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Abstract
The modeling of damage as an anisotropic phenomenon enables the consid-
eration of arbitrarily oriented microcracks at the material point level. Yet, the
incorporation of material softening into structural simulations still requires a
regularization of for example, the degrading variable. There exist different possi-
bilities for a regularization in case of anisotropic damage with varying numbers
of nonlocal degrees of freedom corresponding to for example, the symmetric
integrity tensor , the principal traces of the damage tensor or a scalar damage
hardening variable. Here, we propose a finite strain formulation with a symmet-
ric second order damage tensor of which all six independent components are
regularized with a corresponding nonlocal degree of freedom. Due to the sig-
nificant increase in computational cost caused by the full regularization of the
damage tensor, alternative approaches for a reduced regularization with fewer
nonlocal degrees of freedom are discussed. Thereafter, the results of a numerical
example using the model with full regularization are presented.

1 INTRODUCTION

The incorporation of softening phenomena into structural simulations [1–3] can lead to undesirable occurrences of
localization (e.g., [4]), especially when material degradation in the form of damage is considered (e.g., [5]). A remedy
for isotropic damage models was proposed by Dimitrijevic et al.[6] and [7] in the form of gradient-extended mod-
els that introduce an additional nonlocal field which is coupled to the local damage variables and, thereby, ensures
a regularization.
Furthermore, current research is primarily concerned with the modeling of anisotropic material degradation at finite

strains (e.g., [8, 9]) and the search for efficient regularization techniques for softening phenomena (e.g., [10, 11]). Here, the
presentedmodel utilizes a second order damage tensor and a finite strain formulation and is applied to purely mechanical
problems. In future, the anisotropic damagemodeling can be incorporated intomultiphysical process simulations (e.g., [12,
13]) and medical applications (e.g., [14]).
In Section 2, we present the model’s constitutive framework and in Section 3 the corresponding weak forms. Then, we

apply the model in a structural simulation in Section 4 and, finally, provide a conclusion in Section 5.
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2 CONSTITUTIVEMODELING

2.1 Gradient-extension

In this work, damage is described by a symmetric second order damage tensor with six independent components. Inspired
by [1], we chose a full regularization of the damage tensor by introducing six additional nonlocal degrees of freedom 𝐷̄xx,
𝐷̄yy, 𝐷̄zz, 𝐷̄xy, 𝐷̄xz, 𝐷̄yz following the micromorphic approach of [7, 15].
However, this type of regularization requires the consideration of six additional balance equations (cf. Section 3) and

affects computational efficiency. Therefore, other regularization methods with three (using the principal traces of the
damage tensor, cf. [2]) or just one nonlocal degree of freedom (using the accumulated damage, cf. [3]) will be investigated
in future works and examined with respect to their accuracy.

2.2 Helmholtz free energy

The model is based on a Helmholtz free energy that consists of four terms: the elastic energy 𝜓𝑒 depending on the right
Cauchy-Green tensor 𝑪 and the damage tensor 𝑫; the isotropic damage hardening energy 𝜓𝑑 depending on the accumu-
lated damage 𝜉𝑑; the additional damage hardening energy 𝜓ℎ depending on the eigenvalues of the damage tensor 𝑫; the
nonlocal energy term depending on the damage tensor 𝑫, the nonlocal quantities 𝐷̄xx, 𝐷̄yy, 𝐷̄zz, 𝐷̄xy, 𝐷̄xz, 𝐷̄yz and their
corresponding gradients. Thus, it reads

𝜓 = 𝜓𝑒 (𝑪,𝑫) + 𝜓𝑑 (𝜉𝑑) + 𝜓ℎ (𝑫) + 𝜓𝑑

(
𝑫, 𝐷̄xx, Grad (𝐷̄xx) , 𝐷̄yy, Grad

(
𝐷̄yy

)
, 𝐷̄zz, Grad

(
𝐷̄zz

)
, …

𝐷̄xy, Grad
(
𝐷̄xy

)
, 𝐷̄xz, Grad

(
𝐷̄xz

)
, 𝐷̄yz, Grad

(
𝐷̄yz

) )
. (1)

2.3 Clausius-Duhem inequality

The Clausius-Duhem inequality, including the micromorphic extension (cf. [7, 15]), reads

− 𝜓̇ +
1

2
𝑺 ∶ 𝑪̇ + 𝑎xx ̇̄𝐷xx + 𝒃xx ⋅ Grad

(
̇̄𝐷xx

)
+ 𝑎yy ̇̄𝐷yy + 𝒃yy ⋅ Grad

(
̇̄𝐷yy

)
+ 𝑎zz ̇̄𝐷zz + 𝒃zz ⋅ Grad

(
̇̄𝐷zz

)
⋯

+ 𝑎xy ̇̄𝐷xy + 𝒃xy ⋅ Grad
(
̇̄𝐷xy

)
+ 𝑎xz ̇̄𝐷xz + 𝒃xz ⋅ Grad

(
̇̄𝐷xz

)
+ 𝑎yz ̇̄𝐷yz + 𝒃yz ⋅ Grad

(
̇̄𝐷yz

) ≥ 0. (2)

After inserting the time derivative of Equation (1) into Equation (2), it serves to derive the state laws of the second Piola-
Kirchhoff stress

𝑺 = 2
𝜕𝜓

𝜕𝑪
(3)

and the generalized micromorphic stresses

𝑎xx =
𝜕𝜓

𝜕𝐷̄xx
, 𝒃xx =

𝜕𝜓

𝜕Grad (𝐷̄xx)
, 𝑎yy =

𝜕𝜓

𝜕𝐷̄yy
, 𝒃yy =

𝜕𝜓

𝜕Grad
(
𝐷̄yy

) ,

𝑎zz =
𝜕𝜓

𝜕𝐷̄zz
, 𝒃zz =

𝜕𝜓

𝜕Grad
(
𝐷̄zz

) , 𝑎xy =
𝜕𝜓

𝜕𝐷̄xy
, 𝒃xy =

𝜕𝜓

𝜕Grad
(
𝐷̄xy

) ,

𝑎xz =
𝜕𝜓

𝜕𝐷̄xz
, 𝒃xz =

𝜕𝜓

𝜕Grad
(
𝐷̄xz

) , 𝑎yz =
𝜕𝜓

𝜕𝐷̄yz
, 𝒃yz =

𝜕𝜓

𝜕Grad
(
𝐷̄yz

) . (4)
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After defining the mechanical and generalized stresses, the reduced dissipation inequality reads

𝒀 ∶ 𝑫̇ + 𝑅𝑑 𝜉̇𝑑 ≥ 0 (5)

where the definitions 𝒀 = −𝜕𝜓∕𝜕𝑫 and 𝑅𝑑 = −𝜕𝜓∕𝜕𝜉𝑑 hold.

2.4 Damage onset criterion and evolution equations

The damage onset criterion is defined following [2] as

Φ𝑑 ∶=
√
3
√
𝒀+ ∶ 𝔸 ∶ 𝒀+ − (𝑌0 − 𝑅𝑑) ≤ 0 (6)

where 𝒀+ denotes the positive semi-definite part of 𝒀 and𝔸 an interaction tensor with𝔸𝑖𝑗𝑘𝑙 = (𝛿𝑖𝑘 − 𝐷𝑖𝑘)(𝛿𝑗𝑙 − 𝐷𝑗𝑙) [16].
The evolution equations of the internal variables follow in an associative manner as

𝑫̇ = 𝛾̇𝑑
𝜕Φ𝑑

𝜕𝒀
, 𝜉̇𝑑 = 𝛾̇𝑑

𝜕Φ𝑑

𝜕𝑅𝑑
(7)

where 𝛾̇𝑑 is a Lagrange multiplier that is defined according to the Karush-Kuhn-Tucker conditions

𝛾̇𝑑 ≥ 0, Φ𝑑 ≤ 0, 𝛾̇𝑑Φ𝑑 = 0. (8)

2.5 Specific energies

The elastic energy 𝜓𝑒 is chosen in line with Reese et al. [17] and is able to fulfill the damage growth criterion of [18] for
anisotropic damage at finite strains. The energy consists of a ‘classical’ Neo-Hookean energy 𝜓NH that is multiplied by a
combined degradation function that can account for isotropic and anisotropic degradation behavior:

𝜓𝑒 = ((1 − 𝑘ani)𝑓iso + 𝑘ani 𝑓ani)𝜓NH (9)

The material parameter 𝑘ani ∈ [0, 1] controls the degree of anisotropy and 𝑘ani = 0 describes isotropic and 𝑘ani = 1

anisotropic damage. The isotropic degradation function 𝑓iso is defined as (see ref. [17])

𝑓iso ∶=

(
1 −

tr(𝑫)

3

)2

(10)

and the anisotropic degradation function as

𝑓ani ∶= 1 −
tr
(
𝑪2𝑫

)
tr(𝑪2)

. (11)

The damagehardening energy𝜓𝑑 accounts for linear andnonlinear isotropic hardening effects (see e.g., [17, 19]).Moreover,
the additional damage hardening energy 𝜓ℎ is formulated in terms of the eigenvalues of the damage tensor𝐷𝑖 and ensures
that these do not exceed the value of one (see refs. [2, 3]).
The energy of the micromorphic contribution 𝜓𝑑 (cf. [7, 15]) reads for six nonlocal degrees of freedom

𝜓𝑑 =
𝐻xx
2
(𝐷xx − 𝐷̄xx)

2
+
𝐴xx
2
Grad (𝐷̄xx) ⋅ Grad (𝐷̄xx)

+
𝐻yy

2

(
𝐷yy − 𝐷̄yy

)2
+
𝐴yy

2
Grad

(
𝐷̄yy

)
⋅ Grad

(
𝐷̄yy

)
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+
𝐻zz
2

(
𝐷zz − 𝐷̄zz

)2
+
𝐴zz
2
Grad

(
𝐷̄zz

)
⋅ Grad

(
𝐷̄zz

)

+
𝐻xy

2

(
𝐷xy − 𝐷̄xy

)2
+
𝐴xy

2
Grad

(
𝐷̄xy

)
⋅ Grad

(
𝐷̄xy

)

+
𝐻xz
2

(
𝐷xz − 𝐷̄xz

)2
+
𝐴xz
2
Grad

(
𝐷̄xz

)
⋅ Grad

(
𝐷̄xz

)

+
𝐻yz

2

(
𝐷yz − 𝐷̄yz

)2
+
𝐴yz

2
Grad

(
𝐷̄yz

)
⋅ Grad

(
𝐷̄yz

)
(12)

where 𝐻𝑥𝑥, 𝐻𝑦𝑦 , 𝐻𝑧𝑧, 𝐻𝑥𝑦 , 𝐻𝑥𝑧, 𝐻𝑦𝑧 are numerical penalty parameters and 𝐴𝑥𝑥, 𝐴𝑦𝑦 , 𝐴𝑧𝑧, 𝐴𝑥𝑦 , 𝐴𝑥𝑧, 𝐴𝑦𝑧 gradient
material parameters.

3 WEAK FORMS

Additionally to the weak form of the balance of linear momentum (Equation (13)), the weak forms of six scalar-valued
micromorphic balance equations (Equations (14)–(19)) have to be solved at the global level:

𝑔𝑢 ∶= ∫
Ω0

𝑺 ∶ 𝛿𝑬 d𝑉 − ∫
Ω0

𝒇0 ⋅ 𝛿𝒖 d𝑉 − ∫
Γ𝑡0

𝒕0 ⋅ 𝛿𝒖 d𝐴 = 0 (13)

𝑔𝑑1 ∶= ∫
Ω0

𝛿𝐷̄xx𝐻xx (𝐷xx − 𝐷̄xx) − Grad (𝛿𝐷̄xx) ⋅ 𝐴xxGrad (𝐷̄xx) d𝑉 = 0 (14)

𝑔𝑑2 ∶= ∫
Ω0

𝛿𝐷̄yy𝐻yy
(
𝐷yy − 𝐷̄yy

)
− Grad

(
𝛿𝐷̄yy

)
⋅ 𝐴yyGrad

(
𝐷̄yy

)
d𝑉 = 0 (15)

𝑔𝑑3 ∶= ∫
Ω0

𝛿𝐷̄zz𝐻zz
(
𝐷zz − 𝐷̄zz

)
− Grad

(
𝛿𝐷̄zz

)
⋅ 𝐴zzGrad

(
𝐷̄zz

)
d𝑉 = 0 (16)

𝑔𝑑4 ∶= ∫
Ω0

𝛿𝐷̄xy𝐻xy
(
𝐷xy − 𝐷̄xy

)
− Grad

(
𝛿𝐷̄xy

)
⋅ 𝐴xyGrad

(
𝐷̄xy

)
d𝑉 = 0 (17)

𝑔𝑑5 ∶= ∫
Ω0

𝛿𝐷̄xz𝐻xz
(
𝐷xz − 𝐷̄xz

)
− Grad

(
𝛿𝐷̄xz

)
⋅ 𝐴xzGrad

(
𝐷̄xz

)
d𝑉 = 0 (18)

𝑔𝑑6 ∶= ∫
Ω0

𝛿𝐷̄yz𝐻yz
(
𝐷yz − 𝐷̄yz

)
− Grad

(
𝛿𝐷̄yz

)
⋅ 𝐴yzGrad

(
𝐷̄yz

)
d𝑉 = 0 (19)

The set of Equations (13)–(19) emphasizes the increased numerical effort when considering six additional nonlocal degrees
of freedom and motivates the investigation of more efficient gradient extensions (cf. Section 2.1).

4 NUMERICAL EXAMPLE

The structural example considers a symmetrically notched specimen (see Figure 1A) which is clamped at both ends and
pulled in vertical direction. Due to symmetry, only one fourth of the specimen is considered in the numerical investigation
and symmetry boundary conditions are applied (see Figure 1B).
The dimensions read 𝓁 = 50 [mm], 𝑤 = 18 [mm], 𝑟 = 5 [mm] and the thickness is 1 [mm]. Furthermore, plane strain

conditions are employed. The elastic material parameters readΛ = 25000 [MPa], 𝜇 = 55000 [MPa], the damage threshold
𝑌0 = 30 [MPa], the degree of anisotropy 𝑘ani = 1 [–], the isotropic damage hardening parameters 𝑟𝑑 = 40 [MPa], 𝑠𝑑 = 10

[–], 𝐻𝑑 = 10 [MPa], the additional damage hardening parameters 𝐾ℎ = 0.1 [MPa], 𝑛ℎ = 2 [–], 𝑎ℎ = 0.999999 [–] and the
micromorphic penalty and gradient parameters𝐻𝑖 = 105 [MPa] and𝐴𝑖 = 5000 [MPa] for all nonlocal degrees of freedom.
Additionally, we consider an artificial viscosity 𝜂𝑣 = 10 [MPa s].
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(A) (B)

F IGURE 1 Geometry and boundary value problem of the symmetrically notched specimen. Only one quarter of the full specimen is
considered in the simulation of the boundary value problem.

Figure 2 shows the plot of the sum of vertical forces 𝐹 at the top edge over the vertical displacement 𝑢 of the top edge.
The simulations were conducted using seven different meshes with mesh refinement at the position of the crack with 374,
966, 1366, 2201, 2906, 4489, and 10667 elements. Convergence is already obtained with coarse meshes and the difference
with respect to the maximum force of the mesh with 374 elements and the mesh with 10667 elements amounts to + 0.19

%.
In Figure 3, the states of crack initiation as well as partial and complete failure are presented for the components 𝐷𝑥𝑥

(horizontal) and 𝐷𝑦𝑦 (vertical). The cracks initiate at the notches and propagate horizontally towards the middle of the
specimenwhere they coalesce. Since the specimen is loaded in vertical direction, the vertical component𝐷𝑦𝑦 evolves faster
than 𝐷𝑥𝑥 during crack propagation. However, the complete failed state is described by 𝑫 = 𝑰 and, thus, 𝐷𝑥𝑥 = 𝐷𝑦𝑦 = 1.

F IGURE 2 Mesh convergence study for the simulations of the symmetrically notched specimen. The forces are normalized with respect
to the maximum force of the finest mesh (10667 elements) with 𝐹max = 5.9678 × 104 N.
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VAN DER VELDEN et al. 6 of 7

F IGURE 3 Evolution of the horizontal 𝐷𝑥𝑥 (top row) and vertical 𝐷𝑦𝑦 (bottom row) component of the damage tensor 𝑫 for the finest
mesh (10667 elements) plotted on the deformed configuration. The undeformed configuration is plotted in the background with solid color.

5 CONCLUSION

In this paper, we presented a material formulation considering anisotropic damage at finite strains. The model is regu-
larized by six nonlocal degrees of freedom each of which corresponds to one independent component of the symmetric
damage tensor. Then, the model is applied to the investigation of a symmetrically notched specimen and yields mesh
independent results. In future works, we will investigate model formulations with a reduced number of nonlocal degrees
of freedom in order to increase the computational efficiency.
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