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Abstract

Effectively modeling and quantifying behavior is essential for our understanding of the
brain. Modeling behavior in naturalistic settings in social and multi-subject tasks remains a
significant challenge. Modeling the behavior of different subjects performing the same task
requires partitioning the behavioral data into features that are common across subjects, and
others that are distinct to each subject. Modeling social interactions between multiple
individuals in a freely-moving setting requires disentangling effects due to the individual as
compared to social investigations. To achieve flexible disentanglement of behavior into
interpretable latent variables with individual and across-subject or social components, we
build on a semi-supervised approach to partition the behavioral subspace, and propose a
novel regularization based on the Cauchy-Schwarz divergence to the model. Our model,
known as the constrained subspace variational autoencoder (CS-VAE), successfully models
distinct features of the behavioral videos across subjects, as well as continuously varying
differences in social behavior. Our approach vastly facilitates the analysis of the resulting
latent variables in downstream tasks such as uncovering disentangled behavioral motifs, the
efficient decoding of a novel subject’s behavior, and provides an understanding of how
similarly different animals perform innate behaviors.

eLife assessment

This paper is a valuable step in multi-subject behavioral modeling using an extension
of the Variational Autoencoder (VAE) framework. Using a novel partition of the latent
space and in tandem with a recently proposed regularization scheme, the paper
provides a rich set of computational analyses analyzing social behavior data of mice
with results that represent the state-of-the-art in this subfield. The strength of
evidence is convincing, with the methodology being well documented and the
results being reproducible, although some additional quantifications would have
been useful to fully gauge the circumstances where the approach would be most
effectively applied.
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7 eLife
1 Introduction

Effective study of the relationship between neural signals and ensuing behavior relies on our
ability to measure and adequately quantify behavior. Historically, behavior has been quantified
by a very small number of markers as the subject performs the task, for example, force sensors on
levers. However, advancement in hardware and storage capabilities, as well as computational
methods applied to video data, has allowed us to increase the quality and capability of behavioral
recordings to videos of the entire subject that can be processed and analyzed quickly. It is now
widely recognized that understanding the relationship between complex neural activity and high-
dimensional behavior is a major step in understanding the brain that has been undervalued in the
past [1(4, 2(3]. However, the analysis of high-dimensional behavioral video data across subjects
is still a nascent field, due to the lack of adequate tools to efficiently disentangle behavioral
features related to different subjects. Moreover, as recording modalities become light-weight and
portable, neural and behavioral recordings can be performed in more naturalistic settings, which
are difficult for behavioral analysis tools to disentangle due to changing scenes.

Although pose estimation tools that track various body parts in a behavioral video are very
popular, they fail to capture smaller movements and rely on the labeler to judge which parts of
the scene are important to track [3(4, 4%, 5, 64, 7(3]. Unsupervised techniques have gained
traction to circumvent these problems. These include directly applying dimensionality reduction
methods such as Principal Component Analysis (PCA) and Variational Autoencoders (VAES) to
video data [2(2, 8 (2, 92 ]. However, understanding or segmentation of the latent variables is
difficult for any downstream tasks such as motif generation. To combine the best of both worlds,
semi-supervised VAEs have been used for the joint estimation of tracked body parts and

unsupervised latents that can effectively describe the entire image [2 (2 ]. These have not been

frame of each subject’s video as a context frame to define individual differences; however, this
method only works with a discrete set of labeled sessions or subjects. These methods fail when
applied without labeled subject data, or more importantly, when analyzing freely-behaving social
behavior, due to continuously shifting image distributions that confound the latent space.

With increasing capabilities to effectively record more naturalistic data in neuroscience, there is a
growing demand for behavioral analysis methods that are tailored to these settings. In this work,
we model a continuously varying distribution of images, such as in freely moving and multi-
subject behavior, by using a novel loss term called the Cauchy-Schwarz Divergence (CSD) [11#,

pre-defined and flexible distribution, thus leading to an unbiased approach towards latent
separation. Here, the CSD is an effective variational regularizer that separates the latents
corresponding to images with different appearances, thus successfully capturing ‘background’
information of an individual. This background information can be the difference in lighting
during the experiment, the difference in appearance across mice in a multi-subject dataset, or the
presence of another subject in the same field of view as in a social interaction dataset.

To further demonstrate the utility of our approach, we show that we can recover behavioral
motifs from the resulting latents in a seamless manner. We recover (a) the same motifs across
different animals performing the same task, and (b) motifs pertaining to social interactions in a
freely moving task with two animals. Furthermore, we show the neural decoding of multiple
animals in a unified model, with benefits towards the efficient decoding of the behavior of a novel
subject. Finally, we compare the commonalities in neural activity across different trials in the
same subject to those across subjects for different types of behavior motifs, e.g. task-related and
spontaneous.
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% eLife Related Works
Pose estimation tools such as DeepLabCut (DLC) and LEAP have been broadly applied to
neuroscience experiments to track the body parts of animals performing different tasks, including
in the social setting [3(%3, 42, 5, 62, 72 ]. These are typically supervised techniques that
require extensive manual labeling. Although these methods can be sample-efficient due to the use
of transfer learning methods, they still depend inherently on the quality of the manual labels,
which can differ across labelers. Moreover, these methods may be missing key information in
these behavioral videos that are not captured by tracking the body parts, for example, movements

of the face, the whiskers, and smaller muscles that comprise a subject’s movements.

Emerging unsupervised methods have demonstrated significant potential in directly modeling
behavioral videos. A pioneer in this endeavor was MoSeq, a behavioral video analysis tool that
similar to MoSeq, but uses autoencoders to more effectively reduce the dimensionality of the
representation [8 (% ]. However, the corresponding latent variables in these models are typically

a semi-supervised approach that uses the labels generated using pose estimation methods such as
DLC in order to partition the latent representation into both supervised and unsupervised
subspaces. The ‘supervised’ latent subspace captures the parts that are labeled by pose estimation
software, while the ‘unsupervised’ latent subspace encodes the parts of the image that have not
been accounted for by the supervised space. While PS-VAE is very effective for a single subject, it
does not address latent disentaglement in the ‘unsupervised’ latent space, and is not able to model
multi-subject or social behavioral data.

Modeling multiple sessions has recently been examined in two approaches: MSPS-VAE and DBE
number of sessions or subjects. In MSPS-VAE, an extension to PS-VAE, a latent subspace is
introduced in the model that encodes the static differences across sessions. In DBE, a context
frame from each session or subject is used as a static input to generate the behavioral embeddings.
Two notable requirements of applying both these methods is the presence of a discrete number of
labeled sessions or subjects in the dataset. Therefore, these are not well suited for naturalistic
settings where the session / subject identity might not be known a priori, or the scene might be
continuously varying, for example, in the case of subjects roaming in an open-field.

2 Results

2.1 CS-VAE Model Structure

Although existing pose estimation methods are capable enough to capture the body position of the
animals in both open and contained space, tracking specific actions such as shaking and wriggling
still remains a problem. However, a purely unsupervised or semi-supervised model such as a VAE
or PS-VAE lacks the ability to extract meaningful and interoperable behaviors from multi-subject
or social behavioral videos. One possible solution is to add another set of latent which could
capture the variance across individuals and during social interactions. Instead of constraining the
data points from different sessions or subjects to distinct parts of the subspace asin [2(Z, 102 ],
we directly constrain the latent subspace to a flexible prior distribution using a Cauchy-Schwarz
regularizer as detailed in the Methods section. Ideally, this constrained subspace (CS) captures the
difference between different animals in the case of a multi-subject task and the social interactions
in a freely-behaving setting, while the supervised and unsupervised latents are free to capture the
variables corresponding to the individual. The model structure described above is shown in Fig.
1. After the input frames go through a series of convolutional layers, the resulting latent splits
into three sets. The first set contains the supervised latents, which encodes the specific body
position as tracked by supervised tracking methods such as DLC. The unsupervised latents capture
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the rest of the individual’s behavior that are not captured by supervised latents. The CS latents
capture the continuous difference across frames. The prior distribution can be changed to fit
different experimental settings (and can be modeled as a discretized state space if so desired,
making it close to the MSPS-VAE discussed in the Introduction).

7 eLife

2.2 Modeling Smooth Variations in a Simulated Dataset

We performed a simulation study on the behavioral videos of one of the mice in the ‘Multi-Subject
Behavior’ dataset detailed in Appendix .1 . We applied a continuously varying contrast ratio
throughout the trials (Fig. 2A ) to model smoothly varying lighting differences across the dataset.
We then randomly shuffled all the trials and trained a CS-VAE model with a swiss roll as a prior
distribution. Here, the R2 for the supervised labels was 0.881 + 0.05 (Fig. 2C%), and the mean
squared error (MSE) for reconstructing the entire frame was 0.0067 + 0.0003, showing that both
the images and the labels were fit well.

We show the CS latents recovered by the model in Fig. 2B, which follow the contrast ration
distribution. We also show latent traversals in Fig. 2D-F 2, which demonstrate that the CS latent
successfully captured the contrast changes in the frames (Fig. 2D (), the supervised latent
successfully captured the corresponding labeled body part (Fig. 2E#), and the unsupervised
latent captured parts of the individual’s body movement with a strong emphasis on the jaw (Fig.
2F @). Thus, we show that smoothly varying changes in the videos are well captured by our model.

2.3 Modeling Multi-Subject Behavior

In a multi-subject behavioral task, we would like to disentangle the commonalities in behavior
from the differences across subjects. Here, we test the CS-VAE on an experimental dataset with
four different mice performing a two-alternative forced choice task (2AFC): head-fixed mice
performed a self-initiated visual discrimination task, while the behavior was recorded from two
different views (face and body). The behavioral video includes the head-fixed mice as well as
experimental equipment such as the levers and the spouts. We labeled the right paw, the spouts,
and the levers using DLC [3(Z]. Neural activity in the form of widefield calcium imaging across the

Reconstruction Accuracy

The CS-VAE model results in a mean label reconstruction accuracy R?=0.926 + 0.02 (Fig. 3B,C@),
with the MSE for frame reconstruction as 0.00232 + 7.7 - 10> (Fig. 3A ). This was comparable to
the results obtained using a PS-VAE model (R? = 0.99 + 0.004, MSE = 0.13 + 4.5 - 1077).

Disentangled Latent Space Representation

We show latent traversals for each mouse in Fig. 4 @, with the base image chosen separately for
each mouse (videos in Supplementary Material 3). We see that, even for different mice, the
supervised latent can successfully capture the corresponding labeled body part (Fig. 4A2). The
example unsupervised latent is shown to capture parts of the jaw of each mouse (Fig. 4B(%), and
is well-localized, comparable with the example supervised latent. The CS latent dimension encodes
many different parts of the image, and has a large effect on the appearance of the mouse,
effectively changing the appearance from one mouse to another, signifying that it is useful in the
case of modeling mouse-specific differences (Fig. 4C 3). We demonstrate the abilities of the CS
latent in capturing the appearance of the mouse by directly changing the CS latent from one part
of subspace to another (Figure 4D (©). The changes in appearance along with the invariance in
actions shows the intraoperability between mice by only changing the CS latents in this model
(Fig. 4D ).
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Figure 1

Overview of the Constrained Subspace Variational Autoencoder (CS-VAE). The latent space is divided in three parts: (1) the supervised latents decode the
labeled body positions, (2) the unsupervised latents model the individual’s behavior that is not explained by the supervised latents, and (3) the
constrained subspace latents model the continuously varying features of the image, e.g., relating to multi-subject or social behavior. After training the
network, the generated latents can be applied to several downstream tasks. Here we show two example tasks: (1) Motif generation: we apply state
space models such as hidden Markov models (HMM) and switched linear dynamical systems (SLDS), with the behavioral latent variables as the
observations; (2) Neural decoding: with neural recordings such as widefield calcium imaging, corresponding behaviors can be efficiently predicted for

novel subjects.
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(A) Simulated dataset: behavioral videos from one mouse with artificially simulated differences in contrast. (B) Distribution occupied by the 3 CS
latents.The constrained latents are distributed according to the pre-defined prior: a Swiss roll distribution. Different contrast ratios separate well in
space. (C) Left: R values for label reconstruction; Right: visualization of label reconstruction for an example trial. Latent traversals for (D) CS latents,
each of which captures lower, medium, and higher contrast rate. (E) An example supervised latent captures lever movement, and (F) an example

unsupervised latent which captures jaw movement.
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Figure 3

Modeling the behavior of four different mice. A. Image reconstruction result for an example frame from each mouse. B. Label reconstruction result for
an example trial. C. R? value for label reconstruction for all mice. D. (Left) CS latent and (Right) unsupervised latent distributions for all mice generated
using our CS-VAE model. On the left, we see that the CS latent distribution follows the pre-defined prior distribution and is well separated; on the right,
we see that the unsupervised latent distribution is well overlapped across mice. E. Unsupervised latent distribution for all mice generated using the
comparison PS-VAE model, where the latents from different mice are separate from each other. F. SVM classification accuracy for classifying different
mice using the CS-VAE and PS-VAE latents. The unsupervised latents generated by the CS-VAE has low classification accuracy, indicating across-subject
representations, and the CS latents have a classification accuracy close to one, indicating good separation.
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Ideally, we would like to uncover common across-subject variables using the supervised and
unsupervised latents subspaces, and have the individual differences across subjects be encoded in
the CS latents. Thus, we expect the unsupervised latents to not be able to classify the individual
well. In fact, Fig. 3D,F @2 show that the unsupervised latents overlap well across the four mice and
perform close to chance level (0.25) in a subject-classification task using SVM (details in Appendix
??). This signifies that unsupervised latents occupy the same values across all four mice and thus
effectively capture across-subject behavior. In fact, we tested our latent space by choosing the
same base image across the four mice, and found that the supervised and unsupervised latents
from different mice can be used interchangeably to change the actions in the videos, also showing
interoperability between different mice in these latent subspaces (Appendix .92).

7 eLife

This is in stark contrast to the CS latents, which are well separated across mice and are able to be
classified well (Fig. 3D,F (@); thus, they effectively encode for individual differences across
subjects. Note that our method did not a prior know the identity of the subjects, and thus this
shows that the CS latents achieve separation in an unsupervised manner. We also note that the CS
latents are distributed in the shape of the chosen prior distribution (a circle). The separation in the
unsupervised latent space obtained by the baseline PS-VAE shown in Fig. 3E(Z and the latents’
ability to classify different subjects (Fig. 3F @) further validates the utility of CS-VAE.

Lastly, we trained the model while using prior distributions of different types, to understand the
effect on the separability of the resulting latents. The separability was comparable across a
number of different prior distributions, such as a swiss roll and a plane, signifying that the exact
type of prior distribution does not play a large role.

Across-Subject Motif Generation

To further show that the supervised and unsupervised latents produced by CS-VAE are
interoperable between the different mice, we apply a standard SLDS model (Appendix .6 %) to
uncover the motifs using this across-subject subspace. As seen in the ethograms (left) and the
histograms (right) in Fig. 5 @, the SLDS using the CS-VAE latents captures common states across
different subjects, indicating that the latents are well overlapped across mice. The supervised
latents related to equipment in the experiment, here the spout and lever, split the videos into four
states (different colors in the ethograms in Fig. 5A @), that we could independently match with
ground truth obtained from sensors in these equipment. The histograms show that, as expected,
these states occur with a very similar frequency across mice. We also explored the behavioral
states related to the right paw. The resulting three states captured the idle vs. slightly moving vs.
dramatically moving paw (Fig. 5B(%). The histograms show that these states also occur with a very
similar frequency across mice. Videos for all these states are available in Supplementary Material
2. The inference drawn from supervised latents is directly proportional to the DLC labels. Hence, a
similar conclusion can be arrived at by utilizing the DLC pose estimations. Nonetheless, the
subsequent outcomes cannot be attained solely based on the poses. We extracted the behavioral
states related to the unsupervised latents, which yielded 3 states related to raising of the paws
(including grooming) and jaw movements (including licking) that are present in all four mice, as
shown in Fig. 5C @. We see that different mice have different tendencies to lick and groom, e.g.,
mouse 1 and 4 seem to groom more often.

As a baseline, we repeat this exercise on the latents of a single VAE trained to reconstruct the
videos of all four mice (Fig. 5D 2). We see that the latents obtained by the VAE do not capture
actions across subjects, and fail to cluster the same actions from different subjects into the same
group.
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Figure 4

Latent traversals for behavioral modeling of four different mice for A. an example supervised latent that captures the left spout across all the subjects, B.
an example unsupervised latent that captures the chest of the mice, and C. an example CS latent that successfully captures the mouse appearance. D.
Changing the value of the CS latent in an example frame leads to a change in subject, while keeping the same action as in the example frame.
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Motif generation for across-subject (supervised and unsupervised) behavioral latents using CS-VAE. SLDS results for CS-VAE latents: A. Supervised
latents relating to equipment in the field of view. The equipment actions are similar for each trial. B. Supervised latents relating to tracked body parts.
The ethograms for each trial across subjects and between subjects are very similar. The histogram indicates the number of frames occupied by each
action per mouse. This further confirms the similarities between the supervised latents across subjects. C. Unsupervised latents also look similar across
mice. Here, some example consecutive frames from the ‘raise pow’ motif are shown, which show the mouse grooming. D. As a comparison, SLDS results
for the latents generated by a VAE, which failed to produce across-subject motifs.
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“elife Efficient Neural Decoding via Transfer Learning

To understand the relationship between neural activity and behavior, we decoded each behavioral
latent with neural data across the dorsal cortex recorded using widefield calcium imaging. The
decoding results for the supervised latents were similar across the CS-VAE and the PS-VAE, but we
show that the neural data was also able to capture the CS-VAE unsupervised latents well
(Appendix .102).

Next, as a final test of interoperability of the individual latents across mice, we used a transfer
learning approach. We first trained an LSTM decoding model on 3 of the 4 mice, and then tested
that model on the 4™ mouse while holding the LSTM weights constant but training a new dense
layer leading to the LSTM (Fig. 6A %, details in Appendix .10 %). As a baseline, we compared the
performance of an individual LSTM model trained only on the 4™ mouse’s data. We see in Fig.
6B that, as the training set of the 4™ mouse becomes smaller, the transfer learning model
outperforms the baseline with regards to both time and accuracy (more results and baseline
comparisons in Appendix .10(®%).

Neural Correlations across Mice during
Spontaneous and Task-Related Behaviors

Here we explore the neural activity correlations while the subjects perform similar spontaneous
behaviors vs. task-related behaviors. Across mice, we automatically identify spontaneous
behaviors such as grooming and task-related behaviors such as lever pulls. We first separate the
behavior from the same motif into small segments and kept the segments that have similar means
and standard deviations within and across animals as shown in Fig. 7B(Z . Next, we explore the
commonalities between the neural activity of different mice as they perform these tasks by
transforming the neural activity into a common subspace, using Multidimensional Canonical
Correlation Analysis (MCCA). Here, we adopt the assumptions in Safaie et al. [?] that when the
animals perform the same actions, the neural latent will share similar dynamics. We employ
MCCA to align the high-dimensional neural activity across multiple subjects[?]. To do this, MCCA
projects the datasets onto a canonical coordinate space that maximizes correlations between them
(Fig. 7 C& . method details in Appendix .112). Finally, we compare the commonalities across
different trials in the same subject to those across subjects for different types of behaviors. In Fig.
7D (4, we see that for the idle behavior, the neural correlation across mice is much lower than the
correlation within the same mouse; however, this does not hold for the task-related behaviors
such as lever pull and licking, or the spontaneous behaviors such as grooming. For the grooming
behavior, the neural correlations within and across subjects are much higher than for the idle
behaviors, and in fact, even higher than the task-related behaviors. This may be due to innate
behaviors having common neural information pathways across mice, whereas learnt behaviors
may display significant differences across mice. Considering the region-based differences in
commonalities, the sensory areas such as the visual and the somatosensory areas are much more
highly correlated across mice for all behaviors as compared to motor behaviors. This may be due
to the similarities in sensory feedback due to these similar behaviors but is a topic of future
exploration.

2.4 Modeling Freely-Moving Social Behavior

The dataset consists of a 16 minute video of two adult novel C57BL/6] mice, a female and a male,
interacting in a clean cage. Prior to the recording session the mice were briefly socially isolated for
15 minutes to increase interaction time. As preprocessing, we aligned the frame to one mouse and
cropped the video (schematic in Fig. 8A % ; details in the Appendix .2(%). We tracked the nose
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A. Transfer learning model framework. Each of the four mice has a specific dense layer for aligning the neural activities. After the model is trained using
three mice, the across-subject Recurrent Neural Network (RNN) layer is fixed and transferred to the fourth mouse. As a comparison, we trained a novel
RNN model for the fourth mouse and compared the accuracy with the transfer learning model B. R and training time trade-off for individual vs. transfer
learning model as the size of the training set decreases. As the training set decreases, the transfer learning has a better performance than the
individually trained model with regards to both time and R? accuracy.
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A.The overall workflow for comparing the neural activities for different subjects performing similar spontaneous behaviors: First, the behavioral videos
are encoded into behavior latents by CS-VAE. Then, the behavior latents would be clustered into different motifs. After that, similar behaviors are
grouped based on their mean and standard deviation values. We can therefore obtain the corresponding neural activities. Finally, the neural activities
from different subjects are aligned using the MCCA. B. Behavior latents are cut into small fragments. Similar behavior fragments are grouped together
based on their mean and standard deviation values. The corresponding neural activities are obtained based on the grouping results of the behavior. C.
Neural activities are being aligned using MCCA. MCCA aligns the neural activities from different subjects by mapping them into the same feature spaces.
D. Correlation score for behavioral-based aligned neural activity. The grooming behavior has higher neural correlation scores for cross-subjects than
other behaviors.
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position (x and y coordinates) of the mouse using DLC. Here, we did not include an unsupervised
latent space, since the alignment and supervised labels resulted in the entire individual being
explained well using the supervised latents.

7 eLife

Reconstruction Accuracy

The CS-VAE model results in a mean label reconstruction accuracy 0.961 + 0.0017 (Fig. 8B @), with
the MSE for frame reconstruction as 1.21 - 10~ (Fig. 8B @ ). We compared the performance of our
model with the VAE and PS-VAE (Table 4 @), and the CS-VAE model performed better than the
baseline models for both image and label reconstruction. For the VAE, we obtained the R? for nose
position prediction by training a multi-layer perceptron (MLP) with a single hidden layer from the
VAE latents to the nose position.

Disentangled Latent Space Representation

We calculated the latent traversals for each latent as in Appendix .9%. As shown in the videos in
Supplementary Material 4, CS latent 1 captures the second mouse to the front of the tracked
mouse, CS latent 2 captures the front and above position of the second mouse, and CS latent 3
captures the position where the second mouse is below the tracked mouse.

To visualize the latent space and understand the relationship to social interactions, we plot the CS
latents overlaid with the nose-to-tail distance between the two mice (nose of one mouse to the tail
of the other) in Fig. 8C @. We see that the CS latents represent the degree of social interaction very
well, with a large separation between different social distances. Furthermore, we trained an MLP
with a single hidden layer from different models’ latents to the nose-to-tail distance, and the CS-
VAE produces the highest accuracy (Table 4 ).

Motif Generation

We applied a hidden Markov model (HMM) to the CS latents to uncover behavioral motifs. The
three clusters cleanly divide the behaviors into social investigation vs. non-social behavior vs. non-
social behavior with the aligned mice exploring the environment. To effectively visualize the
changes in states, we show the ethogram in Fig. 9A @ . Videos related to these behavioral motifs
are provided in Supplementary Material 5.

Lastly, we calculated different metrics to quantitatively evaluate the difference between each
behavioral motif. The results are shown in Fig 9B, where we plot the average values for
distances and angles between different key points. The lower distance between the two mice in
State a demonstrates that the mice are close to each other in that state, pointing to social
interactions. The smaller nose-to-tail distance for the aligned mouse in State c points to this state
encoding for the ‘rearing’ of the mouse. The angle between the two mice further reveals the
relative position between the two mice; in State b, the second mouse is located above the aligned
mouse, while the opposite is true for State c. These metrics uncover the explicit differences
between the different motifs that are discovered by CS-VAE.

3 Discussion

In the field of behavior modeling, there exist three major groups of methods, supervised,
unsupervised, and semi-supervised. The supervised methods consist of methods such as
DeepLabCut (DLC) [7 2], LEAP [6 (2], AlphaTracker [5( ], amongst others. Although these
methods capture the positions of the subjects, they lack the ability to model smaller movements
and unlabeled behavior, and necessitate tedious labeling. On the other hand, unsupervised

methods such as MoSeq [9(% ] and Behavenet [8 2] lack the ability to produce intertpretable
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A. Image alignment for the social behavior data. B. Model performance on the social behavior dataset. C. Visualization of the CS latents overlaid with the
nose-to-tail distance between the two interacting mice. The CS latents separates the frames that contain social interactions from those that do not.
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Figure 9

A. Ethogram for the animals’ behavior recovered using hidden Markov models (HMM) applied to the CS latents. B. Different metrics for analysing the
behavioral motifs. Here, the three motifs are a. social interaction; b. non-social interaction with the companion on the upper side of the aligned mouse;
¢. non-social interaction (the aligned mouse exploring the environment with its companion far away). These metrics show the quantitative differences
between the different motifs.
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need significant human input, and lack the ability to model freely-moving animals’ behavior.
Here, we introduce a constrained generative network called CS-VAE that effectively addresses
major challenges in behavioral modeling-disentangling multiple subjects and representing social
behaviors.

For multi-subject behavioral modeling, the behavioral latents successfully separates the common
activities across animals from the differences across animals. This behavioral generality is
highlighted by the across-subject behavioral motifs generated by standard methods, and a higher
accuracy while applying transfer learning for the neural decoding task. Furthermore, the SVM
classification accuracy approaches 100%, which also indicates that the constrained-subspace
latents well separate the differences between the subjects. In the social behavioral task, the
constrained latents well capture the presence of social investigations, the environmental
exploration, and the relative locations of the two individuals in the behavioral motifs. While our
methods succeed in effectively modeling social behavior, it remains a challenge to separate out
different kinds of social investigations in an unsupervised manner.

The constrained latents encode smoothly and discretely varying differences in behavioral videos.
As seen in this work, in the across-subject scenario, the constrained latents encode the appearance
of the different subjects, while in freely-moving scenario, the constrained latents capture social
investigation between the subjects. The flexibility of this regularization thus gives it the ability to
be fit in different conditions. Future directions include building an end-to-end structure that can
captures behavioral motifs in a unsupervised way.

4 Methods

Regularization of Constrained Subspace

We use the Cauchy-Schwarz divergence to regularize our constrained subspace using a chosen
prior distribution. The Cauchy-Schwarz divergence Dg(p;, p3) between distributions p;(x) and
p,(x) is given by:

jpl xr)dx
\/j pi(z)dx j p3(z)dx

D¢s(pq, pp) equals zero if and only if the two distributions p4(x) and p,(x) are the same. By applying the Parzen

Dcs(p1,p2) = —log (1)

N N

Hip) = —log(Vip1) =~log (ZZG\/%(PH Pu)/Nz) (2)
i

2 N; N2

Sl gl *‘“’EZGm pri = p2y)/ (N N2) ®)

Here, p,; represents the ith sample from the distribution p4, i.e., p1(x;). - log(V (p,)) and - log(V
(py)) are the estimated quadratic entropy of p;(x) and p,(x), respectively, while - log(V (p4, p5)) is
the estimated cross-entropy of p;(x) and p,(x). G is the kernel applied to the input distribution;
here it is chosen to be Gaussian. N, N, and N, are the number of samples being input into the
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70 . model while o is the kernel size. The choice of the kernel size depends on the dataset itself;
v eLife

V(p1)V(p2)

V2(p1, p2) )

Les = Des(p1,p2) = log

Here, p;(x) represents the distribution of our CS latent space, and p,(x) the chosen prior

we minimize this term in the objective function while training the model. However, it may be
necessary to stop at an appropriate value, since overly spreading out p;(x) may lead to the
separation of the samples from the same groups, while making p; and p, excessively close may
cause mixtures of data points across groups.

In short, the Cauchy-Schwarz divergence measures the distance between p; and p,. In our work,
we adopt a variety of distributions as a prior distribution p,(x), and we aim to project the
constrained subspace latents onto the prior distribution (see Fig. 1@).

Optimization
The loss for the CS-VAE derives from that for the PS-VAE, and is given by:

Los—vae = Lirames + @Liabel — LxL—s — Lromr — BLre — LpwkL + vLes (5)

Here, the terms £f.qmes and £yqpe) Tepresent the reconstruction loss of the frames and the labels,
respectively. The £g; _, represents the KL-divergence loss for the supervised latents while £;cpp
£7 ¢, and £pyy kg, form the decomposed version of the KL loss for the unsupervised latents. Lastly,
the £g represents the CS-divergence loss on our constrained latents. a is introduced to control the
reconstruction quality of the labels, 5 is adopted to assist the model in producing independent
unsupervised latents, and y is implemented to control the variability in the constrained latent
space for better separation. The detailed explanations and derivations for each term in the
objective function are in Appendix .33. Furthermore, the loss terms in Equation (5) & can be
modified to fit various conditions. For a freely-behaving social task, the background for one
individual in the container could be the edge of the container as well as the rest of the individuals
in the container. The choice of hyperparameters and the loss curves through the training process
is shown in Appendix .5 and .72, respectively.

Visualization of the latent space

To test how the image varies with a change in the latent, one frame from the trials is randomly
chosen as the ‘base image’, and the effect of varying a specific latent at a time is visualized and
quantified. This is known as the ‘latent traversal’ [2(Z]. First, for each latent variable, we find out
the maximum value that it occupies across a set of randomly selected trials. We then change that
specific latent to achieve its maximum value, and this new set of latents forms the input to the
decoder. We obtain the corresponding output from the decoder as the ‘latent traversal’ image.
Finally, we visualize the difference between the ‘latent traversal’ image and the base image. The
above steps are performed for each latent individually. In videos containing latent traversals
(Supplementary Material), we change the latent’s value from its minimum to its maximum across
all trials, and input all the corresponding set of latents into the decoder to produce a video.
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% eLife Behavioral Motif Generation
Clustering methods such as Hidden Markov Models (HMM) and switching linear dynamical
systems (SLDS) have been applied in the past to split complex behavioral data into simpler
discrete segments [16(2 ] (see Appendix .6 & for details). We use these approaches to analyze
motifs from our latent space, and directly input the latent variables into these models. In the case
of multi-subject datasets, our goal is to capture the variance in behavior in a common way in the
across-subject latents, i.e., recover the same behavioral motifs in subjects performing the same
task. In the case of freely-moving behavior, our goal is to capture motifs related to social behavior.

Efficient Neural Decoding

Decoding neural activity to predict behavior is very useful in the understanding of brain-behavior
relationships, as well as in brain-machine interface tasks. However, models to predict high-
dimensional behavior using large-scale neural activity can be computationally expensive, and
require a large amount of data to fit. In a task with multiple subjects, we can utilize the similarities
in brain-behavior relationships to efficiently train models on novel subjects using concepts in
transfer learning. Here, we represent across-subject behavior in a unified manner and train an
across-subject neural decoder. Armed with this across-subject decoder, we show the decoding
power on a novel subject with varying amounts of available data, such that it can be used in a low-
data regime. The implementational details for this transfer learning approach can be found in
Appendix .10 .

Behavior election for innate behaviors studying

While the behavioral features extracted from the previous sections are successful in capturing
similar spontaneous behaviors across various animals, the behavioral patterns within the same
motifs can exhibit substantial variation. For instance, in the case of the raising paw motif,
continuous movement of the paws could be indicative of either grooming or other complex
behaviors. To overcome this challenge, we divided the behaviors belonging to the same motif into
smaller segments and calculated the corresponding mean and standard deviation of the
behavioral latents. Subsequently, we compared these values and retained the segments that
exhibited similar mean and standard deviations both within and across animals, as illustrated in
Fig. 7B(@. These steps were repeated for all the behavioral motifs examined in this study.

In addition to the spontaneous behaviors discussed above, we also selected an ‘idle’ behavior that
captured the mouse’s inactivity and a task-related behavior, namely the ‘lever pull’ behavior,
which signaled the initiation of each task.

5 Appendix

.1 Experimental Methods and

Preprocessing for the Multi-Subject Dataset
In our work, we employed a subset of the behavioral dataset detailed in Musall et al., 2019 [14(Z].

Briefly, the task entailed pressing a lever to initiate the task, after which a visual stimulus was
displayed towards the left or the right. After a delay period, the spouts come forward, at which
time the mouse makes its decision by licking the spout corresponding to the direction of the visual

stimulus (left or right). Finally, the mice receive a juice reward if they choose correctly.

We tested the CS-VAE on the behavioral data for the four mice performing a visual task and
randomly chose 388 trials per mouse each of the trials has a 189 number of frames. Each frame
was pre-processed and resized to have both the length and width being 128. One example trial for
each mouse can be found in Supplementary Material 1.
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Before inputting the data into the model, we sorted the trials by the amount of variance in the
images, and shuffled the first half (high variance) and the second half (low variance) of the dataset
separately. This was done to speed up training by training the model on high-variance trials first.
We tested our model by randomly choosing 4 trials from all trials for each mouse 5 times. The
same procedure was applied when training the model on the simulation dataset, i.e., the doctored
data for one subject.

7 eLife

.2 Experimental Methods and Preprocessing

for the Freely-Moving Social Behavior Dataset

The dataset consists of a 16-minute video of two adult novel C57BL/6] mice, a female and a male,
interacting in a clean cage. Prior to the recording session, the mice were briefly socially isolated
for 15 minutes to increase interaction time. This dataset was collected by one of the authors. The
original data has 24917 number of frames with length and width being 1920 and 1080,
respectively. The example fraction of the video can be found in Supplementary Material 6.

The nose, ears, and tail base of each mouse were manually annotated using AlphaTracker. We kept
19659 number of frames that have the labels for preprocessing and training. We perform several
preprocessing steps to align and crop the video as well as the labels based on one of the two mice
(Mouse 1, female). All of the preprocessing steps were based on the AlphaTracker labels. For each
frame, we first rotate it to ensure that the nose and tailbase for Mouse 1 are on the same
horizontal line, with the central point for rotation as the left ear. Next, we aligned the frame such
that the left ear of Mouse 1 was at the same location across all frames. Finally, we resize the frame
to be 128 x 128 and consequently the AlphaTracker labels. For this dataset, since there was a
relatively low number of frames, we obtained the CS-VAE MSE and label R2 for the entire dataset.

.3 Methodological details of the Partitioned Subspace VAE

The Partitioned Subspace VAE (PS-VAE) was introduced in [2 @], and we borrow the notation used

in that paper when detailing the CS-VAE. Thus, we include here a full description of the model.

First of all, we define the input frame as x, and the corresponding pose estimation tracking label as
y. The reconstructed variables are termed 7+ and y, respectively. The supervised latent space is
denoted as z,, unsupervised latent as z,,, and the background latent as z;. In a VAE model, we
would like to minimize the distance, typically the KL divergence, between the posterior
distribution of the latent variables p(z | x) and a chosen distribution q(z | x). However, since p(z | x)
is an unknown distribution, the Evidence Lower Bound (ELBO) is introduced as an alternative
method to reduce the KL divergence:

Lrrpo = Eyz1o[log(p(z2)] — K L{g(z])||p()] (6)

uniform distribution p(n) while defining q(z | n) := q(z, | x,;), we can rewrite the ELBO as:
Lerpo = Epm)[Eq(zin)[log(p(z|2)]] — Epm)[K Lg(z|n)||p(2)]] (7)

We define the loss over frames £fqm,s as the first of the two terms above. In the PS-VAE model,
there are two inputs: frames x and labels y. Therefore, in Equation (7) (3, instead of writing the
input likelihood as p(x|z), we can now write it as p(x, y|z). A simplifying assumption is made that x
and y are conditionally independent given z, and thus we can directly write £fgmes+iabets as

Lframes * Llabels WheTe £igpe|s is calculated by replacing x with y in £gmes-
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After assuming the prior p(z) has a factorized form: p(z) = II; p(z;), the KL term £g; can be split as
the addition of £z _¢ and £g;_,,, i.e., the KL terms for the supervised and unsupervised latents,
respectively. We decompose the KL term for the unsupervised latent as the following [2(Z].

7 eLife

Lkr—w=Licur+ Lrc + Lowkr

= KLfg(zum)le()p()] + KL{a(z)| [[ )] + KLlgCeu) | [0 )

7 3

where j represents the latent dimension, £;¢,;is the index-code mutual information, which
measures how well the latent encodes the corresponding input data. The term TC is short for total
correlation, which measures the interdependency of each latent dimension. The third term, £py,
ki, is the dimension-wise KL, which calculates the KL divergence for each dimension individually.
Finally, the resulting subspace is forced to be orthogonal by applying orthogonal weights across all
the different latents.

Session PS-VAE (MS-PS-VAE) can only work with a labeled set of discrete sessions, as described in
the Introduction. The images from each session are labeled, and the session-specific latents are
enforced to be static over time, thus capturing the image-related details. To enforce the
background latents to be static over time in a particular session, and to maximize the difference in
the background latents across different sessions, the triplet loss is introduced in MS-PS-VAE. As
described in the Introduction, this loss term artificially places the latents from the same session
together while separating the latents from different sessions. The triplet loss is computed as the
following.

Liviplet = max{d(a,p) — d(a,n) +m,0} (9)

Here, a is the anchor point, p is the positive point, n is the negative point, and m is a margin. The
function pulls the point p towards point a, and pushes the point n away from point a. While
training, the data from multiple sessions is included in each mini-batch. The data from each
session is split in three, and each third from the same session acts as an anchor and positive point,
while the data from another session acts as a negative point. Practically, this requires as many
sessions as possible in the same mini-batch during the training for accurate results. As the number
of sessions increases, this method becomes computationally intractable, and may lead to
unsatisfactory reconstruction results. Moreover, this loss does not allow for varying backgrounds
across any one session.

In the MS-PS-VAE model, the triplet loss was applied as a supervised manner to pull the data from
the same subject being closer while pushing the different subjects away from each other. This
method is only useful when the number of sessions is known, and is not applicable in an open-
field setting, for example while modeling freely-moving social behavior as in this manuscript.

Therefore, in this manuscript, we introduce a regularization term that can automatically separate
different subjects in the background latent space without specifying the number of sessions or
labeling each frame as belonging to a specific session.

4 Model Architecture and Training

Our computational experiments were carried out using TensorFlow and Keras. The image decoder
we use is symmetric to the encoder, with both of them containing 14 convolution layers. We
applied the Adam optimizer with learning rate as 10™%. For the multi-subject dataset, we fixed our
batch size to be 256 and trained for 50 epochs. For the freely-moving social behavior dataset, we
trained for 500 epochs with batch size 128.
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% eLife .5 Choice of Hyperparameters
In the multi-subject dataset, four coefficients need to be decided for the objective function as
indicated above: {a, B, g, y}. There is a balance between the choice of § and y: properly choosing
the values could separate the latent in the unsupervised space and the latents in both
unsupervised and background space as well. A large separation of the background latent may
potentially lead to unsatisfactory reconstruction results. The choice of kernel size g depends on
the dataset, and should be larger than the number of distinct groups in our dataset; since in our
current experiments, we have at most four groups, we set g = 15. Moreover, we set a to 1000, /5 to
5, y to 500. We set the dimensionality of the supervised latent space equal to the number of tracked
video parts, which is 5 in our case. We set the dimensionality of the unsupervised latent space as 2,
while that of the background latent space as 2.

In the social behavior task, we track the nose location as the supervised latent, since the other
labels do not have a high variance (due to the alignment process). Additionally, we do not need
any unsupervised latents to explain the individual’s behavior. The CS latent in this setting has 3
dimensions. Here, a is 1200, y is 200, and the kernel size is 20.

The hyperparameters chosen for all three datasets are shown in Tables 2@ and 3(2.

.6 Motif Generation

A switching linear dynamical system (SLDS) consists of discrete latent state z, € {1, 2, ..K},
continuous latent state x, € R, and the observation state y, € R". Here, t = 1, 2, 3, .., T is the time
step, T is the length of the input signal; K is the number of discrete states; M is the number of
latent dimensions; N is the observation dimensions. The discrete latent state z, follows the
Markovian dynamics with the state transition matrix expressed as:

Qij= P(z = jlze—1 = i) (10)
The continuous latent state x, has the following linear dynamical relations that determined by z,.

Tep1 = Ag e + ViU + by, +wy (11)
Here, A, ., is the dynamic matrix at state z;,q; u; is the input at time t, with V%, , being the
control matrix; b, , is the offset vector and w, being the noise which is generally the zero mean
Gaussian. Here, our observation model is in Gaussian case; therefore, the observation y; is
expressed as:

n=Cxt+ Fu +d;, + v (12)

Here, C',, is the measurement matrix at state z;; I, is the feedthrough matrix which directly
feed the input into the observation; d., is the offset vector and v, is the noise. Here the update

was accomplished by the Expectation-Maximization(EM) algorithm. In the E-step, the model
updates the hyperparameters. In the M-step, the log-likelihood in Eq.12 is being maximized.

To implement the SLDS, we adopted the open source software from Linderman et al.[16 (5 ]. We fit
the SLDS using different latent dimensions, where the observation dimension was the order of
latent dimension and the number of states was determined by visualizing the videos. We use
SLDS’s to model the motifs in the multi-subject dataset since the behaviors are well separated
using their dynamics. We use K-means to model the motifs in the freely-moving social behavior
dataset since the behaviors are well separated directly in state space. An autoregressive HMM (a
simpler model than an SLDS) applied to the CS latents in the social behavior dataset leads to

similar results as the K-means.
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VAE PS-VAE CS-VAE
MSE for image reconstruction 1.74-107° 5.44-107° 200"
R? for nose position 0.135 4+ 0.013 0.894 + 0.002 © 0.958 £ 0.002
R? for inter-individual nose-to-tail distance 0.353 £ 0.0099 0.283 £0.013 | 0.363 & 0.0098
Table 1
Comparison of different models on the freely-moving social behavior dataset
Dataset o o

Various contrast
Multi-subject
Social behavior

1000
1000
1200

Sl W e

N/A

15
20

500
500
200

Table 2

Hyperparameter for different dataset
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Dataset supervised unsupervised constrained prior distribution
Various contrast 5 2 3 Swiss roll
Multi-subject 5 2 2 circle
Social behavior 2 0 3 hollow cylinder
Table 3
Latent dimensions and the prior distribution for different dataset
Training size  Linear model Dense model LSTM model Transfer learning model
67712 0.476 £ 0.048 0.580 £ 0.058 0.610 £0.054  0.590 £ 0.050
58512 0.478 £0.014 0.560 £ 0.023 0.595 £0.022 0.579 +£0.019
49312 0.483 + 0.009 0.556 +£0.014 0.593 £0.013 0.576 +0.011
40112 0.476 £0.013 0.543 £0.019 0.576 £0.019 0.562 £ 0.015
30912 0.470 £0.0.011  0.529 £ 0.015 0.559 £0.018 0.552 +0.013
21712 0.458 +0.010 0.496 + 0.016 0.524 £0.017 0.5224+0.013
12512 0.424 £0.012 0.461 £0.0.019 0.480£0.025 0.485+0.018
3312 0.269 £ 0.030 0.321 £0.048 0.325 £0.057 0.345 £ 0.043
Table 4

Training size vs R? value for multi-subject dataset
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::,"..-‘ eLife .7 Loss Curves
We show the learning curve for each loss term for both dataset to precisely quantify the model, in
Fig. 10 2. For the multi-sujbect dataset (Fig. 10A %), for the unsupervised latents, the final loss for
dimension-wise KL, total correlation, and the mutual information are 11.7, -4.8, and -4.6,
respectively. The final KL loss for the supervised latents is 5.06 and the final CSD loss for the CS
latents is 0.1. For the free behaving dataset, the loss curves for each loss term are shown in Fig.
10BZ. By the end of the training process, the KL loss for the supervised latents is 7.01 and the CSD
loss for the CS latents is 1.15.

.8 SVM

To further quantify the separation of the latents between different subjects, we applied a
supervised classification method to decode the identity of the subject using each latent.

After randomly shuffling all the latents, we split all the trials into training trials and test trials,
with each mouse having 368 trials in the training set and 20 trials in the test set, and repeated this
5 times with different random seeds.

9 Latent traversal

For the multi-subject dataset, we tested the latent traversal with the same base image to validate
the results, shown in Figure 11 &. Here, we randomly chose a frame from a mouse and changed
each individual latent within different ranges as detailed in the Methods. For example, in Figure
112, the first row contains the output when the corresponding latent is changed to take on the
maximum value from the range of Mouse 1. Similar to the figures in the main text, the upper
images are the latent traversal images while the lower ones are the difference between the upper
and original images. We see that the base image from Mouse 3 can be flexibly changed to produce
a different mouse when changing the CS latent. Moreover, when changing the supervised and
unsupervised latents for the different mice, Mouse 3 seems to be flexibly changing with these
latents from different mice.

To better visualize the specialization of each latent, we generated the latent traversal videos for
each latent with different base images. For different mice, we, first of all, find the maximum and
the minimum value for the specific latent. Then, change the latent within that range with 0.5 per
step. Finally, concatenate all the latent traversal images into videos. The videos can be found in
Supplementary Material 3.

We performed a similar visualization on the freely-moving social behavior dataset for the CS
latents. The latent traversal videos can be found in Supplementary Material 4, and some clips from
the videos are shown in Fig 12=.

.10 Neural decoding models

The trials were first shuffled and then split into training and testing. Next, we employed the CS-
VAE generated latent representations, and choose one example subject to decode the behavior at
time t using the neural activity recorded between t - 0.15s and t. We applied four types of models
to compare the performance. A linear model which directly maps the neural activities into the
behavior. A multilayer perceptron (MLP) with three dense layers to train the decoder. We used the
Adam optimizer with learning rate decay from 0.1 with 0.3 decay rate for every 5 step. The batch
size was fixed to be 150 and trained for 200 epochs. A LSTM model, which begin with a dense layer
followed by a LSTM layer with a drop-out rate being 0.5 and another dense layer at the end. We
applied the same training strategy as in MLP model.
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Figure 10

Loss curve for A. training the multi-subject dataset B. training the freely behaving dataset with the specified hyperparameters as in Tables 1 and 2.
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A. Supervised B. Unsupervised C.CS latent
Left spout (y) 2 (Chest)  §

Figure 11

Latent traversals for the multi-subject dataset for the four mice with the same base image A. an example supervised latent, B. an example unsupervised
latent, and C. an example CS latent. We see that the same base image (Mouse 3) is transformed into a different mouse each time when changing the CS
latent.
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Latent traversals on the CS-latents for the freely-moving social behavior dataset. We see that the latents all encode for social interactions between the

two mice.
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Neural decoding for CS-VAE vs. PS-VAE.
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We introduced a model based on transfer learning to perform the decoding test on the previously
tested subject. The rest of the three mice were the input to the original training model. The
procedures were similar to before, after the trials were shuffled and split, we decoded the
behavior directly with the raw neural activities with the time window being 0.15s. After that, we
implemented three perceptron layers for each of the three mice before the output of which went
into a recurrent neural network (RNN). The RNN consisted of one long short-term memory (LSTM)
layer with a unit number of 64 and a drop-out layer with a rate being 0.5. We applied the Adam
optimizer with learning rate decay from 0.1 with 0.3 decay rate for every 5 step. The batch size
was 150 and we trained for 200 epochs. After we finished training the original network, we
transferred the RNN model to the new model which was applied to train the fourth mouse alone.
For the fourth mouse, the trials were split with different training and testing ratios. After applying
the same steps to the data, the neural activities then went through a new perceptron layer before
going through the pre-trained RNN model. We applied the Adam optimizer with the same learning
rate decay procedures as well. We again, trained for 200 epochs with batch size being 128 this
time. The trade-off between accuracy and time for different models can be found in Tables 4%
and 5.

7 eLife

.11 Multidimensional Canonical Correlation

Analysis (MCCA) for neural signal alignment

In our work, after extracting similar behaviors chunks from different individuals, we then
extracted the corresponding neural activity for each subject. To smooth away the discreteness of
the neural activity chunks, we shuffled the chunks before concatenating them together. After that,
we performed the MCCA for all four subjects on each brain region. For each brain region, we
choose the four sets of neural activities being the same length d, X1 = {x1, x1,, ..., x1,,} R"Xd, X2 =
X2, X2, o0 X2} R™, X3 = {x31, X3, ..., X3,} RF“4 and X1 = {x14, x1,, ..., x1,,} ™% Here, we
choose the minimum number of region dimensionality in all of the four subjects as the dimension
of canonical coordinate space, minimum {n, m, k, [}, and is annotated as j. For each dimension,
define the projection weights for each dataset as a; = {ajl, jo, > Ajy 1} bj = {bjl, bjz, . bjn}, ¢ = {cjl,
Cj2» - Cjn}, and d; = {djy, djy, .., djn}. The resulting projected datasets are now d-dimensional arrays:
ulj =@, X1, u2]- = <bj, X2), u3]- =, X3), and u4j = <dj, X4). For each of the coordinate spaces, the
objective functions can be written as:

: (ulj,u2;,u3;, ud;)
lr( - = - =
T lud sl 2l 3; llud; ]

(13)

Generally, for each pair of canonical components, the above equation is solved iteratively to find
the best projects that can maximize the correlation. During training, the orthogonality between
each canonical component is constrained. In our experiment, we calculated the across-subject
correlations for each obtained CCs and kept the highest correlation value for each pair, here
termed p; (Equation 13(@). We performed the above task for each brain region. In addition, we
shuffled the chunks ten times and repeated the above steps. We also calculated the canonical
component for the same subject having similar behaviors. We applied the same methods as stated
above to find similar behavior components and the corresponding neural activities. We divided
the obtained neural activities into two parts with the same length and performed the CCA on those
two signals. We calculated the correlation between the first two canonical correlation axes as the
baseline.

.12 Code

The code for training the CS-VAE can be found in Supplementary Material 7. The code can be
executed by simply compiling the script ‘train.py’. All the code are available at: https://github.com
/saxenalabneuro/Behaivoral-feature-extraction-CS-VAE (.
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Training size

Linear model

Dense model

LSTM model

Transfer learning model

67712
58512
49312
40112
30912
21712
12512
3312

1.442 £+ 0.282
1.130 £ 0.212
0.937 £ 0.194
0.679 £0.114
0.484 £0.079
0.309 £ 0.050
0.162 £ 0.008
0.104 £ 0.034

115.946 £ 1.559

30.428 £ 1.586
68.879 £+ 1.257
56.449 £1.119
44.427 £ 0.808
31.968 £ 0.574
19.573 £ 0.369
7.292 + 0.092

169.801 £ 5.961
146.734 £+ 5.063
122.500 £+ 2.283
100.336 £ 2.212
78.850 £ 1.771
57.670 £ 1.681
35.557 £ 1.050
13.318 £ 0.342

169.482 + 5.041
151.771 = 4.162
125.240 + 4.479
102.923 £ 3.391
79.907 £ 2.608
56.032 + 1.549
33.409 £ 0.741
11.365 £ 0.336

Table 5

Training size vs time usage for multi-subject dataset
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Reviewer #1 (Public Review):

In this manuscript, the authors present a valuable new method to represent animal behavior
from video data using a variational autoencoder framework that disentangles individual-
specific and background variance from variables that can be more reliably compared across
individuals. They achieve this aim through the use of a novel Cauchy-Schwatz (C-S)
regularization term in their loss function that leads to latents that model continuously
varying features in the images. The authors present a variety of validations for the method,
including testing across sessions and individuals for a head-fixed task. They also show how
the methods could be used for behavioral decoding from neural data, quantifying social
behavior in mice, demonstrating the applicability of the method outside of head-fixed
environments and for different measurement modalities. While some areas of confusion and
questions about the validation exist, this is an overall strong paper and an important
contribution to this field.

Strengths:

- The use of the C-S regularizer is novel approach that has potential for wide use across
experimental paradigms and model organisms

- The extent of the validations performed was solid, although perhaps not as convincing in a
couple of cases as might be ideal

- The GitHub code demo worked well, and the code appears to be accessible and well-written

Weaknesses:

- Some of the validation figures were a bit unclear in their presentation, making it difficult to
assess exactly what had been tested
- It is possible that I missed this, but the authors didn't really provide a sense of how to pick a
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particular distribution to match using the CS term for a specific paradigm/modality and how
the choice affects the results

- While the authors' statements about individual training vs. transfer learning accuracy and
efficiency in Figure 6 are technically true, the effect size is rather small ( a few percent at
most in each case), thus I don't know how much of a big deal I would want to make out of
these results

- In general, I would have liked to have seen the Discussion section speak more to the choices
and limitations inherent in applying the method. How does the choice of
prior/metaparameters/architecture/etc affect the results? In what situations would this
method to fail? What are the next advances that are necessary for the field to progress?

7 eLife

Reviewer #2 (Public Review):

This paper presents a valuable contribution to ongoing methods for understanding and
modeling structure via latent variable models for neural and behavioral data. Building on the
PS-VAE model of Whiteway et al. (2021), which posited a division of latent variables into
unsupervised (i.e., useful for reconstruction) and supervised (useful for predicting selected
labeled features) variables, the authors propose an additional set of "constrained subspace”
latent variables that are regularized toward a prespecified prior via a Cauchy-Schwarz
divergence previously proposed.

The authors contend that the added CS latents aid in capturing both patterns of covariance
across the data and individual-specific features that are of particular benefit in multi-animal
experiments, all without requiring additional labels. They substantiate these claims with a
series of computational experiments demonstrating that their CS-VAE outperforms the PS-
VAE in several tasks, particularly that of capturing differences between individuals,
consistency in behavioral phenotyping, and predicting correlations with neural data.

Strengths of the present work include an extensive and rigorous set of validation
experiments that will be of interest to those analyzing behavioral video. Weaknesses include
a lack of discussion of key theoretical ideas motivating the design of the model, including the
choice of a Cauchy-Schwarz divergence, the specific form of the prior, and arguments for
sorts of information the CS latents might capture and why. In addition, the model makes use
of a moderate number of key hyperparameters whose effect on training outcomes are not
extensively analyzed. As a result, the model may be difficult for less experienced users to
apply to their own data. Finally, as with many similar VAE approaches, the lack of a ground
truth against which to validate means that much of evidence provided for the model is
necessarily subjective, and its appeal lies in the degree to which the discovered latent spaces
appear interpretable in particular applications.

In all, this work is a valuable contribution that is likely to have appeal to those interested in
applying latent space methods, particularly to multi-animal video data.

Reviewer #3 (Public Review):

As naturalistic neuroscience becomes increasingly popular, the importance of new
computational tools that facilitate the study of animals behaving in minimally constrained
environments grows. Yi et al convincingly demonstrate the usefulness of their new method
on data from neuroethological studies involving multiple animals, including those with social
interactions. Briefly, their method improves upon prior semi-supervised machine learning
methods in that extracted latent variables can be more cleanly separated into those
representing the behavior of individual subjects and those representing social interactions
between subjects. Such an improvement is broadly useful for downstream analysis tasks in
multi-subject or social neuroethological studies.
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i eLife Strengths:
The authors tackle an important problem encountered in behavior analyses in an emerging
subfield of neuroscience, naturalistic social neuroscience. They make a case for doing so
using semi-unsupervised methods, a toolbox which balances competing scientific needs for
building models using large neural-behavioral datasets and for model explainability. The
paper is well written, with well-designed figures and relevant analyses that make for an
enjoyable reading experience.

The authors provide a remarkable variety of examples that make a convincing case for the
utility of their method when used by itself or in conjunction with other data analysis
techniques commonly used in modern neuroscience (behavioral motif extraction, neural
decoding, etc.). The examples show not just that the extracted latents are more disentangled,
but also that the improvement in disentangling has positive effects in downstream analysis
tasks.

Weaknesses:

While the paper does a great job of applying the method to real world data, the components
of the method itself are not as thoroughly investigated. For example, the contribution of the
novel Cauchy-Schwarz regularization technique has not been systematically investigated.
This could be done either by sharing additional data where hyperparameters control the
contribution of the regularizer, or cite relevant papers where such an analysis have been
carried out. It would also be valuable to understand what other regularization techniques
might potentially have been applicable here.

The authors conclude from their empirical investigations that the specific prior distribution
does not matter to the regularization process. This seems reasonable given that the neural
network can learn a complex and arbitrary transformation of the data during training. It
would be helpful if the authors could cite prior work where this type of prior distribution
does matter and how their approach is different from such prior work. If there is a
visualization/explainability related motivation for choosing one prior distribution over
another, this could be clarified.
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