
Site-Selective Nitration of Aryl Germanes at Room Temperature
Amit Dahiya,‡ Avetik G. Gevondian,‡ Aymane Selmani, and Franziska Schoenebeck*

Cite This: Org. Lett. 2023, 25, 7209−7213 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We report a site-selective ipso-nitration of aryl
germanes in the presence of boronic esters, silanes, halogens, and
additional functionalities. The protocol is characterized by opera-
tional simplicity, proceeds at room temperature, and is enabled by
[Ru(bpy)3](PF6)2/blue light photocatalysis. Owing to the exquisite
robustness of the [Ge] functionality, nitrations of alternative
functional handles in the presence of the germane are also feasible,
as showcased herein.

Oorganogermanes have historically displayed limited
reactivity and applications in synthesis and catalysis.1,2

However, recent developments demonstrated that under
electrophilic reactivity modes via Pd or Au catalysis or
electrophilic aromatic substitution the Ge functionality
becomes the most reactive, allowing for preferential and Ge-
selective arylation,3 alkynylation,4 halogenation,5 and C−O
bond formation6 while tolerating more established coupling
partners such as halides, silanes, boronic acid derivatives
(Bpin) and additional functionalities (Figure 1a). Moreover,
organogermanes are highly robust and nontoxic reagents, as
well as straightforward to synthesize and handle.7,8

However, C−N bond formation of organogermanes in the
presence of alternative coupling handles, such as Bpin or
silanes, is still unprecedented (for any kind of N-derivative and
oxidation state).9 This report discloses the first site-selective
ipso-nitration of aryl germanes.

Owing to their industrial and commercial applications,10

nitroarenes are an important class of compounds in organic
chemistry and play a vital role in the synthesis of various
pharmaceuticals,11 agrochemicals, plastics, explosives, dyes, or
polymers.12 They are also key functionalities in synthesis as
cross-coupling partners13 or precursors (e.g., to anilines14 and
heterocycles13a,15).

While synthetic access to nitroarenes can in principle be
accomplished via direct C−H nitration through electrophilic
aromatic substitution,16 radical-based processes,17 or metal
catalysis,18 the control of chemo- and site-selectivity remains
challenging for such processes. The ipso-functionalization of
suitable molecular handles is hence a valuable complementary
approach, especially in the context of modular and program-
mable syntheses via the sequential decoration of building
blocks that contain multiple handles. The current methodo-
logical repertoire19 involves the ipso-nitration of aryl (pseudo)-
halides,20 carboxylates,21 boronic acids,22 amines,23 or organo-
metallic species (ArMgX or ArLi), see Figure 1b.24

Demonstration of site-selective ipso-nitration in the presence
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Figure 1. State of art in site-selective C−Ge functionalization, C−H
nitration, and ipso-nitration of arenes and this work.26
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of multiple alternative molecular handles is limited, however,
and has only been shown toward aryl halides.25

However, in the context of modular synthesis campaigns,
site-selective functionalization would be of utmost value.
Clearly, the extent of modularity will depend on the number
of tolerated molecular handles and in this context, these
handles should ideally be bench-stable, easy to handle and
readily purifyable, which rules out several of the currently
available handles for ipso-nitration.

We envisioned that development of an ipso-nitration of a
new “handle”, i.e., ArGeR3, would therefore be enabling,
especially if the protocol for the first time also tolerates
multiple alternative bench-stable coupling handles, such as
Bpin, silanes, and halogens.

We initially set out to investigate electrophilic nitration
conditions and explored conditions known to form nitronium
ions (NO2

+) in situ, involving N-nitrosaccharin in HFIP.16b

While we observed highly efficient and mild nitration of para-t-
Bu phenylgermane to 1 in a 95% yield at room temperature,
our further investigations revealed that extensions to intra-
molecular competitions of aryl germanes containing also SiMe3
and Bpin was not feasible under these conditions due to the
incompatibility of these functionalities with the employed
reaction conditions.27,28

We therefore explored alternative conditions. Inspired by
Katayev and co-workers’ recent developments of the photo-
assisted nitration of boronic acids,29 we set out to examine the
feasibility of nitrating an aryl germane employing N-nitro-
succinimide as a NO2 source and [Ru(bpy)3](PF6)2 as a
photocatalyst under blue-light irradiation. This protocol
proved to be effective and resulted in the desired product
(1) in an 84% yield at room temperature (Scheme 1a). Our
further studies revealed that the addition of a tetrafluoroborate
anion (AgBF4 or NaBF4) was also beneficial and strongly

favored the nitration of electron-deficient germanes (2) (see
the Supporting Information).30

Pleasingly, site-selective nitration of [Ge] in the presence of
other functional handles proved to be effective under these
conditions (Scheme 1a). We observed the exclusive nitration
of the Ge-site over C−Br and C−Cl (3−8), Bpin (9 and 10),
and SiMe3 (11 and 12). Notably, nitration of germylated
clofibrate was also achieved in an excellent yield (8). While the
yield of the isolated material was moderate in some of these
cases, we detected only the product resulting from germane
nitration. It was the only product visible by GC-MS and TLC
analyses and hence straightforwardly isolated.

Beyond these intramolecular competitions, we also observed
high Ge-selectivity in intermolecular competitions with Ar-
SiMe3 (13) and Ar-Bpin (14) under these reaction conditions
(Scheme 1b). Exclusive functionalization of ArGeEt3 in a 98%
yield took place in the presence of Ar-Bpin (14), which
remained fully untouched in the process. In the case of Ar-
SiMe3 (13), in addition to nitration of the germane (in 81%), a
small amount of of nitration at the silane (9%) was also
observed, contrary to the intramolecular competitions.

Intrigued by the superiority of the Ge functionality under
these conditions, we turned to computational studies. Previous
studies on photocatalytic nitration of olefins and arenes using
N-nitrosuccinimide indicated the likely involvement of nitryl
radicals.22,29 In line with this, when we attempted reactions in
the presence of several radical quenchers such as 1,4-
dinitrobenzene, diphenylethylene, styrene, benzoquinone, and
diallyl ether, the nitration was fully suppressed (see the
Supporting Information).

Our computational studies at CPCM (MeCN) M06-2X/
def2-TZVP//B3LYP-D3BJ/6-31++G(d,p) (LANL2DZ for
Ru) level of theory31,32 indicate that the nitration at [Ge] via
a radical process has an activation free energy barrier of 23.6
kcal/mol and proceeds via formation of a σ-complex (I,

Scheme 1. Site-Selectivity and Orthogonality of Aryl Germane ipso-Nitratione

aWithout the addition of NaBF4.
bReaction time of 7 h. cQuantified by 1H NMR against an internal standard. d9% of nitration at silane. eReaction

conditions: aryl germane (0.3 mmol, 1.0 equiv), N-nitrosuccinimide (0.6 mmol, 2.0 equiv), [Ru(bpy)3](PF6)2 (0.0075 mmol, 2.5 mol %), NaBF4
(0.45 mmol, 1.5 equiv), and MeCN (1.2 mL). Yields of isolated products are given.
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Scheme 2). It is calculated to be substantially favored over
nitration at Bpin (by ΔΔG‡ = 3.6 kcal/mol). The NO2 radical

addition at the [Si] site is computationally predicted to possess
only a marginally higher barrier than for [Ge] to form adduct I
(ΔΔG‡ = 0.8 kcal/mol) at M06-2X (and also at PBE0-D3,
wB97XD; 1.0 kcal/mol at MN15L but only 0.5 kcal/mol at the
DLPNO-CCSD(T) level of theory). However, the subsequent
silyl radical loss as compared to Ge radical loss is significantly
less favored. In fact, it is associated with a free energy that lies
energetically at similar level (or above for other tested
methods: 1.8 kcal/mol at PBE0-D3, 3.0 kcal/mol at MN15L,
4.3 kcal/mol at wB97XD, and even 7.6 kcal/mol at the
DLPNO-CCSD(T) level of theory)32 as the initial nitro radical
addition transition state. This suggests that the process likely
reverses back to starting material, making the dissociation of
the silyl radical potentially rate-determining,32 depending on
the substrate’s substitution pattern. See the SI for an
assessment of the reaction profile with other levels of theory.
The GeEt3 radical is subsequently readily oxidized to the
corresponding cation (calculated potential is −0.68 V vs SCE),
which regenerates the catalyst (Scheme 2b).33,34

Given the exceptional robustness of organogermanes toward
various reaction conditions, we also explored the possibility to
nitrate in the presence of the Ge functionality (Scheme 1c).

To this end, we engaged Pd-catalysis developed by
Buchwald and co-workers20a and attempted the nitration of
(4-chlorophenyl)triethylgermane. Despite the employed harsh

reaction conditions (130 °C), there was no consumption of the
Ge functionality, and instead C−Cl was exclusively function-
alized to give 16 in a 90% yield. By contrast, under
photocatalysis conditions, the Ge functionality is exclusively
nitrated while leaving C−Cl untouched (15). These results
further manifest the orthogonal reactivity features of trialkyl
aryl germanes.

We next explored the scope for the ipso-nitration more
generally in the absence of competing molecular handles
(Scheme 3). Pleasingly, the protocol proved to be effective for

a wide range of aryl germanes bearing electron-donating and
electron-withdrawing substituents. Alkyl- and methoxy-sub-
stituted aryl germanes reacted smoothly to give the
corresponding nitroarenes in high yields (17−24), also when
positioned ortho to the [Ge]-site (25). Cyanide and sulfonyl
(26−28) functional groups as well as the heterocycles
isoxazole and pyrrolidinone were similarly tolerated (29 and
30).

In conclusion, we showcased the chemoselective ipso-
nitration of aryl germanes under photocatalytic conditions
using bench-stable and readily available N-nitrosuccinimide as
a nitrating reagent. This transformation represents the first C−
N bond formation of aryl germanes to access a wide range of
nitroarenes while tolerating a diverse array of functional groups
on the aryl moiety. Intra- and intermolecular competitions of
aryl germanes versus silanes and boronic esters and halogens
gave selective functionalization at the Ge site, while established
nitration protocols (e.g., on aryl halides) were shown to
tolerate the Ge functionality owing to its exquisite robustness.

Scheme 2. DFT Study on Photocatalyzed ipso-Nitrationa

aTS2 could not be located and was approximated as the energy
maximum obtained from a relaxed scan of the C-LG bond length.
bValues (in kcal/mol) refer to Gibbs free energies at the at CPCM
(MeCN) M06-2X/def2-TZVP//B3LYP-D3(BJ)/6-31++G(d,p)
(LANL2DZ for Ru) level of theory.31,32

Scheme 3. Substrate Scope of ipso-Nitrationb

aNaBF4 (0.45 mmol, 1.5 equiv) was used. bReaction conditions: aryl
germane (0.3 mmol, 1.0 equiv), N-nitrosuccinimide (0.6 mmol, 2.0
equiv), [Ru(bpy)3](PF6)2 (0.0075 mmol, 2.5 mol %), and MeCN
(1.2 mL). Yields of isolated products are given.
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These results further underscore the privileged reactivity and
potential of aryl germanes and overall broaden the repertoire of
modular syntheses campaigns to nitration.
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