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Kurzfassung

Burst Buffer Systeme bilden eine wichtige Komponente in modern Hochleistungs-
rechnern, weil die Anzahl wissenschaftlicher Anwendungen und Simulation mit ho-
hen I/O Anforderungen stetig steigt. Burst Buffer schlieflen die Performanceliicke
zwischen 1/0 intensiven Anwendungen und dem parallelen Dateisystem.

Wir haben die zwei Node-lokalen Burst Buffer Dateisysteme BeeOND und Gek-
koFS getestet. Desweitern haben wir diese qualitativ und quantitativ verglichen
und konnten einen durchschnittlichen Vorteil fiir die I/O Rate bei GekkoFS von
10 % zeigen. Davon hervor stechen die Ergebnisse mit dem NBP BT-I0 Benchmark
in der simple-io Variante, welche kollektives Buffern nicht zuldsst. In diesen Tests
hatte GekkoFS sogar einen Performancevorteil um den Faktor 10.

Stichworter: HPC, BeeOND, GekkoFS, Burst Buffer, I/O






Abstract

Burst buffer systems are an important component for modern high-performance
computing systems as the count of scientific applications and simulations with high
I/O demands grows rapidly. Burst Buffers close the performance gap between 1/0O
intensive computations and the parallel file system.

We tested the two node-local burst buffer file systems BeeOND and GekkoF'S. We
compared them by qualitative and quantitative aspects, showing an average per-
formance advantage of 10% in I/O data rates for GekkoFS. Most noticeable are
the results for the NPB BT-10 benchmark in the simple-io which prevents collec-
tive buffering. In these tests GekkoFS outperformed BeeOND up to one order of
magnitude.

Keywords: HPC, BeeOND, GekkoFS, Burst Buffer, I/O
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1. Introduction

In high-performance computing (HPC) applications, especially scientific simulations
— with high amounts of data read or produced — often suffer from low bandwidths
or metadata performance to or from the parallel file system. This issue is mainly
caused by the large amount of data processed or produced by these programs. There-
fore, there is an increasing need for fast and reliable storage to buffer the data needed
by HPC specific applications and simulations. In particular, there is a need for stor-
age systems able to absorb the bursty I/O situations mainly at the beginning or
the end of the execution of such applications, while providing high bandwidths and
exclusive access. Such that almost now latencies are introduced e.g. by a shared
network to the parallel filesystem.

To solve this problem, burst buffers (BB) were invented, the different types of which
will be described later (Section in detail. Usually, it is distinguished between
node-local burst buffer systems — a simplified structure of such is depicted in fig-
ure [I.1] — and centralized ones. These systems use the storage provided at the
nodes to create mostly short-living, not very large in storage size — compared to a
parallel file system in the background—and non-permanent file systems. All data
needed for program execution needs to be preloaded from the parallel file system but
is then available to the application with higher bandwidth and without interfering
with other jobs. On the other hand, produced and further needed data has to be
written back to the parallel file system.

A possible workflow could look like the following: First, the burst buffer system is
created, and the input data needed is copied/moved to it. Then during the compu-
tation which makes use of the data now available from the burst buffer, generated
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Figure 1.1.: Simplified structure overview of node-local burst buffer. Node-local
hard disks / burst buffers are depicted in orange.



1. Introduction

data is written to it. After the computation has finished, data that is needed further
on needs to be written back to the parallel file system.

Burst buffer systems are often developed and then tested for their presentation
paper, in which they are usually compared with similar systems. However, these
comparisons often focus on performance only, not necessarily on usability or com-
patibility with other applications or interfaces such as e.g. POSIX.

Hence, we aim to compare different burst buffer systems and check for their strengths
and weaknesses, by evaluating their performance as well as possible use cases. As
test candidates, we used BeeOND and GekkoF'S which both are node-local BB sys-
tems but have substantial internal differences. Through various benchmarks and
real-world applications we measured their performance, compared the results and
searched for edge cases or challenges influencing their usability.

We found that BeeOND is a good scaling burst buffer filesystem, providing high
I/O rates, of up to 3,340 MB/s on 8 Nodes using roughly 80% of the available
accumulated SSD bandwidth. GekkoF'S on the other hand scales similarly reaching
3800 MB/s in the same test and therefore performing BeeOND by 12 %.

This thesis is structured as follows. In the next Chapter we present related work,
Chapter [3| deals with the background of HPC and burst buffer systems including an
explanation of the different burst buffer types. It concludes with a short overview of
the tested systems, as well as the benchmark and software used for testing. In Chap-
ter [4] we explain how the tests were executed, followed by presenting their results
in Chapter [5] In Chapter [6] we then compare the tested systems. Thus, we discuss
the differences seen and evaluate the qualitative differences between the burst buffer
systems tested, while also relating this to other — not tested — systems. This is
followed by Chapter [7] in which we conclude our findings.



2. Related work

As traditional (parallel) file systems like Lustre [5], or BeeGFS [2| are no longer
able to satisfy the high demands of I/O intensive applications and simulations with
respect to bandwidth, metadata performance and latencies, burst buffers like pre-
sented by Khetawat et al. [12] have become very popular.

Aside from the two presented and tested here — BeeOND (3] and GekkoFS [33],
which both implement node-local burst buffer solutions, there are several other
approaches. More node-local ones like BurstF'S [36] which creates a short-living
ephemeral BB filesystem with scalable metadata indexing, or SSDUP [27] having a
dynamic approach, writing only parts of data to the burst buffer while the rest is
passed to the parallel file system directly. Both of them are presented in detail later
in the comparison. Furthermore, there is CHFS [31] using a distributed key-value
store.

On the other hand, there are global burst buffers, which mostly use dedicated mem-
ory placed between the parallel file system and the compute node, other than the
node-local BBs that occupy the memory of the compute note itself.

Examples of these global burst buffers are DataWarp [9] offering to be loaded via a
job script, users usually can interact with Data Warp through POSIX APIs, while
also a C library provides additional ways of interaction.

Furthermore, there are DDN’s IME—tested for example from Schenck al. [26] as
well as BurstMem [37] a BB framework on the top of Memcached [20] implementing
a log-structured data organization with indexing.






3. Background

In high-performance computing, so-called clusters are used for dealing with large
amounts of complex, compute-intensive workloads or (scientific) simulations. These
clusters, also called supercomputers, are equipped with multiple nodes, which nowa-
days consist of multiple central processing units (CPUs) and node-local storage each.
The nodes are connected through a network, allowing multiple nodes to communi-
cate and participate in one computation.

Using these resources HPC-systems satisfy the needs for — compared to common
PCs — high usage of memory and compute power especially needed in a scientific
context (e.g. compute intensive simulations).

3.1. Cluster Operations

To make use of those resources and provide them to the cluster’s users, supercom-
puters work with batch systems. By submitting job scripts, users can interact with
the HPC-system and request the desired resources. Depending on the requested
resources and compute time, the batch system will schedule the job to the available
resources. As the cluster is used by other users as well, there might be a varying
delay between submitting a script and the start of its execution. This waiting time
is heavily influenced by the current utilization as well as the requested resources and
compute time of the job.

One of the biggest advantages of batch systems is that many users can interact
simultaneously with the supercomputer, creating and submitting their job scripts.
These jobs then run along or after each other, depending on the decisions made by
the scheduler, without blocking the whole system, or influencing other user jobs.
Furthermore, it is of course possible for one user to submit multiple job scripts at
once, to be scheduled and run over time.

By doing so, the user does not need to stay logged in to the cluster or even wait for
the execution of jobs to finish, but can instead focus on other tasks and collect the
results of the jobs later.

3.2. Cluster and node architecture

In addition to compute nodes, whose purpose is to run the jobs requested by the
cluster’s users, a cluster usually provides a low number of dedicated login nodes. Us-
ing these login nodes, users can submit their scripts without blocking the compute
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nodes. The login nodes shall only be used to submit jobs or collect outputs from
previous jobs, as well as for building and compiling software for upcoming work.
They are not meant to be used for program execution.

Nevertheless, both login and compute notes are equipped similarly — in terms of
kinds of the used components, not necessarily in the same amount or computing
power.

A typical node consists of CPUs, memory, and an interconnect, additional acceler-
ators are optional. [2§]

e« CPUs: The CPUs — or processors — are responsible for executing the com-
puting process. To satisfy the high demands and no computation power needed
by most modern real-world applications, especially in the context of HPC,
nodes are equipped with multiple processors (e.g. at the CLAIX 2018 cluster—
which was used for this thesis—each node consists of 2 CPUs with a total of
48 cores).

o« Memory: Without the possibility of storing data, no application can be exe-
cuted or computation can be done. Hence, nodes are also supplied with local
memory. Jobs need to be scheduled on nodes providing at least the required
amount of storage.

o Network—also called Interconnect: Tasks involving multiple nodes need to
be able to communicate with each other and exchange data. For this purpose,
low latencies are needed, therefore in this case often HPC specific Networks
such as Omnipath [4] or Infiniband [6] are used. Network technologies have a
high impact on the performance of a supercomputer.

« Accelerators commonly graphics processing units (GPUs): Acceler-
ators are not a required part for building an HPC node, but most systems
provide at least some dedicated compute nodes that are equipped with accel-
erators. These accelerators can outperform CPUs on special tasks based on
their architecture design.

For comparing different HPC systems, different measurements can be used; the
most common is the compute power measured in floating point operations per sec-
ond (FLOPS). Two times a year, a list of the 500 most powerful supercomputers
worldwide — the Top500 — is released [32]. This list is based on the performance
archived on the supercomputers using the popular LINPACK benchmark [24]. It
measures the compute power by making the system solve a dense system of linear
equations. The competitors are allowed to scale the benchmark to their needs and
optimize the software used on the clusters. Although not able to show the systems’
overall performance (as not one number can), it gives a good estimate for their peak
performance [1]. As for now (Top500 list from June 2023), all of these clusters use
a Linux distribution as their operating system.

Furthermore, most clusters use a batch scheduler which, as described before, is
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needed to execute jobs on clusters. This is done to minimize the idle time of re-
sources as well as ensure that jobs don’t access resources that were not allocated to
them and may be used by other users.

For long-term storage of the data needed or produced by the jobs, most HPC-systems
rely on a parallel file system (PFS) for that purpose, which will be explained in the
next section.

As already mentioned, one of the main purposes of a scheduler is to assign re-
sources to the users, and this instance is needed, as all resources of an HPC-system
are shared between the active users.

This sharing does not only apply to nodes—respectively compute time but also to
the interconnect and the parallel file system for long-term storage.

In doing so, the connection with the PFS has a quite low bandwidth and might be
influenced by other jobs. This can slow down the execution of an input and output
(I/O) intensive application noticeably as they spend a lot of time doing input and
output operations.

To solve this issue, burst buffers were invented. Burst buffers are usually imple-
mented as a smaller file system (FS) close to the nodes which is exclusively available
for one program/job during its execution. They mostly are not shared between
different programs of the same user or even between users and are mostly placed
near the nodes running the respective job. Therefore, BBs provide a much higher
bandwidth with lower latencies and protect against disturbances. Usually, the burst
buffer file system is only available during the job execution and destroyed afterward,
accordingly, all data needed for the program to be executed, or generated during
its runtime and needed further on has to be copied from or to the non-volatile PF'S
respectively [12], [28].

3.3. Kinds of burst buffers

Burst buffers can be categorized into three main groups; Node-local BB, Grouped
BB, and Global BB [12], [2§]:

e Node-local Burst Buffer: The storage used for the file system in node-local
BB sits within the nodes. Therefore, through exclusive access to the available
bandwidth, the I/O rates scale linearly with the number of nodes. This is only
possible because the 1/O operations to the BB file system do not conflict with
other traffic (e.g. to the PFS).

Nevertheless, this design creates a single failure domain. Furthermore, shared
data between the nodes can be difficult to handle as the nodes need to syn-
chronize or access each other’s memory.

e Grouped Burst Buffer: Looking at grouped BB, the file systems are placed
near groups of nodes, allowing multiple nodes to access. Due to the local
network in between the nodes and the storage, there is almost no delay in
providing the data. Compared to the node-local BBs, sharing data is simpler to
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accomplish here. On the other hand, this type of burst buffer can influence the
PFS connection, as it at least partly uses the same network for data transfers.

« Global Burst Buffer: The third type of burst buffers, Global BBs (also called
shared BBs), are deployed on dedicated compute nodes. As a consequence,
sharing data between multiple notes within a file system becomes very easy, as
the BB system is independent of the parallel file system. Additionally, bursty
I/O traffic does not increase the traffic on the general network this way.
However, the main downside of this solution is that additional hardware is
needed, thus creating high costs for servers and their infrastructure. Overall,
this kind of burst buffer leads to good resource isolation, as writing to the PFS
will not influence computation [35]

3.4. File systems and Benchmarks

In this section, we will take a look at the BB file systems BeeOND and GekkoF'S
analyzed in this thesis, as well as the benchmarks IOR, mdtest, NPB BT-I/O and
m-ATA used for the according tests.

3.4.1. BeeOND

BeeOND|3] was used as it is preinstalled on CLAIX, it is the on-demand variant
of BeeGFS [2], the underlying filesystem for the RWTH cluster. BeeOND — like
other BB implementations — allows the creation of a short life span burst buffer file
system, usually only available for the duration of one job execution. It is transient
over multiple nodes and uses the available node-local hard disks, by doing so, it im-
plements a node-local burst buffer F'S. As no connection to the parallel file system is
established during computation, there is no interference here. All communications
made with the PFS are preloading of required data or storing produced data after-
ward, which needs to be done manually within the job script. Since the script is run
exclusively on the respective nodes, BeeOND creates an isolated environment, and
can not be disturbed by other users or computaions.

BeeOND creates a new mount point so that data movement with standard oper-
ations such as cp is possible. The usage of BeeOND is integrable into schedulers
such as slurm [29], such that they can find and allocate the needed resources more
easily. Because BeeOND is a burst buffer file system, it is not suitable for long-term
storage and will be destroyed after job execution.

3.4.2. GekkoFS

The second Burst Buffer file system evaluated in this thesis is GekkoFS [33], which
also creates a node-local BB FS. GekkoFS works from the premise that most sci-

entific HPC applications do not need full POSIX compliance [14] and therefore, a
relaxed POSIX is sufficient.
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GekkoFS uses the node-local storage of the participating nodes. Although not of-
fering full POSIX, GekkoFS ensures the same consistency for operations accessing
a specific file, while the consistency of operations on directories is relaxed. It also
does not offer a global locking mechanism so applications themselves are responsible
for avoiding conflicts (especially such that are caused by overlapping regions).
GekkoF'S runs in userspace and relies on Mercury [30] for load balancing, it benefits
from a short deployment time as a short-living BB system that is destroyed after
the respective job.

3.4.3. Benchmarks

To measure the performance of the file systems presented before, different bench-
marks from synthetic ones such as IOR [11] and mdtest [19] over pseudo applications
like NPB BT-10 [21] up to the real-world application m-AIA [16] were used.

IOR and mdtest

IOR (Interleaved or Random) is a common benchmark for parallel I/O that is used
for testing the performance of PFSs, it offers various interfaces and patterns. It
also includes mdtest, which is described later together they are part of the 10-500
benchmark [10], [13] for HPC systems. We are mainly interested in the write band-
width, meaning the speed of writing data to the BB system, measured here. For
synchronization, IOR relies on MPI [11]. It runs on any POSIX compliant platform
but requires a fully installed and configured file system implementation. As IOR
runs in userspace, it makes a suitable candidate for testing and comparing different
parallel file systems as e.g. [17].

Mdtest, on the other hand, specifically evaluates the (peak) metadata performance
of parallel file systems and runs as IOR on any POSIX compliant system. Metadata
mostly consists of a high number of (in comparison) very small data elements, con-
taining information such as the file name, the last access/change time, ownership,
permissions and more. Metadata performance then deals with the question of how
a given system handles a high number of such files. We will take the file creation
rate, as a measurement in this thesis.

Usually, when using mdtest for measuring a system’s performance mdtest is run on
several nodes/cores in parallel, which are synchronized over MPI to use the full ca-
pacities of the tested FS. It creates a directory tree of configurable depth and offers
different kinds of workloads to test with. These workloads also include a file-only
test. The measurements achieved by mdtest are comparative as mdtest provides
ways to define a standard test (s. 1/O-500) [1§] and runs in user space.
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NPB BT-10

The NPB (NASA Advanced Supercomputing Division Parallel Benchmark) —specifically
the BT-IO benchmark— was used for the experiments conducted in this thesis to
get some first real-world-like evaluations based on the pseudo application of a Block-
diagonal solver [21].

NPB was first presented in 1993 containing 5 kernels and 3 pseudo applications. For
cach contained benchmark, NPB defines problem sizes called classes [22]. In the
following years, it was extended with more sub-benchmarks and support for larger
problem sizes.

In the BT-IO test, each processor is responsible for calculating multiple cartesian
subsets. The number of those will increase proportional to the square root of pro-
cesses participating, causing only square numbers of processes to be allowed in this
benchmark. A first approach for this test was described by Fineberg et al. [7], and
later formalized in NPB vers 2.4 [3§].

m-AlA

M-ATIA, formerly known as ZF'S, is a collection of several solvers for different physical
problems including such for fluid mechanics, tracing the contours of a flame or par-
ticle distribution. Here, m-AIA is used as a state of the art, real-world application
with high I/0O rates. Its strengths are the modularity and direct hybrid coupling of
the used solvers. For solving the given problems, m-AIA uses a mesh with adaptive
refinement and dynamic load balancing. While details of the grid generation are out
of scope for this thesis, it is important to note that grid cells are numbered in order
of the respective Hilbert curve (near cells will get near numbers) [34].

For I/O, m-AIA relies on HDF5 [8] and parallel NETCDF [15], the parallelization
is done via MPI with asynchronous communication. Some sections are executable
on GPUs, but this won’t be discussed here, as the focus of this thesis is I/O perfor-
mance [16].

10



4. Experimental Setup

This chapter deals with the benchmarks used and especially their configuration
including the used parameters.

4.1. System

All benchmarks performed during this thesis were executed on the c18m partition
— meaning no accelerators were available or used — of the CLAIX 2018 at RWTH
Aachen, running Rocky Linux release 8.8 with kernel version 4.18.0. The nodes
in this partition are equipped with 2 Platinum 8160 CPUs running at 2,1 GHz
and consist of 48 cores total. There are 192 GB of RAM and 480 GB of SSD
storage available at each node. In total, this partition of the cluster provides 1243
nodes, of which a maximum of 8 were used for one benchmark simultaneously. To
improve the accuracy of our measurement, nodes were allocated exclusively, even if
not all cores on them were used. The maximum 256 cores are sufficient for the tests
and comparisons done here. Exceeding this amount would result in more possible
combinations of Nodes-Tasks for each benchmark to test, which is outside the scope
of this thesis.

4.2. Benchmarks

As NPB only runs on square numbers of (total) processes, we decided to — if
applicable — use the same numbers of processes for all benchmarks in this thesis.
This should result in a good overview of the behavior of burst buffers in different
scenarios. Scalability over multiple nodes and cores is covered as well as possible
problems introduced through increased communication. This with a maximum of
8 nodes leads to the following node - total tasks combinations; 1-1, 1-4, 1-16, 2-4,
2-16, 2-64, 4-4, 4-16, 4-64, 8-16, 8-64 and 8-256.

Note: Full sample scripts for each benchmark can be found in the appendix. There
is a script for all benchmarks as performed on BeeOND and one (IOR) for GekkoF'S,
as the changes made from BeeOND to GekkoFS are identical for the other Bench-
marks.

4.2.1. IOR and mdtest

To get a first baseline for the performance, we run the IOR and mdtest benchmarks
with three different problem sizes each on all node-task combinations. For IOR, we

11
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chose total file sizes of 1 GB, 16 GB, and 256 GB. For mdtest due to multiplications
with the total numbers of cores and total numbers of tasks, file counts which are
powers of two were needed. Because of that, we used file counts of 1024, 131072
and 524288 to again achieve one small, medium and large test, while keeping the
benchmarks at a reasonable size.

$MPIEXEC <path-to-ior>/ior -t im -b 4m -s 4 -i 10 -F -C -e -o $BEEOND/filetest

Figure 4.1.: IOR command line for the small dataset with 4 nodes and 16 tasks

IOR

For the IOR benchmark, the executed command is shown in Figure [£.1| while Ta~
ble lists the used parameter variations explained in more detail next. We used
a default transfer size of 1 MB and a block size of 4 MB for all benchmarks. The
needed adaptations to achieve the desired total amount of data were made with the
segment count parameter -s.

Table 4.1.: IOR parameters by 1/0O libary

Parameters POSIX MPIIO
number of nodes 1,2,4,8 2
total number of tasks 1, 4, 16, 64, 256 16, 64
transfer size 1 MB 1 MB
blocksize 4 MB 4 MB

overall data amount per test
adjusted with segment count
repetitions 10 10

1 GB, 16 GB, 256 GB 16 GB

We applied the parameters -F, -C, and -e, as this turned out to deliver the most
reliable results. The -F parameter enables a separate file for each process, instead
of all processes writing to the same shred file. Even if not looked at in this thesis,
we added the -C option which results in a much more accurate read performance by
reordering the tasks and enforcing MPI processes to read data which was written
by neighboring nodes. Additionally, we added the —e option to the IOR call, which
reduces the effects of caching by enabling the files to be written to the tested file
system instead of just being committed to the memory. Therefore, a fsync() is
executed after all writes have finished, and only after that, the measurement for the
write part is stopped [11]. Finally, the -i 10 parameter was used to execute 10
iterations of the benchmark automatically.

For our tests with GekkoFS we had to remove the -C parameter as this caused

12



4.2. Benchmarks

problems with the reading phase of IOR. That way now processes are allowed to
read data written by themselves. But as that only influences the read phase of the
IOR benchmark, it should not be an issue when comparing the respective results
for the write performance.

mdtest

We also ran the mdtest benchmarks to see how the file systems handle numerous
small files. An exemplary code line is shown in Figure [£.2] Table [1.2] gives a short
overview of the used parameters. We used the -I parameter to modify the total
file count to the desired amount while setting the write and read size for each file
to 4096 KB with the -w and -e options — we chose these file sizes, as that are the
ones also used in the Top500 benchmark. Furthermore, we applied the -z=0 option,
which defines the depth of the created directory tree, together with -L, with which
all files are written at leaf level — (resulting in root level as the depth is set to 0), to
ensure that all files are placed directly into the selected filesystem folder and avoid
variances due to the usage of directories. Additionally, we used -R as a parameter to
randomly stat files, instead of zero-files to test for performance on data more than
a pure metadata performance test. We ran the mdtest benchmarks with the -i 10
as well as IOR to also get 10 automated iterations in this case. The -P parameter
gives a more detailed output and was therefore used to acquire more information
about the measurements.

cd $TMP
$MPIEXEC <path-to-mdtest>/mdtest -I=64 -L -z=0 -w=4096 -e=4096 -i 10 -d=$BEEOND/
filetest -R -P

Figure 4.2.: mdtest command line for the small dataset with 4 nodes and 16 tasks

Table 4.2.: mdtest parameters

Parameters value
I/O API POSIX
number of nodes 1,2,4,8
total number of tasks 1, 4, 16, 64, 256
filesize (written/read) 4 KB
tree depth 0
file count per test 1024, 132072, 524288
repetitions 10
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4. Experimental Setup

4.2.2. NPB

NPB offers a series of benchmarks including a block-triangular solver with the pos-
sibility to specifically test for I/O (the NPB BT-I/O benchmark). We used this
benchmark to get first near-real-world measurements of the I/O performance of the
tested burst buffer systems.

We show the lines executed in Figure [4.3] the only parameter needed for here is
-n for passing the number of used tasks to mpiexec. NPB itself does not require
or offer any parameter for further configuration, because selecting the executable
already determines all other configuration parameters (i.e., desired benchmark and
class). Because NPB writes to the folder it is called from we created an exclusive
directory for each node-task-class combination on the fly in the respective script.
We repeated all NPB tests 5 times, since — in terms of the scope of this thesis —
this is a reasonable trade-off between execution time and gained information.

We ran the full-io as well as the simple-io version of the BT-IO benchmark for
all Node/Task combinations but decided — due to massive performance differences
addressed later — to not perform the Class D Test for simple-io. The main differ-
ence between these two versions is that full-io allows for collective buffering, whereas
simple-io does not.

cd $BEEOND

mkdir filetest4N16TA

cd filetest4N16TA

$MPIEXEC -n 16 <path-to-npb-executabels>/bt.A.x.mpi_io_full

Figure 4.3.: NPB command lines for class A with a total number of 16 tasks

4.2.3. m-AlA

To further test the two file systems considered in this thesis and evaluate their
performance with real-world software, we executed m-AIA on them. For our test,
we used a benchmark version of m-AIA, which requires 512 tasks. Therefore, 11
nodes were used, as they together provide enough cores. Unfortunately, our tests
ran into errors, that could not be resolved so far. We were not able to get any
alternative real-world software suitable for benchmarking in the scope of this thesis
running until the deadline. Further tests have to be made, and we assume that with
enough time and effort, the problems with m-AIA can be solved. Nevertheless, this
has to be left for further work.

4.3. Adaptations needed for GekkoFS

To get Gekko running, we needed to add an -cpus-per-task option to the job
script, this then provides enough resources to execute GekkoF'S and the performed
benchmarks simultaneously, while GeekoF'S does not block the benchmark. The
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4.3. Adaptations needed for GekkoF'S

parameter was set in such a way that the cores-per-task and ntasks-per-node
for the benchmark multiplied to 48, which is the number of cores available per node.
Due to time limitations and configuration options, we could not repeat the respective
tests on BeeOND. Differences shown later might at least partly be caused by this
necessary change. Performing these tests and ‘tuning’ for BeeOND may increase
the performance there as well. This needs to be done in further work.
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5. Evaluation

In this chapter, we present the results of the measurements taken with the bench-
marks presented before. We start with the results archived by BeeOND in the first
section and conclude with them from GekkoF'S in the second section.

5.1. BeeOND

Taking a look at the overall results of the benchmarks presented in detail later —
as one would expect — we see increasing performance with an increasing number of
nodes.

5.1.1. IOR

The IOR results as depicted in Figure [5.1] show an approximately linear growth
over increasing numbers of cores. With more data to process, it seems as if a
utilization especially for the lower node counts is reached. The measured values are
approximately within 80 % of the theoretical peak write performance of the SSDs
of 510 MB/s [25]. A further (not depicted) test on the 256 GB set with 8 full
nodes (8*48 tasks) showed a slight improvement compared to 256 tasks, which is
still within the expectations.

In addition to the normal benchmark test, in which we had the switches parameter
for slurm activated — ensuring getting nodes closer together — we verified this here
for IOR on BeeOND by performing that same test without the switches parameter.
Without this parameter and therefore, not enforcing nearby nodes we saw similar,
but less stable measurements, with higher variations. Hence, we decided to perform
all further tasks only with the switches parameter activated.

IOR with MPI-10

To not exclusively run all tests on POSIX-IO and find possible weaknesses, we
repeated the IOR measurements for 2 nodes and 16 tasks as well as for 2 nodes and
64 tasks with MPI-IO. A comparison with the respective values out of the run with
POSIX is shown in Figure [5.2] As depicted there, for BeeOND these two deliver
about the same results in respect to write performance.
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5. Evaluation
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Figure 5.1.: IOR results on BeeOND On the y-axis, write rate in Megabytes per
second is depicted, the x-axis shows the number of nodes used. The bar

colors correspond to the number of tasks. Error bars show the standard
deviation calculated over the 10 iterations.

IOR 16GB - POSIX vs. MPIIO
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Figure 5.2.: IOR MPI-IO vs. POSIX-IO on BeeOND On the y-axis, write
rate in Megabytes per second is depicted, the x-axis shows the tested
node(N) and task(T) combinations. The bar colors correspond to the

use 10 scheme. Error bars show the standard deviation calculated over
the 10 iterations, for each test.

5.1.2. mdtest

Mdtest shows similar results over all data sets, reaching an upper bound at a file
creation rate of approximately 8200. Although there are (a) some drops in the 1024
file test at 8 nodes as well as (b) 4 nodes with 4 total tasks for all test sizes, these
can be explained with either (a) too few files per process or (b) too wide of a spread
of files with an in comparison low computation power. Especially for the large test
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5.1. BeeOND

it seems that with a file creation rate of about 8200, a saturation is reached. With
one node the measured performance is notably lower, which we assume to be caused
by only being able to access one SSD.

mdtest - 1.024 Files mdtest - 132.072 Files mdtest - 524.288 Files

8000

6000

4000

File Creation Rate [ops/s|

2000

Figure 5.3.: mdtest results on BeeOND On the y-axis, write rate in file creation
rate per second is depicted, the x-axis shows the number of nodes used.
The bar colors correspond to the number of tasks. Error bars show the
standard deviation calculated over the 10 iterations.

5.1.3. NPB

In the following, we present the results of the NPB BT-IO benchmark executed
on BeeOND. While on full-io we overall notice increasing performance for higher
node counts, in the simple-io benchmark the performance suffers a lot.

full-io

The measurements taken with the NPB benchmark in the full-io version, per-
formed as a first near-real-world test, show similar results as the IOR benchmark.
The performance is mostly increasing with the task count — best shown in Class
D. We notice, that for all dataset sizes the test with 256 tasks gives significantly
lower I/O rates and assume that is based on the increasing need for communication
between the used cores. Also noticeable are decreased measurements for 64 tasks
compared with 16 tasks at 2 and 4 nodes on the small — and medium-sized tests.
The Test in class D, with 1 Task, is not depicted, as it ran into an error showing
Error writing to file shortly after starting in all our executions. The reason for
that issue remains unclear and might be a possible aspect of further work.
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Figure 5.4.: NPB BT-I0O results on BeeOND (full-io): On the y-axis, I/O rate
in Megabytes per second is depicted, the x-axis shows the number of
nodes used. The bar colors correspond to the number of tasks. Error
bars show the standard deviations calculated over the 5 iterations.

simple-io

Now looking at the measurements taken with the simple-io version of NPB BT-10,
shown in Figure 5.5, we see a decline in the size of two orders of magnitude. This
difference caused by not allowing the operating processes to use collctive buffering,
is enormous. Therefore, the influence of this on BeeOND can not be neglected and
must be kept in mind by the user. As before in the full-io test more cores lead to
more communication needs, resulting in further declines for the with 4 and 8 nodes.
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5.2. GekkoFS

NPB Class A NPB Class C

Tasks
-1
70 | 4
- 16
- 64
- 256

Nodes Nodes

Figure 5.5.: NPB BT-IO results on BeeOND (simple-io): On the y-axis, I/O
rate in Megabytes per second is depicted, the x-axis shows the number
of nodes used. The bar colors correspond to the number of tasks. Error
bars show the standard deviations calculated over the 5 iterations.

5.2. GekkoFS

Similar to BeeOND the benchmark results for GekkoFS presented in the following,
mainly show a performance increase with increasing numbers of nodes.

5.2.1. IOR

We present the IOR results for GekkoF'S in Figure these show a linear growth
over increasing node counts reaching 80 % - 90 % of the theoretical SSD performance.
Over the changing test sizes, especially the smaller node counts reach a saturation.
The measurements for the 8 node test, nevertheless show some differences for com-
muting the benchmark.

IOR with MPI-10

Executing IOR with MPI-IO in the reduced data set, as previously described for
BeeOND, on GekkoFS results in an error as shown in Figure Based on this
error we conclude, that GekkoFS at least in the version tested here (v0.91) is not
capable of working with the MPI-1O interface, which limits its overall use cases.

5.2.2. mdtest

While running the mdtest benchmarks on GekkoF'S we ran into issues, namely non-
deterministic behavior during the start-up. Running the same script multiple times,
either mdtest was not started at all, or it started but did not provide any results in a
reasonable time. Nonetheless, the few results archived, before stopping our test and
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Figure 5.6.: IOR results on GekkoFS On the y-axis, write rate in Megabytes per
second is depicted, the x-axis shows the number of nodes used. The bar
colors correspond to the number of tasks. Error bars show the standard
deviation calculated over the 10 iterations.

This requires fcntl(2) to be implemented. As of 8/25/2011 it is not. Generic
MPICH Message: File locking failed in ADIOI_GEN_SetLock(fd 2710, cmd
F_SETLKW64/7,type F_WRLCK/1,whence 0) with return value FFFFFFFF and errno
5F.

- If the file system is NFS, you need to use NFS version 3, ensure that the lockd

daemon is running on all the machines, and mount the directory with the °’

noac’ option (no attribute caching).

- If the file system is LUSTRE, ensure that the directory is mounted with the °’
flock’ option.

ADIOI_GEN_SetLock:: Operation not supported

ADIOI_GEN_SetLock:offset O, length 1048576

Abort (1) on node 5 (rank 5 in comm 0): application called MPI_Abort(
MPI_COMM_WORLD, 1) - process 5

Figure 5.7.: Error message produced bei IOR when run with MPIIO on GekkoF'S.

efforts to end this nondeterministic behavior, show high variaons, which may also be
caused by the problems described before. Based on these issues, we unfortunately
can not present any benchmark results here. Investigating these matters in more
detail and archiving reliable results need to be investigated further on.

5.2.3. NPB

In the following, we present the results of the NPB BT-10 benchmarks performed on
GekkoF'S. Unfortunately based on the added cpus-per-task parameter, we were not
able to perform the NPB Benchmark with 8 nodes, because of resource limitations.
These tests, therefore, are left for further work. We would expect to see a similar
behavior compared to the test with a smaller number of nodes.
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5.2. GekkoFS

full-io

Our measurements on GekkoF'S taken with NPB BT-1/0 with the full-io version
are depicted in Figure|5.8. We, despite having high variations, see an approximately
linear growth with increasing node counts. Taking the shown standard deviations
into account the measured performances on the same node with different task counts
are within 10 %. Some of these variations may be caused by the changing count of
available cores per task. Produced by the need introduction of the cpus-per-task
parameter. Only the test on 1 Task strikes out here.

The test with 1 Task for class D again stops, early in the execution with the same
error message as on BeeOND and therefore no values are shown here.

NPB Class A NPB Class C NPB Class D

Tasks
6000 | mm1
-4
- 16
5000 1 == 64

4000

3000

1/0 Rate [MB/s]

2000

1000

Nodes Nodes Nodes

Figure 5.8.: NPB BT-IO results on GekkoFS (full-io—with collective
buffering): On the y-axis, I/O rate in Megabytes per second is de-
picted, the x-axis shows the number of nodes used. The bar colors
correspond to the number of tasks. Error bars show the standard devi-
ations calculated over the 5 iterations.

simple-io

The measurements with the simple-io version — shown in Figure [5.9] — reveal
a similar behavior as previously presented for the full-io version. The perfor-
mance grows with an increasing number of nodes almost linearly, while having high
variaons.

For almost all tests on the same node count the performance decreases with increas-
ing tasks. Also in comparison to the full-io test, the I/O rates archived here are
significantly lower. These two phenomenons appear to be caused by the simple-io
test not allowing collective buffering.

Similar to before with the full-io test, the variances and deviation depicted, as well
as the performance drops with more tasks per node, could be caused by introducing
the cpus-per-task parameter.
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Figure 5.9.: NPB BT-IO results on GekkoFS (simple-io—without collec-
tive buffering): On the y-axis, I/O rate in Megabytes per second is
depicted, the x-axis shows the number of nodes used. The bar colors
correspond to the number of tasks. Error bars show the standard devi-
ations calculated over the 5 iterations.

24



6. Comparison

Taking a look at the two systems GekkoFS and BeeOND tested here, we find that in
the end, both systems share some similarities in reaching the aim of creating a burst
buffer file system. Gekko and BeeOND both create a node-local, short-living —
mostly for the duration of a job — file system. These created BB systems provide
exclusive access to the data, and therefore, prevent interferences caused by other
jobs or users. Furthermore, through being independent of the parallel file system
the BB systems offer high bandwidths for providing the preloaded data or storing
data produced by a job.

Considering how that aim described above is achieved, GekkoFS and BeeOND show
a very different approach to this.

6.1. Comparing Burst Buffer Systems

6.1.1. GekkoFS

GekkoF'S is a standalone file system, that needs to be installed manually by its users,
but this is no bigger issue, as it runs in user space.

GekkoF'S then needs to be started during the job script if needed, these deploying —
according to the developers of GeekoF'S on 512 nodes — needs about 20 seconds [33];
while not specifically testing for it in our tests with up to 256 cores the deployment
time was well below 30 seconds.

Furthermore, GekkoF'S only uses a relaxed POSIX compliance, as it relies on the
premise that a full POSIX compliance is not needed for most HPC applications [14].
Users need to keep these restrictions in mind when executing software with a GeekoF'S
burst buffer file system. Nevertheless, it is as consistent on operations accessing a
specific file as a full POSIX compliant system, while operations on directories aren’t
covered by the relaxed POSIX compliance. As Gekko does not offer a global locking
mechanism applications and users are responsible for ensuring not to cause conflicts
because of accessing overlapping regions.

Move or rename operations during the execution of a parallel job are not supported
too, as they also fall in the category of rarely used functions in HPC programs. To
reduce the complexity of the FS in Gekko all file system operations are executed
synchronously, without any kind of caching.
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6. Comparison

6.1.2. BeeOND

BeeOND on the other hand is the on-demand version of BeeGFS and comes with
such an installation. Therefore, it can not be installed by the user onto an existing
HPC system, but can be included in schedulers as slurm.

BeeGFS as well as GekkoFS creates a node-local burst buffer file system, but in
contrast, guarantees full POSIX compliance, so that users do not need to worry
about most of the challenges described above.

Additionally, there are numerous other burst buffer systems, all differentiating in
lager or minor details on how the BBs are implemented, what premises are made
(e.g. regarding POSIX with Geeko), and where the BB FSs are placed within the
system.

We will now take a short look at some more node-local ones as well as such not
using the node-local storage.

6.1.3. Other node-local Burst Buffer systems

One other node-local burst buffer system is BurstF'S [36]. It also creates a short-
living (duration of a job) BB FS, that offers scalable metadata indexing and linear
scalability of aggregated 1/O. Similarly to Gekko, it is constructed on the fly us-
ing the node’s local SSDs. All allocated and used resources and nodes are cleaned
up after execution to avoid post-mortem interferences. The BB system created by
BurstFS is exclusive, and no outside job can access it, nevertheless, parallel pro-
grams within the same job allocation can share data through it.

Furthermore, there is SSDUP [27] a ’traffic aware burst buffer’ system, which is
based on OrangeFS [23]. It also used the node’s local memory to create a burst
buffer solution, but in contrast to the systems presented before not all data written
during the communication is stored on the BB itself. SSDUP uses a traffic detector
to differentiate between random and other writes, the latter of which are deemed
sequentially to the PFS directly, while the random ones are buffered to the BB F'S.
The random writes to the burst buffer are later converted to sequential ones using
the additionally created log structure and then written to the PFS. To avoid being
unable to receive data from random writes, the buffer is divided into halves, one half
can continue receiving random writes, while the other half flushes the previously
received data to the PFS.

6.1.4. Non node-local Burst Buffer system

DataWrap [9] is one system that in comparison to BeeOND, GeekoF'S, BurstF'S, and
SSDUP uses dedicated burst buffer nodes placed between the compute nodes and
the parallel file system.

As with BeeOND, to use DataWrap this needs to be requested with according di-
rectives in the job script. Users can make use of DataWrap through POSIX APIs,
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but additionally, a C library provides a way for other programs to interact and
use DataWarp. It provides the possibility for a compute note swap, meaning that
different parts of the application (e.g. pre-/postprocessing or computation) can be
done by different nodes can be used without moving the corresponding data. This
is an option that on node-local burst buffer systems would at least be hard if not
impossible implement.

Furthermore, DataWrap offers two types of instances:

o The first type, called job instance, works similar to a BeeOND or GeekoFS
instance. It offers exclusive access to the BB FS ensuring, that no unallowed
access from outside the participating nodes is made and is destroyed after the

job has finished

o Secondly there are so-called persistent instances, these are not bound to the
lifetime of a job. Any job can request access to these by providing the name
of the instance. File access nevertheless, will be authorized using POSIX file
permissions.

These instances are usually explicitly created outside a job.

Aftertermination of an instance DataWarp ensures, that further needed data will be
flushed to the PFS.

6.2. Comparison of the archived performances

In this section, we will compare the measured performances archived by BeeOND
and GekkoF'S, during our test.

We observe that for the IOR benchmark BeeOND and GekkoFS show a similar
behavior, of linear growth over increasing node counts. Both reach about 80 % of
the discs’ specification in the small test climbing to 90 % with increasing amounts
of data. This seems to be a saturation for our tests. Especially for the high node
counts on the 256 GB test, GekkoF'S outperformed BeeOND by 12%. On the lower
node counts the differences might be outside the calculated standard deviation with
a small advantage for GekkoFS, but still can be considered irrelevant. The overall
performance gains, especially noticeable in the tests with 8 Nodes, are a benefit of
GekkoF'S and probably result in the relaxed POSIX constraints.

As explained before we were unable to archive reliable results for mdtest on GeekoF'S,
we can not draw a comparison to the performances measured on BeeOND here.
These measurements and comparisons are left for further work. In general, we as-
sume based on what we have seen during our test, despite having high variations in
that tests, that GekkoF'S at least can provide a similar performance to that mea-
sured for BeeOND.

As depicted above, the measurements on BeOND and GekkoFS taken with NPB in
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the full-io version show a similar pattern, with few exceptions. GekkoFS hereby
mostly has the advantage over BeeOND, while on the other side, it shows higher
variations.

Nevertheless, GekkoFS handles the simple-io benchmark in our tests a lot bet-
ter than BeeOND. BeeOND for these measurements suffered a performance loss of
two orders of magnitude, while Gekko only had a decline of factor 5. Additionally,
GekkoF'S showed an increase in performance when using multiple notes, while in the
same test BeeOND no such increase is noticeable.

6.3. Findings

As we have shown before, GekkoFS can outperform BeeOND in the tested con-
figuration in I/O performance, averaging by a performance overhead of 10-15%.
For special use cases such as I/O with non-collective buffering, this advantage even
reaches one order of magnitude. Nevertheless, these performance gains could at
least partly be archived by the introduced cpus-per-task parameter. Further in-
vestigations and efforts have to show if BeeOND can achieve similar performance.
We consider GeekoF'S — based on our previously described experiences and the re-
sults archived in the IOR and NPB benchmarks — to be a reasonable alternative
BB file system. Nevertheless, to be fully usable the problems described have to be
solved. We assume, that the issues mentioned before for mdtest are not caused by
GekkoF'S itself and therefore are a configuration problem of the various parame-
ters. In our tests, GekkoF'S was not able to execute IOR with the MPI-1O interface,
which limits the usability at least slightly as some HPC applications offer MPI-10O
exclusively. Regardless of this issue, during our tests, we were not able to show any
specific problems when using GekkoFS, that could be related to the use of relaxed
POSIX compliance.
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7. Conclusion

We have tested the two burst buffer systems BeeOND, which is the on-demand
variant of BeeGFS, and GekkoFS a standalone BB system running in user space.
While both create a node-local burst buffer file system, one main difference is that
GekkoFS relies on a relaxed POSIX compliance, while BeeOND offers full POSIX
compliance.

In our test, GekkoFS archived a performance overhead compared to BeeGFS of 8-
10%. Very promising is the performance gain seen in the NPB BT-1O test with
simple-io, archiving results about one order of magnitude greater than the tests
on BeeOND. Nevertheless, it can not be neglected that we were only able to perform
any tests on GekkoFS after introducing the cpus-per-task parameter. It remains
to be investigated if adding this parameter had an influence on the performance of
GekkoFS and if through appropriate tuning BeeOND can reach similar results.
Although GeekoFS had problems with the MPI-IO interface in our test which could
at least slightly limit the usability, we had—without specifically testing for it— no
issues with the related POSIX constraints.

When the mentioned variances are minimized and the explained problems are solved
we expect GekkoF'S to be a considerable alternative burst buffer system. Especially,
if the described performance overheads survive, these give an advantage for POSIX-
[O-driven HPC applications.
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A. Apendix

A.1. BeeOND Scripts

#!/usr/local_rwth/bin/zsh

#SBATCH --beeond

#SBATCH --exclusive

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=16

#SBATCH --job-name=beeond_ior_1G_4N_64T

#SBATCH --output=<path-to-outputfile>/beeond_ior_1G_4N_64T_7%J.txt
#SBATCH --switches=1

#SBATCH --time 00:15:00
#SBATCH --account=thes1418

cd $TMP
$MPIEXEC <path-to-ior>/ior -t 1m -b 4m -s 4 -i 10 -F -C -e -o $BEEOND/filetest

Figure A.1.: IOR sample Code BeeOND

#!/usr/local_rwth/bin/zsh

#SBATCH --beeond

#SBATCH --exclusive

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=16

#SBATCH --job-name=beeond_md_1K_4N_16T

#SBATCH --output=<path-to-outputfile>/beeond_md_1K_4N_16T_%J.txt
#SBATCH --switches=1

#SBATCH --time 00:15:00
#SBATCH --account=thes1418

cd $TMP
$MPIEXEC /<path-to-mdtest>/mdtest -I=64 -L -z=0 -w=4096 -e=4096 -i 10 -d=$BEEOND/
filetest -R -P

Figure A.2.: mdtest sample Code BeeOND
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#!/usr/local_rwth/bin/zsh

#SBATCH --beeond

#SBATCH --exclusive

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=16

#SBATCH --job-name=beeond_NPB_A

#SBATCH --output=<path-to-outputfile>/beeond NPB_A_4N_16T_7%J.txt
#SBATCH --switches=1

#SBATCH --time 00:20:00
#SBATCH --account=thes1418

cd $BEEOND

mkdir filetest4N16TA

cd filetest4N16TA

$MPIEXEC -n 16 <path-to-npb-execuatabels>/bt.A.x.mpi_io_full

Figure A.3.: NPB sample Code BeeOND
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A.2. Gekko Script

A.2. Gekko Script

#!/usr/local_rwth/bin/zsh

#SBATCH --exclusive

#SBATCH --output=<path-to-outputfile>/gekko_iorS_4N16T--%J.txt
#SBATCH --account=thes1418

#SBATCH --cpus-per-task=12

#SBATCH --nodes=4

#SBATCH --time 00:05:00

#SBATCH --switches=1

#Setup environment
source <path-to-file>/variables.source

export LIBGKFS_HOSTS_FILE=<path-to-hostfile>/Hostfile_4N16T.TMP

export GEKKO_LIB=<path-to-gekko-install-dir>/install/1ib64/1libgkfs_intercept.so
export GEKKO_DAEMON=<path-to-gekko-install-dir>/install/bin/gkfs_daemon

export GEKKOFS=$TMP/gekko_mount

#Start Gekko Daemons
$MPIEXEC $FLAGS_MPI_BATCH --overlap --ntasks-per-node 1 $GEKKO_DAEMON -r $TMP -
m $GEKKOFS -H $LIBGKFS_HOSTS_FILE -1 ibO0 -c --auto-sm &

#busy waiting until all daemons are registered

until [[ "$(wc,-1,${LIBGKFS_HOSTS_FILE} 2>,/dev/null | awk,’{print $1}°)" != ${
SLURM_JOB_NUM_NODES} 1]; do
sleep 1
done

#give the hostfile enough time to be synchronized (without this, sometimes the
file is not found by ior)
sleep 3

#Run ior test

$MPIEXEC --export LD_PRELOAD=${GEKKO_LIB} --export LIBGKFS_HOSTS_FILE
$FLAGS_MPI_BATCH --ntasks-per-node 4 --oversubscribe <path-to-ior>/ior -t 1
m -b 4m -s 16 -i 10 -F -e -o $GEKKOFS

Figure A.4.: IOR sample Code GekkoF'S

33







Bibliography

[Online|. Available: https : //top500 . org/project/linpack/ (visited on
10/05/2023).

BeeGFS Documentation 7.4.1. [Online]. Available: https://doc.beegfs.io
/latest/index.html (visited on 10/08/2023).

BeeOND: BeeGFS On Demand - Documentation. [Online]. Available: https
://doc . beegfs . io/latest/advanced_topics/beeond . html| (visited on
07/15/2023).

M. S. Birrittella et al., “Intel® omni-path architecture: Enabling scalable,
high performance fabrics”, in 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects, 2015, pp. 1-9. DOI: 10.1109/H0TI.2015.22.

P. J. Braam, “Lustre: A Scalable, High-Performance File System”, [Online].
Available: https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lu
stre-whitepaper.pdf (visited on 10/08/2023).

R. Buyya, T. Cortes, and H. Jin, “An introduction to the infiniband architec-
ture”, in High Performance Mass Storage and Parallel 1/0O: Technologies and
Applications. IEEE, 2002, pp. 616-632. DOI: 10.1109/9780470544839. ch42.

S. A. Fineberg et al., “Pmpio - a portable implementation of mpi-io”, in Pro-
ceedings of the 6th Symposium on the Frontiers of Massively Parallel Com-
putation, ser. FRONTIERS ’96, USA: IEEE Computer Society, 1996, p. 188,
ISBN: 0818675519.

M. Folk and E. Pourmal, “Balancing performance and preservation lessons
learned with HDF5”, in Proceedings of the 2010 Roadmap for Digital Preser-
vation Interoperability Framework Workshop, Gaithersburg, Maryland, USA:
Association for Computing Machinery, 2010, 1SBN: 9781450301091. por: [10.1
145/2039274.2039285.

D. Henseler et al., “Architecture and Design of Cray DataWarp”,

V. for 1/0O, 10-500 - web. [Online]. Available: https://www.vidio.org/std
/10500/start/ (visited on 07/28/2023).

IOR documentation - readthedocs, en. [Online]. Available: https : //build
media . readthedocs . org/media/pdf /ior/latest /ior . pdf (visited on
07/28/2023).

35


https://top500.org/project/linpack/
https://doc.beegfs.io/latest/index.html
https://doc.beegfs.io/latest/index.html
https://doc.beegfs.io/latest/advanced_topics/beeond.html
https://doc.beegfs.io/latest/advanced_topics/beeond.html
https://doi.org/10.1109/HOTI.2015.22
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://doi.org/10.1109/9780470544839.ch42
https://doi.org/10.1145/2039274.2039285
https://doi.org/10.1145/2039274.2039285
https://www.vi4io.org/std/io500/start
https://www.vi4io.org/std/io500/start
https://buildmedia.readthedocs.org/media/pdf/ior/latest/ior.pdf
https://buildmedia.readthedocs.org/media/pdf/ior/latest/ior.pdf

Bibliography

[12]

[15]

[16]

23]
[24]

[25]

36

H. Khetawat et al., “Evaluating burst buffer placement in hpc systems”, en,
in 2019 IEEE International Conference on Cluster Computing (CLUSTER),
Albuquerque, NM, USA: IEEE, 2019, pp. 1-11, 1SBN: 978-1-72814-734-5. DOTI:
10.1109/CLUSTER.2019.8891051.

J. M. Kunkel et al., “Establishing the I0-500 benchmark”, White Paper, 2016.

P. H. Lensing et al., “File system scalability with highly decentralized meta-
data on independent storage devices”, in Proceedings of the 16th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, ser. CC-
GRID ’16, Cartagena, Columbia: IEEE Press, 2016, pp. 366-375, ISBN: 978-
1-5090-2452-0. por: [10.1109/CCGrid.2016.28.

J. Li et al., “Parallel NetCDF: A high-performance scientific I/O Interface”, in
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, ser. SC
’03, Phoenix, AZ, USA: Association for Computing Machinery, 2003, p. 39,
ISBN: 1581136951. DOI: 110.1145/1048935.1050189.

A. Lintermann, M. Meinke, and W. Schréder, “Zonal Flow Solver (ZFS): A
highly efficient multi-physics simulation framework”, International Journal of
Computational Fluid Dynamics, vol. 34, no. 7-8, pp. 458-485, 2020, 1SSN: 1061-
8562. DOI: 10.1080/10618562.2020.1742328.

Lustre wiki - ior. [Online]. Available: https://wiki.lustre.org/I0R (visited
on 07/28,/2023).

Lustre wiki - mdtest. [Online|. Available: https://wiki.lustre.org/MDTest
(visited on 07/28,/2023).

Mdtest, 2023. [Online]. Available: https://github.com/LLNL/mdtest| (visited
on 07/28/2023).

Memcached - a distributed memory object caching system. [Online]. Available:
https://www.memcached.org/ (visited on 10/08/2023).

NAS Parallel Benchmarks. [Online]. Available: https://www.nas.nasa.gov
/software/npb.html (visited on 07/28/2023).

NASA, Problem sizes and parameters in nas parallel benchmarks. [Online].
Available: https://www.nas.nasa.gov/software/npb_problem sizes.htm
1 (visited on 07/28/2023).

OrangeF'S. [Online]. Available: https : //www . orangefs . org/ (visited on
10/08/2023).

A. Petitet et al. [Online]. Available: https://www.netlib.org/benchmark/h
pl/ (visited on 10/05/2023).

Product Brief SSDs. [Online]. Available: https://www.mouser .de/pdfdocs
/Intel SSD_D3-S4510_D3-S4610 PB_337756-001-1385547 .pdf (visited on
10/04,/2023).


https://doi.org/10.1109/CLUSTER.2019.8891051
https://doi.org/10.1109/CCGrid.2016.28
https://doi.org/10.1145/1048935.1050189
https://doi.org/10.1080/10618562.2020.1742328
https://wiki.lustre.org/IOR
https://wiki.lustre.org/MDTest
https://github.com/LLNL/mdtest
https://www.memcached.org/
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb_problem_sizes.html
https://www.nas.nasa.gov/software/npb_problem_sizes.html
https://www.orangefs.org/
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://www.mouser.de/pdfdocs/Intel_SSD_D3-S4510_D3-S4610_PB_337756-001-1385547.pdf
https://www.mouser.de/pdfdocs/Intel_SSD_D3-S4510_D3-S4610_PB_337756-001-1385547.pdf

[26]

[27]

[31]

[34]

[35]

[36]

Bibliography

W. Schenck et al., “Early Evaluation of the “Infinite Memory Engine” Burst
Buffer Solution”, in High Performance Computing, M. Taufer, B. Mohr, and
J. M. Kunkel, Eds., vol. 9945, Series Title: Lecture Notes in Computer Science,
Cham: Springer International Publishing, 2016, pp. 604—615, 1SBN: 978-3-319-
46078-9 978-3-319-46079-6. DOI: 10.1007/978-3-319-46079-6 _41.

X. Shi et al., “SSDUP: A traffic-aware ssd burst buffer for HPC systems”, in
Proceedings of the International Conference on Supercomputing, ser. ICS 17,
New York, NY, USA: Association for Computing Machinery, 2017, pp. 1-10,
ISBN: 978-1-4503-5020-4. DOI: [10.1145/3079079.3079087.

R. Simons, Parameterevaluation von dateisystemen in hochleistungsrechnen,
de, Masterthesis -RWTH, Aug. 2022.

Slurm Workload Manager - Documentation. [Online]. Available: https://slu
rm.schedmd. com/ (visited on 10/08/2023).

J. Soumagne et al., “Mercury: Enabling remote procedure call for high- perfor-
mance computing”, in 2013 IEEFE International Conference on Cluster Com-
puting (CLUSTER), ISSN: 2168-9253, 2013, pp. 1-8. DO1: 10.1109/CLUSTER. 2
013.6702617.

O. Tatebe et al., “CHFS: Parallel Consistent Hashing File System for Node-
local Persistent Memory”, in International Conference on High Performance
Computing in Asia-Pacific Region, ser. HPCAsia2022, New York, NY, USA:
Association for Computing Machinery, 2022, pp. 115-124, 1SBN: 978-1-4503-
8498-8. DOI: [10.1145/3492805.3492807.

Top500. [Online]. Available: https://www.top500.org (visited on 06/27/2023).

M.-A. Vef et al., “Gekkofs - a temporary distributed file system for hpc ap-
plications”, in 2018 IEEFE International Conference on Cluster Computing
(CLUSTER), IEEE, 2018, pp. 319-324, 1SBN: 978-1-5386-8319-4. DOI: |10.11
09/CLUSTER.2018.00049.

M Waldmann et al., Implementation of a lattice Boltzmann method on GPU
based HPC Systems, m-aia presentation slides. [Online|. Available: https://i
ndico3-jsc.fz-juelich.de/event/35/contributions/36/attachments/2
2/29/Waldmann 2022 slides ImplementationOfALatticeBoltzmannMetho
dOnGpuBasedHpcSystems . pdf| (visited on 08/08/2023).

T. Wang, Fxploring novel burst buffer management on extreme-scale hpc sys-
tems, 2017. [Online]. Available: https://diginole.lib.fsu.edu/islandora
/object/fsu3A507737/.

T. Wang et al., “An ephemeral burst-buffer file system for scientific applica-
tions”, in SC ’16: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, IEEE Press, 2016,
pp- 807-818. DOI: |10.1109/SC.2016.68.

37


https://doi.org/10.1007/978-3-319-46079-6_41
https://doi.org/10.1145/3079079.3079087
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://doi.org/10.1109/CLUSTER.2013.6702617
https://doi.org/10.1109/CLUSTER.2013.6702617
https://doi.org/10.1145/3492805.3492807
https://www.top500.org
https://doi.org/10.1109/CLUSTER.2018.00049
https://doi.org/10.1109/CLUSTER.2018.00049
https://indico3-jsc.fz-juelich.de/event/35/contributions/36/attachments/22/29/Waldmann_2022_slides_ImplementationOfALatticeBoltzmannMethodOnGpuBasedHpcSystems.pdf
https://indico3-jsc.fz-juelich.de/event/35/contributions/36/attachments/22/29/Waldmann_2022_slides_ImplementationOfALatticeBoltzmannMethodOnGpuBasedHpcSystems.pdf
https://indico3-jsc.fz-juelich.de/event/35/contributions/36/attachments/22/29/Waldmann_2022_slides_ImplementationOfALatticeBoltzmannMethodOnGpuBasedHpcSystems.pdf
https://indico3-jsc.fz-juelich.de/event/35/contributions/36/attachments/22/29/Waldmann_2022_slides_ImplementationOfALatticeBoltzmannMethodOnGpuBasedHpcSystems.pdf
https://diginole.lib.fsu.edu/islandora/object/fsu3A507737/
https://diginole.lib.fsu.edu/islandora/object/fsu3A507737/
https://doi.org/10.1109/SC.2016.68

Bibliography

[37]

[38]

38

T. Wang et al., “BurstMem: A high-performance burst buffer system for sci-
entific applications”; en, in 201 IEEFE International Conference on Big Data
(Big Data), Washington, DC, USA: IEEE, 2014, pp. 71-79, 1SBN: 978-1-4799-
5666-1. DOI: 110.1109/BigData.2014.7004215.

P. Wong and R. F. V. der Wijngaart, NAS Parallel Benchmarks 1/O Version
2.4. [Online]. Available: https://www.nas.nasa.gov/assets/nas/pdf/tech
reports/2003/nas-03-002.pdf.


https://doi.org/10.1109/BigData.2014.7004215
https://www.nas.nasa.gov/assets/nas/pdf/techreports/2003/nas-03-002.pdf
https://www.nas.nasa.gov/assets/nas/pdf/techreports/2003/nas-03-002.pdf

	Titelseite
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related work
	3 Background
	3.1 Cluster Operations
	3.2 Cluster and node architecture
	3.3 Kinds of burst buffers
	3.4 File systems and Benchmarks
	3.4.1 BeeOND
	3.4.2 GekkoFS
	3.4.3 Benchmarks


	4 Experimental Setup
	4.1 System
	4.2 Benchmarks
	4.2.1 IOR and mdtest
	4.2.2 NPB
	4.2.3 m-AIA

	4.3 Adaptations needed for GekkoFS

	5 Evaluation
	5.1 BeeOND
	5.1.1 IOR
	5.1.2 mdtest
	5.1.3 NPB

	5.2 GekkoFS
	5.2.1 IOR
	5.2.2 mdtest
	5.2.3 NPB


	6 Comparison
	6.1 Comparing Burst Buffer Systems
	6.1.1 GekkoFS
	6.1.2 BeeOND
	6.1.3 Other node-local Burst Buffer systems
	6.1.4 Non node-local Burst Buffer system

	6.2 Comparison of the archived performances
	6.3 Findings

	7 Conclusion
	A Apendix
	A.1 BeeOND Scripts
	A.2 Gekko Script

	Bibliography

