
controller has been identified as a
candidate responsible for controlling power de-
livery to the memory. Again, a datasheet for this
chip has not been published, but the datasheets
for variants of the controller with different num-
ber of phases are available [25]. All these con-
trollers feature multiple output channels that
each can be configured for specific output volt-
ages using a digital interface. The controller
measures the input power consumption by mea-
suring the current and actual voltage of the 12V
input. In addition, the output current of each
channel, which can be used for computing the
output power, is monitored separately. Accord-
ing to the datasheet , the current measure-
ments are realized using an inductor-based current sensing circuit that achieves “best
in class noise immunity“ by oversampling the signal. The support for input power
monitoring motivates that RAPL memory measurements on the Ice Lake system are

Figure 4.14.: PXE1410CDM volt-
age regulator controller chip on
the Intel M50CYP2SB server
board

14The VR 11.1 standard applies, for example, to the antiquated Intel Nehalem architecture.
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likely to include the power loss at the voltage regulators in addition to the actual
power consumption of the[DIMMs| As shown in[figure 2.7} typical voltage regulators
for powering the memory have an efficiency in the order of 90% at medium output
load that slightly decreases at higher loads. For low output current, the efficiency
significantly decreases, resulting in a potentially high inaccuracy of RAPL. This is
in line with [section 4.3.4] where an increasing error of RAPL can be observed for
lower power consumption.

The chosen memory population of only up to two DIMMSs, which is limited by
the number of riser cards and data acquisition channels we have available, reinforces
this effect. While the voltage regulators are designed to power up to 16 DRAM
DIMMs or 8 DRAM DIMMs plus 8 PMem DIMMs at once, the population with
only two DIMMSs results in a load current way below the voltage regulator’s optimal
efficiency.

To further investigate whether RAPL memory measurements are based on [VR]
input or output monitoring, we collected a non-representative list of available volt-
age regulators with [Serial Voltage Identification| (SVIDI]) support. A list of these
regulators with target use cases and supported current sensing features is shown
in in the appendix. All listed VR13-compliant devices feature both in-
put and output current monitoring, while some VR 12/12.5 products only provide
output current sensing. For the TPS5/4C26 [94], which specifically targets DDR5
power supply, the RAPL memory measurements are explicitly based on input power
measurements, i.e., it features “Input power monitoring for DDR5 memory RAPL.
Overall, it is likely that the RAPL memory measurements are based on input power
sensing rather than output sensing on the Ice Lake-SP system. While both Skylake
and Ice Lake server CPUs require the VR 13/VR 13.HC standard, RAPI] memory
measurements are based on output power measurements in the Skylake platform [23,
p.75]. Thus, [RAPL] memory measurements are not based on input power sensing
on every VR 13 system. The datasheet for a VR13 compatible controller [73] also
explicitly states that it supports “input current sensing required for NVDIMM®*,
which indicates that the VR13 specification might require input current sensing
rather than output current sensing for persistent memory technologies. A possible
reason for this is that these DIMMs are usually powered using three voltage rails,
ie, 1.2V, 25V, and 12V, and using input current sensing allows monitoring all
three power rails by power monitoring a single point.

This could also explain the phenomenon that[RAPT]sometimes reports a diverging
power consumption while the reference measurements are the same (see .
As the voltage regulator might automatically shut down phases to increase its effi-
ciency (phase shedding, see [page 19), the RAPT] measurements can differ depending
on the number of phases that are active. For example, if the output current is are
close to the threshold for toggling a phase, the phase could continuously switch on
and off during a roughly constant output power consumption.

With this in mind, the accuracy of RAPL memory energy measurements strongly
depends on the installed voltage regulators and controllers, the memory population,
and the current that is drawn by the installed memory modules. Our experimental
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results (see confirmed that the gap between RAPL measurements and
reference measurements at the risers, which is approximately the same instrumen-
tation point as output current sensing at the VRl reduces with increasing current
drawn by memory. The installation of additional DIMMs, which also increases the
current, also decreases this error. This observation differs from previous work in
which the accuracy of RAPL was mainly characterized in terms of the used CPU
architecture |10, [23].

Accuracy of Current-sensing at Voltage Regulators Another error source is the
actual accuracy of the current sensing at the [VRI . As already stated by
Gough et al. [18] in 2016, the current sensing feature at VRs is typically optimized
for the highest current it can deliver and is subject to an almost constant offset
error. However, if the load current reduces, the relative error of the current sensing
will increase significantly, resulting in high inaccuracies of RAPL measurements if
systems are populated with significantly lower memory capacity than they have been
designed for [18, p. 63]. The VR11.1 Design Guidelines give concrete values of the
maximum current monitoring error on older architectures. At a load of more than
50%, the error needs to stay below 15%, and at a load up to 30%, an error of 24%
is allowed, while the error is recommended to stay below 50% at a load of 15% [34].
Such requirements are not published for modern Intel systems, but some device
vendors provide typical accuracy values of their current sensing circuits in their
datasheets. For example, the MP86901C' [101], which is advertised as very “reliable
and accurate®, has an accuracy of £2% at 30 A load, £4.0% at 10 A load, and 7%
at b A load. However, if only a single DDR4 module is used, the current for the 1.2V
line is usually less than 2 A; and the error is higher. The Infineon TDA38640 [24],
for example, has a rated accuracy of £6% for output current monitoring
at maximum load - the accuracy is expected to be lower at light load.

Components Included in RAPL Measurements In addition to the VCCIN voltage
delivered to the [FIVR] of the CPU, the memory VRs deliver two 1.2V lines called
VCCDg123 and VCCDysg7 to the CPU. These voltages are used for powering the
“memory interface“, which is not specified further [26]. Potentially, this could mean
that the memory VRs also power the integrated memory controller (IMC]) of the
CPU, which in turn may suggest that the RAPI] memory domain also includes the
power consumption of the [MCl

Another reason for the difference between reference measurements and [RAPI] is
that we only measure the power consumption of two pins per DIMM, and the other
pins are neglected due to their minor contribution to the total power consumption
and the limited number of data acquisition channels we have available. However,
the power consumption of the other pins and the power dissipation at the current-
sensing shunts are expected to be included in the VR [IMON| Thus, it is included
in RAPL measurements, while it is not covered by our reference measurements.
Overall, this difference is expected to be well below 500 mW and cannot be used to
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explain the significant gap between RAPL and reference measurements.

While we discussed potential reasons for the offset in [RAPLI measurements in this
section, we will discuss what our findings imply for users of [RAPI] with respect to
temporal resolution and accuracy of the memory domain in the following section.

4.4. Discussion

The temporal resolution of RAPI] has been evaluated and discussed in [section 4.2}
As pointed out, the update interval of RAPL counters is, on average, 1 ms but can
be subject to a significant temporal variation. While previous work already has
shown this on older architectures, this variation is up to 4 times higher on the Ice
Lake platform compared to Broadwell-EP, yet the delay between two updates is at
most 2ms. Overall, RAPL counters should either be oversampled significantly or
a sampling interval of at least 2ms or higher should be chosen to prevent exces-
sive aliasing. This also limits the applicability of [RAPI] for measuring the energy
consumption of short code paths.

Based on the RAPL validation experiments from [section 4.3 we have shown that
the [RAPI] memory measurements are fundamentally different on the Ice Lake-SP
system compared to previous architectures such as Intel Haswell or Broadwell. On
previous platforms, the RAPL measurements were based on the output current
monitoring of the voltage regulators powering the memory. This approximately
matches the instrumentation point for our reference measurements at the DIMM
riser. The Ice Lake system, which supports high-capacity PMem, however, uses the
input power monitoring at the voltage regulators for power reporting and budgeting,
resulting in a significant gap between RAPL and reference measurements. This gap,
as we believe, primarily corresponds to the power losses at the voltage regulator, i.e.,
the difference between the input and the output of the voltage regulator in terms of
power.

A possible reason for the changed instrumentation point for RAPL is that PMem
modules are powered inherently different by the mainboard compared to DRAM.
While DDR4 DIMMs are mainly powered using 1.2V and 2.5V provided by the
mainboard, PMem DIMMs take a 12V input from the mainboard and have an on-
dimm Power-Management Integrated Circuit (PMICI), which regulates all required
voltages for on-DIMM consumers. In addition, these modules use the 1.2V and
2.5V lines from the mainboard as secondary power supply. This different power
supply topology of DDR4 DRAM and Optane PMem modules, that both share the
same form factor and can be plugged interchangeably into the same memory slots
on the mainboard, puts additional requirements on the mainboard’s power delivery
and voltage regulation components. On one hand, the voltage regulator should
be able to power a system fully populated with high capacities of DRAM and no
PMem, which requires a significant fraction of the power delivered by a 1.2V line
at high current. On the other hand, it needs to power heterogeneous populations
with DRAM and PMem, which is primarily powered by a 12V line at lower currents
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compared to a 1.2V supply.

While our results do not necessarily mean that RAPL measurements are wrong on
the Ice Lake platform, it means that the instrumentation point for RAPL memory
measurements may has changed without clear announcements by Intel. For example,
this change is beneficial for estimating the power consumption of a complete node by
summing up the power consumption of all RAPL domains, since RAPT]also reflects
power conversion losses. Conversely, it limits the usability of RAPL for measuring
the actual power consumed by the memory, as the power losses during voltage
conversion distort the power consumption of the actual memory. The nonlinearity
of the losses (see results in a non-linear correlation between the power
consumed by the memory modules themselves and the power consumption reported
by [RAPII This is confirmed by [figure 4.7d, which shows that the gap between RAPL
and reference measurements reduces with higher memory power consumption.

In addition, RAPL measurements are often inconsistent, i.e., RAPL reports dif-
ferent values for power consumption while the reference measurements are the same
over time. This can be explained by phase shedding, an energy efficiency mechanism
of the voltage regulators that regulate the number of active phases to be close to
the maximum efficiency point of the regulator at different load levels. The hereby
achieved reduction in power losses at the VR also decreases the gap between RAPL
and reference measurements.

The difference in RAPL measurement methodology also has implications on power
budgeting and limiting. If, for example, the power for all memory modules is capped
to 200 W using RAPL because the system can only dissipate up to 200 W of heat
directly at the DIMMSs, the memory modules will be throttled way before they
reach a power consumption of 200 W, resulting in lower memory performance than
expected.

In this chapter, we have shown how to measure the power consumption of DDR4-
compatible DIMMs by instrumenting the memory slots with risers. This approach
is not perfect since it is unsuitable for full production scale. However, it gave
us a sophisticated insight into the DIMM-level power consumption of DRAM and
PMem. We also evaluated RAPL’s accuracy on the Broadwell system, which is
rather dated but the most similar system to the one used in a previous study [10] we
had available. Our results are in line with that study. Thus, our experimental setup
provides accurate measurements. Our results also raise awareness of the difference
between RAPL and actual power measurements. We furthermore provided a detailed
insight into how the mainboard powers DRAM and PMem memory modules, how
the mainboard’s power measurements are used for RAPL, and how RAPL’s accuracy
depends on installed memory capacity, population schemes, the mainboard, and the
load of the memory.
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5. Performance Metrics for Energy
Consumption of Memory

In this chapter, we propose the Dynamic Energy per Load (DEL]) and the Dynamic
Energy per Store (DES) metrics for describing the instruction-level energy con-
sumption of heterogeneous memory. After introducing the metrics, we describe an
approach to measure the energy consumption and conduct memory energy measure-
ments of synthetic workloads with sequential, strided, and random accesses on both
PMem and DRAM. Based on the collected data, we evaluate [ DEL and [DES| with dif-
ferent access patterns and compare them between both memory types. In addition,
we compute the Bandwidth per Watt metric to assess the energy efficiency
impact of various memory access patterns on heterogeneous memory systems.

5.1. Dynamic Energy per Load/Store Metrics

As discussed in [chapter 3| the Energy per Instruction (EPI) is a well-known metric
for characterizing the energy consumption of individual CPU and GPU instructions.

This metric has already been used for characterizing CPU energy consumption of
memory load and store instructions in previous work [63].

The Dynamic Energy per Load (DEL) and Dynamic Energy per Store (DES])
metrics characterize the average dynamic energy consumed by the memory to com-
plete a load or store instruction executed by the CPU because these memory access
instructions are the primary cause of the memory energy consumption. The dy-
namic energy is the total energy consumption of the instruction minus the energy
that the memory would consume during the same period when no memory access
occurs, i.e., the idle power consumption times the execution time of the instruction.
These metrics can be universally computed for different scenarios, such as different
memory access patterns on heterogeneous memory.

Both metrics cover the dynamic energy consumed by an instruction on average.
In practice, the dynamic energy consumption can differ significantly between con-
secutive instructions. For example, in sequential loads, a cache miss will cause a
high dynamic energy consumption of the memory, while a cache hit is free in terms
of dynamic memory energy consumption. These metrics amortize this effect, as our
goal is to focus on the main memory domain. In addition, both metrics also include
typical variations in energy consumption and, thus, should always be reported with
a measure of uncertainty, such as confidence intervals.
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5.2. Energy Measurement Methodology

A reliable method for measuring the energy consumption of the memory modules is
required to evaluate the [DEIL] and metrics on different heterogeneous memory
types under varying access patterns. Initially, we utilized |Running Average Power|
(RAPL)), which reports the accumulated energy consumption of all DIMM
memory modules over a software interface (see [section 2.3.2), for this. In this sec-
tion, we discuss why [RAPIJ cannot be used for measuring energy in this case and
present an alternative methodology using physical power measurements directly at
the memory modules.

The dynamic power of each memory type can be approximated when memory is
only allocated on either DRAM or PMem by subtracting the idle power consumption
from the total power consumption under load. While this was the initial plan for
this thesis, the results from the [RAPT] validation (see|chapter 4)) emphasized that we
cannot use [RAPI] for accurate and consistent power measurements of the memory
modules themselves. In particular, the fact that the RAPI memory energy includes
significant power delivery losses, which are non-linear in terms of power drawn and
make [RAPT] report more power than consumed by the memory modules, rules out

[RAPT] for our purposes.

5.2.1. Physical DIMM Energy Measurements

As discussed above, we decided that [RAPT] cannot be used for our purposes, so we
adopted our reference measurement approach using riser cards from for
measuring the energy drawn by the memory domain during the execution of code
kernels.

For this, we increased the power sampling interval at the MCC128 DAQ device
from 1kHz to 25kHz and integrated these samples over time to get the energy
consumption. The integral is computed numerically using the trapz function from
NumPy. The significantly increased sampling rate, which is also the maximum the
device supports when sampling with four channels, reduces the effect of aliasing and
improves the overall accuracy of the energy measurements.

As we have only two riser cards available, the power of only two DIMMs can be
measured simultaneously. In particular, we cannot measure the power consumption
of a system with fully populated memory slots. Thus, we decided to focus on single
DIMM'’s power consumption only. While this synthetic scenario is not considered
practically relevant because only the bandwidth of a single memory channel is avail-
able, it is the best solution with the equipment we have access to and gives a more
generalizable view of memory performance and energy efficiency.

Another challenge is that we are only interested in the power consumption dur-
ing the execution of the actual compute kernel rather than in the initialization or
finalization phases, as these would significantly impact our results. In many cases,
the energy consumption of the initialization can exceed the energy consumed by the
kernel drastically in synthetic benchmarks. A common technique for solving this
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is to instrument the code so that only the energy consumption during the execu-
tion of a specific code region is measured by wrapping the part with markers in
the code. This technique is implemented by several performance monitoring tools
such as LIKWID [97] or PAPI [59] that provide high-level APIs for this purpose
and support energy monitoring using [RAPI] As we were not using [RAPI] for our
purposes and our own energy measurement methodology could not be implemented
into the abovementioned tools, we developed a C header file with macros for start-
ing and stopping energy measurements. These markers can be placed in the code to
measure the energy consumption only between the MemEnergyMeasure_Start and
MemEnergyMeasure_End marker. An example of how this can be used for a simple
array reduction is shown in [listing 5.1 Our approach is currently limited to only
one instrumented region per executable.

#include "measure__memory__energy.h"

#include <stdlib.h>

int main(int arge, chars* argv) {
size_t N = 1024 % 1024 x 1024;
MemEnergyMeasure_ Init
doublex data = (doublex) malloc(sizeof(double) % N);
for(int i = 0;i < N; i++) {
data[i] = (double) rand();

double sum = 0.0;

MemEnergyMeasure_Start

for(int i =0; 1 < N;i++) {
sum += datali];

}

MemEnergyMeasure_ End

free(data);

MemEnergyMeasure Finalize

return 0;

Listing 5.1: Code instrumentation for energy measurements of a specific kernel
The overall energy measurements work this way:

1. The Python script measure-energy.py, which takes the name of the applica-
tion to monitor and the executable or bash command to monitor as a param-
eter, is executed on the server.

2. The application name and a unique identifier are sent to the Raspberry Pi
over a configurable serial port.

3. The Pi prepares the measurements by configuring the MCC128 accordingly.
The measurements will start when the server sends a trigger signal to the
MCC128.

4. A new process that executes the executable is started on the server.

29




5. Performance Metrics for Energy Consumption of Memory

a) The connection to the Pi is started using MemEnergyMeasure_Init, and
workload-specific initialization is performed (e.g., allocating and initial-
izing data).

b) The trigger signal is sent to the Pi using MemEnergyMeasure_Start, and
the kernel to monitor is executed.

c) A finalization signal is sent to the Pi using MemEnergyMeasure_End im-
mediately after the termination of the kernel.

d) The application prints the number of memory loads and stores during
the execution of the compute kernel to the standard error stream for
processing by the parent script and performs some finalization steps.

5. The Pi sends the execution time of the kernel, the aggregated energy consump-
tion, and the average power to the server over the serial interface.

6. The parent script aggregates the results from the Pi and the child process and
outputs the final energy measurements.

The trigger signal sent by the application under test is inherently optional as the
parent script can be configured to directly send the trigger signal before the child
process starts and after it terminates. This can be used for measuring the energy
consumption of applications that cannot be modified for instrumentation or in cases
where the measurement of a specific kernel is not required.

5.3. Synthetic Workloads for Measuring Instruction
Level Memory Energy Consumption

The very short execution time of memory load and store instructions, usually in
the order of nanoseconds, makes it impossible to measure the energy consumption
of individual instructions with our measurement infrastructure. To overcome this,
we created synthetic workloads with a large, known number of load and store in-
structions and measured the energy consumption of the target memory during the
execution of the whole workload. Then, we subtracted the static energy consump-
tion, i.e., the energy that the memory consumes when idle, and divided the resulting
dynamic energy consumption by the number of loads or stores, which is known from
the code. In our case, each workload consists of a repetitive execution of a kernel
until at least 3 seconds of wall time elapsed. An execution time of at least several
seconds is required to hide possible synchronization latencies between the system
under test and the data-acquisition device. While the synchronization of the mea-
surement start is tight with a synchronization delay of less than 1ms due to the
digital trigger functionality of the MCC-128 device, a higher delay can be expected
for synchronizing the end of the measurements as no trigger signal for stopping mea-
surements is supported by the MCC128. Instead, the Pi waits for a falling edge, i.e.,
a transition from a high to low signal, at the trigger pin and instructs the MCC128
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to stop measurements when the falling edge is detected. Additional processing by
the Pi can add a synchronization delay in the order of several milliseconds.

For sequential and strided loads and stores, an array of fixed length is allocated
and initialized with constant data using first-touch in parallel. Then, the array
elements are accessed in an OpenMP parallelized for loop with a possible stride
that is implemented as the number of elements skipped between consecutive loop
iterations. Loads are realized using the movq instruction in inline assembler to
prevent the compiler from optimizing away the operation. Stores are implemented
as simple array element assignments. For sequential loads and stores, we varied
the number of threads and considered every number of threads between 1 and 32.
Strided accesses, on the other hand, were executed with 1, 4, 8, 16, and 32 threads
but with varying strides between 1 element (8 Byte) and 34 elements (272 Byte).

Random loads are implemented by initializing an array with each element’s index
as its value, e.g., the value 42 is assigned to array index 42. Then, this array is
permuted using the Fisher-Yates shuffling algorithm to create an index permutation
with only a single cycle. In the actual compute kernel, multiple threads are spawned
using an OpenMP parallel region that each perform pointer-chasing on the array
with permuted indices. The start indices are different for each thread and are evenly
spread over the whole array. For random loads, we varied the number of threads
and considered each thread count between 1 and 32.

We only consider 64 bit loads and stores here. All workloads have been written
in C and have been compiled using the gcc compiler (version 13.2.0) with default
parameters and OpenMP enabled. Memory allocations are performed using libnuma
on the local memory of socket 0 (either NUMA node 0 for DRAM or node 2 for
PMem), and CPU threads are pinned to socket 0 using numactl. Each workload
has been executed three times, and we report the arithmetic mean and the standard
deviation for each.

All experiments have been carried out on the Intel Ice Lake system .
To evaluate DRAM, we installed a single 32GB DDR4 module with a riser for
power measurements in memory slot A1 on socket 0. For the PMem evaluation, we
mounted one DRAM and one PMem module in memory slots A1 and E1, respectively,
on socket 0. The power consumption of the PMem module was measured using a
riser. Socket 1 was populated symmetrically but without risers.

5.4. Experimental Results

To compute the dynamic energy consumption of a memory module, the static en-
ergy needs to be subtracted from the total energy consumption. The static energy
consumption can be computed by multiplying the power drawn by the module when
idle and the workload’s execution time. We measured an idle power consumption
of 1.8575 W for Samsung 32GB DDR4 modules and 2.9668 W for the 128GB PMem
modules. Both values here correspond to the minimum power consumption mea-
sured during five measurements of 10s on an idle system. This corresponds to the
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typical idle power consumption when the operating system itself is active and reg-
ularly accesses the memory, but no workload is executed.

Taking the capacity of the memory modules into account, the DRAM module
consumes H8 né—vg at idle while PMem consumes 23 né—vg.

5.4.1. Sequential Access

shows the mean [DELI for sequential double-precision load instructions for
both DRAM and PMem at different numbers of threads concurrently accessing the
memory. A different view on the same data is provided by [figure 5.2) which shows
the effective memory bandwidth and corresponding power consumption at varying
thread counts. In addition, the BpW] metric, which relates the memory bandwidth
to the power drawn by the memory, is shown. The corresponding measurements for
the in sequential accesses are visualized in [figure 5.3 and [figure 5.4]

B 10,5

- 1.001

©

S

. 10.01

(]

2 0.901

>

15} 9.5

h

o 0.801

€ 9.0

(o]

cC

>

O 0.701

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Threads Threads
(a) DRAM (b) PMem

Figure 5.1.: Dynamic Energy per Load (DEL]) with standard deviation for sequential
access at different numbers of threads
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5.4.2. Strided Access

The [DEL] and [DES| for both DRAM and PMem have been measured for varying
strides between 8 B and 256 B and with 1, 4, 8, and 16 threads and are visualized

in [figure 5.5/ and [figure 5.7} In addition, [figure 5.6 and [figure 5.8 show the memory

energy efficiency in terms of [BpW] for strided loads and stores at 8 threads.
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5.4.3. Random Access

The mean [DEI] over three measurements for random loads is shown in
and the corresponding [BpW]is depicted in
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5.4.4. DRAM vs. PMem Comparison
shows the mean [DEL] and [DES| with respective standard deviations for

different access patterns for DRAM and PMem on an exponential scale. The results
presented in the previous part of this section have been grouped by memory type
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Figure 5.11.: Average energy per load and store instructions comparison between
DRAM and PMem on an exponential scale.

and access pattern, and the resulting mean has been computed regardless of thread
count or stride for this particular figure.

The dynamic energy consumption per load and store is significantly higher on
PMem compared to DRAM. For example, it is about 12 times higher for sequential
loads, 37 times higher for sequential stores, 17 times higher for strided loads, 27
times higher for strided stores, and 13 times higher for random loads.

5.5. Discussion

This chapter introduced the DEL] and metrics, which characterize the dynamic
energy consumption of heterogeneous memory during load and store instructions.
The metrics can be used to quantitatively compare the energy consumption between
different access patterns or memory architectures, taking both the power consump-
tion and the instruction throughput into account. For example, if the power drawn
is constant and the throughput (e.g., the read bandwidth) doubles, [DET] reduces by
50%. When the power consumption doubles, and the bandwidth reduces by a factor
of 4, [DET] increases by a factor of 8.

The [BpW] metric, on the other hand, gives a different view of energy efficiency. It
relates the total power consumption, which includes the static and dynamic power,
to the memory bandwidtlﬂ [DEL] and describe the costs in terms of dynamic
energy, whereas[BpW]|relates to memory energy efficiency. Consequently, lower [DEL]
values are desired, while a higher BpW] value is considered better.

!The Energy per Load metric would be equivalent to [BpW] [DEL] and [BpW] are not equivalent
however.
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5.5.1. Sequential Access

For sequential loads, as shown in [figure 5.1} the DELlreduces with increasing threads
until it reaches a minimum with 8 threads for DRAM and 4 threads for PMem. The
BpW] metric also reflects it as it becomes maximal with 8 threads on DRAM and 4
threads on PMem, respectively, according to[figure 5.2 With more than 12 threads,
the loads become less efficient again, particularly well-visualized in[figure 5.2b] With
six threads, both the power and the bandwidth reached a plateau until bandwidth
dropped with more than 12 threads, while the power consumption stayed roughly
constant. This can be explained by the contention of the different buffers, partic-
ularly the 256B XPBuffer of the PMem module or the CPU’s integrated memory
controller ({MC]) [103]. This effect is not present on DRAM, for which both power
consumption and bandwidth increase continuously with more threads while the[BpW]
slightly reduces with more than 10 threads. Overall, the best energy efficiency for
sequential accesses to PMem directly corresponds to the best performance. Thus,
users only need to focus on the performance when programming PMem to get the
best energy efficiency for sequential memory access.

In compute-bound applications, the memory bandwidth is not saturated, and
the memory accesses might not be highly efficient. However, as the CPU’s power
consumption generally exceeds the memory’s power consumption in CPU-bound
scenarios, more focus on the energy efficiency of the CPU should be put instead. In
particular, optimizing only for memory energy efficiency can lead to energy efficiency
penalties at the CPU.

and BpW] (see and follow an overall similar pattern for se-
quential stores. While the[DES]is about three times higher for DRAM and ten times
higher for PMem compared to the read-only scenario, the best energy efficiency can
be observed with 4 threads for both memories. The BpW] graph for PMem
stands out here as the total power consumption of the memory seems to
be very inconsistent and subject to significant variations at first sight. However, the
power drawn by the module is only between 9.92 W at a single thread and 10.13 W
at 32 threads, while the power consumption ranges from 7W to 11.5 W for sequen-
tial loads on PMem. The total DRAM consumption is significantly higher for writes
compared to reads. Surprisingly, the opposite can be observed for PMem: The total
module power consumption during writes is lower than during reads.

5.5.2. Strided Access

For strided accesses, we measured the memory energy consumption for 1, 4, 8, 16,
and 32 threads but also varied the stride between 1 and 34 double elements. As
shown in [figure 5.5 the [DELl increases linearly with increasing stride as long as the
stride is smaller than the cache line length, which is 64 B in our case. If the stride
exceeds 128 B (i.e., 16x double), the energy efficiency decreases for higher thread
numbers, while it increases or stays roughly constant for fewer threads. For a stride
of 256 B, the [DEL spikes for 8 or more threads both on DRAM and PMem. While
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this is expected for PMem, as subsequent memory accesses are in different [XPLines]
we do not have an explanation for this on DRAM.

The corresponding [BpW] graph is particularly interesting here. For
PMem, the power consumption is roughly constant for strides up to 64 B. A possible
reason for this is that two consecutive memory accesses are within the same
of 256 B. The bandwidth, on the other hand, decreases with increasing strides within
a cache line as the cache line utilization at the CPU drops. For a stride greater than
64 B, the power consumption of the PMem surprisingly drops gradually, while the
power consumption of the DRAM increases. A possible reason for this is a contention
of on-DIMM buffers on the PMem.

Strides should generally be kept as short as possible to improve memory band-
width and energy efficiency. However, strided accesses are often a fundamental
element of an algorithm and cannot be optimized. If larger strides, for example,
between 128 B and 256 B, are used, the thread number should be greater than 16 to
improve energy efficiency.

Strided stores show an overall similar pattern compared to strided loads. However,
the is significantly higher than [DEIl In contrast to strided loads, however, the
power consumption of the memory slightly increases for strides larger 64 B on PMem,
while it decreases for DRAM (see [figure 5.8)).

5.5.3. Random Access

For random accesses, we only considered random loads and neglected writes. The
main reason for this is the difficulty of creating synthetic write-only workloads with
random accesses without utilizing another array or random number generators dur-
ing the execution. [Figure 5.9 shows the [DEI] for random loads from DRAM and
PMem at different numbers of threads. In this case, the energy consumption is
subject to a large variance at 12 threads or more on both memory types. Overall,
the dynamic energy per load increases with more threads and is minimal for single-
threaded access. Based on [figure 5.10] this is mainly caused by an increase in power
consumption of the memory and only a less substantial decrease in bandwidth at
a higher thread count. Highly concurrent random reads should be avoided if possi-
ble, as they perform poorly on both DRAM and PMem in terms of bandwidth and
energy efficiency.

The larger standard deviation in[figures 5.9]and [5.10]also indicates that the energy
consumption and bandwidth strongly differ between different workloads with ran-
dom accesses. In this thesis, we only investigated a single application with random
memory accesses. However, a large number of varying access patterns are classified
as “random access® [67]. The workload used for this thesis serves as a worst-case
scenario, as the memory accesses are random and spread over a comparably large
memory address range but cannot be considered representative. In particular, some
random access patterns might exhibit some temporal and spatial locality and are
expected to perform comparably better as a result.
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5.5.4. Energy Efficiency of Intel Optane PMem

Our previous experiments have been designed to directly compare the energy effi-
ciency of DRAM and PMem on the same workloads using the proposed [DEL] and
metrics.

For the memory modules evaluated in this thesis, we measured an idle power con-
sumption per capacity of 58% and 23 % for DRAM and PMem, respectively.
Thus, although PMem modules draw more static power than DRAM modules,
PMem can be considered more energy efficient compared to DRAM when idld?} The
per-capacity perspective on power consumption, however, cannot be transferred to
the dynamic power consumption of the memory.

As shown in [figure 5.11) PMem is significantly less energy efficient with respect
to per load and store dynamic energy consumption. Compared to DRAM, writes
exhibit significantly lower energy efficiency on PMem. For example, divided
by [DELlis on average 2.93nJ for DRAM while it is 9.06 nJ on PMem.

Overall, we conclude that PMem in AppDirect mode cannot compete with DRAM
as a technology for main memory in classical HPC applications in terms of perfor-
mance and overall energy efficiency. For applications requiring large main memory
capacities that cannot be provided with DRAM on a single node, for example, train-
ing and evaluating machine learning models on enormous datasets, PMem may still
be considered as it offers up to 6 TB of combined main memory capacity on a sin-
gle server [30] at the cost of lower energy efficiency compared to DRAM. PMem
was initially designed as a competitor to traditional solid state disks, primarily in
database applications, and to fill the gap between an SSD and DRAM. For these use
cases, in which large amounts of data need to be stored persistently, PMem offers
comparable sequential read performance to a high-end PCle4 SSD [33] and offers
“significant performance and energy efficiency gains compared to a typical SSD* [40].
The Samsung PM9A3, for instance, offers a 283 (MB/s)/W energy efficiency while a
single 128 GB PMem module offers an energy efficiency of about 500 (MB/s)/W. An
in-depth energy-efficiency evaluation of PMem compared to traditional solid-state
disks is, however, out of scope for this thesis.

2When we observed the highest power consumption under load in the previous experiments,

DRAM consumed 181 ré\g and PMem 90 %.
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6. Memory Access Pattern-based
Energy Estimation & Metrics
Evaluation

The goal of this chapter is to showcase how the Dynamic Energy per Load (DEL)
and Dynamic Energy per Store (DES|) metrics can be utilized for estimating the
energy consumption of real-world applications. Furthermore, the evaluation of the
metrics’ accuracy is discussed. We follow the same experimental setup as in the
previous chapter. The power consumption of a single DRAM (slot A1) or PMem
(slot E1) DIMM mounted on socket 0 is measured using a riser on the Ice Lake
system. The other socket is populated symmetrically, but memory is allocated on
socket 0, and threads are pinned to socket 0.

6.1. Metrics-based Energy Estimation

The metrics [DEL] and can be used for straightforward energy estimation. For
this, we need to analyze the application of interest regarding the number of load
and store instructions for each memory access pattern based on the classification
presented in [section 2.2l In other words, the number of load and store instructions
in sequential, strided, and random access, along with the corresponding number of
threads and possible stride length, needs to be counted. By multiplying the number
of loads with the measured [DEI] and the number of stores with the measured
and computing the sum of both results, an estimate for the total dynamic energy
consumption of the memory during the kernel execution can be computed.

long N = 1000000000;
#pragma omp parallel for num_ threads(8)
for (longi=0;i< N;it++) {

x[i] = y[idx[i]];

Listing 6.1: Example parallelized Gather kernel consisting of sequential loads and
stores and random loads

For example, each iteration of the loop in the gather access, as shown in
ing 6.1, consists of one sequential read to idx, one sequential write to x, and one
random read to y. The computation of the energy estimation for this example is
visualized in . On DRAM, the code kernel includes 10° sequential load

73




6. Memory Access Pattern-based Energy Estimation & Metrics Evaluation

DRAM ‘ PMem
Access Pattern Threads Count | DEL/DES  Total | DEL/DES Total
Seq. Load 0.69nJ 0.69J 8.99nJ 8.99J
Seq. Store 8 10° 2.34nJ 2.34J 84.82nJ  84.82J
Random Load 5.31nJ 5.31J 122nJ 122]
| 8.347 | 215.81J

Table 6.1.: Exemplary dynamic energy estimation for Gather kernel with 8 threads
and 10° elements accessed.

accesses, and we measured that a single double-precision load consumes 0.69nJ on
average in sequential access. The total dynamic energy consumption is estimated at
0.69nJ x 10° = 0.69 J for all sequential loads in the kernel. By summing the dynamic
energy for the sequential loads (0.69 J), sequential stores (2.34J), and random loads
(5.31J), the estimated dynamic DRAM energy consumption of the whole kernel is
8.34 J. Predicting the total energy consumption furthermore requires an estimation
of the static energy consumption during code execution. Because the static energy
consumption ideally only depends on the execution time, it can be computed by
multiplying the idle power of the DRAM module, which is 1.8575 W according to
section 5.4 with the execution time of this kernel.

To facilitate this computation, we provide a calculator for the energy estima-
tion model in the supplementary material of the thesis (see . Using the
described approach, the energy consumption of the evaluated DRAM and PMem
modules during the execution of an application, a specific part of an application, or a
kernel can be estimated. This requires that the number of load and store instructions
is deterministic and can be estimated. Furthermore, the specific access patterns of
the different kernels need to be known and decomposable into the “atomic® access
patterns for which we collected energy measurements in the previous chapter. How-
ever, it is unclear how reliable and accurate this energy model is. While the[DEI]and
metrics are based on load and store instructions only, a more detailed study
on mixed-instruction metrics is necessary to better estimate the energy consump-
tion for real-world applications, which are inherently mixed-instructions workloads.
We leave this for future work as it requires additional investigation. However, we
evaluate the and [DET] metrics with the following two real-world applications
to demonstrate the methodology for evaluating such metrics in energy consumption
estimations.
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6.2. Case Study: Sparse Matrix Vector Product
(SpMV)

The matrix-vector multiplication is an essential element of several matrix diagonal-
ization algorithms. Real-world applications often need to deal with sparse matrices,
i.e., with most entries being zero. Several sparse matrix representations have been
developed to represent these matrices in memory and on disk efficiently. Apart
from the well-known Compressed Row Storage (CRS]) format, the Coordinate For-
mat ([COQ) is another format for representing such sparse matrices. The [COO
format stores each non-zero entry of the matrix in a tuple containing the column
and row indices of the element and its value. For example, the 4 x 4 matrix A can
be represented in the sparse format as shown in Acpo:

1 0 0 6

A= 02 00 Acoo = [(anal)a <07376)7 (17172)7 (2a27 )7 (371711)]
10 0 0
0 11 0 0

shows how the product of such a [COQFencoded matrix and a vector B
can be computed and stored in the array C using OpenMP shared-memory paral-
lelization. This implementation was created by S. Muneeb [85] and was optimized
and restructured for this thesis.

auto temp = new double[threads * mtx—>cols];

1

2

3

4 #pragma omp parallel for default(none) shared(mtx,temp,B,cout)
5 for (longi = 0; i < mtx—>nonzeros; i++) {

6 int tid = omp_ get_ thread num();

7 long row_index = mtx—>row_ idx[i];

8 long col index = mtx—>col idxl[i];

9 double val = mtx—>vals[i];
10 temp|tid * mtx—>cols + row_index] += BJcol_index] * val;
11}
12

13 #pragma omp parallel for default(none) shared(mtx,temp) shared(C)
14 for (long i = 0;i < mtx—>cols; i++) {

15 double sum = 0;

16 for (int j = 0; j < omp_ get_num_ threads(); j++) {
17 sum += temp[j * mtx—>cols + i|;

18 }

19 C[i] = sum;

20 }

Listing 6.2: Sparse matrix-vector product in Coordinate Format (COQ))

In our case study, we measure the dynamic energy consumption (see jsection 5.2|)
during the execution of this algorithm on a large, real-world matrix and compare it

to the estimated energy consumption based on our proposed model. We have chosen
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the Flan 1565 matrix as a real-world example matrix, which represents hexahedral
finite elements [35]. This 1,564,794 x 1,564, 794 matrix contains 59,485,419 non-
zero entries, i.e., only 0.002% of the elements are populated. While a dense matrix
representation requires at least 17.8 TiB of storage, the sparse representation only
occupies 1.57 GiB of disk space. In our case study, we multiply this matrix in
representation by a vector containing 1.0 values in double-precision floating-point
format.

To apply our model, we first need to count the number of memory loads and stores
in for each memory access pattern we investigated in [section 5.4, For a
sparse matrix of structural size N x N with NN, non-zero elements and 7" threads,
the main kernel consists of 3 x IV, sequential loads (lines 7-9) and N, random loads
(line 10). In addition, line 11 contains a random load-modify-store construct, which
we model as a random load plus a sequential write. This adds an additional N,
random loads and NV, sequential writes to the main kernel.

The initialization of the temp array in line 2 consists of T'x N sequential stores, and
the final postprocessing consists of N sequential stores and T'x N strided loads with
a stride of N elements. As N exceeds 32, which is the highest stride we measured
in [chapter 5, we model it as a random load]]

shows the total count of estimated loads and stores, along with the
measured [DEIL] and values from and the resulting dynamic memory
energy estimation for four threads.

DRAM PMem
Access Pattern Count DEL/DES Total | DEL/DES Total
Seq. Load 3x N, 0.83nJ 1.48J] 9.03nJ 16.11J
Seq. Store N, + (T'+1) x N 226nJ 1.52J 82.79nJ  55.73J
Random Load 2x N,+T x N 3.86nJ 4.83J 80.74nJ 101.11J
| 7.83] | 172.95 ]

Table 6.2.: Dynamic energy estimation for SpMV computation on the Flan 1565
matrix with T'=4, N = 1,564,794, N, = 59,485,419

As a next step, we ran the actual application with different numbers of threads
(1, 4, and 8). We measured the mean energy consumption of the memory during
three repetitions using the methodology described in and computed the
dynamic energy consumption. In addition, the dynamic energy consumption from
RAPL was Collectedﬂ. Both measurements are compared to the metrics-based esti-
mation in [table 6.3} A significant difference between the measured dynamic energy

I This is an approximation as accesses with large strides can usually be better prefetched than
a truly random access.

2For this, we measured the idle power according to RAPL. Based on RAPL measurements
during workload execution, we subtracted the estimated static energy consumption from the total
energy consumption. According to RAPL, a single DRAM DIMM draws 4.33 W when idle. When
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The Measured RAPL Estimation
' DRAM PMem DRAM PMem | DRAM PMem
1121+04J) 21.6£20J | —-13£71J 19.44+0.3J 6.8 1179J
41224+01J 29.24+06J 1.5+01J 278+£0.2J 7.8J 173.0J]
8127+£0.1J 37.54+0.3J 1.84+0.1J 35.7+£0.1J 9.9J 1749)J]

Table 6.3.: Dynamic energy of sparse matrix-vector product - measurements vs.
RAPL vs. prediction for 1, 4, and 8 threads

consumption and the estimated values can be observed. For DRAM, the actual
energy consumption is more than 3 times lower than estimated, and for PMem, it is
about 5.5 times lower for the single-threaded execution. We expected that the esti-
mation based on the and [DETL] metrics would result in higher dynamic energy
values than the measured because the read- or write-only workloads tend to yield
higher energy consumption than mixed-instruction workloads. RAPL reports an
overall lower dynamic energy consumption than the reference measurements here.
This is caused by the unreliable idle power measurements using RAPL, i.e., that
RAPL reports a higher power consumption for a single DRAM module compared to
the same DRAM module with an additional PMem module. While we have shown
that RAPL overestimates the memory’s power consumption (see [chapter 4)), the dy-
namic energy characterization using RAPL makes it appear to underestimate energy
consumption.

6.3. Case Study: Conjugate Gradient (CG) for
Solving Poisson Equation

As a second case study, we present an application that solves the Poisson equation
using the Conjugate Gradient (CGl) optimization algorithm. This source code by
T. Econonom [13] was updated such that it only operates on 64b data types, i.e.,
double and long. The application contains several kernels with different access
patterns. [lable 6.4] shows each kernel’s number of loads and stores and how often
it is executed in a single iteration. N is the size of the matrix, IV, is the number of
non-zero entries in the sparse matrix, and ¢ is the number of iterations.

The energy consumption of this application was measured when allocating on
DRAM or PMem five times each. We computed the mean dynamic energy con-
sumption for both memory types and different numbers of threads. Furthermore,
we stored the number of iterations in each experiment as this directly influences the
energy consumption. The results, along with the mean execution time, are shown in

table 6.5] For 1500 iterations, which is the approximate number of iterations in our

both DRAM and PMem are installed, RAPL reports 4.2 W for the memory domain of socket
0 when idle, which is unexpectedly lower compared to DRAM-only. These measurements were

consistent throughout several reboots of the system.
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Kernel #Seq. Load #Seq. Store #Rnd. Load ‘ #Invocations
vector__copy N N 0 1
vector norm N 0 0 2 X1
dot_ product 2x N 0 0 3 X1
daxpy 2x N N 0 2xi4+1
sp_ mv_product N +2x N, n N, 1+ 1

Table 6.4.: Number of memory loads and stores with memory different access pat-
terns for the kernels in the [CQl application

Dynamic Energy [J] Time [s]
Threads DRAM PMem DRAM PMem

11029+£0.12 4.03+£1.90 | 18.22+0.17 18.27+£0.06
41012£0.04 241+£056 | 444+£0.01 4.46+0.02
810.07£0.02 135£0.33| 227+0.01 2.26=£0.01
16 | 0.01 £0.01 0.07£0.01 | 1.244+0.00 1.24£0.01
3210.01£0.01 0.04+0.02| 0.84+0.00 0.85=£0.01

Table 6.5.: Measured dynamic energy consumption and execution time of the CG
application. Mean of 5 repetitions.

experiments, the estimated dynamic energy consumption for single-threaded access
is 176 J for DRAM and 3353 J for PMemE|. These estimates significantly exceed the
measured dynamic energy consumption.

An obvious explanation for this phenomenon is that the application only allocates
about 32 MiB of data, which is accessed repeatedly throughout the iterations. As
the allocated data completely fits into the CPU’s 48 MB last-level cache, almost all
memory accesses can be satisfied from cache, and accesses to the underlying mem-
ory are not required. This also explains why the execution time remains constant
regardless of the allocation on DRAM or PMem.

6.4. Discussion

The presented results indicate that the [DEI] and [DES metrics report a higher dy-
namic energy than measured in both mixed-instruction case studies. Possible reasons
for this overestimation of the model are:

o Our model does not consider temporal cache locality, i.e., the identical memory
location is accessed multiple times within a short time. While the sequential
accesses to the row_idx, col_idx, and vals arrays (see exhibit no
temporal locality, the random load from the B array and the accesses to temp

3The exact computation is analogous to [table 6.2/ and is omitted here.
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are likely to regularly being satisfied from cache, in particular, because the
CPU has a comparably large L3 cache of 48 MB. This is particularly true for
the case study.

o The [DEL] and metrics can be seen as upper bounds of dynamic energy
consumption for the read- or write-only workloads with corresponding memory
access patterns. As mentioned above, mixed-instruction workloads must be
evaluated with the relevant read-write ratios for each memory type to estimate
the precise dynamic energy demands for real-world applications.

e The measurements from are based on workloads with only memory
access instructions and essentially no arithmetic operations. The main kernel
for the frist case study (lines 4-11 in , however, has six memory
accesses and three arithmetic operations per loop iteration, resulting in an
arithmetic intensity (AI) of 0.5. The application is memory-bound, but, the
arithmetic operations still significantly impact its execution and reduce the
load on the memory interface and memory itself. In particular, it also avoids
a possible contention of the integrated memory controller (IMC]) or on-DIMM
buffers, for example, the XPBuffer of PMem.

e Our model does not reflect compiler optimizations. While the compiler and its
configuration remained consistent throughout all experiments, more complex
applications generally allow for more compiler optimization.

Overall, we have shown how to evaluate the proposed metrics and how to analyze
the dynamic energy consumption of different memory types. The different measure-
ment methods have shown that one should exercise caution when utilizing RAPL
as the foundation for performance and power modeling on heterogeneous memory
systems. While the proposed memory access pattern-aware metrics are subject to
further improvements, they are still well-suited for comparing the instruction-level
dynamic energy consumption during the execution of the same application on dif-
ferent memory technologies, for example, different DRAM generations and vendors
or persistent memory architectures.
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This thesis presents an in-depth methodology for correctly measuring memory power
consumption and an access-pattern-based analysis of dynamic energy consumption
of heterogeneous memory systems.

[RAPIls memory energy measurement accuracy was validated against physical
measurements at the memory for DRAM| and [PMeml in [chapter 4 The
results show that RAPL significantly overestimates the memory modules’ power
consumption on the Ice Lake-SP platform. A likely reason for this is that the
measurement point for the RAPL memory domain changed compared to previous
architectures and now also includes power losses at the voltage regulator level. Mea-
surements using the same methodology on the older Broadwell architecture, which
was used for validating the correctness of the reference measurements, showed over-
all better agreement between both measurements, which aligns with results from the
literature [10]. The changed measurement point would be beneficial for estimating
a node’s total power consumption but would make RAPL impractical for accurately
measuring the power consumption of the memory modules. Due to a significant
variance in the internal update rate, RAPL counters either need to be oversampled
or sampled at a rate significantly lower than the advertised 1 kHz.

presents the Dynamic Energy per Load (DELl) and Dynamic Energy
per Store (DES) metrics for characterizing instruction-level dynamic energy con-
sumption. Based on power measurements of single DRAM and PMem modules
with different memory access patterns, the [DEL] and metrics, as well as the
Bandwidth per Watt (BpW)) metric, were computed. The results show that the
access pattern significantly impacts energy consumption. While [Intel Optane Per-|
isistent Memory| (PMeml) is four times more energy efficient per capacity compared
to when idle, DRAM] significantly outperforms [PMeml in terms of memory
bandwidth and energy efficiency under load.

An access-pattern-based estimation model for dynamic energy consumption was
proposed based on the [DEL] and metrics. Although designed for read- and
write-only scenarios, these metrics were used to evaluate the energy consumption
of real-world applications. As expected, the model showed higher dynamic energy
consumption than the measured results. To ensure the model’s accuracy on real-
world applications, mixed-instruction workloads need to be evaluated. The metrics,
however, can be used to estimate the upper bound of dynamic energy consumption.
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7.1. Future Work

While [RAPT] is considered a reliable and accurate method for power measurements
in the literature, this work motivates investigating the accuracy of [RAPI] further on
modern systems and upcoming architectures. In particular, the accuracy of package
power measurements and the accuracy of the memory domain for DDR5 memory,
which is primarily powered using a single 5V (UDIMM) or 12V (RDIMM) line from
the mainboard and has an on{DIMM] Power-Management Integrated Circuit (PMIC)
that delivers all required voltages and also measures power consumption [37} 38|,
are candidates for future work. Further experiments should also be carried out with
fully populated memory channels.

Future work could also involve measuring and evaluating [DET] and with dif-
ferent ratios of mixed instructions to better cover real-world applications and future
memory architectures, e.g., the high-bandwidth memory (HBM]) of Saphire Rapids
CPUs, DDR5 memory, and Intel Optane PMem 300 series. Also, memories compat-
ible with the emerging Compute Express Link (CXTJ) technology and, specifically,
the CXL.mem protocol, which provides high-bandwidth and low latency access to
volatile and persistent memory expansion devices in a cache-coherent way [86], are
of interest here.
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A. Additional Background
Information

A.1. Memory Allocation on Heterogeneous Memory
Architectures

With increasing diversity of memory architectures and topologies, developers are
required to put more effort into programming the systems in order to benefit from
them. A crucial part is allocating the memory correctly, e.g., allocating small and
frequently required data on local memory with high bandwidth. However, if no
special attention is put into this and memory is allocated using the plain malloc
function from the standard library, the performance of the application will usually
be unpredictable. In this section, we present three different methods how developers
can control on which memory their data is allocated.

libnuma

libnuma [50] is a library that is available on most NUMA systems and that can be
used easily in C/C++ programs by include the header (#include <numa.h>) and
linking the library (-lnuma). Instead of using malloc from the C standard library,
libnuma provides several methods to control on which NUMA node data should be
allocated. The most important methods are:

e numa_alloc_onnode(size, numa_node) to allocate memory of size Bytes
on the NUMA node numa_node.

e numa_alloc_local(size) to allocate memory of size Bytes on the local
NUMA node of the thread invoking the memory.

e numa_alloc_interleaved(size) to allocate memory of size Bytes that is
spread across all available NUMA nodes with page-size granularity.

All allocations using libnuma need to be explicitly freed using numa_free(pointer,
size) instead of free(pointer) from stdlib. The library supports several others
features, such as binding threads to NUMA nodes or getting information on the
current NUMA structure. Readers can find detailed information on the interface
in the official Linux manpage [50]. If modification of the program’s source code is
possible, libnuma is a good choice for programming heterogeneous memory systems
as long as different memory types are configured as individual NUMA nodes.
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numactl

numactl [51] is a command line tool for controlling NUMA placement policies and
NUMA thread scheduling as well as inspecting NUMA topology of a system using
numactl -H. Configuration done by numactl is propagated to all child processes.
This tool is often the only option to control NUMA policies when modification of
the application’s source code is not possible. The most important features, that can
also be combined, and, that we will use in thesis as well, are:

e numactl -m <Nodes> -- <command> to only allocate memory on the NUMA
nodes specified by a comma-separated list when executing the provided com-
mand.

e numactl -1 -- <command> to only allocate memory on the local NUMA node

when executing the provided command.

e numactl -n <Nodes> -- <command> to only execute the specified command
on specific NUMA nodes given by a comma-separated list.

Detailed information on the command usage can be found in the manual page [51].

memkind

memkind |71] is an advanced memory allocator that allows sophisticated control
over the memory allocations. It supports a wide variety of memory technologies
such as DRAM (see , persistent memory like Intel Opane PMem (see
section 2.1.4)), and high-bandwidth memory like MCDRAM. As it is based on jemal-
loc [49], an implementation of malloc that aims to avoid memory fragmentation and
improves scalable concurrency, an improved performance compared to allocations
with libnuma can be expected but are not guaranteed. The library can be included
using #include <memkind.h> and linked using -1memkind.

In order to allocate memory using memkind, the type of memory needs to be
defined by initializing a memkind_t object. This object is passed to all allocation
calls and can be either created manually or one can be chosen out of large number
of predefined kinds, such as:

o MEMKIND DEFAULT: Allocate on default memory with default page size.

e MEMKIND HIGHEST CAPACITY PREFERRED: Allocate on NUMA node with the
highest capacity.

o MEMKIND_ HBW: Allocate on the closest NUMA node with HBM.

o MEMKIND_ LOWEST_LATENCY_LOCAL: Allocate on the local NUMA node with the
lowest latency.

o MEMKIND DAX_KMEM: Allocate on the closest persistent memory NUMA node.
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Furthermore, the function int memkind create_pmem(const char *dir, size -
t max_size, memkind_t *kind) can be used to allocate memory backed by file
located in dir in the file system. Similar to the standard library and libnuma, mem-
ory can than be allocated using void *memkind malloc(memkind t kind, size_t
size) and freed using void memkind free(memkind t kind, void *ptr)

Another method for heterogeneous memory allocators, especially with OpenMP
shared memory parallelization, is the memory allocation extension introduced in
OpenMP 5.0 [11]. Out of the presented methods, memkind features the largest
control of the memory access and the best performance but requires modification of
the source code and is also more advanced than libnuma.

A.2. Performance Counters

Performance counters are special purpose hardware registers that get incremented
when a specific event occurs. Popular examples of such events are the number of
cache misses, the number of cache accesses, or the number of floating-point opera-
tions.

perf_event

perf, often also called perf event, is a lightweight command-line profiling tool for
performance counters that is part of the Linux kernel tools. Apart from other
features, the perf stat command can be used to sample the performance counters
over time, for example during the execution of a program. It can be configured to
report the counter values at a fixed sampling interval of up to 1 ms or aggregated
over the complete execution of the program. perf does not only implement hardware
performance counters but also other software counter values or system sensor data.
Access to energy measurements provided through RAPL is also supported. The
following command can be used to sample the RAPL energy counters every 500ms
for the package and memory domains and report it for all sockets independently
during the execution of the STREAM benchmark.

perf stat -e power/energy-pkg/,power/energy-ram/ -I500 -per-socket
./stream

With the -summary option, the aggregated energy consumption during the exe-
cution of the entire application is reported at the end. Detailed information on how
to use the perf tool can be found in the manual page [52].

PAPI

PAPI (Performance Application Programming Interface) is an API for efficient ac-
cess to hardware performance counters on modern microprocessors and monitoring
system information, e.g., network cards or GPUs. It provides both a low-level and
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a high-level API, each designed for different use cases and enabling greater flexi-
bility. For example, using the high-level API provided by PAPI, the programmers
can mark a “measurement region“ identified by a name in the code using PAPI -
hl region_begin(const char*) and PAPI_hl region_end(const char*) before
and after regions. PAPI measures performance counters at the start and end of the
region and computes the difference across the region. The performance counters
are represented as named events in PAPI, for example “PAPI_TOT_INS* for the
number of CPU instructions processed or “rapl::DRAM ENERGY:PACKAGEO®
for the memory energy consumed by socket 0 according to RAPL. The events PAPI
tracks can be set using the PAPI_EVENTS environment variable. PAPI is organized
in a modular fashion and can be extended by new components. For example, a com-
ponent for directly accessing RAPL measurements and the powercap component,
which also exposes RAPL measurements, can be used for accessing RAPL energy
counters. The rapl component missed Ice Lake-SP support up until PAPI 7.0.1.
After submitting a pull request that fixes this problem to the project, PAPI can be
used for accesing RAPL measurements |59, |102].
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Validation

B.1. Experimental Setup

Figure B.1.: Hardware Instrumentation of the Ice Lake system with a DRAM (slot
A1) and PMem (slot E1) module mounted using a riser for current-
sensing in socket 0. At the time this photo was taken, the risers had
only probing wires attached to two pins. A photo with three pairs of
wires is shown on the next page.
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Figure B.2.: Installed riser with a PMem module. Probing wires have been soldered
to the 12V (left), VDD (middle, two resistors in parallel), and VPP (right)
current-sense resistors. VPP is not measured for PMem. The blue sticker
is used to identify the module.

Figure B.3.: Custom through-hole board for distributing power and ground to the
different components. The LED turns on when the trigger signal is
active.
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Figure B.4.: Hardware Instrumentation of the Broadwell system. The red and white
wires are connected to 12V of the riser and are not used here.
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#include <unistd.h>

#include <stdio.h>

#include <fentl.h>

#include <string.h>

#include <stdlib.h>

#include <assert.h>

#define NR__MEASUREMENTS 10000
static long long cyclessINR_MEASUREMENTS+1];
#define MSR__ DRAM 0x619

#define MSR PACKAGE 0x611

static long long MSR=MSR_PACKAGE;

#define sync_rdtsc2(val) \

do {\
unsigned int cycles_low, cycles_high;\
asm volatile("RDTSCP\n\t"\
"mov h%kedx, %0\n\t"\
"movy hkeax, %l\n\t"\
"CPUID\n\t": "=r" (cycles_high), "=r" (cycles_low):: "Jrax", "%rbx", "%rcx", "%rdx");\
(val) = ((unsigned long) cycles low) | (((unsigned long) cycles high) << 32);\

} while (0)

void main() {

long long start_ cyc = 0, end_ cyc = 0;

sync_ rdtsc2(start__cyc);

sleep(1);

sync_ rdtsc2(end__cyc);

printf("Cycles perysecond: %d\n", end_cyc — start_ cyc);

long long status;

long long cur_ status;

char buffer[256];

sprintf(buffer,"/dev/cpu/0/msr");

int fd = open(buffer,0__RDWR);

pread(fd,&status,8, MSR);

sync_ rdtsc2(cycles[0]);

for (int i=1; i<NR_MEASUREMENTS; i++) {
do {

pread(fd,&cur_status,8 MSR);

} while(cur_status==status);
status=cur__status;
sync__rdtsc2(cycles[i]);

}

for (int i=2 ; i<NR_MEASUREMENTS—1; i++) {
printf("%11i\n" cycles|i]—cycles[i—1]);
}

Listing B.1: Adopted RAPL update interval measurement code ||
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B.2. Experiments Reproduction Guide

In this section, we describe how the experimental setup and the measurements for
the RAPL validation (see and metrics (see can be reproduced.
First, the DIMM risers need to be installed in the designated memory slots, and the
MCC128 needs to be mounted on the Pi while following applicable ESD guidelines.
Then, all wiring between the risers, the current-sense amplifiers, the MCC128, and
the MCP2221 need to be established according to [figure B.5| Some photos of the

setup can be found in [figures 4.5 and [B.1]

Software Setup on the Raspberry Pi

The following steps need to be followed to set up a Raspberry Pi 3B or later for
power and energy measurements.

o Power the Pi using a recommended power supply. We used the official one.
Powering via a standard USB port usually does not provide enough current
and can lead to an undervoltage.

o Install any Linux installation on the Pi. We used Raspberry Pi OS for this
thesis.

o Install python3, e.g., sudo apt install python3 python3-dev python3-pip
and sudo apt install screen

« Install required python packages: pip install pandas numpy pyserial
RPi.GPIO

o Copy the sourcecode/rapl-validation/power-collector/ folder from the
thesis artifacts to the Pi.

o To capture power consumption traces, run screen -dmS power-measurements
python3 power-collector.py. If the accumulated energy (at a higher in-
ternal sampling rate) should be measured only, run screen -dmS power-
measurements python3 power-collector.py instead.

» Both scripts require a configuration containing which voltages and signals from
which DIMM are connected to the input pins of the data acquisition device.
Different profiles can be configured in power-collector/scripts/channel -
config.py. The profile can then be configured in the global variable chan-
nel_config in the collector scripts.

o The sampling frequency can be controlled by setting the scan_rate variable,
which defines the number of samples per second, in the collector scripts.

« Both scripts act as an agent and do not need to be explicitly controlled on the
Pi once they are started.
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Software Setup on the Machine under Test

The following steps need to be followed to set up the host system for lining up the
power measurements taken by the Pi with the execution of applications on the host
system.

96

Ensure a Linux installation with a recent kernel is available and that root
access is available.

Install numactl, libnuma, python3, python3-dev, python3-devel, hidapi.
All installed RHEL 8 packages can be found in data/system-info/yum_pack-
ages.txt.

Install the python packages pip install numpy pandas PyMCP2221A
hidapi==0.14.0 libusb pyserial. In our case, the installation of
PyMCP2221A was challenging and required a couple of other dependencies. A
list of all installed Python packages can be found in data/system-info/pip_-
packages.txt.

Copy the sourcecode/rapl-trace/ folder from the thesis artifacts and build
it using make.

Copy the sourcecode/rapl-validation/ folder from the artifacts to the sys-
tem as well.

Switch to the workloads folder and run make.
Update the path to the workloads folder in the workloads/run.sh script.

Run the measure-all-optane.sh and measure-all-dram.sh scripts to run
the RAPL validation experiments we have evaluated in the thesis for PMem
and DRAM, respectively.

Run python3 measure-power-rapl.py to collect RAPL measurements and
reference measurements of the specified workload. A description of the pa-
rameters can be requested by specifying the -h flag.

Run python3 measure-energy.py to measure the aggregated memory energy
consumption during the execution of the provided application. Again, a de-
scription of the parameters can be requested using the -h flag. If the -T flag
is set, the delegate applications need to implement the measurement instru-
mentation (see itself. This allows measuring the memory energy
consumption of only a specific part of the code. The energy consumption,
the execution time, and the average power consumption are printed to the
standard output afterward.
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The RAPL validation scripts will create a folder for each workload with the reference
measurements on the Pi and the RAPL measurements on the system under test.
For further processing, both folders need to be merged, and a config. json file
that contains the mapping of the different voltage channels to the pins and risers
needs to be created. The existing configs in the data/rapl-validation/icelake
folder serve as a baseline. A Jupyter notebook that creates the scatter plots (e.g.,

figure 4.7c) and phase plots (e.g., [figure 4.9)) from this raw data can be found in

data/rapl-validation/Visualize RAPL Results.ipynb.

Required Changes for DDR5 Measurements

Our setup can be modified to measure the power consumption of DDR5 DIMMs.
As the DDR5 interface is incompatible with DDR4, our riser cards do not work
here, and DDR5-compatible alternatives can be used. Currently, we only found the
DDR5-R riser from Adex Electronicsﬂ which, however, only supports 4800 MT /s
memory. Also, validate that the current-sense resistors are rated for the voltage
and current through them (see [section 4.3.2). If too much heat is dissipated at
the shunt, the riser, the memory module, or even the mainboard can be damaged.
Registered DDR5 DIMMs are powered using a single 12V supply, and unbuffered
DDR5 memory is powered using 5V. Thus, only a single current-sense amplifier
(ideally with a gain >= 200) and two data-acquisition channels are required for
measuring the power consumption of a single DDR5 DIMM. If the bus voltage
(e.g., 12V for RDIMMsS) exceeds the maximum input voltage of the DAQ device, a
voltage divider (see is required to step down the voltage to fit into the
supported range.

IT Setup and Configuration

Due to the required space for the hardware instrumentation, the server could not be
operated in the rack in the server room. Thus, we moved it to another room where
we set up our measurements. As no network connection to the cluster infrastructure
was available in this room, a local network using an ethernet switch was set up. The
Pi was used to bridge WiFi to this local network, and we connected the server to
the switch via a USB to Ethernet adapter as the Ice Lake system did not have an
RJ45 public network port. The management port was also connected to the switch
to access the Intelligent Platform Management Interface (TPMI).

Because the server was not connected to the cluster anymore, the distributed file
system and the local operating system of the server could not be used. Thus, we
had to install our own operating system, which did not work at first as the server
did not detect any USB boot devices. After installing Rocky Linux on an old SATA
SSD and connecting this SSD via a SATA to USB adapter to the server, the system

'https://adexelec.com/ddr5-r
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correctly detected it and booted successfully. We installed PAPI v7.0.1 libnuma
v2.0.16, and libmemkind v1.14.0 from sources.

Do not hesitate to contact the author if questions or problems arise during the
reproduction of the experiments.
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Table C.1.:

DEL [nJ]
DRAM

1.05 [1.04:1.06] 10.38
0.94 [0.93:0.96] 9.43
0.88 [0.88:0.88] 9.12
0.83 [0.82;0.83] 9.03
0.79 [0.78:0.79]  9.04
0.75 [0.75;0.75]  9.04
0.71 [0.68:0.73]  9.02
0.69 [0.69:0.70]  8.99
0.7 [0.69:0.70] 9.0
0.7 [0.70:0.71]  9.02
071 [0.71:0.72] 8.73
0.71 [0.69:0.74] 9.01
0.74 [0.74;0.75] 9.1
0.76 [0.76;0.77]  9.27
0.77 [0.77;0.78]  9.49
0.79 [0.78:0.80]  9.68
0.8 [0.80:0.81] 9.92
0.82 [0.81;0.82] 10.12
0.83 [0.83;0.83] 10.23
0.83 [0.83;0.84] 10.35
0.85 [0.84;0.85] 10.41
0.85 [0.85:0.86] 10.42
0.86 [0.85;0.86] 10.55
0.86 [0.86:0.86]  10.6
0.86 [0.85;0.87] 10.64
0.87 [0.87;0.87] 10.61
0.87 [0.87;0.87] 10.63
0.87 [0.87;0.87] 10.55
0.87 [0.86:0.87] 10.53
0.86 [0.86;0.86] 10.35
0.86 [0.86;0.86] 10.48
0.85 [0.84:0.85] 10.37

PMem
[10.35;10.40]
[9.42;9.45]
[9.10;9.15]
[9.02;9.05]
[9.02;9.06]
[9.04;9.05]
[8.98;9.06]
[8.98;9.01]
[8.99;9.02]
[9.00;9.04]
[8.51;8.94]
[8.96;9.07]
[9.07;9.15]
[9.24;9.31]
[9.47;9.52]
[9.66;9.70]
[9.90;9.94]
[10.10;10.13]
[10.18;10.27]
[10.31;10.39]
[10.39;10.43]
[10.31;10.53]
[10.51;10.59]
[10.59;10.62]
[10.61;10.68]
[10.58;10.65]
[10.58;10.68]
[10.52;10.59]
[10.50;10.56]
[10.28;10.41]
[10.41;10.55]
[10.31;10.42]

DES [n]]

DRAM

2.39
2.36
2.29
2.26
2.26
2.29
2.34
2.34
2.35
2.36
2.35
2.38
2.39

24
2.38
241
241
2.42
2.42
241
2.42
2.42
2.43
2.39
241
241

24

24
2.37
2.38
2.36
2.33

[2.34;2.44]
[2.34;2.38]
[2.28;2.30]
[2.26;2.27]
[2.24;2.29]
[2.25:2.32]
[2.32;2.35]
[2.32;2.37]
[2.35;2.36]
[2.36;2.37]
[2.29;2.41]
[2.37;2.39]
[2.38;2.41]
[2.39;2.41]
[2.32;2.44]
[2.39;2.42]
[2.40;2.42]
[2.41;2.43]
[2.40;2.43]
[2.37;2.44]
[2.40;2.44]
[2.41;2.43]
[2.42;2.43]
[2.34;2.44]
[2.40;2.43]
[2.41;2.42]
[2.39;2.41]
[2.39;2.41]
[2.33;2.41]
[2.37;2.39]
[2.35;2.37]
[2.32;2.34]

97.18

88.3
81.86
82.79
83.02
83.21
83.62
84.82
85.85
85.18
85.71
87.67
87.84
88.73
88.75
88.18
90.07

90.9
92.09
92.16
93.15
90.61

92.6
90.75
93.03
90.78
89.94
89.88
90.37
89.58
90.18
88.85

PMem
[95.46;98.90
[87.78;88.81
[81.47;82.24
[82.46;83.11
[82.33;83.71
[83.00;83.42
[83.33;83.90
[84.43;85.22
[84.95:86.76
[83.92;86.45
[84.15;87.28
[85.92:89.43
[86.81;88.87
[88.12;89.35
[87.72;89.79
[85.90;90.45
[89.44:90.71
[89.02;92.79
[90.82;93.35
[91.68;92.63
[90.94;95.36
[87.47;93.74
[91.92;93.28
[88.47;93.03
[91.80;94.26
[87.48;94.09
[89.80;90.08
[89.32:90.44
[88.90;91.85
[89.26;89.90
[89.57;90.79
[85.97;91.72

Dynamic Energy per Load (DEL]) and Dynamic Energy per Store (DES)
for sequential access to DRAM and PMem with 95% asymptotic confi-
dence intervals. Mean of 3 reptitions.
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C. Dynamic Energy per Load and Store Data
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Threads
2.82
2.87
4.55
3.86
9.78
7.7
5.81
5.31
9| 7.03
10 5.7
11| 7.26
12 | 10.38
13 | 12.16
14 | 10.4
15 | 13.98
16 | 16.35
17 | 13.85
18 | 11.77
19 | 16.3
20 | 16.05
21 | 26.47
22 | 18.67
23 | 33.8
24 | 14.97
25 | 26.09
26 | 19.24
27 | 16.66
28 | 17.16
29 | 25.25
30 | 24.82
31 | 28.83
32 | 13.57

0 3 O O i W N~

DEL [nJ]

DRAM

[1.62;4.02
1.89;3.85
[2.96:6.14
[1.82:5.89
[6.80:12.76]
[7.26:8.14]
[5.32;6.29]
[3.47;7.15]

]

]

[4.31:9.75
[3.33;8.07
[4.17:10.36]
[8.72:12.04]
[5.23;19.08]
[4.59:16.22]
[3.43:24.54]
[11.89:20.81]
[1.92:25.77]
[9.55;14.00]
[2.16:30.43]
[10.50;21.60]
[11.26;41.69]
[3.66;33.67]
[21.57:46.04]
[7.22:22.72]
[6.17:46.02]
[5.34;33.15]
[-0.18;33.49]
[5.91:28.41]
[18.86;31.63]
[18.80:30.83)]
[5.04;52.63]
[8.55:18.60]

31.95

51.83

43.78

80.74
102.91
189.47

38.28

73.36
117.11
114.47
138.55
161.49

293.5
151.82
193.76
133.67
206.71
269.88
264.92
228.43
153.15
270.67
266.98
242.69

207.0
148.22
226.07
344.82
319.11
205.05
374.41
269.25

PMem

[25.19;38.72]
[44.58:59.08]
[39.46:48.09)]
[65.78:95.69]
[74.55:131.26]

[158.06;220.88]

[64.45:112.10]
[38.47;108.25]
[49.60:184.62]

[112.46;116.48]

[88.12;188.99)]
[32.50;290.47]

[189.49:397.51]
[100.56;203.08]
[131.78;255.74]

[82.65;184.70]
[32.61:380.80]

[205.43;334.32)
[197.40;332.43]

[81.90;374.95]
[96.33:209.97]
[23.35:517.99]

[162.94;371.02]
[185.64;299.75]

[89.67;324.34]
[97.08:199.36]

[204.37;247.76
[106.34;583.31
[103.49;534.73
[170.60;239.49

[78.35;670.47]

[ it U i

[115.15;423.36]

Table C.7.: DEL for random access to DRAM and PMem with 95% asymptotic

confidence intervals. Mean of 3 reptitions.
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C. Dynamic Energy per Load and Store Data

1 Count: | 2387484848 . Patiem Threads: Stride: 1 v
2 Count: | 31435566 ‘ Pattern: Threads: Stride:
3 Count: | 433444 ‘ Pattern: Threads: Stride: 1 v
4 Count: | 55562646 ‘ Pattern: Threads: Stride: 1 v
dram

Count Pattern Threads | Stride | DEL/DES | Dynamic Energy

2387484848x | Sequential Load | 4 0.83 19.8161 J

31435566x% Strided Write 8 8 13.98 59665 J

433444x Random Load 32 1357 0.0588J

55562646x Random Load 16 16.35 9.0845)

2474916504x | Total 34.9259 J
optane

Count Pattern Threads | Stride | DEL/DES | Dynamic Energy

2387484848x | Sequential Load | 4 903 2155899 J

31435566x Strided Write 8 3 700.45 220.1904 J

433444x Random Load 32 269.25 1.1670 )

55562646x% Random Load 16 13367 742706 J

2474916504x | Total 511.2179 J

Figure C.1.: Screenshot of the energy estimation calculator, provided as a Jupyter
notebook.

shows a screenshot of the calculator for estimating the dynamic mem-
ory energy. This calculator can be found in the form of a Jupyter notebook inside
the data folder of the supplementary material of this thesis.
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Acronyms

[AC] plternating circuit] . . . . . . . . . . . . . 18
lanalog-digital coverters . . . . . . . . ... . ... ... ... ... ... 17
[BMC Baseboard Management Controller] . . . . . . . . .. ... ... .... 32
BpW]| Bandwidth per Watt| . . . . . .. ... ... ... ... ... ... ... 81
IConiugate Gradient] . . . . . . . . ... ... 7
)| [Coordinate Formatl . . . . . . . . . . . . ... 75
S| [Compressed Row Storage] . . . . . . . . ... .. .. ... ........ 75
Rl cmrent-sense resistor] . . . . . . ... 15
L| [Compute Express Link{ . . . . .. ... ... ... .. ... ... ... 82
[direct currentl . . . . . . . . .. 15
[DDRI Double Data Ratel . . . . .. ... ... ... ... ... ........ 5
[DEL Dynamic Energy per Load| . . . . . ... . ... ... ... ....... 99
[Dynamic Energy per Store] . . . . . ... ... ... ... ... 99
[Dual Tnline Memory Module] . . . . . ... ... .. ... ... ... 6
| Dynamic Random Access Memory| . . . . . . . ... ... ... ... 4
IEEII [Energy per Instruction]. . . . . . .. ... ... ... ... L. 57
[EWRI [Effective Write Ratid . . . . . . . . .. ... ... ... 8
[FIVRI [Fully ITntegrated Voltage Regulator] . . . . . . . ... .. ... .. ... 51
HBMI high-bandwidth memory]. . . . . . . . . . . ... .. ... ... .... 82
[high-capacity memory] . . . . . .. . .. .. ... 1
HSW] Haswelll . . . . . . ... 23
IB1[vy Bridge] . . . . . . . . . . . . 23
IC ] tegrated circuit] . . . . . . . . . . . . . . . .. ... 34
IMC [integrated memory controllerd] . . . . . . . . ... ... .. ... ... .. 79
[ntelligent Platform Management Interfacel. . . . . . . ... .. .. .. 97
[MSRI] [model-specific register] . . . . . . . . ... ... ... ... ... ... 13
[Non-uniform Memory Access| . . . . . . . o oo vt 4
Prinfed Circuft Boardl . . . . . . . . ... 33
[PCH Platform Control Hubl . . . . . . ... . ... ... ... ... .... 13
[power-distribution unit|. . . . . .. . . ... 18
[Power Management Bus| . . . . . ... ... ... ... . ...... 20
[[ntel Optane Persistent Memory{. . . . . . .. ... .. ... ... .. 81
[Power-Management Integrated Circuit| . . . . . ... ... ... ... 82
[power-supply unit| . . . . . ... .. 18
[RAPL| Running Average Power Limit| . . . . . . ... ... ... .. .. ... 58
Fesidual sum of squares| . . . . . . . . .. ... ... ... ... .. ... 40
................................. 23
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Acronyms

[Single Data Ratel . . . . . . . . . ... ... . ... ... .. ... 5
[mtel Software Guard Extensions . . . . . . . ... ... ... ... ... 50
[Pystem Management Bus . . . . . . ... ..o 20
.................................... 23
[System-on-a-Chip| . . . . . . . . . .. ... ... ... ... 13
[Serial Voltage Identification] . . . . . . . . . . . . . . . .. ... .... 52
[MDPI [Thermal Design Power] . . . . . . ... ... ... ... ... . ..... 7
[UMAI [Uniform Memory Access|. . . . . . . . . . . .. ... ... ... .... 3
[VRI] [Voltage Regulator] . . . . ... ... ... . ... ... ... ... .... 51
[VRM] [voltage regulator module] . . . . . . . . .. ... ... .. ... .... 18
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Glossary

Buck Converter Switching power converter that steps down an input voltage to a
stable output voltage

CSV Row-based file format with each line forming a row and each column being
separated using a comma

Dual Inline Memory Module DIMM describes the form-factor of memory modules

[t} |6 [107]

Dynamic Random Access Memory Volatile memory, often used as main memory

of computers [1} [4]

GPIO Pin that can be configured to either output or read digital signals

Hall Effect Current Sensor Sensor that measures the magnetic field generated by
the current passing through the circuit and outputting a proportional voltage.
This allows non-inversive current measurements

12C A protocol for communication between integrated circuits [20]
IMON Current monitoring capability of voltage regulators [20] [51],

Intel Optane Persistent Memory Byte-addressible, persistent memory in DIMM

form factor [1], B1],

MOSFET A commonly used type of field-effect transistors, which allows current to
flow between two terminals if a certain voltage is present at a third pin [19]

Running Average Power Limit An interface for monitoring and limiting power con-

sumption on Intel systems [T} [3] 2] [58]

Serial Voltage ldentification Protocol for communicating between voltage regula-
tors and CPUs. Allows setting output voltages and measuring power con-

sumption at the VR [20] [52]

Thermal Design Power Maxmium thermal disspiation of a device [7]
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Glossary

UART Bidirectional and asynchronous communcation protocol between two devices

34

Voltage Regulator Integrated circuit that outputs a configured, stable output volt-

age [108]

XPLine The 256 Byte XPLine determines the minimal access granularity of PMem.
The XPBuffer combines subsequent accesses to the same XPLine [§]
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