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Abstract 

In recent decades, the amount of openly available geodata has increased exponentially. To a large part, 

this can be attributed to the technological progress in satellite remote sensing, producing world-wide 

coverage from a large variety of sensors on a sub-daily basis. In addition, improved accessibility and a 

growing user base have favoured methodological advances in geospatial analysis as well as an increase 

in the number of derived products such as, e.g., land cover classifications. While this opens up new 

opportunities for geospatial applications, the vast amounts of geodata also challenge studies in terms 

of selection, filtering, harmonizing, processing and interpretation. To fully utilize the opportunities that 

the increasing amount of geodata offers while tackling its challenges, new and innovative 

methodologies for different geospatial applications are needed. This cumulative dissertation is a 

contribution to this goal in the fields of environmental science and geoarchaeology. It presents three 

novel and experimental approaches on how to effectively utilize a large variety and/or long time series 

of geodatasets and analyse them sensibly within the framework of a specific research question.  

The first approach explores the possibilities and limitations of assessing complex aeolian dune field 

morphology and evolution using synthetic aperture radar (SAR) satellite data. This study relies on the 

Sentinel-1 mission, which acquires data in volumes of approximately 600 gigabytes per day. To analyse 

this continuous stream of geospatial big data, the study examines the key interaction mechanism 

between C-Band radar and sand dunes and introduces a visual pattern extraction method based on 

continuous wavelet transfer. This novel method is applied to the Western Mongolian dune field Bor 

Khyar. The results give new insights into the temporal and spatial dynamics of dune scales and their 

response to aeolian activity, revealing local differences as well as inter- and intra-annual variations in 

the dune morphology. 

The second approach is a methodological contribution to the field of archaeological predictive 

modelling. The main challenge of this study is the extraction of a thematic pattern from a small sample 

of 23 available Upper Palaeolithic sites in Lower Austria. This is achieved using a novel approach 

combining a classical deductive method with the capabilities of machine learning. This way, ten spatial 

predictors representing morphological, hydrological, and sedimentological factors of the paleo-

environment are analysed for optimal, viable, and non-viable value ranges and combined 

mathematically. The resulting predictive model reveals several spatial dynamics of site probability and 

shows high compliance with known sites in the study area.  

In stark contrast to this study, which is challenged by the small number of available sites, the third 

study conducts geoarchaeological pattern extraction based on a substantially bigger dataset of close 

to 4200 European Upper and Final Palaeolithic sites. The main aim of this study is to explore whether 
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the site distribution is representative of human distribution in the paleo-landscape or if sampling biases 

obscure this information. To this goal, eight Pan-European geodatasets representing both settlement-

relevant factors of the paleo-environment and discovery-relevant biases of the modern to 

contemporary landscape are analysed using a combination of geospatial and geostatistical methods. 

The results show that the actual distribution of sites seems to be most strongly influenced by sampling 

biases. The influence of the settlement factor, however, is still significant when comparing site subsets 

from different regions, different Upper Palaeolithic periods, and, especially, between open-air and 

cave sites. The implications of this study are substantial for geoarchaeological approaches, as the 

sampling bias is often overlooked or underestimated as a factor actively influencing the distribution of 

known sites.  

All three approaches present a novel methodological approach in their respective field of study and 

outline a workflow that can be adapted and built on. For the availability to a broader audience, all 

studies are published as open access. In addition, the results of both geoarchaeological approaches 

are distributed as open data in universally usable geodata formats. As such, they can serve as 

foundation and inspiration for many future studies that utilize geospatial big data for environmental 

and geoarchaeological research.   
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Zusammenfassung 

In den letzten Jahrzehnten ist die Menge frei verfügbarer Geodaten exponentiell gestiegen. Dies ist zu 

einem großen Teil auf den technologischen Fortschritt in der Satellitenfernerkundung zurückzuführen, 

die eine weltweite Abdeckung durch eine Vielzahl von Sensoren auf einer sub-täglichen Basis 

ermöglicht. Darüber hinaus haben die bessere Zugänglichkeit und eine wachsende Nutzerbasis 

methodische Fortschritte bei der Geodatenanalyse sowie eine Zunahme der Zahl abgeleiteter 

Produkte wie z. B. Klassifizierungen der Bodenbedeckung begünstigt. Dies eröffnet zwar neue 

Möglichkeiten für raumbezogene Anwendungen, die riesigen Mengen an Geodaten stellen jedoch 

auch eine Herausforderung für Studien in Bezug auf Auswahl, Filterung, Harmonisierung, Verarbeitung 

und Interpretation dar. Um die Möglichkeiten, die die zunehmende Menge an Geodaten bietet, voll 

auszuschöpfen und gleichzeitig die damit verbundenen Herausforderungen zu bewältigen, werden 

neue und innovative Methoden für verschiedene Geodatenanwendungen benötigt. Diese kumulative 

Dissertation ist ein Beitrag zu diesem Ziel in den Bereichen Umweltwissenschaften und 

Geoarchäologie. Sie stellt über drei neuartige und experimentelle Ansätze vor, wie man eine große 

Vielfalt und/oder lange Zeitreihen von Geodatensätzen effektiv nutzen und im Rahmen einer 

spezifischen Forschungsfrage sinnvoll auswerten kann. 

Der erste Ansatz untersucht die Möglichkeiten und Limitierungen der Erfassung von Morphologie und 

Morphodynamik komplexer äolischer Dünenfelder anhand von Radarsatellitendaten. Diese Studie 

stützt sich auf die Sentinel-1-Mission, die Daten in einer Größenordnung von etwa 600 Gigabyte pro 

Tag sammelt. Zur Analyse dieses kontinuierlichen Stroms von Geodaten werden in der Studie die 

wichtigsten Interaktionsmechanismen zwischen C-Band-Radar und Sanddünen untersucht und eine 

Methode zur visuellen Musterextraktion auf der Grundlage eines kontinuierlichen Wavelet-Transfers 

eingeführt. Diese neuartige Methode wird auf das westmongolische Dünenfeld Bor Khyar angewendet. 

Die Ergebnisse geben neue Einblicke in die zeitliche und räumliche Dynamik der äolischen Formen auf 

unterschiedlicher Skalenebene und ihre Reaktion auf äolische Aktivitäten, indem sie lokale 

Unterschiede sowie inter- und intra-jährliche Variationen in der Dünenmorphologie aufzeigen. 

Der zweite Ansatz ist ein methodischer Beitrag im geoarchäologischen Fachbereich des predictive 

modelling. Die größte Herausforderung dieser Studie ist die Extraktion eines thematischen Musters 

aus einer kleinen Stichprobe von 23 verfügbaren oberpaläolithischen Fundstellen in Niederösterreich. 

Dies wird durch einen neuartigen Ansatz erreicht, der eine klassische deduktive Methode mit den 

Möglichkeiten des maschinellen Lernens kombiniert. Auf diese Weise werden zehn räumliche 

Prädiktoren, die morphologische, hydrologische und sedimentologische Faktoren der Paläo-

Umgebung repräsentieren, auf optimale, tragbare und nicht tragbare Wertebereiche untersucht und 
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mathematisch kombiniert. Das daraus resultierende Vorhersagemodell beleuchtet verschiedene 

räumliche Dynamiken der Standortwahrscheinlichkeit und weist eine hohe Übereinstimmung mit 

bekannten Standorten im Untersuchungsgebiet auf. 

Im Gegensatz zu dieser Studie, die primär durch die geringe Anzahl verfügbarer Fundstellen limitiert 

ist, wird in der dritten Studie eine geoarchäologische Musterextraktion auf der Grundlage eines 

wesentlich größeren Datensatzes von fast 4200 europäischen jung- und spätpaläolithischen 

Fundstellen durchgeführt. Das Hauptziel dieser Studie ist es, zu untersuchen, ob die Verteilung der 

Fundstellen repräsentativ für die Verteilung der Menschen in der Paläolandschaft ist oder ob 

Stichprobenverzerrungen diese Informationen überlagern. Zu diesem Zweck werden acht 

paneuropäische Geodatensätze, die sowohl siedlungsrelevante Faktoren der Paläoumwelt als auch 

entdeckungsrelevante Verzerrungen der modernen bis zeitgenössischen Landschaft repräsentieren, 

mit einer Kombination aus räumlichen und geostatistischen Methoden analysiert. Die Ergebnisse 

zeigen, dass die tatsächliche Verteilung der Fundstellen am stärksten von Stichprobenverzerrungen 

beeinflusst zu sein scheint. Der Einfluss des Siedlungsfaktors ist jedoch immer noch signifikant beim 

Vergleich zwischen Teilmengen von Fundstellen aus verschiedenen Regionen, verschiedenen 

oberpaläolithischen Perioden und insbesondere zwischen Freiland- und Höhlenfundstellen. Die 

Auswirkungen dieser Studie sind für zukünftige geoarchäologische Ansätze von großer Bedeutung, da 

der Stichprobenfehler als Faktor, der die Verteilung der bekannten Fundstellen aktiv beeinflusst, oft 

übersehen oder unterschätzt wird. 

Alle drei Ansätze stellen einen neuartigen methodischen Ansatz in ihrem jeweiligen Fachgebiet dar und 

vermitteln einen klar definierten Arbeitsablauf, der in zukünftigen Studien angepasst und weiter 

ausgebaut werden kann. Um einem breiten Publikum zugänglich zu sein, sind alle Studien frei 

verfügbar als Open Access veröffentlicht. Darüber hinaus stehen die Ergebnisse der zwei 

geoarchäologischen Ansätze als Open Data in universell nutzbaren Geodatenformaten zum Download 

bereit. Dadurch können sie als Grundlage und Inspiration für viele künftige Studien dienen, die 

geospatial big data für Umwelt- und geoarchäologische Forschungsansätze nutzen.  
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1 Introduction 

1.1 Research framework and outline 

Environmental science and geoarchaeology were amongst the first disciplines to implement 

geographical information systems (GIS) for the processing of spatial data (see e.g. Allen et al. 1990; 

Blumberg 1998). While both shared the enthusiasm for aerial imagery as early as in the 1960s, a broad 

implementation was only reached in the 1980s with the introduction of commercially available GIS 

software. In this timeframe, GIS applications in geoarchaeology focussed mostly on artefact inventory 

and distribution and predicting locations of yet undiscovered sites (González-Tennant 2016). GIS for 

environmental approaches in these early stages was primarily used by environmental agencies and 

forestry companies, managing their spatial inventories with administrative data and aerial imagery 

(Goodchild 2003).  

The 1980s also marked the beginning of the continuous mapping of the earth’s surface from space, 

starting with the Thematic Mapper (TM) class of Landsat sensors by National Aeronautics and Space 

Administration (NASA) (Markham et al. 2004; Senthil Kumar et al. 2013). Since then, numerous 

additional earth observation missions have been launched (Rast and Painter 2019), and both the public 

and private sector have compiled geospatial datasets of unprecedented sizes. While the public sector 

primarily collects geospatial data that serves an administrative purpose (Lansley et al. 2017), the 

private sector monetarises geospatial information by e.g. launching satellites and selling the imagery 

(Fu et al. 2019). The term geospatial data describes digital information with a spatial reference such as 

coordinates. While access to a subset of geospatial data is reserved for certain institutions or locked 

behind a paywall, a clear trend towards open access can be observed in recent decades (Mobasheri et 

al. 2020). Most of these open geodata are distributed in a plethora of different formats via a vast field 

of platforms. However, some effort has been made in order to harmonize geodata within spatial data 

infrastructures, e.g., within the European INSPIRE directive (Vancauwenberghe and van Loenen 2018; 

Minghini et al. 2021).  

The first approaches that utilized this new source of earth surface information in geoarchaeology were 

mostly focussing on the manual extraction of archaeological features (Giardino 2011; Leisz 2013). In 

environmental science, early implementations of Landsat imagery primarily aimed at mapping the 

earth’s surface by e.g. quantifying land surface vegetation using simple vegetation indices (Goward 

and Williams 1997). Since then, in order to cope with the increasing volumes of geospatial data, the 

methodological agendas in environmental science and geoarchaeology have shifted from labour-

intensive manual procedures towards supervised and automated processes, in some cases assisted by 

machine learning algorithms (McCoy and Ladefoged 2009; Gibert et al. 2018; Opitz and Herrmann 
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2018). In addition, as datasets become too big and methodologies too complex to be handled by 

regular local hardware, geospatial processing is outsourced towards powerful web-based platforms. 

The most popular platform for remote sensing applications is the Google Earth Engine (GEE) (Amani et 

al. 2020), which promises “planetary-scale geoprocessing for everyone” (Gorelick et al. 2017).  

The large supply of openly accessible geodata and the wide field of available methods result in an 

unprecedented number of opportunities for local, regional, national, and international environmental 

and geoarchaeological studies. Researchers who want to seize these opportunities, however, are faced 

with entirely new challenges in terms of data selection, handling, processing, and interpretation, each 

requiring an informed decision and thus setting new requirements for trained professionals. These 

challenges are addressed in the research question of this cumulative dissertation:  

How can geospatial big data be utilized effectively in the framework of environmental and 

geoarchaeological research questions? 

This research question was the common denominator of all projects carried out during the authors 

three-year doctoral programme in the Chair of Physical Geography and Geoecology, Department of 

Geography, RWTH Aachen University. During this programme, the author published three studies in 

international peer-reviewed journals, which form the main body of this dissertation thesis. The first 

study presented in this thesis is an exploratory approach in the field of environmental science, 

assessing the possibilities and limitations of dune field observation and monitoring with radar imagery 

and applying the approach to a study area in Western Mongolia (Boemke et al. 2023b). The second 

study presents a geoarchaeological approach that combines a classical deductive method with 

machine learning to create a predictive model for Upper Palaeolithic sites from very limited 

archaeological evidence in Lower Austria (Boemke et al. 2022). The third study aims at differentiating 

between the influence of settlement-relevant factors of the paleo-landscape and modern to 

contemporary sampling biases on the Upper and Final Palaeolithic record based on a large Pan-

European archaeological dataset (Boemke et al. 2023a). 

The main commonplace between the three studies is that they all present interdisciplinary, novel, and 

experimental approaches on how to implement and analyse a large variety and/or long time series of 

geospatial datasets within the framework of an environmental or geoarchaeological research question. 

In addition, all studies place their main emphasis on the methodology, focussing on reproducibility and 

defining a foundation for a continuation of research within the topic. This is additionally emphasised 

by the publication as open access and the distribution of both geoarchaeological datasets as open data. 

Another similarity between both studies in the field of geoarchaeology is the type of geospatial data 

that they are based on, as both use a large variety of morphological and sedimentological datasets to 
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approximate the paleo-environment. Both studies also aim at extracting spatial and thematic patterns 

from the used environmental datasets via point-based archaeological site databases. In contrast, the 

first study on dune assessment extracts multi-temporal patterns via profiles. Figure 1 shows a visual 

representation of the different forms of pattern extraction that were conducted in the three studies.   

 

Figure 1: Comparison of the main data types and the form of pattern extraction applied in the three different 
studies. Please refer to the respective study for a detailed description. 

One of the main differences between the two geoarchaeological studies, however, is the purpose of 

the pattern extraction. Whereas one study relies on factors depicting the paleo-landscape to predict 

the location of unknown sites, the other study additionally includes discovery-relevant factors of the 

modern to contemporary landscape to assess the potential sampling bias. Another main difference can 

be found in the size and location of the different study areas. As the second study focusses on the 

limited evidence of Upper Palaeolithic sites in Lower Austria, the study area is also limited to this part 

of central Europe. The third study is based on a Pan-European archaeological dataset and covers a 

larger study area accordingly. In stark contrast, the methodology developed in the first study was 

applied to a complex dune field in Western Mongolia. This deviating study area was chosen due to 

previous studies on aeolian sediments conducted in the area by the department (Grunert and 

Lehmkuhl 2004; Klinge et al. 2017). This environmental study also differs from the other studies as it 

attempts pattern extraction from a vast time series of a single dataset while the geoarchaeological 

studies are both based on a large collection of temporally one-dimensional datasets.  
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1.2 Geospatial big data – challenges and opportunities  

The term big data emerged from the field of data science in the 1990s and was used to describe 

massive and unstructured datasets that posed a challenge to traditional processing techniques (Chen 

et al. 2014). The use of the term was ambiguous until Laney (2001) used volume, velocity, and variety, 

known today as 3Vs, to characterize it. Using this concept, data is considered ‘big data’ when it reaches 

a size in terms of storage capacity (volume), speed in terms of generation (velocity) and/or diversity in 

terms of data types and sources (variety) where traditional methods fail to provide effective solutions. 

As such, big data requires special means in terms of storage, transmission, curation, analysis, and 

visualization (Chen and Zhang 2014). While numerous researchers suggested additional Vs like 

veracity, variability, and value (e.g. Marr 2015; ur Rehman et al. 2016), the base concept remains 

unchanged as of today. 

Geodata or geospatial data describes nothing else than data with a spatial reference. This can be 

something as simple as a coordinate or an address. The arguable phrase 80% of data is geographic 

indicates that a majority of worldwide data can be georeferenced, which makes geospatial big data 

the logical result of the emergence of big data (Li et al. 2016). In addition to these regular datasets with 

secondary spatial information, primarily spatial datasets with secondary informational attributes can 

also be considered geospatial big data when they fulfil one or more of the 3V-characteristics. Lansley 

et al. (2017) differentiate between three categories of geospatial big data based on their origin:  

 Human-sourced data: This category includes actively generated primary geodata such as the 

biggest geospatial crowd-sourced project Open Street Map (OSM, Haklay and Weber 2008) 

but also passively generated secondary geodata such as georeferenced social-media posts and 

automated mobile device tracking via integrated GPS.   

 Process-mediated data: This category includes both administrative and commercial data. The 

common denominator is, that both were not primarily designed to represent the real world 

but rather to support administrative and commercial functions. Such functions include, e.g., 

assessment of taxation, electoral allocation, or personalized advertisement.  

 Machine-generated data: This category describes data that is continuously generated by 

different types of sensors. The biggest contributor to this category is satellite remote sensing, 

generating terabytes of readings from the earth’s surface and atmosphere per day (Ma et al. 

2015; Soille et al. 2018). Other geodata that would fall into this category are, e.g., climate 

sensors, river gauges, or even traffic measuring sensors.  
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While this is most certainly not the only way to categorize geospatial big data, it illustrates how diverse 

the field of geodata is and how well it fits the concept of big data. However, one category that plays 

an important role in this dissertation is overlooked in these categories: 

 Science-generated data: This fourth category, proposed by the author, describes geospatial 

datasets that were created for a scientific purpose and represent real-world objects or areas. 

It includes datasets that were directly created for a scientific purpose (e.g., through surveys) 

or where the scientifically relevant information was derived from other datasets (such as 

administrative or machine-generated data). Examples of this category are land use/land cover 

classifications (LULC), archaeological inventories, and thematic spatial data such as digital 

maps of geology or soil. While some of these datasets don’t reach the required volume to be 

considered big data, the scientific community generates such a large variety of datasets at a 

high velocity that at least two of the Vs are accounted for.  

Each of these categories of geospatial big data opens up a wide range of new opportunities for 

researchers to gain a better understanding of, e.g., urban mobility, environmental processes, or 

human-environment interactions. However, due to the mentioned characteristics of geospatial big 

data, extracting the relevant information from them is not an easy task. This is reflected in the term 

geodata mining, which was introduced by Miller (2007) and is still used today to describe the 

challenging process of extracting patterns from geospatial big data (Pei et al. 2020). Depending on the 

type of geospatial big data and the research question, the challenges that this process poses can differ 

fundamentally. This dissertation aims to extract patterns from science-generated geospatial big data 

to answer research questions in the fields of environmental science and geoarchaeology. These types 

of datasets are primarily characterized by a high variety and results in these fields of study often leave 

a lot of room for discussion. As such, challenges connected to pattern extraction in this dissertation 

are primarily connected to data selection, handling, processing, and interpretation. While these are 

the basic challenges connected to all types of data science, their application for geospatial big data can 

be summarized as follows:  

1. The challenge of data selection: Due to the vast field of available geodatasets, the decision of 

which ones to include in a study is of fundamental importance. Especially when there are 

multiple geodatasets representing similar information. A good example for this are 

international and global LULC datasets of which García-Álvarez and Nanu (2022) alone list 

more than 100. When deciding which one of these to use, one has to consider multiple factors 

such as the spatial resolution, thematic resolution/classification scheme, source 

dataset/classification method, accuracy as well as the timeframe that it represents. The 
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decision should, however, not be based solely on the highest spatial and thematic resolution 

and accuracy but, most importantly, on the information value that the dataset contains for the 

individual research question. This might differ significantly, even between studies in the same 

field of research where, e.g., one primarily requires a sharp differentiation between different 

types of forest, and the other needs an accurate differentiation between vegetated, bare, and 

built-up areas. As such, the main question to ask when selecting a fitting geodataset can be 

broken down to: Which geodatasets contain the information needed for the study at a 

sufficient spatial and thematic resolution and accuracy?  

2. The challenge of data handling: As already mentioned, geodatasets come in a plethora of 

different formats and resolutions. In order to successfully extract the needed information, the 

handling of the datasets should include filtering and harmonization. While filtering describes 

the selection and extraction of only relevant subsets from geodatasets and the aim of 

harmonization is to achieve comparability between different datasets, both processes are 

interdependent and closely related to the specific research question. To stick with the example 

of LULC datasets, filtering might include selecting and extracting only relevant classes and time 

frames, whereas harmonizing would require rescaling and reclassification into a common 

denominator in terms of thematic units. In some cases, this might even require a reduction of 

spatial or thematic resolution in favour of improved comparability. When handling geospatial 

big data, the main question should therefore be: How can a certain collection of geodatasets 

be filtered and harmonized for optimal informational content and comparability at a minimal 

loss of relevant information?  

3. The challenge of data processing: The main aim of processing geospatial big data is the 

extraction of humanly comprehensible data, also called small data. The wide field of available 

and well-documented methodologies for this task makes selecting a suitable method a difficult 

decision. This is equally true for geospatial and geostatistical processing as no consensus has 

been reached concerning the right set of tools for specific tasks (Gibert et al. 2010). As such, 

researchers have to make an informed decision for each approach individually based on similar 

studies, scientific debates and/or their own working experience. This emphasizes the 

importance of scientific exchange between different institutions and fields of research. After 

deciding which method to use, it is equally relevant to evaluate strengths and weaknesses of 

said method for each application and to consider them in the interpretation of results. In 

addition, as different processing of the same dataset can provide contradictory conclusions, a 

very important aspect of the processing is the open communication of the used methodology 

for reproducibility and open discussion (Gibert et al. 2018). As such, the main question related 
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to the processing of geospatial big data should be: Which methodological tools are suitable for 

extracting the wanted information from a certain collection of geodatasets, what are their 

strengths and weaknesses, and how can they be communicated adequately for optimal 

reproducibility and open discussion? 

4. The challenge of result interpretation: An appropriate interpretation of geospatial big data 

processing results requires the interpreter to understand and master the challenges of data 

selection, handling, and processing. From the data selection process, it is relevant to consider 

to which degree the chosen geospatial datasets are abstracted from the research-question-

relevant real-life objects that they represent. The degree of filtering and harmonizing during 

the handling has to be additionally considered to adequately address the question of how 

representative the geodatasets are of their real-life equivalents. A comprehensive assessment 

of the chosen methodological approach, including related strengths and weaknesses, is the 

last prerequisite for a profound interpretation of geospatial big data processing results. In this 

regard, it is important to consider how possible cross-correlations between chosen 

geodatasets might influence the results to avoid confusion of correlation and causality. The 

results additionally have to be assessed for significance to separate between signal and noise. 

To ensure that these requirements are met, researchers have to address the following 

question: Which research questions can be adequately answered based on the combination of 

geodatasets and methods, how well can meaningful results be differentiated from noise, and 

how do they translate into the real world? 

Only if these challenges and related questions are adequately addressed, the required information can 

be successfully extracted with minimal potential biases. Then, however, the extraction of patterns not 

only from single spatial big datasets but even from combinations and long time series of geodatasets 

is possible.  

 

1.3 State of research 

As already mentioned in the outline of this dissertation, the recent decades were characterized by an 

unprecedented increase in open source software and open access spatial data. This is not only true for 

science-generated geodata but also for governmental and even commercial spatial data (Mobasheri 

et al. 2020). This trend has been widely recognized by researchers all over the scientific spectrum, 

leading to a plethora of new studies utilizing geospatial big data. This section, therefore, aims at giving 

an overview of recent approaches and trends in pattern extraction from geospatial big data in the 
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fields of environmental science and geoarchaeology. As environmental science is a diverse field of 

research, this section focuses on dune-related studies.  

A source of geospatial big data that has a long history of application in both environmental science and 

geoarchaeology is satellite remote sensing data. While worldwide imagery of the earth’s surface has 

been publicly available since the 1980s, the recent decade marks an explosive increase in the number 

of active earth observation missions and their amount of stored volume (Soille et al. 2018, see Figure 

2). In this timeframe, the focus of researchers has shifted from satellites of the NASA Landsat mission 

towards the Sentinel mission by the European Space Agency (ESA) in favour of the increased spatial 

and temporal resolution (Zhao et al. 2022). In addition, commercial stakeholders like the companies 

Planet Labs or Spire Global are joining the once governmentally dominated field of satellite remote 

sensing and setting new standards in terms of spatial and temporal resolution, although locked behind 

a paywall (Roy et al. 2021). One of the major advances towards an increased accessibility and easier 

handling of remotely sensed geospatial big data are web-based processing platforms, the most popular 

being the GEE (Gorelick et al. 2017). The use of this platform is widely recognized in both 

environmental science and geoarchaeology and has shown a steep increase in the recent decade 

(Amani et al. 2020; Tamiminia et al. 2020; Herndon et al. 2023).  

 

Figure 2: The recent development of active earth observation satellites (black line, left vertical axis, Grimwood 
2022) and the projected data volume of the nine European Space Agency (ESA) earth observation satellites 
(coloured bars, right vertical axis, DLR 2018).  

Studies in the field of aeolian dune detection and monitoring have historically been limited in scale 

due to the remoteness and difficult accessibility of the study areas. This drastically changed with the 

launch of the first earth observation satellites, allowing worldwide studies of dune fields (McKee 1979). 

Until today, optical satellite imagery remains the main source of geospatial big data in this field 

(Hugenholtz et al. 2012). While Landsat imagery is still a popular choice due to the long time series of 

comparable data, recent years have shown a trend towards missions with higher spatial resolution 



1 Introduction 

 

9 
 

such as Sentinel-2 or SPOT (Zheng et al. 2022). As the spatial resolution is of high importance for, e.g., 

the classification of dune types and the assessment of dune activity, many recent studies also use 

platforms with compiled high-resolution imagery such as Google Earth or ESRI imagery basemap (see, 

e.g., Pradhan et al. 2018; Herzog et al. 2021). Digital elevation models (DEMs) present another popular 

source of geospatial big data in dune studies (Zheng et al. 2022). Their main advantage over optical 

imagery is the possibility to assess dune morphology directly. The Shuttle Radar Topography Mission 

(SRTM, Farr et al. 2007) achieved the first globally available DEM, which since then has been used in 

numerous studies to assess dune morphology (see, e.g., Blumberg 2006; Effat et al. 2011). While newer 

global open access DEMs show no improvements in terms of horizontal spatial resolution, comparative 

studies have proven that they outperform the SRTM in terms of vertical accuracy (Bubenzer and Bolten 

2008; Hugenholtz and Barchyn 2010), allowing the assessment of even smaller dunes (Shumack et al. 

2020). For significant improvements in spatial resolution, recent studies have deployed unmanned 

aerial vehicles (UAVs) to retrieve optical imagery and DEMs (Solazzo et al. 2018; Luo et al. 2020; Fabbri 

et al. 2021). Due to the labour-intensive retrieval of UAV-Data, however, these studies are limited to 

smaller study areas. Another recent development in the field is the use of synthetic aperture radar 

(SAR) data. While early studies saw great potential in this type of data (Blumberg 1998; Qong 2000), 

the requirements for continuous monitoring in terms of data quality as well as spatial and temporal 

resolution were only met in 2014 with the launch of Sentinel-1. Since then, Sentinel-1 SAR has been 

applied successfully to identify dunes (Havivi et al. 2018; Delgado Blasco et al. 2020) and monitor their 

activity (Mahmoud et al. 2020; Manzoni et al. 2021). 

From a methodological perspective, pattern extraction from geospatial big data for aeolian dunes is a 

very diverse field. While many studies that use optical imagery to monitor dune migration still rely on 

labour-intensive manual mapping of dune features (Hamdan et al. 2016; Yang et al. 2019; Dörwald et 

al. 2023), DEM-based approaches allow for an easier automated derivation of patterns and mobility 

(Cazenave et al. 2013; Dong 2015; Shumack et al. 2020). Therefore, high hopes are associated with the 

anticipated public release of high-resolution global DEMs such as, e.g., TanDEM-X (Zink et al. 2014). 

Another promising recent development is the improvement of the temporal resolution of dune-related 

geospatial big datasets. Many studies in the past were limited to mono-temporal data for, e.g., the 

classification of dune types (e.g., Dong et al. 2013; White et al. 2015) and studies on dune migration 

often only use less than a handful of images to estimate long-term mean migration rates (e.g. Hamdan 

et al. 2016; Dörwald et al. 2023). The currently possible daily to sub-daily return period of combined 

satellite sensors, however, allow insights into single aeolian events. This allows for a deeper 

understanding of the frequency and magnitude of dune-forming aeolian processes, which researchers 

have only been able to address in time-consuming field studies to date (see e.g. Poortinga et al. 2015).  
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In geoarchaeology, the most frequently implemented remote sensing applications are the 

identification of archaeological sites and features from optical imagery (Herndon et al. 2023). Howey 

et al. (2020) explain this with the similarity to traditional archaeological surveying practices. While 

some authors explore automated processes for feature detection (Liss et al. 2017; Soroush et al. 2020; 

Altaweel et al. 2022), most approaches still rely on visual interpretation (Dana Negula et al. 2020; Abate 

et al. 2022; Lasaponara et al. 2022). This highlights the importance of expert knowledge in this scientific 

field, which is often emphasised by researchers (see, e.g., Casana 2014). DEMs are another source of 

geospatial big data that has been successfully applied for this kind of analysis (Freeland et al. 2016; 

Bonhage et al. 2021; Štular et al. 2021). As the spatial resolution is the main limiting factor of both 

manual and automated feature extraction, the implementation of high-resolution UAV imagery and 

DEMs marks one of the most promising recent trends (Orengo and Garcia-Molsosa 2019; Agapiou et 

al. 2021). All feature extraction approaches, however, can only be applied to identify features that are 

close enough to the surface to directly impact the morphology and/or vegetation. They also rely on 

ground-truthing for the validation of results (Herndon et al. 2023). This, however, makes them an ideal 

tool for fieldwork planning and pre-analysis.  

Another application of geospatial big data in geoarchaeology is cultural heritage site assessment. The 

main aim of this practice is to monitor anthropogenic and environmental changes and events at 

heritage sites to assess possible damages and risks. The main anthropogenic risk for site preservation 

is land use change and especially urbanization, which has been monitored around sites in numerous 

studies (Noronha Vaz et al. 2012; Yu et al. 2016; Agapiou 2017, 2021; Rayne et al. 2020). The main 

environmental risks to cultural heritage sites, on the other hand, are natural hazards. While riverine 

flooding is one of the most researched natural risks to heritage conservation (see e.g. El-Behaedi and 

Ghoneim 2018; Fattore et al. 2021; Elfadaly et al. 2022a), other researched hazards include forest fires 

(Mallinis et al. 2016; Salazar et al. 2021) coastal flooding (Reeder-Myers 2015) and heavy precipitation 

events (Carmichael et al. 2023). Moreno et al. (2022) and Carmichael et al. (2023) expect natural 

hazard-related risks to increase in the future due to the effects of climate change. This emphasizes the 

increasing relevance of cultural heritage monitoring and preservation in the future.  

Both of these geoarchaeological practices of geospatial big data application, however, are rarely 

applied in prehistoric archaeology. This is due to the fact that they rely on surface visibility, while 

prehistoric features and sites seldom leave a visible morphological footprint and are often covered by 

thick layers of sediment (Campana and Piro 2008; Alday et al. 2018). Geospatial big data approaches 

in prehistoric archaeology, therefore, mostly focus on environmental reconstruction or predictive 

modelling. Practices in environmental reconstruction aim at recreating past landscape features and 

climatic factors that were of fundamental importance to prehistoric settlement choice or mobility. 
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Individual approaches differ widely in dimension and scope, ranging from the reconstruction of single 

landscape features based on optical imagery or radar data (Orengo and Petrie 2017; Brandolini et al. 

2021; Elfadaly et al. 2022b; Elfadaly et al. 2020) to superregional studies using climatic and 

morphological big data to estimate human existence potential and demography (Maier et al. 2016; 

Maier et al. 2020; Klein et al. 2021; Maier et al. 2022). Predictive modelling, on the other hand, uses 

geospatial big data as an abstraction of the paleo-environment to anticipate the location of yet 

undiscovered sites. This prediction is either based on expert knowledge on past human preferences 

(deductive) or on the distribution of known sites (inductive) (Verhagen and Whitley 2012). Malaperdas 

and Zacharias (2019) as well as Howey et al. (2020) are recent examples for methodological advances 

within this field. Especially the high variety of datasets used in these studies make them classifiable as 

geospatial big data approaches.  

While all studies presented by now implement geospatial big data for some kind of pattern extraction, 

it is important to also consider geoarchaeology as a source of big data. In addition to the recent positive 

trend of dataset publication as supplemental material along scientific articles, substantial effort has 

been made in order to compile and distribute archaeological information within large databases. 

McCoy (2017) classifies these databases into Data Repositories, Location Indexes, Radiocarbon 

Databases, Project Websites, and Academic Sources. Data Repositories describe collections of various 

archaeological data types, such as, e.g., articles, spatial datasets, images etc., within a browsable and 

searchable web environment (e.g., the Digital Archaeological Record (tDAR) for the United States 

(McManamon et al. 2017) or ARIADNE for Europe (Meghini et al. 2017)). Only a subset of these 

datasets, however, has a geospatial component. The categories Location Indexes and Radiocarbon 

Databases, on the other hand, contain primarily spatial information with complementary information 

about, e.g., cultural attribution or measured age. Such databases present a formidable source of 

archaeological geospatial big data for, e.g., predictive modelling or geostatistical approaches. Examples 

of such databases are the Digital Index of North American Archaeology (DINAA) with close to 900,000 

entries (Kansa et al. 2018), or the Radiocarbon Palaeolithic Europe database with more than 13,000 

georeferenced and radiometrically dated sites (Vermeersch 2020). While the categories Project 

Websites and Academic Sources mostly contain regionally limited or specific geodata, some 

exemptions, like the English Landscape and Identities Project (Cooper and Green 2016) or the 

Collaborative Research Centre 806 (Willmes 2016), compile larger datasets that qualify as big data 

based on their overall volume. Many of the presented databases are expanded continuously, allowing 

future geoarchaeological big data studies to build on even bigger datasets.  
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2 Materials and Methods 

2.1 Data selection and preprocessing 

The first step in all three approaches presented in this dissertation was the careful selection of 

geodatasets required to answer each research question adequately. As mentioned in section 1.2, the 

main challenge of this task is to identify the geodatasets that are best suited to represent the object 

of investigation. The second step was the preprocessing, which aims at preparing the geodatasets for 

geospatial and geostatistical analyses through filtering and harmonizing. In section 1.2, the main aim 

of this step is defined as extracting the informational content and ensuring optimal comparability 

between datasets. The following section briefly summarizes which measures were taken in the studies 

presented in this dissertation to ensure that these challenges of geospatial big data selection and 

preprocessing were successfully addressed. For an overview of all used geospatial datasets, their 

reference, the object of investigation that they represent, and the preprocessing steps that were 

conducted in order to extract relevant information and harmonize the datasets for optimal 

comparability, see Table 1. For more detailed information on data selection and preprocessing, please 

refer to the respective section in the studies themselves.   

For the first study on dune assessment, data selection was not an issue as the research question 

directly addresses the Sentinel-1 archive for the assessment of dune morphology. However, as 

Sentinel-1 does not contain elevation information but rather the roughness of ground material 

(Williams and Greeley 2004) and incidence angle of electromagnetic radiation (Blumberg 1998; 

Delgado Blasco et al. 2020), it can only be seen as an indirect representation of dune morphology. The 

filtering process included identifying informative polarization settings and time slices from the vast 

time series of Sentinel-1 imagery. Based on an extensive analysis of wind patterns in the study area via 

the ERA5 reanalysis dataset (C3S 2022, see Figure 4), four scenes from two different wind regimes 

were selected. As such, the data indirectly represents dune morphology during the north-westerly 

dominated winter and the south-easterly dominated summer. As Sentinel-1 SAR imagery is temporally 

heterogeneous and contains terrain- and pixel-based artefacts (Truckenbrodt et al. 2019), the four 

scenes were additionally harmonized for optimal comparability. This process included multi-temporal 

speckle filtering, border noise correction, and radiometric terrain normalization based on the 

preprocessing approach proposed by Mullissa et al. (2021). 
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Table 1: Overview of the different datasets utilized in the three studies of this dissertation including the name of 
the dataset, the real-world research object that they represent, the filtering and harmonization that was 
conducted and their reference. 

Study Geodataset Represents Filtering Harmonizing Reference 
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 DEM10 of Austria - 5 Late Pleistocene 

terrain parameters 

- Low-pass filter  www.data.gv.at 

CCM21 - 3 Late Pleistocene 

hydrology parameters 

  De Jager and 

Vogt 2007 

Loess map - Late Pleistocene 

environment and site 

preservation 

 - Rasterization 

- Rescaling to DEM 

resolution 

Lehmkuhl et al. 

2021 
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NASADEM - 3 Late Pleistocene 

terrain parameters 

 - Rasterization 

- Rescaling 

NASA JPL 2020 

1:5 million 

Geological map of 

Europe 

- Late Pleistocene cave 

probability and 

availability of lithic raw 

material 

- Extraction of certain 

stratigraphic units 

- Uncertainty radius 

- Rasterization 

- Rescaling 

Asch 2003 

Quaternary 

glaciations 

- Late Pleistocene 

availability of lithic raw 

material 

- Extraction of 

penultimate 

accumulation area 

- Uncertainty radius 

- Rasterization 

- Rescaling 

Ehlers et al. 2011 

Pleistocene 

aeolian deposits 

(topsoil) 

- Late Pleistocene 

environment, site 

preservation and 

sampling bias 

 - Uncertainty radius 

- Rasterization 

- Rescaling 

Bertran et al. 

2016 and 2021 

Pleistocene 

aeolian deposits 

(geology and soil) 

- Late Pleistocene 

environment, site 

preservation and 

sampling bias 

 - Uncertainty radius 

- Rasterization 

- Rescaling 

Lehmkuhl et al. 

2021 

Corine Land Cover - Contemporary land 

use and anthropogenic 

impact 

- Extracting different 

levels of 

anthropogenic 

impact 

 land.copernicus.e

u/paneuropean/c

orine-land-cover 

HYDE land use 

model 

- Modern land use and 

anthropogenic impact 

- Selecting only 

population density 

and built-up area 

- Rescaling Klein Goldewijk 

et al. 2017 

In the second study on Upper Palaeolithic site probability in Lower Austria, the data selection aimed 

at compiling geospatial evidence and predictors for the settlement choice of past humans. For the 

evidence, a point-based dataset was compiled from known archaeological excavations and studies in 
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the area. As the study aims to create a predictive model for open-air sites only, further filtering of the 

site dataset was necessary. Therefore, cave sites and sites with missing or ambiguous spatial and 

chronological attribution were filtered out. Initial to the selection of predictive geodatasets, two 

regional experts aided in deductively identifying paleo-environmental features with an assumed 

influence on the settlement choice of past humans. This resulted in 10 predictors related to terrain, 

hydrology, and geology/sedimentology (see Table 5). These predictors were derived from three 

geospatial datasets, namely the 10m DEM of Austria (available at www.data.gv.at), the CCM21 

European river dataset (De Jager and Vogt 2007), and the European Loess map by Lehmkuhl et al. 

(2021). As these geodatasets were created based on recent measurements and, e.g., the terrain has 

undergone both erosive as well as accumulative changes since the Late Pleistocene, they can only be 

considered an indirect representation of the paleo-environment. Filtering of the geodatasets included 

a smoothing of the DEM to remove anthropogenic impacts such as e.g. roads. For an optimal 

comparability, all parameterised predictors were rasterized and rescaled to the spatial resolution of 

the DEM. This harmonisation was essential for the implementation of the machine learning pattern 

extraction software MaxEnt, which was developed for modelling species distribution and 

environmental niches (Phillips and Dudík 2008).  

The third study on sampling bias of the European Upper and Final Palaeolithic record aims to compare 

influences of past settlement choices and modern to contemporary likelihood of discovery based on 

the spatial distribution of known sites. As such, geospatial predictors were needed, not only for 

decision-influencing features of the paleo-environment (settlement factors), but also for discovery-

relevant features of the modern to contemporary landscape (discovery factors). The archaeological 

evidence that was used to extract patterns from these factors was represented by a point dataset, 

combined from chrono-cultural site collections which were compiled within the framework of the 

cologne protocol (Schmidt et al. 2021b). As not all of these datasets contained the same auxiliary 

information per site, the dataset was filtered for the most important common denominators, namely 

coordinates, site type (cave or open air), and chrono-cultural attribution. Geospatial settlement factors 

were identified in the terrain, geology, and sedimentology, represented by six Pan-European 

geodatasets, while discovery factors were found in the modern to contemporary LULC, represented by 

two geodatasets. During the preprocessing, these geodatasets were filtered to extract the main 

information related to the influence on site distribution. For the geological datasets, this included the 

extraction of stratigraphic units, which influence cave formation and the availability of lithic raw 

material such as flint. The LULC datasets were filtered according to the intensity of anthropogenic 

impact and the possibility of deep soil intervention. Two different harmonization approaches were 

applied to account for inaccuracies of the influence factors as well as the site dataset and to ensure 
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optimal comparability in both the geostatistical and the MaxEnt analysis. For the geostatistical 

approach, an uncertainty radius of 500 meters around each site was applied in the spatial intersections 

with influence factors. In preparation for the MaxEnt software, all geospatial influence factors were 

rasterized and rescaled to the spatial resolution of the contemporary LULC dataset.  

 

2.2 Geospatial and geostatistical analysis 

The aim of geospatial big data analysis is to break it down into humanly comprehensible small data. As 

discussed in section 1.2, the main challenge of this process is finding a suitable methodological toolset 

to extract the information needed. As there might be multiple possible approaches for this, it is 

important to consider their strengths and weaknesses and communicate them openly for an 

assessment of the validity and the reproducibility of results. The following section, therefore, gives an 

insight into the chosen methodologies to extract patterns from the geospatial big datasets presented 

in 2.1. For an overview of these methods for pattern extraction, a short description, their aim, and the 

software that they were based on, see Table 2. For more detailed description of the methodologies, 

please refer to the respective sections in the studies themselves.   

The main aim of the first study was to assess the capabilities of Sentinel-1 for multi-temporal dune 

morphology analysis. As this is a pilot study on the usage of raw Sentinel-1 ground range detected 

(GRD) data, it does not try to propose a fully developed best practice processing algorithm but rather 

presents possibilities for future studies. To reduce the geospatial big data of the Sentinel-1 time series 

into humanly comprehensible small data, a visual approach based on continuous wavelet transform 

(CWT) was applied. CWT was originally invented as a macroeconomic tool for the decomposition of 

economic time series (Ramsey and Lampart 1998; Aguiar‐Conraria and Soares 2014). Simply put, it 

measures how fluctuations in a complex signal (e.g., 100 years of gross national product of a country) 

correlate to different frequencies (e.g., quarterly, yearly, decadal,…). As dune morphology in a cross 

section along the main wind direction also presents a complex signal, it is applicable for CWT (as shown 

in, e.g., Turki et al. 2021). In this case, however, the x-axis does not represent time (frequency) but 

distance (wavelength). From one time slice of Sentinel-1 data, CWT can thereby extract overlaying 

aeolian features with different wavelengths (e.g., underlying paleo-dunes, smaller recent dunes, and 

inter-dune ripples). A comparison of different time frames of Sentinel-1 data can show how these 

differently scaled features change through time and, thereby, how they respond to aeolian drivers. 

The main limiting factor of the application of CWT in this approach is that it cannot be applied to the 

whole three-dimensional dune field but only to selected two-dimensional cross sections. As such, the 

selection of representative cross-sections is of great importance. To this end, an extensive visual 
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analysis of the dune field was conducted beforehand based on optical imagery, elevation models, and 

wind data in order to select three areas of interest with different conditions in terms of aeolian activity, 

sediment characteristics, and sub-dune morphology. Through the application of CWT in these areas 

over a certain time frame, the complex multi-temporal surface information was broken down into 

visually interpretable small data. As such, the combined approach allowed for testing the suitability of 

Sentinel-1 for the assessment of dune morphology and evolution.  

Table 2: Overview of the different methods applied in the three studies of this dissertation including the name of 
the method, a short description, their main aim and the software that they are based on.  

Study Method Description Main aim Software 
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Continuous 

wavelet 

transfer 

Visual pattern extraction method. 

Breaks down a complex signal 
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Visualize morphodynamics 

through change-detection.  

MATLAB 

Profile analysis Visual comparison of Sentinel-1, 
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profiles extracted from the dune 
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locations. Validation of the 

CWT results. 
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 MaxEnt 

response 

curves 

2D-Visualization of the 

probability associated to the 

values of an environmental 

predictor.  

Getting an inductive opinion on 

the statistical connection 

between environmental 

predictors and site probability. 

MaxEnt, version 3.4.4 

Deductive 

model 

Assessing optimal, viable and 

unviable value ranges from the 

response curves and 

mathematically adding them up.  

Assessing the plausibility of 

response curves and thereby 

the causality of environmental 

predictors and sites. Creating a 

spatial model from the result. 

ArcGIS, version 10.7.1 

U
p

p
er

 a
n

d
 F

in
al

 P
al

ae
o

lit
h

ic
 s

am
p

lin
g 

b
ia

s 
in

 

Eu
ro

p
e 

Deviation from 

expected 

mean/share 

Comparison between expected 

(mean/share in/of the habitable 

area) and observed (mean/share 

in/of the site location) value 

Assessing conditions that are 

favourable or unfavourable for 

the settlement choice or 

discovery probability. 

ArcGIS, version 10.7.1 

Excel 2016 

MaxEnt 

jackknife 

variable 

importance 

Measurement of separability 

between the values associated to 

the presence and absence of sites 

of each single factor 

Assessing the strength of the 

different settlement and 

discovery factors at predicting 

the presence/absence of sites. 

MaxEnt, version 3.4.4 

Additional 

geostatistical 

approaches 

Statistical queries with the 

archaeological class (e.g. chrono-

cultural attribution, cave/open 

air) as independent variable and 

factor values as dependent 

variables 

Assessing possible cross-

correlations between the 

factors and testing if the factors 

show significant differences 

between the archaeological 

classes   

IBM SPSS Statistics 

The second study aimed to predict the probability of Upper Palaeolithic sites in Lower Austria. This 

study was primarily motivated by the limited evidence of sites from this time frame in this region, 

which is explained by the thick loess cover, hiding possible Late Pleistocene artefacts and making 



2 Materials and Methods 

 

17 
 

random discovery less likely (Einwögerer et al. 2014). As already mentioned, archaeological predictive 

models are either based on expert knowledge of past human preferences (deductive) or on the 

distribution of known sites (inductive) (Verhagen and Whitley 2012). Due to the very limited evidence 

of only 23 sites, a purely inductive approach was not applicable. Instead, a combined approach with 

special emphasis on the causality between the paleo-landscape and human activity was developed. 

The first step in this approach was the extraction of a spatial pattern from the environmental predictors 

based on the site dataset. For this process, the software MaxEnt was used, which is a predictive tool 

based on the maximum entropy principle (Elith et al. 2011). The main advantage of this tool over more 

traditional approaches, such as logistic regression, is the fact that it utilizes presence-only data, which 

is what most archaeological datasets consist of (Wachtel et al. 2018). For each input predictor, MaxEnt 

calculates two probability densities (one from presence data and one from background data) and 

minimizes the relative entropy between them. The result of this pattern extraction is visualized in 

response curves (Merow et al. 2013, see Figure 13). In a deductive endeavour and based on regional 

archaeological expertise, these response curves were then evaluated on their thematic plausibility. 

The aim of this evaluation was to verify the causality between input predictors and site probability and 

correct response curves where the probability contradicted common archaeological assumptions. 

Based on the corrected curves, optimal, viable, and unviable value ranges of each predictor were 

assessed and mathematically combined into a simple additive model. This methodology underlines the 

importance of expert knowledge in evaluating automatically extracted patterns from geospatial big 

data. This is especially true for approaches with limited training data where an adequate 

representation of the statistical population cannot be safely assumed.  

The main aim of the third study on the Upper and Final Palaeolithic sampling bias in Europe was to 

differentiate between two influences on the distribution of sites; the past settlement choice and the 

modern to contemporary discovery probability. As some of the geodatasets selected for this task could 

not be easily attributed to only one of these influence factors and cross-correlations between some of 

the geodatasets were assumed, extracted patterns were handled with caution. In order to achieve the 

best possible differentiation, multiple geospatial and geostatistical analyses were conducted in an 

attempt to extract humanly comprehensible small data. The first of these analyses was the deviation 

from the expected mean/share. By extracting the values from the selected geodatasets at the location 

of the sites (observation) and comparing them to the background values of the potentially habitable 

area of interest (expectation), different surface conditions can be assessed as being favourable or 

unfavourable for settlement or discovery. As this assessment can be visualized in a manageable 

number of charts, it can be considered an effective reduction of the geospatial big input. Another 

approach for pattern extraction was the application of the MaxEnt model. In addition to the response 
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curves, which are explained in the previous paragraph, MaxEnt allows the assessment of the predictive 

strength of geospatial input datasets via the jackknife variable importance. This statistic is an indication 

of how clearly the probability densities of presence and background data can be differentiated. 

Geodatasets with easy differentiation have high predictive strength and, thereby, variable importance, 

while geodatasets where both presence data and background data show a similar value range have 

low variable importance. As this allows for a direct comparison between geodatasets, it is an effective 

tool for pattern extraction within this research question. The third and final approach for pattern 

extraction was a combined statistical workflow for the assessment of cross-correlations as well as 

similarities and differences of geodataset values within the archaeologically predefined groups (e.g., 

chrono-cultural attribution or cave/open air). This approach was conducted within IBMM SPSS and 

included the calculation of contingency coefficients, classification based on the two-step cluster 

analysis, and testing based on a discriminant analysis and Naïve Bayes. While the assessment of 

contingency coefficients can help to identify cross-correlations and thereby prevent possible 

misinterpretations of causality, the other three assessments show how well the archaeologically 

defined classes are represented by natural grouping and how well they can be differentiated based on 

the geodataset values associated with them. This complex combination of geospatial and geostatistical 

approaches reflects the complexity of settlement and discovery factors. Due to the unambiguous 

attribution of some geospatial datasets to one of the investigated factors, all extracted patterns were 

interpreted with caution. 
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Abstract 

Aeolian dune movement poses a threat to critical infrastructure, urban areas, water resources as well 

as agriculture. This threat is expected to increase in the coming years due to land degradation, 

desertification and climate change. Several approaches have been used to investigate the evolution of 

dune fields. Satellite remote sensing can be considered one of the most accurate tools for the 

continuous monitoring of global sand covered surfaces. Although early studies found a great potential 

in synthetic aperture radar (SAR) for dune assessment, the full potential has not been explored as of 

yet. Therefore, in this study, we present a novel method for assessing complex dune field morphology 

based on the easily accessible and globally available Sentinel-1 ground range detected (GRD) SAR 

dataset. In this application, dune features are extracted based on backscatter properties related to the 

local incidence angle. This provides a clear identification of (1) active dune sand, (2) dune ridges and 

(3) inter-dune ripples. By extracting these features through profiles, the multi-timescale evolution of 

the Western Mongolian dune field Bor Khyar was analysed through three areas of interest (AOIs) based 

on the spectral technique of continuous wavelets. The result of this investigation gives new insights 

into the temporal and spatial dynamics of dunes scale and their response to aeolian activity, revealing 

differences in aeolian activity as well as inter- and intra-annual variations in the dune morphology. 

These results are promising and highlight the potential in using satellite SAR imagery for dune 

monitoring. 
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3.1 Introduction 

15% of the world’s surface is covered by arid regions, of which approximately one third is mantled by 

sand deposits (Thomas 2011). In these regions, aeolian transport processes favour dune movement, 

posing a potential threat to critical infrastructure, urban areas, water resources as well as agriculture. 

Recent well documented examples for the hazardous aspects of aeolian transport can be found in the 

Nile region (El Gammal and El Gammal 2010; Eljack et al. 2010; Verstraeten et al. 2014; Saad et al. 

2018), Western Asia (Al-Ghamdi and Hermas 2015; Pradhan et al. 2018; Amin and Seif 2019) as well as 

Western Africa (Ikazaki 2015; Benjaminsen and Hiernaux 2019; Yang et al. 2022). Due to land 

degradation, desertification and ongoing climate change, this threat is expected to increase 

dramatically and to occur in additional regions worldwide in the coming years (Davies et al. 2015; Reed 

and Stringer 2015; Shukla et al. 2019).  

A continuous monitoring of sand covered surfaces is crucial to access the risk that desertification and 

related processes pose and ensure sustainable development in arid regions. Due to difficulties in 

accessibility of dune fields, field studies in these landscapes are often limited in their spatial coverage 

and associated with high costs. Satellite remote sensing, however, can cover large areas systematically, 

repetitively, and at a very low cost, making it the optimal tool for this task. In the last years, openly 

accessible remote sensing data have improved significantly in terms of spatial resolution and return 

rate. In combination with the recent progress in processing techniques, this has led to significant 

advances in the assessment and monitoring of aeolian sand dunes worldwide (Hugenholtz et al. 2012; 

Zheng et al. 2022).  

A majority of these dune monitoring approaches are based on optical satellite data. The potential of 

synthetic aperture radar (SAR) data, however, has not been fully explored as of yet, despite the positive 

reception in early studies (Blumberg 1998; Qong 2000). The main advantages of SAR over optical 

imagery are the lack of dependence on atmospheric conditions and lighting and the easy discrimination 

of dunes due to the low volume scattering on sand in most associated microwave frequencies 

(Nashashibi et al. 2012). Therefore, the analysis and monitoring of single dunes or small aggregations 

which are easily distinguishable from coarser or vegetated surroundings have been the focus of recent 

SAR-based studies such as Havivi et al. (2018) and Delgado Blasco et al. (2020). While these studies 

show promising results in detecting and tracking dune features, they can only be applied where aeolian 

dunes are surrounded by high-backscatter surfaces. Complex dune fields, however, are much more 

challenging to analyse, as inter-dune boundaries show no significance differences in backscatter. The 

few studies that do access complex dune fields such as Mahmoud et al. (2020) and Manzoni et al. 

(2021), are using interferometric methodologies or offset tracking. While these methods are well-
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suited to assess surface stability as well as displacement rates and directions, they only measure 

relative and absolute changes while neglecting dune morphology. However, as the dune morphology 

reflects past and present aeolian activity as well as sediment availability, we don’t think that this factor 

should not be omitted in dune field analysis. Therefore, the main aim of this study is to explore the 

potentials and limitations of SAR imagery for assessing dune morphology in complex aeolian dune 

fields.  

For this, we aim at developing a new method based on Sentinel-1 satellite imagery coupled with the 

spectral approach of continuous wavelets to assess the morphology of complex dune fields and 

investigate their temporal and spatial evolution. The new method will be applied and tested on the 

large Western Mongolian dune field Bor Khyar where the aeolian processes and dune morphology are 

not thoroughly investigated as of yet.   

 

3.2 Materials and methods 

3.2.1 The study area 

The dune field Bor Khyar Els was selected as the study area due to its complexity in time and space and 

previous studies by the authors in this region. It is located in the so-called Valley of the Great Lakes in 

Western Mongolia, which consists of several large catchments, ultimately draining into the endorheic 

lakes Uvs Nuur, Khyargas Nuur and Khar Nuur. Each of these lakes marks the starting point of a large 

dune field as can be seen in Figure 3. The large basin has a minimum elevation of 800 meters above 

sea level (asl) in the north and 1200 m asl in the south and is surrounded by the Altai and Khangai 

mountains, where summits reach more than 4000 m asl. While the central parts of these mountains 

are made up of Palaeozoic granites and gneiss and the margins by metamorphic and sedimentary rocks 

(Lehmkuhl 1999), the basin itself is mostly covered by thick layers of fanglomerates, dune sands and 

lacustrine sediments (Walther and Naumann 1997). Within the basin, landforms such as vast dune 

fields, widespread alluvial fans and beach ridges up to 130m above current lake level hint at large 

climatic variations in the past, which were investigated in numerous studies (Grunert et al. 2000; An 

et al. 2008; Klinge et al. 2017; Lehmkuhl et al. 2018; Klinge and Sauer 2019).  
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Figure 3: Overview map of the broader study area of the valley of the great lakes. It includes the big endorheic 
lakes, large rivers and the outlines of the three major dune fields, all framed by high resolution optical imagery 
(ESRI 2022). The central dune field of Bor Khyar (A) is the main target of this study. 

 The recent climate is mainly characterized by extreme continental conditions. As such, temperatures 

reach less than -20°C in winter but close to 20°C in summer. The precipitation in the area has its main 

gradient between the arid basin, reaching an annual precipitation of 50mm in some parts, and the 

semi-arid mountain ranges with an annual precipitation of 200-400mm (Klinge 2001). Annual 

precipitations vary strongly over the seasons with 70-80% falling during the early summer months 

(Lehmkuhl and Klinge 2000). The wind regime is mainly influenced by westerly to north-westerly winds, 

reaching the highest wind speeds in the winter months. In the summer, far weaker winds from the 

south-east prevail (C3S 2022).  

The Bor Khyar Els dune field itself was formed by westerly winds during the Pleistocene and Holocene 

and stretches from the Khyargas Nuur lake in the west high into the Khangai mountains in the east 

(Grunert and Lehmkuhl 2004). It covers a distance of more than 200 kilometres with a maximum width 

of about 40 kilometres. In its mid-section, the dune field dams off the Bayan Nuur lake, as the westward 

advance of the water is blocked by vertical offset from a north-south running tectonic fault line 

(Enkhbold et al. 2021). The two neighbouring dune fields, Borog Deliin Els in the north and Mongol Els 



3 Assessing complex aeolian dune field morphology and evolution with Sentinel-1 SAR imagery 

 

23 
 

in the south, both display a cyclic sand system. This means that sand is transported upslope and 

westwards through the wind where it is bound by the river system and transported downslope and 

eastwards again. The Bor Khyar Els, however, lacks a strong adjacent fluvial system that can act as a 

natural barrier to the aeolian processes and transport sand downslope into the source lake (Grunert 

and Lehmkuhl 2004). Instead, after traveling 800 metres vertically up-slope, the sand disperses into 

several smaller dune fields situated within mountain valleys.  

Preliminary visual analyses of the dune field based on high resolution optical satellite imagery reveal a 

large variety of dune types and related sandy surfaces including sandy plains, transverse dunes, grid 

dunes, longitudinal dunes, parabolic dunes as well as barchans. A preliminary analysis of the ERA5 

climate dataset reveals large seasonal differences in wind with the strongest winds in winter from west 

to northwest (C3S 2022). Based on this preliminary analysis, three areas of interest (AOIs) with 

differences in complexity, dune types and wind conditions were selected for a detailed analysis. The 

AOIs include; (A) The Bor Khyar dune field as a whole, (B) A system of dense large transverse dunes, 

superposed and surrounded by smaller transverse dunes and grid dunes in the south of the dune field, 

(C) A system of presumably inactive separated large transverse dunes, surrounded by sandy plains in 

the north of the dune field and (D) A system of transverse and grid dunes in the north-east of the dune 

field. Figure 4 offers a first overview over these AOIS as well as ERA5 wind directions and speeds over 

AOI A.  
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Figure 4 Upper half: Map of the dune field Bor Khyar including high resolution optical imagery (ESRI 2022) and 
mean ERA5 wind vectors for the month December calculated from daily data between 2015 and 2021 (C3S 2017). 
December was chosen for wind vector display as the highest wind speeds occur here. The outline of figure 5 as 
well as the areas of interest (AOIs) are added for orientation purposes. Lower half: Monthly mean assessment of 
ERA5 wind speed and wind direction over the whole dune field. Note that the highest mean wind speeds occur 
during winter from west to north while lowest wind speeds occur during summer from east to south. 

3.2.2 Sentinel-1 SAR imagery 

Although early studies saw great potential in SAR data for the extraction of dune characteristics 

(Blumberg 1998; Qong 2000), requirements for a continuous global monitoring at high spatial 

resolution have only been met since the launch of Sentinel-1 in 2014 (Torres et al. 2012). The main 

advantage that Sentinel-1 has over its predecessors are the high spatial resolution of 10*10 meters in 

the main acquisition mode (Interferometric Wide Swath, IDW), a short repeat cycle of 1-6 days when 

combining both S-1A and S-1B satellites and the possibility of single and dual polarisations (Geudtner 

et al. 2014). In combination with the broad availability and easy accessibility, this makes Sentinel-1 the 

ideal tool for SAR-based assessment as well as continuous monitoring of dunes.  

Sentinel-1 operates within the C-Band with a wavelength of 5.6 cm. At this wavelength, even thin layers 

of sand cannot be penetrated. In combination with the very low backscatter on sand due to the relative 



3 Assessing complex aeolian dune field morphology and evolution with Sentinel-1 SAR imagery 

 

25 
 

surface smoothness, this wavelength allows for a clear differentiation between sand and surrounding 

surfaces (Williams and Greeley 2004). Within active dunes fields, differences in backscatter can mainly 

be attributed to the local incidence angle, as the influence of vegetation and grain size differences can 

be neglected here. As such, slopes that are oriented towards the sensor show slightly elevated 

backscatter than those that are oriented away from the sensor (Blumberg 1998). With sufficient spatial 

resolution, this allows for the detection of smaller aeolian forms, superposing the main dune forms. 

The most prominent dune feature that can be easily extracted with C-band SAR is the ridge, as its 

morphology leads to double-bounce backscattering (similar to a corner reflector), resulting in a 

backscatter far higher than the surroundings (Blumberg 1998; Delgado Blasco et al. 2020). These 

general assumptions towards the SAR-interaction of dunes can be visually confirmed in Figure 5.  

 
Figure 5: Comparison between Sentinel-2 true colour composite (left) and Sentinel-1  backscatter (right). Non-
sandy surfaces are masked out and replaced by SRTM hillshade. Dark colours on the right image indicate aeolian 
sediments. More details can be seen in the cut-out in the lower right. The areas of interest B, C and D mark the 
areas that were selected for detailed analysis. See section 3.2.3 for further context. 

 

3.2.3 Geospatial processing 

As morphological dune parameters can be directly extracted from digital elevation models (DEM), the 

first attempt was to create a DEM from Sentinel-1 scenes. For this, the workflow for Sentinel-1 based 

DEM extraction proposed by Braun (2021) was applied to two scenes from the dates 2021-02-10 and 

2021-02-22. The main criteria for the identification of these two scenes was the short temporal 

baseline of 12 days and a large perpendicular baseline distance of 152 meters, which were identified 

using the online baseline tool by the Alaskan Satellite Facility (ASF 2022). The resulting DEM showed 

promising results for inactive dune fields and the surrounding mountain ranges. Within active dune 
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fields, however, elevations showed large negative deviations and an overall implausible result. This 

can be attributed to the very low backscatter on sand and the large variation in backscatter within 

small distances resulting in a very low coherence, which is challenging for interferometric SAR analysis. 

As such, the DEM-approach was dismissed. Instead, we focused on the indirect derivation of 

morphological features from Sentinel-1 ground range detected (GRD) data.  

The pre-processing and extraction of Sentinel-1 GRD scenes as well as the ERA5 wind analysis was 

conducted within the Google Earth Engine (GEE), an openly accessible cloud-based platform for 

geospatial analysis, powered by the Google server infrastructure (Gorelick et al. 2017). For Sentinel-1, 

we chose to work with the VV-polarized dataset, as it shows the highest dependency on the local 

incidence angle. To achieve analysis-ready-data (ARD), the pre-processing included additional border 

noise correction, speckle filtering and radiometric terrain normalization. For this, we used a slightly 

modified version of the openly accessible ARD script by Mullissa et al. (2021), applying a 10-scene 

multi-temporal improved Lee sigma speckle filter with a kernel size of 15 cells (Lee et al. 2009). For the 

terrain normalization, the NASA SRTM global digital elevation model was used (Farr et al. 2007). Based 

on a preliminary visual interpretation, pre-processed Sentinel-1 scenes from 4 dates were selected and 

exported for further processing. The dates include 2015-01-31, 2018-06-14, 2018-10-12 and 2021-12-

07, each for which a Sentinel-1 GRD mosaic of the whole dune field was created. The GEE was also 

used to calculate wind direction and speed from ERA5 wind u-component and v-component. Monthly 

data was used to aggregate speed and direction over the full timespan (2015-2021) while wind vectors 

for visualization were created from daily data.  

For the indirect derivation of morphological features as well as an analysis of their evolution in time, a 

frequency analysis in form of the continuous wavelet transform (CWT) was applied to these mosaics. 

To compare these backscatter values to a directly derived morphology, SRTM and FABDEM elevation 

model profiles were also extracted (Farr et al. 2007; Hawker et al. 2022). Both elevation models have 

a spatial resolution of 25*25 meters in the study area. While the SRTM represents a surface from the 

year 2000, the FABDEM is an improved version of the Copernicus GLO-30 DEM that was surveyed 

between 2011 and 2015. As such, the comparison between the two DEMs offers a first assessment of 

dune activity. For the profile extraction, the already mentioned AOIS were used, representing different 

dune types and different levels of complexity (see Figure 4 and Figure 5). For the spatial processing 

and extraction of profiles, we used ArcGIS, version 10.7.1. The pre-processing for profile analysis 

included reprojection into a metric coordinate reference system (WGS84, UTM Zone 46N, EPSG:32646) 

and resampling into the same spatial resolution of 10*10 meters. In each AOI, a central tracking axes 

was defined manually, representing the centreline of the local dune field along the wind direction. 

Four additional profiles parallel to each central tracking axis were extracted in distances of 200 and 



3 Assessing complex aeolian dune field morphology and evolution with Sentinel-1 SAR imagery 

 

27 
 

400 meters left and right. The resulting lines were used to extract S-1 and SRTM surfaces to profiles. 

These profiles were then extracted as csv text files via the 3D Analyst toolbar, ready for the 

visualization in Excel 2016 and the CWT analysis. To enhance the understanding of this multi-step 

workflow, it is visualized in Figure 6.   

 
Figure 6: Workflow diagram showing the different processing steps and the environments they were conducted 
in. Datasets are displayed in grey, processing steps are displayed in light blue and the central part of the study, 
the profile analysis and continuous wavelet transform (CWT) are displayed in dark blue. 

 

3.2.4 Spectral analysis based on wavelet transform for the morphological decomposition 

From a technical point of view, dune fields, such as the ones investigated in this research, can be seen 

as a set of spatially variable morphological features at different scales. This association gets clear when 

looking at the profiles portrayed in Figure 7, Figure 8, and Figure 9. The spacing and size of these 

features is a function of wind interactions with a surface and sand availability. The variability of such 

dunes in response to external forces such as wind follows a non-linear pattern. All changes result in a 

combination of several morphological modulations at various ranges of spatial scales. Therefore, we 

used an approach to investigate the spatial frequencies of morphological changes by decomposing the 

total variability to a series of scales. This method is useful to identify the evolution of dunes and their 

organization in response to the external drivers of aeolian energy and internal drivers associated to 

the characteristics (texture, age, …) of sediments composing these morphological forms. 

To do so, we used the techniques of Continuous Wavelet Transform (CWT), which are well documented 

in Labat et al. (2005) works and well-known for hydrological, meteorological and climate applications 

(e.g. Turki et al. 2015; Massei et al. 2017). The CWT has been explored by Turki et al. 2021) for other 

applications related to the morphology of intertidal dunes and their migration under the wave-tide 

interactions, case of the Baie de Somme (France). These publications have demonstrated the relevance 

of this method to gain more insights into the evolution of morphological structures at different 

temporal and spatial scales. 
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When applying a CWT analysis, a complex signal (e.g. Sentinel-1 profiles through dune fields) is scanned 

using different wavelengths. While scanning with a wavelength, high rhythmicity results in a high 

power of this wavelength, while absent rhythmicity is reflected by low power. This way, the rhythmicity 

and thereby relevance of each tested wavelength is collected along the signal/profile. The resulting 

CWT-Diagram gives a good overview of which wavelengths of dune features are relevant along the 

profile. Spatial and temporal differences in the CWT diagram allow an interpretation of the 

morphological forces. Taking advantage of this approach, changes in dune features, detected via 

Sentinel-1 SAR imagery, as well as the possible rhythmic structures of dunes associated to the sediment 

transport dynamics and the aeolian activity were explored.  

The CWT has been carried out for the four Sentinel-1 scenes mentioned under 3.2.3 at different 

profiles along the AOIs B, C and D. For the assessment of cross-axis variability, the CWT was applied to 

each central axis as well as four parallel axes 200 and 400 meters north and south of the central axis 

(see Figure 7, Figure 8, and Figure 9 for localization of the central axes).  

The CWT diagrams contain: (1) the contour diagram with space along the profile in meters*10 on the 

x-axis; (2) the wavelength of morphological features (dunes) in meters*10 on the y-axis; and (3) the 

power or variance on the z-axis.  

 

3.3 Results 

In section 3.3.1, the Sentinel-1 images are visually interpreted in comparison to optical imagery and a 

DEM. In addition, the extracted profiles along the central tracking axes are presented and analysed. In 

section 3.3.2 we the present the results of the CWT frequency analysis. Table 3 gives an overview over 

which methods were applied in the different AOIs.  

Table 3: Short description of the different areas of interest (AOIs) and which methods were applied in them.  

AOI Description 
Visual 

interpretation 
Profile 

analysis 
CWT 

A The Bor Khyar dune field as a whole + - - 

B 
A system of dense large transverse dunes, 
superposed and surrounded by smaller 
transverse dunes and grid dunes 

+ + + 

C 
A system of presumably inactive separated 
large transverse dunes, surrounded by 
sandy plains in the north of the dune field 

+ + + 

D 
A system of transverse and grid dunes in 
the north-east of the dune field 

+ + + 
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3.3.1 Visual interpretation and profile analysis 

In the visual interpretation of the whole dune field (AOI A), Sentinel-1 scenes, Sentinel-2 true colour 

composites and the SRTM DEM were compared. This comparison confirms the expectations about the 

C-Band sensitive backscatter characteristics of active and inactive dunes, stated in 3.2.2. As such, it 

could be observed that active dune fields can be separated from inactive dune fields and surrounding 

areas by their lower backscatter.  

For a simple thresholding approach, a backscatter of <-20dB yielded the best results in differentiating 

active dunes across all scenes. The only other surfaces in the study area that fall below this threshold 

are lakes. Confusion between these two surface types, however, can be easily avoided by the 

complementary use of optical imagery and/or surface water datasets. 

The only features within active dune fields, that do not fall below the threshold, are dune ridges. 

Instead, they show strongly elevated backscatter values, reaching above 0dB at bend points within 

dune slip surfaces (see Figure 5 and/or Figure 9). This supports the double-bounce backscatter 

interaction and corner-reflector-similarity mentioned in 3.2.2. A direct comparison to optical imagery 

shows the importance of the direction of illumination: ridges perpendicular to the illumination 

direction are enhanced while ridges parallel to the illumination direction only show slightly elevated 

backscatter or no difference in backscatter at all (see Figure 5 and/or Figure 9).  

Within the south-western AOI B, the visual interpretation of SAR, optical imagery and the DEMs in 

comparison show the main limitations of Sentinel-1-based complex dune field analysis. As can be seen 

in Figure 7, the Sentinel-1 scene still allows for an easy differentiation between inactive and active 

dune fields as well as an easy identification of dune ridges perpendicular to the illumination direction. 

This information, however, can only be obtained for the superposing grid-dune structures with inter-

ridge-distances of about 100-200 meters. The underlying large transverse forms with wavelengths of 

about 1000m, which can be clearly seen in both the optical imagery as well as the DEMs, are not visible 

in the Sentinel-1 scenes.  

 



3 Assessing complex aeolian dune field morphology and evolution with Sentinel-1 SAR imagery 

 

30 
 

 

Figure 7: Comparison of the source data used to analyse AOI B (upper half), including high resolution optical 
imagery (upper left), the SRTM DEM (upper right), Sentinel-2 optical imagery (lower left) and Sentinel-1 GRD SAR 
imagery (lower right). On the lower half of the figure, we see the Sentinel-1, SRTM and FABDEM profiles at the 
central axis (see lower right map for localization). A subsets of the profile is shown in detail to highlight the 
interaction between the Sentinel-1 backscatter and the morphology as well as the temporal changes in 
backscatter and DEM. As can be seen in the lower left diagram, the highest SAR backscatter peaks migrate 
downwind while the smaller peaks and valleys in between vary strongly. This indicates active conditions, which 
is supported by the changes in the DEM. 

In the Sentinel-1 profile graphs, no differences in backscatter between the underlying large transverse 

dune slope facing the sensor and facing away from the sensor can be detected, either. As such, only 

information about the superposing grid dunes can be extracted from these profiles. In comparison to 

the DEM profiles, showing only the underlying transverse forms and 2-4 superposing grid dune ridges 

on each of these, the Sentinel-1 profiles provide surface information in far higher detail, including 

several peaks and valleys in between the main superposing grid dune ridges. These changes in 

backscatter between ridges are most probably triggered by differences in the local incidence angle, 
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indicating ripple features. When comparing the Sentinel-1 profiles from different dates, the highest 

peaks, indicating main dune ridges, show a high overlap. However, the magnitude of the peaks differs 

widely between the scenes, showing differences of up to 15 dB. In addition, a shift of several meters 

along the profile axis through time can be observed in many cases, indicating wind-induced dune 

movement and as such active aeolian conditions. This is additionally supported by the differences 

between the SRTM and FABDEM elevation, showing a windward dune migration between the years 

2000 and 2011-2015.  

The northern AOI C shows large visual differences in comparison to the other AOIs. The main ridges 

show far higher distances of 700 to 1100 meters. In the Sentinel-1 scenes, only slight variations in 

backscatter can be observed between these main ridges. In addition to that, the backscatter is 

generally higher, not falling under the threshold for finely grained active dune sand of -20 dB. The 

comparison between the SRTM and FABDEM also show a high overlap. Within the optical Sentinel-2 

imagery, no indications for vegetation can be found in these areas. As such, the higher backscatter is 

most likely caused by larger grain sizes, indicating inactive conditions where the finely grained sand is 

eroded.  

In the Sentinel-1 profile graphs of AOI C, the overlap of peaks and valleys along the profile axis is the 

highest among all AOIs. This supports the assumption of inactivity based on the visual interpretation. 

When assuming temporal stability, this part of the dune field offers the opportunity to locate the 

double-bounce-related high backscatter in the Sentinel-1 profiles in comparison to the FABDEM 

morphology. As Figure 8 shows, this peak is located at the steepest part of the slip face, supporting the 

double-bounce assumption. Therefore, when trying to extract ridges via Sentinel-1, a certain offset 

between the highest backscatter and the actual ridge has to be considered.  
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Figure 8: Comparison of optical imagery (upper left) and SAR imagery (upper right), showing a mostly inactive 
part of the dune field. On the lower half of the figure, we see the Sentinel-1 and DEM profiles at the central axis 
(see upper right map for localization). A subset of the profile is shown in detail to highlight the interaction between 
the Sentinel-1 backscatter and the DEM morphology as well as the temporal changes in backscatter. As this 
diagram shows, the highest SAR backscatter peaks are located at the DEM ridges and no clear direction of dune 
migration can be seen. The inter-ridge variations are also comparatively low and the DEMs show a very high 
alignment. This indicates inactive conditions. 

The north-eastern AOI D shows a complex system of transverse, grid and barchanoid dunes. The mean 

inter-ridge-distance is between 200 and 300 meters, showing a high variability within the AOI. Within 

both the optical and the SAR imagery, differences within the AOI, especially between the northern and 

southern part, can be observed. While most dunes in the south seem to be formed by westerly winds 

as indicated by their north to south-alignment, dunes in the northern parts of the AOI shift towards a 

north-east to south-west alignment, indicating stronger north-westerly winds. This fits the ERA5 wind 

data, showing the strongest winds from north-west during winter in this part of the dune field (see 

Figure 4). Due to the importance of the illumination direction, some dune ridges showing the strongest 

east-to-west alignment are not represented in the Sentinel-1 GRD imagery (see Figure 9).  
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Figure 9: Comparison of optical imagery (upper left) and SAR imagery (upper right), showing an active part of the 
dune field. On the lower half of the figure, we see the Sentinel-1 and DEM profiles at the central axis (see upper 
right map for localization). A subset of the profile is shown in detail to highlight the interaction between the 
Sentinel-1 backscatter and the SRTM morphology as well as the temporal changes in backscatter. As this diagram 
shows, the highest SAR backscatter peaks are located at DEM dune ridges and migrate downwind while the 
smaller peaks and valleys in between vary strongly between each date. This indicates active conditions, which is 
supported by the changes in the DEM. 

The central tracking axis profile graphs of AOI D show many similarities to AOI B. Comparing the 

different Sentinel-1 scenes, the main ridges show a high overlap with a slight shift along the tracking 

axis through time, indicating wind-induced dune movement. A far higher variability can be seen in 

between the main ridges, indicating vast changes in superposing sand forms such as ripples. These 

assumptions towards aeolian activity are additionally supported by the comparison between the SRTM 

and FABDEM, showing windward dune migration. 
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3.3.2 Continuous wavelet transform 

The spectral approach of continuous wavelet transform (CWT) has been used comparatively in the 

AOI’s B, C and D to investigate the present morphological forms as well as their inter-annual and intra-

annual variability with the aim to identify the morphological modulations of dunes. Based on absolute 

and relative differences between these modulations, the aeolian activity and its influence on the dune 

changes are discussed. In this section, we are presenting the results for three cross sections of each 

AOI, namely north (Figure 10), central (Figure 11) and south (Figure 12), represented by the central 

tracking axis and the parallels in 200 meters distance. This approach is useful to identify the different 

rhythmic patterns controlling the dune variation (erosional vs depositional areas) and the wavelength 

of the associated morphological forms. The application of the CWT to the different AOI’s sections has 

highlighted the presence of dune modulations and their associated morphological dune features as 

well as their evolution through time. 

 

Figure 10: Continuous wavelet transform (CWT) diagrams of dune morphological changes in the different areas 
B, C, and D during the different Sentinal-1 scenes: 31 Jan 2015; 14 Jun 2018; 12 Oct 2018; 7 Dec 2021 in the north 
of the AOIs. The wavelengths of multi-space-scale features (y-axis of the CWT diagram) identified are: ~8-16, ~ 
16-32, ~32-64 and ~ 128 m*10. x-axis: the distance; y-axis: the frequency (spatial scale) or equivalent wavelength; 
colour scale: the power or variance (which quantify the correlation between the signal and the wavelet basis) 
from blue (low) to red (high). 
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Figure 11: Continuous wavelet transform (CWT) diagrams of dune morphological changes in the different areas 
B, C, and D during the different Sentinal-1 missions: 31 Jan 2015; 14 Jun 2018; 12 Oct 2018; 7 Dec 2021 at the 
central axis of the AOIs. 

 

Figure 12: Continuous wavelet transform (CWT) diagrams of dune morphological changes in the different areas 
B, C, and D during the different Sentinal-1 missions: 31 Jan 2015; 14 Jun 2018; 12 Oct 2018; 7 Dec 2021 at the 
south of the dune AOIs. 
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 As can be seen in Figure 10, Figure 11, and Figure 12, the distribution of energy in the CWT spectrum 

is non-uniform with altering bands of high and low power, represented by red and blue colours, 

respectively. This distribution highlights the existence of several modulations of morphological 

changes structured at a series of spatial periods with different wavelengths, divided into the categories 

~8-16 (shortest wavelengths, highest spatial frequencies), ~160-320, ~320-640and ~1280 m (longest 

wavelengths, lowest spatial frequencies).  

The high power of the ~1280 m wavelength seems to be similarly manifested during all years in AOI C 

at all profiles from the north to the south.  Such modulations are associated with the large and inactive 

dunes in this AOI. The small dune features, shown by the wavelength of ~8-16 m*10, are often 

connected to larger structures (~160-320 and ~320-640 m) as illustrated in AOI B and D. This 

connection seems to be significantly manifested in the north of the AOIs with regular structures, 

however, it is relatively limited in the centre and the south.  

The smaller morphological modulations of ~80-160 m exhibit non-organized forms according to the 

scale range; most of them are observed from the centre to the south of AOI B and vanish in the north 

of the AOI where the morphological modulations are well structured and strongly connected. 

According to the spectral analysis of the morphological dune changes, a series of findings can be 

formulated as follows: 

1. The temporal variation of dune morphology is highlighted by an inter-annual evolution of 

morphological modulations from 2015 to 2018 which is significantly manifested in AOI D where 

the dynamics are highly active. This dynamic seems to be extremely reduced for dunes of AOI C. 

2. The seasonal patterns of dune changes, reflected from the comparison of dune fields between 

June and October of 2018, are manifested in the different AOIs and exhibit a pronounced 

sedimentary connection in winter periods when the sediment transport induced by the increasing 

aeolian energy is important. However, this connection seems to be reduced during summer 

periods, most probably due to the seasonal shift in the wind regime (section 3.2.1). 

3. The morphological forms of dunes are strongly related to the energetic conditions of wind. The 

distribution of morphological forms from homogenous structures in AOI B and AOI D (clear 

connection between small and large dune features) to non-homogenous ones in AOI C (inactive 

paleo-dunes with limited connections to small dune features) where the sediment transport 

induced by wind regime seems to be controlled by different directions. 
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3.4 Discussion 

3.4.1 Limitations and sources for error 

In comparison to optical imagery, Sentinel-1 GRD data requires an extensive pre-processing procedure 

before it is in an analysis-ready state. The aim of this procedure is to remove any noise in form of radar 

speckle, terrain effects and border noise. When applying a speckle filter, however, there is a chance 

that not only noise is removed but also a part of the signal is smoothed out. The choice of the filtering 

algorithm and parameters should therefore be considered with caution. Based on this study, we 

recommend the use of the improved sigma filter (Lee et al. 2009), effectively filtering speckle while 

preserving the signal. As applying this filter to larger scenes requires a lot of processing power, we 

additionally recommend the ARD-implementation into the GEE by Mullissa et al. (2021).  

Due to the areal low coherence between Sentinel-1 scenes of active dune fields, interferometric 

approaches and DEM-derivation are not applicable. Therefore, dune morphology and dune features 

have to be extracted indirectly from GRD scenes. Backscatter differences in active dune fields are 

mainly influenced by the local incidence angle. Therefore, the direction of dune features in comparison 

to the illumination direction is one of the main limitations. As could be seen in AOI B, another main 

limitation is the fact that subsurface forms like the underlying large transverse dunes cannot be 

detected in GRD imagery. Therefore, it is necessary to include optical imagery or DEMs to assess the 

dune field comprehensively.  

The Sentinel-1 GRD profile analysis in this study has shown that while the backscatter values of the 

scenes show a high spatial overlap, the absolute backscatter values vary widely between them. For 

automated thresholding and feature extraction processes, this means that a variable approach has to 

be applied, evaluating each scene separately. 

 

3.4.2 Potentials and perspective 

From Sentinel-1 GRD imagery, three main features relevant for complex dune field dynamics can be 

extracted. The first is finely grained active dune sand, which can be easily differentiated from coarsely 

grained or vegetated inactive dunes as well as other adjacent surfaces by its very low backscatter of 

lower than -20dB. The second feature is dune ridges, which have a far higher backscatter than the 

surrounding dune sand due to the double-bounce backscatter effect. This effect, however, is highly 

dependent on the illumination direction and the curvature and slope of the ridge, leading to large 

differences in backscatter between scenes. The third type of dune features that can be extracted via 

Sentinel-1 GRD imagery are smaller scale ripples between the main ridges.  
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As we have shown in this study, the CWT frequency is a fitting method to analyse these indirectly 

derived dune features. As such, it provides useful information related to the changes in spatial and 

temporal morphological modulations of dunes in response to aeolian energy conditions. This approach 

has given new insights related to the morphological modulations of dunes in time and space. A series 

of hypotheses have been highlighted; (i) strongest aeolian activity is found in the north of the AOIs 

which are mainly controlled by an exposure to north-westerly winds, (ii) multi-timescale evolution of 

dunes can be observed in AOI B and D in response to active aeolian conditions from seasonal to inter-

annual scales, while they are weakly active to inactive in AOI C, (iii) strong morphological connections 

between small and large dune features can be observed during winter periods while these connections 

are weakly manifested during summer periods when changes in the energy and the direction of wind 

are significant. As such, this technique has given some insights into the external (climate conditions) 

and internal (sediment characteristics) drivers controlling the morphological migration of dunes. 

The main advantage of Sentinel-1 SAR GRD over optical imagery for complex dune field analysis is the 

easy identification of the mentioned morphological features as well as the easy discrimination of 

inactive and active dunes. This is due to the fact that these different surfaces and features show very 

little differences in their spectral reflectance, making them difficult to distinguish in optical imagery. In 

C-band SAR, however, the backscatter is mainly influenced by surface roughness and local incidence 

angle, allowing an easy differentiation.  

The main advantage of Sentinel-1 SAR GRD over openly accessible global DEMs is the higher spatial 

resolution and multi-temporality. Although the dune morphology could be directly extracted from the 

SRTM DEM in this study, it lacked the spatial resolution to take smaller forms into account. Due to the 

possibility of direct extraction of dune morphology, the first attempt in this study was to create a DEM 

from Sentinel-1 SLC imagery. Due to very low coherence, however, this was not possible in the active 

parts of the dune field. Instead, the dune morphology was extracted indirectly from GRD imagery. 

Although this methodology brings some challenges in the analysis and interpretation, the multi-

temporality was favoured over the direct dune form extraction.  

As the advantages of complex dune field analysis with Sentinel-1 GRD are mainly the easy 

differentiation of the mentioned features and high spatial and temporal resolution, we see its main 

value in the automated derivation of dune features. For example, the continuous automated 

derivation of dune ridges and active dune sand in combination with wind datasets could bring new 

results for the annual variability of dune movement and the response to storm events. 
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3.5 Conclusion 

In this study, we have shown the possibilities as well as limitations in using the currently most easily 

accessible SAR dataset, Sentinel-1 GRD, to access the morphology of a complex dune field and changes 

therein. As the very low areal coherence within active complex dune fields does not allow for 

interferometric approaches such as the calculation of a DEM, we used the GRD backscatter values to 

extract morphological features indirectly. Using this method, three main dune features can be 

extracted based on surface roughness and local incidence angle. These are namely active dune sand, 

dune ridges and inter-dune ripples.   

Based on this information, a comparative analysis to optical Sentinel-2 imagery and the SRTM DEM as 

well as a profile-based continuous wavelet transform frequency analysis were conducted for the 

complex dune field Bor Khyar Els in western Mongolia. Using these methodologies, three areas of 

interest within the dune field were analysed, revealing significant differences in aeolian activity, wind 

direction and wind seasonality.  

Based on the results of this study, we see a good suitability of Sentinel-1 for complex dune field 

analysis. This suitability is additionally amplified by the comparison to similar approaches based on 

optical imagery and DEMs. In comparison to these datasets, Sentinel-1 allows for a far better detection 

of dune-relevant morphological features. In comparison to optical imagery where these features only 

show slight differences in their reflectivity, SAR-based analysis offers an easy discrimination. The main 

advantage over globally available DEMs is the comparably high spatial resolution and especially the 

multi-temporality.  

Due to these advantages of SAR-based complex dune field analysis, we see great potential in its further 

implementation. For future studies, we recommend its implementation in automated analyses of 

continuous time series. Due to the high temporal resolution of Sentinel-1, this would offer new insights 

into the temporal and spatial evolution of dune fields as well as the related frequencies and 

magnitudes of the aeolian driving forces. 
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Abstract 

In archaeology, predictive models play a key role in understanding the interactions between humans 

and the paleo-environment. They are also of great value for cultural heritage management and 

planning purposes. This is particularly true for Palaeolithic sites in the east Austrian loess landscape, 

which are often deeply embedded in sediment sequences. In this study, we analyse the geospatial 

behaviour of 23 Upper Palaeolithic sites in Lower Austria. Hereby, we apply a new approach, which 

combines the advantages of a classical deductive method with the capabilities of machine learning, 

implemented via the MaxEnt software. The result is a predictive model for an area of 7850 km², 

exploring the potential for the presence of Upper Palaeolithic sites. The model highlights several spatial 

dynamics of site probability in the study area. Possible sources of inaccuracies within the source data 

and the methodology are critically discussed. 

 

4.1 Introduction 

Archaeological predictive modelling (APM) tries to predict “the location of archaeological sites or 

materials in a region, based either on a sample of that region or on fundamental notions concerning 

human behaviour” (Kohler and Parker 1986). It is based on the assumption that human spatial 

behaviour is predictable and can be extrapolated from samples to larger areas (Verhagen 2007). As 90-

99% of all archaeological remains are presumably yet undiscovered, APM is based on the 1-10% 
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explored and documented archaeological sites (Verhagen et al. 2010). As such, an APM offers the 

chance of preserving the 90%-99% undiscovered sites from destruction by e.g. construction projects 

while being based on only 1-10% discovered archaeological sites, raising the question of 

representability. In addition to cultural heritage management implementations, APM can help us in 

understanding the interaction between our ancestors and the paleo-environment (Kamermans & 

Niccolucci 2010). For a more in-depth introduction to APM as well as a thorough discussion of its 

strengths and weaknesses, see van Leusen et al. (2005) and references therein.  

This study is based on 23 Upper Palaeolithic sites in Lower Austria and presents a first attempt at 

creating an APM for a Late Pleistocene timeframe in this area.  Despite the limited number of sites, the 

model, in its current state, can already be used as a regional geospatial tool for archaeological research. 

We recommend implementation into cultural heritage management only after additional empirical 

data is added and the model is thoroughly validated. To create the model, we use a novel approach, 

combining the explanatory power of a deductive method with the statistical reliability of an inductive 

approach. The result can be seen as part of the “Middle Range Theory”, as it breaks up the boundaries 

between deductive and inductive methodologies (Verhagen & Whitley 2012). 

4.2 Study Area 

The study area covers more than 7800 km² and stretches from the Bohemian Massif to the Eastern 

Alpine forelands. Geologically, it marks the transition between massif metamorphic rocks to molasses, 

covered by Pleistocene sediments. Hydrologically, the Danube leaves the narrow valleys of the 

Bohemian Massif and enters the hilly landscape of the Alpine foreland. For the Late Pleistocene paleo-

environment, this translates to the transition from a turbulent, impassable river into a traversable 

braided river system, documented by the Late Pleistocene fluvial deposits of the lower terrace 

(Geologische Bundesanstalt 2013). This part of Lower Austria is widely considered a loess landscape 

(Lehmkuhl et al. 2021). Regarding the disputed definition of loess, mentions in this study include 

windblown aeolian dust as well as results of post-formational activities as proposed by Smalley et al. 

(2011). Up to 40 m thick loess-paleosoil sequences (LPS) can be found in the study area, several of 

which enabled in-depth paleo-environment reconstructions (e.g. Haesaerts et al. 1996; Terhorst et al. 

2011; Sprafke et al. 2014; Sprafke et al. 2020). At the same time, numerous LPS preserved evidence 

for Palaeolithic occupation. Today’s topography, however, is considerably impacted by historic and 

recent anthropogenic activity, such as large-scale terracing for viticulture, loam extraction and 

constructions for transportation. Many archaeological sites in the study area were discovered during 

such activities, potentially causing a considerable sampling bias.  
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4.3 Materials and methods 

4.3.1 Upper Palaeolithic sites 

Several dozen Palaeolithic sites have been discovered in the study area in course of ~150 years of 

research. A number of these such as Willendorf, Krems-Hundssteig, Krems-Wachtberg, Kammern-

Grubgraben and Langmannersdorf are internationally well-known as they provide significant 

contributions to our understanding of early modern human behaviour and substantial evidence for 

human-environment interaction (e.g. Einwögerer et al. 2006; Händel et al. 2020; Neugebauer-Maresch 

2008; Nigst et al. 2014; Teschler-Nicola et al. 2020). Not all sites are suitable for consideration in an 

APM. In some cases, the material evidence allows neither for an unambiguous techno-cultural 

placement nor for the production of numerical ages (i.e. lack of organic remains for radiocarbon dating 

and heat-influenced lithic objects for luminescence measurements). For other sites, the exact 

geographic position remains unknown, because the archaeological material was either collected from 

the surface (i.e. devoid of sedimentary context), or the precise spatial context was not documented.  

Cave sites were also not considered, as they underlie entirely different formation processes. Hence, 

23 Upper Palaeolithic open-air sites remained to be included in this study (Table 4). Techno-culturally, 

these sites range from the Aurignacian to the Magdalenian. 19 sites provided numerical ages in the 

range between 43 and 17 ka cal BP; the other four allow for unambiguous techno-cultural placement.  

Table 4: List of all utilized Upper Palaeolithic sites within the study area. 

Site name Lat Long Elevation Techno-culture Age (ka cal BP)* 

Aggsbach 48.2933 15.4002 224 Gravettian 30 

Alberndorf 48.6833 16.1120 252 Aurignacian 36-32 

Getzersdorf 48.3280 15.6925 243 Aurignacian N/A 

Gobelsburg-
Zeiselberg 

48.4564 15.7003 229 Gravettian N/A 

Gösing-Setzergraben 48.4658 15.8068 316 Gravettian 31 

Großweikersdorf I/III 
48.4684 15.9756 215 Aurignacian & 

Epigravettian/LGM 
37 / 24.5 

Kammern-
Grubgraben 

48.4825 15.7175 267 Epigravettian/LGM 23.5-22 

Kamegg 48.6128 15.6596 277 Magdalenian 17.5-17 

Krems-Wachtberg 
1930 

48.4153 15.5992 258 Gravettian 32-31 

Krems-Wachtberg 
2005-2015 

48.4150 15.5995 257 Gravettian 34-30.5 

Krems-Hundssteig 
2000-2002 

48.4146 15.6015 237 Gravettian 34-31 

Krems-Wachtberg 
East 

48.4154 15.5999 254 Gravettian 34-30.5 
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Krems-Hundssteig 
1893-1904 

48.4146 15.6015 237 EUP (Early Upper 
Palaeolithic) / 
Aurignacian 

41 

Langenlois A/B 48.4681 15.6863 222 Gravettian 31-29 

Langmannersdorf 48.2805 15.8340 220 Epigravettian/LGM 25-23 

Rosenburg 48.6340 15.6342 264 Epigravettian/LGM 24 

Rupperstal 48.4693 15.9331 307 nd 25.5 

Saladorf 48.2724 15.8768 204 Epigravettian/LGM 22 

Senftenberg 48.4537 15.5411 290 Aurignacian 39 

Spitz-Singerriedl 48.3667 15.4182 211 Gravettian N/A 

Steinaweg 48.3711 15.5990 274 Gravettian? N/A 

Stratzing/Krems-
Rehberg 

48.4407 15.6029 356 Aurignacian 39-33 

Willendorf II 
48.3232 15.4042 232 (Middle Palaeolithic) 

- EUP - Aurignacian - 
Gravettian 

(46)43-29 

*Radiocarbon data sources: Einwögerer et al. (2014); Händel et al. (2020); Jöris et al. (2010) and 
references therein; Nigst et al. (2014). Calibration with IntCal20 (Reimer et al. 2020). Ages given 
represent mean values rounded to 0.5 ka. 

 

4.3.2 Input predictors  

In APM, environmental variables with implications for site probability are called predictors, as they are 

used to predict the dependent variables (Wheatley 1996). When assessing the potential for 

archaeological sites, not only factors influencing the settlement choice have to be considered. Natural 

factors influencing the preservation of sites such as sedimentation processes are at least equally 

important (Schiffer 1983). In particular, for the often sparse remains of hunter-gatherer societies, a 

separation of anthropogenic and natural factors is crucial not only for understanding the formation of 

a single site (Schiffer 1983) but also for assessing settlement and/or occupational patterns (Binford 

1980). At the same time, the archaeological record can be indicative for natural processes, i.e. paleo-

environmental conditions, leading to the site’s preservation (e.g. Händel et al. 2021). For our study we 

identified 10 geospatial predictors. From a thematic perspective, these can be divided into three fields: 

terrain, water and geology. Table 5 lists all predictors together with implications for settlement choice 

and preservation of records.  
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Table 5: Chosen predictors with implications for settlement choice and preservation as well as implementation 
method. 

Predictor 
Implications for  

settlement choice 
Implications for preservation 

Implementation 
via 

Elevation 

Higher altitudes mean lower 
temperatures. Thus, lower 
altitudes are favoured. 

Elevations below the erosional 
base level are more likely to 
have been disturbed. There is 
also an upper boundary for 
loess deposition. 

Digital elevation 
model (DEM) 

Slope 

Gentle slopes mean higher 
sunshine duration. Steep slopes 
do not allow for settlement.  

Geomorphological slope 
processes increase 
sedimentation dynamics, 
potentially leading to local 
erosion but also to locally 
higher sedimentation rates and 
thus improved preservation. 

Calculated from 
DEM 

Aspect 
Leeward slopes are preferred 
as they offer wind protection. 

Leeward slopes favour 
sedimentation of aeolian 
sediments. 

Calculated from 
DEM 

Topographic 
position 

Ridges and plateaus are 
avoided as these are exposed 
to the wind. Lower slope 
sections are more protected.  

Ridges and plateaus favour 
aeolian erosion. Lower slope 
sections favour sedimentation. 

Calculated from 
DEM 

Sunshine 
hours 

Longer sunshine duration 
increases the local 
temperature.  

None Calculated from 
DEM 

Distance to 
river 

Rivers were important water 
(and raw material) sources. 
Short distances are preferred. 

Braided river systems with 
large seasonal differences in 
discharge act as main source 
for aeolian sediments. 

Euclidean 
distance to river 
datasets 

Distance to 
river 

junction 

Locations close to river 
junctions were favoured. 

None Euclidean 
distance to 
extracted 
junctions of 
river datasets 

Height 
above 

water level 

Pleistocene rivers posed a 
constant threat of flooding. A 
certain height above the water 
level offered protection. The 
seasonal character of sites 
diminishes this risk. 

Sites within reach of fluvial 
activity are not preserved. This 
is also relevant for the distance 
to river predictor. 

Subtraction of 
interpolated 
water levels 
from DEM 

Loess 
sediments 

Loess landscapes supported a 
rich flora and fauna crucial for 
hunter-gatherer subsistence. 

Deposition of loess sediments 
favours preservation. 

Thematic maps 

Late 
Pleistocene 

alluvial 
plains 

Late Pleistocene rivers posed a 
constant threat of flooding.  

Possible remains are displaced 
or destroyed by fluvial 
processes. No sites were found 
here. 

Thematic maps 
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All predictors were parameterised using ArcGIS 10.7.1. The main source for most terrain- and water 

predictors is a digital elevation model (DEM) with a spatial resolution of 10 m (available at 

www.data.gv.at). As anthropogenic landscape modifications (see section 4.2) imply necessity for 

terrain corrections, this dataset was smoothed prior to additional processing. The goal was to create a 

DEM which represents a natural landscape as closely as possible. The resulting DEM still differs from a 

Late Pleistocene paleo-surface, as climatic, geomorphological and hydrological processes have since 

fundamentally changed; Holocene sediments covered past stream channels, steep hills wore down, 

rivers migrated, etc. Late Pleistocene landscape elements cannot be easily recreated and the 

smoothed DEM can therefore only be considered a best guess. For the smoothing algorithm, a focal 

mean within a 5-cell radius circle kernel was calculated using the ‘Focal Statistics’ tool.  

The first predictor, elevation, is represented by the smoothed DEM. Slope and aspect were determined 

(tools ‘Slope’ and ‘Aspect’). For the topographic position, we calculated the topographic position index 

(TPI) as defined by Gallant & Wilson (2000). Within ArcGIS, this was done by calculating the average 

elevation around each pixel (tool ‘Focal Statistics’ and subtracting the resulting raster from the original 

DEM (tool ‘Raster Calculator’). As large radii mainly reveal major landscape units (Reu et al. 2013), a 

focal mean within a 10-cell radius kernel was used for this calculation. The last terrain predictor, annual 

sunshine duration, was calculated from the DEM (tool ‘Area Solar Radiation’).  

For all predictors connected to water, we used two datasets, representing different scales. Streamlines 

from the CCM21 European river dataset represent larger rivers (version 2.1, De Jager & Vogt, 2007). 

As smaller streams also might have been vital for freshwater supply in the Upper Palaeolithic, an 

additional drainage was derived from the smoothed DEM. This was done by filling the DEM (tool ‘Fill’) 

and calculating flow direction (tool ‘Flow Direction’) and flow accumulation (tool ‘Flow Accumulation’). 

To include smaller streams, we used a low threshold of 5000 cells within the flow accumulation when 

extracting streamlines. To parameterise the distance to these river datasets, Euclidean distance was 

calculated (tool ‘Euclidean Distance’). Cost distance was not chosen for several reasons. Firstly, cost 

distance is not associated with a unit, which is disadvantageous for comprehension. Secondly, due to 

short distances to potential freshwater sources, a cost raster only has minor impact, especially 

concerning individual mobility on foot. Parameterisation of the predictor ‘height above water level’ 

was based on points extracted along streamlines in an interval of 50 meters (tool ‘Generate Points 

Along Lines’). In a second step, the elevation value was added to streamline points, representing the 

water level at each respective point (tool ‘Extract Values to Points’). For extrapolation of these point 

values, we used the inverse distance weighting interpolation algorithm with a search radius of 100 

points (tool ‘IDW’). In a final step, the resulting raster was subtracted from the DEM to gain the 

effective height above water level in meters (tool ‘Raster Calculator’).  
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For the distribution of loess and Late Pleistocene alluvial plains, the open source dataset of Lehmkuhl 

et al. (2021) was used. To ensure that it meets the required accuracy for this small-scale application, 

the dataset was compared to a 1:50,000 geological map (Geologische Bundesanstalt, 2013). Minor 

corrections were made by adjusting the area covered by Late Pleistocene alluvial plains to fit the 

respective terrace identified in the DEM.  

 

4.3.3 Implementation of MaxEnt 

MaxEnt was developed as a software for species distribution and environmental niche modelling 

(Phillips and Dudík 2008; Phillips et al. 2017). The main output of the MaxEnt tool is a raster containing 

the rate of occurrence (ROR), which, in this case, translates to the predictive probability for Upper 

Palaeolithic sites. This probability is calculated individually for each cell from the RORs assigned to the 

underlying predictor-values. For an in-depth explanation of the statistics behind the MaxEnt software, 

see Elith et al. (2011) and Merow et al. (2013). Due to its high predictive accuracy and easy-to-use 

application, it has been used in many fields, including archaeology. One of the main advantages of 

MaxEnt over the predominant technique, the logistic regression, is the fact that MaxEnt utilized 

presence-only data (Wachtel et al. 2018). Within logistical regression approaches, this can lead to 

difficulties in estimating an adequate sample size and site density (Verhagen 2008). By now, many APM 

case studies have successfully implemented the MaxEnt software (Galletti et al. 2013; Gillespie et al. 

2016; Jones et al. 2019; Alwi Muttaqin et al. 2019) and some have made direct comparisons, showing 

that MaxEnt outperforms logistic regression (Wachtel et al. 2018; Yaworsky et al. 2020). Despite all 

advantages of MaxEnt, it still is an inductive model at its core. Therefore, an indiscriminate 

implementation of the model leads to a loss of the explanatory value the same predictors would 

provide in a deductive model (Ebert 2004). To address this issue, MaxEnt includes response curves in 

the output, which show the predictive probability that is associated with the values of each predictor. 

These can be used to evaluate the thematic plausibility and thereby assess the causality within the 

model (Merow et al. 2013). As there is no way to alter the workflow of the model based on the 

plausibility of the response curves, these were the only outputs extracted for further use as a statistical 

substructure of a deductive approach. This is the only way to preserve causality between input 

predictors and the dependent variables and thereby uphold the explanatory value of the model. For a 

more in-depth comparison of weaknesses and strengths of inductive vs. deductive APMs, see van 

Leusen et al. (2005), Verhagen & Whitley (2012) and references therein. 

To fittingly integrate loess and Late Pleistocene alluvial plains into MaxEnt, these predictors were 

transformed into binary format (1=present/0=not present). As such, these predictors were integrated 
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as categorical predictors while all other predictors are continuous. To determine fitting input 

parameters, the practical guide to MaxEnt by (Merow et al. 2013) was used. As the goal of this 

approach was to identify plausible optimal value ranges within the response curve of each predictor 

separately, cumulative output was selected. This output rescales the ROR from lowest to highest value 

on a scale between 0 and 100, which allows for unambiguous interpretation and easy comparison 

(Merow et al. 2013). The loss of raw probability values is acceptable as these are of negligible 

importance in a deductive approach.  

 

4.3.4 Deductive method  

Subsequently, we evaluated the plausibility of the statistical connection between each predictor and 

the site probability, represented by the response curves. In cases where the response curves fit the 

deductive expectation, no modification was made before reclassifying the value of the predictor to a 

predefined score value. In cases where parts of the response curve were deemed implausible, 

modifications were made accordingly. All response curves and modifications are presented in section 

4.4. After obtaining plausible response curves for each predictor, these were reclassified into score 

values to simplify the model and thereby enhance its explanatory value. To achieve this, the values of 

each predictor were reclassified into three classes according to the cumulative value within the 

response curve. The optimal value range for each predictor is defined by a cumulative value equal to 

or larger than 80 (score value = 3). This corresponds to the top 20% of relative probability within the 

predictor. Cumulative values equal to or larger than 50 define the viable value range of each predictor 

(score value = 1). Values below this relative probability threshold are classified as unviable (score value 

= 0). The large difference between the score value of the optimal and viable class (3 vs 1) was chosen 

to highlight the large difference in cumulative relative probability (top 20% vs top 50%). For the binary 

categorical predictors loess and Late Pleistocene, a different approach was used. For loess, presence 

was defined as optimal (score value = 3) and absence as unviable (score value = 0). As Late Pleistocene 

alluvial plains were defined as exclusion criterion, presence was defined as unviable (score value = 0) 

and absence as viable (score value = 1). Through this simplifying score value method, the value range 

was reduced from 0-900 to 0-27, reducing the complexity immensely.  

 

4.4 Results 

Here, we present the results of the MaxEnt implementation and how the response curves were 

evaluated and integrated into the deductive approach (see Figure 13). As the TPI yielded very low 

model importance values (permutation importance = 0.0098, Jackknife standalone training gain = 
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0.0235), implying the absence of a statistical connection to the probability of sites, this predictor was 

excluded. All other predictors were kept as they showed satisfactory importance values.  

 

Figure 13: Response curves received from MaxEnt, version 3.4.4, cumulative output. Optimal (dark grey) and 
viable (light grey) value ranges of each predictor, based on the archaeological evaluation of the response curves, 
are marked in grey. 

The response curve of the elevation predictor a) was evaluated as being partly implausible. The sharp 

decline in relative probability below the elevation of 220 m can be explained geomorphologically, as 

this value corresponds to the erosional base level. The steep decline of probability above 220 m, 

however, was deemed implausible, as no implications for settlement choice or preservation support 

this. The generally narrow optimal and viable value ranges resulting from the unmodified response 

curve can be attributed to the small sample size of only 23 sites, 80% of which are found on an elevation 

between 204 and 277 m. Factors influencing the upper boundary of viability for settlement are 

temperature from the settlement choice perspective and the upper boundary of loess deposition from 

a preservation perspective (see Table 5). As such, the viable value range was set to ≤400 m, which 

represents the upper boundary for loess accumulation according to Lehmkuhl et al. (2021) and the 
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optimal range to ≤250 m based on empirical data. The statistical connection between relative 

probability and slope, represented by response curve b) was deemed plausible. The optimal and viable 

slope values represent hillsides where geomorphological processes favour the preservation of sites. It 

is important to note, that the implications for preservation overshadow the implications for settlement 

choice. The response curve of the aspect predictor c) was deemed plausible, as the highest relative 

probabilities are found in northeast/east aspects, i.e. in the lee of the prevailing westerly winds (Sebe 

et al. 2015). As such, it fulfils all implications for settlement choice and preservation, listed in Table 5. 

The exponential incline of relative probability with increasing annual sunshine hours in response curve 

d) was evaluated as plausible. Only the rapid decline above 4150 annual sunshine hours was deemed 

implausible, as no implications for settlement choice or preservation support this. This implausibility 

in the response curve might again be based on the small sampling size, including no sites with more 

than 4250 yearly sun hours, although close to 4400 hours are theoretically possible in these latitudes. 

As such, the optimal value range was extended upwards, ignoring this possibly biased decline in 

relative probability. Response curve e), representing distances to small rivers was evaluated as partly 

implausible, as a decline of relative probability below 200 m distance is not expected. A possible 

explanation for this inconsistency might be the aforementioned sampling bias (4.2), as areas in direct 

vicinity of rivers are less likely utilized for viticulture, loam extraction or construction. Therefore, 

optimal conditions were assumed for distances below 200 m. However, depending on catchment size, 

large variations of discharge, justifying this lower threshold, cannot be completely ruled out. Although 

it bears a great resemblance to the partly implausible response curve of small rivers, response curve 

f), representing distance to large rivers, was deemed plausible. The decline in probability below 200 m 

distance can be explained by the large variations of discharge of these rivers, posing a threat of flooding 

to camp sites and even more importantly providing unfavourable conditions for site preservation. The 

response curve for the distance to large river junctions g) was deemed plausible, as it shows the 

expected steady decline of relative probability with increasing distance. Response curve h) was also 

evaluated as plausible, as both incline and decline of the curve can be explained in the context of the 

paleo-environment. The incline with increasing distance expresses the safety from flooding on the one 

hand while the decline at distance values above 45 meters shows decreasing accessibility on the other 

hand. On the basis of this evaluation, all predictors were reclassified into optimal, viable and unviable 

value ranges.  

An additive approach was chosen to combine all reclassified predictors into a predictive model. To 

acknowledge the absolute exclusive criterion of Late Pleistocene alluvial plains, this predictor was 

included multiplicatively at the end of the equation. The reason that this geological predictor is treated 

as an absolute exclusive criterion is empirical evidence that no sites are documented. As nine 
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reclassified predictors with score values between 0 and 3 are included additively, the resulting additive 

score value can range from 0-27. Within this score range, very high probability for a presence of Upper 

Palaeolithic sites is assumed when more than half of the predictors lay within their optimal value range 

(additive score value ≥15); high probability when all predictors are at least within their viable value 

range (≥9); medium probability when more than half of the predictors lay within their viable value 

range (≥5); and low probability beneath this threshold (<5).  

The map itself shows multiple trends in probability (see Appendix B). On a larger scale, a difference 

between the Bohemian Massif in the west and the Eastern Alpine forelands in the east is apparent, 

showing generally higher probabilities in the east. On a smaller scale, medium steep slopes near rivers 

and river junctions show highest probabilities. Within this trend, probabilities on eastern and north-

eastern aspects are also elevated (Figure 14). 

 

Figure 14: Representative 3D image (upper) and idealized cross-section (lower), showing Upper Palaeolithic site 
probability dynamics in river valleys. The 3D image represents the area north of Langenlois at the intersection 
between Kamp river and Fahnbach river (See main map for localization) 
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The resulting model was validated with the input Upper Palaeolithic sites, showing that more than 80% 

of the sites fall within very high and high probabilities (48% very high, 34% high, 18% medium) and are 

thus represented by the predictive model. A cross-validation with test sites could not be conducted as 

the sample size is too small to be split into training and validation datasets. 

 

4.5 Discussion 

A predictive model can only be as accurate and representative as the data it is based on. Therefore, 

possible sources for inaccuracies and errors require careful consideration and critical discussion. All 

predictors trying to depict the Late Pleistocene environment can only be an estimate, as 

geomorphological and especially hydrological processes have changed fundamentally. Smoothing the 

DEM helps removing small scale anthropogenic features, while some Late Pleistocene landforms 

cannot be recreated in this way as mentioned above (section 4.3.2). Even larger differences are 

expected regarding hydrology, in particular due to modern canalization of large rivers. Present-day 

streamlines are thus not representative for Upper Palaeolithic settings. To account for potential river 

locations, Late Pleistocene alluvial plains were integrated and treated as possible streamline location 

when creating the distance to river predictors.  

Possible inaccuracies can also be expected from the data representing loess and Late Pleistocene 

alluvial plains, as these cover a European scale (Lehmkuhl et al. 2021). To minimize scale-related 

inaccuracies, the mentioned DEM and regional geological map were used as reference for visual 

validation and adjustment. Nevertheless, only half of the sites were found covered by loess shapefiles. 

This stands in contrast to the sedimentological context of the sites, as all are embedded in loess. It is 

therefore safe to say, that loess is underrepresented in geological maps of the study area. This may be 

caused by the exclusion of sediment covers <2 m during geological mapping (Lehmkuhl et al. 2021).  

Some possible limitations of the model are also introduced by the archaeological dataset. On one hand, 

the dataset does not always allow for unambiguous assessment of potential duration of the sites’ 

occupation (e.g. recurring brief or seasonal occupation vs. longer stay), although this is expected to 

have an impact on the preferred position within the paleo-environment. On the other hand, sites with 

several occupations spanning up to 25,000 years were treated as one, ignoring possible changes in 

settlement preferences. The only way to address these issues is to enlarge the dataset, so that it can 

be split into type- and chronology-specific groups without reducing the sample size below a 

representative minimum.  
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Possible sources for sampling bias regarding the site locations should also be considered to assess the 

representability of the dataset. This is especially important in the context of a loess landscape. As 

potential archaeological sites are often deeply embedded in loess sequences, discoveries are less likely 

to be random, but instead often connected to construction, viticulture or quarries. This leads to a 

significant sampling bias, which was addressed by careful selection of only well-documented and 

representative sites. However, this reduced the sample size to only 23, leading to difficulties in 

validation. As such, the model was validated with the training sample at the cost of weakening the 

statistical strength of the validation result.  

Despite these limitations, we are able to show that predictive modelling for Upper Palaeolithic sites in 

the study area provides plausible results. 

 

4.6 Conclusion 

We introduce a new methodology for APM, which allows deductive models to profit from inductive 

analysis. As such, it represents a good addition to the “Middle Range Theory” in archaeology, breaking 

up boundaries between deductive and inductive approaches. In detail, the statistical connections 

between 10 environmental predictors and Upper Palaeolithic site probability in Lower Austria were 

assessed, using the modelling software MaxEnt. The selected predictors have implications for the 

settlement choice and the site preservation. Instead of letting the MaxEnt “black box” run its course, 

losing track of causality in the process, intermediate results (response curves) were evaluated for 

plausibility from an archaeological perspective before further processing. All predictors were then 

reclassified to optimal, viable and nonviable value ranges and combined into a predictive model in an 

additive approach. The resulting map highlights spatial dynamics both on a larger and smaller scale. 

The small sample size, however, does not allow for complex validation and raises the question of 

adequate representability. As such, the model, in its current state, is applicable for scientific 

applications only. When more empirical data is added and the model is thoroughly validated, an 

implementation into cultural heritage management is possible. 
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4.7 Software 

For mapping, processing and statistical analysis of spatial data, we used ESRI ArcGIS 10.7.1. For the 

inductive parts of the APM, MaxEnt, version 3.4.4 was utilized. For the post-processing of maps and 

creation of graphics, we used Inkscape, version 1.1. 

 

4.8 Data availability 

The complete dataset raised in this study is publically available at the Collaborative Research Centre 

806 (CRC806) database (DOI: 10.5880/SFB806.71). 
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Abstract 

Archaeological sites are not distributed evenly throughout the landscape. For the Palaeolithic record, 

signals derived from the inhomogeneous spatial patterns are used to infer spatial decision-making 

processes or ecological preferences of our ancestors. However, to date it is still largely unclear how 

sampling biases affect the large-scale distribution of sites and whether the observable spatial patterns 

are actually representative of the distribution of humans in the paleo-landscape. To answer this 

question, this study assesses the spatial distribution of 4200 Upper and Final Palaeolithic occupations 

from two different perspectives, i.e., past settlement choice and likelihood of discovery. On the one 

hand, site distribution is thus examined for settlement-relevant factors such as topography, geology 

and sedimentology. On the other, discovery-relevant biases, such as recent land cover and building 

activity are analysed. The comprehensive spatial and statistical assessments show that the actual 

distribution of sites seems to be most strongly influenced by sampling biases. The assessed 

environmental variables representing the settlement factors show a far lower statistical association to 

the distribution of sites. They do, however, still support several common archaeological assumptions. 

For all approaches using site distribution as input, such as predictive modelling, the results of this study 

suggests that the sampling bias must be addressed. To this end, we suggest including environmental 

variables addressing discovery-relevant factors to quantify the potential biases. For further studies on 

the sampling bias of Upper and Final Palaeolithic sites, we recommend building on this pilot study by 
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adding more occupations to the dataset and more environmental variables to the settlement and 

discovery factors. Due to the current positive trend in openly available geodatasets, we see great 

future potential in this. 

 

5.1 Introduction 

The Late Pleistocene history of human settlement in Europe is assumed to be reflected in the 

distribution of sites left by Palaeolithic hunter-gatherer groups in the landscape. Mapping known sites 

shows patterns of clusters and voids of human presence across the subcontinent. This patterning – 

observable for both Neanderthals and Anatomically Modern Humans – has attracted interest of 

archaeologists, anthropologists and ecologists alike. Since the beginning of archaeological research, 

scientists try to find explanations for the heterogeneous distribution of sites and to identify decisive 

factors (Kohler and Parker 1986; Rowland 1989; Balla et al. 2014; Noviello et al. 2018; Verhagen 2018). 

Over the recent decades, geographic information systems (GIS) have played an increasingly important 

role in these efforts (Wescott and Brandon 2003; Ebert 2004; Scianna and Villa 2011). Explanatory 

models developed in prehistoric research often centre around climatic, cultural, and economic factors 

(Maier et al. 2016, Burke et al. 2017) but also address biases resulting from research history or 

taphonomic loss, including sediment cover and recent land use (Surovell and Brantingham 2007; 

Surovell et al. 2009). The evidence from Europe holds a key role in this discussion, since the available 

record combines a long and intense archaeological research history with a dense set of contextual data 

(Bocquet-Appel et al. 2005; Stephens et al. 2019). 

Human settlement history at larger spatial scales is frequently regarded as being strongly influenced 

by climatic factors, particularly for prehistoric foragers (Binford 2019). Consequently, paleo-

environmental parameters are seen as being highly important for the spatial distribution of Palaeolithic 

sites (Straus 1995; Maier et al. 2022). Conversely, largescale distribution patterns are used to infer past 

ecological niches or climatic preferences (Banks et al. 2008; Maier et al. 2016). Since the extensive 

dispersal and continued survival of Anatomically Modern Humans (AMH) in Europe somewhat after 45 

ky ago (Hublin et al. 2020; Shao et al. 2021a), the distribution of humans during the late Pleistocene 

was confined by the glaciation and deglaciation of mountainous areas and the higher latitudes, as well 

as changes in the spatial distribution and availability of resources. Therefore, many recent studies on 

Late Pleistocene forager societies draw from recently implemented paleo-climate models to identify 

and map areas of high settlement potential or ecological niches suitable for human survival (Banks et 

al. 2009; Banks et al. 2013; Hauck et al. 2018; Wren and Burke 2019; Shao et al. 2021c; Klein et al. 

2021). 
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However, these studies have to rely on the baseline assumption that the distribution of archaeological 

sites is more or less representative for the actual distribution of humans in the paleo-landscape, and 

thus reflects either ecological niches or settlement preferences of past foragers. Mismatches 

observable between the models and the archaeological record already indicate potential conflicts with 

this assumption (Shao et al. 2021b). Moreover, studies on site formation and the growing integration 

of geoarchaeological analyses have raised awareness towards geological processes as a filter for 

archaeological observations. Besides the time-dependent loss of archaeological sites (Surovell and 

Brantingham 2007; Surovell et al. 2009; Coco and Iovita 2020), regional taphonomic loss due to large 

scale erosion events (e.g., for the LGM in Iberia, Aura et al. 2012) or invisibility and inaccessibility of 

sites due to massive build-up of sediments (as for the Carpathian basin, Chu 2018; Nett et al. 2021) 

become increasingly relevant in the general discussion.  

In this study, we examine the distribution of archaeological sites in relation to factors relevant for past 

settlement choices (e.g., a southward exposure of site location or availability of high-quality lithic raw 

material) and modern site discovery (e.g., agricultural use of an area or presence of mining pits, Figure 

15).  

 

Figure 15: Graphical illustration of factors relevant for past settlement choices (left) and modern site discovery 
(right). While the settlement choices influence whether or not archaeological material is present, the modern 
discovery context influences the chance of discovery. Together, both determine the distribution of known Upper 
and Final Palaeolithic sites in the current landscape. 
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Building on an extensive database that is spatially intersected with a set of environmental variables 

representing both settlement- and discovery-relevant factors, geospatial and statistical investigations 

were carried out to answer the following main research questions on a European scale:  

1. To what extent do different factors show site frequencies diverging from expected values given 
the factors’ share of the investigated area?  

2. Which environmental variables are best suited to predict the presence of Upper and Final 
Palaeolithic sites? 

3. Is it possible to safely differentiate between different taxonomic units, site types (natural 
shelter/open-air), or regions based on the environmental variables?  

4. What is the relationship between the distribution of known sites and environmental variables 
attributed to settlement and/or discovery factors?  

Other questions of equal interest and importance cannot be addressed directly using the given dataset 

and methods and thus need to be postponed to future studies. For instance, since environmental 

variables were only assessed at the intersection with known sites, only presence and not absence of 

archaeological material was investigated. Inferences about whether areas void of sites reflect actual 

absence of humans or rather a low probability of discovery therefore cannot be drawn conclusively. 

Predicting areas with a high potential for the discovery of new sites is also out of the scope of this 

study, because the environmental variables are not suitable to produce valid results for the whole 

study area. Analysing how sites are distributed within the different environmental settings would 

require a different method, such as point pattern analysis. It is also important to stress that the above-

sated questions are addressed on a European scale. Zooming in on smaller scales might alter the 

picture. 

 

5.2 Materials and methods 

5.2.1 Upper Palaeolithic sites 

The study focuses on archaeological evidence of human occupation assigned to the Upper and Final 

Palaeolithic of Western and Central Europe, located between the Atlantic and the Black Sea and 

roughly dated between 42 to 11.6 ka. It uses available datasets on archaeological and paleo-

anthropological sites, initially compiled for paleo-demographic studies according to the Cologne 

Protocol (Zimmermann et al. 2009; Kretschmer 2015; Schmidt et al. 2021b). In these datasets, only 

published and uncontested sites were considered. The datasets provide spatial information on the 

occurrence of sites (longitude and latitude, WGS 84), a classification of the type of site (cave, rock 

shelter, and open-air), as well as a commonly accepted chrono-cultural attribution to six consecutive 

periods:  
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a) 42-33 ka, containing sites assigned to the Aurignacian technocomplex (Schmidt 2021);  

b) 33-29 ka containing sites assigned to an early phase of the Gravettian technocomplex (Maier 
and Zimmermann 2016); 

c) 29-25 ka, with sites assigned to a later phase of the Gravettian (ibid.);  

d) 25-20 ka, which comprises sites of the Solutrean and Epigravettian technocomplexes, dated to 
the LGM (Maier and Zimmermann 2015); 

e) 20-14 ka, comprising sites mainly assigned to the Upper Magdalenian technocomplex 
(Kretschmer 2015); and 

f) 14-11.6 ka, which comprises Final Palaeolithic sites (Schmidt et al. 2021a). 

In the database, any archaeological occurrence that can be linked to one of these periods by either 

absolute dating or typo-chronological attribution is counted as an element of this unit. In stratified 

sites, different occupations can thus be attributed to different periods. Since we are interested in 

evaluation the large-scale pattern of presence and absence of occupations, differences in length of the 

individual occupations are not considered. The database includes close to 4200 occupations. The 

individual paleo-demographic studies (see: AUR: Schmidt and Zimmermann 2019, GRA: Maier and 

Zimmermann 2017, LGM: Maier et al. 2016, MAG: Kretschmer 2015, FPAL: Schmidt et al. 2021a) 

discuss potential biases and limitations of each dataset to assess the reliability of the demographic 

estimates. Some areas show structural biases for all periods, such as the Po Plain, where important 

Holocene sediment deposits render potential archaeological sites invisible or inaccessible (Peresani et 

al. 2021). The situation in the Pannonian Basin or on the Balkan Peninsula seems also highly likely to 

be influences by taphonomic biases and research intensity in comparison to other areas (Maier et al. 

2021). To warrant comparative conditions for a meaningful discussion of observable differences in 

expected and observed site frequencies per period and setting throughout the investigated area, these 

regions are not considered further. The remaining map section thus comprises the study area or area 

of interest (AOI). 

Based on a pre-assessment of the dominant sedimentary contexts of sites, the AOI was divided into 

two sections: The north-eastern section (NE), where the dominating sedimentary context consists of 

loess and the south-western section (SW), where loess plays little to no role as sedimentary context. 

The border between these sections was defined based on the loess domains by Lehmkuhl et al. (2021). 

The border between the sections was aligned with the large European catchments of the Loire, Rhone, 

and Po rivers on the SW side and Seine, Rhine, and Danube on the NE side. Figure 16 gives an overview 

of the study area with all included occupations. It is important to note that the number of occupations 

can differ considerably among the different subsets.  
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Figure 16: Late Pleistocene map of Europe, showing both the study areas encircled by red lines as well as the 
archaeological site database. The big red line is used to highlight the underlying main border line between the 
sections. Dry continental shelf modified after Willmes 2015, glacial extent after Ehlers et al. 2011. 

 

5.2.2 Environmental variables and their role as settlement and/or discovery factors 

To assess the extent to which the currently known distribution of sites is representative for the 

distribution of hunter-gatherers during the Upper and Final Palaeolithic of Europe, we calculate those 

shares that can be attributed to factors influencing the likelihood of site discovery on the one hand, 

and settlement choice of Palaeolithic hunter-gatherers on the other. Generally, a strong influence of 

discovery factors is interpreted as potentially causing a strongly biased distribution pattern with low 

representativity, while a strong influence of settlement factors would indicate lower biases and higher 

representativity.  
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For our assessment of the settlement and discovery factors, we use eight environmental geodatasets: 

 The global elevation model (DEM) NASADEM (NASA JPL 2020) 

 The 1 : 5 million international geological map of Europe and adjacent areas (Asch 2003) 

 The extent and chronology of Quaternary glaciations (Ehlers et al. 2011) 

 Two European maps of Pleistocene aeolian deposits based on topsoil properties (Bertran et al. 
2021; Bertran et al. 2016) 

 The map of loess landscapes of Europe, based on geological maps (Lehmkuhl et al. 2021) 

 The Corine Land Cover (CLC) map of Europe for the year 2018 (available online at 
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018)  

 The HYDE land use model, version 3.2.1 (Klein Goldewijk et al. 2017) 

Some geodatasets are only relevant for discovery factors. The CLC and HYDE, for instance, only contain 

information on modern to contemporary land use and are thus only relevant for the likelihood of site 

discovery. All other variables can be mainly attributed to the settlement factor, as they can be expected 

to have influenced the Upper and Final Palaeolithic settlement choice. 

The CLC dataset consists of land cover classifications based on satellite imagery, coordinated by the 

European Environment Agency (EEA) under the framework of the Copernicus programme. From this 

dataset, the land cover classification for the year of 2018 was used to assess the contemporary land 

cover and thereby the discovery context of recently discovered sites. At many site locations, land use 

has probably changed since the date of discovery. Since an individual assessment is not possible for all 

4200 sites, current land cover is taken as an approximation.  

As many discoveries of archaeological sites in Europe were made at the end of the 19th and the start 

of the 20th century (Surovell et al. 2017), this timeframe should also be covered by a geospatial query 

with the archaeological dataset. To this end, the HYDE land use model, version 3.2.1 by Klein Goldewijk 

et al. (2017) was used. This dataset contains globally modelled land use estimates in generalised classes 

back to 12,000 ka in a coarse spatial resolution of 5 arc minutes. From the three modelled scenarios, 

the baseline was selected. For this study, we look at the built-up area in km² per grid cell (UOPP) and 

the population density in persons per grid cell (POPD). Changes between the years 1800 and 2000 were 

calculated, as increases in the built-up area or a higher population density imply interventions in the 

upper soil, possibly uncovering archaeological material.  

An attribution of each geodataset to but one of the two opposing fields of settlement choice and 

discovery likelihood is often impossible and their effects must therefore be discussed and weighted. 

Here, geological settings are a case in point. Jurassic and Cretaceous units in Europe have the highest 

potential for high-quality lithic raw materials (Duke and Steele 2010). These materials were consumed 
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by hunter-gatherers on a daily basis and likely played a role in spatial decision-making processes, 

although to varying degrees in different periods. While the quality of lithic raw material seems to have 

been quite important during the Magdalenian (Maier 2015), for instance, it seems to have been of 

lesser importance during the Final Palaeolithic (Holzkämper et al. 2013). Moreover, thanks to their 

calcareous matrix, Jurassic and Cretaceous rocks are also prone to the formation of caves and rock-

shelters. Containing large numbers of these “welcome structures” (Empfangsstrukturen according to 

Hahn 1995), they are also prone to positively influencing hunter-gatherer settlement choices. The 

availability of high-quality raw material and natural shelter thus might have been factors influencing 

settlement choices of hunter-gatherers. However, sediment preservation in caves and below (former) 

rock-shelters is usually good and for a long time, these settings have been targeted preferentially by 

archaeologists. These two aspects thus contribute to the discovery factors. Therefore, Jurassic and 

Cretaceous units are an ambiguous proxy potentially influencing both past settlement choice and 

likelihood of archaeological discovery. 

Further complicating matters are factors which do not only affect both fields of interest, but within a 

single field can contribute positive and negative effects depending on (potentially shifting) threshold 

values. Here, a case in point is the distribution of loess. On the one hand, loess seems to be indicative 

for the distribution of Late Pleistocene steppe environments (Gerasimenko and Rousseau 2008; 

Fitzsimmons et al. 2012) and thus for habitats likely attractive for hunter-gatherers, potentially 

influencing settlement choice positively. During the deposition of loess, however, the related dust-

storms might have had negative effects on settlement choice. On the other hand, loess plays a central 

role in the preservation of archaeological sites (Händel et al. 2009). The low-energy deposition of loess 

preserves archaeological material with minimal spatial redistribution, making it an excellent repository 

of Pleistocene archaeological material (Chu and Nett 2021). It therefore fosters archaeological 

discoveries. However, thick loess cover can also render sites inaccessible and thus hamper the 

discovery of sites. 

To address this issue of opposing influence, we use varying combinations of three loess geodatasets, 

as they each have a unique approach in defining loess and related aeolian sediments and thus can be 

used to assess different aspects. In Bertran et al. (2016 and 2021), loess is defined by topsoil properties 

based on the LUCAS topsoil database (Orgiazzi et al. 2018). However, both maps differ in their 

definition of loess. While the 2016 publication focusses on a narrow definition of loess, mainly based 

on French and Belgian localities, the 2021 publication implements a broader definition of loess, taking 

into account the different forms of loess throughout Europe. As such, these two maps can be seen as 

a lower and an upper estimate of loess thickness based on topsoil data. The loess map of Lehmkuhl et 

al. (2021), in contrast, is compiled mainly from regional and national geological maps. In these maps, 
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only loess layers thicker than 2 metres are taken into account. By using the three datasets in 

comparison, both the topsoil properties and parent substrate indicating loess and related aeolian 

sediments can be incorporated into the spatial analysis.  

All information on topography, namely elevation, slope and aspect, were derived from the NASADEM 

global digital elevation model (DEM) with a spatial resolution of 30m (NASA JPL 2020). This DEM is a 

reprocessing of STRM data, with improved vertical accuracy by incorporating auxiliary data from ASTER 

GDEM, ICESat GLAS, and PRISM datasets (Buckley et al. 2020). The original DEM and all derived 

products were calculated and exported using the Google Earth Engine (Gorelick et al. 2017). 

All environmental variables are visualised as maps in Figure A26 to Figure A35 in the appendix.  

 

5.2.3 Geospatial analysis 

To reduce the complexity of the geospatial analysis, we implemented an extensive pre-processing 

workflow, aimed at harmonizing all used environmental variables and preparing them for geospatial 

query in ArcGIS, version 10.7.1. For the tabular datasets of Upper Palaeolithic sites, this includes 

internal harmonisation of columns and transformation into a single vector-based geodata file 

(shapefile, .shp). For easy handling of the resulting file, only columns relevant for individual 

identification and categorical selection were preserved.  

The pre-processing of vector-based environmental variables included merging of the pre-defined 

classes from each dataset separately before dissolving them into classes selected for this study. To 

account for possible inaccuracies in the archaeological dataset and/or in the environmental variables, 

we use a search radius of 500m around each location when an archaeological site does not intersect 

the variable. The spatial query for raster-based environmental variables was carried out by extracting 

values based on spatial intersection with the site locations (ArcGIS-tool: Extract Multi Values to Points). 

As some of the environmental variables contain categorical data, cell values at site locations were not 

interpolated. To enable a better statistical analysis of the CLC dataset, the 44 land cover classes were 

reclassified and aggregated to 10 classes of related surface types based on preliminary observation on 

comparable site frequencies per class. Single classes that show noticeably increased or decreased site 

frequencies were preserved. The result of these two steps is a vector database containing an entry for 

each archaeological assemblage. Apart from archaeological properties, such as assignment to one of 

the six periods, natural shelters vs. open-air sites, etc., the attribute table contains the value of each 

environmental variable at the respective location.  
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Parallel to the intersection of sites and environmental variables, we extracted reference data based on 

the AOI (see 5.2.1 Upper Palaeolithic sites) to define the expected values and shares of each 

environmental variable (see 5.2.4 Statistical analysis). We only include areas where human existence 

was potentially possible throughout the entire Upper and Late Palaeolithic, therefore excluding 

elevations of >1200 m.a.s.l. based on an empirical exploration of the site dataset. This way, 19 of 4194 

sites were excluded. We are aware that this is a simplification and probably leaves periodically 

uninhabitable regions in the reference data. However, the AOI has to fit all phases of the investigation 

period and thus requires compromises. Based on the polygons representing the AOI at elevations 

lower than 1200 m.a.s.l., reference values and shares of the environmental variables were gathered. 

This process was carried out three times: (1) For the entire AOI, and individually for (2) for the NE-

Section and (3) for the SW-Section, (5.2.1 Upper Palaeolithic sites). A simplified workflow-diagram can 

be seen in Figure 17. For more details on the geospatial analysis, refer to Appendix A. 

 

Figure 17: Workflow diagram of the geospatial analysis, showing how the spatial datasets were processed to 
allow for a comprehensive statistical assessment. From left to right: The environmental variables are spatially 
intersected with the areas of interest to assess expected values and spatially intersected with the archaeological 
dataset to assess observed values. The results are compiled in a tabular database on which all statistical 
approaches are based. Colour-coding: Green: Input, Grey: Spatial processing, Yellow: Intermediate result, Orange: 
End result 

 

5.2.4 Statistical analysis 

We utilised the site properties to divide the database into chronological (AUR-FP), spatial (NE/SW) and 

type-specific (natural shelters vs. open-air) subsets. When considering every subset and aggregation 

of these combinations, this results in site 49 classes. In the next step, we utilised the values of 

continuous environmental variables to calculate mean, STD, median and quartiles for each Upper 

Palaeolithic site class. From categorical environmental variables, frequencies of occurrences (n) were 

calculated and set into perspective to the overall class numbers, resulting in percentages of each of 

the 49 site classes.  
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To assess whether these means and class shares represent an under- or over-representation of the 

respective environmental variable or class in the site distribution, we compared them to their 

reference value, calculated based on the AOI. To simplify the interpretation, comparison, and 

visualisation, this value is displayed as a factor of the expected value ranging from 0 to a theoretically 

open end. The values can be interpreted as the following:  

 <1 = Sites are underrepresented (Lower mean or class share in the site-database than in the AOI)  

 1 = No over- or under-representation (Same mean or class share in the site-database as in the AOI)  

 >1 = Sites are overrepresented (Higher mean or class share in the site-database than in the AOI) 

The resulting ‘deviation from expected mean’ or ‘deviation from expected share’ thus represent the 

statistical relation between the expected and observed occurrences.  

To determine how the environmental variables influence the presence or absence of sites, the 

database was additionally analysed based on the maximum entropy principle using the software 

MaxEnt, version 3.4.4. This software was originally developed for species distribution and 

environmental niche modelling (Phillips and Dudík 2008; Phillips et al. 2017), but has also been 

successfully utilised in archaeological predictive modelling (Galletti et al. 2013; Gillespie et al. 2016; 

Jones et al. 2019; Alwi Muttaqin et al. 2019). In this raster-based spatial approach, absence data is 

generated automatically from raster cells where no site is present. The accuracy of the resulting 

predictive model is assessed in a receiver operating curve (ROC) which depicts the rate between true 

positives and false positives at different classification thresholds. The area under curve (AUC) is 

calculated from this ROC and can be used to evaluate the performance of the model. A detailed 

description of the statistics behind the software can be found in (Elith et al. 2011; Merow et al. 2013).  

For processing within this software, all environmental variables were rasterised and resampled to a 

spatial resolution of 100*100 metres using the nearest neighbour method. For the best possible 

comparison between settlement and discovery factors, all environmental variables were included in 

each model run. As a predictive modelling is not the main aim of this study, we extracted only response 

curves and jack-knife variable importance from the result. The response curves show how the 

predicted probability of a response variable (in this case the presence of archaeological sites) changes 

as the values of a predictor variable changes. As the predicted probability of sites is increased on 

surfaces where sites are overrepresented in comparison to the background data, the response curves 

are comparable to the conventionally calculated ‘deviation from expected share’ and ‘deviation from 

expected mean’. The jack-knife variable importance can be used to estimate the predictive value of an 

environmental variable as a whole, which is comparable to conventionally calculated determination 

measurements based on presence/absence data.  
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For additional internal statistical queries and tests, the tabular database was further analysed using 

the statistics software IBM SPSS statistics. In order to provide additional information on the association 

between environmental variables and archaeological classes (period, cave, open-air, etc.), the 

database was internally tested using the contingency coefficient. The data set was additionally 

analysed with a Two-Step Cluster analysis in order to reveal different groups/clusters. The strength of 

the Two-Step Cluster analysis is its ability to distinguish groups without predefining them. Therefore, 

the number of clusters is not based on the subjective choice of the researcher, but on a statistical 

measure of fit (Kayri, 2007, Rundle-Thiele et al., 2015). The method also permits the simultaneous 

analysis of categorical and continuous data by applying the Log-Likelihood method as a distance 

measure to separate groups, followed by the probabilistic method BIC (Bayesian Information Criterion, 

c.f. Schwarz, 1978) to gain an optimal grouping (Zhang et al., 1996).  

In addition, the archaeologically predefined classes were tested by applying a discriminant analysis 

(Davis, 1986, Kovarovic et al., 2011) and the Naïve Bayes method, a probabilistic classification approach 

(Armero et al., 2020, Monna et al., 2020). All statistical methods applied in this study are listed in Table 

6 for additional context. For more details, see Appendix A. 

Table 6: Summary of all statistical approaches conducted in this study stating the name, a short description, and 
the main aim of each method. 

Statistic Description Main aim 

Deviation from 
expected 
mean/share 

Expected: Mean/share of 
continuous/categorical 
environmental variables in the 
area of interest (AOI).  

Observed: Mean/share of 
continuous/categorical 
environmental variables at site 
locations.  

Deviation: Comparison between 
expected and observed values.   

Assessing the main statistical association 
between site locations and environmental 
variables. An over-representation of sites 
indicates favourable conditions for 
settlement or discovery while under-
representation indicates unfavourable 
conditions. A comparison between 
settlement and discovery factors allows for 
a relative assessment of associative 
strength.  

MaxEnt 
predictive 
modelling 

Predictive presence/absence 
modelling based on the maximum 
entropy principle. Presence 
samples are taken from known 
site locations and absence 
samples are generated from non-
site locations.  

Assessing the strength of environmental 
variables in predicting the presence and 
absence of sites via the jack-knife variable 
importance, which shows the predictive 
strength for each environmental variable 
separately and cumulative. 

Contingency 
coefficient 
crosstabs 

A coefficient of association based 
on chi-squared statistics. It is 
used to assess if two variables are 
independent or dependent of 
each other. 

Identifying possible associations between 
environmental variables. This is important 
for the comparison of settlement and 
discovery factors as dependencies between 
them might lead to misinterpretations.   
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Two-Step 
unsupervised 
classification 

An unsupervised classification 
algorithm for both continuous 
and categorical variables that 
divides datasets into clusters. 
Clusters are assigned with respect 
to variable similarity which is 
measured by distance to a cluster 
centroid.  

Experimentally dividing the database into 
two natural clusters based solely on 
similarities/differences between 
environmental variables. By comparing the 
result to the archaeologically predefined 
classes (period, type, and region), one can 
assess how well they are represented by 
the natural grouping and how strongly the 
variables vary in between the classes. 

Discriminant 
analysis 

Based on a known group 
membership, a predictive model 
is built. The model consists of a 
set of discriminant functions 
based on linear combinations of 
environmental variables that 
provide the best discrimination 
between groups. An accuracy is 
assigned based on the 
comparison between the 
predefined archaeological class 
and the predicted class.  

Assessing the environmental similarities 
and differences within and between 
archaeological classes (period, type, and 
region). High accuracies indicate that a 
class has high environmental similarities 
and can be easily discriminated from other 
classes while low predictive accuracies 
indicate a more environmentally 
heterogeneous class that cannot be 
discriminated easily from other classes. 
Environmental variables attributed to the 
settlement and discovery factors can be 
tested separately for comparison.  

Naïve Bayes Also builds a predictive model 
based on known group 
membership. Naïve Bayes, 
however, works with conditional 
probabilities. A probability for 
class membership is assigned for 
each possible value of an 
environmental variable. 
Environmental variables are 
additionally weighted based on 
predictive power.   

Assessing (1) the environmental similarities 
and differences between the 
archaeological classes, similar to the 
discriminant analysis, and (2) the power 
that each environmental variable has in 
predicting class affiliation. Both results can 
aid the identification of environmental 
similarities and differences between the 
predefined classes.  

 

5.3 Results 

The results of the spatial and statistical analyse are (i) the over- or under-representation of site 

frequency on the selected settings in comparison to their share of the AOI and (ii) statistical measures 

of correlation, determination and predictive power. In the following section, we present these results 

for the settlement and discovery factors regarding the entire database and - where large deviations 

from the expectations were observed – for subsets. Note that not all results can be discussed in the 

main text due to the large number of variables, site classes, and statistical queries, but can be found 

in Appendix A.  
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Regarding cave and open-air sites, sub-setting is permissible for all technocomplexes but the Final 

Palaeolithic, where information for reliable discrimination is not sufficient. For the remaining periods, 

we see the same pattern in virtually all cases (Table 7). The total number of cave sites dominates over 

open-air sites.  Only in the late Gravettian, the ratio is even. Regarding subsets, however, cave sites 

always dominate in the SW part, while open-air sites always dominate in the NE part.  

Table 7: Class sizes (n) of archaeological classes. These classes are assigned based on period (AUR, GRA1, GRA2, 
LGM, MAG, FP), type (natural shelter, open-air) and region (NE, SW). Note that subsetting by type is not reliable 
for FP (numbers in grey). 

  All AUR GRA1 GRA2 LGM MAG FP 

All 4194 333 309 135 345 1340 1732 

All Open-Air 1108 114 113 66 104 531 160 

All Cave 1532 218 175 66 236 732 105 

NE 2288 107 105 53 47 586 1390 

NE Open-Air 705 66 72 42 31 335 159 

NE Cave 334 40 33 9 16 226 20 

SW 1901 226 203 82 296 754 340 

SW Open-Air 403 48 61 24 73 196 1 

SW Cave 1185 178 141 57 218 506 85 

 

5.3.1 Over- and under-representation on settlement and discovery factors 

The over- and under-representation of occupations in environmental variables for the settlement 

factors has been calculated from the difference between the observed and expected frequencies. The 

highest deviations from the expectation can be observed on the geological settings and within the 

different aeolian deposits. Large differences are also displayed between the NE and SW section and 

especially between cave and open-air sites. For all occupations, the classes with highest over-

representations of environmental variables for the settlement factors are: 

 Cretaceous geological units (mean factor of 1.75, up to 4 for SW cave sites) 

 Jurassic geological units (mean factor of 1.5, up to 6 for NE cave sites) 

 Loess and related sediments (mean of 1.5, up to 4.5 for NE open-air sites) 

 Southern aspects (mean factor of 1.1, up to 1.6 for NE open-air sites) 

Regional examples of these over-representation are indicated in Figure 18. In contrast, occupations 

are mostly underrepresented in areas with glacial flintstone potential, sandy surfaces (except FP sites), 

flat surfaces, and areas with north-west aspect.  
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Figure 18: Regional examples for the over-representation of sites on specific geological, sedimentological and 
land use contexts. Maps show the South German Scarplands (upper left many sites on Jurassic geological units), 
the border region between Austria, Czech Republic and Slovakia (upper right, many sites on loess and loess 
derivates as defined by Lehmkuhl et al. 2021) the wine region Bordeaux, France (lower left, many sites on 
vineyards) and the city of Koblenz, Germany (lower right, many sites on urban fabric). 

The highest deviation from the expected share in the environmental variables for the discovery factors 

can be found in the Corine Land Cover dataset. The differences between the NE and SW section and 

cave and open-air sites are much lower than in the settlement factors. When assessing all occupations, 

the classes with the highest over-representations are:  

 Continuous urban fabric and discontinuous urban fabric (factor between 4 and 7.7)  

 Mineral extraction sites (mean factor of 5.25, exception: LGM with 0) 

 Green urban areas (mean factor of 3.45, exception: AUR with 0) 

 Vineyards (mean factor of 2.25, exception: FP with 1.85) 
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 Complex cultivation patterns (mean factor of 2.15) 

 Broad-leaved forest (mean factor of 1.9, exception: FP with 0.5)  

 Water courses (mean factor of 3, exception: LGM with 0) 

Regional examples for these over-representations are displayed in Figure 19. Occupations are mostly 

underrepresented on CLC classes representing man made barren land, cropland, related agricultural 

areas and natural vegetation. All listed over-representations on the settlement and discovery factors 

are displayed as a graph in Figure 19. For an overview of all results of the over- and under-

representations in a similar format, see Figure A36 to Figure A86 in Appendix A. 

 
Figure 19: Chart on the over-representation of sites on specific geological, sedimentological and land use contexts. 
These settlement and discovery contexts were selected as they display the highest over-representation of Upper 
and Final Palaeolithic sites. The expected values represent the share of all sites that would equal the area share 
of each respective surface. The over-representation is displayed as a factor of the expected value. Charts on all 
different combinations of environmental variables and archaeological classes can be found in Appendix A (Figure 
A36 to Figure A80). 
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 5.3.2 Predicting the presence/absence of Upper and Final Palaeolithic sites 

The presence-absence modelling based on MaxEnt provides very promising results (Figure 20). All 

areas under curve (AUC) in the receiver operating characteristic curve (ROC) show acceptable, 

excellent or even outstanding accuracies. This indicates that the presence or absence of sites can be 

predicted at a high accuracy when using all environmental variables. The predicted accuracy is 

generally lower in combined, heterogeneous archaeological classes (lowest for Sites_All) and higher 

for more specific, homogeneous archaeological classes (e.g., Sites_AUR_SW_Cave).  

 

Figure 20: MaxEnt predictive model accuracy for model runs with all environmental variables but different subsets 
of the archaeological database. Left: All sites, Middle: NE open-air sites, Right: SW cave sites. The red line shows 
the receiver operating curve (ROC), which depicts the rate between true positives and false positives at different 
classification thresholds. The area under curve (AUC) is calculated based on the ROC and compared to a random 
distribution (black line). AUC’s of 0,5 suggest no discrimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is 
considered excellent and more than 0.9 is considered outstanding. 

As the goal of this study is not a predictive model, the more relevant information is displayed in the 

response curves and the variable importance. The response curves are strongly associated with the 

over- and under-representation calculated for the environmental variables for both the settlement 

and the discovery factors. As such, the response curves show a high predicted probability for 

parameters with a high over-representation of sites and a low predicted probability for parameters 

with an under-representation. An example for this is the CLC response curve for all sites (Figure 21). In 

this curve, the CLC classes 1, 2, 7, 10, 15, 20, 23 and 40 (continuous, urban fabric, discontinuous urban 

fabric, mineral extraction sites, green urban areas, vineyards, complex cultivation patterns, broad-

leaved forests, water courses) show a high cumulative predicted probability. These are the same 

classes that also display a high over-representation of sites.  
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Figure 21: Response curve showing the changes in predicted probability of archaeological sites attributed to the 
different values of the Corine Land Cover variable. These results can be compared to Figure A45 in Appendix A, 
showing the over- and under-representation of sites on the different CLC classes. Note the high conformity 
between these two charts. 

A high predicted probability is also indicated for loess with respect to NE open-air sites and for 

geological settings with respect to SW cave sites. Due to this high conformity between the deviation 

from the expected share/mean and the MaxEnt response curves, and to avoid redundancy, we have 

decided not to present further response curves in this study.  

The real added value of the MaxEnt approach compared to the over/under-representation is the jack-

knife variable importance. This shows the training gain that each environmental variable has in 

predicting the presence/absence of a site. The statistical analysis provides a very clear picture: The 

single most important variable to predict site presence in all archaeological classes is the CLC (see 

Figure 22). Only in some archaeological subsets this is contested by the SRTM elevation and/or slope. 

This may result from the manner MaxEnt treats background data, assuming that all elevation and slope 

values are theoretically viable. As has been mentioned in section 5.2.3, this is not the case, as 

elevations uninhabitable for most of the Upper and Final Palaeolithic were included. For NE and open-

air sites, the built up area and loess has an additionally increased variable importance, whereas the 

geology and slope has an increased importance for predicting SW and cave sites.  
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Figure 22: MaxEnt jack-knife variable importance for model runs with all environmental variables but different 
subsets of the archaeological classes. Left: All sites, Middle: NE open-air sites, Right: SW cave sites. Only the 
isolated training gain is displayed, which indicates the predictive power of each environmental variable by itself. 

 

5.3.3 Distinguishing between archaeological classes based on environmental variables 

To analyse how well archaeological classes (period, type and region) can be distinguished using the 

environmental variables, we determined the contingency coefficient (see Table 8), did a clustering of 

data via the Two-Step classifier, and conducted a discriminant analyses and Naïve Bayes classification 

using the commercial statistic packages of SPSS. For some analyses, continuous variables were 

classified as stated in Appendix A.  

The contingency coefficient shows that associations between the environmental variables are mostly 

weak and very weak. Due to the large sample size, all associations between the variables are significant 

at the level of α = 0.0001. Unsurprisingly, moderate to strong associations are found between the 

different definitions of loess, as these variables represent the same sedimentary complex. Moderate 

associations between the CLC dataset and terrain parameters, such as elevation and slope, indicate 

that the land use depends on the terrain to a certain degree. Therefore, influence exerted by these 

variables cannot be completely distinguished. 

Table 8: SPSS contingency coefficient crosstabs between all environmental variables. The contingency coefficient 
assesses the dependence between categorical variables. Colour-coding: Heat map from 0 (blue, no dependence) 
to 1 (red, perfect dependence). 

 

Elevation Slope Aspect Uopp Corine LL_2021 BL_2016 BL_2021 Geology Flint

Elevation 0.381 0.187 0.252 0.482 0.386 0.306 0.472 0.283 0.305

Slope 0.381 0.213 0.181 0.519 0.283 0.159 0.357 0.269 0.310

Aspect 0.187 0.213 0.141 0.319 0.112 0.093 0.090 0.109 0.146

Uopp 0.252 0.181 0.141 0.436 0.246 0.202 0.190 0.168 0.107

Corine 0.482 0.519 0.319 0.436 0.417 0.265 0.387 0.305 0.286

LL_2021 0.386 0.283 0.112 0.246 0.417 0.424 0.541 0.193 0.267

BL_2016 0.306 0.159 0.093 0.202 0.265 0.424 0.623 0.177 0.088

BL_2021 0.472 0.357 0.090 0.190 0.387 0.541 0.623 0.261 0.475

Geology 0.283 0.269 0.109 0.168 0.305 0.193 0.177 0.261 0.190

Flint 0.305 0.310 0.146 0.107 0.286 0.267 0.088 0.475 0.190
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The unsupervised Two-Step Cluster analysis with Log-Likelihood as distance measure and the 

Schwarz’s Bayesian Criterion as clustering criterion (Backhaus et al., 2018) brought the following 

results. A smaller class 1 contains 30-40% of the sites, typically non-cave lowland sites on a flat or 

gentle slope with a pronounced loess-context and high built-up area differences. The most frequent 

land cover contexts of this class are urban areas, mineral extraction sites or non-irrigated arable land. 

The larger class 2 contains 60-70% of the sites, typically cave sites located at higher elevations and 

moderate to steep slopes with a pronounced Cretaceous or Jurassic geological context. The most 

frequent land cover contexts of this class are vineyards, complex cultivation patterns, and forest.  

In class 2 (see Table 9), the archaeological classes show a close correspondence of up to 94% with cave 

sites, the SW section, and periods older than the Final Palaeolithic. In contrast, class 1 predominantly 

contains NE sites of undefined type from the Final Palaeolithic, though the correspondence is lower 

than in class 2 and ranges up to only 66%. However, this categorisation depends strongly on 

environmental variables which are attributed to the settlement factors. When considering only 

discovery-relevant environmental variables, the attribution does not deviate far from a random 50/50 

distribution. 

Table 9: Percentage of sites from different archaeological classes attributed to SPSS two-step classification classes 
1 and 2. Refer to the previous text for an explanation on the two classes. Colour-coding: Heat map from 0% (blue, 
no sites within this class) to 100% (red, all sites within this class). 

 

To test the degree to which the archaeological classes (period, type, and region) can be distinguished 

with respect to the environmental variables, a discriminant analysis was carried out (Table 10).  The 

additionally conducted Naïve Bayes analysis returned higher percentages of correctly classified data 

and thus appears to be better suited to predict the influence exerted by environmental variables on 

the archaeological class affiliation. The results of the discriminant analysis and of the Naïve Bayes 

method confirm the impression that the regions as well as the cave sites are closely associated with 

the environmental variables as suggested by the unsupervised Two-Step Cluster analysis. Again, 

environmental variables attributed to the settlement context show the archaeological classes than 

those attributed to the discovery context. The archaeological periods, however, show a different 

tendency, displaying a decreasing attribution correspondence with increasing age. Very low 

correspondences are also indicated for open-air sites. This points to a very heterogeneous class. 

Variables Class Class size Aur Gra LGM Mag FP Undef. Cave Open-air NE SW

Class 1 38.4 23.7 22.5 9.3 20.1 65.4 66.9 6.3 43.0 63.5 8.4

Class 2 60.6 74.2 75.9 88.4 79.6 33.8 32.2 92.2 56.7 36.4 89.9

Class 1 30.2 7.5 9.5 6.7 13.2 57.8 59.2 4.2 25.6 48.0 8.9

Class 2 68.8 90.4 89.0 91.0 86.4 41.4 40.0 94.3 74.0 51.8 89.4

Class 1 36.1 40.8 34.5 32.5 28.4 42.3 41.2 27.4 40.9 39.1 32.4

Class 2 63.9 59.2 65.5 67.5 71.6 57.7 58.8 72.6 59.1 60.9 67.6
Discovery

RegionCulture Type

All variables

Settlement
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Table 10: Percentage of accurately assigned/predicted archaeological class affiliation based on the discriminant 
analysis and Naïve Bayes. Dependent variable: archaeological class. Independent variable: Environmental 
variables. Colour-coding: Heat map from 0% (blue, no sites assigned accurately) to 100% (red, all sites assigned 
accurately).   

 

In addition, the Naïve Bayes method was used to determine the strength of each environmental 

variable in predicting the archaeological class affiliation (see Table 11). Again, the results confirm that 

the power to predict the affiliation to different periods based on environmental variables is very weak, 

while the affiliation to site types and especially regions is stronger. In contrast to the previous results, 

however, discovery factors, such as the difference in built up area and CLC are also ranking highly in 

terms of relative predictive strength between the environmental variables. Besides, the highest 

predictive strengths are displayed for elevation, aspect, and loess according to the loess classification 

of Lehmkuhl et al. 2021. The results also support several common assumptions about the 

archaeological classes like the fact that the slope ranks higher for distinguishing between different site 

types but not between the different periods and regions. Another example is the geological context, 

which ranks highest for distinguishing between regions, supporting the observations made for the 

over- and under-representation on Cretaceous and Jurassic units.  

Table 11: Power of the environmental variables in predicting the archaeological class affiliation according to 
Naïve Bayes. Colour-coding: Heat map from blue (low predictive power or relative rank 10) to red (high predictive 
power or relative rank 1). 

 

 

5.4 Discussion 

For an interpretation of the effect of over- and under-representation of settlement and discovery 

factors on the representativity of site distribution patterns, the following rationale is important. First, 

since our approach uses a variety of datasets with different formats, types, and resolutions, and 

Category Variables AUR GRA LGM MAG FP Total Undef. Cave Open-air Total NE SW Total

All variables 30.4 18.8 37.4 35.4 60.4 43.8 55.4 73.3 54.7 61.7 72.1 82.9 77

Settlement 18.4 26.5 37.4 34.8 60.4 43.4 55.8 69.9 26.1 61.1 71.1 82.8 76.4

Discovery 9.6 10.4 20.6 30.7 43.6 31.4 30.6 73.3 38.8 48.4 52.2 76 63.4

Training (80%) 9.3 20.3 15.2 74.3 70.2 56.6 64.7 87.8 38 66.2 91.6 92.1 91.9

Test (20%) 3.1 10.6 12.9 71.9 75.4 57.5 62.9 91 37.1 65.7 90.2 89.2 89.7

RegionCulture Type

Naive Bayes

Discriminant 

analysis

Arch. class Statistical value Elev. Slope Aspect Uopp Corine LL_2021 BL_2016 BL_2021 GEO Flint

Rank 5 9 2 1 6 3 4 8 7 10

Pseudo-BIC 1.071 1.115 1.058 1.056 1.075 1.061 1.063 1.063 1.087 1.214

Average Log-Likelihood -1.061 -1.103 -1.053 -1.05 -1.073 -1.058 -1.055 -1.055 -1.077 -1.2

Rank 7 5 2 1 4 3 6 10 8 9

Pseudo-BIC 0.794 0.77 0.76 0.76 0.767 0.762 0.778 0.919 0.812 0.848

Average Log-Likelihood -0.783 -0.767 -0.754 -0.755 -0.759 -0.758 -0.768 -0.905 -0.8 -0.835

Rank 3 7 1 2 4 8 5 10 6 9

Pseudo-BIC 0.224 0.244 0.224 0.224 0.227 0.248 0.289 0.29 0.235 0.261

Average Log-Likelihood -0.216 -0.232 -0.216 -0.218 -0.222 -0.246 -0.287 -0.276 -0.224 -0.248

Region

Culture

Type
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although we have implemented a thorough pre-processing to harmonise the datasets, this variety still 

can lead to some potential inaccuracies. Information on how these potential inaccuracies are 

addressed can be found in Appendix A3. Second, a diachronic comparison of periods is meaningful 

when the general spatial distribution of sites within these periods is similar. This is broadly the case for 

all periods from the Aurignacian to the Magdalenian. Site distribution during the Final Palaeolithic, 

however, differs markedly with a clear emphasise on the NE part of the study area. We will thus often 

observe differences between the Final Palaeolithic and all other periods, which are mainly a function 

of the different distributions of sites. However, synchronous over- and under-representations within 

each period remain meaningful, since the likelihood for a site to be located at a certain position still 

depends on the share that these factors have in the landscape. 

Having said that, the first observation that can be derived from the largescale distribution of all sites is 

that the influence of the joint effects of all biasing factors is not strong enough to override the general 

spatial differences between site location during the Upper and Final Palaeolithic. So at this very large 

scale, the observable site distribution seems to be representative for a shift in settlement activities 

from the southwest towards the northeast. However, when looking at smaller scales and individual 

factors, the picture is getting more complicated. 

For the geological setting (see Figure A36 to Figure A44 in Appendix A), we observe that occupations 

are moderately overrepresented on Cretaceous and Jurassic geological settings through all 

technocomplexes (mean factor of 1.9) but the Final Palaeolithic. When different types of sites are 

considered individually, it is hardly surprising that cave sites show a high over-representation (mean 

factor of 2.5). At the moment, it cannot be decided how much of this over-representation might be 

related to past settlement preferences in areas where natural cavities were available and how much 

is due to the fact that cavities are sediment traps and a primary target of archaeological research. It is 

however worth mentioning that open-air sites also show an over-representation on these bedrocks, 

although to a much lower degree (mean factor of 1.25). This might indicate a slight settlement 

preference, maybe related to the availability of high-quality raw material. Another explanation might 

be that open-air sites have been preferentially detected in the vicinity of cave sites as a result of intense 

research in their surroundings. If we take the signal from open-air sites as a conservative base-line for 

all types of sites, we might attribute 25% of the general over-representation to settlement preferences 

and 65% to discovery biases. When comparing the two regions, another interesting pattern emerges. 

While cave sites in the NE section are highly overrepresented on Jurassic settings (mean factor of 5.6), 

they are underrepresented on Cretaceous settings (mean factor of 0.6). Cave sites in the SW section, 

in contrast, show a pronounced over-representation on Cretaceous settings (mean factor of 3.6) and 

a far lower over-representation on Jurassic settings (mean factor of 1.45). This difference cannot be 
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interpreted easily. For further investigations, a dataset with a better thematic resolution would be 

helpful, as the 1:5 million geological map of Europe (Asch 2003) is highly generalised and does not 

include information about abundance and quality of lithic raw materials within these main geological 

units.  

Looking at the entire database of sites in comparison to aeolian deposits (see Figure A36 to Figure A44 

in Appendix A), no clear pattern of over- or under-representation can be identified. Within regional 

and type-specific subsets, however, this changes considerably. All three definitions of loess (Bertran 

2016, Bertran 2021, Lehmkuhl et al. 2021) show a very high over-representation of open-air sites from 

all technocomplexes with a trend of increasing over-representation with increasing age (up to a factor 

of >5 for AUR open-air sites). This is especially true for open-air sites in the NE-section, which show the 

highest over-representations within the three loess settings. The clear temporal trend in the deviation 

from expected shares suggests an increasing taphonomic bias towards older periods, and the positive 

effects of preservation overweigh potential archaeological invisibility due to extensive loess cover. This 

general statement, however, must be weighed for regional differences. A comparison between the 

loess-rich NE region (8-13% loess cover) and almost loess-free SW region (1-3% loess cover) shows that 

only 14% of all discovered sites in the NW are associated to LGM and earlier technocomplexes, while 

these make up 42% in the SW. Given that loess accumulation took place mainly during and before the 

LGM, and given further that the thickness of the loess cover is generally more important in the NE, this 

finding suggests that the overall increase of discovered sites in relation to the length of the periods 

towards younger technocomplexes – and particularly from the LGM to the Magdalenian – can partly 

be attributed to higher discovery rates due to decreasing loess cover, especially in the NE-section. 

However, the increase of site numbers could also be related to the postulated re-dispersal into the NE-

section and related population growth. Sites from the Final Palaeolithic differ from this trend inasmuch 

as they show mostly equal representation or even under-representation on loess in all three 

definitions. High over-representations of up to a factor of 5, in contrast, are found on sandy aeolian 

deposits, such as silty sand (Bertran 2016), sandy loess, coversands (both Bertran 2021), and sandy 

loess & aeolian sand (Lehmkuhl 2021). The diachronic differences can be attributed to the northbound 

advance of settlement into areas closer to the former glacial front with coarser materials. The general 

over-representation during the Final Palaeolithic itself, however, remains a valid observation. Maybe 

a specific kind of habitat, formally indicated by loess, has shifted north-eastwards and is now related 

to sandy aeolian deposits. This would indicate that parts of the observable pattern can be related to 

settlement preferences. It thus seems that for pre-Magdalenian periods, the presence of loess biases 

the distribution of known sites towards a better preservation in relation to other sedimentation 

context to up to a factor of 5, while in the NE, it reduces the archaeological visibility at the same time 



5. Approaching sampling biases of Upper and Final Palaeolithic sites 

 

77 
 

by at least 25%. For the Magdalenian and Final Palaeolithic, in contrast, the over-representation of 

sites on loessic and sandy aeolian deposits might reflect habitat preferences and thus settlement 

choice, indicating a more reliable representation of hunter-gatherer presence in the landscape. 

When considering aspect (see Figure A72 to Figure A80 in Appendix A) in the entire database, it stands 

out that over-representations are mostly found on south, south-west and west aspects while the 

highest under-representation is found on northern and adjacent aspects. Interestingly, this trend is 

stronger in cave sites than in open-air sites. For caves in the NE-section, over-representations are found 

on the whole southern half of the compass. A clear exposure towards the sun indicates settlement 

choice as important factor due to favourable microclimatic conditions. This is in line with the 

observation that the period with the highest consistency in highest over-representation on southern 

aspects is the LGM, as a good microclimate is more important under macro-climatically unfavourable 

conditions. However, the positive deviations from expected shares are generally very low and a very 

low jack-knife importance indicates that the influence of the aspect parameter on the site’s locations 

is far less pronounced than the influence of other parameters. Also, in addition to southern aspects, 

pronounced over-representations of open-air sites can be found on northern and north-eastern 

aspects in the NE section. And in all subsets, occupations of the late Gravettian are overrepresented 

on north-eastern and adjacent aspects. The fact that open-air sites vary stronger than naturally shelter 

sites might indicate that they were of shorter use and that aspect therefore played a less important 

role. Shorter stays at the same location could also explain the deviating aspect during the late 

Gravettian, a period of deteriorating climatic conditions. Over- and under-representations of aspect 

thus might be mainly related to settlement choice, but the influence of this factor on the entire 

database is very low. 

As no representative expectations for the topographical parameters elevation and slope can be 

extracted from the AOI, the results for these parameters can only be discussed within each period. To 

this end, boxplots were created (Figure A81 to Figure A86 in Appendix A). For all occupations, a narrow 

elevation range of 100 to 250m within the 25th to 75th percentile can be observed for all periods from 

the Aurignacian to the LGM, while sites of the Magdalenian and Final Palaeolithic show a higher 

variability with 75th percentiles ranging up to 500m elevation. The low number of sites in higher 

latitudes during the Upper and Final Palaeolithic in general, and pre-Magdalenian sites in particular, 

might reflect less research in higher altitudes. However, the trend of increasing latitudes after the LGM 

indicates that the general limit in latitude might be a reliable observation reflecting settlement choice 

rather than preservation or research bias. As can be expected, the largest differences in slope can be 

found between open-air and cave sites, where cave sites have more than triple the median (all open-

air sites: 3°, all cave sites: 11°) and almost double the range between the 25th to 75th percentile, 
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indicating a higher variability of slopes. Interestingly, when assessing only open-air sites, a trend 

throughout the technocomplexes can be observed: Within all regional subsets, median slopes increase 

from the Aurignacian over the Gravettian and reach their relative maximum in the LGM. From LGM 

over Magdalenian to the Final Palaeolithic they decrease again, reaching their minimum in the latter 

phase. Given that steeper slopes provide more sheltered situations, this trend can indeed indicate 

settlement choice rather than discovery bias. The only exception to this trend are LGM open-air sites 

in the SW-section, which show a lower slope median than older or younger archaeological units. No 

plausible explanation for this exception can be found. Slope situations are prone to erosion and thus 

might strongly bias our picture of site distribution. However, at least for the NE-section, the clear 

temporal trend speaks against a systematic under-representation of sites with increasingly slope. 

Whether this factor is stronger in the SW-section needs to be explored in future studies. 

Since modern to contemporaneous land use influences only the likelihood of discovery, the following 

parameters are more straight-forward to interpret. 

In archaeological practice, many open-air sites are found on arable land, an impression supported by 

the high share of 22% of open-air sites found on cropland classes. However, our analysis shows that 

occupations are mostly underrepresented on CLC classes representing man made barren land, 

cropland, related agricultural areas and natural vegetation (see Figure A45 to Figure A53 in Appendix 

A). This finding is thus counterintuitive at first, but as cropland takes up 32% of the AOI, we observe a 

relative under-representation. However, the relative share of open-air sites increases considerably on 

the classes discontinuous urban fabric, mineral extraction sites, green urban areas and vineyards 

(factor 4.4 to 10.15), but decreases to an under-representation in areas covered by broad-leaved 

forests. This shows that probability of discovery of buried open-air sites is strongly increased on land 

cover classes that are related to deep interventions in the soil. This general observation holds also true 

within the two map sections, although with changing magnitudes. In the NE-section, site shares on 

continuous and discontinuous urban fabric are reduced, while NE open-air sites show considerably 

increased shares on green urban areas and vineyards (more than factor 12 with some exceptions). In 

the SW-section, the site over-representation on continuous urban areas is the highest (mean factor of 

12.4, exception: MAG with 0.75). Vineyards (mean factor of 4.1, exception: FP with 0) show similar but 

decreased site shares in comparison to the NE section. The site shares on mineral extraction sites and 

green urban areas, however, are considerably decreased, non-existent and/or highly inconsistent 

through the technocomplexes. The relative share of cave sites on these CLC classes, on the other hand, 

shows the exact opposite trend: Considerably decreased shares of occupations on discontinuous urban 

fabric, green urban areas and vineyards (factor of 2.2 to 0) but considerably increased over-

representation on broad-leaved forests (mean factor of 2.75; NE-section mean factor of 3.3), probably 
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because of a statistical connection between steeper slopes and forest land cover. This cross-correlation 

is also supported by the medium high contingency coefficient between slope and the CLC of 0.519. 

When using the aggregated CLC dataset with 10 classes instead of 45, some general trends are easier 

to recognise (see Figure A54 to Figure A62 in Appendix A). Occupations from all technocomplexes are 

overrepresented on urban fabric. The over-representation is higher for open-air sites and in the SW 

section and lower for cave sites and in the NE section. High over-representations are also found on 

mineral extraction sites. The highest site shares within this class are found in the NE region. The 

aggregated classes cropland, pastures and non-forested natural vegetated surfaces show a 

considerable under-representation of sites across most technocomplexes and class subsets. For the 

unchanged class vineyards, high over-representations with exceptions can be observed for open-air 

sites while cave sites are generally underrepresented. Occupation shares on forest classes show the 

direct opposite, with over-representation of cave sites but under-representation of open-air sites. 

Within all occupation class subsets, a slight over-representation can be observed on the aggregated 

class other agricultural surfaces. The aggregated CLC classes other man-made surfaces and other 

natural surfaces show no regional, site- or archaeological unit-specific trend of over- or under-

representation of Upper and Final Palaeolithic occupations.  

Eventually, it becomes evident that the likelihood of site detection, particularly of open-air sites, is 

strongly increased on land cover classes which are highly frequented by humans and/or show deep 

interventions in the soil. Within the loess dominated NE open-air site subsets, the highest over-

representations are found on soil-invasive land cover classes, which underlines the importance of the 

discovery context for deeply covered archaeological material.  

Far lower but still informative deviations were found for the environmental variables of historical 

changes in built-up areas as defined by the HYDE land use model (see Figure A63 to Figure A71 in 

Appendix A). The use of the modelled multi-temporal built up area can be seen as a way of addressing 

discovery-related representability, since this parameter can be seen as a multi-temporal substitution 

to the urban CLC classes. Importantly, the statistical deviation from the expectation of this variable is 

based on mean values. When assessing all occupations, a general higher than expected mean can be 

observed (mostly between 1.5-2), indicating that sites are overrepresented in areas with increased 

construction activity in the timeframe from 1800 to 2000. Far higher positive deviations from the 

expected means (factor of up to 5.5) can be observed for open-air sites and in the NE section. Many 

negative deviations, however, can be observed for cave sites and in the SW section. A possible 

explanation might be the loess context, requiring a soil-invasive discovery context for buried sites in 

the NE region, while archaeological material in the SW region might have a higher probability of 



5. Approaching sampling biases of Upper and Final Palaeolithic sites 

 

80 
 

random discovery. Positive or negative deviations are mostly consistent through the HYDE 

classification dates (1800-2000). When assessing differences between the technocomplexes, a trend 

of increasing positive deviation from the expected mean with increasing age and vice versa can be 

observed. As such, the highest positive deviations from the expected mean are found for the 

Aurignacian and Gravettian, while the lowest positive and highest negative deviations are found for 

the Magdalenian and Final Palaeolithic. The HYDE land use model highlight once more that with 

increasing intervention into the soil, buried sites have a higher probability of being discovered. 

 

5.5 Conclusion 

Both the over-representations of archaeological sites and the variable importance in the 

presence/absence modelling via MaxEnt show a clear result: The recent and sub-recent land use - 

clearly a discovery factor – has the by far strongest influence on the distribution of known sites. An 

example for surfaces that increase the probability of discovery are urban areas, vineyards and mineral 

extraction sites, showing an over-representation of sites by a factor of up to 13. The assessed land use 

dataset also shows the best performance in predicting the presence/absence of Palaeolithic sites 

according to the MaxEnt jack-knife variable importance. This means that land use has the highest 

power in predicting the presence/absence of sites. Another important finding is the chronological 

trend of an increasing over-representation on loess with increasing age. These observations show that 

the analysed site database is potentially strongly biased. 

The under-/over-representation of sites on environmental variables relevant to the settlement factors 

as well as the statistical approaches of two-step classification and discriminant analysis show that the 

influence of the Palaeolithic settlement choice can still be detected in the biased database. These 

include the preference of microclimatically favourable gentle southern slopes, Jurassic and Cretaceous 

geological units for cave locations, and loess plains due to their attractiveness for hunter-gatherers. 

Chronological trends that show how the settlement behaviour changes through the archaeological 

units are not easily found. Only the preferences for microclimatic conditions with the highest over-

representations on gentle southern slopes during the coldest archaeological units can be observed.  

The two-step classification, discriminant analysis, and Naïve Bayes approach all indicate that the 

environmental differences between some of the predefined archaeological classes are strong enough 

to securely differentiate between them. This is especially true for site type (cave/open-air) and region 

(NE/SW). When trying to differentiate between the Upper Palaeolithic periods (AUR, GRA, LGM, MAG), 

however, a very low percentage of sites (<<50%) was accurately predicted by both the discriminant 

analysis and Naïve Bayes. For the settlement factors, this either means that the differences in 
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settlement choice between the earlier technocomplexes are too small for a clear differentiation, or 

that the distribution is biased to a degree where the differences are overwritten. The environmental 

differences between Upper Palaeolithic sites on the one hand and Final Palaeolithic sites on the other, 

however, seem to be marked enough to allow for a clear differentiation. With all necessary caution 

arising from this study, the general differences in Upper and Final Palaeolithic site distribution thus 

seem to be reflect at least coarsely the presence of past hunter-gatherers in the landscape.  

The fundamental sampling bias revealed in this study is primarily problematic for inductive 

approaches, where environmental similarities are directly extracted from the distribution of known 

sites. This is particularly relevant for predictive modelling, where the presence of sites is interpreted 

as a proxy for Palaeolithic decision making. Ignoring land use might lead to misinterpretations caused 

by cross-correlation between this discovery factor and other environmental variables. Pleistocene 

fluvial terraces in mountainous regions, for instance, show increased Palaeolithic site frequencies. This 

could be interpreted as the result of past settlement strategies. However, the fact that discovery-

relevant modern human activity, such as urbanisation, construction of infrastructure, and even mineral 

extraction is mainly taking place on these easily accessible morphological units, advise against such a 

reading of the record. We thus recommend assessing the under-/over-representation of sites on 

surfaces relevant to the discovery factors parallel to the assessment of settlement factors to assess 

potential sampling biases individually for each study area and archaeological site dataset. 

For further studies on the sampling bias of Upper and Final Palaeolithic sites, we recommend building 

on this pilot study by adding more occupations to the dataset and more environmental variables to 

the settlement and discovery factors and suggest to conduct case studies on regional scales where 

more environmental variables are available at a higher spatial resolution. Due to the current positive 

trend in openly available geodatasets, we see great potential for such approaches in the future.  

5.6 Data availability 

As we think that there is even greater potential in the database that we have compiled, we are making 

it openly accessible for further studies. The vector-based site dataset (shapefile, .shp) with all 4194 

occupations and the result of the spatial queries with the environmental variables as attributes is 

available for download under the following link: https://doi.org/10.18154/RWTH-2023-06762. All used 

environmental geodatasets are already publicly available, and we refer to the respective website for 

individual download.  
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6 Synthesis 

Each of the three studies presented in the framework of this dissertation is a scientific contribution 

towards a better understanding of the respective study area and a methodological advancement 

within the respective field of research. In this chapter, the main results of these studies are discussed 

within the framework of the research question of this dissertation.  

In the first study of this dissertation, visual pattern extraction from Sentinel-1 data using continuous 

wavelet transform (CWT) revealed several spatial and temporal dynamics within the Western 

Mongolia dune field of Bor Khyar. This methodology allowed the differentiation of active and inactive 

parts of the dune field as well as the identification of seasonal and temporal differences in morphology, 

which fit the known wind regimes. These results were validated using multi-temporal digital elevation 

models (DEMs). As the dune field and its surroundings have been the object of investigation in 

numerous past and ongoing efforts on paleo-climate reconstruction (see, e.g., Klinge et al. 2017; 

Lehmkuhl et al. 2018; Klinge and Sauer 2019), a better understanding of it can aid future studies. As 

such, the results were already applied in the planning and pre-analysis of a field campaign in the 

summer of 2023, aimed at extracting samples from inactive paleo-dunes for luminescence dating.  

In the second study of this dissertation, the pattern extraction was based on a combination of a 

deductive approach and machine learning. This methodology allowed the creation of an explanatory 

archaeological predictive model with clearly formulated causalities between paleo-environmental 

predictors and the probability of Upper Palaeolithic occupation. Due to the explanatory nature of the 

model, it highlights spatial dynamics which match the archaeological consensus on human decision 

making in the region. However, due to the low availability of training data, the results were only 

verified with the input data, resulting in good but most probably overestimated accuracies. As such, 

an application in heritage management is only recommended after additional validation. However, as 

this is the first study on the probability of Upper Palaeolithic sites in an area where already the very 

limited evidence has provided significant contributions to the understanding of human behaviour and 

human-environment interactions, a scientific application of the resulting model is very promising. 

Through a complex combination of geospatial and geostatistical methods, the third study of this 

dissertation managed to extract several patterns from geospatial big data representing Upper and Final 

Palaeolithic settlement factors and modern to contemporary discovery factors. The rather surprising 

main result is that recent land use has the by far strongest influence on the distribution of known sites. 

This means that the analysed site database is potentially strongly biased. The influence of settlement 

factors, however, can still be cautiously traced within the dataset. This is especially true for differences 

between the Upper and Final Palaeolithic site distribution. While these results, first and foremost, have 
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an impact on how the analysed database is handled in the future, the determined high influence of the 

sampling bias on a European scale also has important implications for other fields of research within 

geoarchaeology. This is especially true for inductive approaches, where the representativity of site-

based training datasets is a prerequisite for valid results.  

In addition to these individual results, the three studies can also be seen as methodological 

contributions as they present novel and innovative approaches on how to effectively implement 

geospatial big data in environmental and geoarchaeological research.  

The main contribution of the first study in this regard is the result that the easily accessible Sentinel-1 

ground range detected (GRD) product can be used to extract complex dune field morphology – a feat 

that previously only was performed based on less approachable derived products such as 

interferometry. While one possible approach on how to extract a pattern from this source of remote 

sensing big data is presented in the study, this result also opens up new opportunities for other forms 

of extraction such as e.g. deep learning dune pattern mapping or similar.  

The second study makes an important contribution towards the extraction of viable information from 

environmental big data based on limited training data. This limited evidence is a common problem in 

regions where the archaeological record is invisible and/or inaccessible due to massive built-up of 

sediments (such as e.g. in the Carpathian basin, Chu 2018; Nett et al. 2021). For these situations, the 

study presents an approach that does not rely fully on inductive analysis and thereby produces a 

comprehensible and explanatory predictive model.  

The main methodological contribution of the third study is the logical addition of sampling biases into 

the field of geoarchaeological site distribution analysis. While numerous studies have analysed site 

distributions within the paleo-environment, this is the first study that compares this to geospatial 

datasets on the probability of discovery. Due to the surprisingly clear result and the associated 

implications, the topic of sampling biases might receive additional attention in the research community 

and the addition of discovery factors might be adapted in future geoarchaeological studies.  

These three studies are combined in this dissertation to answer the research question on how to 

effectively utilize geospatial big data in the fields of environmental science and geoarchaeology. To 

this end, the dissertation presents not only novel methodologies that effectively utilize geospatial big 

data, but also suggestions and implications for future studies in the field. In addition, section 1.2 

outlines the four main challenges that researchers face when utilizing geospatial big data and gives 

suggestions on how to address them. These challenges include (I) the selection of a fitting geospatial 

representation of the object of investigation, (II) a data handling that includes filtering and 
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harmonization, (III) the implementation and communication of a fitting methodology for the extraction 

of patterns, and (IV) an interpretation where these challenges are considered. This rough guideline for 

the utilization of geospatial big data is additionally visualized in Figure 23.  

 

Figure 23: Visual representation of the challenges of geospatial big data utilization. For a detailed description of 
the single challenges and a guideline of how they should be addressed, see section 1.2.  

As such, this dissertation can be seen as food for thought and a guideline within the rapidly evolving 

fields of environmental science and geoarchaeology. While it might serve as a foundation and 

inspiration for future studies, the utilization of geospatial big data in these fields underlies greater 

mechanics. The most promising developments in these regards are (I) the positive trend towards open 

accessibility of governmental, commercial, and scientific geospatial big datasets, (II) the efforts 

towards international data compilation in harmonized databases, and (III) the outsourcing of expensive 

geospatial processing onto powerful web-based processing platforms. In consideration of these 

current trends, the utilization of geospatial big data faces a bright future in environmental research 

and geoarchaeology.  
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Appendix A 

Supplementary material for chapter 5: Testing the representativity of Palaeolithic site 

distribution:  The role of sampling bias in the European Upper and Final Palaeolithic record  

A1 Geospatial analysis (extended version) 

To reduce the complexity of the geospatial analysis, we implemented an extensive pre-processing 

workflow, aimed at harmonising all used environmental geodatasets and preparing them for 

geospatial query in ArcGIS, version 10.7.1. For the tabular datasets of Upper Palaeolithic sites, this 

includes internal harmonisation of columns and transformation into a single vector-based geodata file 

(shapefile, .shp). For easy handling of the resulting file, only columns relevant for individual 

identification and categorical selection, namely period, temporal subdivision, coordinate precision, 

quality and site type (cave/open air) were preserved.  

The pre-processing of vector-based environmental geodatasets included merging of all relevant classes 

from each dataset separately and then dissolving them into categories selected for this study. In this 

form, only one spatial query per environmental geodataset is required. The spatial query between the 

site dataset and the vector-based geodataset itself was then carried out via spatial joins (ArcGIS-tool: 

spatial join). To account for possible inaccuracies in the archaeological dataset and/or in the 

environmental geodatasets, we used a search radius of 500m around each point. It is important to 

note that this search radius only is applied when the archaeological site does not intersect the 

geodataset. By use of the spatial join method, values from each environmental geodataset are written 

into the properties (attributes) of each site point, enabling later analysis in tabular form.  

The spatial query for raster-based environmental geodatasets was carried out by extracting values 

based on spatial intersection with the site locations (ArcGIS-tool: Extract Multi Values to Points). This 

way, the information of each raster cell intersecting with a site is written into the properties 

(attributes) for later analysis. As some of the environmental geodatasets contain categorical data, cell 

values at site locations were not interpolated.  

Additional steps were implemented to enable a better statistical analysis of the CLC dataset. This 

dataset contains 44 land-cover classes, which makes statistical analyses prone to outliers in 

combination with small comparison datasets. Therefore, it was reclassified and aggregated based on 

preliminary results. The reclassification reduces the number of classes to 10, aggregating related 

surface types that show similar site frequencies while preserving single classes that show noticeably 

increased or decreased site frequencies. The reclassification is shown in Table A12. For comparison, all 

spatial queries (the original and the aggregation) were conducted with both CLC-rasters.  

Table A12: Corine Land Cover reclassification table. 

Original CLC classes (n = 44) New aggregated class (n = 10) 

111, 112, 121, 122, 123, 124 Urban fabric 
131 Mineral extraction site (unchanged) 
132, 133, 141, 142 Other man-made surfaces 
211, 212, 213 Cropland 
221 Vineyards (unchanged) 
222, 223, 241, 242, 243 Other agricultural surfaces 
231 Pastures (unchanged) 
244, 311, 312, 313 Forest 
321, 322, 323, 324 Non-forest natural vegetation cover 
331-999 Other natural surfaces 
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The result of these two steps is a vector database containing a point for each archaeological site. Apart 

from site properties, such as period, site type etc., the attribute table contains the value of each 

environmental geodataset at the respective location. For further statistical analysis, this tabular 

database was exported as a .csv-file.   

Parallel to the intersection of sites and environmental geodatasets, we extracted reference data based 

on the defined area of interest (AOI), presented under 2.1 Upper Palaeolithic sites. The purpose of this 

reference is to define the expected values and shares of each environmental variable to subsequently 

analyse whether the distribution of sites deviates from this expectation. In a first step, we narrowed 

down the AOI to only include areas where human existence was potentially possible during the Upper 

and Late Palaeolithic. We chose the elevation as the parameter for this exclusion and selected the 

value >1200 m.a.s.l. based on an empirical exploration of the site dataset. This way, only 19 of 4194 

sites are not represented by the reference data. We are aware that this is a simplification and probably 

leaves periodically uninhabitable regions in the reference data. However, the AOI has to fit all phases 

of the investigation period and thus requires compromises.  

Based on the polygons representing the AOI at elevations lower than 1200 m.a.s.l., reference values 

and shares of the environmental geodatasets were gathered. This process was carried out three times: 

(1) For all of the AOI, (2) for the NE-Section and (3) for the SW-Section, as defined under 5.2.1 Upper 

Palaeolithic sites. For vector-based environmental geodatasets, this included clipping to the AOI and 

calculating area statistics per class. From these absolute areas per class, class shares of the AOI were 

calculated. For categorical raster datasets, a similar approach was carried out by use of the zonal 

histogram-tool. In this case, AOI-shares were calculated based on pixel counts. For environmental 

geodatasets represented by continuous values such as the DEM, summarising statistics including 

mean, standard deviation (STD), median and percentiles were gathered based on the respective AOI 

polygon using the zonal statistics as table-tool. All area calculations in this study were carried out using 

the lambert azimuthal equal area coordinate reference system (CRS), based on the ETRS89 Datum 

(ETRS89-LAEA, EPSG code: 3035). The purpose of this CRS is to ensure maximum accuracy in Pan-

European statistical mapping (More information available online at epsg.io/3035). 

 

Figure A24: Workflow diagram of the geospatial analysis. Green: Input, Grey: Spatial processing, Yellow: 
Intermediate result, Orange: End result 

A2: Statistical analysis (extended version) 

All results from the geospatial analysis were exported in tabular form for a comprehensive statistical 

analysis in Excel 2016 and IBM SPSS. For these analyses, the attribute table containing Upper 

Palaeolithic sites, site properties and information about underlying environmental data, was used as 

main database. In a first step, we utilised the site properties to divide the dataset into chronological 
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(AUR-FP), spatial (NE/SW) and type-specific (cave/open air) subsets. When considering every subset 

and aggregation of these combinations, this results in site 49 classes.  

In the next step, we utilised the values of continuous environmental variables to calculate mean, STD, 

median and quartiles for each Upper Palaeolithic site class in Excel. These were calculated directly from 

the main database for each class separately, using if-then-else-clauses to only include sites attributed 

to the respective class. The only exception to this workflow was the aspect, which was classified into 

the 8 main compass directions (north, north-east, east…) and treated as a categorical environmental 

variable. From categorical environmental variables, frequencies of occurrences (n) were calculated. 

These were also calculated directly from the main database for each class separately, using count-if-

clauses to only include sites attributed to the respective class. The resulting frequencies were then set 

into perspective to the overall class numbers, resulting in percentages of each of the 49 site classes.  

To assess whether these means and class shares represent an under- or overrepresentation of the 

respective environmental variable or class in the site distribution, we compared them to their 

reference value, calculated based on the AOI. To simplify the interpretation, comparison and 

visualisation, this value was transformed to a percentage and shifted to: 

 <0 = Sites are underrepresented (Lower mean or class share in the site-database than in the AOI)  

 0 = No over- or underrepresentation (Same mean or class share in the site-database as in the AOI)  

 >0 = Sites are overrepresented (Higher mean or class share in the site-database than in the AOI) 

This scale theoretically has no upper limit, as means and class shares can be any multiples of the 

reference AOI values. Within the text and the charts, this value is named ‘derivation from expected 

mean’ or ‘derivation from expected share’. The term ‘expected’ is used as the AOI-based means and 

class shares represent the statistical expectation, while the site-based means and class shares 

represent the observed values.  

To determine how the environmental variables influence the presence or absence of sites, the dataset 

was additionally analysed based on the maximum entropy principle. For this analysis, we used the 

software MaxEnt, version 3.4.4. This software was originally developed for species distribution and 

environmental niche modelling (Phillips and Dudík 2008; Phillips et al. 2017), but has also been 

successfully applied in archaeological predictive modelling (Galletti et al. 2013; Gillespie et al. 2016; 

Jones et al. 2019; Alwi Muttaqin et al. 2019). In this raster-based spatial approach, absence data is 

generated automatically from raster cells where no site is present. A detailed description of the 

statistics behind the software can be found in (Elith et al. 2011; Merow et al. 2013).  

For processing within this software, all environmental geodatasets were rasterised, resampled to a 

spatial resolution of 100*100 metres using the nearest neighbour method and saved in ASCII format. 

The site dataset was transformed into .csv format, only preserving coordinates and class information 

based on period, section and site type (e.g. AUR_SW_Cave). As a predictive model is not the aim of 

this study and the environmental variables are not sufficient to support such predictive analysis on a 

European scale, only intermediate statistical results were extracted for further analysis. These 

intermediate statistical results are namely response curves and jackknife variable importance. The 

response curves show the predictive probability that is associated to the values of each environmental 

variable, allowing for a comparison to the conventionally calculated ‘derivation from expected share’ 

and ‘derivation from expected mean’. The jackknife variable importance can be used to estimate the 

predictive value of an environmental variable as a whole, which is somewhat comparable to 

conventionally calculated determination measurements based on presence/absence data.  
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For additional internal statistical queries and tests, the tabular database was further analysed using 

the statistics software IBM SPSS statistics. This internal analysis was conducted to determine how the 

environmental variables influence each other and if/how they differ between the archaeological 

classes (based on culture, type and section). To this end, we conducted the following tests and 

approaches:  

 Crosstabs with measures of determination to test for cross-correlations between the different 

environmental variables 

 Two-Step unsupervised classification to test the similarities and differences between the 

archaeological classes and the environmentally-dictated unsupervised classification result  

 Discriminant analysis to test the differences and similarities of environmental variables within 

the archaeological classes 

 Naïve Bayes to test the strength that certain environmental variables have in predicting 

archaeological classes. 

As some of these classification algorithms and statistical tests only work with categorical/nominal data, 

the continuous environmental variables were classified using different approaches. For aspect and 

slope, predefined topographical classes such as 337.5 < aspect > 22.5 = north or 4° < slope > 9° = gentle 

slope were used. For elevation, build-up area and population density, equal intervals were used for 

reclassification. The used intervals were 100 for elevation, 50 for population density and 2 for built up 

area, resulting in 5 to 12 classes.  

 

A3: Potential sources for errors and misinterpretations 

As all spatial queries with the environmental geodatasets are based on the archaeological point-

dataset, inaccuracies within the latter can have a large influence on the results. As the coordinates for 

all 4200 sites were extracted from literature as mentioned in 2.1, the accuracy is fully dependent on 

the precision in the original publications. Within these original publications, the main source for 

inaccuracies is low coordinate precision caused by few decimals used (down to 2) and/or indirect 

spatial reference (e.g., using a landmark close to the site). In the worst case, this can lead to 

inaccuracies of single occupation points in the range of several hundred meters. Another potential 

source for the inaccuracy in the archaeological point-dataset is the relocation of archaeological 

material after its deposition. This inaccuracy is, however, only relevant for environmental geodatasets 

representing the settlement factor, as the coordinate does not represent the point of 

deposition/occupation in this case. As the relocation of archaeological material through 

geomorphological slope processes normally spans a maximum of several tenths of metres, the 

inaccuracy induced by this process can be considered far lower than the influence of inaccurate 

coordinates. Although we have compensated for inaccuracies in the archaeological point-dataset by 

using a search radius in the spatial queries with environmental geodata, larger inaccuracies in the 

occupation dataset can still have an influence on the result of the query. For environmental 

geodatasets in raster format, the magnitude of possible inaccuracy is additionally dependent on the 

resolution of the raster, as it has a stronger influence on rasters with high spatial resolution (e.g., the 

DEM or CLC dataset) and makes little to no difference for rasters with low spatial resolution (e.g., the 

HYDE dataset). See figure S2 for a graphical illustration of the used scales. However, due to the large 

sample size of close to 4200 occupations in this study, inaccuracies of single points can be expected to 

have a far smaller influence on the end result than in smaller studies.  
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Figure A25: Visualisation of the different scales used in this approach. Note that the cretaceous geological unit 
will be set as valid for an archaeological occupation at the centre of the map while the loess cover will not due to 
intersection with the search radius.  

Another potential for inaccuracies lies in the environmental geodatasets, as the spatial queries with 

these can only be as accurate as the datasets themselves. For a detailed assessment of these dataset-

specific sources for inaccuracies, please refer to the individual source literature that can be found in 

2.2. Specific to the approach in this study, however, the environmental geodatasets can also be a 

source for potential misinterpretations. This is due to the fact that they are used to represent factors 

of the settlement or discovery context. These factors, however, are a combination of very complex 

conditions, that cannot be fully represented by the used environmental geodatasets. In addition, the 

influence that some geodatasets have on the respective factor can be indirect or multifaceted. An 

example for this is the influence of loess, which can be discussed for the settlement factor for 

representing past steppe environments as well as the discovery factor due to the taphonomic bias and 

reduced visibility. This is why statistical correlation/determination measurements as well as over- and 

underrepresentation of occupations on surfaces like these always have to be discussed from these 

different viewpoints.  

A different question of representability is how well each environmental geodataset represents the 

respective aspect of the settlement or discovery factor. For datasets representing the settlement 

factor, the time lag between the Upper and Late Palaeolithic settlement has to be considered. This 
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may not be important for the geology, as the timespan between the deposition and today can be seen 

as geologically short. The DEM, on the other hand, might differ from the paleo-surface, as climatic, 

geomorphological and hydrological processes were fundamentally different in the Late Pleistocene. As 

paleo-surface-DEMs are not available on a Pan-European scale, the available modern DEM has to be 

considered the closest available approximation. For the distribution of Late Pleistocene aeolian 

sediments, an important information would have been the accumulation before and after the 

deposition of archaeological material. This could help to differentiate the impact that loess and related 

sediments have on the settlement choice on the one hand and the preservation and taphonomic bias 

on the other hand. However, all available Pan-European loess datasets only contain a temporally one-

dimensional state of the distribution to date. This distribution is most likely also influenced by post-

depositional erosional or other morphological processes. Therefore, it is not clear whether or not the 

used datasets on Late Pleistocene aeolian deposits fittingly represent both expected influences on the 

settlement and discovery factor.  

For the environmental geodatasets representing the discovery factor, the time lag between the 

discovery of archaeological material and the date that the dataset represents can also lead to potential 

misinterpretations. Although the maximum expected timespan between the discovery and the CLC 

dataset is about 200 years, the anthropogenic impact on the surface has been extensive in this 

timespan (Jepsen et al. 2015). As the archaeological occupation dataset does not include a discovery 

date, it is not possible to assess how well the land use dataset represents the conditions at the time of 

discovery. Therefore, it has to be assumed that the current day land use either is representative for 

the discovery or that the change to the current land use has led to the discovery (e.g., the change to 

urban area has led to the discovery due to construction activity). Multiple changes in land use since 

the discovery, however, cannot be accounted for.  

For the HYDE dataset on built up area, the main problem is the very coarse spatial resolution of 5 arc 

minutes, which corresponds to a pixel area of close to 50 km² in the study area. With such a coarse 

spatial resolution, the representativity of each raster cell value for the respective site is not 

guaranteed, as sites could potentially be located several kilometres away from the built-up area. 

However, as this dataset is the only source for a multi-temporal assessment of one aspect of the 

discovery factor, it can still be considered the best currently possible estimation in the study area.  

As already mentioned in 2.2, each chosen environmental geodataset can only represent a single or a 

few aspects of the settlement and/or discovery probability. Even a combination of all datasets cannot 

fully represent these immensely complex fields. Therefore, this study can be seen as a pilot study, 

assessing the currently available best approximations on a European scale. For further studies, we 

suggest to expand on this by supplementing datasets representing additional aspects of the settlement 

and/or discovery factor. To further test the influences of settlement and discovery factors, we also 

suggest to conduct case studies on regional scales where more environmental geodatasets are 

available at a higher spatial resolution.   
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A4: Maps of Upper and Final Palaeolithic occupations and environmental geodatasets 

 

Figure A26: Map on site distribution and the area of interest 

 

Figure A27: Map on site distribution and Cretaceous and Jurassic geological units 
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Figure A28: Map on site distribution and the area marked as glacial flint potential. It corresponds to the 
accumulation area of the LGM and penultimate glaciation 

 

Figure A29: Map on site distribution and loess and related sediments according to Bertran 2016 
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Figure A30: Map on site distribution and loess and related sediments according to Bertran 2021 

 

Figure A31: Map on site distribution and loess and related sediments according to Lehmkuhl 2021 
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Figure A32: Map on site distribution and Corine Land Cover dataset 
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Figure A33: Map on site distribution and the Corine Land Cover dataset, aggregated to 10 classes 

 

Figure A34: Map on site distribution and the differences in built up area between 1800 and 2000 according to the 
HYDE land use model (Klein Goldewijk et al. 2017) 
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Figure A35: Map on site distribution and the differences in population density between 1800 and 2000 according 
to the HYDE land use model (Klein Goldewijk et al. 2017) 
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A5: Charts of the different statistical assessments  

 

Figure A36: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: All, Variables: Geology and loess 

 

Figure A37: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: All open air, Variables: Geology and loess 
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Figure A38: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: All cave, Variables: Geology and loess 

 

Figure A39: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: NE, Variables: Geology and loess 
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Figure A40: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: NE open air, Variables: Geology and loess 

 

Figure A41: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: NE cave, Variables: Geology and loess 
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Figure A42: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: SW, Variables: Geology and loess 

 

Figure A43: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: SW open air, Variables: Geology and loess 



  Appendix A │ 122 

 

122 
 

 

Figure A44: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: SW cave, Variables: Geology and loess 

 

Figure A45: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: All, Variable: Corine Land Cover 
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Figure A46: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: All open air, Variable: Corine Land 
Cover 

 

Figure A47: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: All cave, Variable: Corine Land Cover 
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Figure A48: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: NE, Variable: Corine Land Cover 

 

Figure A49: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: NE open air, Variable: Corine Land 
Cover 
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Figure A50: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: NE cave, Variable: Corine Land Cover 

 

Figure A51: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: All SW, Variable: Corine Land Cover 
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Figure A52: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: SW open air, Variable: Corine Land 
Cover 

 

Figure A53: Bar chart of the over- and underrepresentation. The expected values (displayed in brackets behind 
each variable name) represent the share of all sites that would equal the area share of each respective surface. 
The overrepresentation is displayed as a factor of the expected value. Sites: SW cave, Variable: Corine Land Cover 
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Figure A54: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  All, Variable: Aggregated Corine Land Cover 

 

Figure A55: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: All open air, Variable: Aggregated Corine Land Cover 
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Figure A56: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites: All cave, Variable: Aggregated Corine Land Cover 

 

Figure A57: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  NE, Variable: Aggregated Corine Land Cover 
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Figure A58: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  NE open air, Variable: Aggregated Corine Land Cover 

 

Figure A59: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  NE cave, Variable: Aggregated Corine Land Cover 
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Figure A60: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  SW, Variable: Aggregated Corine Land Cover 

 

Figure A61: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  SW open air, Variable: Aggregated Corine Land Cover 
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Figure A62: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  SW cave, Variable: Aggregated Corine Land Cover 

 

Figure A63: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  All, Variable: 
HYDE built up area difference 
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Figure A64: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  All open air, 
Variable: HYDE built up area difference 

 

Figure A65: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  All cave, 
Variable: HYDE built up area difference 
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Figure A66: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  NE, Variable: 
HYDE built up area difference 

 

Figure A67: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  NE open air, 
Variable: HYDE built up area difference 
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Figure A68: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  NE cave, 
Variable: HYDE built up area difference 

 

Figure A69: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  SW, Variable: 
HYDE built up area difference 
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Figure A70: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  SW open air, 
Variable: HYDE built up area difference 

 

Figure A71: Bar chart of the over- and underrepresentation. The expected values represent the mean of the 
environmental variable. The overrepresentation is displayed as a factor of the expected value. Sites:  SW cave, 
Variable: HYDE built up area difference 
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Figure A72: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  All, Variable: Classified aspect 

 

Figure A73: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  All open air, Variable: Classified aspect 
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Figure A74: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  All cave, Variable: Classified aspect 

 

Figure A75: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  NE, Variable: Classified aspect 
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Figure A76: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  NE open air, Variable: Classified aspect 

 

Figure A77: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  NE cave, Variable: Classified aspect 
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Figure A78: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  SW, Variable: Classified aspect 

 

Figure A79: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  SW open air, Variable: Classified aspect 
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Figure A80: Bar chart of the over- and underrepresentation. The expected values represent the share of all sites 
that would equal the area share of each respective surface. The overrepresentation is displayed as a factor of the 
expected value. Sites:  SW cave, Variable: Classified aspect 

 

Figure A81: Box plot showing the median and percentiles of site elevation for all sites 
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Figure A82: Box plot showing the median and percentiles of site elevation for NE sites 

 

Figure A83: Box plot showing the median and percentiles of site elevation for SW sites 
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Figure A84: Box plot showing the median and percentiles of site slope for all sites 

 

Figure A85: Box plot showing the median and percentiles of site slope for NE sites 
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Figure A86: Box plot showing the median and percentiles of site slope for SW sites 
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Appendix B 

Supplementary material for chapter 3: Upper Palaeolithic site probability in Lower Austria – a 

geoarchaeological multi-factor approach 

Main map showing the results of the archaeological predictive modelling on the left and three selected 
environmental predictors on the right. 
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