
Received: 15 October 2022 Revised: 13 September 2023 Accepted: 24 November 2023

DOI: 10.1002/net.22204

S P E C I A L I S S U E A R T I C L E

Special cases of the minimum spanning tree problem under
explorable edge and vertex uncertainty

Corinna Mathwieser1 Eranda Çela2

1
Lehr- und Forschungsgebiet Kombinatorische

Optimierung, RWTH Aachen University, Aachen,

Germany

2
Department of Discrete Mathematics, TU Graz,

Graz, Austria

Correspondence
Corinna Mathwieser, Lehr- und Forschungsgebiet

Kombinatorische Optimierung, RWTH Aachen

University, Aachen, 52062, Germany.

Email: mathwieser@combi.rwth-aachen.de

Abstract
This article studies the Minimum Spanning Tree Problem under Explorable Uncer-

tainty as well as a related vertex uncertainty version of the problem. We particularly

consider special instance types, including cactus graphs, for which we provide

randomized algorithms. We introduce the problem of finding a minimum weight

spanning star under uncertainty for which we show that no algorithm can achieve

constant competitive ratio.

KEYWORDS

cactus graphs, competitive analysis, explorable uncertainty, online algorithms, ran-

domized algorithms, spanning tree

1 INTRODUCTION

Many real world problems do not allow to work with precise data as parts of the input are uncertain or only known approximately.

Different approaches to deal with uncertainty include stochastic optimization where the input data is known to follow a specific

probability distribution, robust optimization which aims to find good solutions for all possible inputs and explorable uncertainty.

In the latter setting, it is possible to obtain more precise or even exact data by making queries. However, any query causes

exploration cost. In an applied scenario this might be time, money or other resources which are needed for further measurements.

In this paper, we consider the Minimum Spanning Tree Problem under Explorable Uncertainty (MST-U). MST-U requires

finding a minimum spanning tree (MST) in an edge weighted graph where the weights are initially not known but can be revealed

upon request. In an instance of MST-U, each edge is equipped with an uncertainty set and a query cost. The uncertainty set,

usually an interval, is guaranteed to contain the edge’s weight. An edge query reveals the edge’s true weight. The goal is to find

a set Q of queries of minimum cost which allows to find a minimum spanning tree with certainty; that is, given the weights of all

edges in Q, there exists an edge set T such that T is a minimum spanning tree for all possible realizations of edge weights with

respect to the remaining uncertainty sets. The queries may be chosen adaptively which means that we are allowed to choose the

next update based on the previous outcomes of edge queries. Note that while MST-U requires the specification of an edge set

which corresponds to an MST, it is not necessary to compute the MST weight.

1.1 Related work
The first work on problems where parts of the input are uncertain and can be queried is due to Kahan (see [13]) who studied the

problem of finding the maximum, the median and the minimum of a set of real values, each of which is known to lie in a given

interval. Since then, explorable uncertainty has been considered for different combinatorial problems, for example, shortest

paths (see [9]), scheduling (see [4]) and the knapsack problem (see [12]). Erlebach et al. were the first to introduce the Minimum

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2024 The Authors. Networks published by Wiley Periodicals LLC.

Networks. 2024;1–18. wileyonlinelibrary.com/journal/net 1

https://orcid.org/0000-0002-5983-2616
https://orcid.org/0000-0002-5099-8804
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/NET
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.22204&domain=pdf&date_stamp=2024-01-11

2 MATHWIESER and ÇELA

Spanning Tree Problem under Explorable Uncertainty in [8]. They showed that without restrictions made on the uncertainty

sets, no algorithm can achieve constant competitive ratio. This is why subsequently it is assumed that uncertainty sets are either

singletons or open intervals. In [8], Erlebach et al. also presented the deterministic algorithm U-RED for MST-U with uniform

query costs which achieves competitive ratio 2 and proved that no deterministic algorithm can have a smaller competitive ratio.

Moreover, they introduced a different version of the problem, the Minimum Spanning Tree Problem under Vertex Uncertainty
(V-MST-U) where vertices are points with uncertain locations in the plane and the edge weights correspond to the (Euclidean)

distances between the respective end vertices. They showed that U-RED can be adapted to work for the vertex uncertainty setting

as well if uncertainty sets are (topologically) open and achieves a competitive ratio of 4 which they proved to be a lower bound for

the performance of any deterministic algorithm. An important question left open was the effect of randomization in the setting

of MST-U. This question was subsequently answered by Megow et al. in [15] where they provided the randomized algorithm

RANDOM with competitive ratio 1 + 1√
2
. The best known lower bound for the performance of randomized algorithms is 1.5

which holds true even for K3 and was observed by Erlebach and Hoffmann in [7]. [15] transformed their randomized algorithm

into the deterministic algorithm BALANCE which achieves a competitive ratio of 2 on instances with general query cost. In [15]

also considered the problem of finding the weight of an MST under uncertainty, the problem of finding an 𝛼-approximate MST

under uncertainty as well as a version of MST-U where queries return subintervals instead of the precise edge weights. Test

results for MST-U are provided by Focke et al. in [10]. Erlebach et al. ([5]) study an extension of the problem that allows for

untrusted predictions; that is, there exist possibly erroneous predictions for the outcome of each query, as may be obtained

through machine learning methods. For all integral 𝛾 ≥ 2, they present algorithms that are 𝛾-competitive if the predictions are

arbitrarily wrong and (1+ 1

𝛾

)-competitive if the predictions are correct. In [6], Erlebach and Hoffmann deal with the verification
problem for MST-U which consists in the problem of computing an optimal query set if the uncertainty sets as well as the exact

edge weights are given. They show that the verification problem for MST-U is solvable in polynomial time while the verification

problem for the vertex uncertainty problem V-MST-U is NP-hard. Merino and Soto ([16]) study the non-adaptive version of

the problem where all the queried elements reveal their values at the same time. They provide a polynomial-time algorithm that

finds a query set of minimum cost for the minimum matroid base problem under non-adaptive explorable uncertainty.

1.2 Our contribution
One of the main difficulties in solving MST-U stems from dealing with edges that are part of several cycles. Thus, it is a natural

question to consider the special case of cactus graphs where every edge belongs to at most one cycle. However, the algorithm

RANDOM presented in [15] reaches its worst case competitive ratio of 1 + 1√
2
≈ 1.71 even for instances where the input graph

is a cycle. We introduce an algorithm which achieves competitive ratio 1.5 on instances with cactus graphs. V-MST-U on the

contrary, has only been considered in the setting of deterministic algorithms so far. We prove that there exists no randomized

algorithm for V-MST-U with a competitive ratio better than 2.5 even if the input graph is a cycle. Unfortunately, structural

differences between the edge uncertainty setting and the vertex uncertainty setting impede the straight forward adaption of

RANDOM to the vertex uncertainty setting. Instead, we consider the special case of cactus-like instances with uniform query

costs where no two cycles share a non-trivial vertex and introduce the algorithm V-RANDOMC for which we prove a com-

petitive ratio of at most 2.5. While deterministic and randomized algorithms with reasonable performance guarantee exist for

MST-U, this is not necessarily the case when aiming to find more specific spanning trees. We demonstrate this by introducing

the Minimum Spanning Star Problem under Explorable Uncertainty (MSS-U). MSS-U is defined analogously to MST-U

except that we want to identify a spanning star of minimum weight rather than a general spanning tree. For MSS-U we derive

a negative result with respect to competitive analysis; that is, we show that no algorithm for MSS-U can achieve constant

competitive ratio.

The remainder of this paper is organized as follows: In Section 2 we provide the precise definition of MST-U and further basic

definitions and concepts used throughout the rest of the paper. Section 3 deals with a randomized algorithm for MST-U on

cactus graphs. In Section 4 we prove a lower bound for the performance of randomized algorithms for V-MST-U and introduce

an optimal randomized algorithm for V-MST-U on cactus-like graphs with uniform query costs. In Section 5 we study the

Minimum Spanning Star Problem under Explorable Uncertainty. We conclude with a brief summary and some open questions

in Section 6.

2 PRELIMINARIES

In this section we will introduce definitions, notation and structural results used throughout this paper.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 3

2.1 Problem definition MST-U and notation

Definition. An (edge-)uncertainty graph is a tuple 𝒢 = (G, (Ae)e) where G = (V ,E) is an undirected, connected

graph and for each edge e ∈ E, Ae ⊆ R is either a singleton set or (topologically) open. The sets Ae with e ∈ E are

called uncertainty sets. A vector (we)e∈E of edge weights is called a (feasible) realization of edge weights for the

uncertainty graph 𝒢 if each weight lies within the corresponding uncertainty set; that is, if we ∈ Ae for all e ∈ E.

An instance of the Minimum Spanning Tree Problem under Explorable Uncertainty (MST-U) is specified in terms of an

uncertainty graph 𝒢 = (G, (Ae)e) as well as an a priori unknown realization of edge weights (we)e∈E and a query cost qe > 0

for each e ∈ E. We refer to (we)e∈E as the true (realization of) edge weights. We denote by n = |V| the number of vertices and

by m = |E| the number of edges of G. If Ae contains a single element only we say that Ae is trivial. An edge e is trivial if Ae is

trivial. For an edge e ∈ E, we denote by Le ∶= inf Ae the infimum and by Ue ∶= sup Ae the supremum of the uncertainty set.

We will also refer to Le and Ue as the lower and the upper limit of Ae (or of e) respectively. We can query an edge e to determine

its true weight we. If we query e, the set Ae is updated to a singleton set containing only we. The cost of querying an edge e is

qe > 0. The goal is to find a minimum cost set of queries needed to identify an edge set T of a minimum spanning tree (MST)

in G with respect to the true edge weights we. More precisely, a feasible query set is defined as follows:

Definition. Given an uncertainty graph 𝒢 with graph G = (V ,E) and uncertainty sets Ae, e ∈ E, as well as true

edge weights we ∈ Ae for e ∈ E, a set Q ⊆ E is called a feasible query set if there exists a spanning tree T in G such

that T has minimum weight with respect to any weight function w ∶ E → R which fulfills that w(e) = we if e ∈ Q
and w(e) ∈ Ae if e ∈ E − Q. We say that Q verifies T .

MST-U thus consists in finding a feasible query set Q of minimum query cost
∑

e∈Q qe. Note that while initially only the

uncertainty graph is known, the feasibility and optimality of a query set for an MST-U instance strongly depend on the true

realization of edge weights.

Moreover, we will use the following definition: Given an uncertainty graph 𝒢 = (G, (Ae)e) and a cycle C in G, we say that an

edge f is always maximal in C if Lf ≥ Ue for all e in C − f .

For the sake of simplicity, we will assume all uncertainty sets to be open intervals or trivial throughout the remainder of the

paper. Otherwise the results remain true under the assumption that sup Ae and inf Ae can be accessed in 𝒪(1) time for all e ∈ E.

2.2 Structural aspects of MST-U
In the following we will recall some structural insights into MST-U which were provided by Megow et al. in [15] and will

be used throughout the remainder of the paper. Given an instance of MST-U, a lower limit tree is the edge set of a minimum

spanning tree in G with respect to edge weights wL
e where wL

e ∶= Le = Ue for trivial edges and infinitesimally close to the lower

limit of the edge’s uncertainty set (i.e., wL
e ∶= Le + 𝜀 for infinitesimally small 𝜀 > 0) for non-trivial edges. An upper limit tree

and edge weights wU
e for its computation are defined analogously.

Lemma 1 ([15]). Let TL, TU be a lower and an upper limit tree respectively. All edges in TL −TU with non-trivial
uncertainty sets lie in any feasible query set.

Hence, the instance can be preprocessed by querying all edges in TL − TU until we obtain an instance where TL − TU contains

only trivial edges. Moreover, we can obtain identical upper and lower limit trees TL = TU from the preprocessed instance by

picking the same ordering for identical trivial edges in the computation of TL and TU . We may thus assume that TL = TU .

Now recall the following well-known properties of minimum spanning trees: Given a cycle C in a weighted graph G, we have

that if an edge e is such that we > we′ for all e′ ∈ C − e then e is not contained in any MST. If we ≥ we′ for all e′ ∈ C then

there exists an MST of G which does not contain e. In the context of MST-U this means that if we encounter a cycle C with an

always maximal edge e then e can be discarded in the search for an MST. Conversely, given a cycle C and a non-trivial edge

f which has largest upper limit Uf in C, it is impossible to verify an MST which contains f without querying f because f is a

candidate for an edge with strictly largest weight in C. Possible candidates for a largest weight edge in C are f and all edges e in

C with possibly larger weight than f , i.e. with Ue > Lf . We will refer to these edges as neighbors of f in C and denote the set of

all neighbors by XC(f) ∶= {e ∈ C − f |Ue > Lf }. We will write X(f) instead of XC(f) if the intended cycle C is unambiguous.

In [15], Megow et al. prove the following with respect to f and its neighbor set:

Lemma 2 ([15]). Let TU be an upper limit tree. Let f be an edge in G−TU with smallest lower limit Lf in G−TU

and let C be the cycle in TU + f . If no edge in C is always maximal, then any feasible query set contains f or X(f).
Moreover, if there is an edge g ≠ f in C such that Lg ≥ Lf and Ug ≠ Lf , then f lies in any feasible query set.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 MATHWIESER and ÇELA

If TU = TL is a lower limit tree too and no edge is known to have maximum weight in C even after querying f
or all edges in X(f), then an edge g in C with maximum upper limit Ug lies in any feasible query set.

2.3 Vertex uncertainty problem
In an instance of the Minimum Spanning Tree Problem under Explorable Vertex Uncertainty (V-MST-U) we are given an

undirected, connected graph G where each vertex corresponds to a point in the Euclidean plane. The weight of an edge is equal

to the Euclidean distance between its end vertices. Instead of the precise location of a vertex v we are given an uncertainty set

Av ⊆ R2
. Av can either be a singleton set (in which case we refer to the vertex and the uncertainty set as trivial) or an open subset

of R2
. An algorithm can query a vertex v at query cost qv to reveal its exact location. We define a (vertex-)uncertainty graph

as well as a feasible (vertex) query set in the same way as in the setting of MST-U. Then V-MST-U is defined analogously to

MST-U; that is, we want to identify a feasible vertex query set of minimum query cost.

In order to apply methods developed for MST-U to V-MST-U it is common to transform vertex uncertainty sets into edge

uncertainty sets by computing all possible distances between vertices. The resulting instance is referred to as associated edge

instance:

Definition. Given an instanceℐ of V-MST-U with graph G = (V ,E) and uncertainty sets Av, v ∈ V , the associated

edge instance ℐ ′
is an instance of MST-U with graph G and uncertainty sets A{u,v} = {𝑑(u′, v′)|u′ ∈ Au, v′ ∈ Av}.

Note that by standard properties of Euclidean topology, uncertainty sets of the associated edge instance of an V-MST-U

instance with open or trivial uncertainty sets are open or trivial. For the remainder of the paper we will assume V-MST-U

instances to be such that uncertainty sets in the associated edge instances are open intervals or trivial. However, results

will remain true for the more general case under the assumption that we can access infima and suprema of uncertain vertex

distances.

In the following, we define a feasible realization of vertex positions and a feasible realization of edge lengths in the setting of

V-MST-U.

Definition. Let 𝒢 = (G, (Av)v) be a vertex uncertainty graph. We call (v)v∈V with v ∈ R2
for all v ∈ V a feasible

realization of vertex positions if v ∈ Av for all v ∈ V . A vector (we)e∈E is called a feasible realization of edge lengths

if there is a feasible realization (v)v∈V of vertex positions such that ||ū− v||2 = we for all e = {u, v} ∈ E where || ⋅ ||2
denotes the Euclidean distance.

Note that while every feasible realization of edge lengths for a V-MST-U instance is also a feasible realization of edge weights

for the associated edge instance, not every feasible realization of edge weights for the associated edge instance is feasible for

the original V-MST-U instance due to dependecies between edge lengths of adjacent edges.

In the following we also provide a definition for the terms “always maximal” and “neighbor set” for V-MST-U.

Definition. Let𝒢 = (G, (Av)v) be a vertex uncertainty graph and C a cycle in G. Let f be an edge in C with largest

upper limit in the associated edge instance. We denote by XC(f) the set of edges e ∈ C such that we > wf for some

feasible realization (wh)h∈E of edge lengths and call XC(f) the neighbor set of f in C. The edge f is called always

maximal in C if XC(f) = ∅.

We again write X(f) instead of XC(f) if the cycle C is unambigous. Note that the neighbor set in the associated edge instance is

not necessarily identical to the neighbor set of an edge f in a V-MST-U instance as is displayed in Figure 1.

FIGURE 1 A vertex uncertainty graph with cycle C where black dots indicate trivial vertices and g and f share the only non-trivial vertex. Clearly

Uf = max{Ue ∶ e ∈ C} and Ug > Lf but f is always maximal in C.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 5

The edge f in Figure 1 is always strictly larger than the length of edge g (even though their uncertainty intervals in the associated

edge instance overlap.) Given an instance of V-MST-U, we say that an edge f dominates an edge g if wf > wg for any feasible

realization (we)e of edge lengths. Note the following:

Observation 3. For any two edges f and g in an instance of V-MST-U we have that either (1) f dominates g, (2)

g dominates f , (3) wf = wg for any feasible realization (we)e of edge lengths or (4) wf < wg and wf > wg for two

feasible realizations (we)e, (we)e of edge lengths. In case (3) where edge lengths coincide for all realizations we say

that f and g have always identical edge lengths. Note that f and g can only have always identical edge lengths if

either f and g both have two trivial end vertices or in case that f and g share a common non-trivial end vertex while

the vertices v ∈ f − g and w ∈ g − f are both trivial and have identical positions v = w.

The correctness of Observation 3 is easy to see as we cannot have that wf ≤ wg for any feasible realization (we)e of edge lengths

if equality is attained for some but not all realizations, due to uncertainty sets being open or trivial.

Finally, we define lower and upper limit trees for V-MST-U. A lower (upper) limit tree TL (TU) for an instance of V-MST-U is

the edge set of a lower (upper) limit tree for the associated edge instance with the following restrictions imposed on the ordering

of edges during the computation of TL and TU (e.g., with Kruskal):

• If an edge f dominates an edge g then g is added to TL (TU) prior to f . Note that the restriction does not interfere with

the well-definedness of TL (TU) as lower (upper) limit tree for the associated edge instance as Lf ≥ Lg and Uf ≥ Ug if f
dominates g.

• If two edges f and g have always identical edge lengths then the ordering is arbitrary but fixed, in the sense that we choose

the same ordering for the computation of TL and TU .

2.4 Performance analysis
To analyze the quality of a solution found by an algorithm we compute the competitive ratio between the query cost of the

algorithm’s solution and the cost of an optimal query set. An optimal query set is an optimal solution to the offline problem

where all edge weights (or vertex positions) are known a priori.

Definition. Let ℐ be an instance of MST-U (or V-MST-U). By OPT(ℐ) we denote the cost of an optimal query

set for instance ℐ . For an algorithm ALG we denote by ALG(ℐ) the cost of the query set which the algorithm

outputs when applied to ℐ . We say that ALG achieves competitive ratio c ≥ 1 or is c-competitive if

ALG(ℐ)
OPT(ℐ)

≤ c

for all instances ℐ . A randomized algorithm is said to achieve competitive ratio c ≥ 1 if the ratio between the

expected query cost of the algorithm’s solution and the cost of an optimal solution is at most c; that is, if

E(ALG(ℐ))
OPT(ℐ)

≤ c

for all instances ℐ .

3 A RANDOMIZED ALGORITHM FOR MST-U ON CACTUS GRAPHS

In this section we consider a randomized algorithm for MST-U on cactus graphs. A cactus graph is a connected graph

in which any two cycles share at most one vertex. A feasible query set needs to allow for the detection of a max-

imum weight edge in each cycle. For work on detecting a data item of minimum value with uncertainty intervals

see [1, 3, 13, 14]. It can be easily seen that an optimal query set for a cactus graph consists of the disjoint union of the

optimal query sets for each of the graph’s cycles. Thus we can first consider MST-U on a cycle and then extend the result

to the case of an edge uncertainty graph which is a cactus. Once we are able to treat cycles separately, it is possible to

achieve an optimal competitive ratio of 1.5 using the following observation: Assume that we have preprocessed the instance

such that TL = TU and let f be an edge in G − TL and let C be the cycle in TL + f . Assume moreover that no edge in C is

always maximal. Then Lemma 2 guarantees that if we start by querying f and continue to query edges in order of decreasing

upper limit until an edge in C is always maximal, then we have queried at most one edge which is not in every feasible

query set.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 MATHWIESER and ÇELA

Theorem 4. For cactus graphs there exists an algorithm RandomC with competitive ratio at most 1.5, which is
best possible. Moreover, if G is a cycle, RandomC achieves competitive ratio 1 + qX(f)⋅qf

q2

X(f)+q2

f
where qX(f) denotes the

cumulative query cost of edges in X(f).

Proof. We first consider a graph C which consists of a single cycle. Assume again that we have preprocessed the

instance such that TL = TU and that no always maximal edge in C is known. Let f be the edge in E-TL and let

qX(f) ∶=
∑

e∈X(fi)
qe be the query cost of all neighbors of f in C. With probability p, our algorithm starts by querying

all edges in X(f). With probability 1 − p, its first step is to query f . Once it has queried X(f) or f , it queries edges

in order of decreasing upper limit until an always maximal edge in C can be identified.

We distinguish two cases: either an optimal solution queries f or it does not. If an optimal solution does not

query f , it must by Lemma 2 query all of the neighbors in X(f) and thus makes queries at cost qX(f). In this case with

probability p, we query the same edges as the optimal solution and achieve competitive ratio 1. With probability

1− p, RANDOMC queries f and possibly all edges in the neighbor set X(f) such that the competitive ratio is at most
qX(f)+qf

qX(f)
. Thus, in this case the overall competitive ratio is at most 1 + (1 − p) qf

qX(f)
.

If an optimal solution queries f , RANDOMC queries the same edges as the optimal solution if it starts by querying

f ; that is, with probability 1− p. With probability p, RANDOMC starts by querying all neighbors in X(f) and might

have to query f too, while an optimal query set might contain f only. Summing up, the competitive ratio is bounded

by 1 + p ⋅ qX(f)

qf
in this case. By setting p =

q2

f

q2

f +q2

X(f)
, the obtained bounds for both cases coincide and equal

1 +
qX(f)qf

q2

f + q2

X(f)
.

Note that the following equivalences hold:

qX(f) ⋅ qf

q2

f + q2

X(f)
≤

1

2
⇔

2 ⋅ qX(f) ⋅ qf ≤ q2

f + q2

X(f) ⇔

0 ≤ (qf − qX(f))2.

Thus, RANDOMC is 1.5-competitive on instances where the uncertainty graph is a cycle if p is chosen as above.

For an instanceℐ where the uncertainty graph is a general cactus G, we again preprocess the instance such that

TL = TU is a lower and an upper limit tree. Denote the edges in G−TL by f1, … , fm−n+1, the order is arbitrary. Let Ci
denote the cycle in TL + fi. We apply RANDOMC for cycles as described above to each of the cycles separately. Let

Q∗
i denote an optimal query set for an instance where the uncertainty graph consists only of Ci and the uncertainty

sets and weights are as in ℐ . We set OPTi ∶=
∑

e∈Q∗
i

qe, i = 1, … ,m − n + 1. As any two cycles in G do

not share common edges and edges that lie in no cycle need to be part of any spanning tree, the disjoint union

Q∗ ∶=
⋃̇m−n+1

i=1
Q∗

i is an optimal solution for ℐ and thus OPT(ℐ) =
∑m−n+1

i=1
OPTi. Moreover, the structure of

cactus graphs guarantees that for any i = 1, … ,m − n + 1, X(fi) is independent of the choice of queries that

RANDOMC makes when applied to Cj with j ≠ i as well as of the queries’ outcome. Let qprep denote the cost of

queries made in the preprocessing. We denote by ALGi the cost of the queries RANDOMC makes when applied to Ci,

i ∈ {1, 2, … ,m− n+ 1}. As we expect at most 1.5 ⋅OPTi queries when applying RANDOMC to Ci, we obtain that

E[RANDOMC(ℐ)]
OPT(ℐ)

=
qprep +

∑m−n+1

i=1
E[ALGi(ℐ)]

OPT(ℐ)
≤

qprep +
∑m−n+1

i=1
1.5 ⋅ OPTi

qprep +
∑m−n+1

i=1
OPTi

≤ 1.5.

This completes the proof of the competitiveness. Note that the correctness of RANDOMC is immediate as for each

cycle the algorithm proceeds to query edges until an edge becomes always maximal. The claim that the com-

petitive ratio is best possible follows from the fact that no randomized algorithm can achieve a competitive ratio

less than 1.5 even on triangles, see [7]. A precise description of RANDOMC for general query costs is given in

Algorithm 1. ▪

4 V-MST-U AND RANDOMIZATION

We will now turn to the vertex uncertainty version of MST-U which has not been considered in the context of randomized

algorithms so far. We start by showing that no randomized algorithm for V-MST-U can achieve a better competitive ratio than

2.5. Our proof is based on the proof of the bound for the deterministic performance guarantee by [8].

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 7

Algorithm 1. The algorithm RANDOMC for MST-U with general query costs in cactus graphs

input : An instance of MST-U with cactus graph G = (V ,E), uncertainty sets Ae and query costs qe, e ∈ E
output: A feasible query set Q

1 Draw b uniformly at random from [0, 1];
2 Preprocess the instance such that TL = TU;

3 Index the edges f1,… , fm−n+1 in E-TL arbitrarily;

4 Initialize Q = ∅;

5 for i ← 1 to m − n + 1 do
6 Add fi to TL and let Ci be the unique cycle closed;

7 Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug>Lfi ;

8 Let qi ∶=
∑

e∈X(fi)
qe;

9 if X(fi) ≠ ∅ then

10 if b ≤
q2

fi
q2

fi
+q2

i
then

11 add all edges in X(fi) to Q and query them.

12 else
13 Add fi to Q and query fi.
14 while no edge in the cycle Ci is always maximal do
15 Query an unqueried edge e ∈ Ci-Q with maximum Ue and add it to Q.

Theorem 5. No randomized algorithm for V-MST-U can achieve a competitive ratio less than 2.5. This remains
true even for cycles and under the assumption of uniform query costs.

Proof. We will prove the theorem by applying a variant of Yao’s Principle (see [2]) which allows to derive a lower

bound for the performance of randomized algorithms from the best possible expected performance of a deterministic

algorithm against a finite randomized family of instances. A finite randomized family of instances is a pair (ℛ, p)
where ℛ is a finite set of instances for V-MST-U and p is a probability vector of length |ℛ| which indicates for

each instance R ∈ℛ the probability of its occurrence.

In [6], Erlebach and Hoffmann define a graph G with four non-trivial vertices A, B, C and D. For each such

vertex v ∈ {A,B,C,D} they provide an instance Rv that specifies a realization of vertex positions. See Figure 2

for an illustration of G with the uncertainty sets 𝒜A, 𝒜B, 𝒜C and 𝒜D alongside illustrations of the instances RA,

RB, RC and RD with the corresponding realizations of vertex positions. Black dots represent trivial vertices. Each

distance between two neighboring trivial vertices or between a trivial vertex and an uncertainty set equals 1. The

non-trivial uncertainty sets of A, B, C and D are long, thin open areas of length 2 and small positive width 𝜀 > 0.

The distance between the uncertainty sets of A and B is 7 while the distance between the uncertainty sets of C and

D is 4. Note that all edges which have at least one (initially) trivial end vertex are necessarily part of any minimum

spanning tree. Depending on the realization of vertex positions, {A,B} and {C,D} can both be edges in an MST.

The realization of vertex positions in RA, RB, RC and RD can be described as follows: A (D) is located on the far

left of 𝒜A (𝒜D) when considering RA (RD). Otherwise A (D) is located on the far right of 𝒜A (𝒜D). B (C) on the

contrary, is located on the far right of 𝒜B (𝒜C) when considering RB (RC) while otherwise B (C) is located on

the far left of 𝒜B (𝒜C). Note that for an instance Rv with v ∈ {A,B,C,D}, vertex positions are such that {v} is

the only optimal query set: After querying the vertices in {A,B,C,D} − {v}, the uncertainty interval of {A,B} is

(7 + 𝜀, 9 + 𝜀) and the length of {C,D} is 8 − 2𝜀 if v = A,B and the uncertainty interval of {C,D} is (6 − 𝜀, 8 − 𝜀)
and the length of {A,B} is 7 + 2𝜀 if v = C,D. In both cases, the length of the trivial edge is contained in the

uncertainty set of the edge incident to v. Querying v on the other side, clearly results in {A,B} being an always

maximal edge.

Consider now the randomized family of instances (ℛ, p), where ℛ = {RA,RB,RC,RD} and p(Rv) = P[R = Rv] =
0.25 for v ∈ {A,B,C,D}. Then no deterministic algorithm ALG achieves a better expected competitive ratio

ER∼pℛ

(
ALG(R)
OPT(R)

)
than the algorithm ALG1 which queries A, B, C, D (or less if an MST can already be identified)

in this order independently from the queries’ results. This is due to the fact that querying v only reveals whether or

not we are facing instance Rv but if not, it is indistinguishable which of the remaining instances it might be.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 MATHWIESER and ÇELA

FIGURE 2 Instances RA, RB, RC and RD for the finite randomized family (ℛ, p) of instances.

Then by Yao’s Principle, no randomized algorithm has a better performance than

min
ALG∈𝒜

ER∼pℛ

(
ALG(R)
OPT(R)

)
= ER∼pℛ

(
ALG1(R)
OPT(R)

)
= 0.25 ⋅ (ALG1(RA) + ALG1(RB) + ALG1(RC) + ALG1(RD))

= 0.25 ⋅ (1 + 2 + 3 + 4) = 2.5,

where 𝒜 denotes the class of all deterministic algorithms. ▪

4.1 A randomized algorithm for V-MST-U on cactus-like graphs
V-MST-U structurally differs from MST-U mainly due to the following three aspects:

a) Querying a single end vertex of an edge already yields partial information about the edge’s length.

b) A vertex may be incident to several edges. Thus, knowing its precise position impacts on the possible lengths of all

adjacent edges.

c) Knowing the ordering of edge lengths of adjacent edges is not necessarily linked to the knowledge of precise vertex

positions or edge lengths, even if the uncertainty intervals overlap (see Figure 1).

While for MST-U it is sometimes possible to identify edges which have to lie in any feasible query set, it becomes signif-

icantly harder to tell whether a vertex has to be queried due to aspect a). However, we will make use of the weaker statement

that for certain edges at least one out of two end vertices needs to be queried.

Similarly to the special case of cactus graphs for MST-U, we will now consider instances of V-MST-U where no two

cycles share a non-trivial vertex. This makes it easier to deal with aspect b), as vertex queries may only impact on the possible

lengths of at most two adjacent edges. We will refer to vertex-uncertainty graphs where cycles do not intersect in non-trivial

vertices as cactus-like graphs. For the remainder of the section we will moreover consider uniform query costs. Our algorithm

considers cycles separately. For an instance ℐ with a cycle C, our algorithm V-RANDOMC works as follows: First, it com-

putes the associated edge instance and preprocesses the instance s.t. TL = TU holds. Usually, our algorithm deterministically

queries the end vertices of the edge f ∈ C − TU and will then query the end vertices of edges in C in order of decreas-

ing upper limit in the associated edge instance until a longest edge in C can be identified. Only if the neighbor set is small

(where “small” is yet to be defined) we will make use of randomization. More precisely, the algorithm will make use of

subroutines RAND1, RAND2 or RAND3, depending on the size of the neighbor set. In case that the neighbor set is large

and the algorithm performs deterministically as described above, we will say that the algorithm follows the deterministic
procedure.

The remainder of the section is structured as follows: First we prove some structural observations that will be used to

provide a pre-processing and prove the competitiveness of the algorithm and its sub-routines. After that we prove an upper

bound on the number of queries made by the deterministic procedure in Lemma 9. We proceed by describing RAND3 and

proving its competitiveness in Lemma 10. We then describe RAND1 and RAND2 and prove the competitiveness of RAND2

in Lemma 11. Ultimately, we prove the overall performance guarantee for V-RANDOMC (including the competitiveness of

RAND1) in Theorem 5.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 9

4.1.1 Structural observations

Clearly, an edge f in an instance of MST-U which has largest upper limit Uf in a cycle C can turn out to have strictly largest

weight in C even after knowing the precise weights of all edges in C − f . For an instance of V-MST-U, there is not necessarily

a realization of edge lengths with wf > we for all e ∈ C − f even after querying all vertices in C − f due to aspect c). We make

use of the following, slightly weaker statement instead:

Lemma 6. Let 𝒢 be a vertex uncertainty graph with graph G = (V ,E) and let f ∈ E be an edge in G. Let Le,Ue

with e ∈ E denote the original infimum or supremum of an edge e prior to making any queries. Let g ≠ f be an
edge such that Ug ≤ Uf (Lg ≥ Lf), g does not dominate f (f does not dominate g) and f and g do not have always
identical edge lengths. Then even after querying all vertices in E − f , there exists a feasible realization (we)e∈E of
edge lengths with wf > wg (wf < wg).

Proof. We prove that there is a realization with wf > wg for edges g of the specified type. The proof for a realization

with wf < wg works analogously. Let g first be an edge with Ug < Uf . As the queries have not altered the uncertainty

set of f , there is a feasible realization such that f has length wf ∈ (Ug,Uf). Now assume that Ug = Uf and that

g − f contains a non-trivial vertex. Let Unew
g denote the upper limit of g after querying all vertices in E − f . As

g− f contains a non-trivial vertex, the uncertainty set of g is altered by the queries. Thus, Unew
g < Ug and there is a

feasible realization such that f has length wf ∈ (Unew
g ,Uf). Finally, assume that g− f does not contain a non-trivial

vertex. Then querying the vertices in T − f does not alter the uncertainty set of g; that is, Unew
g = Ug and Lnew

g = Lg.

As g neither dominates f nor has always identical edge length with f , there is a realization (we)e∈E of edge lengths

where f is longer than g (see Observation 3). Then (we)e∈E where we is the true length of any edge e ≠ f , g and

wf = wf > wg = wg is a feasible realization of edge lengths after querying all vertices in E − f . ▪

We will now provide a preprocessing for V-MST-U on cycles that allows for the initial assumption that TL = TU . Our pre-

processing consists in repeatedly computing TL and TU and querying the end vertices of the edge in TL − TU . However, the

property TL = TU does not necessarily remain true throughout the algorithm V-RANDOMC as vertex queries have an impact on

the uncertainty sets of all adjacent edges. We will now prove that at least half of the vertices queried during the preprocessing

lie in any feasible query set.

Lemma 7. Let ℐ be a V-MST-U instance on a cycle C. Let TL, TU be a lower and an upper limit tree and f ∈
C−TU , g ∈ C−TL the edges which are not included in the respective trees. If g ≠ f , then f intersects every feasible
query set Q for ℐ .

Proof. Let Q be a feasible query set, let T be an MST that is verified by Q and let (we)e be the underlying realization

of edge lengths in ℐ . First note that if the edge lengths of f and g are always identical then the identical ordering

of edges with always identical edge lengths imposes f = g. Moreover, observe that f cannot dominate g otherwise

Lf ≥ Lg and f would have been added to TL after g, a contradiction. Assume now that f ≠ g. Then f is not trivial

otherwise Lf = Uf ≥ Ug implies that f dominates g. We first consider the case where f ∉ T . As f ∈ TL and

g ∈ C − TL we have that Lg ≥ Lf . Then Lemma 6 guarantees that f intersects Q as otherwise f can realize to be

strictly shorter than g even if all vertex positions of vertices in Q are known.

Now assume that f ∈ T . Let h denote the edge in C − T . As h ∈ TU and f ∈ C − TU we have that Uf ≥ Uh.

Observe that h cannot dominate f otherwise h would have been added to TU after f , a contradiction. First consider

the case where h and f do not have always identical edge lengths. Then by Lemma 6, f can realize to be strictly

longer than h even if all vertex positions of vertices in C − f are known. Thus f needs to intersect Q to verify that

wf ≤ wh. Consider now the case where f and h have always identical edge lengths. Then g ≠ h and g and h do not

have always identical edge lengths. As f is non-trivial, h has a single non-trivial vertex which lies in f . Moreover,

h does not dominate g and g ∈ C − TL implies that Lg ≥ Lh. Then again Lemma 6 guarantees that h can realize to

be strictly shorter than g even if all vertex positions of vertices in Q are known. ▪

Finally, we provide a lemma which is an analogue to Lemma 2 for V-MST-U on cycles.

Lemma 8. Consider an instance ℐ of V-MST-U on a cycle C with edge lengths (we)e and upper limit tree TU .

Let f denote the edge in C − TU and assume that no edge in C is always maximal. Then any feasible query set
for ℐ contains a non-trivial vertex in f or a vertex cover of X(f) (which consists of non-trivial vertices only).
Moreover, if there is a trivial edge e in C such that we ∈ Af then any feasible query set of ℐ contains a non-trivial
vertex in f .

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 MATHWIESER and ÇELA

Proof. Let Q be a feasible query set forℐ and T a minimum spanning tree verified by Q. Assume by contradiction

that Q neither contains an end vertex of f nor a vertex cover of X(f)which consists of non-trivial vertices only. First

assume that f ∉ T . Let e be an edge in X(f) such that no end vertex of e lies in Q. Then even after querying all

vertices in Q, there is a feasible realization (wh)h of edge lengths such that we > wf by definition of the neighbor

set and the fact that no end vertex of e or f is contained in Q. Thus, Q cannot verify T with f ∉ T . Now assume

that f ∈ T . Let g ≠ f be the edge in C − T . Given that no edge dominates f we either have a feasible realization

(wh)h of edge lengths with wg < wf or we have that f and g have always identical edge lengths. Assume first that

f and g have always identical edge lengths. Note that f is not trivial, otherwise f is always maximal. Hence, g and

f share a common end vertex v while the other two end vertices in (g ∪ f) − v are trivial (see Observation 3). Let

e be an edge in X(f) such that no end-vertex of e lies in Q. Then even after querying all vertices in Q, there is a

feasible realization (wh)h of edge lengths such that we > wf = wg by definition of the neighbor set and the fact that

neither v nor an end vertex of e is contained in Q. Hence, Q cannot verify T with g ∉ T in the case where f and g
have always identical edge lengths. Now assume that there exists a feasible realization (wh)h of edge lengths with

wg < wf . Then Lemma 6 guarantees that querying Q with f ∩Q = ∅ allows for a realization of edge lengths where

g is strictly shorter than f , contradicting again that Q verifies T with g ∉ T .

Finally assume that there is a trivial edge e in C such that we ∈ Af . As f is non-trival, we have that f ≠ e and

f and e do not have always identical edge lengths. Clearly, f does not dominate e. Hence, e ∈ X(f) and the second

statement in Lemma 8 follows directly from the first statement in Lemma 8 as there exists no vertex cover of X(f)
which consists of non-trivial vertices only. ▪

4.1.2 Deterministic procedure

We will now argue why the deterministic procedure which repeatedly queries the end vertices of an undominated edge with

largest upper limit makes at most 2 ⋅ OPT(ℐ) + 2 queries.

Lemma 9. Let ℐ be an instance of V-MST-U on a cycle C with uniform query costs. Let ALG be an algorithm
which iteratively queries the end vertices of an undominated edge with largest upper limit in the associated edge
instance until a longest edge is found. Then ALG makes at most 2 ⋅ OPT(ℐ) + 2 queries when applied to ℐ .

Moreover, if ℐ is such that TL = TU , f1 ∈ C − TL is the first edge with largest upper limit queried by ALG and Q∗

is an optimal query set with f1 ∩ Q∗ ≠ ∅, then ALG makes at most 2.5 ⋅ OPT(ℐ) queries when applied to ℐ .

Proof. We will denote by {ui, vi} the set of vertices that ALG queries during the i’th iteration. (Note that ui = vi is

possible if the edge considered in the i’th iteration has one trivial end vertex.) Moreover, we will denote by Vi the

set of vertices queried during the first i iterations such that |Vt| = ALG(ℐ) where t is the last iteration. Let Q∗
be

an optimal query set and denote by Ai
e, Ui

e and Li
e the uncertainty set, upper limit and lower limit of an edge e in the

beginning of iteration i. We will argue by induction that for each iteration i it either holds that at least one vertex in

{ui, vi} lies in Q∗
or that for each j < i at least one vertex in {uj, vj} lies in Q∗

. This claim trivially holds for the first

iteration. Assume now that the claim is known to be true for iterations 1, … , i − 1 and consider the i-th iteration.

Note that ui and vi are non-trivial end vertices of an undominated edge f which has largest upper limit Ui
f in the

uncertainty graph considered in iteration i.
We distinguish two cases: (a) f has a trivial neighbor in iteration i and (b) f has no such trivial neighbor. (a) Let

e ∈ C be a trivial neighbor of f ; that is, Ai
e = {we} ⊆ Ai

f . Then by Lemma 8 we need to know the position of at

least one of f ’s end vertices in order to be able to identify a minimum spanning tree. (b) Now assume that none of

f ’s neighbors is trivial. By induction hypothesis we know that there is at most one j < i for which we have not yet

argued that {uj, vj} intersects with Q∗
. Let h be the edge with largest upper limit in iteration j such that uj and vj are

end vertices of h. Then wh can neither lie in Ai
f otherwise Ai

h = {wh}⊆Ai
f (h is a trivial neighbor of f) nor can we

have that Ui
h = wh > Ui

f as f has largest upper limit in the i-th iteration. Hence we know that wh < wf and thus h
lies in any MST. Let g be a longest edge in C. Clearly, g and h do not have always identical edge lengths. By the

choice of h we have that Uj
h ≥ Uj

g ≥ wg and g does not dominate h. We thus cannot verify that wh ≤ wg without

querying a vertex in h by Lemma 6. Thus without querying neither uj nor vj (which are the non-trivial end vertices

of h in iteration j) we will not be able to verify an MST which does not contain g.

Observe now that the claim implies the first statement of the lemma: Let j be the last iteration for which we

cannot guarantee that vj or uj lies in any feasible query set. Then we know that at least half of Vj−1 lies in Q∗
and that

for each iteration i > j we know that vi or ui lies in Q∗
. Hence, OPT(ℐ) = |Q∗| ≥ |Vj−1

|
2
+ |Vt|−|Vj|

2
= |Vt|−|{uj,vj}|

2
≥

ALG(ℐ)−2

2
.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 11

Finally, we prove the second statement of the lemma. Note that if j ≠ 1 then uj = vj: By the choice of j, the

weight of any trivial edge in the j’th iteration is not contained in Aj
e where e is the edge with largest upper limit in

iteration j and non-trivial end vertices uj and vj. Thus wf
1
≤ Le which cannot be the case if both end vertices of e

remain unqueried until iteration j due to our preprocessing. Hence, the first iteration is the only iteration where we

might query two vertices none of which is in Q∗
and thus if Q∗ ∩ f1 ≠ ∅ then ALG makes at most 2 ⋅ OPT(ℐ) + 1

queries; that is, it achieves competitive ratio 2.5. unless OPT(ℐ) = 1. However, if OPT(ℐ) = 1 and Q∗
intersects

f1 then Q∗
is a subset of f1 and thus the deterministic procedure finishes after querying only the end vertices of f1.

This proves the second statement of the lemma. ▪

4.1.3 Randomization

The above lemma guarantees that the deterministic procedure achieves a competitive ratio of 2 + 2

OPT(ℐ)
which is at most 2.5

unless OPT(ℐ) ≤ 3. We will first handle the exception where OPT(ℐ) = 3 by making a slight adaption: The algorithm starts

with the first three iterations of the deterministic procedure. In the fourth iteration it queries a vertex in {u4, v4}with probability

0.5 (or probability 1 if u4 = v4), then queries the other vertex if necessary and finally proceeds with the deterministic procedure

if still no longest edge can be identified. See Algorithm 2 for a precise description of the algorithm RAND3.

Algorithm 2. The subroutine RAND3 of V-RANDOMC

input : An instance ℐ of V-MST-U with uniform query costs with a cycle C = (V ,E) and uncertainty sets

Av for v ∈ V
output: A feasible query set Q

1 Compute the associated edge instance;

2 Initialize Q = ∅;

3 for i ← 1 to 3 do
4 if no edge in C is always maximal then
5 Let g be an undominated edge with largest upper limit in C;

6 Query the end vertices of g and add them to Q
7 if no edge in C is always maximal then
8 Let g be an undominated edge with largest upper limit in C and let u, v be the non-trivial end vertices of g;

9 Pick b ∈ [0, 1] uniformly at random;

10 if b ≤ 0.5 then
11 Query u and add it to Q;

12 if no edge in C is always maximal then
13 Query v and add it to Q
14 else
15 Query v and add it to Q;

16 if no edge in C is always maximal then
17 Query u and add it to Q
18 while no edge in C is always maximal do
19 Let g be an undominated edge with largest upper limit in C;

20 Query the end vertices of g and add them to Q

Lemma 10. Let ℐ be an instance of V-MST-U on a cycle C with uniform query cost which has a lower and upper
limit tree TL. Let ALG be an algorithm which queries the end vertices of the edge f1 ∈ C−TL and applies RAND3 to
the resulting uncertainty graph. Then ALG achieves competitive ratio 2.5 when applied to ℐ unless OPT(ℐ) ≤ 2

and f1 ∩ Q∗ = ∅ for all optimal query sets Q∗
.

Proof. Again we denote by {ui, vi} the set of vertices that ALG queries during the i’th step (i.e., {u1, v1} = f1). Dur-

ing the first three steps the algorithm is identical to the deterministic procedure. The vertices {u4, v4} are queried

one after the other rather than simultaneously. If querying the first vertex is sufficient to find an always maximal

edge the algorithm stops. Otherwise, it queries the second vertex immediately. Note that this is done prior to iden-

tifying a new edge g with largest upper limit. This makes sure that the same vertices are queried by ALG as by the

deterministic procedure. The algorithm ALG thus makes at most as many queries as the deterministic procedure.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 MATHWIESER and ÇELA

FIGURE 3 Sketches of cycles with a = 1 where edges in X(f1) are bold and dashed lines indicate parts of the cycle that are not in X(f1) ∪ f1. In (A) and (B)

RAND1 picks a vertex in {w1,w2,w3} with probability
1

3
each. In (C) RAND1 picks a vertex in {w1,w2,w3,w4} with probability

1

4
each.

Hence, if Q∗ ∩ f1 ≠ ∅ or OPT(ℐ) ≥ 4 then the claim follows from Lemma 9. Assume now that Q∗ ∩ f1 = ∅ and

OPT(ℐ) = 3. If the algorithm finishes after the first three iterations then it has made at most 6 queries and yields

a competitive ratio of at most 2. If the algorithm has not finished after the first three iterations, then we know from

the claim in the proof of Lemma 9 that two of the three sets {u1, v1} {u2, v2} and {u3, v3} intersect with Q∗
such that

{u4, v4} contains the last vertex in Q∗
. Hence, we expect to make 0.5 ⋅ (7 + 8) queries which yields a competitive

ratio of at most 2.5. ▪

Following from Lemma 10, we only need to deal with instances where OPT(ℐ) ≤ 2 and f1 ∩ Q∗ = ∅. Thus we first check

whether the uncertainty graph (after preprocessing but prior to any further queries) contains candidates for a feasible query set

W of size at most 2 that does not contain an end vertex of f1. We do so by computing the size a of a smallest vertex cover of

X(f1) which does not intersect f1 and consists of non-trivial vertices only. Note that if there is a feasible query set of size at most

2 which does not intersect the edge f1 then a ≤ 2 by Lemma 8.

If a = 1 or a = 2, we apply the randomized procedure RAND1 or RAND2 respectively, as described below.

Case a = 1 ∶ If a = 1 then X(f1) either consists of a single edge e or of two edges g and h which are incident to each other

(see Figure 3). The algorithm picks an order in which to query the three (or four) vertices in (g ∩ h) ∪ f1 or e ∪ f1 uniformly at

random and queries the vertices in the respective order up to the point where a longest edge in C can be identified. If necessary,

it queries the remaining vertices in X(f1). See Algorithm 3 for a precise description.

Algorithm 3. The subroutine RAND1 of V-RANDOMC

input : An instance ℐ of V-MST-U with uniform query costs with a cycle C = (V ,E) and uncertainty sets

Av, v ∈ V
output: A feasible query set Q

1 Compute the associated edge instance;

2 Initialize Q = ∅;

3 Let f1 be a undominated edge with largest upper limit and let X(f1) be the neighbor set of f1;

4 if no edge in C is always maximal then
5 index the vertices v1,… , vk in

⋂
X(f1) ∪ f1 arbitrarily;

6 index the permutations 𝜎1,… , 𝜎k! in k arbitrarily;

7 draw b uniformly at random from [0, 1] and pick permutation 𝜎 = 𝜎i if b ∈
[

i−1

k!
,

i
k!

)
;

8 j ∶= 1;

9 while no edge in C is always maximal and j≤k do
10 Query v𝜎(j) and add it to Q;

11 j ∶= j + 1;

12 if no edge in C is always maximal then
13 Query the remaining vertices in X(f1)

Case a = 2 ∶ The algorithm starts by querying the end vertices of f1. Then the algorithm picks a vertex cover W of X(f1)
which contains |W| = 2 non-trivial vertices such that W ∩ f1 = ∅ uniformly at random. The algorithm queries the vertices in

W. After that it queries the end vertices of undominated edges in order of decreasing upper limit. For a precise description, see

Algorithm 4.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 13

Algorithm 4. The subroutine RAND2 of V-RANDOMC

input : An instance ℐ of V-MST-U with uniform query costs with a cycle C = (V ,E) and uncertainty sets Av, v ∈ V
output: A feasible query set Q

1 Compute the associated edge instance and TL;

2 Initialize Q = ∅;

3 Let f1 be the edge in E − TL and let X(f1) be the set of neighbors of X(f1);
4 Query f1 and add its end vertices to Q;

5 if no edge in C is always maximal then
6 Compute = {W⊆V(C) − f1| W is a smallest vertex cover of X(f1) which consists of non-trivial vertices only} and

index the elements W1,… ,W|| arbitrarily;

7 draw b uniformly at random from [0, 1] and pick a vertex cover W = Wi if b ∈
[

i−1

||
,

i
||

)
;

8 query the vertices in W and add them to Q;

9 while no edge in C is always maximal do
Let g be an undominated edge with largest upper limit in C;

10 query the end vertices of g and add them to Q

FIGURE 4 Sketches of cycles with a = 2 where edges in X(f1) are bold and dashed lines indicate parts of the cycle that are not in X(f1) ∪ f1. In (A) RAND2

picks a cover {wi,w′
j}, i, j = 1, 2 with probability

1

4
each. In (B) RAND2 picks {w1,w2} deterministically.

Lemma 11. Let ℐ be an instance of V-MST-U on a cycle C with uniform query cost which has a lower and upper
limit tree TL. Let f1 be the edge in C− TL and denote by a the size of a smallest vertex cover of X(f1) which consists
of non-trivial vertices only. If a = 2 then Algorithm 4 achieves competitive ratio 2.5 when applied to ℐ .

Proof. As |f1 ∪V(X(f1))| ≤ 8 (see Figure 4) we only need to discuss instances with OPT(ℐ) = |Q∗| < 4 where Q∗

is an optimal query set. If OPT(ℐ) = 1 then a = 2 implies that Q∗
⊆f1 by Lemma 8 and the vertex in Q∗

is queried

within the first two queries. Say OPT(ℐ) = 2. As the queried vertex cover W has size a = 2, the claim trivially

holds if f1 ∪W is a feasible query set. We thus only consider the case where querying f1 ∪W is not sufficient. We

will distinguish the cases where Q∗
either intersects f1 or not. First assume that Q∗ ∩ f1 ≠ ∅. If Q∗ = f1 then the

claim trivially holds. We thus assume that |Q∗ ∩ f1| = 1. Let g = {v,w} be an undominated edge with largest upper

limit in the associated edge instance after having queried the end vertices of f1 and the vertices in the vertex cover

W. Say w is the vertex in W ∩ g and v is the non-trivial end vertex of g. We will now argue that if still no longest

edge is found after querying vertices in f1 and W, then the vertex u ∈ Q∗ − f1 is the unique non-trivial end vertex

of g; that is, u = v. Assume to the contrary that u ≠ v. By Lemma 6, g can still realize strictly longer than all edges

which do not have always identical edge length with g after querying f1 and W. Thus, if Q∗
does not contain v,

then we can only verify an MST T where either (a) g ∉ T or (b) C − T = {h} where g and h have identical edge

lengths. In both cases Q∗
has to verify that g is a longest edge. Note that g is not incident to f1 otherwise g would

be trivial after querying f1 and a vertex cover of X(f1). Hence, after querying f1, we have that wf
1
∈ Ag due to the

preprocessing and thus we need to query a vertex of g if we want to verify that g is not shorter than f1. This proves

that the vertex u in Q − f1 is a vertex of g. As W + f1 is no feasible query set, we have that u ≠ w and thus u = v, a

contradiction. Hence, if OPT(ℐ) = 2 and Q∗ ∩ f1 ≠ ∅ we can verify an MST after querying the end vertices of f1,

a vertex cover of size 2 and an end vertex of g which proves a competitive ratio of at most 2.5.

Assume now that Q∗ ∩ f1 = ∅. By Lemma 8, this implies that Q∗
is a vertex cover of X(f1) (which verifies

that f1 is a longest edge in C). Say RAND2 picks a vertex cover which is not a feasible query set. During any of

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 MATHWIESER and ÇELA

the following steps, let g be an undominated edge which currently has largest upper limit in C. Then Ag contains

wf
1

and thus Q∗
contains the non-trivial vertex of g by Lemma 8. Note that we can have at most four different

smallest vertex covers of X(f1) which do not intersect f1 and at most two which are pairwise disjoint from each

other (see Figure 4). Thus with probability at most
1

4
we pick Q∗

right away, with probability
1

4
we pick a vertex

cover that is disjoint from Q∗
and need two additional queries while with probability

1

2
, we pick a vertex cover that

intersects with Q∗
in a single vertex after which we need to make one more query. This leads to a competitive ratio

of
0.25⋅4+0.25⋅6+0.5⋅5

2
= 2.5.

To complete the proof, we need to discuss instances with OPT(ℐ) = 3. Note that the claim trivially holds if

we have that |f1 ∪ V(X(f1))| ≤ 7 which is the case unless X(f1) consists of two paths which are neither incident to

each other nor to f1 (as in Figure 4B). Assume that the latter is the case and that we have queried the end vertices of

f1 and the vertices in the vertex cover W of X(f1). Thus, all remaining vertices in X(f1) have at most one non-trivial

end vertex. As V(C) −W − f1 contains no vertex cover of X(f1) of size 3, Lemma 8 guarantees that we have already

queried one of the vertices in Q∗
before we consider the edge g. Analogously to the proof of Lemma 9 for the

deterministic procedure, we can argue that at least two out of the next three queries contain vertices in Q∗
and thus

we make at most seven queries in total which proves the claim for this case. ▪

4.1.4 The algorithm V-RANDOMC

In the following, we present the algorithm V-RANDOMC which solves the V-MST-U with unform query cost on cactus like

graphs and analyze its performance. A precise description of the algorithm V-RANDOMC is displayed in Algorithm 5.

Algorithm 5. The algorithm V-RANDOMC for V-MST-U with uniform query costs in cactus-like graphs

input : An instance ℐ of V-MST-U with uniform query costs, a graph G = (V ,E) and uncertainty sets Av, v ∈ V such

that no two cycles share a non-trivial vertex

output: A feasible query set Q

1 Compute the associated edge instance;

2 Initialize Q = ∅;

3 Preprocess the instance such that TL = TU;

4 Index the edges f1,… , fm−n+1 in E-TL arbitrarily;

5 for i ← 1 to m − n + 1 do
6 Let Ci be the unique cycle in TL + fi;
7 Let X(fi) be the set of neighbors of fi;
8 Compute the size a of a smallest vertex cover of X(f1) which does not intersect f1 and consists of

non-trivial vertices only;

9 if no edge in Ci is always maximal then
10 if a = 1 then
11 Q = Q ∪ RAND1(Ci, {Av|v ∈ V(Ci)})
12 if a = 2 then
13 Q = Q ∪ RAND2(Ci, {Av|v ∈ V(Ci)})
14 else
15 Q = Q ∪ RAND3(Ci, {Av|v ∈ V(Ci)})

Theorem 12. For instances of V-MST-U with uniform query cost where no two cycles intersect in a non-trivial
vertex the algorithm V-RandomC achieves a competitive ratio of 2.5 and this is best possible.

Proof. Let ℐ be an instance with uncertainty graph 𝒢 = (G, (Av)v) to which we apply V-RANDOMC. For a cycle

C in G we denote by Q∗
C an optimal query set for an instance of V-MST-U with graph C and uncertainty sets and

vertex positions as in ℐ . If we prove for each such cycle C that V-RANDOMC achieves a competitive ratio of 2.5

when applied to C the claim follows because Q∗ =
⋃̇

CQ∗
C is an optimal query set for ℐ . Moreover, Lemma 7

guarantees that each vertex pair queried during the preprocessing intersects with Q∗
. Thus we assume that ℐ is

an instance of V-MST-U with uncertainty graph 𝒢 = (C, (Av)v) where C is a cycle and that we have a lower and

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 15

upper limit tree TL ⊂ C. Let Q∗
be an optimal query set for ℐ . Now we prove that V-RANDOMC queries at most

2.5⋅OPT(ℐ) vertices when applied toℐ . First we consider the case where a ≥ 3. In this case the algorithm queries

the end vertices of f1 and applies RAND3 to the resulting uncertainty graph. Lemma 8 implies that Q∗ ∩ f1 ≠ ∅ or

OPT(ℐ) ≥ a ≥ 3 and thus the claim follows from Lemma 10.

If we assume that a = 2 then the claim follows immediately from Lemma 11. Finally, assume that a = 1. Note

that the maximum number of vertices in f1 ∪ V(X(f1)) is 5. Thus we make at most five queries and only need to

consider the case where OPT(ℐ) = 1. The neighbor set X(f1) consists either of a single edge e or of two intersecting

edges g and h (see Figure 3). In the first case, each non-trivial vertex in e ∪ f1 could be a feasible query set of size

one and we find the vertex in Q∗
within at most

1

4
(1 + 2 + 3 + 4) = 2.5 or

1

3
(1 + 2 + 3) = 2 queries in expectation,

depending on whether f and e are adjacent or not. In the second case, each non-trivial vertex in (g ∩ h) ∪ f1 could

be a feasible query set of size one and we find the vertex in Q∗
within

1

3
(1+ 2+ 3) = 2 queries in expectation. Note

that if a = 0 then fi has no neighbors and is thus always maximal right away. Hence, V-RANDOMC queries at most

2.5 ⋅ OPT(ℐ) vertices which completes the analysis of the competitive ratio. Finally, Theorem 5 implies that the

competitive ratio is best possible. ▪

V-RANDOMC runs in polynomial time under the reasonable assumption that sup{𝑑(u′, v′)|u′ ∈ Au, v′ ∈ Av} and

inf{𝑑(u′, v′)|u′ ∈ Au, v′ ∈ Av} can be accessed in 𝒪(1) time for all vertices u, v and that for any two edges e and f we can deter-

mine in 𝒪(1) time whether e dominates f . While we omit a detailed analysis of the run-time complexity, we will briefly discuss

the complexity of any operation where the run-time is not obvious. V-RANDOMC requires computing the size a of a smallest

vertex cover W ⊆ V(C) − f1 of X(f1) which consists of non-trivial vertices only. Note that there is a set U of vertices which

has to be contained in any such vertex cover W: For each edge in X(f1) with an end vertex that is either trivial or lies in f1, U
contains the other end vertex respectively. Thus, finding such a W only involves finding a smallest vertex cover of the edges

uncovered by U; that is, of X(f1) − 𝛿X(f
1
)(U) = {e ∈ X(f1)|e ∩ U = ∅}. This can be done in polynomial time as X(f1) (and thus

also X(f1)−𝛿X(f
1
)(U)) is a collection of paths. Hence, V-RANDOMC runs in polynomial time if all subroutines run in polynomial

time.

Finally, RAND1, RAND2 and RAND3 are clearly polynomial except for the enumeration of permutations in RAND1 and the

vertex cover computation in RAND2. RAND1 requires to list k permutations where k is the number of vertices in X(f1) ∪ f1.

However, note that we only execute RAND1 if a = 1 which means that |X(f1) ∪ f1| is bounded by 5. RAND2 involves the

computation of all smallest vertex covers of X(f1) − 𝛿X(f
1
)(U) which can be done in polynomial time as RAND2 is only applied

in the case where a = 2 and thus |X(f1)| ≤ 4 holds.

5 MINIMUM SPANNING STARS

Natural specializations of MST-U arise when the optimization is restricted to spanning trees of a certain prespecified structure.

In many cases, structural restrictions of this type lead to NP-hard problems in the classical optimization setting (without uncer-

tainty), for example, in the case of Hamiltonian paths or spiders (see [11]). In the case of a spanning star the classical problem

of finding a minimum weight spanning star (MSS) is trivial as there are at most n spanning stars in a graph on n vertices. In con-

trast, the explorable uncertainty version of the problem (MSS-U) is not trivial. More precisely, we show that unlike for MST-U

there exists no algorithm for the MSS-U with a constant performance guarantee in terms of query cost.

Definition. The complete bipartite graph K1,k is called a star and is denoted by Sk. The vertex with degree k is

called centre of Sk. If a graph G with n vertices contains Sn−1 as a subgraph, then Sn−1 is said to be a spanning star

in G.

We define the Minimum Spanning Star Problem under Explorable Uncertainty (MSS-U) analogously to MST-U; that is, we

want to find a set of edge queries of smallest weight which allows to identify a minimum spanning star. However, it turns out

that no algorithm for MSS-U can achieve constant competitive ratio.

Theorem 13. There exists no (deterministic or randomized) algorithm for MSS-U which achieves constant
competitive ratio. This remains true even for instances with only two spanning stars and uniform query cost.

Proof. We first prove the theorem for deterministic algorithms by defining for each n ∈ N>3 a finite family (ℐ j
n)j

of instances with uniform query cost on a graph G with n vertices such that every deterministic algorithm needs to

make at least (n−2) times as many queries as necessary on at least one instance in (ℐ j
n)j. For n = 5 the construction

is illustrated in Figure 5.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 MATHWIESER and ÇELA

FIGURE 5 The instance ℐ 2

5
from the family (ℐ j

5
)4j=2

. The weight of {v2, v5} is 4. All missing edge weights equal 0.5. An optimal solution only needs to

query {v2, v5} which has larger weight than the star with center v1 can have. A deterministic algorithm can not distinguish between the edges {v2, v5}, {v3, v5}
and {v4, v5} and might have to query all three of them.

Consider a graph G = (V ,E) with V = {v1, … , vn} and E = {{v1, vi}|i = 2, … , n} ∪ {{vn, vi}|i = 1, … ,

n− 1}. Note that G has precisely two spanning stars, one with centre v1 and the other one with centre vn. (All other

vertices have degree 2.) Let qe = 1 for all e ∈ E. We define the uncertainty sets as follows:

• A{v
1
,vn} = {1},

• A{v
1
,vi} = (0, 1) for i = 2, … , n − 1 and

• A{n,vi} = (0, n) for i = 2, … , n − 1.

For j ∈ {2, … , n− 1},ℐ j
n is defined such that w{vj,vn} = n− 1 and we = 0.5 for all e ∈ E ⧵ {{vj, vn}, {v1, vn}}. For

each instance ℐ j
n , it is then sufficient to query only the edge {vj, vn} to know that the spanning star with center vn

has larger weight. Conversely, without querying {vj, vn}, it is impossible to tell which spanning star has minimum

weight. Note that all non-trivial edges adjacent to vn are undistinguishable with respect to the uncertainty sets. Thus,

a deterministic algorithm has to decide on an order in which these edges are queried. If j is such that {vj, vn} is the

last edge adjacent to vn to be queried by an algorithm, then the algorithm’s competitive ratio is at least n − 2 when

applied to instance ℐ j
n .

To prove the claim for randomized algorithms, we apply again Yao’s Principle. For n ∈ N>3, we prove that

no randomized algorithm for MSS-U achieves a competitive ratio below
(n−1)

2
. Consider the randomized family

of instances (ℐn, pn) where ℐn = (ℐ j
n)n−1

j=2
is defined as for the deterministic case and pn[ℐ = ℐ j

n] = 1

n−2

for j = 2, … , n − 1. Then, no deterministic algorithm ALG achieves a better expected competitive ratio

Eℐ∼pnℐn

(
ALG(ℐ)
OPT(ℐ)

)
than the algorithm ALG1 which queries {v2, vn}, {v3, vn}, … , {vn−1, vn} (or less edges if an MSS

can already be identified) in this order independently from the queries’ results. This is due to the fact that querying

{vj, vn} for j ∈ {2, … , n − 1} only reveals whether or not we are facing instance ℐ j
n but if not, it is indistinguish-

able which of the remaining instances it might be. Then, by Yao’s Principle, no randomized algorithm has a better

performance than

min
ALG∈𝒜

Eℐ∼pnℐn

(
ALG(ℐ)
OPT(ℐ)

)
= Eℐ∼pnℐn

(
ALG1(ℐ)
OPT(ℐ)

)
= 1

n − 2
⋅

n−1∑

j=2

ALG1(ℐ j
n)

= 1

n − 2
⋅

n−1∑

j=2

(j − 1) = n − 1

2
,

where 𝒜 denotes the class of all deterministic algorithms. ▪

6 CONCLUSION

In this paper we considered the Minimum Spanning Tree Problem Under Explorable Uncertainty (MST-U) and the related

Minimum Spanning Tree Problem Under Explorable Vertex Uncertainty (V-MST-U) for specified instance types where

cycles can be considered independently from each other. We provided a randomized algorithm for MST-U on cactus

graphs and proved that it achieves a competitive ratio of 1.5 which is best possible. For V-MST-U instances where

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

MATHWIESER and ÇELA 17

cycles do not share non-trivial vertices and query costs are uniform, we provided the algorithm V-RANDOMC which

achieves a competitive ratio of 2.5. We showed that 2.5 is a lower bound for the performance of randomized algorithms

for V-MST-U which remains true even for instances with uniform query cost where the uncertainty graph is a cycle.

Thus, the performance guarantee shown for V-RANDOMC is best possible. Finally, we introduced the Minimum Span-

ning Star Problem under Explorable Uncertainty (MSS-U) and proved that no algorithm for MSS-U can achieve constant

competitive ratio.

(V-)MST-U in itself is a problem which still deserves further investigation. A major open question in the setting of MST-U is

whether there exists a randomized algorithm with a competitive ratio of 1.5 for general instances as well or whether the lower

bound of 1.5 can be improved for instances where the graph is not necessarily a cactus.

As for general instances of V-MST-U, no randomized algorithm which improves upon the performance of deterministic algo-

rithms is known so far and even for the special case where cycles intersect in trivial vertices only, the performance guarantee

of V-RANDOMC relies on the fact that query costs are uniform. Note that no deterministic algorithm with constant competitive

ratio for V-MST-U with non-uniform query costs is known either.

Moreover, different models of uncertainty exploration could be subject of further research. Consider for instance a scenario

where installing a camera in a certain location allows to measure the distance between itself and all surrounding objects. A

setting like this could motivate a hybrid model between edge and vertex uncertainty where edge weights are uncertain but known

to lie inside given uncertainty sets and can be revealed upon querying an adjacent vertex.

ACKNOWLEDGEMENT

Open Access funding enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID
Corinna Mathwieser https://orcid.org/0000-0002-5983-2616

Eranda Çela https://orcid.org/0000-0002-5099-8804

REFERENCES

[1] E. Bampis, C. Dürr, T. W. Erlebach, M. S. de Lima, N. Megow, and J. Schloter. Orienting (hyper)graphs under explorable stochastic uncertainty.

Paper presented at: 29th annual European symposium on algorithms (ESA 2021). 2021 10:1–10:18.

[2] A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cambridge University Press, Cambridge, 1998.

[3] S. Chaplick, M. M. Halldórsson, M. S. de Lima, and T. Tonoyan, Query minimization under stochastic uncertainty, Theor. Comput. Sci. 895
(2021), 75–95.

[4] C. Dürr, T. Erlebach, N. Megow, and J. Meißner. Scheduling with Explorable uncertainty, 9th innovations in theoretical computer science

conference, Vol. 94 of Leibniz international proceedings in informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 2018

30:1–30:14.

[5] T. Erlebach, M. S. de Lima, N. Megow, and J. Schloter. Learning-augmented query policies for minimum spanning tree with uncertainty. Paper

presented at: 30th annual European symposium on algorithms (ESA 2022). 2022 49:1–49:18.

[6] T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncertainty, Proceedings of the international workshop on

graph-theoretic concepts in computer, Science. 2014 164–175.

[7] T. Erlebach and M. Hoffmann, Query-competitive algorithms for computing with uncertainty, Bulletin Eur. Assoc. Theor. Comput. Sci. 116
(2015), 21-39.

[8] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’ák, and R. Raman, Computing minimum spanning trees with uncertainty, Proc. Symp. Theor.

Aspects Comput. Sci. 1 (2008), 277–288.

[9] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy, Computing shortest paths with uncertainty, J. Algorithms 62 (2007),

1–18.

[10] J. Focke, N. Megow, and J. Meißner. Minimum spanning tree under Explorable uncertainty in theory and experiments, 16th international sym-

posium on experimental algorithms, Vol. 75 of Leibniz international proceedings in informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik. 2017 22:1–22:14.

[11] L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaroa, Spanning spiders and light-splitting switches, Discret. Math. 285 (2004),

83–95.

[12] M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen, The robust knapsack problem with queries, Comput. Oper. Res. 55 (2015),

12–22.

[13] S. Kahan. A model for data in motion, 23rd Ann, ACM Symp. Theory Comput. STOC’91. 1991 267–277.

[14] S. Khanna and W. C. Tan. On computing functions with uncertainty, Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems. 2001 171–182.

[15] N. Megow, J. Meißner, and M. Skutella, Randomization helps computing a minimum spanning tree under uncertainty, SIAM J. Comput. 46
(2017), 1217–1240.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-5983-2616
https://orcid.org/0000-0002-5983-2616
https://orcid.org/0000-0002-5099-8804
https://orcid.org/0000-0002-5099-8804

18 MATHWIESER and ÇELA

[16] A. I. Merino and J. A. Soto. The minimum cost query problem on Matroids with uncertainty areas, 46th international colloquium on

automata, languages, and programming (ICALP 2019), Vol. 132 of Leibniz international proceedings in informatics (LIPIcs), Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. 2019 83:1–83:14.

How to cite this article: C. Mathwieser and E. Çela, Special cases of the minimum spanning tree problem under
explorable edge and vertex uncertainty, Networks.. (2024), 1–18. https://doi.org/10.1002/net.22204

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22204 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [29/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204
https://doi.org/10.1002/net.22204

	{Special cases of the minimum spanning tree problem under explorable edge and vertex uncertainty}
	1 INTRODUCTION
	1.1 Related work
	1.2 Our contribution

	2 PRELIMINARIES
	2.1 Problem definition MST-U and notation
	2.2 Structural aspects of MST-U
	2.3 Vertex uncertainty problem
	2.4 Performance analysis

	3 A RANDOMIZED ALGORITHM FOR MST-U ON CACTUS GRAPHS
	4 V-MST-U AND RANDOMIZATION
	4.1 A randomized algorithm for V-MST-U on cactus-like graphs
	4.1.1 Structural observations
	4.1.2 Deterministic procedure
	4.1.3 Randomization
	4.1.4 The algorithm <0:fr><0:sc>V-Random</0:sc></0:fr>[[math]]

	5 MINIMUM SPANNING STARS
	6 CONCLUSION

	ACKNOWLEDGEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

