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“The scholar’s path, a journey of the soul,
Through books and scrolls, they strive to enroll,
In the secrets of the universe unveiled,
To decipher life’s mysteries, their ultimate goal.”

— Hafez [Persian Poet] (1325 - 1390)
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Abstract

Effective Research Data Management (RDM) practices are essential for fostering
research collaboration, increasing discoverability and repurposing research data, and
advancing scientific progress in higher education. In recent years, adopting Open
Science Platforms (OSPs) and the Findable, Accessible, Interoperable, and Reusable
(FAIR) data principles has highlighted the need for improved RDM methodologies
and tools for flourishing higher education achievements. However, existing literature
has provided limited guidance on monitoring RDM processes, their adoption, and
their use. This dissertation addresses this gap by investigating how to enable dis-
covering and enhancing process-aware RDM activities via modeling the underlying
researcher’s actual practices.
This dissertation presents a series of methodologies as a framework combining data
acquisition, abstraction, knowledge discovery, and operation enhancement techniques.
Furthermore, the case studies highlight the challenges associated with RDM-related
activities by assessing the proposed methodologies’ validity in real-world environments.
Initially, this work presents a universal reference software architecture for RDM ser-
vices; then, it proposes four approaches for data acquisition, including a novel Hybrid
logger technique for acquiring datasets from information systems that operate on
distributed settings, providing a comprehensive view of user activities by evaluating
corresponding software component executions. This approach enables a projection of
user behavior and facilitates the development of further machine-learning studies.
Furthermore, this work introduces a semi-supervised learning approach for abstract-
ing datasets by accommodating non-sequential events in distributed systems while
balancing data granularity and model fitness. The methodology for discovering
process-aware activities incorporates a modular and layered architecture, providing
insights into RDM compliance, identifying deviations, and optimizing user experience.
Additionally, it outlines a method for determining and visualizing the user and system
interactions and discovers the RDM phases of research projects, providing a practical
understanding of the progression and activities of different research groups.
Finally, this thesis proposes and evaluates two recommender systems, demonstrating
the potential of Content-Based and Collaborative Filtering recommender systems
in enabling the reusability of research data repositories and fostering cooperation
among researchers. The findings contribute significantly to the expanding body of
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Abstract

literature on RDM and provide valuable insights into the potential of the presented
methodologies for enhancing RDM practices in OSPs.

In conclusion, this dissertation offers holistic strategies for addressing the difficulties re-
lated to facilitating RDM in OSPs, providing guidelines for implementing necessary ar-
chitecture and demonstrating the applicability of the proposed methods to other RDM
services that adhere to the reference software architecture of RDM systems.

viii



Kurzfassung

Effektive Praktiken im Bereich des Forschungsdatenmanagements (FDM) sind essen-
ziell, um Forschungskollaborationen zu fördern, die Auffindbarkeit und Wiederver-
wendung von Forschungsdaten zu erhöhen und den wissenschaftlichen Fortschritt
in der Hochschulbildung voranzutreiben. In den letzten Jahren hat die Einführung
von Open-Science-Plattformen (OSPs) und die FAIR-Prinzipien (finadable, acces-
sible, interoperable, reusable) die Notwendigkeit verbesserter FDM-Methoden und
-Werkzeuge für den Erfolg von Hochschulen unterstrichen. Die vorhandene Liter-
atur bietet bisher jedoch nur wenig Anleitung zum Monitoring von FDM-Prozessen,
deren Einführung und Nutzung. Diese Dissertation schließt diese Lücke, indem
sie untersucht, wie man die Entdeckung und Verbesserung von Prozessbewusste
RDM-Aktivitäten durch Modellierung der tatsächlichen Praktiken der Forschenden
ermöglichen kann.

Diese Dissertation präsentiert eine Reihe von Methoden als Baukasten, der Date-
nakquise, Abstraktion, Wissensentdeckung und Prozessverbesserungen kombiniert.
Die Fallstudien heben die Herausforderungen hervor, die mit FDM-bezogenen Ak-
tivitäten verbunden sind, indem sie die Gültigkeit der vorgeschlagenen Methoden
in realen Umgebungen bewerten. Zunächst präsentiert diese Arbeit eine universelle
Referenzsoftwarearchitektur für FDM-Dienste; dann schlägt sie vier Ansätze zur Date-
nakquise vor, einschließlich einer neuartigen Hybrid-Logger-Technik zur Akquise
von Datensätzen aus verteilten Informationssystemen und bietet einen umfassenden
Überblick über Benutzeraktivitäten durch Auswertung entsprechender Softwarekom-
ponentenausführungen. Dieser Ansatz ermöglicht eine Projektion des Benutzerver-
haltens und erleichtert die Entwicklung weiterer Studien im Bereich maschinelles
lernen.

Darüber hinaus führt diese Arbeit einen semi-überwachten Lernansatz zur Ab-
straktion von Datensätzen ein, indem sie nichtsequenzielle Ereignisse in verteilten
Systemen unter Beibehaltung des Gleichgewichts zwischen Datenkörnung und Modell-
passung berücksichtigt. Die Methodik zur Entdeckung prozessbewusster Aktivitäten
beinhaltet eine modulare und geschichtete Architektur, die Einblicke in die Ein-
haltung von FDM, die Identifizierung von Abweichungen und die Optimierung des
Benutzererlebnisses bietet. Darüber hinaus skizziert sie eine Methode zur Bestim-
mung und Visualisierung der Interaktionen zwischen Benutzer und System und
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entdeckt die FDM-Phasen von Forschungsprojekten, was ein praktisches Verständnis
des Fortschritts und der Aktivitäten verschiedener Forschungsgruppen bietet.

Schließlich schlägt diese Arbeit zwei Empfehlungssysteme vor und bewertet sie, um
das Potenzial von inhaltsbasierten und kollaborativen Filterempfehlungssystemen zur
Förderung der Wiederverwendbarkeit von Forschungsdatenbanken und zur Förderung
der Zusammenarbeit zwischen Forschern aufzuzeigen. Die Ergebnisse tragen erhe-
blich zur Erweiterung der Literatur über FDM bei und bieten wertvolle Einblicke
in das Potenzial der vorgestellten Methoden zur Verbesserung von FDM-Praktiken
in OSPs.

Die Dissertation entwirft ganzheitliche Strategien zur Bewältigung der Schwierigkeiten,
die mit der Erleichterung von FDM in OSPs verbunden sind, gibt Richtlinien für
die Implementierung der notwendigen Architektur vor und demonstriert die An-
wendbarkeit der vorgeschlagenen Methoden auf andere FDM-Dienste, die sich an
die Referenzsoftwarearchitektur von FDM-Systemen halten.
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1 Introduction

Every research project attempts to accelerate the world toward discovering new knowl-
edge in order to make it a better place to live. In traditional research environments
for data-driven studies, researchers tend to rely on data accessible in close physical
proximity, resulting in substantial struggles in reproducing their peers’ results and
reusing preliminary research data. Nevertheless, “in order to make progress in sci-
ence, we need to be open and share” [1]. Today, in the era of digitalization and the
emergence of the need for support for scientific research operations, different terms
such as eScience, Open Research, eResearch, Open Science, or Research Software
Engineering are used to express and emphasize aspects of good scientific practices
for research data collection, organization, management, sharing and reusing [2].

This dissertation defines Open Science Platforms (OSPs) as digital environments,
infrastructures, or services that facilitate and promotes Research Data Manage-
ment (RDM) practices by providing researchers, institutions, and other stakeholders
with tools, resources, and collaboration opportunities. These platforms are not
merely standalone utilities; their benefit is derived from their systematic structure
on top of distributed systems facilities. This underpinning enhances the robustness,
accessibility, and scalability of these platforms, supporting scientific cooperation.
Consequently, OSPs aim to make scientific research more transparent, accessible,
and reproducible by offering features that support storing and sharing research data
and study results. These platforms often adhere to the FAIR (Findable, Accessible,
Interoperable, and Reusable) principles, which guide the proper management and
sharing of research data. In addition, OSPs can include functionalities such as data
repositories, publication archives, collaboration tools, data management systems,
and analytics services. By leveraging OSPs, researchers can more easily discover,
access, and reuse research data and findings, fostering collaboration, knowledge
dissemination, and scientific progress.

There are many stand-alone services specialized in specific RDM activities, but OSPs
such as Collaborative Scientific Integration Environment (Coscine) [3], Open Science
Framework (OSF) [4], or Zenodo [5] attempt to integrate distributed and heteroge-
neous RDM services into a centralized gateway. Lefebvre et al. [6] and Mosconi et al.
[2] call for an investigation and obtain more insights on RDM processes in research
organizations due to current limited knowledge about the actual deployment of RDM
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aspects to optimize research data management tools competently. By enabling the
study of RDM activities, this thesis aims to provide insights into compliance of the
OSPs according to RDM requirements.

The European Open Science Cloud (EOSC) under the Horizon Europe program has
initiated an infrastructure to promote Open Science practices and envisioned its
policy to:

Enable trusted access to services, systems and the reuse of shared sci-
entific data across disciplinary, social and geographical borders.

— EOSC, 2016 [7]

In order to facilitate the Open Science envisioned guidelines for handling research
data to openly promote sharing and collaborating on research projects, various
heterogeneous, distributed IT services are available to researchers. The resulting
continuously evolving research data management plans require constant monitoring
and maintaining Open Science standards within an IT infrastructure. However, this
requires specialized tools to manage research data, and consequently, it adds layers
of complexity concerning services providing research data management facilities.

So far, there has been little interest in investigating the gap between Open Science prin-
ciples and researchers’ actual practices, but the consequent efforts for the digitalization
of research data management principles create opportunities to study underlying de-
scriptive Open Science processes. Analyzing researchers’ practices within the research
data management context requires accurate and precise data to enable exploring busi-
ness processes and gaining valuable insights into actual RDM operations. One needs to
be familiar with Distributed Systems, RDM, and Data Science domains to investigate
underlying research processes in research data management systems effectively.

In this chapter, Section 1.1 heightens the necessity and impact of the analysis of
underlying Research Data Life Cycle (RDLC) processes within RDM; Section 1.2
emphasizes the interdisciplinary context and discusses an in-depth look into the
state of the art and current research in the fields. Finally, Section 1.3 elaborates on
research questions driven by identified research gaps.

1.1 Motivations

The symbiotic relationship between industry and academia is an essential driver of
every nation’s economic development. On the one hand, academia produces excellent
scientists and experts who continuously push for innovative ideas and knowledge
to shift state of the art. On the other hand, industries look for the applicability,
scalability, and reproducibility of those scientific findings in real-world environments
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to generate economic wealth eventually. Unfortunately, although the academic and
industry objectives intend to go hand in hand, scholars are mostly encouraged to
focus on publishing their results in scientific journals. As a result, they are less
attentive to ensuring the publishing of verifiable discoveries that meet the industry’s
needs via disseminating their research data.
Thanks to recent attention to digitalization, there is a radical change in enabling com-
prehensive acceleration of the knowledge turnover [8]. Increasingly, the data sources
are shifting from analog to digital resources to respond to the demands of articu-
lating the Open Science; however, “The data generated in this deluge requires active
management to meet basic needs of access and reuse” [9]. Additionally, “ethnographic
research requires more than just data. [...] we need a good sense of what the context
in question might be from the point of view of the researcher” [2]. Subsequently, as
part of the EU’s research and innovation funding program (Horizon 2020) [10], the
European Commission has adopted and released a set of measurable principles for
Good Scientific Practices in order to ensure Findable, Accessible, Interoperable, and
Reusable (FAIR)ness of research data [11].
As a central pillar of FAIR principles to enable reusability and verifiability of findings,
universities have made significant efforts to encourage researchers to share their
research data, metadata, and findings in the public domain by providing appropriate
toolsets and data stewardship consultants. Furthermore, to align with the Open
Science agenda, an increasing number of funding agencies mandate providing research
Data Management Plan (DMP) as an indispensable and essential measure for receiv-
ing research funding. A DMP describes the strategies for efficiently structuring and
handling research data before and after a research project [12]. Nevertheless, applying
the FAIR codes to researchers’ practices, although necessary, poses unprecedented
challenges to the actual conduct of research, curating data, and data stewardship [13].
Moreover, the apparent discrepancies between the discipline-specific requirements and
conditions of funding institutions add additional layers of complexity for satisfying
both the heterogeneous nature of research practices and DMPs [14]. Therefore, the
top-down enforcement of FAIR doctrines results in a gap between the Open Science
vision and the researcher’s actual practices [2], [15], which demands a further study
of the research process within RDM software tools that facilitate the data collection,
analysis, storage, and publishing.
Experts in the field of RDM argue that the significant effort required by researchers
for structuring and documentation of data and the uncertainty over data accessibility
leads to allocating limited time for RDM, hence, viewing it as a low-priority task
for researchers’ activities [2], [16]–[18]. However, researchers utilize various software
tools to assist them with the tasks of data collection, analysis, storage, and sharing
to satisfy the DMP requirements. Accordingly, scientists usually employ data man-
agement tools that can easily fit into researchers’ daily activities while adhering to
the FAIR guidelines and providing control over data and research data access [19],
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[20]. However, these tools are often decentralized and heterogeneous. Furthermore,
the diversity of data and distributed RDM services make it inquiring to understand
the context and meaning of the data. This is due to the specific manners scientists
conduct research and process data, resulting in challenging knowledge transfer and
data reusability [17], [19].

Politze et al. [21] call for a more profound understanding of research practices to bet-
ter understand the underlying activities of data stewardship practices by investigating
the RDM activities. However, to manifest the process-oriented research environment,
a careful bottom-up approach is necessary to investigate how the research data is
prepared and used within the decentralized software architecture of RDM systems.
Enabling the RDM system landscape to collect, process, and analyze actual research
practices is a fundamental challenge to provide added value, insights, and services
for researchers.

1.2 Related Works

One needs to begin with the related works and studies conducted in the field to
address the lack of sufficient command for investigating Open Science activities and
provide insights into actual researcher’s practices. Therefore, this Section begins
by throwing light on the interdisciplinary nature of this thesis and describes the
necessary information required for enabling the investigation of Open Science and
RDM. Moreover, Section 1.2.3 provides an overview of the extraction of process-aware
data from distributed environments, and Section 1.2.4 describes state of the art on
data abstraction to discover underlying processes in RDM systems successfully.

The work in this Section is partially based on self previously published research and
supervised technical reports. Most notably, the Open Science underlying activities
have been previously discussed in [21]–[23], the process-aware software analysis of
distributed services is presented by Yazdi et al. [24]–[26], and the related study on
data abstraction for the task of business process discovery is also presented by Yazdi
et al. [27].

1.2.1 Interdisciplinary Context

Despite the Data Modeling task being broadly regarded as a Data Science related
discipline, one needs to consider several other domains involved to address the ex-
isting challenges in the RDM real-world environment. This section discusses the
relationship of various research fields to Open Science and their state-of-the-art to
uncover the interdisciplinary nature of this research project. The challenge in this
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thesis is to provide a set of novel methods that combine scientific solutions from
various disciplines and harmonize approaches toward a common goal in order to
satisfy the research objectives.
Accordingly, this thesis contributes to three main disciplines that significantly in-
fluence the course of study: Research Data Management, Distributed Systems, and
Data and Process Science. Additionally, the advances in Human Computer Interac-
tion (HCI), Privacy, and Requirement Engineering domains navigate my suggested
approaches to ensure the applicability of the proposed methodology in real-world
settings. Figure 1.1 illustrates an overview of research streams and highlights the
corresponding research gaps.

FAIR Principles

Data Preservations

Usage Data Collection

Resource Management

Microservices

Privacy

Provenance
Tracking

Ontology Based
Data Access

Data Preparation

User Behavior Study

Data-Driven Requirement
Engineering

Data & Process Modeling

…

Gap 3: Process Discovery
in Distributed Settings

Gap 1: Data Acquisition
From RDM Platforms

Gap 5: Facilitating
Research Data Reusability
via Recommender Systems

Databases

Figure 1.1: A visual depiction of the interdisciplinary study of RDM and existing
research gaps.

Research Data Management

In general, the term Research Data Management refers to all policies and activities
involved in handling research data before, during, and after starting a research project
within an Open Science setting [2], [28]. Tenopir et al. and Cox claimed that university
libraries are naturally suitable centers for discussing RDM activities and services
[29], [30]. However, although librarians are an ideal source of information for RDM
operations and policy development, they are often not equipped with enough resources
and competencies to provide the necessary IT infrastructure [2], [31]. Furthermore,
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university libraries often see RDM as the extension of traditional consultation services
to advise researchers on available internal or external tools [32].
In order to deliver high-quality research results and encourage data sharing, Hua
et al. debate the need for open, collaborative scientific platforms where researchers
can benefit from long-term data preservation solutions and enable cross-disciplinary
research projects [33]. Authors discovered the cloud-based tools like Sciebo [34],
Dropbox [35], Google Drive [36], Gitlab [37] to be the most famous and common
tools among scholars to facilitate storage and managing data within a community
despite lack of support for implementing or enforcing RDM policies.
Ashiq et al. [31] call for a necessity of generic IT services that incorporate RDM
policies as a cornerstone to long-term data storage. Hitherto, there are specialized
Open Science forums such as TR CRC 32 for geographical data [38], chemical sam-
ple management [39], or medical study data [40] are focused on discipline-specific
workflows, and their study shows its approval by domain users. Nevertheless, these
often satisfy the needs for narrow research communities with limited, targeted RDM
objectives and do not support scalability to conduct more extensive interdisciplinary
studies. To deliver a universal OSP, IT service providers of universities need to
close the gap between these ad-hoc RDM solutions and cater to more generic RDM
workflows to address a wider community of researchers [21]. A more detailed study of
related work on RDM and Open Science processes is discussed in Section 1.2.2.

Distributed Systems

It refers to a collection of independent computers sharing resources such as software
components, databases, services, or computational power within a network to achieve
a common goal [41]. Likewise, decentralized systems contribute to RDM workflows by
typically employing distributed storage services that span across physical boundaries
[42]. Yet, Yazdi et al. [26] discuss the challenges of the RDM task for data managers
to keep track of all resources in cross-institutional and distributed settings and a
need for a single point of user interaction despite utilizing multiple services in an
RDM workflow.
Additionally, as part of RDM goals, an OSP that benefits from the advantages of dis-
tributed systems should incorporate data provenance requirements. Data provenance
is described as “any information describing the production process of an end product”
[43]. For instance, Mufti et al. and Hu et al. have investigated the challenges and
benefits of data provenance in the Internet of Things (IoT) as an example of a
distributed environment [44], [45]. The authors concluded that although upholding
data provenance within distributed systems can optimize processing performance,
increase trust in the data reliability or facilitate recovery, it raises concerns about
data security, indexing, accessibility, or unforeseeable data migrations. Scientific
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collaboration platforms such as OSF[46], and Coscine [21] seek to resolve these issues
by integrating a python web application such as WaterButler [47] for interacting with
dispersed file storage services across domains in a single user interface, using Rep-
resentational State Transfer (REST)ful Application Programming Interface (API).
In addition, although Persistent Identifier (PID) are used to reference research data
uniquely [48], the tracking of the path a research data takes between resources is still
a challenging task due to the heterogeneous and distributed nature of the system.

In order to deal with the issue of tracking research data in a dispersed setting, Smith
et al. and Stephan et al. [49], [50] have suggested toolkits to log the data provenance
but fail to demonstrate high-level to low-level provenance related activities, lack
the possibility for scalability with the growth of an OSP and require source code
modifications to collect logs. Thus, Section 1.2.3 provides an in-depth look into the
criteria for investigating the distributed systems to collect process-aware details in
distributed services. Furthermore, Chapter 3 represents data mining methods to
capture related information with minimal changes while interpreting user actions
on research data within a distributed and heterogeneous environment.

Data and Process Science

As are explained by several scholars [51]–[53], Data Science includes but not limited
to data extraction, preparation, transformation, presentation, predictions, and vi-
sualization of a massive amount of structured or unstructured data that are static
or streaming. It aims to turn data into real value by analyzing an extensive data set
and obtaining insights from the mass of data. A comprehensive description of data
science is given by Van der Aalst [54]: “Data science is an interdisciplinary field, ...,
it includes data extraction, data preparation, data exploration, data transformation,
storage and retrieval, computing infrastructures, various types of mining and learning,
presentation of explanations and predictions, and the exploitation of results taking
into account ethical, social, legal, and business aspects.”.

As a sub-discipline of data science, Van der Aalst has introduced process mining
and suggested three types of phases [54], [55]. Namely, Model Discovery algorithms
such as Fuzzy Miner and Inductive Miner (IM) [56]–[58] are usually employed as
a starting point for extracting a business process model from raw event logs. Each
event contains at least a Case, an Activity, and a Timestamp. Conformance Checking
techniques compare an existing process model with an event log of the same process
to check if the extracted model complies with that of reality and vice versa. This gives
opportunities to diagnose deviations and determine the effects of non-compliance
events and bottlenecks [24]. Finally, Enhancement aims to improve the actual process
performance by extending the former model [59].

7



1 Introduction

Data and Process Science disciplines equip scientists with techniques to uncover
hidden insights from data sets and explain complex behaviors and trends within
a system. Developing process-aware RDM workflow requires tracking and under-
standing how an Open Science system is being used [2]. Thus, Business Process
Intelligence (BPI) supports modeling user interaction processes with research data
and how software components are interconnected to fulfill user requests. Accordingly,
many potentials for improving a system can be identified by modeling and mapping
an actual user journey to an expected process model [22].

Moreover, researchers have also emphasized the limitation of data analysis for large,
unstructured, and complex processes [60], [61]. Therefore, to extract insightful
information from extensive data sets, approaches such as combination of abstraction
and clustering are proposed to simplify the disorderly processes and prepare data for
process intelligence analysis [62]. Section 1.2.4 highlights a detailed view of current
data abstraction techniques for process discovery. Furthermore, Section 4.1 proposes
a novel scientific methodology for data abstraction to allow for the extraction of
insightful knowledge.

Human Computer Interaction

The field of HCI have long been engaged in studying collaborative research practices
and the necessary infrastructure to support them. Relevant research in these areas
has examined the practices within extensive, enduring, and geographically dispersed
research endeavors, exploring the sociotechnical infrastructure required to facilitate
common resource sharing, dataset access, and specialized tools for data storage
and processing [63], [64] conducted an ethnographic investigation of the practices
employed in a trailblazing effort in research data management and sharing as part
of a long-term ecological research program [65]. Their study offered valuable insights
into the complexities associated with local data stewardship by observing and giving
voice to scientists and data managers collaborating.

Such insights are increasingly crucial in light of the Open Science movement, which
emphasizes the need for institutionalization and standardization across all research
disciplines. Researchers such as Yazdi et al. [26] and Calero Valdez et al. [23], [66]
have detailed the influence of User-Centered Design (UCD) methods in devising
solutions to promote interdisciplinary collaboration among researchers. Using a
visualization tool, these researchers effectively facilitated research collaborator recom-
mendations and information exchange among researchers based on their publication
records. Their investigations employed participatory design techniques and iterative
evaluations, resulting in a design that enabled researchers to identify potential sci-
entific collaborators, address scientific challenges, locate relevant literature, discover
field experts, and locate research facilities or resources. The authors posited that
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UCD methods could pinpoint users’ primary challenges and subsequently direct the
development process toward suitable tools for supporting research processes.

User and Data Privacy

Data privacy and protection are two main challenges preventing any tool from gaining
users’ attention and influencing users’ participation [22], [67]. Perrier et al. [68] at the
University of Toronto have conducted a mixed-method user study with 28 researchers
to identify requirements for RDM tools and services. The authors have concluded that
participants have taken the users’ data protection very seriously. Hence, Open Science
services should provide clarity and guidance on anonymizing data to satisfy ethical pre-
requisites. Kokolakis [69] and Adler et al. [70] have conveyed a phenomenon of privacy
paradox and users’ behavioral inconsistencies toward sharing information. They found
that, despite significant privacy concerns in social, collaborative platforms, people are
willing to share information when perceived benefits surpass observed risks. Authors
[71] suggest that data-driven analysis can reliably echo actual user perception regard-
ing privacy in a social network platform rather than only self-reported behaviors.

The EU has introduced legal laws for privacy protection, known as the General Data
Protection Regulation (GDPR) [72]. Subsequently, Labastida [73] discusses legal
requirements for RDM systems to promote research data sharing while adhering
to GDPR and FAIR principles. He discusses the common practice of aggregating
data or anonymizing before publicly reusing research data. Mosconi et al. [2] debate
that FAIR data guidelines can be applied only to a certain extent due to ethical
codes imposed on researchers to ensure the anonymity of research subjects. Thus,
extensive data anonymization causes the loss of contextual information necessary
for research results’ reproducibility and data reusability.

Thus, to comply with GDPR rules and respect user and data privacy concerns,
OSPs have to collect and analyze anonymized data and not contain any sensitive
domain. Accordingly, the suggested data analytics framework in this thesis focuses
on studying collective user activities and discovering process models and patterns
without needing explicit and individual user information.

Data-Driven Requirement Engineering

Sedelmaier and Landes define requirement engineering as “methods and techniques for
eliciting, analyzing, documenting and validating requirements” [74]. The traditional
requirement engineering task involves gathering the essential needs of stakeholders
and establishing relations to currently available features of a software solution. How-
ever, as the number of features and software pieces increases, so does the complexity
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of these systems; thus, the interfaces between components within a distributed service
quickly get overlooked and result in implicit interdependencies and loss of sight over
non-functional or hidden requirements [75].
On the other hand, data-driven requirement engineering promotes an evidence-based
analysis of requirements and facilitates the process of decision-making by employing
implicit usage data [76]. For example, Hemmati [77] and Moukhi et al. [78] demon-
strate the benefits of a data modeling pipeline on top of usage data collected by
distributed storage systems. Using a data-driven approach, authors could successfully
investigate the system usage and identify bugs without user engagement, poten-
tial user needs, and new opportunities to enhance existing features. Additionally,
Mohammadi and Heisel [79] highlight the importance and relation of data-driven
requirement evaluation to users’ perception of system trustworthiness. This becomes
important when users expect to trust and rely on OSPs with their sensitive research
data. Finally, Dabrowski et al. [80], and Filipowska et al. [81] elaborate on the
advantages of studying user experience and goal-oriented analysis by utilizing process
modeling techniques.
Likewise, my proposed methodology enables OSPs to explore and discover non-
functional and implicit user requirements, such as a study of fall-out activities,
discovery of bottlenecks, workflow auditing, and software components’ performance
analysis while respecting users’ privacy concerns.

1.2.2 Open Science Underlying Activities

The current trend to emphasize the aspects of Good Scientific Practice [82] has
continuously related to various commonly mentioned terminologies, but the practical
distinction or their relationship to one another is overshadowed in the literature.
Hence, this section focuses on the brief definition of each term and how these terms
are co-related.

Data Management Plan

In recent years, public funding agencies have required DMP as a prerequisite for
granting research funding. DMPs demand researchers supply a detailed strategy
for data governance, duration, and methods for preserving data and clarifying data
anonymization and sharing intentions [2].

Research Life Cycle

Research Life Cycle (RLC) is referred to the researchers’ stages of study, starting
from its research ideation to its completion [83]. Figure 1.2 visualizes the five phases
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of RLC, which are inspired by [84]. However, as illustrated, the RLC is not necessarily
a cyclic process, and researchers may need to repolish their research idea at any
stage of RLC.

Figure 1.2: Research life cycle inspired by Humphrey [84].

1. Research Idea: The initial process of exploring research gaps and developing
the hypothesis according to available knowledge in the field.

2. Feasibility Research: The activities to evaluate the possibility and advan-
tages of investing resources for a research project. This may include searching for
relevant funding, data availability, proposal writing, and potential collaborators.

3. Project Design: Specification of project collaborators and the respective
work packages. Specifying and preparing the tools and acquaintance necessary
to execute research methods and prepare DMPs.

4. Active Research: All the crucial exercises for executing a research task. This
includes data generation or reusing existing preliminary data to analyze and
achieve new knowledge in a field.

5. Transfer: The process of documentation and publishing of findings to reach
out to scientific peers and get an outside perspective.

Researchers within their RLC are commonly evaluated against several Key Perfor-
mance Indicators (KPIs) such as the novelty of a study, number of published papers,
the reputation of the publisher, conference rankings, H-index, and citations [85].
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Data FAIRness

Data FAIRness refers to high-level 15 fine-granular measurable units for encouraging
researchers to increase research data Findability, Accessibility, Interoperability, and
Reusability [86]. The FAIR guidelines for scientific data management and stewardship
advocate for human and machine-readable data. Various organizations and initiatives
such as International Oceanographic Data and Information Exchange (IODE) [87],
EOSC [88], and Research Data Alliance (RDA) [89], Nationale Forschungsdaten
Infrastruktur (NFDI) [90] contribute toward the definition, awareness, and imple-
mentation of FAIR objectives. According to Higman et al., [91], FAIR is not a binary
indicator for scientific projects but rather a measurable spectrum for varying degrees
of FAIRness.
In abstract terms defined by Tanhua et al. [92], Findability is associated with
pinpointing each data using a unique PID enriched by domain-relevant standardized
metadata. Accessibility refers to the possibility of retrieving research data by humans
and machines using PIDs via standardized communication protocols for authentica-
tion and authorizations. The Interoperability translates into applying domain-specific
standard metadata in the form of vocabularies and ontologies to describe research
data to increase the capacity to exchange data between research groups. Lastly, the
Reusability indicates the integrability and repurposing of research data into other
research projects while enough metadata sufficiently describes them.
To develop mechanisms to efficiently provide data FAIRness for scalable cross-
disciplinary research projects with vast data volumes, proposals have been made
for FAIR Digital Objects (FDO) [93]. These FDO-encapsulated bit sequences are
wrapped by relevant metadata to represent informational and operational units.
FDOs are then linked and referenced using PIDs [94].

Research Data Management

Corrall [95] and Cox et al. [96] have defined RDM as all activities in RLC involving
the data from its production to reusing, such as planning, production, analyzing,
Storage, maintaining the data accessibility and preparing for reuse. The RDLC is
often used with RDM to suggest to researchers the course of underlying interconnected
processes that produce new research data and highlight the evolution of science [97].
Mainly, RDLC is referred to as a representation of stages and phases of RDM. The
RDM data governance emphasizes research data annotations with metadata and
contextual information (data provenance) required to share with others to improve the
reproducibility and reliability of scientific experiments [6]. Therefore, data provenance
is not only a final research data but also capturing and recording the process of data
creation [98], [99]. Overall, RDM greatly enriches the knowledge transfer process
for scientific collaborations and enables further secondary data reuse.

12



1.2 Related Works

Figure 1.3: Phases of research data management.

Figure 1.3 illustrate the RDM phases that a research project goes through within
an OSP:

• Plan: It determines the organizational structure of a research project within
an OSP alongside a mutual agreement on data standards that all project
collaborators need to comply with.

• Production: This phase deals with metadata management and ensuring
that produced and collected research data are accompanied by corresponding
specialized metadata.

• Analysis: The Analysis phase deals with identifying patterns among existing re-
search data and supports modification of research data to achieve desired results.

• Archival: This phase ensures the preservation of research data for the long
term while preventing further modification of research data and metadata.

• Access: Besides providing access to the data or metadata when permitted,
this phase allows verifying the eligibility of researchers who would like to access
research data when needed.

• Reuse: Principally, data reuse is evidence of sufficient contextual information
on research data to guarantee data re-discovery and preparation for future reuse.
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1.2.3 Process-Aware Software Analysis in Distributed Services

In order to satisfy the requirements of DMPs, researchers often use heterogeneous
tools and services [100]. Moreover, university services are decentralized to increase
computing power, scalability, maintainability, security, rapid response, and diver-
sification [101]. However, collaborative research projects entail challenges for data
management and create opportunities for OSPs to address these challenges according
to RDM principles [2]. For instance, Coscine, as an OSP, has several distributed
services integrated to fulfill the technical requirements for achieving RDM goals.
Another challenge in a dispersed environment is producing and collecting data that
can be utilized for further studies and modeling of process-aware RDM activities
[100]. Unfortunately, most techniques do not support the issue of correlation in
distributed systems in a scalable fashion, and they focus on discovering a control-flow
model rather than the interactivity of software components, resulting in research
gaps. Therefore, this section is a deep dive into the criteria for analyzing distributed
systems to assist the research objectives and introduce a methodology for appropriate
extraction and collection of data for later modeling tasks. The work in this section
is partially based on previously published research by Yazdi et al. [24], [25].

Analysis of Distributed Systems:

To understand a distributed system’s behavior, looking into source code and observing
the intercommunication between different components and dynamic bindings within a
system is incomprehensible. Hence, Table 1.1 compares and provides a bird’s-eye view
of different approaches used to analyze distributed systems. This work introduces
multiple criteria such as Communication Type, Correlation of Distributed Events,
Application Layer, Environment, Information Source, Granularity, Performance Anal-
ysis, and Target Model to facilitate the comparison of different proposed approaches
and thus position the contributions within state of the art accordingly.

Information Source: It is the strategy used to retrieve dynamic data. Similar to
the approach discussed in Chapter 3, most of the suggested methods [102]–[104]
use some sort of instrumentation or alternation of existing code to generate the
traces of information required for analysis. For example, the method introduced by
Beschastnikh et al. [105] suggests re-purposing and adopting previously generated
logs to acquire the necessary data. Ackermann et al.[106] and Moe et al. [107] have
considered monitoring and intercepting low-level network packets between clients
and servers as a source of information.

Application Layer: The constraint of the proposed approach is to be able to reverse
engineer a distributed system in a particular programming language. Most of the
related studies focus on the instrumentation of the Java programming language [102],
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[103], [105], [108]. Furthermore, Ackermann et al. methodology [106] relies on the
TCP/IP application layer, and Moe et al. [107] targets the COBRA translation layer
and acts as middleware.

Table 1.1: Bird’s-eye view on different approaches for analyzing distributed systems.
Author Info. Source App. Layer Corr. of Events Sequence Order

Ackermann et al. [106] Network Packets TCP/IP Network Packets Dependent
Beschastnikh et al. [105] Instrumentation Java Comm. Channels. Dependent

Briand et al. [102] Instrumentation Java Comm. Channels Dependent
Van Hoorn et al. [103] Instrumentation Java No Correlation Independent
Leemans et al. [104] Instrumentation Independent Comm. Channels Dependent

Moe et al. [107] Network Interceptor COBRA No Correlation Dependent
Salah et al. [108] Provided Log Java Comm. Channels Dependent

Author Comm. Type Per. Ind. Granularity Enviro. Target Model

Ackermann et al. [106] Single Thread No Components Real UML
Beschastnikh et al. [105] Multi Thread No Components Test CFSM

Briand et al. [102] Single Thread No Control-Flow Test UML
Van Hoorn et al. [103] Multi Thread No Components Real Monitor Log
Leemans et al. [104] Single Thread Yes External Interface Real Process Model

Moe et al. [107] Multi Thread Yes Varied Real LQN
Salah et al. [108] Multi Thread No Components Test UML

Correlation of Distributed Events: The methodology to correlate executed events
in distributed systems. The authors of [102], [104], [105], [108], are using extra
communication channels to inspect and indicate the correlation of events. Instead,
Ackermann et al. [106] focuses on network packets transmitted between the sender
and receiver.

Sequence Order: The order of execution of events within a process. For the analysis
of traces, except the approach suggested by Van Hoorn et al.[103], authors have
suggested techniques to reverse engineer the run-time software execution with respect
to the order of events occurring during a process. Therefore, a trace variant directly
influences the target model.

Communication Type: Communication type defines the execution of tasks of a
process in either single thread or multi-threaded fashion. It refers to the approach’s
capacity to interpret multiple software execution processes simultaneously. In [102],
[104], [106], the proposed techniques can analyze the single-threaded processes, while
others [103], [105], [107], [108] facilitate the evaluating of multi-threaded software
execution.
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Performance Indicator: Focuses on the possibility of using a technique for an-
alyzing the software run-time performance in a distributed environment. Only a
few existing techniques [104], [107] facilitating the analysis of software execution
performance and hence, help to find bottlenecks in a system.
Granularity: It is the level of detail of information acquired by an approach. In [105]–
[108], authors have focused on the behavior captured at the software components level.
On the other hand, authors for [102] focus on deep, low-level software control-flow
information. In [104], authors have attempted to capture the user requests and
trace the software execution cycle to respond to those user requests. The suggested
approach in this thesis, on the other hand, can adopt its data granularity based on
the goal of a project. It can support acquiring low-level (software components) to
high-level (intercommunication of services) data from a distributed environment.
Environment: The environment in which a method is built for. In order to be able
to replicate a reverse engineering approach for a distributed system, it is essential
to replicate that method in real-life settings. However, the authors in [102], [105],
[108] have only examined their proposed solutions in a lab/test environment. This is
especially critical in an expanding distributed systems, as the scalability of a solution
depends on being able to handle real-life software execution processes without further
readjustments.
Target Model: The model that an approach can produce. The strategies intro-
duced in [102], [106], [108] are aiming for a generation of UML sequence diagrams.
Beschastnikh et al. [105] use Communicating Finite State machines as their targeting
model. Moe et al. [107] use the Layered Queuing Networks model to study tradeoffs
in software architecture to predict the effects of changes to architecture before the
actual implementation. Similar to the work done by Leemans et al. [104], this thesis
also focuses on data and process models to precisely express the mapping of traces
and the expected software behaviors.

Summary

Despite the various studies in the area of analysis of distributed systems, many of them
are focused on a lab setting and the generation of UML sequence diagrams. However,
in a real-life scenario, the suggested approach for gathering data should have a minimal
impact on a system’s performance. Additionally, the proposed approaches generate a
non-dynamic data granularity for analysis purposes, some are too detailed, and some
are very high level. In an Open Science distributed system environment, it is essential
to propose a solution that can acquire the right level of information with respect to
the requirements at hand. Hence, the current approaches lack the possibility of scal-
ability and adapting the level of data. Moreover, every microsystem in a distributed
environment may have a different programming language, so one should focus on
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language-independent solutions. As OSPs are continuously implemented and operat-
ing, the suggested solutions should be non-intrusive to pre-existing business logic.
To summarize, the main challenge for analyzing distributed systems is to introduce
a method for generating data to enable discovering the interactivity aspect of a
distributed systems and the intercommunication between different system compo-
nents.

1.2.4 Data Abstraction for Business Process Discovery

In order to study user dynamics and track the state of operational RDM processes
within a distributed system, process mining methods are utilized, allowing for the
extraction of process models [22]. However, handling the immense volume of data
generated by distributed systems is akin to drinking from a fire hose, necessitating
the use of an appropriate data abstraction technique to facilitate the identification
of structured RDM operations. As previously discussed, the primary tasks in process
mining are discovery and conformance checking [54]. The goal of process discovery
is to uncover a process model that accurately reflects real-world behavior based
on actual data. Numerous process discovery algorithms exist, including IM, Alpha
Miner, Fuzzy Miner, and Heuristic Miner. Conformance checking involves comparing
a process model with a data log to determine similarities and differences, allowing for
the assessment of the discovered model’s fitness [109]. Several software tools, including
ProM [110], Disco [111], and Rapidminer [112], can aid in process analysis tasks.
Complex infrastructure characterizes distributed systems, where a user request may
necessitate the involvement of numerous software components and microservices for
task execution. This complexity often leads to a n:m relationship between Server-Side
events and Client-Side events that are excessively fine-grained. Applying process
discovery to these low-level data logs frequently yields an unstructured process model
known as “Spaghetti” [54]. As a result, several data log abstraction techniques
have been proposed to convert fine-grained (low-level) data logs into more abstract
(high-level) representations. However, the primary challenge lies in determining the
optimal abstraction level that is comprehensible to domain experts and accurately
portrays actual business activities.
Recent research has focused on data abstraction techniques for process discovery pur-
poses [113]. This section classifies the various criteria for developing any abstraction
method and discusses the relevant literature.

Criteria for Data Abstraction Techniques

Grouping Strategy: The grouping strategy pertains to the learning techniques
employed to transform low-level data logs into a higher level of granularity. Two
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primary categories of abstraction operations exist: aggregation and elimination [114].
The data elimination operation adopts a naive approach by excluding inconsequen-
tial events, which can result in underfitting models that lack information about the
eliminated events. The aggregation operation creates meaningful groups of events
containing a mix of relatively unimportant events. There are two subcategories of
the aggregation operation: unsupervised and supervised learning methods.

The Unsupervised abstraction methods utilize fully automated techniques for event
grouping and often yield less accurate high-level models. These methods generate
labels by concatenating activities or making assumptions without incorporating
domain knowledge. For example, Mannhardt and Tax [115] employ Local Process
Model discovery to automatically identify frequent activity patterns in the process
model, while De Leoni and Dündar [116] use clustering methods to group activities
based on occurrence frequency and relabel corresponding groups using cluster cen-
troids. Unsupervised learning methods are advantageous when domain knowledge
is unavailable or obtaining additional information is impractical.

In contrast, the supervised learning methods are the most prevalent and widely used
techniques for simplifying process models. These methods depend on some form of
external or supplementary information to group and relabel data logs. Numerous
related works [117]–[120] employ supervised learning techniques, either by capturing
additional information or by creating a training dataset to annotate fine-grained
data logs.

Table 1.2: The work of literature and classification based on abstraction techniques.

Author Grouping Input Data Event Perspective Mapping
Relationship Internal Abstraction

Su. Un. Co. Di. Pr. De.

Begicheva and Lomazova [117] X X Sequential n:1 X
Mannhardt et al. [118] X X Sequential n:1 X

Tax et al. [119] X X Sequential n:m X
Liu et al. [120] X X Sequential n:1 X

De Leoni and Dündar [116] X X X Non-Sequential n:1 X
Mannhardt and Tax [115] X X Sequential n:1 X

Author Validity Quality Indicator Target Domain

Begicheva and Lomazova [117] Formal Fitness Acyclic Cases
Mannhardt et al. [118] Real-Life Fitness & Matching Error Information Systems

Tax et al. [119] Synthetic Levenshtein Distance Parallel Activities
Liu et al. [120] Synthetic Fitness & Precision & Generalization Information Systems

De Leoni and Dündar [116] Real-Life Fitness Information Systems
Mannhardt and Tax [115] Real-Life Fitness Automatic Pattern Discovery
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Input Data: Input Data refers to the type of data, whether discrete or continuous
events. Discrete events consist of an infinite set of values (e.g., categorical or real
values), while continuous events are a data set that can assume any value (e.g.,
activity names). Data logs may be discrete event sequences or continuous due to
activity execution. Most techniques reviewed in the literature utilize some form
of continuous activity names for analysis. However, De Leoni and Dündar [116]
vectorize continuous data sequences and convert the data log into a discrete data
format. This discrete data facilitates the implementation of data mining algorithms,
such as analyzing the frequency of activity occurrences within a data log.
Event Perspective: Event Perspective indicates the impact of the data log order
on the abstraction technique. Most procedures in the literature only consider the
order of the event sequence as it appears in low-level events. In contrast, the method
proposed by De Leoni and Dündar [116] employs the non-sequential order of events
with unsupervised abstraction methods.
Mapping Relationship: The mapping relationship between instances of low-level
and higher-level activities. There are 1:1, n:1, and n:m mapping relationships. In
the case of 1:1 mapping, no abstraction can be performed, as the granularity level
remains unchanged, meaning that each event corresponds to only one activity. Most
literature focuses on n:1 mapping, also known as shared functionality, where multiple
higher-level activities may correspond to each low-level data log. In software systems,
user activities often do not directly correspond to a recognizable server-side event,
resulting in a n:m mapping relationship.
Internal Abstraction Modeling: Internal Abstraction Modeling emphasizes using
probabilistic or deterministic factors to determine event sequence distributions. Most
literature concentrates on deterministic approaches. However, Begicheva and Loma-
zova [117] also apply the theory of regions to categorize related high-level activities,
and Tax et al. [119] utilize Conditional Random Fields (CRF) as a probabilistic
factor for event sequence relabeling.
Validity: Validity refers to the evaluation procedure employed to demonstrate the
robustness of a proposed technique. While Begicheva and Lomazova [117] rely solely
on formal mathematical representation, all other works examine their approaches
using real-life or synthetic event logs. However, only Mannhardt et al. [118] evaluate
their technique by implementing it in existing infrastructure. This is crucial because
real-life event logs may not encompass actual field challenges, such as noise, outliers,
or missing data in event logs.
Quality Indicator: These indicators contribute to the quality dimensions of the
discovered abstracted model. Typically, discovered models are evaluated based on
metrics like fitness, precision, and generalization, which provide further insights into
the alterations made by the event log abstraction process [54]. According to Buijs et
al., [58], fitness measures how well the discovered model can accurately reproduce the
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cases recorded in the log. Precision calculates the proportion of behavior the model al-
lows that is not observed in the event log. Finally, generalization estimates the extent
to which the resulting model can reproduce the future behavior of the process.
Based on my literature review, only Liu et al. [120] successfully report their approach’s
quality using fitness, precision, and generalization. The remaining researchers either
report model fitness as the sole quality factor or support their work with additional
measures such as Matching Error as a threshold for excluding unreliable matches
between fine-grained event logs and high-level activities [118]. However, Tax et al.
[119] exclusively rely on the Levenshtein similarity distance as a degree to express
the closeness of two traces from different granularity levels.
Target Domain: The primary application domain a technique focuses on. Regret-
tably, much of the literature is not generic enough and targets a specific application
domain. For example, Begicheva and Lomazova’s suggested solution [117] only
aims at non-recursive activities (acyclic cases). The technique provided by Tax et
al. [119] is intended to abstract only parallel activities with any execution order.
The automatic pattern discovery and clustering of activities are the focus of the
method discussed by Mannhardt and Tax [115]. Other literature under study seems
to concentrate on the analysis of information systems such as digital whiteboard
software [118], user behavior analysis on software systems [120], and analysis of
website visit frequency [116].

Summary

While Begicheva and Lomazova’s work [117] focuses on acyclic cases, they only employ
a formal representation to illustrate handling data duplication, overlooking stuttering
sub-sequences of activities. Furthermore, the methods suggested by Mannhardt et
al. [118] and Liu et al. [120] depend on manually labeling low-level events to high-
level activities using interviews and observations and exclude traces with missing or
unknown events. Tax et al.’s method [119] can handle parallel activities but requires
extensive domain knowledge. The approaches of De Leoni and Dündar [116] and
Mannhardt and Tax [115] leverage unsupervised learning techniques for automatically
relabeling abstract traces. While they generate new labels for higher-level activities
using cluster centroids or label concatenations, domain experts’ acceptance of this
technology remains unexplored. Mannhardt and Tax [115] use Local Process Models
and automatic pattern discovery techniques to detect activity start and end points
but are constrained by a fixed number of candidate process models based on event
frequency ranking.
Most authors have generally employed the IM algorithm for discovering process
models. The IM algorithm addresses infrequent behaviors while maintaining the
soundness of the discovered model [121]. In addition, various Petri Nets notations
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have been used to represent the discovered models. Consequently, Section 4.1 sug-
gests an approach suitable for abstracting data logs obtained from the distributed
infrastructure of an OSP.

1.3 Research Outline

According to discussed motivation and the related research as a foundation, this work
discusses the fundamentals to prepare the existing decentralized services involved
in OSPs to meet the rising demand of researchers for supporting data management
processes toward discovering new insights. Apart from discussing RDM’s typical
system architecture landscape, this research provides a theoretical basis for several
data analytics strategies covering a comprehensive spectrum of data extraction,
preparation, knowledge discovery, and recommender systems. Moreover, I assess
each building block using real-world case studies to back the external validity and
practicality of the suggested methods.

1.3.1 Research Questions

As mentioned earlier in Section 1.2.1, the investigation of RDM processes is a study of
the overlap of multiple research disciplines, where Data and Process Science provides
the means for the discovery of new information from Distributed Systems, supporting
the RDM related activities. Thus, this thesis focuses on answering the main Research
Question (RQ):
Main RQ: How to enable discovering and enhancing RDM practices via modeling
the underlying activities?
With respect to the literature review, it is clear that FAIR principles play a crucial
role in achieving RDM goals and advancing the overall research performance, but
a few studies have been published on the actual monitoring of RDM processes and
how they are adopted and used. Thus, for an effective RDM, authors in [122]–[124]
call for investigation of institutional data management frameworks that coupe with
the process of integration of data sources with their metadata.
This thesis split the main RQ into five data-driven sub-research questions listed in
Figure 1.4 in conjunction with existing research gaps illustrated in Figure 1.1.
RQ 1: How to overcome the challenges of acquiring datasets suitable for process
and data analytics from continuously evolving RDM services while maintaining data
quality standards?
RDM services largely benefit from the advantages of distributed systems; however,
dynamic data capturing from a growing distributed environment is challenging due to
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How to overcome the challenges of acquiring datasets suitable for process and 
data analytics from continuously evolving RDM services while maintaining data 

quality standards? 

How to enable discovering and enhancing RDM practices via modeling the underlying activities?

How can business process intelligence be 
incorporated into existing distributed RDM services 
to provide insights for user and system activities? 

How to effectively abstract and transform low-level datasets into 
interpretable high-level representations for RDM services while 

balancing granularity and model fitness? 

How to enhance data
reusability in RDM 

platforms while maintaining 
data control?

How to outline RDM lifecycle for 
research projects and assess its 
corresponding process-aware 

requirements? 

?

Figure 1.4: Unexplored research gaps and associated research questions.

its complex execution of heterogeneous components across a network and continuous
feature improvements. In order to capture events for the purpose of analyzing
underlying process-aware RDM activities and enable machine learning studies, one
needs to introduce an appropriate approach for acquiring data constructed from
cross-applications and independent of programming language with minimum im-
plementation efforts. Answering this research question will lay the foundation for
scalable and maintainable suitable datasets and event data while ensuring quality
standards such as completeness, timeliness, validity, uniqueness, consistency, and ac-
curacy. The resulting infrastructure should also comply with European and German
data protection laws to safeguard user privacy.

RQ 2: How to effectively abstract and transform low-level datasets into interpretable
high-level representations for RDM services while balancing granularity and model
fitness?

The institutional OSPs provide distributed software solutions to support RDM. How-
ever, this results in a heterogeneous and distributed IT infrastructure with a complex
and unstructured landscape of user processes. Furthermore, the data gathered from
these disparate services include descriptive process variations that are too detailed
and complex for domain experts to understand. Thus, the answer to this research
question should propose a methodology that deals with unordered event data while
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balancing the data granularity with respect to process models’ fitness to ensure the
discovery of structured and analyzable process models.

RQ 3: How can business process intelligence be incorporated into existing distributed
RDM services to provide insights for user and system activities?

Despite the advantages of distributed environment for sharing tasks and resources, an
essential overarching overview of the execution of microservices involved in RDM op-
erations is quickly overshadowed due to its architectural complexity. Answering this
research question aims to investigate incorporating BPI algorithms across available
services to deliver insights into hierarchical control-flow modeling of microservices
and software components supporting the Open Science processes. The resulting
findings should efficiently enable reverse-engineering the non-trivial process models in
a decentralized IT system landscape and provide a means to generate RDM process
models based on user activities.

RQ 4: How to outline the RDM lifecycle for research projects and assess its cor-
responding process-aware requirements in collaborative scientific platforms?

As mentioned in Section 1.2.2, the RDM principles and activities are defined by stake-
holders from national and international initiatives, and the study of actual practices
of researchers applying RDM principles is a research gap. This research question
aims to utilize the gathered event data to bridge the knowledge gap regarding the
actual practices of researchers within OSPs and RDM guidelines. Thus, the resulting
finding should enable visualizing descriptive RDM stages for research projects while
identifying RDM-related requirements using process-aware activities. Furthermore,
outlining the RDM operations will encourage troubleshooting the potential barriers
for each RDM phase and provide self-awareness regarding the current collective RDM
activities within a research project.

RQ 5: How can recommender systems enhance research data discoverability and
reusability in RDM Platforms while maintaining user control over data artifacts?

The ultimate goal for RDM principles and services is to facilitate and encourage
researchers to reuse data artifacts and consequently save time in reproducing peers’
research results. However, researchers are often reluctant to publish data openly due
to uncertainty about legal consequences or possible misusage; hence the potential
loss of control over data outweighs the gain, resulting in oversight of research data
reusability. Answering this research question should bring forward a comprehensive
method for enabling the reusability of research repositories within an OSP without
compromising sensitive information by employing available datasets such as user
activities or knowledge graphs.
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1.3.2 Course of Research

In order to answer the research questions, the course of research is inspired by CRISP-
DM (CRoss-Industry Standard Process for Data Mining) [125] and L*lifecycle [54]
research methodologies.
Considering that applying data analytics projects in practice is not a trivial task,
it has been necessary to run each stage iteratively to steer to an optimal conclusion.
Figure 1.5 presents the research methodology and its stages. There are five steps
(rows) repeated within every stage (column).

Planning & Business
Understanding

Data Analysis Data Preparation Modeling Evaluation

Awareness of the
Problems

Acquiring an Overview of
RDM Services

Possible Unsuitability of Data
for Process Modeling

Fine-Grained Unstructured &
Complex Event Data

Identification of Suitable
Research Projects in an OSP

Best Practices to Outline
RDM & Maturity of an OSP
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Hybrid Data Collection using
OAuth & Client-Side Logger

as a Training Set

Hierarchical Process
Discovery Using Directed

Flow Graphs

Iterative Semi-Supervised
Event Log Abstraction Using

Fitness & PCC

Using Token Replay Over
Petri-net to Discover BPI

Content-Based Filtering using
Pearson/Coscine Similarities
& Trace Alignment Checking

Development
Implementation of Event

listeners
Running Suitable P.M.

Algorithms on the Event Logs
Implementation of Pre-

Processing Pipelines

Implementation of DA4RDM
Web-based Framework for

Post-Processing

Visualization of RDM in
DA4RDM Python Package

Evaluation
Assessment of Data Quality

Standards
Distributed IT Services of the

University
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SimpleArchive & Metadata

Manager

Coscine Resource Object
Analysis

Discovery of RDM for
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flow Requirement Analysis

Conclusion
Preparing Data for Further

Analysis

Outlining the
Interdependencies of RDM

Services with Other
Microservices within a

Distributed Environment

Abstracting Event Logs to
Desired Level while Keeping

the Fitness

Recommending Research
Data Repositories using
Recommender Systems

Outlining RDM Activities for
Research Projects &

Accessing RDM process-
Aware Requirements

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 1.5: A representation of the course of research.

The findings from every stage are used as input for the next stage. The stages within
this research methodology were planned to gradually shape the research project and
answer the research problems as they mature and evolve. A description of each stage
is as follows:
Stage 1) Planning and business understanding:

Dedicated to comprehending the domain knowledge, available services, and
identification of research gaps. The results of this stage are a set of research
questions and an awareness of software architecture limitations in place.

Stage 2) Data Analysis:
This stage investigates the nature of available data for further data-driven
studies and acknowledges the potential challenges of utilizing the data. Thus,
this stage locates and enables the exploration of data.
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Stage 3) Data preparation:
Before running any data analysis task, structured event data must be obtained
in this stage to enable further data analysis techniques using pre-processing
pipelines.

Stage 4) Modeling:
The findings from the previous step within a control flow model have to get
enriched and integrated with additional perspectives to help better understand
the as-is processes. In addition, this stage supports us in verifying prescriptive
models with actual data via user journey modeling.

Stage 5) Evaluation:
It is the stage when an Open Science system can detect deviations in process-
oriented operations and determine stages of RDM for research projects using
real-world data.

1.3.3 Outline of the Thesis

Chapter 2 presents a generic landscape of Open Science related services and discusses
a reference architecture for distributed services supporting the process-aware RDM
activities. Furthermore, this Chapter describes RDM systems under study utilized to
run case studies and evaluate the external validity of proposed methodologies.
Chapter 3 introduces the methodologies required for extracting reliable and suitable
data from OSPs to answer RQ 1. It discusses the quality measures and the standards
essential for modeling the RDM processes. This Chapter introduces several data
extraction techniques that were applied and elaborates on the advantages and dis-
advantages of each technique. Moreover, concerning the discoveries and challenges of
acquiring data from OSPs, this thesis proposes a novel pivotal method for gathering
reliable data.
Chapter 4 elaborates on a set of methodologies for modeling RDM operations toward
addressing RQ 2-5. This Chapter introduces a web-based data modeling frame-
work that commences for analyzing and modeling tasks. Besides introducing the
fundamental technologies used to implement the modeling framework, this Chapter
justifies the overall methodology by an exemplary set of interfaces (data abstraction,
user journey mapping, outlining of RDM phases, and recommending data objects)
that are separately introduced and evaluated. Finally, the overarching methodology
should be applied to OSPs based on the theoretical foundations and lessons learned
to model process-aware RDM operations.
Chapter 5 discusses the findings and evaluates suggested approaches by applying
case studies featuring RDM processes using real-world data and scenarios. The
assessment of data modeling implementations is then examined using qualitative
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and quantitative metrics to determine the reliability and scalability of approaches
discussed in Chapter 4.

Lastly, Chapter 6 will conclude the thesis by answering the research questions and
summarizing the methodologies supporting the discovery of underlying process-aware
RDM activities. Moreover, this Chapter presents the thesis’ contributions to the
body of Open Science and positions itself in an applied interdisciplinary research
context. It also elaborates on the potential future works and suggests an outlook
by utilizing the results and lessons learned.
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The rise of data-driven collaborative research projects has underlined the importance
of Open Science objectives and led to increasing demand for suitable software in-
frastructures to fulfill FAIR data principles’ requirements and boost the research
data discoverability, reproducibility, and reusability [126]. According to Hofeditz
et al., [127], despite the growing number of available technical solutions, scientists
have been reluctant to employ them due to the complexity of integrating RDM
practices into everyday scientific workflows and a lack of knowledge on implementing
IT services that support researchers in every phase of RDM lifecycle.
This Chapter focuses on an overview of services that can be adopted in the long tail of
RDM operations. Firstly, a pragmatic comparative study of fifteen RDM services for
the goal of adopting the RDM requirements is discussed. Then, Section 2.2 conceptual-
izes a reference RDM software architecture model for OSPs and elaborates on how they
profit from distributed services environment to satisfy various RDM activities.
The last Section introduces three RDM services as a set of System Under Study (SUS).
It demonstrates the alignment of each subjected SUS with respect to the reference
RDM software architecture model and the applicability of suggested methods in this
thesis to OSPs.

2.1 Comparison of RDM Service Providers

The starting point for studying underlying RDM processes within OSPs is to analyze
the existing IT landscape and generate a reference software architecture model that
can later be utilized and enhanced. Typically, the IT systems employed by researchers
to facilitate RDM activities are situated in heterogeneous and independent infras-
tructural software services. For example, a survey study on researchers’ actual RDM
practices by Mosconi et al. [2] discovered researchers’ extensive usage of file servers
or file-sharing systems such as Google Drive, Dropbox, and Sciebo, but they lack
support for RDM workflows or enforcing policies. In contrast, despite an expressed
demand for Metadata management, the abovementioned systems do not support any
structured metadata during a research process. Moreover, Mosconi found a limited
usage of several decentralized and detached discipline-specific services to satisfy RDM
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requirements due to the complexity of maintaining IT systems, despite a growing
number of competent IT services that adequately incorporate the RDM lifecycle.

The following Section compares 15 web services that are either specialized or utilized
in/as RDM-related activities. It briefly introduces each service and then discusses
each tool’s applicability and technical feasibility for RDM-related processes.

Research Data Management Organizer (RDMO) [128]: A web-based tool
funded by DFG to assist principal investigators and stakeholders in creating DMPs
according to funding agencies’ requirements. Through RDMO, users can define
research projects and partners, utilize grant proposal templates to fill into various
funders’ required questionaries, and export DMPs as ready text documents.

SimpleArchive [129]: A tool developed by RWTH Aachen University to facilitate
long-tail preservation of research data using tape archives and associating PIDs to
each entry. It allows researchers to specify retention periods of a minimum of 10
years to maintain archived files and link research data to publications via PIDs.

Metadata Manager [130]: A tool developed by RWTH Aachen University to
document metadata for research data by defining graph-based discipline-specific
metadata schemas and receiving PIDs. It can also record references to data artifacts
regardless of data storage location.

Coscine [131]: A collaborative scientific integration environment developed by
RWTH Aachen University providing access to research data and the corresponding
structured metadata. Users of this platform can mirror their organizational structure
by creating projects and sub-project and prescribing customized, discipline-oriented
metadata schemata. In addition, Coscine supplies PIDs for research data regardless
of storage locations and ensures metadata collections while adding new resource
entries.

Zenodo [132]: It is an open repository created by the European OpenAIRE pro-
gram to facilitate storing digital artifacts and linking research papers to data sets.
Furthermore, researchers can cite their data by minting Digital Object Identifier
(DOI) for each submission and assigning suitable licenses.

OSF [133]: Open Science Framework is a collaboration tool developed by a non-
profit organization that connects publications to research data located in remote
repositories such as Dropbox and Google Drive in project dashboards. In addition, it
allows for creating structured projects with controlled access rights and connections
to other tools such as Google Scholar, ORCiD, and Github.

Sciebo-RDS [134]: is a middleware implemented by the University of Münster,
designed as a layer between existing research data management services such as
Zenodo or RDMO to cloud-based repositories like Sciebo or OwnCloud. The goal of
Sciebo-RDS is to allow the indexing of research data with respect to their metadata

28



2.1 Comparison of RDM Service Providers

by connecting repositories to data management services that support taxonomies
and capturing of metadata.

eLabFTW (ELN) [135]: Electronic Lab Notebook (ELN), originally developed by
a researcher as a logbook for lab experimentations, enables researchers to capture
and track laboratory experiments and processes to be able to reproduce test results.
The eLabFTW is an ELN to create logbooks for test samples. eLabFTW allows re-
searchers to design their experiments and define custom-made metadata schema.

CKAN [136]: CKAN is an open-source package tool maintained by the Open
Knowledge Foundation for data-heavy systems, enabling access and sharing of data
collections. The scientific community adapts CKAN for RDM purposes by imple-
menting extensions to handle graph-based metadata management and producing
DOIs as persistent identifiers for research data.

Nextcloud [137]: Developed by a German private company, brings together file
server services and social network collaborative group work functionalities. It ben-
efits from modular architecture, and its open-source community can publish its new
extensions via the manufacturer platform. Furthermore, the facilities such as data
versioning and indexing using Elasticsearch make it desirable for some research groups
where metadata schema can not be planned in advance, but there is a need for a
version control system integrated with tools such as video calls and task manager.

Dataverse [138]: It is a web application created by Institute for Quantitative Social
Science at Harvard University to share, cite and explore research data. Dataverse
allows researchers to log in using their Shibboleth identity provider or other OAuth-
enabled platforms. In addition, researchers can connect their publications with
datasets using DOIs, and its database provides data versioning to facilitate exploring
data collections.

EUDAT CDI [139]: It is a Collaborative Digital Infrastructure sustained by 20
European research organizations, including various data management services. EU-
DAT has split its services into seven specialized group works and packages. B2FIND
is a service for data and metadata discovery. B2SAFE provides data management
and preservation, B2SHARE is responsible for data storage and publishing research
data, B2DROP supports researchers with synchronization and sharing of data with
local repositories, B2NOTE enables users to create annotations on research data,
B2ACCESS empowers the identity management and authorization service, and
B2HANDLE registers research data with PIDs.

DSpace [140]: It is a repository platform that facilitates easy ingestion of research
data and metadata corresponding to the Dublin Core standard. DSpace issues
DOI as trustworthy persistent identifiers for data but only provides limited prefixed
metadata sets to describe research datasets.
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Figshare [141]: Founded by a private British company is a repository platform
promoting sharing of research data under a Creative Commons license. Although
DOIs are issued for research data, Figshare does not use this platform to track data
provenance. Furthermore, metadata schemas can only be configured via system
administration per system instance, resulting in a technical barrier for researchers
to define their own custom-made and specialized metadata schemas.
GitLab [142]: It is a distributed version control repository manager similar to
GitHub. GitLab provides a toolset for task managers, activity trackers, and defining
continuous integration and deployment pipelines ( CI/CD ) to build, automatically
test, and deploy applications.

2.1.1 Comparison of Services Based on RDM Lifecycle

This Section presents a qualitative comparison of RDM tools mentioned earlier
concerning the RDM phases defined in Section 1.2.2 and, with the help of Table 2.1,
examines the tools that can satisfy corresponding RDM-specific requirements.
Planning: Coscine, OSF, eLabFTW (ELN), and RDMO are the only services pro-
viding the infrastructure to define project structures according to mutual agreements
of project members. Even though RDMO focuses on DMPs, it still helps specify the
organizational structure of research projects. By utilizing these services, scientists
can configure research projects and create resources with the necessary metadata
schema and the necessary resource quota.
Production: Except for RDMO, SimpleArchive, Metadata Tool, and Sciebo-RDS,
all other services support researchers collecting research data with different levels of
metadata granularity. For example, SimpleArchive encourages researchers to provide
metadata for their archived research data by redirecting them to the Metadata Tool,
where metadata can be captured for research data. Thus, as individual entities,
neither SimpleArchive nor Metadata Tool can be considered contributing services
to the Production phase.
Analysis: Most services under investigation provide means to modify research data
and metadata, but only Coscine, Sciebo-RDS, and GitLab support analyzing research
data via their metainformation. Researchers can benefit from GitLab Runner pipelines
to analyze their existing data for patterns. Coscine and Sciebo-RDS actively prepare
and develop their services to analyze research data by digesting implicit and explicit
metadata to build recommender systems. Indeed, it is clear that RDM services lack
additional services enabling researchers to find new knowledge without maintaining a
local copy of research data and employing stand-alone tools for further analysis.
Archival: Despite DMPs’ demand for a data-archival plan, besides SimpleArchive
and Coscine, no other services ensure researchers with long-term data preservation
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Table 2.1: Service comparison in relation to RDM phases.
Service Name Planning Production Analysis Archival Access Reuse

RDMO X
SimpleArchive X X

Metadata Manager X
Coscine X X X X X X
Zenodo X X

OSF X X X
Sciebo - RDS X X

eLabFTW (ELN) X X X
CKAN X X

Nextcloud X X
Dataverse X X
EUDAT X X
Dspace X X

Figshare X X
GitLab X X X

and prevent further data and metadata modifications after archiving a resource.
Although services like GitLab offers processes for repository archival, the archived
research data are only accessible for the duration of the service lifecycle.

Access: To provide access to data or metadata, except RDMO, all services support
research data openness and check the eligibility of user attempts to access research
data. Thus researchers can define restrictive access boundaries for a spectrum of
users who potentially could access research data.

Reuse: According to the definition of reusability of research data, currently, only
Coscine has the infrastructure that genuinely supports the reusability of research data
by issuing PIDs to ensure data findability and capturing extensive discipline-oriented
contextual information on data artifacts. All other services in the field either do not
issue persistent identifiers or do not collect any provenance information.

2.1.2 Comparison of Services Based on Technical Aspects

Besides evaluating the RDM services for their applicability against the RDM lifecycle,
this Section investigates the technical aspects of RDM services under investigation.
Furthermore, it highlights their commonalities and contributes to creating a universal
reference software architectural model that conforms to all RDM services.
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This study evaluates eleven technical and technological aspects of the RDM lifecycle.
These criteria are Data Storage Location, Version Control, Persistent Identifier, Meta-
data (MD) Schema, Information Model, Search Engine, Archival, Authenticator, Data
Sharing, Provenance Tracking, and Harvesting API. In addition, Table 2.2 demon-
strates a birds-eye view of the RDM tools concerning their technical feasibility.

Data Storage Location: The location where RDM services use for file storage. As
mentioned by Zuiderwijk et al.[143], research data are often scattered and accessible
in local or/and remote resources throughout a research project. Zenodo, Sciebo-RDS,
EUDAT CDI, and Figshare allow researchers to utilize their remote data resources
by connecting their existing file servers to their data management service. Coscine,
OSF, CKAN, Nextcloud, Dataverse, and DSpace empower researchers to include re-
sources that are either only locally accessible or connect their projects to cloud-based
repositories; thus, these systems are more suitable to fulfill the natural requirement
of distributed file resources.

Version Control: The process of tracking a history of changes to data over time.
Version control systems use the file name as a unique identifying indicator and keep
previous versions only if a file with the same name already exists in a repository.
Respectively, GitLab offers a Distributed Version Control (DVC) system [144] that
allows copying a mirror of the repository in collaborating local machines. Thus, the
entire version history of all files is available to all users and can be reconstructed in
case a remote repository fails. On the other hand, all other software solutions that
support version control utilize a Centralized Version Control (CVC) system [145]
that keeps data history in a single remote server despite its vulnerability to missing
all backups and versions in case of database corruption.

Persistent Identifier: A standardized and unique identifier for digital objects.
The FAIR data management principles explicitly require DOI for research data to
make data citable [146]. Parland-von et al.[147] describe a two-tier architecture for
PID systems. The first tier is for assigning unique identifiers, and the second tier
is for resolving the Identifier to its location. SimpleArchive, Metadata Tool, Coscine,
and EUDAT CDI support users with PIDs for their research data. PIDs are a
variant of DOIs created by European Persistent Identifier Consortium (ePIC) services
compatible with DOI systems. Thus, PIDs can also be resolved and interpreted
using the DOI server [148].

Metadata Schema: It highlights the extent of adaptability and customizability of
MD schema by researchers. The development of FAIR metadata schemata requires
close collaboration with domain experts to determine a set of vocabulary and on-
tologies that best describe their data [149]. Services like Metadata Tool, Coscine,
Sciebo-RDS, eLabFTW, and EUDAT CDI allow users to define discipline-specific
metainformation and create and adapt MD schema to fit a new series of experiments
or datasets. However, despite the possibility for DSpace, Dataverse, and CKAN to
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create MD schema, users are restricted to a pre-defined schema per system instance;
thus, these systems are not flexible enough to fit multiple schemata concerning new
datasets or disciplines.

Information Model: Machine-readable data formats facilitate annotating datasets
with Metadata. Researchers widely use the Resource Description Framework (RDF)
to build knowledge graphs for the task of metadata annotation [150]. Metadata Tool,
Coscine, and CKAN benefit from RDF Data Catalog Vocabulary (DCAT) to link and
reference between groups of data catalogs. DSpace employs Dublin Core eXtensible
Markup Language (XML) schemas to structure documents and Metadata. The
remaining services utilize either JavaScript Object Notation (JSON) or traditional
Structured Query Language (SQL) schemata for their information model.

Search Engine: Software systems to index data and respond to on-demand
search queries. Among all RDM software understudy, only eLabFTW employs
the Meilisearch engine [151] due to its suitability for keyword and filter searching;
however, it is not suitable for complex queries over big datasets. OSF, Dataverse,
and DSpace utilize Apache Solr [152] as a powerful full-text search engine that
provides faceted search and near real-time indexing. Elasticsearch [153] is widely
used by almost all other RDM software to empower the indexing and processing of
big datasets while enabling semantic search capabilities.

Archival: The technology used for the long-term preservation of research data. De-
spite the RDM requirement to ensure data preservation regardless of the expiration of
research projects, only Coscine and SimpleArchive provide their users with technolo-
gies that guarantee data archival. SimpleArchive uses a library of tape hard drives to
store data, and Coscine uses Dell Elastic Container Service (ECS) object storage with
support for Write-Once-Read-Many (WORM) [154] compatibility; in both techniques,
users can not alter data after resource archival, and researchers are ensured from
long term storage of data. Additionally, GitLab provides an archive feature that sets
a database flag preventing users from further data modification. However, due to its
reversibility, GitLab archival may not be satisfactory for some research projects.

Authenticator: The access protocol RDM software uses for authentication or
authorization of users. There are various access control protocols used in RDM
software, namely, Open Authorization (OAuth) [155], Lightweight Directory Access
Protocol (LDAP) [156], Security Assertion Markup Language (SAML) [157], and API
authentication Keys. Almost all RDM software benefits from the OAuth protocol to
approve users’ authorization with every user’s attempts to access resources. Besides
OAuth, Coscine, eLabFTW, Nextcloud, EUDAT CDI, and GitLab use SAML to allow
users to log in with pre-existing Single Sign On (SSO) accounts such as university
accounts. eLabFTW, Nextcloud, and DSpace provide LDAP to authenticate users
to find directories. Additionally, eLabFTW and CKAN supply users with API keys
for direct interaction with RESTful API.
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Data Sharing: The possibility for controlling and restricting access to data in
RDM platforms. There are three levels of data sharing, Private, Internal and Public.
Research data set to Private are only accessible to the sole owner of a resource; the
Internal level would allow anyone who is part of the research team to access research
data; this can be either identified via users’ affiliations or explicit allocation of a
research project. Finally, the Public status would allow anonymous or platform users
to access data for revision purposes. Most RDM solutions reflect the researcher’s
demand to control access rights by providing either Internal or Private resources
[158]. However, Zenodo is found to be the only platform that pushes its users
toward open research with no possibility to restrict access to research data, making
it unsuitable for data with sensitive information. Moreover, CKAN and Sciebo-RDS
do not provide data-sharing configuration; instead, they rely on data management
platforms that utilize these services.

Provenance Tracking: The process of collecting contextual information to ensure
the reusability and reproducibility of research results to increase the trustworthiness
of digital objects [159]. Coscine and GitLab are found to be the only platforms
capturing information about activities over data, allowing users to form assessments
over historical records of data origins. Furthermore, Coscine builds a data provenance
model by employing the PROV ontology standard [160], which can be serialized to
RDF format to describe entities, activities, and agents.

Metadata Harvesting: It refers to a standardized interface for provisioning access
to data and metadata repositories [161]. Almost all RDM services provide RESTful
APIs and API keys, enabling a machine-operatable interface to access data repos-
itories. In addition, Zenodo, Dataverse, EUDAT CDI, DSpace, and Figshare provide
a dedicated interoperability framework via the Open Archives Initiative Protocol
for Metadata Harvesting (OAI-PMH) interface. OAI-PMH is a low barrier protocol
based on XML metadata standard in Dublin Core format, facilitating efficient dis-
semination of Metadata from repositories to ingest Metadata for indexing at generic
data infrastructures.

2.2 Reference RDM Architecture

The qualitative analysis of the investigated RDM services reveals the challenges of
fulfilling RDM requirements and its integration into existing research practices [162].
According to the findings, due to the technical challenges of seamless integration of
RDM processes and maintaining IT infrastructure, RDM solutions often focus on
discipline-oriented solutions or only satisfy a few RDM operations.
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2.2.1 Conceptual RDM Architecture

To present a conceptual model for RDM process-aware services, this study adapts the
reference software architecture from the n-tier Process-Oriented Software Tiers for Ap-
plication Interfaces and eXtension (pSTAIX) model [163] as also shown in Figure 2.1.
To construct a service-oriented architecture, pSTAIX abstracts decentralized systems
and uses mediator tier pattern representation to allow for separation of concern for
business processes and related technologies [164]. Furthermore, the tier interfaces high-
light the process-aware services and the composition of multi-layer independent ser-
vices from other tiers such that backend systems from lower tiers can be utilized inde-
pendently or in combination to fulfill new process-oriented responsibilities. The follow-
ing is a brief introduction to pSTAIX tiers adapted from Politze et al.[163], [165]:

• Tier 0: Authorization and Security refers to the crucial need for services to
identify users and ensure data security and privacy.

• Tier 1: General Services offer fundamental and process-independent function-
alities to support different operations across boundaries.

• Tier 2: Technology Dependent Services support specialized core process-aware
functionalities.

• Tier 3: Standardized Access to Backend Systems via APIs to enable commu-
nication of services and interfaces.

• Tier 4: Process-Aware Services combines services from previous tiers into an
abstracted organizational level.

• Tier 5: RDM Operations provides client applications and processes to fulfill
RDM activities.

The conceptual architecture presents a generic software architecture model for RDM
services inspired by the pSTAIX model. The data analytics framework suggested in
this thesis applies to systems that fit into the universal architecture for RDM software
illustrated in Figure 2.1. Furthermore, the reference architecture demonstrates the de-
centralized nature of services and their crucial interconnections between each tier.

With respect to the analysis of RDM tools, besides LDAP and SAML, all RDM
tools employ OAuth services in Tier 0 to check the authorization of users to access
resources.

Tier 1 is responsible for generic RDM-related services such as Organization Structure
to supply user identity information, Resource Storage Management to locate research
data, Metadata management to ensure collecting contextual information over research
data, Indexing in order to list data objects into digital libraries, Unique Identifier
for pinpointing individual datasets, Archival service supplies services for long term
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Figure 2.1: A universal reference architecture for RDM services derived from the
pSTAIX model.

data preservation, and Notification service provides a channel for informing users
of prespecified actions.

Tier 2 offers general-purpose but technology-specific services that work in users’
contexts: Elasticsearch, SSO, Object Store, Linked Data, Temporary File Storage,
Tape Library, DOI, EPIC, and SMTP Services.

Tier 3 includes process-independent backend APIs designed and implemented by
experts with a technical understanding of relations to other adjacent tiers. Some
of the found APIs that respond to demands of Tier 3 are: Resource API provides
methods for interacting with resources, Secure Token Service (STS) API for securely
connecting to SSO service, Quota Handling API to deals with provisioning resource
quotas, Blob API handles the interaction with large binary objects, PID API issues
persistent identifiers using either DOI or ePIC services, Versioning API monitor and
track changes in data, Tree API support storing or retrieving metadata, Project API
handles the creation of projects and sub-project structure and restricting access to
project members. User Directory API captures users’ affiliations and information,
Archive API take responsibility for preserving resource from further modification,
Search API utilizes search engine services to discover data, and Notification API
informs users of necessary actions by sending messages.

Tier 4 is a process-aware service providing actual business values for end users by
integrating interfaces from previous tiers.
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Tier 5 corresponds to stages of the RDM lifecycle and its related client applications.
Additionally, external distributed services such as high-performance computing, pub-
lication libraries, and encryption can fit well into the conceptual RDM software
architecture.

2.3 Systems Under Study

In the remainder of this thesis, SimpleArchive, Metadata Tool, and Coscine are
employed as candidate RDM services due to their comprehensive IT infrastructure
accessibility and the possibility of acquiring reliable data for additional studies. This
Section discloses the supported processes using each service and how they benefit
from the distributed systems and fit the reference RDM software architecture model
described in Section 2.2. Furthermore, in Chapter 5, through several case studies,
the validity of the proposed methodologies for modeling RDM processes on top of
the services mentioned earlier is investigated.

2.3.1 SimpleArchive
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Figure 2.2: pSTAIX tier architecture model for archiving files on SimpleArchive
(Archival Phase).

The goal of SimpleArchive is to enable the long-term preservation of research data
at RWTH Aachen University using tape archive technology. Users of SimpleArchive
can archive their files for 10 to 30 years via a web interface where users can upload
files and select desired retention period. Furthermore, the system allocates PID for
each file, and researchers can link scientific papers to the corresponding data with
PIDs’ help.
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Figure 2.2 shows the archival process for SimpleArchive according to pSTAIX RDM
reference software architecture. The process starts with the user attempting to log
in to the system; after authorization and authentication verification, the researcher
uploads the data artifact. The data is initially stored on temporary storage and
queue for the tape archival process to execute. In the archival process, a PID is
issued for each data artifact, and since the process is asynchronous, users are notified
of the completion of the archival process via email. Furthermore, researchers can
use PID to identify their data and request restoring artifacts, which generates a
temporary copy of archived data that is only accessible for two weeks.

2.3.2 Metadata Manager

In order to support the rediscovery and reusability of data artifacts, one needs to
explain data with the help of metainformation. Accordingly, Metadata Manager
facilitates metadata registration for research data to help further researchers docu-
ment essential contextual information. Although this tool allows collecting metadata
independent of data location, researchers can link their data from SimpleArchive to
metadata objects. Moreover, researchers can predefine standardized discipline-specific
metadata schemas according to their needs while utilizing their own IT infrastructure
to store data.
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Figure 2.3: pSTAIX tier architecture model for uploading metadata on Metadata
Manager (Production Phase).

Figure 2.3 demonstrates the supported process workflow according to the RDM
reference architecture. After the user attempts to log in to Metadata Manager,
authorization and authentication verification steps occur; researchers can then use
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the web interface to upload RDF formatted metadata files generated by Metadata
Manager. Next, metadata Curation at Tier 4 receives the request for registering
metadata, and Tree API works as a service to validate conformity to predefined
metadata schema and save metadata in a centralized database. Furthermore, the
Metadata Manager creates a request to the Unique Identifier service to issue a PID
and generate a metadata Uniform Resource Locator (URL) to identify a dataset and
link metadata set to a corresponding data artifact.

2.3.3 Coscine

Coscine is a collaborative scientific integration platform focusing on metadata man-
agement according to FAIR principles. An intermediate description of supporting
technical and RDM processes by Coscine is previously described and adapted by
Politze et al. [21], [166].
Coscine allows researchers to manage, combine and link data resources while ac-
companying research data with metadata down to individual files level, eventually
empowering researchers with data reusability and letting peer researchers regain a
meaningful interpretation of data.
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Figure 2.4: pSTAIX tier architecture model for creating projects and resources on
Coscine (the Planning phase).

Coscine acts as an information hub by providing access and managing interlinked
resources in a centralized environment without interfering with data-intensive work-
flows. Accordingly, researchers with specific affiliations can automatically get storage
capacity for certain resource types without human intervention or evaluation. Fur-
thermore, the ePIC PID system and its sub-identifiers allow uniquely locating data
objects and deep linking to resource contents by using the fragmentation of the
PID relative file path, thus identifying a particular file version without requiring
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issuing PIDs for each file. Additionally, Coscine utilizes the Virtuoso RDF database
for storage of knowledge graphs and retrieval in RDF triples (subject-predicate-
object) format, where the subject is the file-specific PID, the predicate expresses the
relationship, and the object is the metadata value.
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Figure 2.5: pSTAIX tier architecture model for uploading files and metadata on
Coscine (the Production phase).

A central integrative platform like Coscine provides the opportunity to mimic the
organizational structure existing in scientific projects by creating sub-projects and
allowing for managing project memberships and defining rules for accessing research
data. This OSP pushes users to provide additional metadata while uploading data;
thereby, the data interaction workflows and system design guarantee the existence
of meta information for each uploading object. To minimize the required metadata
documentation efforts, the predefined metadata schemas can mark metadata as
optional or mandatory with suggested prefilled or fixed values, and the metadata
can be uploaded or harvested via RESTful APIs.
According to RDM reference architecture, Figure 2.4 and Figure 2.5 demonstrate a
typical researcher’s workflow process in Cosines for Planning and Production phases
of RDM Lifecycles. Figure 2.4 shows the events triggering for creating projects and
resources according to DMPs, which implicitly contributes to the Planning phase
of a resource project. The software architecture highlights the execution of Quota
Handling API as part of the project creation process and the minting of PIDs for
each resource. Furthermore, Figure 2.5 highlights the services and APIs involved in
uploading files. The model indicates that files can only be uploaded to the database
after successfully capturing their metadata.
Overall, all systems under investigation satisfy the generic software architecture
described in Section 2.2. With the help of this model, we can determine ideal methods
to capture reliable data that enable us to study RDM underlying processes.
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Table 2.2: A Technical Comparison of Services Supporting RDM
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3 Data Acquisition
Techniques from RDM Systems

In a distributed environment, many machines and services often respond to executing
tasks, resulting in a non-trivial assignment for resource monitoring and forecasting
of the state of a system. Moreover, oversight of architectural system dependencies
and resource utilization is unavoidable as a distributed system matures and expands
its services. Thus, it is progressively essential to enable logging services merely focus
on collecting traces of resource usage and discovering supported processes.
Acquiring appropriate datasets from real-world environments is the most challenging
task for data scientists and often requires many iterations to establish a suitable
data acquisition approach. Moreover, there are already several studies to reconstruct
tables and databases to form datasets necessary for data modeling analysis; nev-
ertheless, since data and its attributes in databases often get replaced or altered
without any trace, the extraction of datasets primarily comprises the current status
of a system. Thus, this Chapter discusses several data acquisition techniques to
assist with capturing data on-the-fly and ensure the reliability of discoveries using
premortem datasets.
In this approach, the process began by asking stakeholders and software architects
to gain a mutual understanding of constraints and expected data structure within
available services. Then, with every iteration of the methodology evaluation, the
findings were discussed with domain experts to revise the method development path
and its validity. The following are descriptions of final iterations for establishing
various procedures to acquire datasets to answer the research questions.
In order to begin studying the underlying RDM activities and discover data models
within OSPs, one needs to initially identify all services in use and explore methods for
generating logs. As mentioned earlier in Section 2.2, the system architecture of RDM
services benefits from the scalability and modularity of distributed environment and
incorporates remote resources for responding to user requirements. Hence, a suitable
logging technique should be able to outline user activities across interconnected
resources.
Besides discussing three distinct approaches for collecting datasets and their ad-
vantages and drawbacks, this chapter proposes a scalable mechanism for capturing
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and storing reliable data to support uncovering resource utilization in distributed
settings. The results and suggested data acquisitions techniques in this Chapter were
previously partially published in [22], [24], [27], [167], [168].

3.1 Motivations and Challenges

In recent years, the volume of data generated by distributed systems has grown
exponentially. This increase in data volume has led to new challenges in obtaining
data logs from these systems. Event logs are critically important for understanding
what has happened in a system and why. In particular, researchers can execute a
wide range of activities within an OSP service to fulfill their RDM-related needs; fur-
thermore, OSPs typically benefit from distributed systems and decentralized resource
management, consequently invoking several services to respond to user requests.
Also, data modeling studies often undermine the complexity and challenges of data
acquisition and preparation in a distributed environment [169]. Thus, the benefits
of logging user interaction on RDM services are twofold; on the one hand, it enables
scientists to gain insights into research data origins and highlight user interaction
traces over research data artifacts. On the other hand, it supports system admins
in accurately monitoring resource usage and tracing data flow between resources.

As part of Good Scientific Practice, researchers are encouraged to share research files,
but there is a lack of study on tracing research data flow between resources due to the
absence of capturing its footprints [170]. Additionally, these footprints are crucial for
researchers to evaluate file reusability, authenticity, and origin [171]. Hence, logging
file roots, tracing, and illustrating user interactions over files are essential factors
for users in decision-making a research file usefulness [172]. As mentioned earlier,
although logging user interactions in a distributed environment is not a trivial task,
a suitable and efficient logging system allows for proactive data modeling analysis,
uncovering errors in a system before user reports, and discovering requirements using
implicit usage data.

The challenges of acquiring sample data from the distributed system for data analysis
and modeling have already been discussed in many pieces of scientific literature. Sub-
sequently, there are challenges with extracting and collecting reliable data from RDM
tools that benefit from distributed settings. The primary challenge is that data col-
lected from RDM tools in distributed settings can be inaccurate or incomplete, making
it difficult to draw valid conclusions. In addition, the process of collecting data from
decentralized data sources can be time-consuming and expensive. Another challenge
is that distributed systems often have different types of nodes, each with its unique
logging requirements and programming language. For example, a web server may
generate access logs that need to be parsed and analyzed, while a database server may
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generate transaction logs that need to be processed differently and need to ensure that
all messages are delivered in the order in which they were originally generated.

Additionally, there is a potential for inconsistency in the data collected from different
sources and leading to errors in the analysis and interpretation of the data [173]. A
robust logging solution for a distributed system must tolerate failures of individual
nodes without affecting the availability of the logging service as a whole. The hetero-
geneity of data derived from distributed systems is a significant challenge for data
integration. The differences in conceptual models, data models, and semantics make
it difficult to integrate data from different sources [174]. The difficulty in querying
heterogeneous data sources is due to underlying different data models and interfaces.
This results in difficulty in identifying an appropriate data source for a particular
query and translating queries between different data sources.

In order to enable the study of underlying RDM processes, one needs to collect event
logs in a format appropriate for the process and data mining tasks. As discussed in
Section 1.2.1, an event refers to a Case, an Activity, and Timestamp. An event log
is a collection of cases that occur in a sequence of events. There are many benefits
to using event data logging. For example, event data can be used to detect patterns
of behavior, trends over time, and relationships between different events. Moreover,
an event log contains suitable attributes to be converted to a matrix of labels and
features for machine learning algorithms. Also, event data logging can improve
efficiency and decision-making by automating the collection and analysis of data.
However, despite the advantages of event data logging, some challenges associated
with employing event logs, such as collecting event data, can be resource-intensive,
requiring significant storage capacity and processing power. In addition, extracting
meaning from event data can be difficult, particularly if the data is unstructured or
poorly organized. Finally, privacy concerns may arise if event data is used to identify
individuals or track their behavior.

Thus, it is essential to carefully plan and design the data collection process for any
scientific study. The process must be designed to accurately and efficiently collect
the desired data. Several considerations have to be evaluated when designing a
data collection process, including the type of data being collected, the methods
used to collect the data, and the study’s specific objectives. Additionally, as a
system grows, more nodes get added to the overall body of a distributed setting,
and the amount of data generated will increase. Hence, the logging solution should
handle this increase in data heterogeneity without affecting performance by using
standardization, mediation, and mapping techniques.
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3.2 Dataset Characteristics and Quality Measures

There are several potential problems with relying on database tables as the sole source
of data for later analysis. Database tables may not carry crucial and meaningful in-
formation, such as the Timestamp, which may not exist, resulting in the impossibility
of reconstructing the sequence of events or exploring the actual lifecycle duration for
a process. Moreover, database table modifications such as insertion or deletion are
performed on table entries, leading to inconsistencies in the extracted dataset. Con-
sequently, sample data may be incomplete or even unattainable. For these reasons,
data logs should be captured on the fly and stored separately to maintain a long-tail
record of events per Case. In addition, it allows for easy retrieval and analysis of
event data, even in possibilities where the database is no longer available.

The phrase “garbage in, garbage out” is often used to describe the importance of data
quality concerning the accuracy of results. The same is valid for data and process
mining tasks, which rely on event logs to provide accurate and reliable insights into
business processes. If the event log data is of poor quality, it results in inaccurate
discoveries. Therefore, ensuring that event log data is clean and complete before
undertaking any process mining analysis is essential. Likewise, datasets acquired
from RDM services should enable data scientists to study the start and end of user
interactions within the RDM lifecycle to reflect how resources are accessed or utilized,
support identifying failures or errors in a system, and discover causalities. Provide
means for pinpointing processes that lead to encouraging positive behavior toward
RDM doctrines. Foster frequency analysis to disclose suitable KPIs and assist with
isolating activities, user stories, or processes from the rest of the activity traces and
tracing activities processed within the connected systems.

In consonance with Bose et al.[175], Suriadi et al. [176], Van der Aalst [55], and
the IEEE Task Force on Process Mining [177], data quality are identified by six
dimensions:

Accuracy : How well does the information reflect reality according to the level
of data granularity. The level of data granularity is vital to consider when
determining how well the information reflects reality. For example, if the data
is too coarse, it may not accurately reflect what is happening at a more complex
level. Conversely, if the data is too fine, it may be challenging to reveal the
overall trends.

Timing: How data is being collected to deal with out-of-order arrival of events.
There are a few practices to collect data to deal with the out-of-order arrival
of events, such as using a reliable timestamp, a sequence number, or a buffer,
which can temporarily store data until it can be processed in the correct order.
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Completeness: The data’s comprehensiveness and if a dataset is complete or may
include missing crucial information. The dataset completeness may have im-
plications on missing key data points, yielding challenges for data analyses.
For example, a dataset missing information on a crucial variable, such as case
Id or user activity, would not be considered complete.

Uniqueness: The notion of cases to identify a subset of records using correlation
identifiers to specify a trace of events. A unique case is one in which there
may be multiple records to complete a user story, while correlation identifiers
should help determine and isolate a trace unique to its user story or Case.

Consistency: How well the collected data is stored in multiple locations without
mismatch to represent interconnections. It can be challenging to maintain
consistency if data is spread across different data sources.

Validity: A data acquisition method should produce a standardized and unique data
format for logging relevant information. If data is not formatted correctly, it
can be difficult or impossible to converge it with other data sets.

Though most studies focus on cleaning and refinement, not enough emphasis is given
to a systematic and generalizable approach for data extraction according to the
criterion mentioned earlier. As a result, there is a significant challenge in applying
process mining when it comes to the quality of event data in distributed systems
[175], [177]–[179].

According to van Cruchten [180], there are several requirements that a data extrac-
tion technique must meet in order to be effective. First, the technique should be
systematic and extract logs from data sources consistently without requiring manual
interventions. Second, the data acquired should apply to various data analysis tasks
to ensure the usefulness of extracted event logs for later decision-making regardless of
a specific data analytics project. Third, data extraction should be automated as much
as possible to avoid human error, which is crucial when dealing with large data sets or
when the data is susceptible. Finally, the extraction technique should be transparent,
allowing domain experts to understand how the event logs were generated and verify
the data’s accuracy. Therefore, while conforming to the discussed data quality mea-
sures, four data acquisition techniques suitable for the general software architecture
of RDM services are discussed in this Chapter, contributing to answering RQ 1.

3.3 Strategies

The following section investigates approaches exerted during this thesis to acquire
suitable datasets for data and process modeling tasks. Namely, there are Centralized,
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Client-Side, Server-Side, and Hybrid logging techniques corresponding to RDM
software architecture Tiers 0, 5, 3, and 0&5, respectively.

Table 3.1 provides a comparative view of each logging technique concerning data
quality metrics. According to findings via several case studies discussed in Chap-
ter 5, the suggested techniques serve for RDM services that fit the RDM reference
architecture discussed in Chapter 2.

Table 3.1: An overview of logging methods in terms of data quality metrics.
Logging Accuracy Timing Completeness Uniqness Consistancy Validity

Client-Side (Tier 5 ) X × X X × !
Server-Side (Tier 3 ) ! X ! X X X
Centralized (Tier 0 ) ! X ! X X X

Key Hybrid Technique
(Tiers 0 & 5 ) X X ! X X X

3.3.1 Centralized

According to Chapter 2, RDM web services require independent microservices that
work together to form a system landscape. Distributed IT architecture provides
software components’ scalability, maintainability, and reusability. Consequently, re-
sponding to a user request can be processed using multiple web services. For example,
the software components for archiving a file can be reused by other applications
in the system to initiate an archiving process. However, due to the scattered data
flow within such a distributed but interconnected workflow, analyzing the dynamic
behavior of components during usage and user activities becomes challenging and
nearly impossible, especially when dealing with legacy systems. A centralized logging
service can provide homogeneous event logs, making tracking and managing events
easier. This approach is more straightforward and can be tailored to the specific
needs of each service.

This Section introduces the instrumentation of OAuth workflow to capture suitable
logs for analyzing underlying RDM activities. According to findings discussed
in Chapter 2, an authorization workflow is utilized by nearly all RDM tools for
authorization and security. For instance, the OAuth workflow corresponds to Tier
0 of the general architecture of RDM services. The OAuth protocol is a secure way
to allow applications to access resources on behalf of a user. It handles the user’s
authorization without needing their credentials to be supplied to applications or
REST APIs. The OAuth workflow has various extension points to integrate with
existing identity federations, but the core protocol remains consistent [181], [182].
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The verification of user tokens during each RDM operation makes it an ideal spot
to capture logs. By authenticating users before executing requested operations and
triggering related APIs, thus, it can be ensured that only authorized users can access
sensitive information. This makes OAuth an optimal place to acquire logs while
protecting sensitive data.

Approach

As a result of employing the OAuth token service to collect and aggregate the
information about processed requests, we can monitor the resources and services
responsible during software and users’ workflow. This helps to identify a process for
an instance of executed resources uniquely [183].

Distributed System OAuth Service

1

7

34

2

5

6

8
Logger

Figure 3.1: The schematic representation of the OAuth workflow in distributed
services. Adapted from Yazdi and Politze [24].

Figure 3.1 shows the phases for the authorization process using the OAuth service
and capturing logs, and the following is an explanation of each step:

1. The workflow initializes with a user establishing a connection to an application,
which needs to access several microservices in the context of that user.

2. The application diverts the user to the web interface of the token service for
submission of username and password.

3. The user authorizes the application to access the microservice with his creden-
tials.

4. The token service allocates an access token to the application to represent the
authorization.
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5. On each later request to the microservices, the application uses the token to
obtain the authorization.

6. The microservice checks the token’s validity against the OAuth service for each
subsequent request.

7. The application and the user obtain a response with requested data from the
microservice.

8. The logs are generated by intercepting all authorization calls to microservices,
thus facilitating the instrumentation of logs according to the data analysis
project.

Service providers may add contextual information to their requests when processing
the token verification via the authorization server. In addition, the authorization
server can log n-tuples with an arbitrary length to incorporate supplementary informa-
tion according to the agreement on reported data and their semantics with services in a
federation. Listing 1 is an example of a token validation request in JSON notation that
is extended with additional information to enable further data analysis studies.

accessToken
It is a compact and encoded JSON Web Token (JWT) to transmit signing infor-
mation during and after the authorization process securely. The token remains
active, corresponding to users’ continuous activity within the application.

userHashId
Encrypted user ids with SHA-256 algorithm to uniquely identify users while
preventing the database user IDs from being revealed in the verification process.

microservice
Indicates the microservice required by an application to respond to a user
request.

1 {
2 "accessToken"·:· c

"2pdMihRsq10Z3eqAGibdSFnndRnCbT2w...",↪→

3 "userHashId"·:·"BaU564AJHPSCFKJFi6wKU0WY...",
4 "microservice"·:·"microservice.rwth",
5 "methodCall"·:· c

"https://resources.example.com/method()",↪→

6 "opertaion":·"GET"
7 }

Listing 1: An extended token validation request in JSON notation.
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methodCall
It is defined by a URL that indicates the API method that demands the token
for execution.

opertaion
Indicates the kind of RESTful HTTP method performed on a resource.

Preliminaries

The following is a formal definition for event logs generated from the OAuth logger.
An example of an event log is shown in Table 3.2. The operation is excluded from
the event log as it does not carry valuable data for further analysis.

Table 3.2: An example of dataset eo captured from distributed services using the
Centralized logger.

timestamp (to) caseId (co) userHashId (uo) activity (ao) microservice (mo)

. . . . . . . . . . . . . . .
2019-12-16 08:59:56 Izo9VZ9vz... dhcwb4MII... GetNotifications() simpleArchive
2019-12-16 08:59:56 Izo9VZ9vz... dhcwb4MII... GetUser() simpleArchive

. . . . . . . . . . . . . . .

Definition 3.1. (OAuth Event, Trace, Event Log). An event driven from
OAuth workflow is denoted by eo and is a n-tuple eo =(to,co,uo,ao,mo), and eo∈Lo.
Where to∈T is the event timestamp for the OAuth server corresponds to an activity,
co∈C is the case id that corresponds to accessToken , uo∈U is the userHashId ,
ao∈A is the activity that corresponds to methodCall . mo∈M is the microservice
triggered by an application. ∇n(eo) is the value of attribute n for event eo. If eo does
not have an attribute named n, then ∇n(eo)=⊥, where ⊥ is a designated null value.
The event log Lo contains traces, and each trace contains events such that each
case has an attribute trace denoted with ∇trace(c) ∈ ξ∗

o . Given a set A, a trace
σ= 〈e1,e2,...,en〉 ∈A∗ is the set of all finite sequences over the A that each event
appears only once.
I denote ξo =T×C×U×A×M as the universe of all events for the OAuth event log,
s.t. Lo⊆ ξo. In the event log, each event can appear only once. Hence, events are
uniquely identifiable by their attributes.

Discussion

Table 3.2 shows a sample of the aggregated data collected by the OAuth service.
The timestamp determines when a request has been executed and processed. The
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caseId is the unique token utilized during the authorization process. The userHashId
is a hashed and anonymized user’s unique identifier. The activity column collects
the triggered software components. The microservice is a unique identifier for every
single microservice involved in the process.

Traces are created by logging the execution threads between different microservices
mo. These traces represent the lifecycle of various processes, allowing us to discover a
system’s behavior. In a distributed system, a user request creates a sequence of event
logs that may scatter to multiple nodes depending on the nature of the request, each
is collected as traces individually, and each trace corresponds to an execution process
instance to generate an overall model. These traces can be service requests by exter-
nal users or internal communication of different service components. Thus, analyzing
or interpreting event logs generated by centralized logging is challenging.

According to data quality dimensions discussed in Section 3.2, despite the nature
of distributed systems to execute events in a dispersed and out-of-order manner,
using server timestamps allows for sorting event logs according to events’ timestamps
and consequently discovering valid real-life processes. However, there is uncertainty
concerning the accuracy and completeness of event logs yielded by OAuth logging.
A centralized logging solution should handle different types of logs generated by
the various nodes in a distributed system and scale horizontally as a system grows.
Additionally, these system events may still miss crucial information, as OAuth only
logs the software components that demand authorization to continue processing the
execution of an operation, thus lacking events that do not require OAuth service.
A case study of discovering underlying process models from distributed services
contributing to SimpleArchive and Metadata Manager as two RDM services using
centralized logging is analyzed in Section 5.1.1.

3.3.2 Client-Side

Client-Side logging is the process of tracking and recording user interactions with a
web browser. This information can be used for various purposes, including usability
studies, marketing research, and service optimization. According to the RDM general
architecture, the Client-Side logging corresponds to Tier 5 or the presentation layer
to capture user RDM activities on an application.

Approach

There are two main approaches for collecting Client-Side logs. One is to use browser
extensions or plugins, which the user or server admins can install. Such plugins are
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Google Analytics, Piwik, Adobe Analytics, and many more. However, due to uncer-
tainty of the compliance of these browser extensions to GDPR and user privacy poli-
cies, usage of such plugins is discouraged for RDM services. Thus, a self-implemented,
embedded JavaScript code was used to track and record user interactions and send
the data to the database for analysis without placing cookies into browsers.

archiveFiles.js

addMetadata.js

restoreFiles.js
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Figure 3.2: The schematic depiction of the Client-Side logger workflow.

Figure 3.2 demonstrates the approach for capturing event logs from the Client-
Side.

1- A user attempts to log in to an RDM application.

2- Web socket provides an access token identifier to identify a user uniquely.

3- By executing any Client-Side action, Event-Listener is executed to make an
asynchronous call to the back end.

4- Event-Listener executes two simultaneous calls to the Logger and, additionally,
to respective APIs.

5- The logger collects and compiles the necessary event information and passes data
to the logger API.

6- Logger API handles checking the format of calls and storing events in a centralized
logger database.

Preliminaries

The following is a fundamental concept and a formal model used for the Client-Side
logger. An example of an event log derived from the Client-Side logger is shown in
Table 3.3.

Definition 3.2. (Client-Side Event, Trace, Event Log). An event derived
from client-side logger is denoted by ec and is a n-tuple ec = (tc,cc,ac,rc,wc), and
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1 let·logger·=·function(){
2 socketUtil.GetToken(function(accessToken){
3 let·requestData·=·[];
4 targets.forEach(function(element)·{
5 let·target·=·element.target;
6 requestData.push({
7 "timestamp":Date.now(),
8 "caseId":accessToken,
9 "activity":getSelector(target.xPath),

10 "resource":getApp(),
11 "webPage":getWebPage(target)
12 });
13 });
14 jQuery.ajax({
15 type:"POST",
16 contentType:"application/json",
17 url:requestUrl,
18 data:JSON.stringify("attributes":·requestData)
19 });
20 });
21 };

Listing 2: An example JavaScript Client-Side logger.

ec ∈Lc. Where tc ∈T is the event timestamp for client activity, cc ∈C is the case
id that corresponds to accessToken , ac∈A is the user activity that corresponds to
JavaScript method call, rc∈R is the application, and wc∈W is the web page.

The event log Lc contains traces, and each trace contains events such that each
case has an attribute trace denoted with Wtrace(c) ∈ ξ∗

c . Given a set A, a trace
σ= 〈e1,e2,...,en〉 ∈A∗ is the set of all finite sequences over the A that each event
appears only once.

I denote ξc =T×C×A×R×W as the universe of all events for the Client-Side event
log, s.t. Lc⊆ξc. In the event log, each event can appear only once. Hence, events
are uniquely identifiable by their attributes.

Discussion

As indicated in Table 3.1, several challenges and advantages are associated with
Client-Side logging concerning data quality dimensions. Client-Side logging may
increase network bandwidth overhead due to posting a logger with every call. There
are also significant concerns related to events Timing, Consistency, and Validity. For
example, mismatches in timestamps and out-of-order arrival events were identified,
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Table 3.3: An example of event ec captured from the presentation layer of Sim-
pleArchive using embedded Client-Side logger.

timestamp (tc) caseId (cc) activity (ac) resource (rc) webPage (wc)

. . . . . . . . . . . . . . .
2012-01-06 02:24:01 Izo9VZ9vz... selectFile SimpleArchive manage
2012-01-06 02:24:01 Izo9VZ9vz... restoreFile SimpleArchive admin

. . . . . . . . . . . . . . .

which were caused by browsers and device dependencies, resulting in uncaught errors.
Moreover, there are threats to the validity of logs generated by the Client-Side logger.
Such as the loggers on the presentation layer have to post-process events to clean the
dataset due to the execution of many unknown events as the result of existing legacy
and third-party JavaScript codes. Also, the log may include events that users on
the front end manually manipulate, and there is no possibility to record processing
an API call, thus, causing threats to the consistency of the log.

Despite the challenges mentioned above, there are advantages to using a Client-Side
logger. First, the log represents a high accuracy of actual events carried out; thus,
there would be no need to extend the logger as a system grows or new features are
implemented. Secondly, this approach does not require UserId and can entirely
depend on accessToken to uniquely identify cases for the duration of validity of
a token. Finally, the Client-Side logger can easily get extended with additional
contextual information to enrich the dataset further. For instance, it can help detect
unexpected user behaviors that cause an error in the system, such as clicking a
button multiple times [184]. Hence this approach can provide valuable insights into
how users interact with RDM web interfaces.

3.3.3 Server-Side

Server-Side logging is being used as a method for capturing events before being
processed by back-end APIs and Libraries. The Server-Side logging corresponds to
Tier 3 of the RDM general software architecture.

The obtained information is a set of user requests received by the API endpoints to
receive requested resources. In this approach, event data is generated and captured
in a serialized JSON object format due to its ease of extendibility to incorporate
supplementary attributes and entities without extending database tables to incor-
porate new event types. The event logs include detailed insights into the sequence
of actions and respective RDM-relevant entities.
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Figure 3.3: The diagrammatic illustration of the workflow of the Server-Side logger.

Approach

The Server-Side logger comprises two main components: a Logger library and API
endpoints. The Logger library defines log objects and their types, configurations,
and level layouts. Listing 3 provides an example of logger object definition with three
main attributes Timestamp, Activity, and Case. Note that a Case is an object with
additional attributes that may or may not be present depending on an Activity.

The following is a stepwise description of acquiring events from the Server-Side logger
represented in Figure 3.3:

1- User interaction with a web application executes a request.

2- The Event-Listener is responsible for receiving requests and triggers asynchronous
calls to responsible APIs.

3- The logger object is constructed from existing attributes only after processing the
user request, ensuring complete processing of the user request.

4- The Logger.cs operate the configuration and object definitions to store the event
in its respective table as a serialized JSON object.

As mentioned earlier, a Case is an object defined in Listing 3, and according to its
definition, a Case object can not be null despite the possibility of missing specific
attributes due to non-existing values at the time of execution. For example, Listing 4
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1
2 public·AnalyticsLogObject(·string·activity,·DateTime·timestamp,·string· c

userId,·string·roleId,·string·projectId,··string·resourceId,·string· c
fileId,·string·applicationsProfile)

↪→

↪→

3 {
4 Timestamp·=·string.Format("{0:yyyy-MM-dd·HH:mm:ss.fff}",· c

timestamp.UtcNow);↪→

5 Activity·=·activity;
6 this.Case·=·new·Case();
7 }
8 public·Case(string·userId,·string·roleId,·string·projectId,·string· c

resourceId,·string·fileId,·string·applicationsProfile)↪→

9 {
10 UserId·=·userId;
11 RoleId·=·roleId;
12 ProjectId·=·projectId;
13 ResourceId·=·resourceId;
14 FileId·=·fileId;
15 ApplicationsProfile·=·applicationsProfile;
16 }
17

Listing 3: Server-Side logger library, instantiating an event object.

is an endpoint POST method call for adding a resource, and subsequently, several
attributes such as ResourceId and FileId are unavailable while creating a resource.
Table 3.4 demonstrates an example of an event log created by a few activities and
their corresponding accessible attributes. Note that the timestamp is constructed
by the AnalyticsLogObject library (Listing 3) to avoid mismatch.

Preliminaries

The following is a formal model used for the Server-Side logger. An example of an
event log derived from the Server-Side logger is shown in Table 3.4.

Definition 3.3. (Server-Side Event, Trace, Event Log). Let ξ be the universe
of all possible event identifiers, and ξ∗ is the set of all finite sequences over ξ. For
every Server-Side event, there are standard attributes such as Timestamp, Activity,
and Case.

Every event is characterized by various attributes corresponding to an Activity and
Timestamp. Let Λes be the set of all possible event attributes. For any es∈ ξ and
attribute att∈Λes , zatt(es) is the value of attribute att for event es. If an event es
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1
2 [HttpPost("[controller]/project/{projectId}")]
3 public·async·Task<IActionResult>·addResourceToProject(string·projectId,· c

ResourceMeta·resourceMeta)↪→

4 {
5 ····...
6 await·AddResource(projectId,resourceMeta)
7 ...
8 LogAnalytics(user,·projectId,·resourceMeta);
9 return·Json(resourceReturnObject);

10 }
11
12 private·void·LogAnalytics(·User·user,·Guid·projectId,·ResourceMeta· c

resourceMeta)↪→

13 {
14 _coscineLogger.AnalyticsLog(
15 new·AnalyticsLogObject
16 {
17 Activity·=·"Add·Resource",
18 CaseId.UserId·=·user.Id.ToString(),
19 CaseId.ProjectId·=·projectId.ToString(),
20 CaseId.RoleId·=·user.Role,
21 CaseId.ApplicationsProfile·=· c

resourceMeta.ApplicationsProfile,↪→

22 });
23 }
24

Listing 4: An example of API endpoint for Add Resource opertaion.
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Table 3.4: An example of events (es) generated from a Server-Side logger.
Timestamp (ts) Activity (as) C.UserId (c1

s) C.RoleId (c2
s) C.ProjectId (c3

s) C.ResourceId (c4
s) C.FileId (c5

s) C.AppProfile (c6
s)

. . . . . . . . . . . . . . . . . . . . . . . .
1579108918 Add Member 29613-d8... be29c-4e... 4b15f... NULL NULL NULL
1579109840 Resource Create 29613-d8... be29c-4e... 4b15f... NULL NULL EngMeta
1579129397 Upload File 29613-d8... be29c-4e... 4b15f... 4e9f-97... PID/FileName.csv EngMeta
1579835452 Archive Resource 8G7s6-c2... be29c-4e... 4b15f... 4e9f-97... NULL Radar

. . . . . . . . . . . . . . . . . . . . . . . .

does not have an attribute, then zatt(es)=null. For example, Υts is denoted as the
universe of timestamps, and subsequently, zts(es)∈Υts is the timestamp of event es.

Case Id is an object with accessible features in the corresponding API Controller. It
contains required (e.g., userId ) and optional (e.g., FileId ) elements. Let C be the
universe of all cases, and Ncase be the set of case attribute names. For any case ci∈C
and name n∈Ncase :#(ci) is the value of attribute n for case ci, and is an index for
each caseId. For a case c, if c does not have an attribute named n, then #n(c)=null.
Each case object has a mandatory attribute name userId such that #userId∈ξ∗.

A trace σ is a finite sequence of events such that each event appears only once and
1≤ i<j≤|σ| :σ(i) 6=σ(j). An event derived from Server-Side logger is denoted by
es and is a n-tuple es =(ts,as,objs), and es∈Ls. Where ts∈T is the event timestamp
for a Server-Side activity, as∈A is the activity corresponding to an API endpoint
call within a controller, and objs∈C is an object with a list of possible case Ids.

Discussion

The methodology and the acquired event logs for the Server-Side logger have several
strengths and weaknesses that are also reflected in Table 3.1. The major strength
of this method is the potential to facilitate monitoring a wide range of servers at
once and produce comprehensive logs. However, another issue with this method is
that it can be time-consuming and error-prone to set up and configure.

The event logs derived from Server-Side loggers can be complex, diverse, and oc-
casionally inaccurate, making the data cleansing task challenging and complex. In
addition, if not programmed carefully and the logger is not triggered at the right time
within the API controller, loggers can also capture events that may not have been
processed, thus becoming a threat to the validity and accuracy of logs. Therefore,
to use event logs effectively, it is essential to be aware of these issues and take steps
to encounter them.

Ensuring the completeness of an RDM system’s logging is essential, as missing im-
portant events can lead to significant problems while analyzing logs. Unfortunately,
a significant manual cognitive effort is necessary for developers to continue extending
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API endpoints, and as a system grows, this can become more challenging and quickly
become outdated. As a result, the acquired dataset may include missing events or
attributes without one’s knowledge. Significantly, this can become more visible if
extending or refactoring an API endpoint does not contain necessary attributes or
simply if the logger is executed before successfully processing user requests, thus
resulting in misleading event records. Unlike the Client-Side logger, relying on the
backend library to instantiate the timestamps eliminates the need for a Client-Side
logger and the potential for capturing sensitive information.

The uniqueness of events in this logging method is an integral aspect of event-driven
systems that allows for adapting the notion of a case according to a question-driven
study. This flexibility supports adapting the notion of a case via post-processing the
logs according to a question in hand and provides multiple detailed views on a stream
of events. Additionally, including multiple cases per event allows for divergence
and convergence of data from multiple data repositories crucial for a distributed
system by using various case attributes as relational identifiers, thus maintaining the
consistency required by an event log. It enables data scientists to consider different
case notations using the same event log without losing the order of activities. Finally,
despite the significant challenges for the scalability of capturing different activities,
my approach opens opportunities for various object-centric data mining projects and
the discovery and elicitation of system operational KPIs.

3.4 Proposed Key Technique

In order to discover the descriptive user activities and their corresponding under-
lying infrastructure operations, a key technique is proposed for acquiring data that,
according to the studies, is the most efficient, reliable, and least expensive. In this
methodology, besides acquiring sufficient data to study the dynamic system behaviors,
the aim is to choose an approach that has the most negligible impact on the efficiency
of the SUS. This is achieved by creating a Hybrid logger that carries benefits from
logging of Tier 0 and 5 of the RDM architecture through minimal instrumentation
of the centralized (OAuth workflow) and Client-Side logging, respectively.

This approach allows for overcoming the shortcomings of each logging technique.
On the one hand, relying only on the OAuth workflow as a centralized logger yields
uncertainty over the accuracy and completeness of event logs. On the other hand,
a Client-Side logger represents a high accuracy of actual events being executed and
ensures completeness by capturing actual user activities. Additionally, unlike the
Client-Side logger, data acquired by the centralized logger can handle the out-of-
order arrival of events due to the reliability of timestamps generated by the server,
consequently discovering a valid lifecycle for the execution of events.
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The proposed methodology and findings were previously presented in Yazdi et al.
[25].

61



3 Data Acquisition Techniques from RDM Systems

3.4.1 Methodology

This Section introduces a novel approach for reannotating centralized events with
their corresponding Client-Side activities. This uses Client-Side logs as a training
set, OAuth service as a centralized logging service to build a correlation between
responding resources, and machine learning to learn to model and classify user
activities by only acquiring OAuth logs from the distributed environment.
According to the proposed technique, one can create a training set in a controlled
environment, establish a training model, and use a real-world dataset from services
in production to reannotate and map server activities to their corresponding user
activity with high accuracy.
Initially, the description begins with the approach to capture logs from web services
and then further describes the algorithm used for the Event Log Generator (ELG)
to support the tasks of data cleansing, merging event data, and predicting user
activities.

Approach to Capture Logs

Figure 3.4 provides a schematic overview of the process for capturing event logs
using both Client and OAuth logging services. As discussed in Section 3.3.1, the
OAuth logging services provide information to help trace errors and access resources
within the distributed environment. Initially, extending the current implementation
of the token service is necessary to include information about the requested resources,
the methods used, and a correlation identifier. Furthermore, the OAuth logging
service provides an Append Log endpoint that allows appending various attributes
such as a correlation identifier to the collected logs to pinpoint user requests and
their corresponding accessed resources within the connected systems [165]. Therefore,
the Append Log endpoint is adopted and the message attribute is extended with
a counter as the correlation identifier. This approach helps to track and identify
events that belong to a unique process instance.
The following is a detailed description of the execution of processes within the
Hybrid-logger demonstrated in Figure 3.4:

1. User attempts to utilize an RDM service, and the OAuth interface acquires
the user credentials.

2. OAuth service checks the credentials and allocates an accessToken after
evaluating the user’s authorization.

3. With every user activity on the front end, the user triggers Client-Side activities
that utilize an accessToken as an authentication parameter and passes it to
the Event-Listener for executing asynchronous API calls.
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Figure 3.4: The schematic representation of the Hybrid-logger.

4. Client-Side Logger

a) The Log-Config serves as a configuration flag to determine enabling/dis-
abling Client-Side logger.

b) The logger creates a global javascript counter≥1 within the logging library,
which increments each time a user triggers an event.

c) The logger adds a query parameter _rid={counter} while calling the
Logger API.

d) The Logger API is then responsible for storing the event within its re-
spective database table or instance.

5. OAuth Logger

a) The Event-Listener forwards the user request to its corresponding API
endpoint.

b) APIs verify the user’s authorization with the OAuth service before pro-
cessing a request.

c) The OAuth logging service stores every executed event that requested
authentication with a counter value ≥0 in its database table or instance.

d) After verification of the access token, the requested resources and methods
in the APIs execute.

6. ELG fetches, cleans, and merges logs from Client-Side and OAuth log databases
and stores the newly generated logs in the Hybrid event log database after
reannotating user activities.
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One needs to note that, in this approach, the Client-Side and OAuth loggers remain
two asynchronous and independent logging systems that execute parallelly. In this
method, the counters are instantiated as correlation identifier with a different starting
value. Such that the Client-Side counter starts with 1, and the OAuth counter starts
with 0. The distinction between the instantiation of the two counters is due to the
execution of events upon web page first loadings that correspond to counter=0 on
OAuth logs. On every further user activity on the Client-Side, the counter value will
match its corresponding OAuth counter, which, alongside the user access token, can
be used later as a correlation identifier to uniquely identify a process instance. The
counters reset with every page refresh.

Event Log Generator

Event Log Generator (ELG) is a method for predicting users’ activities based on
previous training sets of corresponding OAuth executions; it is responsible for running
an algorithm for converging event logs from Client-Side and OAuth log databases.
The ELG includes seven steps, including data cleansing, dataset merging, mapping,
training a model, and applying that model to provide us with a predicted user activity
based on corresponding method calls captured by the OAuth workflow. Figure 3.5 pro-
vides an overview of example logs and how they transform within the ELG method. In
addition, formal descriptions of the following steps are provided in Section 3.4.2.

Step 1) Client-Log Refinement (CLR)
Client-logs refinement provides data cleansing, filtering, and merging of at-
tributes such as activity and webpage to further distinguish similar named
activities with their corresponding webpage where an activity occurs.

Step 2) Merging and Mapping (MM)
Merging and mapping is a function to map events using caseIds and identifiers
to merge client activity and corresponding Server-Side activities. For example,
in case of the OAuth identifier resets to 0, the mapping function replaces
the missing client activity with page loading as it does not correspond to any
particular user activity.

Step 3) Merged Log to Matrix Conversion (Lm 7→Mm)
In order to enable machine learning to train models and predict client activ-
ities, the event log (L−m) is converted to a matrix (Mm). The first column
in the matrix (Mm) includes Client-activity(ac) and indicates a target/label
with a categorical type; every other feature/attribute represent OAuth-Side
methods in the binominal type where execution(s) of every software component
is denoted with either 0 or 1.
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timestamp (to) caseId (cc) client activity (a′c) server activity (ao)
... ... ... ...

1579108918 8 upload@manage getUser()
1579108919 8 upload@manage getInfo()
1579108920 8 upload@manage getFile()
... ... ... ...

1579109840 8 upload@admin getUser()
1579109841 8 upload@admin getFile()
... ... ... ...

1579109897 8 download@manage getUser()
... ... ... ...

Train
Model

Apply
Model

CLR

MM

Lo Lć

Lc

Lm

Lf

2

34

5

6

7

Mm

Mo

Mf

timestamp (tc) caseId (cc) activity (ac) resource (rc) webpage (wc) identif er (ic)
... ... ... ... ... ...

1579105902 8 upload simpleArchive manage 1
1579109510 8 download simpleArchive manage 4
... ... ... ... ...

timestamp (to) caseId (co activity (ao) miroservice (mo) identif er (io)
... ... ... ... ...

1579108918 8 getUser() simpleArchive 1
1579108919 8 getInfo() simpleArchive 1
1579108920 8 getFile() simpleArchive 1
1579108511 8 getUser() simpleArchive 4
... ... ... ... ...

)
caseId (cc) activity (a′c) identif er (ic)
... ... ...
8 upload@manage 1
8 download@manage 4
... ... ...

1

timestamp (to) caseId (co)
Predicted
activity (a′c)

... ... ...
1579108918 8 upload@manage
1579109840 8 download@manage
... ... ...

Figure 3.5: A schematic representation of the Event Log Generator and
transformation of an example datasets. Adapted from [25].
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Step 4) Train Model (|=)
A matrix (Mm) is used to create a predictive model as a training set. Various
predictive modeling algorithms such as Random Forest, Decision Tree, Deep
Learning, etc. can be utilized.

Step 5) OAuth Log to Matrix Conversion (L′
o 7→Mo)

Similar to step 4, the OAuth event log (L′
o) is converted to the matrix (Mo) to

prepare it for predicting labels according to features. The matrix (Mo) contains
features/attributes corresponding to Server-Side methods. The caseId (co)
and identifiers (io) help uniquely determine a set of activities executed
and thus create a corresponding row in the matrix Mo. Furthermore, the
matrix withholds the additional attributes for timestamp(to) and caseId (co)
to facilitate step 8 in the approach.

Step 6) Apply Model (Mo |=Mf)
The approach uses the trained model from step 5 and the matrix (Mo) to
predict activities for every row based on occurrences of Server-Side software
calls and annotate every row with its predicted activity (ac). Storing it as a
separate Matrix (Mf ) with predicted values.

Step 7) Matrix to Event Log Conversion (Mf 7→Lf)
The additional columns like timestamp and caseId from Mf provide the
essential ingredients to reconstruct the event log with necessary attributes and
enable the discovery of processes using the final event log (Lf ). This step’s ex-
pected output event log is ef =(to,co,a

′
c). Therefore, we denote ξf =To×Cc×A′

c

as the universe of all final event logs.

By employing the methodology mentioned above and my case studies findings in
Section 5.2.3, acquiring the training set can be performed in a controlled environment,
eliminating the need for the Client-Side log from a production server. Thus, after train-
ing the model, steps 5, 6, and 7 can be executed as a pipeline to continuously generate
event logs with high accuracies while solely relying on the OAuth event log Lo.
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3.4.2 Preliminaries

This Section provides a basic concept and formal models for the ELG approach. It
begins with a definition of a set, event, event log, and trace, then provides a formal
explanation of Log Refinement, Merging and Mapping, and Dataset Conversion.

Definition 3.4. (Set) Given a set A, σ= 〈a1,a2,...,an〉 ∈A∗ is the set of all finite
sequence over the A. σ(i)=ai denotes the ith element of the sequence. β(A) is the
set of all multi-set over set A. PNEA

is the set of all non-empty subsets over the
set A. |σ|=n is the length of σ. For σ1 , σ2∈A∗, σ1⊆σ2 if σ1 is a sub-sequence of
σ2. e.g., 〈g,b,o〉⊆〈z,g,b,b,g,b,q,o〉. For σ∈A∗, {a∈σ} is a set of elements in σ. For
σ ∈A∗, [a∈ σ] is a multi-set of elements in σ, e.g., [a∈ 〈g,b,z,g,b〉] = [g2,b2,z]. For
multi-set X∈β(A), X(a) denotes number of times the element a∈A appears in X.

Definition 3.5. (Event, Event Log) A Client-Side ec and OAuth-Side eo events
are both tuples defined as ec =(tc,cc,ac,rc,wc,ic) and eo =(to,co,ao,mo,io) respectively.
Where tc,to∈T are the client-side and OAuth-Side event timestamps respectively, but
tc� to as the timestamps in Client-Side may be different from its respective event’s
timestamp on the OAuth-Side, cc,co∈C are the Client-Side and OAuth-Side case ids
respectively which are nothing but the accessTokens generated by OAuth workflow
and uniquely identifiable Cc ⊆Co. ac,ao ∈A are the Client-Side and OAuth-Side
activities respectively, such that Ac∩Ao = ∅. rc,mo ∈R,M is the resource, or the
microservice names shared between Client-Side and OAuth-Side event logs, i.e.,
Rc⊆Mo. wc ∈W is the web page an activity occurs. ic,io ∈ I are the correlation
identifiers that map Client-Side activities to corresponding OAuth-Side activities.
Between OAuth-Side and Client-Side events, this identifier is instantiated such that
io =0 and ic =1, and the values get incremented with every user action executed over
the web page. ξc =Tc×C×Ac×R×W×I denotes as the universe of all Client-Side
events and ξo = To×C×Ao×M × I as the universe of all OAuth-Side events. A
Client-Side event log is Lc⊆ ξc, and an OAuth-Side event log is Lo⊆ ξo. In event
logs, each event can appear only once. Hence, events are uniquely identifiable by
their attributes, and no special start and end activities exist.

Definition 3.6. (Trace) Let x∈ {c,o}, σx = 〈ex1 ,ex2 ,...,exn〉 is defined as a trace
in client or OAuth-Side event logs, s.t., for each exi

,exj
∈σx, 1≤ i<j≤n :πC(exi

)=
πC(exj

) and πT (exi
)≤πT (exj

).

Log Refinement

To initialize the process, first, it begins with refinement of event logs and using a
subset of the dataset from Client-Side and OAuth event logs.
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Client-Log Refinement (CLR): A refined Client-Side event is a tuple e′
c =(c′

c,a
′
c,i

′
c).

we denote ξ′
c =C×Ac×I as the universe of all refined Client-Side events. Due

to the unreliability of Client-Side timestamps, we dismiss tc from the rest of the
procedure. In the system under study, we discovered that similar activity names
from different web pages could result in different software execution behavior.
As an example, (ac =(“upload")∈wc =(“manage")) 6=(ac =(“Upload")∈wc =
(“admin")), Therefore for every OAuth-Side activity, wc is concatenating with
ac to form a unique name per web page. Ac→W is an injective function that
maps a webpage to a set of Client-Side activities. (Ex. a′

c =“Upload@manage”),
then wc is removed from L′

c. Hence, CLRr
c∈ξc→ξ′

c is defined as the Client-Side
event log refinement function and r∈R. For CLRr

c(Lc)=L′
c, s.t., L′

c ={e′
c∈ξ′

c |
∃ec∈LcπR(ec)=r∧πC(e′

c)=πC(ec)∧πA′
c
(e′

c)=(πAc(ec),πW (ec))∧πI(e′
c)=πI(ec)}.

Merging and Mapping

The log labeling at this stage is a one-time process to create a merging between
Client-Side activities and OAuth-Side activities. The output of event logs refinements
(Lo and L′

c) are used as inputs to this step and marked as Lm in Figure 3.5.

Mapping Logs (Lo,L
′
c) 7→Lm: The refined event log outputs (Lo and L′

c) are utilized
as inputs for this step, labeled as Lm in Figure Figure 3.5, and denoted as
(Lo,L

′
c) 7→Lm. The expected output event log from this step is em =(to,cc,a

′
c,ao).

We denote ξm =To×Cc×A′
c×Ao as the universe of all merged and mapped

OAuth-Side and Client-Side events. mm ∈ 2ξo×2ξ′
c 7→ 2ξm is defined as the

merging and mapping function. The log merging is instantiated per Client-Side
case cc ∈L′

c. For each Client-Side caseId cc, we check the respective io and
ic to build the relationship between the two logs. ma : Ac∪{⊥} 7→ 2Ao is a
function that maps a Client-Side activity to a set of OAuth-Side activities.
If the value of io>0, we check for the respective Client-Side activity a′

c, i.e.,
πA′

c(e′
c) =ma(πAo(eo)), thus, extending every OAuth-Side event with a respec-

tive Client-Side activity a′
c. Note that A′

c∪{⊥}, and ma(⊥)=∅, so, if io =0,
we consider the a′

c label as “PageLoading”. The output of (Lo,L
′
c) 7→ Lm is

an event log Lm ⊆ ξm where ξm ⊆ (ξ′
c ∪ ξo). Hence mm(Lo,L

′
c) 7→ Lm, s.t.,

Lm = {em ∈ ξm | ∃eo∈Lo ,∃e′
c∈L′

c
,πC(eo) = πC(e′

c)∧ πT (em) = πT (eo)∧ πC(em) =
πC(e′

c)∧πA′
c
(em)=πA′

c(e′
c)∧πAo(em)=πAo(eo)}.

Dataset Conversion

Lm 7→Mm: We know that, σm =<et1 ,et2 ,...,etn > is a trace within Lm, such that each
eti
,etj
∈σm, thus Lm is sorted by T s.t., ti≤ tj≤ tn. Given a set of features Υ

in Lm, υ=<ao1 ,ao2 ,...,aon > and υ(i)=aoi
denotes the ith element of sequence
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υ. |υ| = n is the length of υ, thus determining the number of features for
the matrix Mm. we define a function mapping rowm :a′

c∧πao(
∑|υ|

ao0
∀(a′

c∃ao)),
so that for every caseId cc while a′

c is unchanged, the algorithm creates a
new row in Mm and indicate the existance of attributes ao for each label a′

c.
For the matrix Mm, we expect to get one column as a categorical label and
features equivalent to the number of unique OAuth-Side activities |υ|. Hence,
Lm 7→Mm ={em∈ξm|∃rowm(Lm)}.

Lo 7→Mo: the OAuth event log (Lo) is converted to the matrix (Mo) to prepare it
for label prediction based on attributes. The matrix (Mo) contains attributes
related to software components. The caseId (co) and identifiers (io) aid in
uniquely identifying a set of executed activities, thereby creating a correspond-
ing row in the matrix Mo. Moreover, the matrix retains additional attributes for
timestamp(to) and caseId (co) to facilitate step 7 of the approach. Accordingly,
with respect to definition Definition 3.6, σo =<et1 ,et2 ,...,etn > is a trace within
Lo, such that each eti

,etj
∈σo, thus Lo is sorted by T s.t., ti≤ tj≤ tn. Given a set

of features Υ in Lm, υ=<ao1 ,ao2 ,...,aon > and υ(i)=aoi
denotes the ith element

of sequence υ. |υ|=n is the length of υ, thus determining the number of features
for matrix Mo. We define a function mapping rowo : to∧co∧πao(∑|υ|

ao0
∀(io∃ao)),

so that for every caseId co while io is unchanged, the algorithm creates a new
row in Mo. For the matrix Mo, we expect to maintain attributes for timestamp
to, caseId co and features equivalent to the number of unique OAuth-Side
activities |υ|. Hence, Lo 7→Mo ={eo∈ξo|∃rowo(Lo)}.
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3.4.3 Discussion

The proposed technique is positioned for each criterion according to the criteria
for analyzing a distributed system using dynamic information retrieval strategies
discussed in Section 3.2. Note that the findings have been previously partially
published by Yazdi and Politze [25].
Information Source: The token service’s implementation of the OAuth workflow
provides a secure way to authorize web services and manage users’ access without
providing their credentials [185] or to rely on users’ unique identifiers.
Application Layer: The token service provides a language-independent way to inter-
communicate between software components via different interfaces, making it easy
to use, maintain, and scale across the SUS.
Correlation of Distributed Events: The findings demonstrate that tracing sequences
of events occurring between different software components can be promising. In
order to achieve this, a non-intrusive approach is taken to collect enough data from
all services without interfering with legacy code or modifying source code manually.
Furthermore, it is argued that instrumenting the access token identifier generated
by the token service, the access token, and the correlation identifier are reliable
candidates for the correlation of events in SUS despite the involvement of common
components across all services.
Sequence Order: It is crucial to capture the ordering of events in which user requests
occur, as executing several of them simultaneously is possible. This method also
allows us to run conformance checking by capturing the sequence of events executed
to fulfill user requests and comparing them to the standard sequence order.
Communication Type: Multiple threads of activity involving several microservices
may be executed responding to a single resource request. These activities that
require authorization and token validation are nevertheless captured and stored.
All instances of a token used by multiple services can be captured and analyzed,
regardless of the number of microservices associated with a single user request.
Performance: It is an essential indicator for effectively tracking a system’s per-
formance and discovering process bottlenecks at different levels of granularity. In
addition, the token service generates timestamps for each log entry, allowing us to
analyze the performance of the SUS in responding to user requests and identifying
possible bottlenecks.
Data Granularity: The logging system captures high-level data, such as the microser-
vice in demand, and low-level data, such as the method calls (software components)
involved in responding to a user request. The merging and mapping of an event log
from the Client-Side assist in gaining an appropriate level of granularity correspond-
ing to actual user activities. Moreover, the OAuth logger can capture additional
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information to enable other contextual analyses, such as the Role of a user, allowing
for organizational mining.
Target model: This methodology enables studying process and data models with
precise and unambiguous semantics using process mining or machine learning algo-
rithms.

Summary

In this Section, an essential technique is proposed for acquiring datasets according to
the reference architecture for RDM services. The instrumentation of OAuth workflow
to produce datasets alongside mapping and merging of token service (OAuth) logger
with Client-Side logger as a training set for building a predictive machine learning
model provides an opportunity to discover and enhance user and system behavior
within a distributed system. Furthermore, this approach fulfills the requirement
for extracting logs that comply with GDPR by introducing ELG methodology to
interpret logs and provides meaning for software component execution lifecycles
without a need for placing cookies or tracking every user action explicitly.
However, there are several benefits and shortcomings to the suggested approach.
For instance, the OAuth workflow only captures traces of events that require autho-
rization; as a result, the acquired dataset lacks events that do not require OAuth
service. In addition, Client-Side logging naturally increases network bandwidth
overhead due to posting events with user activities; using the ELG method, on the
other hand, eliminates the issue by relying on an up-to-date training set created
in a controlled environment and disabling the Client logger in production servers.
Thus, the training set must be updated once new functionalities are added to an
OSP front end or a logic to process a user request changes. Moreover, one needs to
assess the performance of the ELG algorithm with a higher number of Client-Side
activities, as it may highly influence the accuracy of predicted user activities. Also,
such a technique is found appropriate for systems that have already achieved a level
of maturity and are not rapidly adjusting software components.
In these case studies, it was discovered that the ELG algorithm is sensitive toward a set
of client activities that trigger similar function calls, which may result in predicting in-
accurate client activities. For example, software components responding to Page Load-
ing are very similar to Page Redirecting, but this issue is resolved using the suggested
approach for data abstraction in Section 5.2. Moreover, noise was identified in the
OAuth logs that included a few incorrectly logged events on the OAuth workflow due
to the dispersed and heterogeneous nature of a distributed system, and this issue could
be overcome by mapping OAuth events to their corresponding Client-Side events.
Employing the Hybrid logger and the ELG algorithm makes it possible to discover
and exclude activities executed by bots or internal nightly operations within a dis-
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tributed system. Additionally, the OAuth protocol logs authorization operations
from all resources connected to a system. Hence one can create a training set and
analyze processes in other resources retrospectively in a distributed setting.
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The Data Analytics Framework aims to provide a comprehensive approach to extract-
ing valuable insights and understanding complex relationships within datasets, which
are crucial for informed decision-making and system optimization. This framework
encompasses methodologies for data abstraction, modeling process-aware activities,
discovering the RDM lifecycle, and enhancing data collection reusability. By inte-
grating these methodologies, the framework facilitates the development of robust and
interpretable models that capture the underlying structure and dynamics of various
data-driven processes, ultimately leading to more effective strategies for managing
and improving software applications and services.

Data abstraction is a critical framework component, as it simplifies and consolidates
raw data into more manageable and meaningful representations. Furthermore, this
process aids in feature engineering, paving the way for more accurate and inter-
pretable analysis and data modeling. On the other hand, modeling process-aware
activities focuses on understanding and presenting user behavior on OSPs based
on observed interactions within a system. Likewise, discovering the RDM lifecycle
entails uncovering the intricate relationships and dependencies between different
stages of RDM, allowing for better coordination and alignment of resources and
efforts. Lastly, the reusability enhancement methodology aims to improve the overall
utility and accessibility of datasets by identifying opportunities for reuse, repurposing,
and integration, ultimately promoting a more efficient and collaborative research
ecosystem through appropriate recommender systems.

4.1 Semi-Supervised Data Abstraction

The demand for digitalization has increased the number of novel software solutions
designed to address various needs. This constant evolution has led to the creation
of intricate software systems with multifaceted internal processes. For example,
institutions of higher learning utilize decentralized software systems to facilitate
RDM, ensuring that data is easily discoverable, accessible, and reusable [21], [26].
This results in a diverse and dispersed IT infrastructure with a labyrinth of user pro-
cesses. To address this challenge, it is necessary to model and investigate researchers’
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processes to enable domain experts to comprehend and oversee user behaviors and
unearth underlying operational procedures. Such process-centric modeling facilitates
identifying obstacles researchers encounter throughout their research lifecycle [23].
To scrutinize user dynamics and oversee operational procedures, process mining
techniques are employed to uncover process models [22].

Software systems often operate within complex infrastructures, where a user request
may necessitate the involvement of multiple software components and microservices to
execute a task. This complexity often leads to a n:m relationship between Server-Side
and Client-Side events that are highly detailed. Applying process discovery on low-
level event logs typically yields unstructured process models, known as “Spaghetti”
models, which are unsuitable for process analysis [54]. Consequently, various event
log abstraction techniques have been developed to convert fine-grained (low-level)
event logs into more abstract (high-level) representations. However, the primary
challenge lies in identifying an abstraction level that is both interpretable by domain
experts and accurately reflects the reality of business activities.

Number of methods have been proposed to address the challenge of abstracting
low-level events (and are discussed in Section 1.2.4). Some existing methods rely on
unsupervised learning techniques to cluster groups of events into higher-level events.
However, these unsupervised learning methods struggle to achieve an appropriate
level of abstraction, often resulting in unclear relabeling strategies for the abstracted
event clusters. Furthermore, these learning techniques either necessitate manual
labeling by domain experts or automatic concatenation of labels, leading to lengthy
and unintelligible activity names. In contrast, several supervised learning methods
have been developed to surmount these challenges. These methods either utilize
training sets to guide the abstraction process or depend on domain experts’ input to
relabel activity names. Thus, relabeling abstracted activity names remains a complex
task. The challenges mentioned above underscore the need for an approach that
effectively abstracts low-level event logs to a suitable higher level of granularity.

In this section, an iterative semi-supervised abstraction method for Client-Server
applications is presented in which Client-Side event logs serve as the training set
for characterizing Server-Side event logs. At the same time, the Pearson Coefficient
Correlation (PCC) is utilized to assess pairwise event similarities to abstract activities.
The approach outlined in this study builds upon the method proposed in [24] for
obtaining Server-Side event logs. As a result, employing the OAuth workflow to
capture Server-Side event logs. The Client-Side event logs function as descriptive
user activities that are comprehensible to domain experts, thereby facilitating the
mapping of low-level Server-Side event logs to high-level activities.

The following Table 4.1 offers a synopsis of how the research aligns with the literature
review explored in the Section 1.2.4. Each criterion is comprehensively described in
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Section 1.2.4. The insights and outcomes discussed in this Section have been partially
documented and shared in an earlier publication, as referenced in [27], [186].

Table 4.1: An overview of the proposed methodology with respect to data
abstraction criteria discussed in Section 1.2.4.

Grouping Input Data Event Perspective Mapping
Relationship Internal Abstraction

Su. Un. Co. Di. Pr. De.

Proposed Approach X X X Non-Sequential n:m X

Validity Quality Indicator Target Domain

Proposed Approach Real-Life Fitness, PCC Client-Server Applications

Most authors have employed the IM algorithm to discover process models. The IM
algorithm can address infrequent behaviors while maintaining the soundness of the
discovered process model [121]. Furthermore, different versions of Petri Nets notations
have been utilized to represent the discovered model. However, a review of Table 1.2
reveals that none of the existing approaches are suitable for implementation within
current infrastructures, as they rely on internal probabilistic abstraction techniques or
demand extensive domain knowledge to assist in relabeling abstracted activities.

4.1.1 Conceptual Foundations

This section presents the fundamental concepts and formal models employed through-
out the research.

Given a set A, σ = 〈a1,a2,...,an〉 ∈ A∗ is the set of all finite sequence over the A.
σ(i) = ai denotes the ith element of the sequence. β(A) is the set of all multi-sets
over set A. PNE(A) is the set of all non-empty subsets over the set A. |σ| = n
is the length of σ. For σ1 , σ2 ∈ A∗, σ1 ⊆ σ2 if σ1 is a sub-sequence of σ2. e.g.,
〈g,b,o〉⊆ 〈z,g,b,b,g,b,o,q〉. For σ∈A∗, {a∈σ} is a set of elements in σ. For σ∈A∗,
[a∈σ] is a multi-set of elements in σ, e.g., [a∈〈g,b,z,g,b〉]=[g2,b2,z].

Definition 4.1 (Event, Event Log). An event is a n-tuple e=(t,c,ac,as) and e∈L.
t∈T is the event timestamp, c∈C is the case id, and ac∈Ac is the Client-Side activity.
as∈As is the Server-Side activity, such that there is a set of corresponding Server-Side
activities in response to a user request for each Client-Side activity. ξ=T×C×Ac×As

denotes as the universe of all events for the original event log, s.t. L⊆ξ. In the event
log, each event can appear only once. Hence, events are uniquely identifiable by their
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attributes. Also denote ξf =Tstart×Tcomplete×C×Ac as the universe of abstracted
events. The abstracted event log is represented as Lf ⊆ξf , and each event ef ∈Lf

is an n-tuple ef = (tstart,tcomplete,cc, a′
c) where {tstart,tcomplete} ∈ T is the start and

completion timestamp of an event respectively, representing a full software execution
lifecycle, cc∈C is the case id and a′

c∈Ac is the abstracted activity name.

Definition 4.2 (Trace). Let x be a set of activities. Then x∈ e, σx =〈ex1 ,ex2 ,...,exn〉
is defined as a trace in the event log, s.t., for each exi

,exj
∈σx, 1≤ i<j≤n :πC(exi

)=
πC(exj

) and πT (exi
)≤ πT (exj

). Trace σ ∈ L is a sequence of activities. Note that
there are no special start and end activities.

Definition 4.3 (Labeled Petri net). A Petri net is an n-tuple N=(P,T,F ) where P
is the set of places, T the set of transitions, P∩T =∅, F ⊆(P×T )∪(T×P ) represents
the flow relation. A labeled Petri net N=(P,T,F,l,A) extends the Petri nets with
a labeling function l∈T9A, which maps a transition to an activity from A. For
example, if l(t)=a, then a is an observed activity when transition t is executed.

4.1.2 Proposed Methodology

Figure 4.1 illustrates an overview of the method for abstracting event logs in Client-
Server applications, along with examples of event log transformations throughout
the process. It is important to note that, in the sample logs of Figure 4.14, Client
activity names are denoted as “[activityName]@[webPage]”, signifying the web page
on which a Client activity takes place. In the subsequent section, we explain each
step involved in the recursive log abstraction process. Moreover, Algorithm 4.1
showcases a recursive log abstraction procedure utilizing the PCC [187]. The PCC
allows us to determine the pairwise similarity between various Client-Side activities
by evaluating the occurrence of corresponding Server-Side activities.

As suggested in the literature [58], we employ model fitness as an indicator of the
appropriateness of the discovered model. The method utilizes the IM algorithm on
the event log for the process model discovery task (step 1 of Figure 4.1). First, the
original event log L is replicated into a temporary event log L′ for further abstraction
and reuse in the recursive process (Step 2 of Figure 4.1). The abstracted event log is
then replayed over the discovered model derived from the original log to assess model
fitness (step 3 of Figure 4.1). During this procedure, the fitness of the discovered
model is computed as fitness= True Positive

True Positive+False Negative . The True Positive represents
the number of traces that align with the discovered model, while the False Negative
refers to the number of traces that do not align with the discovered model [188]. If
the discovered model can fully replay the traces from L′, the model’s fitness is 1.
Consequently, as log abstraction increases, fitness decreases.
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Figure 4.1: An overarching summary of the event log abstraction methodology.
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Algorithm 4.1 Recursive event log abstraction algorithm.
Input: Fine-granular event log L
Output: Abstracted event log Lf

1 set PCC threshold (Θ) to 1
2 discover Petri net model for L using the Inductive Miner
3 clone L to L′ as a temporary event log
4 while fitness ≥0.8 do
5 foreach L′ do
6 convert L′ to a vectorized weighted matrix MAc×As

7 foreach e do
8 calculate the vector similarity(∆) between every ac

9 if ∆≥Θ then
10 relabel the activity ac by the concatenation of the two similar activity names a′

c
11 replace the corresponding event in L′ with e′ =(t,c,a′

c,as)
12 end
13 end
14 end
15 Lower PCC threshold Θ by Υ
16 end
17 foreach c in L′ do
18 while a′

ci
=a′

cj
do

19 capture the first (tstart) and last (tcomplete) occurring event for the activity a′
c

20 create event ef =(tstart,tcomplete,c, a), and append to Lf

21 end
22 end
23 return Lf

In line 6 of Algorithm 4.1, the event log e = (t,c,ac,as) ∈ L is converted into a
vectorized descriptive matrix MAc.As , where the first column of the matrix comprises
the group of Client-Side activities (ac), and all other columns represent Server-Side
activities (as). Each row contains the number of Server-Side activity executions
corresponding to a specific Client-Side activity. It is crucial to note that we increment
the number of as occurrences for each ac (step 4 of Figure 4.1). The weighted matrix
M allows for more accurate vector similarity analyses.

In the section between lines 7 to 13 of Algorithm 4.1, we assess the similarity between
every two pairs of Client-Side activities (step 5 of Figure 4.1) and relabel logs by
concatenating Client-Side activity names (separated by a comma) that fall within
the PCC threshold (step 6 of Figure 4.1). The PCC evaluates the strength of a linear
association between two vector variables, thereby quantifying the similarity between
two events. As the PCC description is beyond the scope of this report, we direct
readers to [187] for the formula and a comprehensive explanation. The abstraction
and relabeling results are then fed into the method (step 7 of Figure 4.1).

In the proposed approach, the abstraction process is initiated with a PCC threshold
Θ=1 and the threshold Θ is incrementally decreased by Υ. As depicted in Figure 4.1,
the abstraction process continues until a fitness quality of 0.8 is achieved. A fitness
of 0.8 is suggested as the stopping criterion for the iterative abstraction process in
the algorithm, as a fitness value below 0.8 cannot fully replay event logs with that
model [54], [58], thus losing its essential quality dimension of a process model.
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The section between lines 17 to 22 alters the event log format, reducing the number of
events with the same activity for each case (step 8 of Figure 4.1). At this point, every
event is accompanied by the event’s start and completion time, representing the time
taken for the Server-Side components to process and respond to a Client-Side request.
In instances of a single event appearance, the start and completion timestamps are
identical, indicating an instantaneous event occurrence. The resulting abstracted
event log is Lf⊆ξf , where ef ∈Lf and ef =(tstart,tcomplete,c,a

′
c).

4.1.3 Discussion

As the supervised learning technique is deemed more reliable for real-life scenarios
and allows for additional domain expert interventions, the methodology also employs
a supervised learning approach. Furthermore, the method utilizes continuous and
discrete data to discover process models and measure the similarity between two
activities. Due to the nature of the distributed systems in the SUS, the order of event
execution is not sequential; thus, the approach must accommodate non-sequential
events. The work is positioned as an n:m mapping relationship, as there are both 1:1
and n:1 mappings between event logs at each level. To demonstrate the effectiveness
of the approach, the method has been validated with real-life event logs by directly
collecting and utilizing event logs from an existing software system.

In this study, event logs have been successfully abstracted reliably and descriptively
for domain experts. Furthermore, the approach has effectively transformed low-level
event logs into high-level representations, ensuring that the resulting abstracted
event logs are comprehensible to domain experts. This achievement has facilitated
a deeper understanding of user processes and operational procedures, enabling more
informed decision-making and improving system efficiency and effectiveness.

Furthermore, an abstracted event log that balances granularity and the fitness of
process models is successfully introduced. By identifying the optimal level of abstrac-
tion, it is ensured that the resulting process models accurately represent real-world
behaviors while maintaining sufficient detail to be useful for analysis and interpre-
tation. This balance has proven crucial in providing meaningful insights into the
underlying processes and identifying areas for improvement, ultimately contributing
to the overall optimization of the system.
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4.2 Modeling Process-Aware Activities

Online services like Celonis1 and Disco2 can be deployed to cloud servers. However,
they are not at a point where they have a sufficiently developed API or import and
export functionality to allow integration into an existing ecosystem [6]. For example,
while Celonis provides a flexible way of customizing the usage of their application by
giving the user a way to upload Python scripts which in turn can utilize the Celonis
API to fit the process discovery into a custom workflow, this cannot still have the
process discovery itself ready as a service and to access process models on-demand
[189].

Different approaches to data preprocessing can be categorized into specialized tools,
comprehensive tools, and low-level language features. Specialized tools are good at ex-
ecuting specific data cleaning and preprocessing tasks, but combining them with other
specialized tools can be difficult due to proprietary languages, APIs, and restrictive
licenses. On the other hand, comprehensive tools like Googles OpenRefine3 provide
users with a graphical user interface, allowing them to manipulate their data sets
efficiently, but the reusability of the generated sets of operations is limited [190].

Researchers have acknowledged the need for a tool to analyze research data man-
agement processes in recent years. Local applications like ProM [54], Disco, and
RapidMiner4 provide users with a graphical user interface that guides them through
the entire process from importing data to generating a process model. However,
these applications have certain limitations when integrating them into a larger orga-
nizational ecosystem with distributed services [6]. For example, they require that the
input comes in a single file with a specific format, with no option to access a database
directly. Moreover, they do not offer a suitable API to enable communication with
running services, limiting their potential benefits of developing a sound process model
that could be used in real-time detection for deviations from the model [189]. The
following section discusses a web-based tool for analyzing research data management
processes.

The Data Analysis for Research Data Management (DA4RDM) framework provides
a web-based solution for data analysis in research data management. It consists
of four modules: data source configuration, data cleansing, data transformation,
and presentation of findings. The implementation of the DA4RDM web application
is based on the Flask web framework and is publicly available on GitLab5. The
four modules of DA4RDM allow for a streamlined data analysis process for research

1https://celonis.com/
2https://fluxicon.com/disco/
3https://openrefine.org
4https://rapidminer.com/
5https://git.rwth-aachen.de/AminYazdi/da4rdm
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projects. The data source configuration module enables users to connect to various
data sources, while the data cleansing module provides tools for cleaning and filtering
data. Furthermore, the data transformation module allows for data transformation to
fit the scope of specific research projects. Finally, the presentation of findings module
provides customizable post-processing and data modeling tools to present the analysis
results. Overall, DA4RDM is a valuable addition to the existing tools for data analysis
in research data management. Its modular design and customizable tools provide
users with a streamlined and comprehensive solution for analyzing their data. In
addition, the availability of the implementation on GitLab makes it easily accessible
for researchers and data scientists to use and modify to fit their specific needs.

It is worth noting that the description of DA4RDM has been previously presented
in my supervised technical reports and publications in [167], [191]–[193] and has
undergone rigorous reviews. The framework has also been discussed and scrutinized
by fellow scholars, leading to valuable feedback.

4.2.1 Characteristics

DA4RDM is designed with the following characteristics:

Scalability: DA4RDM offers web-based solutions for linking data repositories,
tailoring and implementing project-oriented pre-processing workflows, and supports
integrating Python libraries for process and data analysis initiatives. The present
version of DA4RDM has incorporated the Process Mining for Python (PM4PY)
Python library [Berti2019Process] within the current service framework for process
discovery purposes.

Extendability: As depicted in Figure 4.2, DA4RDM’s modular design enables the
incorporation or expansion of external Python libraries to meet the requirements of
a data analysis investigation. For example, diverse data modeling endeavors can be
established and executed by enhancing suitable modules for data simulation, anomaly
detection, or data equalization and standardization.

Accessibility: The accessibility of DA4RDM is divided into two aspects. First, a
data scientist must set up the pipeline, which involves connecting to a data source,
determining an appropriate data query, and arranging the pre-processing pipeline
for a project. After defining a pre-processing pipeline, its steps are saved for future
utilization as pre-established projects. Second, non-technical users can repurpose
a preconfigured project and apply extra web-based filters, attributes, and algorithms
to the data, facilitating data model post-processing without coding expertise. Conse-
quently, the DA4RDM client application empowers principal investigators to examine
the RDM system without requiring technical knowledge.
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Following this, DA4RDM enables using a generated dataset by an RDM system
through the user interface depicted in Figure 4.4. This interface permits the selection
of a pre-processing pipeline to assess and convert data samples into a new format
appropriate for data modeling algorithms. As a result, all JSON objects are gathered
and stored in a relational database, primed for import into DA4RDM.

4.2.2 Functionalities

CSV, XML, XES,... 

Data base

Missing Values Detection
Data Imputation

Emulation

Duplicates Detection
Typos Detection
Outlier Detection

Syntax Error Detection

Grouping
Data Type Conversion

Concatination

Balancing
Normalization

Reporting

Visualizations

Validation

Data Cockpit
Filters

Process Discovery

1
2 3 4

Source Config
Data Cleansing Data Transformation Data Analysis

Data Pre-processing Pipeline Client Application

Figure 4.2: The comprehensive web-based framework of DA4RDM and its modules,
adapted from [167].

In the subsequent section, the features of the DA4RDM web application are discussed.
The functionality of DA4RDM has been categorized into three primary sections:
data source configuration, data pre-processing (cleansing and transformation), and
data analysis.
Data Source Configuration: The data source module enables the provision of
raw data to DA4RDM. As illustrated in step 1 of Figure 4.2, the data input module
supports uploading local files in Comma-Separated Values (CSV) and eXtensible
Event Stream (XES) formats or directly connecting to a relational database table.
In the data source user interface (refer to Figure 4.3), users can input additional
parameters for each data source further to define a file configuration or a database
query command. Although local data storage is available, each new execution of the
pre-processing pipeline retrieves the most recent version of a specified data source.
Additionally, this module is in charge of serializing the data structure into a Panda
Dataframe, facilitating data alterations necessary for later stages of the process. It
is important to note that XES file formats are standardized XML data types utilized
by Process Mining algorithms; therefore, DA4RDM manages to convert input data
into XES format and prepare for process mining algorithms.
Data Pre-Processing: As displayed in Figure 4.4, the data pre-processing interface
handles data cleaning and transformation. The user interface enables the selection
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Figure 4.3: A screenshot of the input data configuration page of DA4RDM.

of a pre-defined data source and a pre-processing pipeline to initiate a data-driven
study. While the pre-processing pipeline largely depends on the input data properties
and the goals of a data analysis project, this tool allows for reusing a pipeline with
operational data. As a result, a data scientist specifies a data source and then
develops or adjusts a pre-processing pipeline based on their needs, using the methods
outlined in steps 2 and 3 of Figure 4.2 to conform to a given data structure or use
case. Furthermore, DA4RDM generates a user session that preserves the chosen data
source and pre-processing pipeline results, ensuring a seamless workflow throughout
the client application.

Data Analysis: The data analysis module lets users post-process the data for
further examinations and studies. This stage contains features such as process
discovery, conformance checking, and RDM lifecycle visualization.

The process analysis, as displayed in Figure 4.5, offers principal investigators the
necessary toolset and user interface, allowing them to further examine data without
requiring technical expertise. In this phase, users can employ several process mining
algorithms provided by the PM4PY library to uncover process models and inves-
tigate specific user journey scenarios based on frequency or performance analysis.
DA4RDM users can easily define the primary event attributes (Timestamp, Case
Id, and Activity) required for process discovery based on existing data features.
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Figure 4.4: A screenshot of the data pre-processing page of DA4RDM.

Furthermore, the filter module enables more focused analysis on a specified dataset.
In addition, the information module delivers vital statistics of the chosen dataset
for specified criteria and filters. The results section presents a visualization of the
discovered model according to selected algorithms such as Alpha Miner, Heuristic
Miner, IM, or Directly Follow Graph (DFG) [54].

For conformance checking shown in Figure 4.6, we examine traces of user interactions
against the defined variance. One can define a sequence of actions and performance
criteria to be checked against a descriptive dataset. The following is a mathematical
foundation for running conformance checking on DA4RDM.

Let E be an event log represented as an n-tuple (u,p,a,t,r,x,f,s) where u∈U , p∈P ,
a∈A, t∈T , r∈R, x∈X∪⊥, f ∈F ∪⊥, s∈S denotes user Id, project Id, action,
timestamp, role Id, resource Id, file Id, session Id respectively, ⊥ represents a null
value. The s ∈ S session id helps to identify the start and end of a sequence of
actions per user within a project and are used as identifiers for cases. As illustrated
in Figure 4.6, the users of DA4RDM can define two sequences of actions, denoted
as α1 =<an

1 ,a
n
2 ,...,a

n
m> and α2 =<an

m+1,a
n
m+2,...,a

n
k >, where ai∈A, 1≤m<k and

an
i represents action ai reoccurances. Within every case trace, the second sequence

of actions α2 should be followed by α1. If an action other than those defined in α2
occurs within a trace, it is recorded as a non-conforming case. Users can enable the
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Figure 4.5: A screenshot of the process discovery page of DA4RDM.

Eventually Followed By checkbox so that if other activities are observed between
the defined sequences, we can still ignore the actions in between and consider them
a set of conforming cases. Additionally, we can evaluate a trace with respect to
performance. The performance is the time span between every two defined sequences
of actions, denoted as ∆. If two defined sequences of actions occur but still fall
short of the defined performance, it is also counted as a non-conforming case. The
output is a set of non-conforming cases N ={ei∈E ′ |α1→α2>∆}. Every event in
the non-conforming cases contains the 8-tuple ei =(u,p,a,t,r,x,f).

The detailed explanation of the RDM data visualization, depicted in Figure 4.7, is
provided in Section 4.3.

4.2.3 Software Design and Architecture

To better describe DA4RDM system design and architecture,it is splitted into three
sub-sections. Namely, Client-Side, Server-Side and API Architecture.
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Figure 4.6: A screenshot of the conformance checking page of DA4RDM.

Figure 4.7: A screenshot of the data visualization page of DA4RDM.
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DA4RDM Client-Side

Architecture: The Client-Side architecture of the web-based tool, DA4RDM, is
structured into a frame and content pages. The frame comprises a shared header,
user-session information, and navigation elements for all content pages. Extracting
these shared components into a template is sensible since they remain unchanged.
Dynamic parts of the dataframe, such as the navigation indicator, session information,
and page title, can be partially adapted by the Server before sending the pages to the
Client and updated by a global script. The template for the frame also includes global
scripts and style sheets relevant to each content page. This incorporates external
libraries, a custom style sheet, a user session handler, and a file request handler. The
user session handler requests a new session for interacting with DA4RDM, and if no
user session is detected upon entering the site. It also appends the session id to POST
requests of forms for transmitting data that informs the Server-Side session state.

The file request handler appends request URLs for file downloads with an arbitrary
query parameter. This is necessary due to file association with user sessions. Without
the query parameter, the browser uses cached files for the requested data if it recently
accessed a resource URL path, saving internet traffic. However, this undesired side
effect prevents users from accessing newly generated files on the Server after download-
ing files within a session and changing filters, event log attributes, or file formats.

The content pages include a pre-processing data page and a post-processing pages.
The pre-processing page is a static web page displaying all available data sources
and user projects accessible from the current user session. It has two sub-pages for
adding a new data source and inspecting pre-processing pipeline evaluation details.
The process discovery page is more dynamic, frequently updating its contents based
on user interactions, such as event log attributes, filters, dataset information, and
downloadable resources. It also reserves space for the graphical representation of
the process model.

Technologies: Technologies used in the DA4RDM (Client-Side) web application
include:

• HTML and CSS: These two frameworks are the standard for implementing and
styling web forms.

• JavaScript: A programming language used for the Client-Side logic of the
application.

• Bootstrap: A web framework utilizing HTML, CSS, and JavaScript for dynamic
styling of the web Client application.

• Axios: A lightweight JavaScript library for sending and handling HTTP re-
quests, offering a comfortable and efficient alternative to jQuery.
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• FontAwesome: A collection of icons used to improve usability and reduce usage
barriers.

• Socket.IO: A framework available in different programming languages for
establishing and maintaining enduring network connections, emitting and lis-
tening to events over the connection. This is useful for exchanging messages
between Server and Client, even when the Server is busy with tasks like running
a pre-processing data pipeline or generating a process model.

DA4RDM Server-Side

Architecture: The high-level Server component structure of DA4RDM is illustrated
in Figure 4.8. At the heart of the Server lies the main Flask application, which
manages all incoming and outgoing requests, maintains Client connections as needed,
and delegates tasks to the responsible modules for processing requests. The main
configuration is utilized across the application for centrally managed options, such
as Server connection timeout settings and file paths for local data storage. The
Flask application also establishes a connection to the local database and offers access
through the data model and an object-relational map via Flask SQLAlchemy.

Server Application

Static FilesTemplatesPreprocessing 
Libraries

User Projects

Uploaded
User Data

User Session

Database

Use

API

Process Discovery
Library

Data Source
Library

Preprocessing 
Library

API Functions

Use

Use Use

Figure 4.8: Schematic representation of the DA4RDM components.

The database is employed to keep track of user sessions and data sources. Although
the data processed by the Server should adhere to a tabular format, the data itself
is not stored in the database. This is due to the Server’s use of a relational database
and data format. In addition, the content can vary significantly across users or use
cases, making providing a one-size-fits-all database schema challenging. Therefore,
utilizing a basic schema solely for dumping all user data into a single column is not
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a practical approach, as it undermines the advantages of storing data in a database,
such as memory and query efficiency.

The inclusion of the modules for uploaded user data and temporary work results
is justified on demand to store user data after the distinct steps of preparing it for
process discovery. Both modules designate storage space for the data on persistent
memory, and they are kept separate due to differences in purpose and form.

The module for uploaded data stores the data exactly as the user uploaded it, main-
taining the original file format and making no changes to the content. This data
is not associated with any specific user session but with the specified data source
reference created when the file was uploaded. Consequently, the same uploaded
data can be used across multiple projects without altering the data itself. This also
allows for user session-related data to be cleaned up after the session is over without
affecting the functionality of any data source.

To reduce the dependency between different project stages, the results of reading
input data from the data source are stored separately from the results of applying
a pre-processing pipeline. Additionally, CSV and XES files must be stored during
process discovery. These files are all locally kept in a folder associated with the user
session during which they were constructed. As shown in Figure 4.9, selecting a data
source via the application always creates a file for use in the pipeline and a file for
post-processing analysis.

The pipeline intends to use the source to fetch the sample dataset, store it in the
specified file, and overwrites it for discovery only if it runs successfully. This ap-
proach makes running a pipeline optional in terms of the application structure. The
database stores the associations between the raw data and the available data source
and between the temporary results and the user session.

The templates module contains HTML pages, while the static directory accom-
modates non-HTML files accessible to the frontend application. In addition, the
static directory includes style sheets, script files, and images (e.g., the graphical
representation of process models).

Client and Server Communication: The communication between Client and
Server, except for basic page requests and file up- and downloads, is socket-based.
When a page is called, the connection between the Client and the Server in the API
namespace relevant to the current flask project is established and maintained by
regularly sending keep-alive requests and responses between them. The specifics
regarding the timeout timer and frequency of these messages can be configured in
the global Server configuration.

Well-formed requests that the Server can process follow this format: Besides being
a well-defined socket-based HTTP request (handled by the socket.IO library on both
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Run pre-processing
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from the data source

Prepare process
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Prepared
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Model

Figure 4.9: Files Created on uploading data and for handling user sessions.
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Client and Server), they start with an event name, usually followed by the session Id
and then the rest of the data. An example of the Client request is listed below:

let socket = io.connect('http://' + document.domain + ':'
+ location.port + '/api/run_process_discovery');
socket.emit("requestDiscoveryPreparation",
session_id, selectedXesAttributeColumns);

The first instruction establishes the connection. Evidently, in this case, the connection
is directly established in the namespace,

/api/run_process_discovery

which contains all the event listeners listening to incoming events corresponding to
requests that can be made on the process discovery page. As mentioned, this will have
already happened upon entering the page. The second line is an example of a specific
request. While the socket connection is open, both ends listen to incoming requests
and use the event name to identify the kind of event and trigger the corresponding
functionality. The rest of the data is gathered in a serialized collection and sent
as a separate parameter. socket.IO also manages the serialization for many of
JavaScript’s and Python’s default data structures, although more complex objects
sometimes require additional preparatory work. One case where this happens is
when the process discovery page serializes the data containing DateTime objects,
which have no default serialization that socket.IO can utilize.

Database Model: The application utilizes a relational database, specifically an
SQLite database, due to its ease of setup, maintenance, and adequate performance
for a small number of concurrent users. If scalability becomes necessary in the future,
such as accommodating more concurrent users, the database can be replaced easily,
thanks to the abstraction provided by SqlAlchemy for the data model, connection,
and migrations within the application. As it stands, read and write operations are
efficient and infrequent, so scaling does not pose an issue until a significantly higher
number of concurrent users is reached. This observation is further supported when
examining the database schema.

data_source

Id LastModifiedType Name Parameters

Figure 4.10: Relational model of data sources in DA4RDM.
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The database consists of only two separate tables: one for data source information
and the other for user-session information. The data sources table includes attributes
for the data source connection name, the data source type, and a multi-value attribute
for parameters (refer to figure Figure 4.10). The name serves to help users identify
the data source when selecting it after saving. The type is employed internally to
guide the Server’s control flow for various data connection types, which include csv,
xes, and database. The parameters attribute contains user-provided information
for specifying the connection. For example, a CSV file may require a separator to
denote the characters used for column delimitation, while a database connection
might need a connection string and an initial query. The latter should adhere to the
format used by SqlAlchemy for establishing a database connection engine.
Supported parameters like database connection strings or queries can freely use white
spaces, equal signs, and other single-character symbols. Similarly, common column
separators for CSV-like files often use characters like semicolons, commas, or tabs,
which could also be employed to separate different parameters or their keys from their
values. Consequently, the application uses &; as a separator for different parameters
and := to separate parameter keys from their values. While these unconventional
signs might make the input less intuitive, their abnormality also reduces the likelihood
of errors related to parsing verbatim input for the parameters.

session_informationID

EventLogLocation

UmodifiedData-
Location

PDDataLocation

WorkingData-
Location

PMOptions

PMFilters

PMXesAttributes

Figure 4.11: Relational model of a user session in DA4RDM.

The session information includes fields for further data analytics and process discov-
ery filters, event log attributes, and paths to various data locations, which indicate
where the files are located on the Server shown in Figure 4.11. The filter option
and event log attributes are multi-value attributes that store sequences of key-value
pairs for the related selections. In terms of functionality, how filters and options
are implemented in PM4PY implies that any new parameter will require special
API handling. This should occur in the apply_all_filters function of the process
discovery module.
The path attributes store single-value string attributes generated according to a
predefined pattern when a new user session object is created. For example, the
temporary results and static files modules allocate designated spaces for the created
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files on the Server. In the current implementation, the path attributes obtain values
that consist of the path to these modules and the session Ids, used as either directory
or file names to ensure organization and individual identification.

Technologies:

• Flask: Flask is a lightweight, flexible Python web framework for building web
applications, offering a modular approach to adding necessary components. It
simplifies tasks such as routing, handling web requests, and rendering templates
while providing extensibility for custom features.

• PM4PY: It is a Python process mining package focused on analyzing and op-
timizing business processes using event log data. PM4PY[194] provides a
comprehensive set of algorithms for discovering, analyzing, and visualizing
process models from event logs. PM4PY is built on top of popular Python
libraries like Pandas, NumPy, and Graphviz, making integrating with other
data analysis and visualization tools in the Python ecosystem easy.

• sqlalchemy and Alembic: It is a versatile Python library that facilitates
connecting to various popular database engines and offers object-relational
mapping, simplifying data manipulation through data models. Alembic, work-
ing in tandem with sqlalchemy, manages database migrations by creating and
executing migration scripts based on data models, ensuring reliable database
schema updates.

• Socket.IO: It is a JavaScript library that enables real-time, bidirectional, and
event-based communication between Clients and Servers. It abstracts the
complexities of real-time communication protocols, such as WebSockets and
long polling, allowing developers to quickly build real-time applications like
chat, notifications, or live updates without worrying about the underlying
technical details.

DA4RDM API Architecture

The API comprises several sub-modules: data source, pre-processing pipeline, and
process analysis for the core functionality, along with session and input parser
modules for additional logic.

The API has a layered structure, where the top level handles incoming requests, input
arguments, and session information. It passes relevant information to more specialized
layers and manages the results concerning user sessions, which dictate the Server’s
overall state. The user session and input parser modules operate simultaneously, sup-
porting parsing various input types and managing user session database objects.
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The next level consists of the core modules for handling data sources, pre-processing
pipelines, and process discovery. Finally, a handler sub-module, called by the API,
delegates specific tasks to specialized functions as needed.

The lowest level includes specialized functions and external libraries or their wrappers,
responsible for specific computations such as reading from a specific data source
like a CSV file, renaming a data frame column, or executing a particular process
discovery algorithm.

Data Source: The data source module uses a strategy pattern to provide a simple
interface that makes it easy for the API to read from different kinds of data sources.
Depending on which data source type is specified in the data source object in the
database, the corresponding reader gets loaded, and its read function is applied.
Additionally, depending on its kind, the module processes parameters that may
be given to the reader. This includes the deliminators for CSV-like files or the
connection and query strings for database connections. To that end, as well as for
registering new data sources, this module extends the object-relational map of the
data model by wrapping the communication with the database table via SqlAlchemy
with some easy-to-use functions.

Pre-Processing: The pre-processing module dynamically reads and presents all
custom pre-processing pipelines in the configured directory to the Client, eventually
loading the selected one via runtime import. The pipelines are saved as individual
Python modules in a designated directory (modifiable in the global application config-
uration). These modules must follow an interface that mandates the implementation
of at least an init and a run function.

init(data_source, pipeline_parameters) is essential for setting up the pipeline.
Data source refers to the unaltered CSV-serialized data frame saved after being read
from a data source. Pipeline parameters can be any arbitrary parameters the pipeline
developer wishes to utilize. For example, these may include alternative data sources
or values that should be applied in every pipeline execution but may vary based on
the data source. These parameters should be combined into a configuration item,
which can be further extended by any configuration choices the pipeline developer
desires. This configuration should then be returned, as it will be employed to run
the pipeline.

run(project_config) executes the pipeline, optionally utilizing any items set in
the configuration. The API and the pre-processing handler will use the returned
dataframe to store the results for the post-processing tasks. In addition, a library
of wrapper functions for commonly used pre-processing operations is also provided
to facilitate the development of custom pre-processing pipelines. Currently, this
primarily simplifies the use of some more complex operations, but this approach
offers two additional potential benefits:
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1. Although currently only pandas dataframes are supported, these wrapper func-
tions make it easier to replace the panda’s library with another one (such as
Dask, which wraps pandas to improve performance with larger data sources).
Furthermore, if the wrapper functions are used, they only need to be adapted
to the other library, eliminating the need to change the pipelines.

2. Creating these pipelines is a complex task and requires a developer to under-
stand how this application and pandas data frames work. While manually
crafting the pipelines offers flexibility, further improvements in the applica-
tion’s usability can be achieved by providing options for adding data-cleaning
operations to the Client.

Process Analysis: This module incorporates the PM4PY library and offers wrapper
functions for the utilized process discovery and event log filter algorithms. Similar
to the various file readers in the data source module, different process discovery
algorithms and visualizers can be selected, imported, and employed at runtime using
a strategy pattern. Additionally, there is a helper module for formatting a data
frame into a valid event log format based on PM4PY’s minimal requirements. The
process discovery module is currently the only one that stores its results in the output
directory (within the static module), allowing the Client to access the results and
display them directly. Available files include the filtered data frame, event log, and
the graphical representation once created.

Server States and User Sessions: To maintain data persistence between different
requests, a user session system is implemented alongside temporary local file storage
for the results of various steps. When a user first accesses the Client application
or refreshes their session, a session is created and stored on the backend, and the
session Id is provided to the Client, which saves it in local storage. Most subsequent
requests from the Client require this session Id to identify the corresponding data
on the Server. The Server utilizes the session to store data locations saved during
each application step and additional information like pipeline columns and filters
selected during the discovery process.

4.2.4 Discussion

This Section covered various aspects of the data-driven application for modeling
process-aware activities, including its design, implementation, and the technologies
used.

The application employs a modular and layered architecture, with API modules for
data source handling, pre-processing, process discovery, and user session management.
This design choice allows for easy extensibility and maintainability. Additionally,
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using strategy patterns for data sources and process discovery algorithms provides
flexibility and adaptability to future requirements.
The DA4RDM application relies on well-established technologies and libraries like
Flask, PM4PY, SqlAlchemy, and SocketIO. Python is used as the primary program-
ming language to ensure access to a rich ecosystem of libraries and frameworks,
which facilitates the development of process mining and data science applications.
Flask, as a lightweight and extensible web framework, enables the rapid extension
of my tool while providing the necessary tools for various tasks, such as database
connection and handling web requests. Finally, PM4PY serves as the core process
mining library, offering various algorithms and functionalities.
The application utilizes a user session system to manage data persistence between
requests. This approach enables the server to store the locations of data saved during
each step of the application and also allows for tracking additional information, such
as pipeline modules and filter selection, during the discovery process.
The chosen design and technologies provide several benefits, including flexibility,
extensibility, and a rich ecosystem of libraries. However, there are also limitations and
areas for improvement. For instance, the current implementation of pre-processing
pipelines may require a developer with a good understanding of pandas’ dataframes
and the application itself. Future enhancements could focus on providing more
user-friendly interfaces for creating custom pre-processing pipelines or incorporating
additional data-cleaning operations. Using wrapper functions could facilitate the
adoption of alternative libraries, such as Dask, for improved performance with larger
datasets.
Beyond these technical aspects, the application offers valuable insights for RDM,
such as:

• The application can be used to check if research projects comply with the RDM
process models and identify areas where deviations frequently occur. This
helps ensure that projects follow the desired path and adhere to the guidelines
set by the RDM platform.

• Analyzing user behavior patterns within the RDM platform can determine if
there are certain activities or stages where users tend to struggle or need more
assistance. This information can be used to improve the user experience and
provide targeted support.

In conclusion, the data-driven application for process mining exhibits a robust and
flexible design, employing well-established technologies and libraries to address vari-
ous data science and process mining requirements. Despite potential constraints and
areas requiring augmentation, the app’s modular structure, and expandable frame-
work establish a solid foundation for future upgrades, modifications, and pragmatic
applications. This includes the evaluation of user interactions within OSPs during
the execution of Research Data Management (RDM) practices.
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4.3 Discovering RDM Lifecycle

The following Section presents the proposed methodology for discovering and out-
lining the various RDM phases of research projects. This novel approach aims to
provide a comprehensive understanding of the RDM lifecycle and facilitate effective
management of research projects regarding data handling and organization. The
methodology is designed to uncover insights and patterns in the RDM process by
leveraging advanced process mining techniques and conformance checking, ultimately
guiding researchers in their RDM efforts. Furthermore, the proposed methodology
allows stakeholders to monitor the progress of their research project and ensure
alignment with RDM best practices.

The study and findings discussed in this Section have been previously partly presented
in [191], [195], [196].

4.3.1 Conceptual Foundations

For the task of discovering the RDM Lifecycle, the conceptual foundations of set,
Event Log, Trace, and Labeled Petri net are described in this Section.

Table 4.2: An example of event log collected by Server-Side logger of the Coscine
platform.

Timestamp (t) Activity (a) CaseId (c) ProjectId (p)

. . . . . . . . . . . .
1579108918 Add Member 29613-d8... 4b15f...
1579109840 Add Resource 29613-d8... 4b15f...
1579129397 Upload File 29613-d8... 4b15f...
1579835452 Archive Resource 8G7s6-c2... 4b15f...

. . . . . . . . . . . .

Definition 4.4 (Set). Given a set A, σ= 〈a1,a2,...,an〉 ∈A∗ is the set of all finite
sequence over the A. σ(i)=ai denotes the ith element of the sequence. β(A) is the
set of all multi-sets over set A. PNE(A) is the set of all non-empty subsets over the
set A. |σ|=n is the length of σ. For σ1 , σ2∈A∗, σ1⊆σ2 if σ1 is a sub-sequence of
σ2. e.g., 〈g,b,o〉⊆〈z,g,b,b,g,b,o,q〉. For σ∈A∗, {a∈σ} is a set of elements in σ. For
σ∈A∗, [a∈σ] is a multi-set of elements in σ, e.g., [a∈〈g,b,z,g,b〉]=[g2,b2,z].

Definition 4.5 (Event & Event Log). An event, represented as e=(t,a,c,p), belongs
to an event log L. Table Table 4.2 presents an example event log. Here, t is the
event timestamp, a is the user activity intercepted by an API endpoint, and c is the
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user session determining each case. The sessions are generated upon login and expire
after an hour of user inactivity or a logout attempt. Furthermore, p refers to Coscine
research project identifier. We denote ξ=T×A×C×P as the universe of all events
for the original event log, s.t. L⊆ξ.

Definition 4.6 (Trace). A Trace x is a set of activities where x ∈ e, and σx =
〈ex1 ,ex2 ,...,exn〉 is defined as a trace in the event log. For every exi

,exj
∈σx, if 1≤ i<j≤

n, then πC(exi
)=πC(exj

) and πT (exi
)≤πT (exj

). A trace σ∈L is a sequence of activi-
ties, with login and logout or session timeout as start and end activities respectively.

Definition 4.7 (Labeled Petri net). A Petri net is denoted as N=(D,S,F ) where
D is the set of places, S is the set of transitions, D ∩ S = ∅, and F belongs to
(D×S)∪(S×D), representing the flow relation. Extending from Petri nets, a labeled
Petri net is denoted as N=(D,S,F,l,A), encompassing a labeling function l∈S9A.
This function maps a transition to an activity from A. For instance, if l(s)=a, then
a becomes the observed activity when the transition s is executed.

4.3.2 Proposed Methodology

The methodology evaluates the conformance of research projects to the prescribed
RDM phases. The prescriptive models for each RDM phase are based on the def-
inition of each RDM phase discussed earlier in Section 1.2.2 and are derived from a
series of user interaction scenarios within Coscine in a controlled environment. The
first step is to acquire event logs corresponding to each RDM phase by considering
user interaction scenarios specific to each phase. Using the IM algorithm, these
event logs are then used to discover process models per RDM phase. The discovered
process models using IM and Petrinet representation corresponding to each RDM
phase are illustrated in Figure 4.12.

The example user interaction scenarios to generate the event log from Coscine as
a real RDM system for each phase are as follows:

Planning: Creation of research projects, resources, application profiles, adding project
members, and adopting resource quotas.

Production: Recording data collections and artifacts and their specialized meta-
information by a project member.

Analysis: Updating previously documented data with new insights or restoring
research repositories for exploring and extending meta information.

Archival: Preserving data and metadata for the long term or leaving a project after
archival.
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(a) Planning

(b) Production

(c) Analysis

(d) Archival

(e) Access

(f) Reuse

Figure 4.12: User interaction models corresponding to each RDM phase.
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Access: User attempts to share or discover research data or metadata with other
project members or externals.

Reuse: Internal or external user attempts to find and access data artifacts.

To ensure the distinguishability between RDM phases, pairwise fitness is computed be-
tween every two RDM phase models and presented in a confusion matrix, as shown in
Figure 4.13. However, it is suggested that the pairwise fitness of models should not ex-
ceed 0.30, as it would compromise the ability to differentiate between two phases.

Figure 4.13: Pairwise fitness scores for every two prescribed user interaction models
in RDM.

By leveraging process mining techniques, an effective assessment of the conformance
of research projects to the prescribed RDM phases can be made, providing valuable
insights into an OSP’s usage patterns.

Algorithm 4.2 presents a structured methodology to compute and measure the degree
of adherence of the observed research project activities to the prescribed RDM
lifecycle phases. The alignment evaluation is numerically assessed through the fitness
measure comparison between the observed (descriptive) and expected (prescriptive)
event logs, utilizing the technique elaborated in [197]. The algorithm works on a
descriptive event log Ldesc, an assortment of prescriptive event logs Lpres and produces
a fitness dictionary for a chosen project P .

The Inductive Miner (IM) and Alignment Analysis represent two robust, cost-effective
strategies for conformance validation. With a demonstrated record of success, these
methodologies facilitate the analysis and interpretation of a system’s behavior align-
ment with its envisaged model [197].

The algorithm receives a four-element descriptive event log Ldesc =(t,a,c,p), each ele-
ment corresponding to Timestamp, Activity, Case Id, and ProjectId, respectively. In
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Algorithm 4.2 Discovering RDM phases for a research project.
Input: Ldesc =(t,a,c,p)
Input: Lpres∈{Lph1 ,Lph2 ,Lph3 ,Lph4 ,Lph5 ,Lph6} where Lphi

=(t′i,a′
i,c

′
i)

Output: Fitness dictionary fitnessdict for a selected project P
Initialize empty event log Lw

Lw←{ϕ(e)|e∈Ldesc}
Initialize empty dictionary: fitnessdict

foreach Lphi
in Lpres do

(net,initialmarking,finalmarking)←InductiveMiner(Lphi
)

N=(net,initialmarking,finalmarking)
fitness←AlignmentChecker(Lw,N)
fitnessdict←Append(fitnessdict,fitness,(phi).label)

return fitnessdict

addition, it accepts six distinct prescriptive event logs Lpres =(t′,a′,c′), with each corre-
sponding to Timestamp, Activity, and Case Id, as portrayed in Figure Figure 4.12.
Initially, an empty event log Lw is established. Subsequently, the function ϕ(e) is in-
voked for every event e in the descriptive event log Ldesc to isolate the events related to
the selected project within a specific timeframe, with the findings compiled in Lw.

ϕ(e)=

e, if( Tstart≤T (e)≤Tend)&(P (e)=Psel)
∅, otherwise

An empty dictionary, labeled as fitnessdict, is then initialized, intended to store the
fitness values for each RDM phase later.
The algorithm progresses by sequentially processing each prescriptive event log Lphi

from Lpres. For every Lphi
, the InductiveMiner method is executed to discover the

corresponding process model, expressed as a Petri net, along with the initial and
final markings, denoted as (net,initialmarking,finalmarking) and collectively referred
to as N.
Subsequently, the algorithm calculates the fitness measure between the curated
descriptive event log Lw and the process model N using the AlignmentChecker
function. This fitness value signifies the conformance level between the observed
project activities in Lw and the prescribed RDM phase model Lphi

.
The fitness value and the label of the corresponding RDM phase are added to the
fitnessdict dictionary. This procedure is reiterated for all the prescriptive event logs
in Lpres.
Upon its conclusion, the algorithm outputs the fitnessdict, encapsulating the fitness
measures between the project’s observed activities and each RDM phase. This
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dictionary acts as a quantitative indicator of the adherence of the descriptive event
log to the stipulated RDM lifecycle phases, thereby facilitating an evaluation of
a research project’s alignment with the RDM’s expected dimensions. It equips
researchers with the capacity to examine the consistency of a research project’s
real-world activities with the anticipated RDM phases, thereby highlighting potential
areas for improvement, optimization, and dedication to best practices in RDM.

4.3.3 Discussion

This study presents a methodology for discovering and outlining RDM phases and de-
termining the current RDM phase of a research project using IM and Alignment Anal-
ysis as the two most reliable and least expensive methods for conducting conformance
checking[197]. Furthermore, this problem can be framed as a machine learning task,
where each operation is a feature column, and the label to be predicted is the RDM
phase. In this case, a training set is necessary to assist with the prediction task.

To achieve outlining RDM phases, the granularity of collected information is crucial.
If the granularity is too fine, event data abstraction may be necessary to manage
the complexity of the dataset. The discovery of RDM phases is subjective to the
set of predefined or prescriptive process models for each RDM phase. Creating
these prescribed process models may require alterations concerning the range of
activities an RDM platform could collect. Domain knowledge is essential to create
these prescriptive process models to represent the RDM phases accurately.

For future work, several studies can be explored to extend the capabilities of the pro-
posed methodology. The first expected initiative involves deploying machine learning
models to predict the timeframe for the completion of distinct RDM stages, leveraging
historical data. The objective is to aid researchers in proficiently planning their
projects and allocating resources. Renowned Python libraries such as Scikit-learn or
TensorFlow may prove beneficial in accomplishing this. Secondly, grouping research
projects based on their RDM attributes is proposed to discern prevalent patterns, chal-
lenges, or best practices. To facilitate this analysis, unsupervised learning techniques
such as k-means or hierarchical clustering can be employed. Lastly, an examination
of role-based activity patterns in the dataset is advised. Such an investigation would
shed light on the responsibilities and behaviors of various roles within the RDM pro-
cess. This understanding could then be used to modify the RDM platform to better
align with user needs, thereby enhancing the efficiency of the RDM process.
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4.4 Data Collections Reusability Enhancement

The research community can accelerate scientific progress and promote effective
collaboration by facilitating the reusing and repurposing of existing datasets. In
the present investigation, the focus is directed toward examining two distinct types
of recommender systems: Content-Based (CB) and Collaborative Filtering (CF)
approaches. These analyses aim to shed light on these systems’ varying methodologies
to comprehensively understand their strengths and limitations for OSPs use cases
to foster RDM practices.

The research findings and breakthroughs addressed within this Section have already
been introduced partially in [162], [198]–[200].

4.4.1 Content-Based Similarity Measurement

RDM has become increasingly essential for researchers to store, manage, and share
data efficiently. As digital data continues to grow exponentially, managing research
data becomes more complex, and the significance of RDM has been increasingly
recognized. Consequently, RDM has attracted the attention of researchers and
institutions globally.

Recent studies indicate a steady increase in researchers employing RDM for their data
artifacts. A 2019 survey revealed that 73% of researchers acknowledged data manage-
ment’s importance in their research [201]. For instance, Coscine6 is an RDM platform
that utilizes Shapes Constraint Language (SHACL)7 and RDF8 to construct knowl-
edge graphs that can be validated according to predefined metadata profiles (or appli-
cation profiles) to preserve meta information and controlled vocabularies for each data
item. These metadata profiles aid in implementing good scientific practices, enhanc-
ing FAIRness [162]. Domain experts and scholars within a scientific discipline define
the Application Profiles to ensure accurate metadata descriptions for each data arti-
fact. However, facilitating the reusability of relevant research data can be challenging,
particularly with the ongoing digital data explosion [24]. A recent study found that
over 90% of researchers encountered difficulties locating and accessing relevant data
[202], attributable to insufficient metadata or lack of standardization in metadata de-
scriptions. Consequently, many researchers devote considerable time and resources to
reproducing findings or results, leading to unnecessary duplication of efforts [22].

To tackle this issue, a CB recommendation system is suggested to enhance the
discoverability and reuse of research data. These systems employ machine learning

6www.coscine.de
7https://www.w3.org/TR/shacl/
8https://www.w3.org/TR/rdf11-concepts/
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algorithms to analyze research data content and provide recommendations based
on content similarities. Multiple studies have investigated the application of CB
recommendation systems within the context of RDM. For instance, Färber et al. [203]
introduced a system for recommending data artifacts based on content and metadata,
utilizing machine learning algorithms to identify similarities and suggest them to
researchers. Likewise, Nair et al. [204] proposed a CB recommendation system
for research papers, focusing on semantic relationships between papers. However,
implementing CB recommendation systems in research data management requires
a structured metadata profile that accurately portrays data properties and crucial
contextual information. RDM platforms like Coscine can play a vital role in enabling
CB recommendations by offering a standardized metadata profile using SHACL and
RDF graph data models, fostering the accurate description of research data, and
facilitating the effective operation of CB recommendation systems.

In conclusion, while the need for RDM continues to expand, the discoverability and
reuse of research data remain significant challenges for researchers. CB recommenda-
tion systems present a promising solution by capitalizing on the relationships between
research data items and their metadata. However, applying these systems in RDM
requires a structured metadata profile, such as that provided by RDM platforms like
Coscine.

Preliminaries

RDM practices play a vital role in scientific research by enabling long-term data
storage, preservation, and sharing. To optimize RDM efficiency and effectiveness,
domain-specific metadata profiles have been devised to characterize data within a
scientific context. The data management platform Coscine utilizes these specialized
metadata profiles, permitting domain experts to define their metadata and vocab-
ulary for describing data in their particular context. However, even with search
engines available for data discovery, locating relevant data artifacts can be difficult
without prior awareness of their existence [205].

Coscine’s metadata profiles are founded on the SHACL model, which stores informa-
tion in Subject, Predicate, and Object formats [206]. This approach allows for more
comprehensive and adaptable data descriptions, where the Subject points to the data,
the Predicate establishes the relationship with its Object, and the Object contains
meta information elucidating the Subject. For example, Table 4.3 displays a segment
of the collected sample dataset, in which Repository Name and File Name together
represent the Subject, while MillingParameters, LaserPulseEnergy, LiftOutRegion,
and PulseFrequency serve as the Predicate; all values beneath the Predicate are
Objects. In addition, Object typically consist of unstructured texts manually entered
by users in a field [205].
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Table 4.3: An example dataset compiled following the metadata profile by the
CRC1394 research group.

Repository Name File Name MillingParameters LaserPulseEnergy LiftOutRegion PulseFrequency . . .

. . . . . . . . . . . . . . . . . . ...

Repository-1 F1.csv pA2.0/0.1 um 40 pA 60
Pt protection layer
14x4x4 m Trench

milling (2x)
125 . . .

Repository-1 F2.jpg 0.43 nA / 1.5 m0.43 100 fracture cross-section
10x1.5x0.5 m 125 . . .

Repository-2 F3.csv 0.43 nA / 0.75 m0.23 100 Pt protection layer
14x4x4 m Trench 250 . . .

Repository-2 F4.csv pA2.0/0.1 um 40 pA 100 cross-section
3x1.5x0.5 m 250 . . .

. . . . . . . . . . . . . . . . . . ...

Methodology

This section discusses the recommender system pipeline, focusing on six essential
steps:

1) Sparsity Check and Imputation: The imputation step is vital in a recom-
mender system pipeline, as it ensures the availability of a complete dataset with
minimal missing values for further analysis and evaluation. Prior studies have in-
dicated that imputing missing values can enhance the performance of recommender
systems [207], [208]. Consequently, the approach to addressing missing values is
informed by best practices from previous researches.

In this step, let D represent the input dataset. First, the input dataset D is assessed
for data sparsity before imputing missing values for each feature and row. Generally,
based on the benchmark study by Bennett et al., imputing missing data is considered
statistically reasonable when the volume of missing data is less than 10% of the
total data [209]. However, due to the cold start problem and limited sample data
accessibility, the threshold is raised for data imputation to 30%, beyond which
features and rows will be excluded from further evaluation or imputation.

Sparsity Check &
Imputation

BERT
Word Embedding

Outlier Detection
Discover
Centroids

Calculate Pairwise
Distances

Normalize &
Classification

61 2 3 4 5

Figure 4.14: The general pipeline overview of the Content-Based recommender
system.

The imputation module employs Panda dataframe data types to ascertain features’
data types. For numerical data types, the K-Nearest Neighbors (KNN) imputer is uti-
lized to predict missing values in the dataset by identifying k neighbors, which are the
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most similar to a selected feature using the Euclidean distance metric. Let di,j repre-
sent the value of the jth feature of the ith instance in D, and let NaN denote a missing
value. Let M be the binary mask matrix, where Mi,j =1 if di,j is observed (not miss-
ing) and Mi,j =0 if di,j is missing. Let N i be the set of K=3 nearest neighbors of the
ith data point (excluding itself) based on the Euclidean distance between the observed
features. Then, the imputed value X̂i,j for the missing value Xi,j is given by:

d̂i,j = 1
K

∑
k∈Nidk,j ·Mk,j (4.1)

The imputed value is the average of the observed values for the same feature among
the K=3 nearest neighbors of the data point with the missing value. The binary mask
matrix ensures only observed values are factored into the average. A simple imputer
for the object data type is employed, filling missing values with the most frequent
value for each column. For a given feature j of object type, let Vj represent all unique
non-missing values for feature j. Then, any missing values are filled for feature j
as di,j =mode(Vj), where mode(Vj) denotes the most frequent value in Vj.

2) BERT Word Embedding: In this stage, the aim is to transform textual data
into vector representations using Natural Language Processing (NLP) techniques.
the Bidirectional Encoder Representations from Transformers (BERT) pre-trained
model is used with TensorFlow to generate contextualized word and sentence em-
beddings. In contrast to traditional methods such as Term Frequency - Inverse
Document Frequency (TF-IDF), BERT employs a deep learning approach and is
trained on extensive text data to create rich representations of words and sentences
that capture their context and meaning. A multilingual version of BERT called
bert_multi_cased[210] is employed to support cross-lingual sentence comprehen-
sion. This model is engineered to pre-train deep bidirectional representations from
an unlabeled text corpus by joint conditioning on both left and proper contexts,
maintaining the distinction between lower and upper case.

Each textual data column is embedded into a 768-dimensional vector using the
bert_multi_cased model. The size of the resulting data is proportional to the num-
ber of columns with textual data and the vector length, in addition to every column
with numerical data. The data is processed in chunks to prevent overloading the pro-
cessing power [211]. Thus, let D be a dataset with m samples and n features, where
each column j has a data type dtj∈numeric,string, and let Ds∈Rm×k represent the
sub-dataset comprising the string columns and their corresponding BERT embed-
dings, where k is the embedding dimension (i.e., k=768 for the bert_multi_cased
model). The final dimension of the processed data is then given by:

Df ∈Rm×(k·∀dtj=string+∀dtj=numeric) (4.2)
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Overall, this stage produces comprehensive vector representations of the textual data,
which can subsequently be employed for downstream tasks.
3) Outlier Detection: This step focuses on pinpointing outlier data points or groups
that display considerable dissimilarity from other data points or fail to adhere to
most points’ anticipated behavior. Distance-based techniques are the most prevalent
methods for outlier detection [212], [213]. These algorithms calculate the distance
between observations, considering a point an outlier if it is significantly distant from
its neighbors. We first compute the repositories’ average pairwise distance in the
methodology, then estimate the corresponding z-score for each group. A threshold
factor of 3 is employed to identify and filter out repositories that should be excluded
from the recommendation task.
4) Discover Centroids: In this step, the aim is to identify the centroids of the
clusters. K-means clustering is a widely adopted unsupervised learning method for
clustering data points into K clusters based on their similarity. In this study, the
K-means clustering algorithm is employed to create one cluster per repository, where
each point in the cluster represents a file with a fixed number of feature dimensions
derived from the BERT word embeddings mentioned earlier.
The K-means clustering algorithm begins with a random initial assignment of data
points to clusters and computes the initial cluster centroids. It then iteratively assigns
each data point to the nearest centroid and updates the centroids until convergence
is achieved. The algorithm terminates when cluster assignments no longer change
or when the maximum number of iterations is reached.
The Scikit-learn implementation of K-means clustering with default settings is uti-
lized. After clustering, the k clusters are obtained with their respective centroids
corresponding to the number of repositories after outlier detection. These centroids
serve as the foundation for the final step in the recommendation task.
5) Calculate Pairwise Distances: Pairwise distances between centroids are com-
puted using Euclidean or Cosine metrics. This enables the construction of a confusion
matrix that captures the distances between every pair of repository centroids by
employing either of these metrics. This facilitates the evaluation of similarity between
items, ultimately leading to the generation of recommendations for end-users.
The Euclidean distance is defined as follows:

d(x,y)=
√√√√ n∑

i=1
(xi−yi)2 (4.3)

where x and y are two centroids and n is the number of features in the data.
The Cosine distance is defined as:

d(x,y)=1−
∑n

i=1xiyi√∑n
i=1x

2
i

√∑n
i=1y

2
i

(4.4)
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where x and y are two centroids and n is the number of features in the data.

6) Normalization and Classification: It describes the approach used to scale
and categorize similarity results in the analysis. The final step of the analysis entails
normalizing the confusion matrix so that it falls within a range of 0 to 1, with 0
signifying the shortest distance and 1 indicating the most significant distance between
any two clusters. This normalization process is accomplished by dividing the raw
values of the confusion matrix by the matrix’s highest value.

Mathematically, the normalized confusion matrix is represented as follows:

Cnorm
i,j = Ci,j

max
i,j

Ci,j

(4.5)

where Ci,j is the raw value of the confusion matrix and Cnorm
i,j is the corresponding

normalized value.

The resulting values are further transformed upon normalization to ease the eval-
uation process. Specifically, the normalized values are mapped onto an equal-length
multi-class scale of five classes. Consequently, the range of 0 to 1 is divided into
five equal intervals, with the lowest interval denoting the least similarity and the
highest interval signifying the most significant similarity between cluster pairs. This
casting method is chosen due to its intuitive mapping of star-like ratings, where
five stars indicate the most liked, and one star conveys dislikes [214]. The resulting
classification scheme is represented as follows:

Cclass
i,j =



1 0.8≤Cnorm
i,j ≤1.0

2 0.6≤Cnorm
i,j <0.8

3 0.4≤Cnorm
i,j <0.6

4 0.2≤Cnorm
i,j <0.4

5 0.0≤Cnorm
i,j <0.2

(4.6)

where Cclass
i,j denotes the resulting class of the normalized confusion matrix. It is

crucial to emphasize that the classification scheme serves as a tool for assessing the sim-
ilarity between cluster pairs. As a result, a cluster pair assigned to class 1 is regarded
as the least similar, while a pair allocated to class 5 is viewed as the most similar.

4.4.2 User-Interaction Based Collaborative Filtering

The emergence of big data in various scientific fields has led to the creation of
numerous data-collections, and repositories of raw research data that other scholars
in the field could potentially use. These data-collections are valuable resources for
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researchers, as they enable the reuse and repurposing existing datasets, fostering
collaboration and reducing redundant efforts in data generation [215].
CF is one of the most popular and widely used approaches in recommender systems,
which can be categorized into two main techniques: User-Item Collaborative Filtering
(UICF) and Item-Item Collaborative Filtering (IICF)[216]. UICF predicts a user’s
preferences for items by analyzing the preferences of other users with similar tastes.
This technique assumes that users who have exhibited similar behavior will continue
to have similar preferences in the future. To generate recommendations, UICF
computes similarity measures between users and finds the most similar users (i.e.,
nearest neighbors) to target users. These nearest neighbors’ preferences are then
used to make personalized recommendations for the target user.
On the other hand, IICF predicts a user’s preferences by analyzing the relationships
between items. The system first computes item similarity based on user preferences
in this approach. Then, for a given user, the system identifies the most similar items
to those the user has previously interacted with and recommends these similar items
to the user [217].
IICF recommender systems can significantly improve the findability and reusability of
relevant data-collections, thus having more significant potential to contribute to more
efficient RDM. IICF can identify and recommend similar data-collections based on
researchers’ preferences and usage patterns within a particular domain. As researchers
interact with various data-collections, the IICF recommender system can establish
connections between these repositories based on their similarities [218]. This approach
can help researchers discover relevant data-collections they may not have been aware
of, promoting the reuse of existing datasets and preventing redundant data creation.
IICF has several advantages over UICF. First, IICF tends to be more stable and
accurate in its recommendations. Since the number of items is often smaller than the
number of users, and item characteristics change less frequently than user preferences,
item-item similarity measures are more stable and less prone to fluctuations. This
improves recommendation quality and consistency over time [219].
In addition, IICF recommender systems can facilitate interdisciplinary research by
uncovering related data-collections across different research areas. By analyzing the
usage patterns of researchers from various domains, the system can identify and
recommend data-collections that are of potential interest to researchers from other
disciplines [220]. This cross-disciplinary recommendation can promote interdisci-
plinary collaboration and enable researchers to leverage insights from related fields,
ultimately leading to novel findings and scientific advancements.
Furthermore, IICF recommender systems can improve RDM by assisting in cu-
rating and organizing data-collections. As the system continuously updates its
similarity measures based on user interactions, it can help data curators identify
data-collections that share common characteristics, thereby allowing them to be
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grouped and organized more effectively [221]. This improved organization can en-
hance data-collections’ findability and provide researchers with a more structured
and navigable data landscape.

In summary, IICF recommender systems have significant potential for enhancing data-
collections’ findability and reusability, leading to more efficient RDM. By identifying
and recommending similar data-collections based on user preferences and usage pat-
terns, these systems can facilitate data reuse, promote interdisciplinary research, and
support better curation and organization of research data. Recent advances in recom-
mender systems and their application to RDM demonstrate the growing importance of
leveraging CF techniques to manage the ever-increasing volume of scientific data.

Preliminaries

This section provides an overview of the input sample data format and describes the
different attributes present in the event log. The event log captures user interactions
with the system and consists of the following attributes: Timestamp, Activity,
UserId, ProjectId, ResourceId, and FileId.

• Timestamp (t): It represents the time a specific event occurs, corresponding
to a user’s interaction with the system. It is denoted as t∈T , where T is the
set of all timestamps.

• Activity (a): It is a tuple that contains activity names such as File Upload,
Update Metadata, and others. It is represented as a∈A, where A is the set
of all activity names. My study focuses on a subset of activities involving
interactions with actual data files, denoted as A′⊆A.

• UserId (u): It is a unique identifier assigned to each user in the system. It is
denoted as u∈U , where U is the set of all unique user identifiers.

• ProjectId (p): It is a unique identifier for each project within the Coscine plat-
form. It is denoted as p∈P , where P is the set of all unique project identifiers.

• ResourceId (r): It is a unique identifier for data-collections (also known as
Resources). It is denoted as r∈R, where R is the set of all unique resource
identifiers.

• FileId (f): It is a unique identifier generated by combining the ResourceId
and file name. In Coscine, each data collection cannot have duplicate file
names. The FileId is represented as f ∈F , where F is the set of all unique
file identifiers.

At the time of the study, the event log contained 18 activities. However, to gain
a perspective on user interest in research data, filtering the Activity list based on
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the occurrence of events on FileId. After applying this filter, a smaller set of 7
activities is obtained, denoted as A′, which are the focus of the analysis.

Let us denote the filtering function as ψ. This function takes the event log E and
returns a filtered event log E ′ containing only those events with activities that involve
interactions with actual data files. The event log E is a set of tuples (t,a,u,p,r,f),
where t∈T , a∈A, u∈U , p∈P , r∈R, and f ∈F . The filtered event log E ′ is a set
of tuples (t,a′,u,p,r,f), where a′∈A′ and A′⊆A.

The filtering function ψ can be defined as follows:

ψ(E)={(t,a′,u,p,r,f) |(t,a,u,p,r,f)∈E∧a′∈A′∧a=a′}

The function ψ iterates through all tuples in the event log E and selects only those
tuples where the Activity a is an element of the reduced set of activities A′. The
resulting filtered event log E ′ contains activities involving interactions with actual
data files.

Methodology

The following sections explore the methodology of the IICF pipeline, consisting of four
main parts. These components encompass the essential steps in the pipeline, working
together to provide an effective and efficient recommendation system. By breaking
down the methodology into these parts, a clear and comprehensive understanding
of the IICF process for recommending data collection is intended to be provided. A
visual representation of the pipeline can be found in Figure 4.15, which provides an
extended guide to the methodology and its stages.

1) Calculate Implicit Rating: To deduce an implicit rating or interest of a user in
an item (Resource) based on the given criteria. In the sample data, a′∈A′ represents
activities, and A′ = {a′

1,a
′
2, ... ,a

′
i} is a finite set of activities, where i is the total

number of activities in the set A′. The frequency of activities a′ is calculated by the
function fa′

i
(u,r), where a user u on a Resource r has executed.

A variation of the weighted-sum formula as W =wa′
1
,wa′

2
,...,wa′

i
is used. The wa′

i
∈W

represents the weights/importance of each action to represent a user’s interest in a
resource. In this study, the weight of each action is pre-set as follows:
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Figure 4.15: A visual representation of the IICF recommender pipeline.

Wa′
i
=



1.0 wa′
1
=Download File

0.9 wa′
2
=Update MD

0.9 wa′
3
=Update File

0.5 wa′
4
=Upload MD

0.5 wa′
5
=Upload File

0.2 wa′
6
=View MD

0.1 wa′
7
=Delete File

Time decay D also needs to be considered, where the value of activities decreases
over time. Users’ interest in items can depreciate over time, which is estimated by
time decay. Scholars’ research interests commonly change over time; thus, recent user
interest in an item is incorporated by time decay. An exponential decay function with
a decay factor λ is used to consider this. Let t(u,r) be the time elapsed since the last
action of any type by the user u on the Resource r. The time decay is denoted as:

D(u,r) =e−λt(u,r)

The decay factor −λ controls how quickly the value of an action depreciates over
time. A larger value of λ will result in a faster decay.
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Putting everything together, the implicit user u ratings on a resource r are calculated
with the following formula:

Rating(u,r) =
a′

i∑
1
wa′

i
.D(u,r).fa′

i
(u,r)

This formula considers the frequency of actions, the importance of each action,
and time decay. It can generate recommendations by ranking items based on their
predicted implicit ratings for a given user.
2) Outlier Detection and Elimination: To identify and remove outliers from
the Rating(u,r) column, a standardization technique known as z-score is utilized.
The z-score of observation is calculated by subtracting the mean (µ) of the dataset
and dividing the result by the standard deviation (σ):

zi =
xi−µ
σ

,

where xi is an individual (u,r) rating, and zi is the corresponding z-score. By trans-
forming the Rating(u,r) column into z-scores, the relative positions of each rating
within the dataset’s distribution can be identified. In this case, a threshold value of
3 is defined to identify and eliminate outliers. Observations with a z-score greater
than the threshold value (in terms of absolute value) are considered outliers:

Outliers=xi | |zi|>3.

By applying this outlier detection and elimination method, extreme values that may
adversely impact the performance of the IICF pipeline can be filtered out.
3) Pre-Processing: The rating values are scaled into a consistent range, thereby
improving the performance of the recommender system. The aim is to transform
the ratings into a standardized range between 0 and 1. To normalize the ratings,
the min-max scaling technique is employed, which scales the values of the Rating(u,r)
column based on their minimum (min) and maximum (max) values. The normal-
ized rating (Rating′) for each original rating (Rating) can be calculated using the
following formula:

Rating′ =Rating−min
max−min

,

Where Rating′ is the normalized rating, and min and max are the minimum and
maximum values of the ratings, respectively.
Following the normalization process, the obtained values undergo an additional
transformation to enhance the evaluation procedure. In particular, the normalized
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values are allocated to a multi-class scale comprising five equally sized classes. Con-
sequently, the range from 0 to 1 is partitioned into five uniform intervals, where
the smallest interval signifies minimal similarity and the largest interval indicates
maximal similarity between pairs of clusters. The subsequent classification scheme
can be described as follows:

Rating
′class
u,r =



1 0.8≤R′
u,r≤1.0

2 0.6≤R′
u,r<0.8

3 0.4≤R′
u,r<0.6

4 0.2≤R′
u,r<0.4

5 0.0≤R′
u,r<0.2

where Rating′class
u,r represents the resulting class of the normalized rating.

Additionally, a balanced dataset is essential to ensure the performance and accu-
racy of machine learning algorithms. To balance the dataset, the mean number of
instances for each of the five classes is calculated. Let Ci represent the ith class and
|Ci| denote the number of instances in that class, where i ∈ 1,2,3,4,5. The mean
number of instances for all classes can be calculated as follows:

m̄= 1
5

5∑
i=1
|Ci|.

Whether to oversample or undersample each class is determined based on the mean
m̄. For a class Ci, if |Ci|<m̄, oversampling is performed by generating additional
instances until the number of instances in the class reaches the mean. Conversely,
if |Ci|>m̄, undersampling is performed by randomly removing instances until the
number of instances in the class equals the mean. The re-sampling process can be
defined as follows:

C ′
i =


oversample(Ci,m̄) if |Ci|<m̄,
undersample(Ci,m̄) if |Ci|>m̄,
Ci otherwise.

During the oversampling process, the algorithm generates new UserId u′ for ev-
ery other occurrence of ResourceId r to ensure no duplicate pairs of UserId u and
ResourceId r. This can be achieved by creating a unique identifier for each newly gen-
erated instance in the oversampled class, guaranteeing the absence of duplicates.
Applying this re-sampling technique ensures that each class has an approximately
equal number of instances, contributing to a balanced dataset. In addition, this
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process enhances the robustness and accuracy of the IICF pipeline by mitigating
potential biases arising from imbalanced class distributions.
4) Resource Recommendation: Given the pair of Rating(u,r), which represents
the rating of every user u for a resource r, a user-resource matrix M is created. Each
row of matrix M corresponds to a resource and contains a vector of user ratings for
that Resource:

M=


Rating(1,r1) Rating(2,r1) ... Rating(n,r1)

Rating(1,r2) Rating(2,r2) ... Rating(n,r2)
... ... . . . ...

Rating(1,rm) Rating(2,rm) ... Rating(n,rm)

,

Where n is the total number of users, and m is the total number of resources.
To measure the similarity between resources, pairwise distances are calculated be-
tween every pair of resources using both Cosine and Pearson distance metrics. Let
Ri and Rj denote the vectors representing resources i and j in the user-resource
matrix M . The Cosine distance dC(Ri,Rj) and Pearson distance dP (Ri,Rj) can be
calculated as follows:

dC(Ri,Rj)=1− Ri ·Rj

|Ri||Rj|

dP (Ri,Rj)=
∑n

i=1(Ri−R̄)(Rj−R̄)√∑n
i=1(Ri−R̄)2

√∑n
j=1(Rj−R̄)2

By computing the pairwise distances, we can identify the similarities between re-
sources. This information is then used to generate resource recommendations for each
user based on their preferences and the similarities among resources. The resulting
recommendation system enables users to discover and engage with resources most
relevant to their interests and needs. For example, the pairwise similarity of resources
is stored in a separate confusion matrix MC using Cosine (Figure 5.23a), and MP

using Pearson (Figure 5.23b).

4.4.3 Discussion

The literature review results highlight the various advantages associated with Content-
Based recommender systems, such as the ability to offer personalized suggestions,
alleviate information overload, and enhance the quality of retrieved resources, par-
ticularly when addressing cold start issues. Nevertheless, these systems face inherent
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limitations due to their dependence on metadata and sample data quality. For
the IICF recommender system, the literature review also emphasizes the numerous
benefits of this recommender system, such as their ability to discover and utilize un-
derlying patterns in user preferences and lower computational complexity compared
to UICF and resilience to user profile changes [222]. However, these systems are not
without limitations, as they may suffer from data sparsity and might not perform
well in situations with insufficient user interactions.
Similar to Content-Based recommender systems, Euclidean, Cosine, and Pearson
distances are frequently employed in IICF systems to measure the similarity between
items. These distance metrics result in a diagonally symmetric similarity matrix,
reflecting the natural comparison process between items.
For future research, the aim is to enhance the accuracy and applicability of the
Content-Based recommender system across a more comprehensive array of disci-
plines. One crucial aspect involves assessing the sensitivity of the BERT pre-trained
model to multilingual datasets, considering that the sample data includes manually
entered values in German and English. While the BERT model possesses cross-
lingual sentence comprehension capabilities, additional evaluation is necessary to
determine its performance with multilingual datasets, as advised by Devlin et al.[210].
Furthermore, our research indicates that sustaining uniformity in data attributes,
datatype information, and semantic definitions allows for examining intersecting
profiles. Consequently, this enables the recommender system to accommodate a
more comprehensive array of datasets.
In the context of IICF, the investigation of the impact of incorporating additional sim-
ilarity metrics could be fruitful, such as Jaccard similarity, on the performance of the
IICF recommender system. Furthermore, as the quality of recommendations in IICF
systems depends heavily on user interactions, investigating methods to handle cold
start issues, such as incorporating Content-Based information or user demographic
data, can enhance the system’s overall performance and utility [223].
Moreover, it is suggested to analyze the accuracy of the recommenders after including
data augmentation techniques such as contextual word augmentations offered by the
nlpaug9 Python library or utilizing Principal Component Analysis (PCA) to reduce
dataset dimensionality following vectorization and word embeddings. Lastly, a naive
approach of replacing missing values with the most common value within each column
is adopted for non-numerical columns. Nevertheless, RDF knowledge graphs supply
accurate information on the data type for every feature. Therefore, this type-property
could be integrated into the sample dataset to facilitate the selection of suitable
methods for data imputation or vectorization according to a feature data type.
In conclusion, Content-Based recommender and IICF systems offer unique advantages
and face distinct limitations. Future work should investigate methods to overcome

9https://nlpaug.readthedocs.io
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these limitations and explore hybrid approaches that leverage the strengths of both
techniques, ultimately leading to more accurate, robust, and personalized resource
recommendations.
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5 Case Studies

This chapter assesses and demonstrates the validity of the methodologies on the
data analytics framework for OSPs. By conducting a series of case studies, the goal
is to evaluate the effectiveness of the proposed approaches in various contexts and
applications. These case studies will provide valuable insights into the practical im-
plications of the methodologies and showcase their potential benefits for researchers,
data managers, and platform administrators.
The case studies evaluate the discussed data extraction techniques, event data ab-
straction, knowledge discovery, and applying suitable recommender systems on top
of the acquired datasets. A rigorous assessment of these methods in real-world
scenarios aims to demonstrate their applicability and relevance to Open Science
processes. Furthermore, any potential limitations or challenges in their implemen-
tation and applicability are sought to be identified, allowing for the refinement of
the methodologies and providing actionable guidance for their usage in practice.
The first case study investigates the effectiveness of the data extraction techniques in
capturing relevant data from diverse sources and formats while preserving the essen-
tial information required for subsequent analysis. By examining the efficiency and
accuracy of these methods, it can be ensured that the data collected is comprehensive
and representative of the actual RDM activities.
The second case study evaluates the event data abstraction technique, which involves
transforming raw data into a structured format suitable for further analysis. The
quality of the resulting event logs and their ability to capture the complexities of
RDM processes are assessed. This evaluation will provide insights into the abstraction
methods’ robustness and ability to facilitate meaningful analysis.
The third case study explores the potential of knowledge discovery techniques to
uncover valuable insights and patterns within the event data. By applying various al-
gorithms and techniques, the utility of this approach in revealing hidden relationships,
trends, and user behaviors within the Open Science ecosystem is demonstrated.
Finally, the fourth case study examines the implementation of recommender systems
on top of the acquired datasets. The performance of these systems in providing
personalized and context-aware recommendations to users, thereby enhancing the
overall user experience and promoting research data reusability, is evaluated.
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Through rigorous evaluation and refinement, a contribution to the development and
optimization of RDM practices is made, fostering greater collaboration, efficiency,
and transparency within the research community.

5.1 Data Extraction

This Section presents two case studies exploring Centralized and Server-Side data
extraction techniques employed to analyze and understand complex systems and their
underlying processes. These case studies aim to demonstrate the applicability and
effectiveness of different extraction methods in real-world scenarios, highlighting their
respective strengths and limitations. Furthermore, by examining the outcomes of
these techniques in diverse contexts, one can gain valuable insights into their practical
implications and provide a solid foundation for developing new and improved data
extraction and analysis approaches.

5.1.1 RWTH Distributed Services

This case study aims to investigate and discover the process model of interconnected
microservices and apply process mining on top of aggregated data driven by the
approach. It focuses on microservices that utilize OAuth as their authorization
interface before executing software components in response to user requests to access
functionalities or resources. The study examines how distributed services of RWTH
University work together to process and execute users’ requests and evaluates the
microservices’ end-to-end processes. Figure 5.1 illustrates a presumed interconnection
of RWTH distributed services in a tree representation.
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Figure 5.1: The assumed representation of RWTH distributed services, adapted
from [165].

Process mining is applied on top of the aggregated data to visualize and analyze
the microservices’ overall process. The hypothesis is that the centralized logging
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approach can produce suitable datasets that support process mining techniques
to produce and extract business process models from distributed systems in order
to reverse engineer and draw insights into the dynamic behavior of interconnected
services at RWTH Aachen University. By doing so, it is expected to improve the
overall user experience by drawing the attention of development teams for further
improvements by locating bottlenecks and uncovering deficiencies in the overarching
distributed system architecture.

Dataset

The complexity and challenges of extracting high-quality data from raw datasets are
often underestimated or inadequately addressed, particularly in interconnected and
heterogeneous environments. The data preparation process is time-consuming, error-
prone, and iterative, but it is crucial to ensure the data is accurate and valuable [224].
Furthermore, factors such as noise, outliers, undetected variations, redundancies,
and missing values can influence the data’s suitability, making it vital to prepare the
data before conducting a data analysis study. Consequently, a standard procedure
for offline data preprocessing has been developed to guarantee optimal data quality.
Initially, the data and its features are filtered and anonymized. Subsequently, noise
and outliers are identified through a Z-Score analysis [225] and eliminated from
the sample data. Finally, the reliability of the obtained data is assessed based on
whether the sample data meets the standards of completeness, integrity, accuracy,
and consistency mentioned in Section 3.2.

As described earlier, logs should contain Timestamp, Case Id, and Activity to
enable process investigations. The centralized logging approach assists us in ag-
gregating datasets that meet this necessary standard. Every user interaction with
the Client-Side initiates a series of activities and calls upon various resources and
microservices to respond appropriately. The sample dataset, spanning one week,
comprises 102,981 cases, 776,370 events, and 13 activities. An illustration of the
collected dataset can be seen in Table 5.1.

Disco [111] is employed for the process mining tasks and model analysis, as it offers
excellent usability, reliability, and performance. Disco uses the Fuzzy Miner [54] to
generate simplified DFG models, emphasizing the most frequent activities. This is par-
ticularly beneficial for identifying crucial task paths within a process. Each Case rep-
resents a complete process variance, including one or multiple services in the execution
lifecycle. In the model, nodes represent activities, and edges represent execution paths.
The numbers displayed on the nodes indicate activity frequencies, while the numbers
on the arcs represent the frequencies of the corresponding execution paths.
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Table 5.1: A sample dataset Lo captured from the distributed services of RWTH
Aachen University.

timestamp (to) caseId (co) userHashId (uo) activity (ao) microservice (mo)

. . . . . . . . . . . . . . .
2019-12-16 08:59:55 Izo9VZ9vz. . . dhcwb4MII. . . GetInfo userinfo.rwth
2019-12-16 08:59:56 Izo9VZ9vz. . . dhcwb4MII. . . GetNotifications editpns.rwth

. . . . . . . . . . . . . . .
2019-12-16 09:00:23 fW6O7i85R. . . LOrv8dNur. . . GetWeeks campus.rwth

. . . . . . . . . . . . . . .
2019-12-16 09:00:32 CF12boZC3. . . nfW6O7i85. . . GetReport campus.rwth
2019-12-16 09:00:32 CF12boZC3. . . nfW6O7i85. . . IsAuthorized editpns.rwth
2019-12-16 09:01:07 nCkCF12bo. . . nfW6O7i85. . . GetAllFiles simplearchive.rwth
2019-12-16 09:03:15 eoeBGbLfl. . . nfW6O7i85. . . GetSchema metadataadmin.rwth

. . . . . . . . . . . . . . .
2019-12-16 09:15:18 mcnneXNOe. . . 6XE8m5KaE. . . GetReport campus.rwth
2019-12-16 09:15:19 mcnneXNOe. . . 6XE8m5KaE. . . GetNotifications editpns.rwth

. . . . . . . . . . . . . . .
2019-12-16 09:34:46 skPXZjMwR. . . 9PtIBdGFS. . . GetPicturesForUser picturemanagement.rwth

. . . . . . . . . . . . . . .

Results

Figure 5.3 illustrates the software interaction model obtained by applying the Fuzzy
Miner to the sample data shown in Table 5.1. By evaluating the discovered process
model, insights into the system’s actual behavior can be gained, making it possible
to identify which services operate as groups and which function independently. Fur-
thermore, it becomes apparent that editpns (the notification service) and userinfo
(authorization service) serve as middleware microservices; if either of them fails, it
leads to significant disruptions in the entire system. Additionally, from Figure 5.3b,
it can be observed that these services are the most frequently active, which can
help system architects direct the development team’s attention to the services in the
highest demand.

In addition to providing deep and insightful perspectives on the overall software
architecture, modeling processes within distributed services allows for assessing the
impact of newly developed software components and microservices on the other
related services. Moreover, concentrating on a particular use case scenario makes
it possible to identify traces’ most common starting and ending points within the
entire distributed environment.

Furthermore, Figure 5.3b highlights the bottlenecks in the SUS. The editpns and
userinfo services substantially influence application performance across the SUS
as they handle many requests. Using the collected dataset, it becomes possible to
examine the system at various levels of granularity by focusing on the methods
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Figure 5.2: RWTH IT Center software components interconnection and performance
evaluation. Each colored group signifies a service and displays a

hierarchical representation.

activated within each service. This approach allows for identifying the primary
sources of delays in user responses at the component level.

For instance, using the constructed hierarchical model displayed in Figure 5.2, a
deeper investigation into the editpns service was conducted to identify potential
causes of inefficiency. With the help of the discovered model, it can be directly
pinpointed which additional software components from the other three services con-
tribute to the bottleneck issue in the editpns. For example, as shown in Figure 5.2, the
method calls Canteens/GetCoffeeBars from the portal, User/GetInfo from userinfo,
and Exams/GetReport from the campus are candidates for further investigation,
as they appear to be contributing to inefficiencies in processing requests for the
Notifications/Devices/IsAuthorized method in the editpns service.

Employing the Centralized data acquisition method makes it possible to uncover
previously unknown architectural issues across distributed services and inefficiencies
within a system. For example, unnecessary method calls, methods or interservice
loops, unneeded authorization checks, callbacks, and code inefficiencies within soft-
ware components were found. The results demonstrated that the Centralized logger
could enable the collection of datasets necessary to extract descriptive business
process models from distributed services accurately.
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Figure 5.3: Process model discovered using Fuzzy Miner at service level on the SUS.
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5.1.2 Coscine

As mentioned, Coscine is an example OSP that assists researchers with data manage-
ment tasks and supports research projects to achieve the FAIR maturity paradigm.
Researchers can use Coscine to store their research data, provide specialized meta-
data, and collaborate on research projects. Figure 5.4 presents a screenshot of the
Resource Content View (RCV) web page on Coscine. While Coscine is still under
active development, it benefits from the microservices software architecture model,
accompanied by the Server-Side logger technique.

Figure 5.4: Coscine’s web page for managing research data and metadata.

According to the Server-Side logging technique, the sample dataset collected for this
case study contains various APIs, with each software module interacting with the
system, making each API distinguishable by its name. For example, the same API pro-
cesses all requests handling file modifications. Thus, analyzing the log files obtained
from the Server-Side logging technique makes it possible to pinpoint the root cause
of bugs. Similarly, Coscine system administrators use Server-Side logging techniques
to detect abnormalities and trace the root cause of system issues. Doing so helps
prevent future occurrences of these problems and enhances system performance.

Dataset

Coscine’s Server-Side logger enables the collection of user-based RDM activities
while formalizing appropriate data objects and relationships between attributes. The
acquired information consists of user requests from the Server-Side and is processed
according to specific application domains. Coscine generates and captures this data
in a serialized JSON object format, allowing for easy scalability to incorporate
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additional attributes and entities without extending database tables. The data
fields provide detailed insights into the sequence of actions and their respective
RDM-relevant entities. For instance, Listing 5 represents a JSON object triggered
by a user attempting to update research data entry metadata, demonstrating the
Server-Side logger’s extendability with additional attributes. From a single user
action, meta information such as its PID, selected metadata schema, percentage of
metadata provided, discipline, and other associated properties can be deduced. The
sample dataset for this case study contained five months’ worth of user activities
on Coscine, accumulating 4332 events.

In line with responsible data mining principles, it is crucial to maintain privacy within
user-based datasets [67]. Therefore, Coscine, as the system under study, generates
and contains no human-readable names. Instead, GUIDs are used as unique identifiers
to study user actions and behavior without compromising the user’s identity.

Subsequently, the DA4RDM web interface introduced in Section 4.2 provides the
means to utilize the dataset produced by Coscine or any other RDM system via
a user interface. Moreover, it allows the selection of a pre-processing pipeline to
evaluate and transform data samples into a new data format suitable for data analysis
algorithms. Accordingly, all JSON objects are accumulated and stored in a relational
database, ready to import to DA4RDM. For example, Table 5.2 exemplifies a dataset
converted into columns of features and labels, ready for in-depth post-processing
and modeling.

1 {
2 "Activity":"Update·Metadata",
3 "Timestamp":"1579109897",
4 "UserId":"29613-d8..."·,
5 "RoleId":"be29c-4e...",
6 "SessionId":"4b15f...",
7 "ProjectId":"4e9f-97...",
8 "ResourceId":"ef9175...",
9 "AppProfile":"EngMeta",

10 "MetadataCompletness":"70%",
11 "License":"MIT",
12 "Discipline":["Mechanical·Engineering"],
13 "Organizations":["ETH",·"Darmstadt"]
14 }

Listing 5: Sample JSON object from Coscine’s Server-Side logger capturing a user
action.
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Table 5.2: Data objects prepared and transformed for data analysis using DA4RDM.
Activity (as) Timestamp (ts) UserId (c1

s) RoleId (c2
s) SessionId (c3

s) ProjectId (c4
s) ResourceId (c5

s) AppProfile (c6
s) MetadataComp. (c7

s) License (c8
s) Discipline (c9

s) Organizations (c10
s )

... ... ... ... ... ... ... ... ... ... ... ...
View Project 1579108918 29613-d8... be29c-4e... 4b15f... 4e9f-97... NULL NULL NULL MIT Mechanical Eng. ETH, Darmstadt

View Resource 1579109840 29613-d8... be29c-4e... 4b15f... 4e9f-97... ef9175... EngMeta NULL MIT Mechanical Eng. ETH, Darmstadt
Update Metadata 1579109897 29613-d8... be29c-4e... 4b15f... 4e9f-97... Xn3on4... EngMeta 73% MIT Mechanical Eng. ETH, Darmstadt

... ... ... ... ... ... ... ... ... ... ... ...

Results

The subsequent section emphasizes qualitative and quantitative outcomes from two
case studies utilizing DA4RDM. First, user activities related to resources as data
collections were examined, followed by exploring the overall system performance
for research projects on Coscine. This was done by uncovering process models for
complex user interaction paths and pinpointing non-functional requirements within
the system.
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Figure 5.5: Activity frequency analysis on resources with the Petri-net model.

In the first case study, a frequency analysis was carried out using the IM on resource
PIDs, which led to the discovery of a Petri-net model [226] representing the most
common user journey paths while interacting with various resources and research
data. Utilizing DA4RDM, as depicted in Figure 5.5, it was found that the number
of executions for the Open Resource(RCV) activity was unusually high compared
to the number of incoming and outgoing transitions. This suggests the presence of
loops in the code, highlighting the need to refactor the corresponding code to avoid
unnecessary Server-Side requests.

In the second case study, the overall performance of the RDM system was examined
as displayed in Figure 5.6 using the DFG process model. With the assistance of a
domain expert, the findings (indicated by red circles) were evaluated against key
performance indicators. Despite the process model’s anticipated complexity and
unstructured nature due to users’ freedom to interact within the system, DA4RDM
effectively helped us identify previously unknown bottlenecks. For example, the tran-
sition from Open User Management to View Users should only take a few seconds, yet
the process of creating new projects (transition from Add Project to Open Project)
on Coscine was found to take more than 70 seconds. Consequently, uncovering
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Figure 5.6: Performance analysis using data flow graph at the research projects level,
with red circles highlighting violated KPIs.

evidence of software execution bottlenecks led to the developers’ bringing attention
to investigating and addressing the causes of performance issues.

The empirical analysis of a real dataset using the Server-Side logger suggests that
the cyclical order of operations within the RDM lifecycle, as depicted in Figure 1.3,
might not accurately represent the actual research data lifecycle. Moreover, despite
a limited data sample size, both use cases demonstrate DA4RDM’s capabilities and
how the web application can be expanded to accommodate non-technical users. This
allows them to examine their research projects against specific criteria by extending
data modeling techniques or visualization for a targeted use case.

Even though maintaining a Server-Side logger poses challenges, the findings showcase
the advantages of the Server-Side logging technique in an OSP. This technique allows
data scientists to obtain fine-grained, expandable, and adaptable datasets tailored to
data analysis projects, such as user behavior studies, data analytics, or uncovering
non-functional requirements.

5.1.3 Summary

In conclusion, the two case studies examine methods for extracting datasets from
OSPs using a Centralized logger and a Server-Side logger. The Centralized logger
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case study investigates the process model of interconnected microservices of RWTH
Aachen University and applies process mining to the aggregated data. It successfully
uncovers architectural issues across distributed services and inefficiencies within a
system. The Server-Side logger case study focuses on Coscine as an example OSP,
demonstrating its ability to identify previously unknown bottlenecks and providing
valuable insights into user behavior and system performance. Both methods have
their merits, but they also come with certain limitations.

Merits of both methods can be seen in various aspects. Firstly, both approaches
provide valuable insights into the system’s actual behavior and facilitate the dis-
covery of process models. Secondly, they enable the identification of bottlenecks
in the system, sources of delays in user responses, and inefficiencies within the
distributed system. Thirdly, they offer fine-grained, expandable, and adaptable
datasets tailored to specific data analysis projects while providing a holistic view
of interconnected microservices. Lastly, both methods can be extended to enable
service providers to examine their underlying complex processes against specific use
cases using fine-granular datasets rendered by these logging approaches.

Nevertheless, the Centralized logger and the Server-Side logger methods have certain
limitations. One significant challenge is that both approaches require considerable
effort to integrate and maintain logging and may impose additional overhead on the
system. Furthermore, analyzing the aggregated data from either method may be
challenging due to the volume and variety of information collected, especially when
dealing with large-scale distributed systems. Additionally, the datasets collected
may not always provide a comprehensive view of the entire system, as they focus
primarily on individual services or specific aspects of the system tailored to the logger
specification.

The validity of the suggested Hybrid logger is evaluated in the next Section by under-
standing the merits and limitations of both the Centralized logger and the Client-Side
logger methods. It combines the strengths of each approach while addressing their
respective challenges. The Hybrid logger aims to offer comprehensive insights into
user activities and provide adaptable datasets for various data analysis projects while
minimizing the overhead and complexity associated with maintaining and analyzing
the logs.
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5.2 Event Data Abstraction

To demonstrate the quality and reliability of the proposed method for the abstraction
of event logs generated by the Hybrid logger, it is essential to test the system with
at least two experiments, as recommended by Dean et al.[227]. As a result, the
approach’s effectiveness, robustness, and generalizability in obtaining readable and
usable abstracted event logs is validated by conducting two rounds of empirical
evaluations in real-life settings. The event logs are gathered using the Hybrid event
logger discussed in Section 3.4, sourced from information systems provided by RWTH-
Aachen University, which manage metadata and archive research data. Furthermore,
adherence to the guidelines outlined by [228] is maintained to ensure that the collected
event logs comply with EU GDPR privacy regulations. As previously mentioned,
an n:m relationship exists between Client and Server activities for the system
under investigation. Consequently, each user activity initiates a series of Server-Side
activities to process and execute the user’s request for a Client-Side operation. Client-
Server event logs from two web applications, specifically the Metadata Manager and
Data Archiving tool, are gathered and analyzed for the case studies and abstracted
according to the technique discussed in Section 4.1. The validity and scalability of
the approach are evaluated with the help of these two case studies.

5.2.1 Research Data Archiving Tool (SimpleArchive)

The Data Archiving tool is a web application designed for researchers at RWTH-
Aachen University to archive research data and restore files on demand. Users of
this service can set a storage expiration date to comply with the requirements of
funding organizations for research projects, ensuring that research data remains
accessible even after a project’s conclusion. The most common user activities include
uploading/downloading data, searching for a research record, and restoring research
data. This case study gathers event logs over six months, comprising 413 case Ids and
10,487 events. The Data Archiving tool generates 19 unique Client-Side activities and
28 Server-Side activities responsible for processing users’ Client-Side requests.

Table 5.3: Hybrid logger performance assessment on Data Archiving Tool using
Decision Tree and Random Forest Classifiers.

RMSE MAE Precision Recall F1 Accuracy

Decision Tree 0.31 0.19 0.89 0.87 0.87 0.85
Random Forest 0.54 0.51 0.87 0.85 0.85 0.83

Table 5.3 provides performance statistics of the Hybrid logger discussed in Section 3.4
to acquire the dataset. As shown in Table 5.3, the Decision Tree (DT) classifier consis-
tently outpaces the Random Forest (RF) model across all metrics. The former yields
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superior results regarding both Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE), with respective scores of 0.31 and 0.19 compared to the latter’s 0.54 and
0.51. This suggests the DT model boasts lower average errors when predicting user ac-
tivities. The model also performs excellently in Precision, Recall, and F1 scores. Pre-
cision and Recall scores of 0.89 and 0.87, respectively, outstrip the RF’s 0.87 and 0.85,
signifying a higher proportion of correctly predicted positive activities and better iden-
tification of true positives. The F1 score of the DT model, standing at 0.87 against the
RF’s 0.85, attests to a superior balance between Precision and Recall. Additionally,
the DT model manifests higher overall accuracy at 0.85 compared to the RF’s 0.83,
demonstrating its enhanced capacity to predict user activities across the entire dataset
accurately. The Figure 5.7a depicts the Client-Side process model discovered from the
Data Archiving Tool with the help of the Hybrid logger applying the DT classifier.

Table 5.4: Abstraction of sample dataset for Data Archiving Tool, and its effect on
the number of Client and Server-Side activities.

PCC
Similarity Threshold 1 97-1 91-1 88-1 85-1 82-1 55-1 28-1

Fitness 1 0.98 0.88 0.83 0.81 0.76 0.70 0.59
# Client

Activities (ac)
19 18 17 15 14 12 10 4

# Events 10487 9973 9481 8297 7920 6553 5481 2203

Results: Figure 5.7a and Figure 5.7b respectively depict the discovered process
models before and after implementing the abstraction technique. By examining the
abstraction results at the suggested fitness criteria, an event log with 7,920 events and
14 Client-Side activities is obtained, maintaining a fitness accuracy of 0.81. The bold
column in the Table 5.4 represents the abstraction threshold introduced in the method-
ology. Nevertheless, for demonstration purposes, Table 5.4 presents each abstraction
iteration’s results until no further activities can be compared. Thus, a suitable PCC
threshold range of 85-1 is identified for achieving the desired level of abstraction. It
is also observed that no further abstraction is possible below the fitness of 0.59, as
no two events are similar beneath the PCC threshold of 28-1. As a result, the system
achieves a 26.32% reduction in the number of activities and a 24.47% decrease in the
total number of events for the SUS at the threshold specified in the methodology.

Furthermore, DT and RF are utilized as two supervised learning techniques to assess
the accuracy of predicting Client-Side activity, ac, based solely on Server-Side event
logs, Ls. This approach uses the ELG framework discussed in Section 3.4.1 to explore
user Client-Side activities by exclusively accessing Server-Side event logs. It is crucial
to note that this study’s choice of data mining algorithms (DT and RF) serves as
an illustration and warrants further exploration.

To prepare the data for modeling, the following preprocessing steps are performed:
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(a) Data Archiving Tool Spaghetti Model.

(b) Data Archiving Tool Abstracted Model.

Figure 5.7: Demonstration of discovered models from the abstracted event log.
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Figure 5.8: The negative correlation of the model fitness to DT and RF models
accuracy on the Data Archiving Tool.

1. Missing Value Imputation: Filled in missing values in the dataset with zeros.
2. Resampling: A hybrid resampling technique is employed on the target label.

The Synthetic Minority Oversampling Technique (SMOTE) technique for over-
sampling and Tomek Links for undersampling are combined to balance the
class distribution effectively.

3. Feature Scaling: The numerical features are standardized with a mean of 0 and
a standard deviation of 1. This ensures that all features have equal importance
and are on the same scale, particularly for distance-based algorithms and
regularization techniques.

User activities can be efficiently analyzed and indicated by utilizing vectorized events
where only Server-Side events are accessible and a complete training set is available.
The DT and RF algorithms are applied to attain 82% and 84% accuracy, respectively.
The inverse relationship between model fitness and model accuracy for activity predic-
tion is further demonstrated in Figure 5.8, underlining the significance of maintaining
a balance between abstraction and interpretability within the methodology.

5.2.2 Metadata Management Tool (MetadataTool)

The Metadata Manager, as its name suggests, is a web application tool designed for
researchers at the university to create customizable metadata schemas, facilitating

133



5 Case Studies

the classification and exploration of research data based on their metadata. The most
common user interactions include providing metadata schemas, searching metadata,
and adding or editing metadata. This study collected event logs over six months,
encompassing 573 case Ids and 13,794 events. The Metadata Manager generates 21
unique Client-Side activities and 32 Server-Side activities responsible for processing
user requests.

Table 5.5: Hybrid logger performance assessment on Metadata Manager Tool using
Decision Tree and Random Forest Classifiers.

RMSE MAE Precision Recall F1 Accuracy

DT 0.30 0.17 0.90 0.89 0.89 0.88
Random Forest 0.45 0.42 0.88 0.86 0.87 0.86

Table 5.3 provides performance statistics of the Hybrid logger discussed in Section 3.4
to acquire the dataset. Table 5.5 shows the outcomes of the evaluated performance
indicators, revealing that the DT classifier outperforms the RF algorithm in all
evaluative metrics to a minor yet noticeable degree. The DT classifier reports RMSE
and MAE values of 0.30 and 0.17, respectively, denoting fewer prediction errors com-
pared to the RMSE and MAE values of the RF algorithm, which are 0.45 and 0.42,
respectively. In addition, the DT classifier yields Precision, Recall, and F1 scores of
0.90, 0.89, and 0.89, respectively, implying a more precise and equitable performance
in recognizing true positives and negatives. In contrast, the RF algorithm produces
marginally lesser values, with Precision, Recall, and F1 scores at 0.88, 0.86, and
0.87, respectively. Ultimately, the overall accuracy of the DT classifier is observed
to be 0.88, a figure superior to the 0.86 accuracies presented by the RF algorithm.
The Figure 5.9a depicts the Client-Side process model discovered from the Metadata
Manager Tool with the help of the Hybrid logger applying the DT classifier.

Table 5.6: Abstraction of sample dataset for Metadata Manager Tool, and its effect
on the number of Client and Server-Side activities.

PCC
Similarity Threshold 1 97-1 94-1 91-1 82-1 79-1 52-1 40-1 22-1

Fitness 1 0.91 0.89 0.88 0.88 0.84 0.79 0.77 0.73
# Client

Activities (ac)
21 16 15 14 11 10 8 7 6

# Events 13794 10302 9824 9268 7261 6414 5378 4735 4019

Results: By implementing the proposed approach, an abstracted process model is ob-
tained that effectively illustrates the anticipated user interaction lifecycle. Figure 5.9a
displays the intricate Petri net discovered before the event log abstraction, while
Figure 5.9b presents the abstracted model obtained using the recommended method.
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(a) Metadata Manager Tool Spaghetti Model.

(b) Metadata Manager Tool Abstracted Model.

Figure 5.9: Demonstration of discovered models from the abstracted event log.
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Figure 5.10: The correlation of the model fitness to DT and RF models accuracy on
the Metadata tool.

Table 5.6 showcases the outcomes of the iterative process abstraction until no further
abstraction can be achieved. The process is performed beyond the suggested fitness
threshold as a proof of concept. Taking the recommended fitness criteria as the
stopping point for the abstraction process, an event log is derived containing 10
activities, 6,414 events, and 573 cases, with an overall fitness accuracy of 0.84.
Moreover, by examining the results in Table 5.6, an appropriate PCC threshold for
classifying similar events and merging events without jeopardizing fitness in the Meta-
data Manager tool is observed to be 79-1. Notably, no further abstraction is feasible be-
low a fitness of 0.73, as no two events share similarities beneath a PCC threshold of 22-
1. Consequently, a 52.39% reduction in the number of activities and a 53.51% decrease
in the overall number of events for the system under investigation is attained.
This study used DT and RF as two supervised learning methods to evaluate the
accuracy of predicting Client-Side activity, ac, based solely on Server-Side event logs,
Ls. This method employs the ELG procedure discussed in Section 3.4.1 to assess
user behavior by only accessing Server-Side event logs. It is important to note that
this study’s choice of data mining algorithms (DT and RF) serves as a demonstration
and requires further investigation.
The following preprocessing steps are performed to prepare the data for modeling:

1. Missing Value Imputation: Missing values in the dataset are filled in with zeros.
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2. Resampling: A hybrid resampling technique is employed on the target label.
The SMOTE technique for oversampling and Tomek Links for undersampling
are combined with balancing the class distribution effectively.

3. Feature Scaling: The numerical features are standardized with a mean of 0 and
a standard deviation of 1. This ensures that all features have equal importance
and are on the same scale, particularly for distance-based algorithms and
regularization techniques.

By using vectorized events in situations where only Server-Side events are accessible
and a comprehensive training set is available, effective analysis and prediction of user
behavior can be achieved. The DT and RF algorithms are applied, achieving 89% and
88% accuracy, respectively. The inverse relationship between model fitness and model
accuracy for activity prediction is further illustrated in Figure 5.10, emphasizing
the importance of balancing abstraction and interpretability in the context of the
approach. Moreover, the most suitable PCC threshold for detecting similar events
and merging them without reducing the fitness score on the Metadata Manager web
application is determined to be 79-1.

5.2.3 Summary

The analysis reveals an inverse correlation between the model fitness and the accuracy
of the DT and RF classifier for predicting Client-Side activities based on Server-Side
traces of software execution on the Data Archiving and Metadata Management Tools.
This relationship indicates that as the model fitness decreases, the accuracy of the
DT and RF classifiers are also affected. The choice of a 0.8 threshold to conclude
the algorithm for further abstraction is based on the observation that beyond this
point, the abstraction becomes too generalized, causing the findings to lose their
interpretability and effectiveness. Consequently, maintaining a balance between
abstraction and meaningful insights is crucial for the approach’s effectiveness.

The DFG model is employed to represent the abstracted models, as it facilitates
comprehension for domain experts. Obtained qualitative feedback, such as: “[. . . ]I
can now understand user interactions and assess user behaviors without being over-
whelmed by numerous activities that do not represent the actual processes. [. . . ] I’m
wondering why we have such poor performance in restoring files; I need to investigate
this.” referring to a previously unknown KPI violation for restoring files. Therefore,
the proposed method successfully identified non-functional requirements and directed
developers’ attention to the appropriate software components for further technical
investigations.

Moreover, the Hybrid logger was utilized to gather the dataset for the task of event log
abstraction. The Hybrid logger approach combines the advantages of Centralized and
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Client-Side logging techniques to provide a comprehensive view of Client-Side user
activities and corresponding back-end software executions. By integrating these two
perspectives, the Hybrid logger enables more accurate predictions of user behavior,
allowing for a deeper understanding of how users interact with the system. Addi-
tionally, the findings confirms a fitness threshold (0.8) for the abstraction algorithm,
which aligns with high accuracy in predicting user activities at the proposed threshold.
The right balance between abstraction and preserving the necessary information for
accurate predictions is the key. According to the findings, predictions’ accuracy is
attributed to the granularity of data captured and each iteration of data abstraction,
making it easier for the prediction model to capture the underlying patterns and
relationships. As a result, this method facilitates the development of more effective
machine learning models and prediction algorithms, ultimately leading to improved
system performance, better user experience, and more informed decision-making.

Despite the efforts to develop a generalizable event log abstraction technique, the
proposed method only applies to Client-Server applications. One of the most labor-
intensive and manual aspects of this technique, acknowledged here, is evaluating the
input log for noise, outliers, and anomalies. Regrettably, the case studies’ report
does not examine Precision and Generalization as additional quality indicators due
to the considerable computational power required to calculate these factors via ProM
implementation. As a result, these calculations were never completed. Activity name
concatenation is employed for the relabeling task; however, this may create read-
ability issues for some domain experts if the number of original activities increases
significantly. Lastly, the method relies on the ELG technique that relies on the
OAuth workflow (authorization service), which may overlook essential Server-Side
activities not recorded by the OAuth service which is also a disadvantage of the
Centralized logger. Additional research is needed to validate the approach while
incorporating all executing software components.
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5.3 Knowledge Discovery

The Knowledge Discovery case studies aim to explore various aspects of researchers’
interactions with Open Science processes. Through a series of targeted case studies,
insights were gained into researchers’ process models, conformance to established
standards was assessed, and predictions were made regarding user organizational
roles based on their activities. The RDM lifecycle for research projects was also
uncovered. These case studies provided valuable insights into the dynamics of Open
Science processes and shed light on potential areas for improvement, optimization,
and enhancement of the overall research experience.

5.3.1 Descriptive Research Processes

This case study aims to discover the descriptive research processes within an RDM
platform called Coscine. Coscine allows users to set up multiple Resources (data
collections or repositories) per project, with each Resource acting as a file repository
to store data along with specialized metadata. The DA4RDM web-based tool en-
ables users without technical knowledge to interact quickly with datasets and assess
workflows.

The sample dataset used in this study was acquired from the Coscine platform from
April 2021 to June 2022. Figure 5.11 presents a screenshot from the DA4RDM web
page, showcasing the interface for discovering processes based on selected criteria.
Upon analysis, Figure 5.12a reveals a collective process models view, uncovering a
Spaghetti model for user interactions with all Resources within Coscine. From this
dataset, 551 Resources, 16 recorded activities, and 32 variations of user interaction
are discovered, resulting in 66,028 related events.

DA4RDM allows for the selection of individual Resources for further investigation
and study. For example, Figure 5.12b illustrates the DFG process model of a single
Resource, eventually uncovering the complete lifecycle of the Resource. 144 events
and 10 activities are observed for the selected case and variance. The process model
begins with Add Resource and concludes with Delete Resource. Upon further inves-
tigation, it was determined that a research group utilized this Resource to assess the
functionality and reliability of Coscine as their data repository.

Figure 5.12c presents the process model for user interaction on a single data artifact
within the selected Resource. This process model, which contains 13 events and 4
activities, enables us to study user behavior. In this example, a user uploaded a data
artifact with metadata, and other users later discovered the file entry, assessed its
metadata, and in 5 cases, attempted to update pre-existing meta information.
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Based on the findings and the discussed definition of RDM phases, the user activities
discovered on the selected file can be correlated to the Analysis phase. In this phase,
research data requires further curation with each research iteration. This case study
demonstrates the potential of the DA4RDM tool to discover and analyze research
processes within the Coscine RDM platform, providing valuable insights into user
behavior and data management practices.

Figure 5.11: Screenshot of DA4RDM for discovering user interaction model over a
selected Resource on Coscine.

The ability to discover and analyze research processes within RDM platforms like
Coscine offers numerous potential applications and use cases, benefiting various
stakeholders in the research ecosystem. Some of these applications and use cases
include:

Research Institutions and Universities: Academic institutions can utilize DA4RDM
to understand better how their researchers interact with data, enabling them
to optimize data management practices, facilitate collaboration, and improve
research efficiency. In addition, by analyzing these interactions, institutions
can identify areas of improvement and implement targeted training programs
to enhance researchers’ data management skills.

Data Managers and Librarians: Data managers and librarians can use the insights
generated by DA4RDM to develop and implement data management policies

140



5.3 Knowledge Discovery

(a) Spaghetti model for user interactions over
all Resources.

(b) User interaction model on a Resource.

(c) User interaction model on a File within a
Resource.

Figure 5.12: Hierarchical descriptive research process models.
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and best practices tailored to the unique needs of their organization. They
can also use this information to create targeted data curation strategies and
metadata guidelines, ensuring consistency and discoverability across various
research projects.

Research Funding Agencies: Funding agencies can employ DA4RDM to evaluate the
data management practices of grant applicants and awardees. By understand-
ing how researchers interact with data, these agencies can ensure that funded
projects adhere to data management standards, promote transparency, and
facilitate data sharing and reusability.

Research Collaborations and Consortia: In large, multi-institutional research projects,
the DA4RDM tool can assess and harmonize data management processes across
different research groups. The tool can help develop shared data management
strategies and foster collaboration among researchers by identifying common-
alities and discrepancies in data workflows.

Commercial RDM Platform Providers: Providers of RDM platforms like Coscine
can use the insights from DA4RDM to enhance their platform’s usability and
features. By understanding user interactions and needs, they can develop
more user-friendly interfaces, improve metadata management capabilities, and
integrate additional functionalities to support different research workflows.

Researchers: Individual researchers can benefit by gaining a deeper understanding of
their data management practices and identifying areas for improvement. This
knowledge can help them optimize their workflows, save time, and enhance the
quality and reproducibility of their research.

Hierarchical Analysis of Data: DA4RDM can be used to assess collective users’ be-
havior at different levels of granularity, allowing stakeholders to narrow down
their analysis. For example, a university may analyze data interactions at the
department, research group, or individual researcher level, leading to tailored
recommendations for each group to improve data management practices.

User Experience (UX) Evaluation and Finding Bottlenecks: By studying user inter-
actions with RDM platforms, DA4RDM can help identify bottlenecks and
areas where users struggle, informing UX improvements. For instance, the tool
might reveal that users find it challenging to locate specific metadata fields
or navigate between Resources, prompting platform developers to streamline
these processes.

Supporting Data Provenance: DA4RDM can contribute to data provenance efforts
by collecting and modeling information on who did what, when an action was
executed, what has happened, and the order of events. This information can help
researchers and data managers trace the origin and lineage of data, ensuring
its accuracy, validity, and reliability.
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Studying User Journey Mapping: The insights provided by DA4RDM can enable
user journey mapping, allowing stakeholders to visualize how users interact
with RDM platforms throughout their research processes. Platform developers
can create more intuitive and user-friendly interfaces by understanding the
sequence of user actions and pain points.

Service Level KPI Analysis: DA4RDM can assess service level KPIs for RDM plat-
forms, such as user satisfaction, data management efficiency, and collaboration
rates. Organizations can monitor their RDM platforms’ performance by an-
alyzing these KPIs, identifying improvement areas, and making data-driven
decisions to optimize their research data management strategies.

In summary, the DA4RDM tool holds significant potential for various stakeholders
in the research ecosystem. Providing insights into user interactions and data man-
agement practices can lead to more efficient, collaborative, and transparent research
processes, ultimately driving scientific innovation and discovery.

5.3.2 Control-Flow Requirement Analysis

Another case study aims to discover non-conforming process variances (sequence
of actions) to find requirements within an RDM platform called Coscine using the
DA4RDM tool. Coscine allows users to set up multiple resources (data collections)
per project, with each Resource acting as a file repository to store data along with
specialized metadata.
The DA4RDM web-based tool is utilized to run conformance checking for two use
cases to assess the applicability of DA4RDM in this context. Figure 5.13 demonstrates
a screenshot from the DA4RDM for discovering non-functional requirements.
For this case study, system process domain knowledge is leveraged. With respect
to Coscine development, the user’s attempts to create Resources should be followed
by being redirected to that Resource view. Accordingly, the first sequence is defined
as View Project and Add Resource and the follow-up expected sequence as Open
Resource (RCV).
Additionally, according to our service level agreement, creating resources on Coscine
should not take longer than 30 seconds. Therefore, 30 seconds is defined as the
Performance criteria. The conformance checking for the given conditions runs over
297 cases, of which 65 cases do not conform to the specified expected user path. For
example, in Figure 5.13, it has violated the time span expected to create a Resource
despite observing the correct expected activity sequence.
When precisely this has happened in the case information field, for which User, Role,
Project, and Resource can be found. Then, further evaluation can be conducted
to determine and uncover the source of the problem.
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Figure 5.13: Screenshot of DA4RDM for identifying requirements on Coscine.

Continuing with the second use case, Figure 5.14 demonstrates the assessment of
FAIRness on Coscine. For instance, as part of the interoperability of the FAIR
principle, all data artifacts should be accompanied by specialized metadata. Accord-
ingly, Coscine provides an environment that supports the FAIR principle by design,
requiring users to upload files with metadata.

According to this promise, operations Open Project, Open Resource (RCV), and
Upload File are expected to be seen as the first sequence of action followed by Up-
load MD. Upon analyzing the conformance, out of 3919 cases, 144 non-conforming
cases have been discovered. The File Id, provided in the example, enables system
administrators to investigate the issue further.

After the discovery of the system issue, the development team changed the software
execution process such that no files could be uploaded without ensuring that metadata
was stored in advance. This modification helps ensure that Coscine complies with the
FAIR principles, fostering a more interoperable and reusable data ecosystem.

The DA4RDM tool offers various potential applications for stakeholders working
with RDM platforms, such as:

Enhancing User Experience: By identifying non-conforming process variances, RDM
platform developers can pinpoint issues in the user experience, leading to
targeted improvements in the platform’s interface and functionality.
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Figure 5.14: Interoperability assessment of Coscine as an RDM system.

Ensuring Compliance with Data Standards: By identifying non-conforming cases that
violate established data standards, organizations can take corrective actions
to ensure that their platforms and data repositories remain compliant with
relevant guidelines and best practices.

Identifying Areas for System Improvement: The insights uncovered by the DA4RDM
tool can help development teams identify areas where the system’s design or
execution may be suboptimal, leading to targeted improvements that enhance
the overall platform’s performance and functionality.

Monitoring Adherence to FAIR Principles: By analyzing the conformance of user
behavior with the FAIR principles, stakeholders can assess the effectiveness of
their data management practices and make necessary adjustments to promote
the FAIRness of their data resources.

Detecting Anomalies: The DA4RDM tool can help identify anomalous user behavior,
such as unauthorized access to resources, which may indicate potential security
vulnerabilities or misuse of the platform.

Optimizing Platform Performance: By analyzing non-conforming process variances,
stakeholders can identify performance bottlenecks and optimize the platform’s
infrastructure and architecture to ensure timely and efficient resource creation
and management.

145



5 Case Studies

Training and Support: The insights generated by conformance checking can help in-
stitutions develop targeted training programs and support resources to address
common user errors and improve data management practices.

Quality Assurance: Regularly monitoring and analyzing non-conforming process
variances can be a quality assurance measure, ensuring that the RDM platform
adheres to established performance standards and user expectations.

The findings yield promising results for enabling the discovery of data-driven re-
quirements. As such, these non-conforming cases are typically not reported by the
user otherwise. This approach empowers the monitoring of processes and workflows
within an RDM platform. Future work can include periodic execution of pre-defined
conformance analysis and automatic countermeasures or automatic reporting before
user service-desk reports.

In summary, the DA4RDM tool can be instrumental in uncovering non-conforming
process variances within RDM platforms, enabling stakeholders to monitor compli-
ance with data standards, optimize platform performance, and ensure adherence to
the FAIR principles.

5.3.3 University Organizational Mining

To enhance the reliability and scalability of the approach, organizational elements
(user roles) have been incorporated into the sample dataset. The goal of organizational
mining is to determine and forecast users’ roles based on their executed activities using
data mining techniques. This analysis aims to examine the feasibility and precision
of data mining for extracting users’ roles within university services by assessing
the dataset obtained through the method. At present, the system tracks three role
types, specifically student, employee, and student-employee. The student-employee
role signifies individuals who hold both student and employee affiliations.

Table 5.7: Descriptive matrix produced by augmenting and modifying the sample
dataset derived from the Centralized logger.

UserId Role GetInfo GetNotifications GetWeeks GetReport IsAuthorized GetAllFiles GetSchema . . .

dhcwb4MII. . . student 1 1 0 0 0 0 0 . . .
LOrv8dNur. . . student 0 0 1 0 0 0 0 . . .
nfW6O7i85. . . student-employee 0 0 0 1 1 1 1 . . .

6XE8m5KaE. . . student 0 1 0 1 0 0 0 . . .
2E1c56wFG. . . employee 0 0 0 0 1 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cE5G9LoF5. . . student-employee 2 0 0 1 3 1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Data Selection: As mentioned in Section 3.3.1, the approach can be extended
to incorporate additional attributes, such as user roles. For example, the sample
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data displayed in Table 5.1 encompasses user interactions and services utilizing the
token service. Through heuristic observation, it is hypothesized that there is a direct
connection between a user’s role and the set of activities they perform.

Data Preprocessing: The selected data posed a challenge due to the uneven distri-
bution of groups, which could result in biased machine-learning outcomes. The sample
dataset consists of approximately 82.3% entries associated with the student role, about
16.1% linked to employees, and 1.6% connected to student-employees. However, this
distribution mirrors the actual user group distribution at the University. Therefore, it
is crucial to apply balancing techniques to address the imbalanced dataset issue. For
example, to explore minority and less frequent classes, one could employ the SMOTE
method [229] to over-balance a dataset. Conversely, under-balancing can maintain an
even class distribution by reducing the frequency of majority class occurrences.

Data Conversion: As depicted in Table 5.7, the data is transformed into a vec-
torized descriptive matrix format, where each row represents a unique user and each
column corresponds to an executed software component. In addition, this matrix
format comprises aggregated data, where repeated interactions merely increase the
counter for an activity associated with a specific user, thus adding weight to the
descriptive vector.

Figure 5.15: Classifiers model accuracy for role mining with the help of RapidMiner
studio.

Data Mining: To determine the best-performing classification algorithm for the
objectives, various machine learning techniques are applied. A 3-fold cross-validation
methodology [230] is employed for the analysis. The sample dataset was divided into
two sets: a training set consisting of 2/3 of the data and a validation set comprising
1/3 of the data. The analysis was carried out using RapidMiner Studio [231].

Analysis Result: The data is analyzed using various algorithms, including Random
Forest, Support Vector Machine, Decision Tree, Deep Learning, and Naive Bayes. The
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obtained accuracy reflects the presence of noise and the need for further data prepro-
cessing. However, as depicted in Figure 5.15, the role-mining results show an average
model accuracy of 85% for Naive Bayes and Support Vector Machine algorithms
after oversampling using the SMOTE technique. Furthermore, the overlapping error
bars suggest that the datasets do not differ significantly. These findings validate the
data collection approach employed in the method and suggest that more satisfactory
results can be achieved by conducting additional outlier and noise analysis.

5.3.4 CRC1394 RDM Lifecycle

This case study investigates the event data extracted from the Coscine platform
to outline RDM phases for research projects using radar visualization and process
mining techniques. The analyzed sample dataset spans from April 2021 to May
2023, encompassing 1,119 projects and 32 unique activities recorded. However, since
Coscine has been still in its beta stage at the time of recording this study, most
projects and user interactions may not accurately reflect real user interaction. This
is primarily due to the experimental nature of the platform during its beta stage,
leading to incomplete or inconsistent data that may not represent actual research
data management practices.
Nonetheless, a group of researchers, Collaborative Research Centre (CRC)1394, has
been using Coscine for RDM practices, and the case study is focused on this group.
Therefore, two years’ worth of data from May 2021 to May 2023 for CRC1394,
which consists of 45 members and 28 sub-projects, is analyzed. In particular, three
sub-projects, namely A03, B06, and C02, each with six scholars maintaining RDM
within their sub research groups, are concentrated on.
To observe changes over time, the dataset is divided into four equal periods, each
for six months. Also, process models for CRC1394 for each six-month user interac-
tion period are discovered for demonstration purposes. Figure 5.16 illustrates the
discovered process models for CRC1394, while Figure 5.17 displays the discovered
RDM phases for all named projects within the specified timeframes.
As shown in the Figure 5.17, in the time interval between May and November 2021,
an apparent inclination toward the Planning phase at the beginning of the projects
can be seen. Sub-group B06 quickly gains momentum and starts the Production
phase within the first six months of their research project. Between December 2021
and May 2022, while CRC1394 is still mainly in the Planning phase, the C02 group
quickly transitions to the Production and Analysis of research data. Interestingly,
group B06 analyzes previously documented records, while group A03 appears to be
just starting with their research Planning.
The final year between June 2022 and May 2023 shows similar trends. The central
group (CRC1394) continues leaning toward Production and updating their files.
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Figure 5.16: The evolution of user interaction patterns for CRC1394 in two years of
activity.
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Figure 5.17: Radar visualization of RDM lifecycle for CRC1394 and three
sub-groups in two years of activity.
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However, the group A03 appears less actively involved in RDM and only provides a
limited quantity of research data on the RDM platform under study. Conversely, the
B06 group seems to be engaged in locating and analyzing their research data. In the
final stage of the record, not much activity in these research groups during the past
six months is seen. This finding has prompted the RDM consulting team to reach
out and investigate the reasons behind the inactivity and decreased participation
of researchers in RDM practices. Since the CRC1394 project is still in progress, no
evidence of research data Archival or Reusing data between groups, as correctly
represented in Figure 5.17, is found.

The case study presented, demonstrates the potential of the proposed methodology in
outlining RDM phases and determining the current RDM phase of research projects.
In addition, the discovered process models and the radar visualization of RDM phases
provide valuable insights into the progression and activities of different research
groups.

The granularity of the collected information plays a crucial role in the analysis.
If the data is too fine-grained, event data abstraction may be necessary to avoid
overwhelming complexity. Furthermore, the discovery of RDM phases is subjective
to the predefined process models for each RDM phase, which may need alterations to
accommodate the spectrum of activities that an RDM platform could track or record.
Domain knowledge is also crucial for creating the prescribed process models.

In the case of the CRC1394 group, it is observed that some sub-projects had over
20 users. However, after investigating the members of CRC1394 and the metadata
provided for sub-projects, it is concluded that these sub-groups were created for
coordination purposes and to maintain a central data center for all sub-groups rather
than using Coscine for RDM or focusing on specific research areas. To name a
few examples of such sub-groups: General Assemblies, Workspaces, Schools, and
Tutorials. Since Coscine does not have an inheritance rule for sub-projects, members,
files, and access privileges are not propagated across groups. Consequently, the
discovered RDM visualization for CRC1394 does not include user activities within
its sub-groups. By extending the event logger, the association of groups/projects
can be recorded to discover the overall RDM lifecycle without needing overlayers
for individual sub-groups in the visualization.

Determining a minimum dataset or criteria for the validity of the methodology to
outline the RDM lifecycle for research projects is challenging, as it strongly depends
on scholars’ culture of conducting research and their commitment to maintaining
RDM practices. Nevertheless, the visualization provided by the methodology serves
as a tool to help researchers, team leaders, and principal investigators assess the
current phase of a research team and plan countermeasures if a research group is
falling behind its schedule or requires assistance in a specific RDM phase without
pinpointing individual researcher and maintaining user privacy.
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To facilitate the application of the methodology, a Python package named DA4RDM-
Vis-ProcessBased is published, which can be utilized to discover the RDM lifecycle
for a given project. This package offers researchers and data managers an accessible
way to analyze, monitor, and improve research data management practices.

Several research directions can be explored for future work, such as predictive, clus-
tering, role-based, compliance, and user behavior analysis. Predictive analysis can
be employed to train machine learning models for predicting the completion time
of different RDM stages based on historical data, enabling researchers to plan their
projects better and allocate resources effectively. Clustering analysis can group
research projects based on their RDM characteristics to identify common patterns,
challenges, or best practices. Role-based analysis can investigate the activity patterns
of different roles within the dataset to better tailor the RDM platform to suit user
needs. Compliance analysis can be used to check if research projects comply with the
RDM process models and identify areas where deviations frequently occur. Lastly,
user behavior analysis can be performed to determine if there are specific activities
or stages where users tend to struggle or need more assistance, thereby improving
the user experience and providing targeted support.

According to the findings, the proposed methodology offers a valuable tool for re-
searchers, data managers, and platform administrators to analyze, monitor, and
improve research data management practices. Furthermore, continuously refining
the methodology and incorporating domain knowledge can contribute significantly to
understanding and optimizing the RDM process within the research community.

5.3.5 Summary

In conclusion, these studies has demonstrated the potential of the DA4RDM tool as
an effective means to analyze, monitor, and improve research data management prac-
tices. By exploring various research directions, such as predictive analysis, role-based
analysis, compliance analysis, and user behavior analysis, there is significant potential
for further advanced applications in future work. Furthermore, the approach can
significantly contribute to understanding and optimizing the RDM process within the
research community by incorporating domain knowledge and continuously refining
the methodology.

While the DA4RDM tool provides valuable insights into user behavior and data
management practices, it is crucial to acknowledge its limitations. The evaluation of
user behavior in an RDM platform is inherently subjective, depending on the data
collection method, operations tracked, and their level of granularity. This subjectivity
is highly influenced by the initial project idea and the research questions driving the
study.
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For example, the data collected may not capture every user interaction or specific
data management practices. Additionally, the level of granularity in the data may
not be sufficient to provide detailed insights into certain aspects of user behavior.
Therefore, the data granularity has to be adapted to the SUS. This limitation can
impact the conclusions drawn from the analysis and the subsequent recommendations
for improving data management practices and platform usability.

To address these limitations, researchers should consider the research questions and
objectives driving their study when designing data collection strategies. By ensuring
that the data collected is comprehensive and captures the desired level of granularity,
researchers can enhance the reliability and validity of their findings, leading to more
accurate conclusions and actionable recommendations.

In summary, while the DA4RDM tool offers a powerful means to discover and analyze
research processes within RDM platforms, it is crucial to recognize and account for
its limitations. By doing so, stakeholders can obtain more accurate insights into
user behavior and data management practices, ultimately driving improvements in
research efficiency, collaboration, and transparency.
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5.4 Research Data Recommender System

This Section focuses on facilitating data reusability by employing two-pronged ap-
proaches: CB and IICF recommender systems. The primary objective of this case
study is to investigate and demonstrate how these two techniques can be effectively
applied to enhance the discoverability and reusability of research data, thereby foster-
ing a more efficient and collaborative research environment. The exploration begins
with the CB recommender system, highlighting its underlying principles, advantages,
and potential drawbacks. Subsequently, the findings derived from implementing IICF
are discussed, discussing its synergistic potential when combined with CB techniques.
These case studies aims to provide valuable insights for researchers and institutions
seeking to optimize data reusability and facilitate collaboration within the scientific
community.

5.4.1 Content-Based Recommender for CRC1394

In this study, metadata from files uploaded and provided by experts in Material
Science and Chemistry (CRC1394 1) over one year were obtained. Manually entering
metadata for every file is a challenging task for researchers and is often neglected or
postponed, making these relatively small datasets valuable and expensive to acquire
[232]. Figure 5.18 presents the distribution of files across their respective data
repositories (data collections), with some containing about 55 files and others having
as few as 1 or 2 files. In total, 543 entries from 25 repositories were acquired.

Figure 5.19 depicts the data sparsity for each Predicate or column. Although the
RDM system under study does not permit file uploads without providing mandatory
meta information, employing DA4RDM for analysis of the user interaction models
discussed in Section 4.2 reveals that some users circumvent this requirement by
uploading their research data to their data repositories using File Transfer Protocol
(FTP) Clients [167]. Thus, addressing data imputation for missing values is critical in
the recommender system preprocessing pipeline. The proposed recommender system
suggests relevant repositories by building profiles from files’ metadata. Additionally,
the recommender system suggests repositories’ PIDs as links, which users can be
used to contact the data owner and request access to data while complying with data
protection laws. The proposed methodology is implemented using the scikit-learn2

machine learning library for the Python programming language.

This Section discusses the empirical studies using the proposed approach to offer
repository recommendations and evaluate its performance. The dataset employed for

1https://www.sfb1394.rwth-aachen.de/
2www.scikit-learn.org
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Figure 5.18: Files distribution across repositories. The x-axis denotes the Repository
Id, while the y-axis signifies the file count.

this evaluation is detailed in Section 4.4.1, and a example dataset is listed in Table 4.3,
which is sourced from the Coscine platform. A domain expert was consulted to
identify an appropriate set of twelve features (Predicates) that accurately represent
artifacts within repositories. The columns in Figure 5.19 (excluding File column)
display the respective independent variables. According to the expert, the meta-
data for the chosen set of features can help domain scientists differentiate between
repositories without necessitating the individual examination of data artifacts.

The evaluation process was carried out twice, once for each distance metric, to ensure
the reliability and consistency of the results. Heatmaps depicting the pairwise simi-
larity of repositories are shown in Figure 5.20. To evaluate the efficacy of the pipeline,
a ground truth matrix was created by asking the domain expert to subjectively
evaluate and rank the similarity of pairwise repositories, providing a similarity score
between 1 and 5 based on the classification scheme discussed earlier. This evaluation
approach has been widely adopted in previous studies to assess the performance of
distance metrics [233].

Table 5.8 displays each class’s Precision, Recall, and F1 score separately for Cosine
and Euclidean distance metrics. The F1 score performs best for class 1 regardless
of the distance metric. The imbalanced distribution of the dataset across classes,
indicated by the support values, may explain this observation.

Table 5.9 presents an overview of the overall performance of the recommender system.
The Silhouette score is used to evaluate the quality of the predicted ratings, which
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Figure 5.19: Sparsity of data for each feature. Columns for files and repositories
work together as Subjects, feature headers serve as Predicates, and

white spaces indicate missing Objects.
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Table 5.8: Evaluating CB recommender system results for each class using Cosine
and Euclidean distance metrics for contrast.

Precision Recall F1 Support

Cos. Euc. Cos. Euc. Cos. Euc.
Class 1 0.95 0.87 0.70 0.93 0.81 0.90 177
Class 2 0.47 0.70 0.29 0.88 0.36 0.78 153
Class 3 0.42 0.76 0.49 0.56 0.45 0.64 111
Class 4 0.26 0.76 0.32 0.68 0.29 0.72 82
Class 5 0.44 0.97 1.00 0.70 0.61 0.81 53

Macro Avg. 0.51 0.81 0.56 0.75 0.50 0.77 576
Weighted Avg. 0.58 0.80 0.52 0.79 0.53 0.78 576

measures how well the data points fit into their assigned clusters and the degree
of separation between them. The results show that the Silhouette scores for both
metrics indicate reasonable distances between the clusters. RMSE and MAE are also
used to measure the difference between predicted and actual ratings. The results show
high error rates for both RMSE and MAE when using the Cosine distance metric,
indicating that the Euclidean distance metric performs better for this dataset.

The Area Under the Curve (AUC) score of 0.68 shown in Figure 5.21 suggests that the
recommender system is reasonably effective in distinguishing between true positive
and false negative items, as reported in Table 5.9. This is further supported by the
Receiver Operating Characteristic (ROC) curves for each class shown in Figure 5.21.
The Euclidean distance metric performs well with a recommender accuracy of 0.79,
while the Cosine metric has a lower accuracy of 0.52. The evaluation metrics include
RMSE and MAE, which show high error rates for the Cosine metric but lower for
the Euclidean metric. These results demonstrate the importance of selecting an
appropriate distance metric and the effectiveness of the proposed methodology in
providing recommendations for data repositories in the domain of Material Science
and Chemistry.

In addition to quantitative evaluation, a qualitative evaluation of the recommender
system was conducted. The code base was converted into a publicly available python

Table 5.9: Overall effectiveness of Cosine and Euclidean metrics in recommending
accurate Resources.

Silhouette RMSE MAE AUC Accuracy

Cosine 0.68 0.83 0.54 0.68 0.52
Euclidean 0.74 0.54 0.24 0.68 0.79
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(a) Cosine (b) Euclidean

Figure 5.20: Pairwise similarity ratings for 24 repositories, where the values range
from 1 (dissimilarity) to 5 (high similarity).

(a) Cosine (b) Euclidean

Figure 5.21: AUC for the overall and class-specific performance of the system to
distinguish between true-positive to false-positive ratio.
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package3 where a repository Id (pivot Id) and a set of pre-selected features are given as
package input, and it returns the top five similar items. A domain expert evaluated the
system by picking the independent variables as parameters. The study was conducted
twice using the Euclidean distance factor. During the 30 minutes long assessment, the
domain expert reviewed files and their metadata for the recommended set and heuristi-
cally judged the similarity and ranking of findings. The evaluation involved a detailed
review of each recommended item. The user agreed with the recommendations by stat-
ing, “these two repositories seem to be really alike, maybe they should be merged.” sug-
gesting that project members have unknowingly created separate repositories for simi-
lar studies. Additionally, the user was able to mentally construct a mind map of the re-
lations between the recommended items and understand the reasoning behind the rec-
ommendations without the need for explicit justifications by mentioning “I think I can
see why this one is not the first [recommended Repository in the list of top five].”.

5.4.2 Item Based Recommender for Coscine Resources

Unlike the CB recommender system, the study utilized the PCC as the similarity
metric instead of the Euclidean distance. The presence of significant magnitude
differences in the input dataset drove this decision. As the dataset contains items
with varying ratings scales and degrees of user engagement, the Euclidean distance
can be sensitive to these discrepancies, potentially leading to inaccurate similarity
assessments between items.
On the contrary, the PCC and Cosine are robust to magnitude differences, primarily fo-
cusing on the linear relationship between two variables. Furthermore, by centering the
data around the mean, Pearson correlation emphasizes the pattern of user preferences,
making it more suitable for capturing the underlying structure of the dataset.
This study analyzes a two-year sample event log from the Coscine platform. Given
that the platform was in its pilot phase and under continuous development during
this period, users primarily engaged with Coscine cautiously and out of curiosity,
as opposed to genuine RDM usage. Consequently, considerable effort and resources
were dedicated to data preprocessing and identifying the most relevant sample data
to ensure the final dataset accurately represents serious RDM users.
The refined dataset contains records from July 2021 to February 2023, encompassing
26 resources and 69 unique user Ids. On average, each Resource exhibits 100 unique
user interactions. The Figure 5.22 provide a comprehensive overview of the sample
dataset employed for this case study.
Figure 5.22a illustrates the number of unique users interacting with each Resource,
focusing on data collections (Resources) with a minimum of at least four unique

3https://pypi.org/project/DA4RDM-RecSys-ContentBased/
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users per Resource. Figure 5.22b demonstrates users’ average time on each Resource.
Figure 5.22c highlights the distribution of activities within the selected dataset,
emphasizing operations occurring on files. Meanwhile, Figure 5.22d presents the
density of calculated implicit ratings.
To avoid bias in the recommender system, the dataset was balanced so that the ratings
were evenly distributed across all classes (i.e., 1-5) using the SMOTE technique. Then,
following pairwise Resource-to-Resource similarity evaluation using Cosine and PCC
measures, the output was normalized between 0 and 1, and the results were classified
into five classes, as described earlier. Here, a rating of 1 represents the least similarity,
while a rating of 5 indicates the highest similarity between resource pairs.
The Hold-Out method, a widely adopted evaluation technique in machine learning,
was employed to assess the recommender system’s effectiveness. The Hold-Out
method involves splitting the dataset into training and test sets. In this case, 70%
of the data was allocated to the training set, which was used to train the model,
while the remaining 30% formed the test set, utilized for evaluating the model’s
performance. This approach helps simulate real-world scenarios by assessing the
model’s ability to generalize and perform well on unseen data.
The Singular Value Decomposition (SVD) algorithm was employed for the recom-
mender system. SVD is a matrix factorization technique that has gained popularity
in recommender systems due to its ability to handle sparse data and scalability
compared to KNN algorithms [234]. While KNN-based methods can suffer from com-
putational inefficiencies when dealing with large datasets, SVD can efficiently process
high-dimensional data, making it a more suitable choice for the this study [235].
To further evaluate the recommender system’s performance, a 5-fold cross-validation
approach was used to calculate the RMSE and MAE metrics. Cross-validation is a
robust method for model assessment that reduces the risk of overfitting and provides
a better estimation of the model’s performance on unseen data. In 5-fold cross-
validation, the dataset is divided into five equal parts, and the model is trained and
tested five times, with each fold serving as the test set exactly once. The RMSE and
MAE metrics, which measure the average difference between the predicted and actual
ratings, are then averaged across the five iterations to obtain the final performance
scores. By evaluating the model using these metrics, a better understanding of its pre-
dictive accuracy and identifying areas for potential improvement can be achieved.
Figure 5.23 demonstrates the pairwise similarity of resources, with similarities clas-
sified on a scale of 1 to 5. Table 5.10 provides a comparative performance analysis
of the two metric systems, showing each class’s Precision, Recall, and F1 scores.
Interestingly, the performance for classes 4 and 5 do not yield any results for both
Cosine and Pearson for Precision, Recall, and F1. This could be attributed to users’
interaction patterns with each Resource being very distinct and thus not fitting other
user interaction models of other Resources.
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Figure 5.22: Statistical analysis of sample dataset used in IICF acquired from
Coscine platform.
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(a) Cosine (b) Pearson

Figure 5.23: Predicted pairwise ratings for 26 repositories, where the values range
from 1 (dissimilarity) to 5 (high similarity).

The Support shows that most classifications fall into class 1 or 2. For example, the
Macro Average F1 score for Cosine and Pearson is 0.27 and 0.23, respectively. The
Macro Average F1 score measures the quality of a classification model by averaging
the F1 scores of each class. The F1 score is the harmonic mean of precision and
recall. These scores indicate the overall performance of the recommender system
for both similarity metrics and provide a basis for comparing them. However, the
relatively low Macro Average F1 scores suggest that the recommender system does
not perform optimally for all classes.
Unfortunately, Cosine and Pearson identify similarities that fall into classification 1 or
2 and thus provide higher performance for classes with the highest Support. Table 5.11
shows that the overall performance for Cosine is 0.79 and Pearson 0.76. Although
the overall performance appears promising, considering classification results from Ta-
ble 5.10, the conclusion can be drawn that high accuracy is due to the lack of diversity
in similarities and distribution of classes across the pairwise resources similarities.
Regarding error metrics, the MAE and RMSE for Cosine are 0.44 and 0.85, respec-
tively, while for Pearson, they are 0.40 and 0.71. These values indicate that, on
average, the recommender system has slightly lower errors when using the Pearson
similarity metric than the Cosine similarity metric. In addition, the lower MAE for
Pearson indicates that, on average, the absolute differences between the predicted
and actual values are smaller for Pearson than for Cosine. Similarly, the lower RMSE
for Pearson suggests that the system is less sensitive to more significant errors when
using Pearson as the similarity metric.
Despite the high overall accuracy of the recommender system, the system’s reliability
cannot be determined due to high data sparsity and a small dataset with reliable
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Table 5.10: Comparing the recommender system results for Cosine and PCC
distance metrics on each class using IICF recommender.

Precision Recall F1 Support

Cos. PCC Cos. PCC Cos. PCC Cos. PCC
Class 1 0.90 0.60 0.86 0.10 0.88 0.18 181 29
Class 2 0.13 0.77 0.36 0.97 0.20 0.86 11 154
Class 3 0.00 0.25 0.00 0.09 0.00 0.13 3 11
Class 4 0.00 0.00 0.00 0.00 0.00 0.00 0 1
Class 5 0.00 0.00 0.00 0.00 0.00 0.00 8 8

Macro Avg. 0.26 0.32 0.31 0.23 0.27 0.23 203 203
Weighted Avg. 0.81 0.69 0.79 0.76 0.80 0.69 203 203

data. In conclusion, the current analysis reveals some limitations in the recommender
system’s performance, which could be addressed in future work by employing larger,
more diverse datasets and exploring alternative similarity metrics and classification
techniques.

5.4.3 Summary

In conclusion, this study has investigated the performance of an IICF recommender
system and compared it to a CB recommender system. Although IICF has some
advantages, such as its ability to handle large datasets and provide recommendations
based on user behavior, the findings indicate that it may not be the most suitable ap-
proach for recommending data repositories according to user interaction models.
One reason for this is the data sparsity issue inherent in IICF. Due to the limited
interactions between users and resources, the recommendation quality may suffer as
the system struggles to identify meaningful patterns in user behavior. Moreover, the
performance of the IICF system relies heavily on the quality and quantity of user
interactions, which might not have been sufficient in this case.
The study’s quantitative and qualitative evaluations have offered valuable insights
into the effectiveness of the recommender system in providing relevant recommenda-
tions and identifying similar repositories. These findings are consistent with previous

Table 5.11: Overall performance of Cosine and PCC distance metrics to suggest
correct items.

RMSE MAE Accuracy

Cosine 0.85 0.44 0.79
PCC 0.71 0.40 0.76
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research, highlighting the importance of domain expertise in evaluating recommender
systems [236]. The work also builds upon recent research on recommender systems,
such as Zhang et al.’s study [234] on deep learning-based recommendation models.

The study demonstrates that a CB recommender system can effectively enable the
reusability of research data repositories by utilizing RDF-based graph data models.
By leveraging the relationships between research data items and their structured
metadata, these systems can significantly improve the discoverability and reuse of
research data. This fosters collaboration among researchers and reduces the research
community’s repetition of efforts and replication of resources.

The research has yielded promising outcomes for the CB recommender system by
utilizing the Euclidean distance metric after applying NLP to an unstructured sample
dataset. However, the recommender system is limited to functioning for datasets
compelled by uniform metadata profiles. To overcome this constraint, it is suggested
that OSPs facilitate inheriting RDF graphs or reusing metadata profiles to enable the
CB recommender system effectivity across a wider domain of data repositories. This
would allow for achieving interdisciplinary data reusability and collaborations.

On the other hand, CB recommender systems use resource features and metadata
to provide recommendations. This approach can be more robust in handling sparse
datasets and offer personalized suggestions based on the content rather than relying
on user behavior patterns. Furthermore, CB recommender systems can address the
cold start issue more effectively, as they do not require many user interactions to
make meaningful recommendations.

Throughout the investigation, the strive has been to contribute to the expanding
body of literature on RDM, providing valuable insights into the potential of CB
recommender systems in this context. By implementing these systems with stan-
dardized metadata profiles, such as those offered by RDM platforms like Coscine,
researchers can benefit from a more streamlined approach to managing their research
data. This facilitates greater interoperability and discoverability of research artifacts,
ultimately promoting the FAIR principles of research data management.

The findings underscore the importance of further exploration and development of
CB recommender systems in the context of RDM and the need for continued collabo-
ration between researchers, domain experts, and institutions in creating standardized
metadata profiles. By doing so, the research community can continue to enhance
the discoverability and reuse of research data, ultimately driving scientific progress
and innovation.

In light of these findings, it is suggested that CB recommender systems might better
fit the requirements. However, it is essential to note that the choice of the recom-
mender system should be tailored to the specific conditions and constraints of the
problem domain. Further research could explore the potential benefits of a hybrid
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recommender system, combining the strengths of IICF and CB approaches to provide
users with more accurate and personalized recommendations.
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In this Chapter, the key findings of the research are incorporated, revisiting the cen-
tral research questions and examining the implications of the results in the context of
the broader literature on RDM and Open Science processes. Next, this thesis’s main
contributions are presented, encompassing a combination of methodologies, design
criteria for improving RDM practices, and proof of concept through implementations
and case studies. Moreover, potential future research directions that could build
upon and extend the work are outlined, addressing the evolving needs of the RDM
community and further enhancing the effectiveness of OSPs. Finally, by reflecting
on the achievements and limitations of the study, an attempt is made to provide a
comprehensive understanding of the research’s impact and the potential for future
advancements in the field.

6.1 Answering Research Questions

Here, the findings are presented and discussed concerning the research questions
posed at the beginning of this dissertation. By systematically exploring each research
question, various aspects of the proposed framework, methodologies, and design
criteria are clarified, highlighting their effectiveness in enhancing process-aware RDM
activities and modeling the underlying actual practices.

Main Research Question: How to enable discovering and enhancing RDM prac-
tices via modeling the underlying activities?

Figure 6.1 illustrates a comprehensive meta-model encompassing all sub-research ques-
tions and their corresponding research questions. This meta-model is the foundation
for the investigation into enabling the discovery and enhancement of process-aware
RDM activities via modeling the underlying user actions. In Chapter 2, a universal ref-
erence software architecture tailored to OSPs was established to scope the conclusions
and provide a robust and flexible basis for addressing the sub-research questions.
To comprehensively address the main research question, the main research question
is partitioned into five data-driven sub-research questions, each focusing on specific
research gaps pinpointed in the existing literature revealed in Figure 1.1. These
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RQ1 RQ2 RQ3 RQ4 RQ5

Reference RDM
Architecture

Key Data Acquisition
Technique

Semi-Supervised Data
Abstraction

Modeling Process-
Aware activities

Outlining RDM
Operations

Promoting Data
Reusability via RecSys

Architecture Abstraction Discovery EnhancementAcquisition

Figure 6.1: A schematic representation of a meta-model for research questions.

sub-research questions facilitated a systematic and targeted approach, allowing for
a deeper dive into the complexities of research data management processes and chal-
lenges. The findings for these sub-research questions have significantly contributed
to the field of RDM, both methodologically and empirically, through developing
novel approaches and implementing case studies.

The meta-model presented in Figure 6.1 provides a coherent and structured framework
for the investigation, highlighting the interconnectedness of the sub-research questions
and the overarching primary research question. Adopting this meta-model ensured a
comprehensive and cohesive exploration of the research problem, allowing for address-
ing the complex and multifaceted nature of RDM. Furthermore, the findings could
potentially inform and improve RDM practices across various domains, promoting
efficient and effective data management within the broader research community.

Research Question 1: How to overcome the challenges of acquiring datasets suit-
able for process and data analytics from continuously evolving RDM services
while maintaining data quality standards?

The research question was defined in the context of the challenges associated with
dynamic data capturing in distributed environments, focusing on the need for scalable,
maintainable, and high-quality datasets that adhere to data protection laws.

In Chapter 3, the dataset qualities necessary for analyzing user and software interac-
tions in distributed settings are characterized and defined. Correspondingly, a series
of methodologies were proposed to answer the research question, and case studies
were conducted, each offering valuable insights and contributions to the field. Based
on the reference architecture for RDM services, techniques for acquiring datasets
were discussed by instrumentation of Authorization service (Centralized logger) or
extending of Client-Side and Server-Side software components.

The case studies examined in Section 5.1.1 and Section 5.1.2, concentrating on
Centralized logger and Server-Side logger methods, respectively, demonstrated the
effectiveness of presented approaches in providing valuable insights, discovering
process models, identifying bottlenecks, and enabling adaptable datasets for various
data analysis projects from distributed systems. Nevertheless, both methods had
challenges, such as integration and maintenance efforts, system overhead, and issues
analyzing aggregated data.

168



6.1 Answering Research Questions

To overcome the limitations of individual methods, in Section 3.4, a novel methodol-
ogy for acquiring datasets from OSPs by combining and incorporating the strengths
of the Centralized logger and Client-Side logger was introduced.
The Hybrid logger provided a comprehensive view of user activities and software
component executions. It enables adequate accuracy in specifying user behavior on
Client-Side by merely observing traces of software executions captured by the Autho-
rization service. The suggested Hybrid technique generates datasets without needing
cookies, explicitly tracking every user action or finding and excluding irrelevant activ-
ities within distributed systems. However, the methodology also revealed limitations,
such as the lack of capturing events that do not require authorization service for exe-
cution, and discussed the algorithm’s sensitivity towards similar Client activities.
The methodologies and case studies presented, offer valuable insights and provide a
comprehensive approach to addressing the challenges associated with data capturing
in distributed environments. Likewise, the benefits and limitations of all methods are
detailed and presented, indicating their applicability according to a data-driven study.
All established approaches comply with the GDPR requirement of not disclosing
user-specific information using pseudonymized user Ids.

Research Question 2: How to effectively abstract and transform low-level datasets
into interpretable high-level representations for RDM services while balancing
granularity and model fitness?

The research question was defined in the context of the complex and unstructured land-
scape of user processes in institutional OSPs with heterogeneous and distributed IT in-
frastructure. The goal was to propose a methodology that deals with unordered event
data while ensuring the discovery of structured and analyzable process models.
A novel methodology was proposed in Section 4.1, and two case studies were conducted
to answer the research question, each offering valuable insights and contributions to
the field. The offered method adopts a semi-supervised learning approach, utilizing
continuous and discrete data to discover process models and measure the similarity
between activities to help with the task of abstraction and activities reannotation.
The technique accommodates non-sequential events due to the nature of distributed
systems and has successfully abstracted event logs, transforming low-level logs into
high-level representations. By identifying the optimal level of abstraction, an accurate
representation of real-world behaviors was ensured while maintaining sufficient detail
for analysis and interpretation.
The case studies explained in Section 5.2, employed the Hybrid logger to acquire the
sample dataset and demonstrated the approach’s effectiveness in providing mean-
ingful insights into the underlying processes and identifying areas for improvement.
In addition, a correlation was found between model fitness and the accuracy of
signifying user activities based on the corresponding sequence of software component
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executions using the DT and RF machine learning algorithms on the Data Archiving
Tool and Metadata Management Tool, indicating the importance of maintaining a
balance between abstraction and achieving meaningful insights.
In summary, the findings for this research question provide a strong foundation for
future research in abstracting process models for information services while balanc-
ing data granularity with respect to models’ fitness. In addition, the methodology
and case study presented offer valuable insights and a comprehensive approach to
addressing the challenges associated with unordered event data and the discovery
of structured and analyzable process models.

Research Question 3: How can business process intelligence be incorporated into
existing distributed RDM services to provide insights for user and system
activities?

The research question aimed to investigate incorporating BPI algorithms across
available services to deliver insights into hierarchical control-flow modeling of mi-
croservices and software components supporting the Open Science processes. The
goal was to efficiently enable reverse-engineering the non-trivial processes in a de-
centralized landscape of IT systems and provide means to generate RDM process
models based on user activities.
A proposed method led to the development of an information system called DA4RDM
and case studies were conducted to answer the research question, each offering valu-
able insights and contributions to the field. The software architecture for DA4RDM
reviewed in Section 4.2 employs a modular and layered architecture with APIs for
data source handling, pre-processing, process discovery, and user session management.
The choice of design and technologies, including Python, Flask, PM4PY, SqlAlchemy,
and SocketIO, provide flexibility, extensibility, and a rich ecosystem of libraries.
In the case study examined in Section 5.1.1, middleware microservices and services
in the highest demand were identified by evaluating the discovered process model.
Furthermore, hierarchical modeling processes within distributed services allowed for
assessing the impact of newly developed software components on related services
and identifying bottlenecks in the system.
The further case study presented in Section 5.3.1 demonstrates the approach’s effec-
tiveness in providing deep insights into the system’s actual behavior and identifying
services that function independently or as groups.
Moreover, the case study in Section 5.3.2 demonstrates the application of DA4RDM
in providing valuable insights for research data management, including checking
compliance with FAIR principles or RDM processes and identifying areas where de-
viations frequently occur. Analyzing user behavior patterns can determine if certain
activities or stages require more assistance, helping to improve user experience and
provide targeted support.
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In Summary, the findings of this research question provide a strong foundation
for utilizing BPI and its applications in RDM. The methodology and case study
offered valuable insights and a comprehensive approach to addressing the challenges
of incorporating process analytics algorithms across heterogeneous and distributed
services. Despite the limitations and areas for improvement, the proposed practice
has the potential to significantly improve the understanding and optimization of
RDM processes in OSPs.
Research Question 4: How to outline the RDM lifecycle for research projects and

assess its corresponding process-aware requirements in collaborative scientific
platforms?

This research question aimed to utilize the gathered event data to bridge the knowl-
edge gap regarding the actual practices of researchers within OSPs and RDM
guidelines. The goal was to enable visualizing descriptive RDM stages for research
projects while identifying RDM-related requirements using process-aware activities.
Furthermore, outlining the RDM operations would encourage troubleshooting the
potential barriers for each RDM phase and provide self-awareness regarding the
current collective RDM activities within a research project.
A methodology was proposed in Section 4.3, and a case study was conducted to
answer the research question, each offering valuable insights and contributions to the
field. The developed methodology involves discovering and outlining RDM phases
and determining the current RDM phase of a research project using Inductive Miner
and Alignment Analysis as the two most reliable and least expensive methods for
conducting conformance checking.
The case study in Section 5.3.4 demonstrates the proposed methodology’s potential in
outlining RDM phases and determining the current RDM phase of research projects.
The discovered process models and the radar visualization of RDM phases provide
valuable insights into the progression and activities of different research groups. In
addition, the granularity of the collected information and domain knowledge play
crucial roles in the analysis.
The methodology and case study offered valuable insights into discovering the actual
RDM lifecycle via a bottom-up investigation of RDM activities within an OSP,
contributing significantly to understanding and optimizing the RDM process within
a research community. It facilitates locating the researchers’ challenges in complying
with RDM guidelines and principles and assessing their corresponding process-aware
requirements. By incorporating the introduced methodology and domain knowledge,
research steering committees can adapt FAIR guidelines or respond to researchers’
needs within an RDM platform.
Research Question 5: How can recommender systems enhance research data dis-

coverability and reusability in RDM Platforms while maintaining user control
over data artifacts?

171



6 Conclusion

The primary goal was to develop methods to enable the reusing of research data
repositories without compromising sensitive information, leveraging available datasets
on user activities and knowledge graphs.

Two recommender systems were proposed and evaluated in Section 4.4: Content-
Based (CB) and Item-Item Collaborative Filtering (IICF) recommender systems.
The findings suggest that the CB recommender system better suits the specific use
case due to leveraging application profiles (specialized metadata schema) and offering
personalized suggestions based on unstructured content rather than user behavior
patterns, making it more robust in handling sparse datasets and addressing the cold
start issue.

The offered methodologies ensure user control over research data by aggregating
files’ specialized metadata or studying collective user activities rather than looking
into individual classes or pairwise file comparisons. The resulting recommenders
return PIDs as data collections (repository location) that require the data manager’s
explicit authorization to view files.

The case study in Section 5.4 demonstrated that the CB recommender system could
effectively enable the reusability of research data repositories by utilizing RDF-based
graph data models. By leveraging the relationships between research data items and
their selected metadata, the system can significantly improve the discoverability and
reuse of research data, fostering collaboration among researchers and reducing the
replication of efforts and resources in the research community.

Furthermore, the case study presented in Section 5.4.2 utilized the IICF recommender,
which yielded poor results. The study suggests that IICF might not be ideal for
recommending data repositories based on user interaction models. This stems from
IICF’s inherent data sparsity issue, which can compromise recommendation quality
due to inadequate user-resource interactions. Additionally, IICF performance relies
heavily on the quantity and quality of these interactions, which were insufficient in
this context.

The study’s findings contribute to the expanding body of literature on RDM and
provide valuable insights into the potential of CB recommender systems in this
context. Also, by implementing these systems with standardized metadata profiles,
such as those offered by RDM platforms like Coscine, researchers can benefit from a
more streamlined approach to find and reuse research data, promoting the findability
and reusability of FAIR principles.

Finally, the research results highlight the importance of further exploring and de-
veloping CB recommender systems in the context of RDM. Continued collaboration
between researchers, domain experts, and institutions in creating standardized meta-
data profiles is crucial to enhance the discoverability and reuse of research data,
ultimately driving scientific progress and innovation. Future work could investigate
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a Hybrid recommender system, combining the strengths of Item-Item Collaborative
Filtering and CB approaches to provide users with more accurate and personalized
recommendations to foster the reusability of research data collections.

6.2 Contributions

In this dissertation, significant contributions have been made to the body of RDM and
OSPs by introducing novel methodologies, presenting design criteria, and providing
proof of concept through implementations and case studies. The contributions can
be summarized in three prominent folds:

1) A Set of Comprehensive Methodologies: A series of methodologies addressing var-
ious aspects of RDM and OSPs, from acquiring and abstracting datasets
to discovering new knowledge and recommending similar data repositories,
were presented. These methodologies were designed to work together and
complement each other, providing a comprehensive solution for analyzing
process-aware RDM activities. Specifically, the following were introduced:

• A Hybrid logger approach for acquiring datasets from OSPs that combines the
strengths of Centralized logger and Client-Side logger methods.

• A semi-supervised learning approach for abstracting datasets in order to dis-
cover process models and measure the similarities between user activities and
reannotating activity labels in Client-Server applications.

• A modular web-based application (DA4RDM) incorporating business process
intelligence algorithms to discover and assess user and software interactions
across heterogeneous and distributed services.

• A methodology for discovering and outlining the actual RDM lifecycle and
determining the current RDM phase of research projects.

• Two recommender systems for enhancing the findability and reusability of
research data repositories.

2) Design Criteria for Improving RDM Practices: Based on the findings, specific de-
sign criteria and guidelines for improving RDM practices were derived, which
can be applied to various OSPs and RDM providers. These criteria include:

• Identifying and selecting the suitable strategy for acquiring datasets for a
data-driven study, according to a project requirement, while ensuring user
privacy compliance in data acquisition.

• Balancing data granularity and model fitness for process model abstraction
with respect to demands of domain experts.
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• Promoting the use of standardized and inheriting metadata profiles to enable
recommender systems and enhance data discoverability and reusability.

• Fostering collaboration between researchers, domain experts, and institutions
to develop and implement RDM practices by modeling and study of actual
user interaction models.

3) Proof of Concept with Implementations and Case Studies: The applicability and
effectiveness of the proposed techniques and design criteria have been demon-
strated by implementing proof-of-concept solutions and conducting case stud-
ies. The implementations and case studies provided valuable insights into the
real-world applications of the methodologies and confirmed their potential to
improve RDM practices in OSPs. Furthermore, these proof-of-concept solutions
apply to other RDM systems, provided they adhere to the general architecture
of RDM systems.

The contributions of this interdisciplinary study have enabled a more comprehensive
understanding of process-aware RDM activities, which were previously inadequate
and limited. Furthermore, it lays the groundwork for further discipline-oriented
studies, which were before unexplored and ambiguous. The study’s goals have been
achieved in advancing RDM practices by providing guidelines on implementing the
necessary architecture and methodologies to enhance process-aware RDM activities
and services and demonstrating the applicability of these methods to real-world
scenarios. These contributions can be leveraged by researchers, domain experts,
institutions, and OSPs maintainers to enhance the findability, interoperability, and
reusability of research data.

6.3 Outlook

As with any research area, there are opportunities for further advancements and
exploration. This Section provides an outlook on potential work and improvements
that can build upon the findings.

1. Enhancing Data Acquisition Techniques: While the Hybrid logger ap-
proach has demonstrated promising results in acquiring datasets from OSPs,
further refinements could be explored to address its limitations, such as captur-
ing events that do not require authorization service (OAuth) and reducing the
sensitivity of the ELG algorithm towards similar client activities. Developing
new data acquisition techniques and tools with higher privacy and security
compliance would also contribute to the field.
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2. Adapting to Evolving RDM Standards and Practices: As the RDM
landscape evolves, the methodologies and design criteria should be updated
and refined to accommodate new standards, guidelines, and best practices.
This may involve incorporating new data models, metadata standards, and
vocabularies and adapting to changing legal and ethical requirements.

3. Expanding the Scope of Recommender Systems: Future work could
investigate Hybrid recommender systems that combine the strengths of IICF
and CB approaches to provide users with more accurate and personalized rec-
ommendations. Additionally, exploring the integration of other recommender
systems or incorporating contextual information, such as users’ research do-
mains and collaboration networks, could further enhance the recommendations
and foster the reusability of research data collections.

4. Scaling and Optimizing the Proposed Architectures: As OSPs and
RDM systems grow in size and complexity, scalability and optimization of the
proposed architectures will become increasingly important to process large-
scale datasets. Future work could investigate the development of more efficient
algorithms, parallel processing techniques, and distributed computing solutions
to ensure the proposed methodologies can handle the increasing demands of
large-scale RDM systems.

5. Providing complementary Data Provenance Feature: Future work could
explore integrating data provenance techniques into the RDM processes and
OSPs to provide a comprehensive view of the data’s lifecycle, including its
origin, processing history, and ownership. Although the method for discovering
process-aware activities can provide a holistic view of user activities, one still
needs to track (via versioning) and tailor the data changes over time to user
actions to provide a suitable and comprehensive representation to end users.
Incorporating data provenance into RDM systems can enhance data trustwor-
thiness and reproducibility of research results. Developing methodologies to
capture, store, and query provenance information efficiently and effectively
would be valuable to the field.

6. Evaluating the Impact of the Proposed Methodologies: Conducting
long-term evaluations of the impact of my proposed methodologies on RDM
practices and OSPs would provide valuable insights into their effectiveness and
potential areas for improvement. This could involve analyzing the adoption of
the methodologies across different OSPs, their effect on research collaboration
and data reuse, and assessing their impact on the overall research performance.

The contributions made in this dissertation serve as a foundation for tackling the newly
identified areas outlined here. This work has presented a comprehensive data analytics
framework that has established novel methodologies, design criteria, and proof-of-
concept implementations that pave the way for further exploration and improvements
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in RDM and OSPs software architecture. Furthermore, the groundwork has been
laid for future research in these areas by addressing current challenges and providing
practical solutions. This enables the scientific community to delve into these new
directions more effectively and efficiently by extending the presented methodologies,
a task that would have otherwise been challenging without these contributions.
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The datasets and developed applications that have been extensively discussed and
demonstrated in this dissertation are available for further study. The raw datasets
utilized throughout this research can be accessed here [237]. These datasets have been
meticulously curated and processed to ensure their suitability for the various case
studies. The developed web application (DA4RDM) and the source code to Python
packages developed during this research can be accessed here [238]. These software
applications are integral to the research methodologies and findings presented. Both
the datasets and applications have been preserved for long-term availability and can
be accessed by future researchers to replicate the study or to conduct new research
that builds upon this work.

A.1 Screenshots of Case Studies

The case studies under discussion have been effectively executed and functioned
across the subsequent systems.
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DA4RDM

Figure A.1: Dataset source definition and parameters.

Figure A.2: Selection of pre-defined data source and pre-processing pipeline.
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Screenshots of Case Studies

Figure A.3: Discovery of process models and filter options.

Figure A.4: Workflow conformance checking and requirement engineering.
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Figure A.5: Visualization of RDM phases for selected projects within a selected
timeframe.

Coscine Platform

Figure A.6: Coscine login page.
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Screenshots of Case Studies

Figure A.7: Coscine dashboard.

Figure A.8: Coscine project view, listing resources, sub-projects, and members.
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Figure A.9: Resource content view for metadata management.

SimpleArchive Tool

Figure A.10: Interface for archiving research data.
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Figure A.11: List of archived nodes ready to be restored.
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Metadata Manager Tool

Figure A.12: Submitting customized metadata information (Base Application Pro-
file).

Figure A.13: List of metadata entries that are linked with an archived node.
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Figure A.14: Search user interface for metadata.

A.2 Python Packages Developed

The Python packages developed and showcased in this dissertation are readily avail-
able for use, demonstrating their practical applications and ease of integration.
Users can leverage these packages to enhance their projects and streamline various
processes.

Content-Based Recommender System

The DA4RDM_RecSyS_ContentBased is a Python package that recommends related
data collections by leveraging unstructured and explicitly supplied metadata as-
sociated with files. The package’s repository contains a detailed README file
containing in-depth usage guidelines. The package can be accessed publicly at:
https://pypi.org/project/DA4RDM-RecSys-ContentBased/.

1 pip·install·DA4RDM-RecSys-ContentBased

Listing 6: Installation of the package
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1 from·DA4RDM_RecSys_ContentBased·import·preprocessor
2 from·DA4RDM_RecSys_ContentBased·import· c

distance_similarity_calculator↪→

Listing 7: Importing the methods

1 #:param·filepath:·filepath·to·the·csv·file·with·'|'·as· c
the·seperator↪→

2 #:param·features:·array·of·features·to·consider
3 #:param·seperator:·the·seperator·used·when·loading·the· c

csv-file↪→

4 #:param·encoder:·set·the·language·model:· c
'mobilebert_multi_cased'·or·'bert_multi_cased'↪→

5 #:param·minmaxScaleFlage:·minmax·scaling·resource·vector
6 #:param·debug:·debug·mode
7 #:return:·a·preprocessed·pandas.Dataframe
8
9 df·=·preprocessor.loadAndPreprocess_function(· c

filepath="PATH",·features=['Predicate-1',·''Predicate-
2',·''Predicate-3',·''Predicate-4',·''Predicate-
5'],debug=False·)

↪→

↪→

↪→

Listing 8: Usage example- load and preprocess the dataset

1 #:param·df:·preprocessed·dataframe
2 #:param·key:·compare·resources·to·this·key
3 #:param·distanceMethod:·'euclidean'·or·'cosine'·distance
4 #:param·sortAscending:·True·=·sort·output·ascending
5 #:param·DEBUG_MODE:·debug·mode
6 #:param·outputFormatJson:·Trigger·Json·format
7 #:return:·relative·distance·between·key·and·furthest· c

resource↪→

8
9 jsonOutPut·=· c

distance_similarity_calculator.result_function(·df,· c
"Key-Resource-Id",·distanceMethod="euclidean",· c
outputFormatJson=True,·DEBUG_MODE=False·)

↪→

↪→

↪→

Listing 9: Distance similarity calculator
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1 {"distance":{
2 "Key-Resource-Id":0.0,
3 "302231B4...":0.13,
4 "4EFD8371...":0.34,
5 "F8BE75F7...":0.36,
6 "FAF13DF1...":0.36,
7 "24CE68AD...":0.43,
8 "632AD746...":0.44
9 }}

Listing 10: Example JSON output

Collaborative Filtering Recommender System

The DA4RDM_RecSys_UserBased is a Python package designed to recommend data-
collections by analyzing user behavior patterns toward data-collections and conducting
an exploratory examination of user-resource interactions. The package’s repository
contains a comprehensive README file with detailed usage instructions. The package
is publicly available at: https://pypi.org/project/DA4RDM-RecSys-UserBased/.

1 pip·install·DA4RDM-RecSys-UserBased

Listing 11: Installation of the package

1 from·DA4RDM_RecSys_UserBased·import·get_recommendation

Listing 12: Importing the method

187

https://pypi.org/project/DA4RDM-RecSys-UserBased/


Appendix

1 ····#:param·datapath:·filepath·to·the·csv·file,·a·string·is·expected
2 #:param·ref_user:·the·user·for·which·resources·are·to·be· c

recommended↪→

3 #:param·num_recommendation:·number·of·recommendations
4 #:param·outlier_detection_method:·percentile,·zscore·,·iqr
5 #:return:·a·json·file·with·resource·recommendation
6
7 jsonOutPut·=·get_recommendation.get_recommendations(·"PATH",·"Key-

User-Id",·3,·"percentile"·)↪→

Listing 13: Usage example- preprocess and recommendations

1 {"Recommendations":·{
2 "Ref_User_ID":·"Key-User-Id",
3 "Recommendations":·[
4 ["54tc274h...",·0.73],
5 ["e5vf5007...",·0.42],
6 ["b56ednkj...",·0.02]]
7 }}

Listing 14: Example JSON output

RDM Visualizer (Processed Based)

The DA4RDM_Vis_ProcessBased is a Python package designed to calculate and de-
termine RDM phases for a specified project ID according to user interactions of
collective project members. The package ultimately offers a radar visualization. The
package’s repository contains a comprehensive README file providing detailed usage
guidelines. The package is publicly accessible at: https://pypi.org/project/DA4RDM-
Vis-ProcessBased/.

1 pip·install·DA4RDM_Vis_ProcessBased

Listing 15: Installation of the package

1 from·DA4RDM_Vis_ProcessBased·import·Vizualize

Listing 16: Importing the method
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1 #:param·dataset_user_interactions:·filepath·to·the·csv· c
file↪→

2 #:param·project_id:·the·key·project·to·be·evaluated
3 #:param·earliest_timestamp:·the·earliest·timestamp·to· c

consider·for·filtering·records↪→

4 #:param·last_timestamp:·the·latest·timestamp·to·consider· c
for·filtering·records↪→

5 #:return:·path·to·RDM·visualization·in·png·format
6
7 RdmPath·=·Visualize.process_vis(·"PATH",·"Key-Project-

Id",·"timestamp-end",·"timestamp-start"·)↪→

Listing 17: Usage example- processing and return of the RDM visualization
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