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Abstract: A set S is said to be controlled invariant with respect to a control system if a state
feedback law exists such that the closed loop system has S as an invariant set. In the present
paper we generalise results on input-affine polynomial control systems and algebraic varieties (i.e.
sets described by the zeros of polynomial equations) considered in Zerz and Walcher (2012) to an
extended class of vector fields. More precisely, we consider vector fields of the form f = F ◦ h,
where F is a polynomial vector and h is a continuously differentiable function with certain
(algebraic) properties, as well as sets Vh as the preimages of varieties under h. We will see that
for example polynomial expressions in sine and cosine satisfy the mentioned properties. The
main advantage of the considered function class is that it is accessible to symbolic computation.
We give computational methods (based on the theory of Gröbner bases) to decide the controlled
invariance of Vh.
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1. INTRODUCTION

A milestone for the modern control theory was laid in the
books of Basile and Marro (1992) and Wonham (1985),
which were focused on linear invariant sets for linear
control systems. Based on these results Ilchmann (1989)
treated the time-varying case and approaches in Isidori
(1995) led to a theory also for more general, nonlinear con-
trol systems and nonlinear invariant sets. For autonomous
systems, the concept of invariant sets has been widely
studied by several authors. First characterisations of in-
variance via tangential cones are given in Bony (1969)
and in Brezis (1970), with extensions in Redheffer (1972).
A special kind of these invariant sets, namely algebraic
curves, were considered in Christopher et al. (2009) for
polynomial ODE systems.

These publications serve as a starting point for several re-
sults on polynomial control systems with focus on symbolic
computation. While Zerz et al. (2010) deals with controlled
invariant algebraic varieties in general, we have more
specific results for hypersurfaces presented in Zerz and
Walcher (2012). Both take use of the theory of Gröbner
bases (see, for instance, Greuel and Pfister (2008)) to
compute all polynomial vector fields which has a given
variety V as an invariant set, to decide if V is controlled
invariant for a given polynomial control system and how
the corresponding state feedback laws can be computed
explicitly. A similar approach for controlled invariance has
been presented in Yuno and Ohtsuka (2014). The works

of Harms et al. (2017) and Yuno et al. (2020) generalised
these concepts to some classes of semi-algebraic sets and
Schilli et al. (2020) to rational feedback systems.

This present work now regards control systems of compo-
sitions of polynomial functions and a continuously differ-
entiable function h with certain algebraic properties. We
point out that, among other functions, polynomial expres-
sions in sine and cosine have these assumed properties.
Constructing sets Vh as the preimage of varieties under h,
we derive conditions for the controlled invariance of these
sets for the given control systems. Although the systems
might be non-polynomial, the presented methods in the
area of symbolic computation and Gröbner bases allow
us to decide the controlled invariance of the sets Vh with
respect to the given non-polynomial system.

2. PRELIMINARIES AND KNOWN RESULTS

Consider the ordinary differential equation (ODE)

ẋ(t) = f(x(t)), (1)

where f : U → Rn is a C1-function defined on some open
set U ⊆ Rn with n ∈ N. For any x0 ∈ U , the initial value
problem (IVP)

ẋ(t) = f(x(t)), x(0) = x0

has a unique C1-solution ϕ(·, x0) : J(x0) → U on the
maximal existence interval J(x0) ⊆ R, which is an open
neighbourhood of 0.
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ẋ(t) = f(x(t)), (1)

where f : U → Rn is a C1-function defined on some open
set U ⊆ Rn with n ∈ N. For any x0 ∈ U , the initial value
problem (IVP)
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bases (see, for instance, Greuel and Pfister (2008)) to
compute all polynomial vector fields which has a given
variety V as an invariant set, to decide if V is controlled
invariant for a given polynomial control system and how
the corresponding state feedback laws can be computed
explicitly. A similar approach for controlled invariance has
been presented in Yuno and Ohtsuka (2014). The works

of Harms et al. (2017) and Yuno et al. (2020) generalised
these concepts to some classes of semi-algebraic sets and
Schilli et al. (2020) to rational feedback systems.

This present work now regards control systems of compo-
sitions of polynomial functions and a continuously differ-
entiable function h with certain algebraic properties. We
point out that, among other functions, polynomial expres-
sions in sine and cosine have these assumed properties.
Constructing sets Vh as the preimage of varieties under h,
we derive conditions for the controlled invariance of these
sets for the given control systems. Although the systems
might be non-polynomial, the presented methods in the
area of symbolic computation and Gröbner bases allow
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us to decide the controlled invariance of the sets Vh with
respect to the given non-polynomial system.

2. PRELIMINARIES AND KNOWN RESULTS

Consider the ordinary differential equation (ODE)
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Definition 1. A subset S ⊆ U is called invariant for the
ODE ẋ = f(x) if for any vector x0 ∈ S, the solution
ϕ(·, x0) to the IVP ẋ = f(x), x(0) = x0 fulfils ϕ(t, x0) ∈ S
for all t ∈ J(x0).

We are particularly interested in a special class of sets.
Let P := R[Z1, ..., Zm] be the polynomial ring over R in
m ∈ N variables. A subset P ⊆ P defines the variety

V(P ) := {z ∈ Rm | p(z) = 0 for all p ∈ P}
and a subset M ⊆ Rm, in turn, defines the set

J (M) := {p ∈ P | p(z) = 0 for all z ∈ M},
which is an ideal of P. Since P is Noetherian, any ideal of
P is finitely generated. The following results are folklore
and easy to see.

Lemma 2. The operators V and J have the following
properties:

1.) V and J are inclusion-reversing.
2.) P ⊆ J (V(P )) and S ⊆ V(J (S)) for P ⊆ P, S ⊆ Rm.
3.) J ◦ V ◦ J ≡ J and V ◦ J ◦ V ≡ V.
4.) V(I) ∩ V(J) = V(I + J) for ideals I, J ⊆ P.

5.) J (V(I)) = R
√
I for any ideal I ⊆ P, where R

√
I denotes

the real radical of I (see e.g. Bochnak et al. (1998)).

For arbitrary l, k ∈ N and a function q ∈ C1(Ũ ,Rl) with

an open subset Ũ ⊆ Rk we define the Jacobian matrix of
q by

Dq :=




∂q1
∂x1

· · · ∂q1
∂xk

...
. . .

...
∂ql
∂x1

· · · ∂ql
∂xk


 .

Furthermore, for q ∈ C1(Ũ ,R), let the Lie derivative of q

along g ∈ C1(Ũ ,Rk) be defined by

Lg(q) := Dq · g =

k∑
i=1

∂q
∂xi

· gi,

which is again a C1-function on Ũ .
Now if we have two polynomial functions f ∈ Pm and
q ∈ P, then also Lf (q) ∈ P is polynomial and we get
the following folklore result, which provides the key to
symbolic computations for polynomial systems (see, for
instance, Zerz and Walcher (2012) or Harms et al. (2017)).

Lemma 3. Let f ∈ Pm and a variety V ⊆ Rm be given.
Then V is invariant for the ODE ẋ = f(x) if and only if

Lf (J (V )) ⊆ J (V ).

3. AUTONOMOUS CASE

We wish to extend the class of functions for which this
last result stays true. A standard result is that in the more
general setting of the beginning of Section 2 at least one
direction of Lemma 3 stays true. We state this here with
proof for the sake of completeness:

Lemma 4. Let f ∈ C1(U,Rn), q ∈ C1(U,R) and S ⊆ U . If
S is invariant for the ODE ẋ = f(x) and q vanishes on S,
then Lf (q) vanishes on S.

Proof. Let S be invariant and let q vanish on S. Then,
for all x0 ∈ S and all times t ∈ J(x0) we have

q(ϕ(t, x0)) = 0,

where ϕ(·, x0) denotes the solution to the IVP ẋ = f(x),
x(0) = x0. Differentiation yields

0 = ∂
∂tq(ϕ(t, x

0)) = Lf (q)(ϕ(t, x
0))

for all t ∈ J(x0), which implies Lf (q)(x
0) = 0. Hence,

Lf (q) vanishes on S. �

3.1 Extension of the function class

In order to generalise the pure polynomial case as treated
in Lemma 3, we first construct a more general version of
varieties and of our considered ODE systems and give
assumptions on these constructions with which we are
allowed to find invariance criteria afterwards.

For arbitrary h ∈ C1(U,Rm) and P ⊆ P we define the set

Vh(P ) := {x ∈ U | p(h(x)) = 0 for all p ∈ P}
and for S ⊆ U the set

Jh(S) := {p ∈ P | p(h(x)) = 0 for all x ∈ S}.
Clearly, the latter is a finitely generated ideal of P. The
connection to the operators V and J is as follows. We have

Vh(P ) = h−1(V(P )) and h(Vh(P )) = V(P ) ∩ im(h)

as well as
Jh(S) = J (h(S)).

Again, Vh and Jh are inclusion-reversing, we obtain

P ⊆ J (V(P )) ⊆ Jh(Vh(P )) and S ⊆ Vh(Jh(S))

for all P ⊆ P, S ⊆ U , as well as Jh ◦ Vh ◦ Jh ≡ Jh and
Vh ◦ Jh ◦ Vh ≡ Vh (cf. Lemma 2).

Example 5. It is Vh(P) = ∅, Vh({0}) = U , and Jh(∅) = P.
The ideal

Jh(U) = {p ∈ P | p ◦ h = 0}
consists of all algebraic dependencies between the compo-
nents of h and is contained in every ideal Jh(S) for S ⊆ U .
This implies

I + Jh(U) ⊆ Jh(Vh(I))

and Vh(I + Jh(U)) = Vh(I) for every ideal I ⊆ P.

After these preparations, we consider more general ODE
systems as in (1) in which the vector field f takes the form

f = F ◦ h,
where F ∈ Pn is polynomial and h ∈ C1(U,Rm) fulfils the
additional condition that the Jacobian matrix of h can be
written as

Dh = Q ◦ h, for some Q ∈ Pm×n. (2)

Hence, the pure polynomial case as treated in Zerz and
Walcher (2012) corresponds to the choices m = n and
h = idRn , the identity on Rn. In this case Q is just the
identity matrix of size n.

Condition (2) allows to prove a similar statement as in
Lemma 3 for this more general setting (see Theorem 8)
and is motivated by computing the Lie derivative of p ◦ h,
for p ∈ P, along f = F ◦ h:

LF◦h(p ◦ h) = D(p ◦ h) · (F ◦ h)
= ((Dp) ◦ h) ·Dh · (F ◦ h)
= (Dp ·Q · F ) ◦ h.

Clearly, condition (2) is indeed a hard restriction on the
set of admissible C1-functions h. However, there are some
interesting examples which satisfy (2).
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Example 6. 1.) For h(x) = ex we have Dh(x) = ex.
Thus, Q = Z ∈ P fulfils condition (2).

2.) For h1(x) = sin(x) and h2(x) = cos(x) we may write

Dh(x) =

(
cos(x)
− sin(x)

)
=

(
h2(x)
−h1(x)

)
= (Q ◦ h)(x),

where Q = (Z2,−Z1)
T ∈ P2×1.

3.) Also for the trigonometric function h(x) = tan(x) on
U = (−π

2 ,
π
2 ) we obtain

Dh(x) = 1 + tan(x)2 = 1 + h(x)2 = (Q ◦ h)(x),
where Q = 1 + Z2 ∈ P.

4.) For U = R \ {0} and h(x) = 1
x we have

Dh(x) = − 1

x2
= −h(x)2,

hence, Q = −Z2 ∈ P.

Remark 7. Since the composition of a polynomial and a
C1-function is again a C1-function one may think that we
can just drop F in f = F ◦ h and consider just arbitrary
C1-functions h. But then condition (2) gets harder to fulfil.

For instance, let h̃(x) = (sin(x)2, cos(x)2)T . We have

Dh̃(x) =

(
2 sin(x) cos(x)
−2 sin(x) cos(x)

)
,

which clearly can not be written as a polynomial expres-
sion of h1 and h2. But by setting F = (Z2

1 , Z
2
2 ) and

h(x) = (sin(x), cos(x))T we get h̃ = F ◦ h and h fulfils
condition (2) which has been shown in Example 6. Thus,
one should choose h cleverly “as simple as possible”.

Theorem 8. Let F ∈ Pn and let h ∈ C1(U,Rm) with
Dh = Q ◦ h, for some Q ∈ Pm×n. Set Vh = Vh(I) where
I ⊆ P is an ideal. The following are equivalent:

1.) The set Vh ⊆ U is invariant for the differential
equation ẋ = f(x) = F (h(x)).

2.) For all p ∈ Jh(Vh) the Lie derivative

LF◦h(p ◦ h)
vanishes on Vh.

3.) Every p ∈ Jh(Vh) fulfils

Dp ·Q · F ∈ Jh(Vh). (3)

Proof. By Lemma 4, statement 1.) implies 2.). Since

LF◦h(p ◦ h) = (Dp ·Q · F ) ◦ h,
the equivalence of 2.) and 3.) is clear by the definition
of Jh(Vh). We show “3.) ⇒ 1.)”. Let x0 ∈ Vh be given
and let ϕ(·, x0) denote the solution to the IVP ẋ = f(x),
x(0) = x0. We have Jh(Vh) = 〈p1, ..., pk〉 for some pi ∈ P
and Vh = Vh(Jh(Vh)). Setting

yi(t) := (pi ◦ h)(ϕ(t, x0)),

the invariance of the set Vh is equivalent to yi(t) = 0 for
all i ∈ {1, ..., k} and t ∈ J(x0). Assuming 3.), we have

Dpi ·Q · F =

k∑
j=1

lij · pj

for some lij ∈ P. Hence, differentiation yields

ẏi(t) = LF◦h(pi ◦ h)(ϕ(t, x0)) = (Dpi ·Q · F )(h(ϕ(t, x0)))

=
k∑

j=1

lij(h(ϕ(t, x
0)))yj(t).

Defining the k × k-matrix A by Aij(t) = lij(h(ϕ(t, x
0))),

we obtain the IVP

ẏ(t) = A(t)y(t), y(0) = 0.

Since A is a matrix of continuous functions on J(x0), we
deduce y ≡ 0 on J(x0), which implies 1.). �

3.2 Computational aspects

To turn (3) into an algorithmic test for invariance, let
Jh(Vh) = 〈p1, ..., pk〉 for some suitable pi ∈ P and set
p := (p1, ..., pk)

T . As a consequence of the linearity and
the product rule of differentiation, the ideal membership

(3) is equivalent to the existence of 	 ∈ Pk2

such that

Dp ·Q · F = [p1Ik, . . . , pkIk] · 	, (4)

where Ik denotes the identity matrix of size k. This con-
dition can be tested using Gröbner basis algorithms (see
Greuel and Pfister (2008) for theoretical aspects), which
are implemented in the computer algebra system Singu-
lar (Decker et al. (2022)). Moreover, we can compute the
module

M := πn(ker
[
Dp ·Q, p1Ik, . . . , pkIk

]
) ⊆ Pn,

where πn denotes the projection onto the first n compo-
nents.

Corollary 9. In the situation of Theorem 8, the set Vh is
invariant for ẋ = F (h(x)) if and only if F ∈ M.

Hence, for a fixed function class via a suitable C1-function
h and a set Vh = Vh(I), the module M describes all
polynomial vectors F such that Vh is invariant for the
system ẋ = (F ◦ h)(x).
The question remains how to find generators of Jh(Vh),
where Vh = Vh(I) for an ideal I ⊆ P. Observe that

Jh(Vh(I)) = J (h(Vh(I))) = J (V(I) ∩ im(h)).

We always have im(h) ⊆ V(Jh(U)) which, by Lemma 2,
implies

J (V(I) ∩ im(h)) ⊇ J (V(I + Jh(U))) = R
√
I + Jh(U),

but we cannot guarantee equality here. Recall, that Jh(U)
is the ideal of all algebraic dependencies between the
components of h.
The following theorem gives us sufficient criteria for which
we may derive an equality for Jh(Vh(I)).

Theorem 10. Let h ∈ C1(U,Rm) and I ⊆ P an ideal.

1.) If the image of h is a variety, that is, im(h) = V(J)
for some ideal J ⊆ P, we obtain

Jh(Vh(I)) =
R
√
I + J.

In particular, Jh(U) = R
√
J .

2.) If V(I) ⊆ im(h) or equivalently h(Vh(I)) = V(I), then
Jh(Vh(I)) =

R
√
I.

In particular, Jh(U) ⊆ R
√
I.

Proof. Part 2.) follows directly from the consideration
above this theorem. For part 1.), Lemma 2 yields

Jh(Vh(I)) = J (V(I) ∩ im(h)) = J (V(I) ∩ V(J))
= J (V(I + J)) = R

√
I + J

and Jh(U) = J (im(h)) = J (V(J)) = R
√
J . �

Let us consider a few examples which meet the assump-
tions of part 1.) or part 2.), respectively.

Definition 1. A subset S ⊆ U is called invariant for the
ODE ẋ = f(x) if for any vector x0 ∈ S, the solution
ϕ(·, x0) to the IVP ẋ = f(x), x(0) = x0 fulfils ϕ(t, x0) ∈ S
for all t ∈ J(x0).

We are particularly interested in a special class of sets.
Let P := R[Z1, ..., Zm] be the polynomial ring over R in
m ∈ N variables. A subset P ⊆ P defines the variety

V(P ) := {z ∈ Rm | p(z) = 0 for all p ∈ P}
and a subset M ⊆ Rm, in turn, defines the set

J (M) := {p ∈ P | p(z) = 0 for all z ∈ M},
which is an ideal of P. Since P is Noetherian, any ideal of
P is finitely generated. The following results are folklore
and easy to see.

Lemma 2. The operators V and J have the following
properties:

1.) V and J are inclusion-reversing.
2.) P ⊆ J (V(P )) and S ⊆ V(J (S)) for P ⊆ P, S ⊆ Rm.
3.) J ◦ V ◦ J ≡ J and V ◦ J ◦ V ≡ V.
4.) V(I) ∩ V(J) = V(I + J) for ideals I, J ⊆ P.

5.) J (V(I)) = R
√
I for any ideal I ⊆ P, where R

√
I denotes

the real radical of I (see e.g. Bochnak et al. (1998)).

For arbitrary l, k ∈ N and a function q ∈ C1(Ũ ,Rl) with

an open subset Ũ ⊆ Rk we define the Jacobian matrix of
q by

Dq :=




∂q1
∂x1

· · · ∂q1
∂xk

...
. . .

...
∂ql
∂x1

· · · ∂ql
∂xk


 .

Furthermore, for q ∈ C1(Ũ ,R), let the Lie derivative of q

along g ∈ C1(Ũ ,Rk) be defined by

Lg(q) := Dq · g =

k∑
i=1

∂q
∂xi

· gi,

which is again a C1-function on Ũ .
Now if we have two polynomial functions f ∈ Pm and
q ∈ P, then also Lf (q) ∈ P is polynomial and we get
the following folklore result, which provides the key to
symbolic computations for polynomial systems (see, for
instance, Zerz and Walcher (2012) or Harms et al. (2017)).

Lemma 3. Let f ∈ Pm and a variety V ⊆ Rm be given.
Then V is invariant for the ODE ẋ = f(x) if and only if

Lf (J (V )) ⊆ J (V ).

3. AUTONOMOUS CASE

We wish to extend the class of functions for which this
last result stays true. A standard result is that in the more
general setting of the beginning of Section 2 at least one
direction of Lemma 3 stays true. We state this here with
proof for the sake of completeness:

Lemma 4. Let f ∈ C1(U,Rn), q ∈ C1(U,R) and S ⊆ U . If
S is invariant for the ODE ẋ = f(x) and q vanishes on S,
then Lf (q) vanishes on S.

Proof. Let S be invariant and let q vanish on S. Then,
for all x0 ∈ S and all times t ∈ J(x0) we have

q(ϕ(t, x0)) = 0,

where ϕ(·, x0) denotes the solution to the IVP ẋ = f(x),
x(0) = x0. Differentiation yields

0 = ∂
∂tq(ϕ(t, x

0)) = Lf (q)(ϕ(t, x
0))

for all t ∈ J(x0), which implies Lf (q)(x
0) = 0. Hence,

Lf (q) vanishes on S. �

3.1 Extension of the function class

In order to generalise the pure polynomial case as treated
in Lemma 3, we first construct a more general version of
varieties and of our considered ODE systems and give
assumptions on these constructions with which we are
allowed to find invariance criteria afterwards.

For arbitrary h ∈ C1(U,Rm) and P ⊆ P we define the set

Vh(P ) := {x ∈ U | p(h(x)) = 0 for all p ∈ P}
and for S ⊆ U the set

Jh(S) := {p ∈ P | p(h(x)) = 0 for all x ∈ S}.
Clearly, the latter is a finitely generated ideal of P. The
connection to the operators V and J is as follows. We have

Vh(P ) = h−1(V(P )) and h(Vh(P )) = V(P ) ∩ im(h)

as well as
Jh(S) = J (h(S)).

Again, Vh and Jh are inclusion-reversing, we obtain

P ⊆ J (V(P )) ⊆ Jh(Vh(P )) and S ⊆ Vh(Jh(S))

for all P ⊆ P, S ⊆ U , as well as Jh ◦ Vh ◦ Jh ≡ Jh and
Vh ◦ Jh ◦ Vh ≡ Vh (cf. Lemma 2).

Example 5. It is Vh(P) = ∅, Vh({0}) = U , and Jh(∅) = P.
The ideal

Jh(U) = {p ∈ P | p ◦ h = 0}
consists of all algebraic dependencies between the compo-
nents of h and is contained in every ideal Jh(S) for S ⊆ U .
This implies

I + Jh(U) ⊆ Jh(Vh(I))

and Vh(I + Jh(U)) = Vh(I) for every ideal I ⊆ P.

After these preparations, we consider more general ODE
systems as in (1) in which the vector field f takes the form

f = F ◦ h,
where F ∈ Pn is polynomial and h ∈ C1(U,Rm) fulfils the
additional condition that the Jacobian matrix of h can be
written as

Dh = Q ◦ h, for some Q ∈ Pm×n. (2)

Hence, the pure polynomial case as treated in Zerz and
Walcher (2012) corresponds to the choices m = n and
h = idRn , the identity on Rn. In this case Q is just the
identity matrix of size n.

Condition (2) allows to prove a similar statement as in
Lemma 3 for this more general setting (see Theorem 8)
and is motivated by computing the Lie derivative of p ◦ h,
for p ∈ P, along f = F ◦ h:

LF◦h(p ◦ h) = D(p ◦ h) · (F ◦ h)
= ((Dp) ◦ h) ·Dh · (F ◦ h)
= (Dp ·Q · F ) ◦ h.

Clearly, condition (2) is indeed a hard restriction on the
set of admissible C1-functions h. However, there are some
interesting examples which satisfy (2).
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Example 11. 1.) If h ∈ C1(U,Rm) is surjective, then

im(h) = Rm = V({0}).
In particular, no algebraic dependencies between the
components of h occur, that is, Jh(U) = {0} and

Jh(Vh(I)) =
R
√
I for any ideal I, using Theorem 10.

For example, the tangent function h(x) = tan(x) is
surjective on U = (−π

2 ,
π
2 ).

2.) It is easy to see that

im((sin(x), cos(x))T ) = V(Z2
1 + Z2

2 − 1).

So, this example fulfils the assumptions of the first
part of Theorem 10 and for an arbitrary ideal I of
R[Z1, Z2] we have Jh(Vh(I)) =

R
√
I + 〈Z2

1 + Z2
2 − 1〉.

Furthermore, the observation

im((x, 1
x )

T ) = V(Z1 · Z2 − 1)

leads to Jh(Vh(I)) =
R
√
I + 〈Z1 · Z2 − 1〉.

3.) On the other side we cannot write the image of
h(x1, x2) = (ex1 , ex2) as a zero set of polynomials.
But for every ideal I ⊆ R[Z1, Z2] with V(I) ⊆ R2

>0

we have Jh(Vh(I)) =
R
√
I by part 2.) of Theorem 10.

Remark 12. In the situation of Theorem 8, let q ∈ Jh(U)
be an algebraic dependence between the components of h.
Then we also have

Dq ·Q · F ∈ Jh(U) ⊆ Jh(Vh)

for every F ∈ Pn. Moreover, the module M always
contains the submodule Jh(U)·Pn whose elements F yield
the zero vector field F ◦ h = 0. Thus, we may also do
calculations in the factor ring P/Jh(U) instead of P if
Jh(U) is known. Otherwise, we still can simplify condition
(4) as follows. If one of the generators p1, ..., pk of Jh(Vh)
lies in Jh(U), say pk ∈ Jh(U), we may omit pk in the
computation of the matrix Dp in (4).

4. CONTROLLED INVARIANCE

Consider the control system

ẋ(t) = F (h(x(t))) +G(h(x(t)))u(t), (5)

where F ∈ Pn and G ∈ Pn×l are polynomial and
h ∈ C1(U,Rm) is a C1-function defined on some open set
U ⊆ Rn. Let I be an ideal of P. One says that Vh = Vh(I)
is controlled invariant for system (5) if there exists an
α ∈ P l such that the feedback law u(t) = α(h(x(t)))

will lead to a closed loop system ẋ(t) = F̃ (h(x(t))) with

F̃ := F +Gα for which Vh is invariant.

Based on the theory of the previous section, we derive the
following recipe to check the controlled invariance of Vh

for system (5):

First, we check if h fulfils the condition

Dh = Q ◦ h, for some Q ∈ Pm×n.

If it is possible, determine an ideal J ⊆ P such that

im(h) = V(J)
or validate that

im(h) ⊆ V(I).
Note, that system (5) might not be expressible by unique
F , G, and h and different choices of these functions may
also lead to different results in this validation process (see
Remark 7).
Afterwards, determine generators for Jh(Vh(I)) (Theorem

10) and the module M, generated by m1, ...,ms ∈ Pn,
using (4) and Remark 12. Then, the set Vh is controlled

invariant for system (5) if and only if F̃ = F + Gα ∈ M
for some α ∈ P l which is equivalent to

F ∈ M+ im(G ·). (6)

If this is the case, we may choose the feedback law

u(t) = α(h(x(t)))

with α = πl(y) ∈ P l, where πl(·) denotes the projection
onto the last l components and y ∈ Ps+l is a solution of

F = [m1, . . . ,ms,−G] · y.
The set of all such solutions α = πl(y) is either empty or
has the structure of an affine module.

We close this section applying the developed theory to a
commonly known nonlinear control system:

Example 13. Consider the unicycle model

ẋ1 = cos(x3) · u1

ẋ2 = sin(x3) · u1

ẋ3 = u2.

The state variables x1 and x2 indicate the position of
the unicycle in the plane R2 and x3 defines the unicycle
orientation. The speed of the unicycle is set by the input
variable u1 while u2 sets the angular velocity of the
unicycle orientation.

In order to apply the theory developed in this paper, we
set P = R[Z1, Z2, Z3, S, C], U = R3, and

h(x) = (x1, x2, x3, sin(x3), cos(x3))
T .

Then the system is given by ẋ = F (h(x)) + G(h(x)) · u,
where

F =

[
0
0
0

]
∈ P3 and G =

[
C 0
S 0
0 1

]
∈ P3×2.

The desired conditions on h are fulfilled, since we obtain
Dh = Q ◦ h for

Q =




1 0 0
0 1 0
0 0 1
0 0 C
0 0 −S


 ∈ P5×3

and

im(h) = R3 × im((sin(x3), cos(x3))
T ) = V(q)

for q = S2 + C2 − 1 ∈ P.

Now consider the set Vh = Vh(p) defined by

p = Z2
1 + Z2

2 − 2Z1S + 2Z2C ∈ P.

Note that for fixed x3 ∈ R, the set Vh contains the circle
with radius 1 around (sin(x3),− cos(x3))

T ∈ R2. From
Theorem 10 we derive

Jh(Vh) =
R
√
〈p, q〉

and using Singular (Decker et al. (2022)), we compute
the module M:

M = 〈

[
C
S
1

]
,

[−Z2

Z1

1

]
〉+ p · P3 + q · P3.

Setting the input to zero, i.e. u = (0, 0)T , we obtain the
trivial system ẋ = 0 for which every set is invariant. Apart
from the zero solution, we can choose α = (1, 1)T ∈ P2.
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x1

x2

Fig. 1. Unicycle: Trajectories of the unicycle starting in
(0, 0, kπ

4 )T , k ∈ {0, ..., 7}, with constant input u1 = 1

and u2 = 1, projected into the plane R2

Then the feedback law u = α(h(x)) = (1, 1)T yields the

closed loop system ẋ = F̃ (h(x)) with

F̃ = F +Gα = (C, S, 1)T ∈ M,

such that Vh is controlled invariant by (6).

For illustration, we consider some trajectories of this closed
loop system. We have x0 = (0, 0, θ)T ∈ Vh for all θ ∈ R
and obtain

ϕ(t, x0) = (sin(t+ θ)− sin(θ),− cos(t+ θ)+ cos(θ), t+ θ)T

for all t ∈ R. Figure (1) shows some of this trajectories
projected into the plane R2. Since we chose constant speed
(u1 = 1) and constant angular velocity (u2 = 1), the
unicycle moves along different circles, when starting in
(x0

1, x
0
2)

T = (0, 0)T with different angles x0
3 = θ ∈ R. But

we also observe that the first two components of ϕ(t, x0) lie
on the circle with radius 1 around (sin(t+θ),− cos(t+θ))T

for all t ∈ R, hence, ϕ(t, x0) ∈ Vh for all t ∈ R, which
illustrates the invariance of Vh.

5. CONCLUSION

In this paper, we have presented criteria to decide the
controlled invariance of a set Vh = Vh(I) for a control
system of the form (5). A natural question arising in
this context is whether it is possible to choose an output
feedback instead of a state feedback to render the set Vh

invariant. In the case of polynomial systems, this has been
studied in Yuno and Ohtsuka (2015) and Schilli et al.
(2020) and their results may be generalised to the setting
of this present paper. This is a topic for future work.
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Example 11. 1.) If h ∈ C1(U,Rm) is surjective, then

im(h) = Rm = V({0}).
In particular, no algebraic dependencies between the
components of h occur, that is, Jh(U) = {0} and

Jh(Vh(I)) =
R
√
I for any ideal I, using Theorem 10.

For example, the tangent function h(x) = tan(x) is
surjective on U = (−π

2 ,
π
2 ).

2.) It is easy to see that

im((sin(x), cos(x))T ) = V(Z2
1 + Z2

2 − 1).

So, this example fulfils the assumptions of the first
part of Theorem 10 and for an arbitrary ideal I of
R[Z1, Z2] we have Jh(Vh(I)) =

R
√
I + 〈Z2

1 + Z2
2 − 1〉.

Furthermore, the observation

im((x, 1
x )

T ) = V(Z1 · Z2 − 1)

leads to Jh(Vh(I)) =
R
√
I + 〈Z1 · Z2 − 1〉.

3.) On the other side we cannot write the image of
h(x1, x2) = (ex1 , ex2) as a zero set of polynomials.
But for every ideal I ⊆ R[Z1, Z2] with V(I) ⊆ R2

>0

we have Jh(Vh(I)) =
R
√
I by part 2.) of Theorem 10.

Remark 12. In the situation of Theorem 8, let q ∈ Jh(U)
be an algebraic dependence between the components of h.
Then we also have

Dq ·Q · F ∈ Jh(U) ⊆ Jh(Vh)

for every F ∈ Pn. Moreover, the module M always
contains the submodule Jh(U)·Pn whose elements F yield
the zero vector field F ◦ h = 0. Thus, we may also do
calculations in the factor ring P/Jh(U) instead of P if
Jh(U) is known. Otherwise, we still can simplify condition
(4) as follows. If one of the generators p1, ..., pk of Jh(Vh)
lies in Jh(U), say pk ∈ Jh(U), we may omit pk in the
computation of the matrix Dp in (4).

4. CONTROLLED INVARIANCE

Consider the control system

ẋ(t) = F (h(x(t))) +G(h(x(t)))u(t), (5)

where F ∈ Pn and G ∈ Pn×l are polynomial and
h ∈ C1(U,Rm) is a C1-function defined on some open set
U ⊆ Rn. Let I be an ideal of P. One says that Vh = Vh(I)
is controlled invariant for system (5) if there exists an
α ∈ P l such that the feedback law u(t) = α(h(x(t)))

will lead to a closed loop system ẋ(t) = F̃ (h(x(t))) with

F̃ := F +Gα for which Vh is invariant.

Based on the theory of the previous section, we derive the
following recipe to check the controlled invariance of Vh

for system (5):

First, we check if h fulfils the condition

Dh = Q ◦ h, for some Q ∈ Pm×n.

If it is possible, determine an ideal J ⊆ P such that

im(h) = V(J)
or validate that

im(h) ⊆ V(I).
Note, that system (5) might not be expressible by unique
F , G, and h and different choices of these functions may
also lead to different results in this validation process (see
Remark 7).
Afterwards, determine generators for Jh(Vh(I)) (Theorem

10) and the module M, generated by m1, ...,ms ∈ Pn,
using (4) and Remark 12. Then, the set Vh is controlled

invariant for system (5) if and only if F̃ = F + Gα ∈ M
for some α ∈ P l which is equivalent to

F ∈ M+ im(G ·). (6)

If this is the case, we may choose the feedback law

u(t) = α(h(x(t)))

with α = πl(y) ∈ P l, where πl(·) denotes the projection
onto the last l components and y ∈ Ps+l is a solution of

F = [m1, . . . ,ms,−G] · y.
The set of all such solutions α = πl(y) is either empty or
has the structure of an affine module.

We close this section applying the developed theory to a
commonly known nonlinear control system:

Example 13. Consider the unicycle model

ẋ1 = cos(x3) · u1

ẋ2 = sin(x3) · u1

ẋ3 = u2.

The state variables x1 and x2 indicate the position of
the unicycle in the plane R2 and x3 defines the unicycle
orientation. The speed of the unicycle is set by the input
variable u1 while u2 sets the angular velocity of the
unicycle orientation.

In order to apply the theory developed in this paper, we
set P = R[Z1, Z2, Z3, S, C], U = R3, and

h(x) = (x1, x2, x3, sin(x3), cos(x3))
T .

Then the system is given by ẋ = F (h(x)) + G(h(x)) · u,
where

F =

[
0
0
0

]
∈ P3 and G =

[
C 0
S 0
0 1

]
∈ P3×2.

The desired conditions on h are fulfilled, since we obtain
Dh = Q ◦ h for

Q =




1 0 0
0 1 0
0 0 1
0 0 C
0 0 −S


 ∈ P5×3

and

im(h) = R3 × im((sin(x3), cos(x3))
T ) = V(q)

for q = S2 + C2 − 1 ∈ P.

Now consider the set Vh = Vh(p) defined by

p = Z2
1 + Z2

2 − 2Z1S + 2Z2C ∈ P.

Note that for fixed x3 ∈ R, the set Vh contains the circle
with radius 1 around (sin(x3),− cos(x3))

T ∈ R2. From
Theorem 10 we derive

Jh(Vh) =
R
√
〈p, q〉

and using Singular (Decker et al. (2022)), we compute
the module M:

M = 〈

[
C
S
1

]
,

[−Z2

Z1

1

]
〉+ p · P3 + q · P3.

Setting the input to zero, i.e. u = (0, 0)T , we obtain the
trivial system ẋ = 0 for which every set is invariant. Apart
from the zero solution, we can choose α = (1, 1)T ∈ P2.


