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ABSTRACT The increasing dominance of inverter-based resources (IBRs) in power generation leads to
significantly faster frequency dynamics in modern power systems. Therefore, the secondary control within
the classical hierarchical structure must operate significantly faster. However, high communication burdens
are inherent to centralized implementations of secondary control. This paper proposes a faster, distributed
model predictive control (MPC) scheme for secondary frequency control of inverter-based power systems.
The controller predicts the IBRs’ local frequency dynamics by considering the impact of the primary
control of nearby IBRs. To obtain an optimal model-predictive control problem consisting of distributable
subproblems, we introduce a novel trimming procedure to the frequency divider concept, an analytical
formulation that estimates the local frequency at system buses. These subproblems have a tunable degree
of mutual coupling. The presented distributed MPC achieves fast, error-free frequency regulation in the
presence of abrupt load changes while also being robust to communication losses of participating IBRs.
By design, the distributed control relies on a sparse neighbor-to-neighbor communication structure and uses
local MPC problems that do not scale in complexity with system size. Numerical simulations of the IEEE
39-bus system and an extended CIGRE medium voltage power system demonstrate the fast performance of
the proposed distributed MPC scheme for secondary frequency control.

INDEX TERMS Distributed control, frequency divider, model predictive control, secondary frequency
control, inverter-based resources.

I. INTRODUCTION
In the current energy transition, renewable energy resources
such as photovoltaic and wind power installations are dis-
tributedly integrated into all parts of the electrical grid. Such
distributed resources are typically interfaced with the grid via
an inverter, which can be classified into grid-following and
grid-forming types [1], the latter being a promising solution
to provide an inertial response and primary frequency control.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pinjia Zhang .

In general, the integration of inverter-based resources (IBRs)
and reduction of rotational inertia leads to faster frequency
and voltage dynamics in the modern power system. This
raises the need to revisit and rethink the classical hierarchical
control structures to maintain power system stability [2].
In this paper, we focus on the secondary frequency control
utilizing solely grid-forming IBRs.

Several secondary frequency control approaches for are
proposed in the literature, ranging from centralized to
decentralized. Centralized methods include the proportional-
integral (PI)-based automatic generation control (AGC),
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which is used in conventional power systems, as well
as robust control methods and model predictive control
(MPC) [3]. A centralized controller collects the information
of all distributed generation units to calculate a control signal
and sends it to the local primary controllers of each generation
unit. Due to the nature of their structure, centralized
controllers require an extensive communication network and
represent a single point of failure [4]. In decentralized
frequency control, local controllers at each generation unit
aim to restore the grid frequency. Decentralized approaches
often rely on a separation of time scales between the fast
primary control and the secondary control dynamics and,
therefore, are slower than other methods [5]. A general
disadvantage of decentralized control is that the local
controllers do not coordinate their actions which might lead
to them working against one another [6].

To avoid the drawbacks of both centralized and decen-
tralized control, distributed control approaches are proposed
in which local controllers at each generation unit use local
information and neighbor-to-neighbor communication to
perform secondary frequency control cooperatively, as in [5].
In [5], local PI controllers coordinate their control actions
utilizing a distributed averaging procedure. However, dis-
advantages of PI control are that it cannot inherently deal
with operational constraints, such as the active power limit
of each IBR and that is has a slower response compared
to modern control methods. In contrast, MPC leverages a
model-based prediction of the system’s dynamic behavior
to achieve a fast control response, is capable of considering
system constraints, and is well suited for multiple-input
and multiple-output (MIMO) systems [7]. Therefore, MPC
can provide better frequency responses than PI control and
include multiple control objectives [8].
Several distributed MPC schemes are presented in the

literature, combining the advantages of distributed control
and MPC. Distributed MPC makes use of parallel computa-
tion, which can lead to reduced computation times compared
to centralized MPC [9]. Furthermore, distributed MPC has
better scalability than centralized MPC since the complexity
of each local control problem does not necessarily grow
with system size [3]. Reference [10] presents a distributed
MPC scheme in which local model predictive controllers
coordinate their control actions utilizing a consensus-based
algorithm involving neighbor-to-neighbor communication.
However, the presented control approach relies on adjusting
the load consumption by manipulating the load operating
voltages.We consider adjusting the active power output of the
generation units to be amore practical approach for frequency
control. The distributed MPC in [3] uses a projection-based
algorithm to control the frequency via the tie-line power
exchange between multiple microgrids. The algorithm relies
on an extensive communication structure, where every system
bus, including load buses, is required to participate in
the control scheme, thus putting a high requirement on
the communication and control infrastructure. Feedback
linearization is used in [4] to design a distributed MPC

for secondary frequency and voltage control. The designed
controller considers a high-order model of the local inverter
control dynamics. However, the coupling dynamics between
the IBRs are not modeled in the control system. Convergence
is achieved by averaging the neighboring trajectories in the
MPC cost function. In [11], large-scale power systems are
decomposed into interconnected subsystems and controlled
using a feasible cooperation-based MPC. The generation
units within one control area are lumped into a single
equivalent generator and are solely synchronous generators.
A similar approach is used in [12], where each control area
is represented by a single generator, which could be either
a hydro unit, thermal plant, or wind farm. The integration
of IBRs will, however, lead to significantly faster frequency
dynamics. Additionally, it was previously shown in [13] that
the frequency is not equal at different system buses during a
transient. This, hence, raises the need to control generation
units individually. The coupling between the generation units
in [11] and [12] is modeled by the tie line power exchange.
To control individual generation units, these approaches
would require knowledge of the power flow in all lines, which
is, on the time scale of a control system, infeasible in a
meshed power system.

In this paper, we propose a distributed MPC scheme
for secondary frequency control that controls IBRs indi-
vidually and models the coupling dynamics between them
by leveraging the frequency divider theory. The frequency
divider formula has been derived in [13], validated through
hardware-in-the-loop simulations in [14], and is an analytical
formulation to calculate the frequency of load buses during
transient events. Initially, the frequency divider was derived
for classical power systems based on synchronous generators.
However, it has been shown to give accurate results for
inverter-based power systems if IBRs provide virtual inertia
and Thevenin equivalents are included in the estimation [15].
The formula has been applied for online frequency estimation
in [16] and a distributed MPC for multi-area power systems
has been designed in [17] based on the Thevenin equivalent
representation. The distributedMPC in [17], however, retains
a central control unit for each area.

The novelty and contribution of this paper are:
• A distributed MPC scheme that controls IBRs indi-
vidually via active power setpoints, as compared to
approaches using centralized MPC with single-point-
of-failure [8], distributed MPC via unpractical load
adjustment [10], and distributed MPC assuming slow
dynamics that are no longer relevant with IBRs [12].

• A control system architecture that requires communica-
tion of each local controller solely with a defined set
of neighbors, as compared to approaches that require
extensive communication between different buses [3].

• A trimming method for the frequency divider [13] to
decompose the global prediction model and optimiza-
tion problem while keeping physical interpretability.

• Submodels that do not scale with the size of the system.
Only local dynamics are described in the prediction
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model explicitly, whereas the grid topology is modeled
implicitly through the frequency divider calculation
based on the grid’s admittance matrix.

• The proposed distributed MPC is applicable to any
grid topology, particularly meshed grids. The distributed
scheme does not rely on tie line power exchanges for
decoupling as in [11] and [12].

• Robustness of the distributed MPC to communication
losses by utilizing an optimization algorithm that is
guaranteed to converge under communication losses.

With the proposed distributed approach based on frequency
divider trimming, the intermediate range between centralized
and decentralized MPC can be covered without any modi-
fications to the modeling. Numerical simulations verify the
performance and robustness of the presented approach.

II. PROBLEM FORMULATION
Distributed control of power system frequency poses chal-
lenges because the frequency is controlled locally but
has to be synchronized among all generation units in the
power system. The interaction between the generators must
be considered in the design and operation of distributed
frequency control systems to achieve a coordinated system
behavior with a fast and stable control response. In this
Section, we will state our requirements for distributed
frequency control and describe the centralized MPC scheme
that forms the base for this work.

A. REQUIREMENTS FOR DISTRIBUTED FREQUENCY
CONTROL
Local frequency control of generation units impacts the
response of other units and vice versa. Thus, a distributed
control scheme requires information on states and control
parameters. Due to the significant increase in the number of
generation units in the power system, a distributed control
scheme should avoid the need for global parameter and
state information to limit the dependency on data exchange
and the complexity of the control system. Therefore, the
distributed MPC developed in this paper should rely on a
sparse communication network, i.e., information exchange
is only possible with a set of neighboring generation units,
which needs to be defined based on the strength of the
coupling dynamics. As such, only the parameter and state
information of the defined set of neighbors can be included
in the prediction model. Furthermore, the proposed solution
has to be scalable to ensure its applicability in large power
systems.

Distributed model predictive control schemes employ dis-
tributed optimization algorithms to solve a common problem.
Since we demand a neighbor-to-neighbor communication
structure, the distributed optimization must not rely on a
central coordination unit. Further, only neighbor-to-neighbor
information exchange should be required for the algorithm’s
convergence. The number of iterations needed to compute a
control input has to be limited to guarantee fast execution

and reduce the vulnerability to communication delays.
Furthermore, the designed MPC should be able to constrain
the generation units’ frequency dynamics and active power
infeed.

Before presenting the proposed solution, we introduce the
frequency prediction model that we adopt in this paper and
state the optimization problem.

B. PREDICTION MODEL
The prediction of power system frequency response has
traditionally been centered around the well-known swing
equation [18]. This paper focuses on inverter-based power
systems, i.e., no synchronous generators are present. Thus,
the frequency response can not be based on the inertial
response of synchronous generators but must instead be
derived from the primary control strategies of the IBRs.
We adopt the grid-forming IBR control configuration, as well
as the prediction model derived in [19], which we summarize
in this Subsection with its main assumptions.

Each IBR i ∈ Ni = {1, . . . , ni} is modeled with two states,
namely their output angular frequency ωi and their output
active power Pi. The IBRs employ a grid-forming droop
control strategy with a first-order low-pass filter smoothing
out the calculated instantaneous powers. This filter introduces
virtual inertia to the IBR dynamics that is proportional to the
filter time constant [20], [21]. The frequency droop control
law and active power filter are described by

ωi = ωn − mi,p (Pi,f − P∗
i ) (1)

Ṗi,f =
1

τi,p
(Pi − Pi,f). (2)

Here,ωn is the system nominal frequency;Pf andP∗ are the
filtered active power and set-point, respectively. The droop
gain is mp, and τp is the filter time constant. Assuming a
piecewise constant set-point P∗, the first state equation is
obtained from (1) and (2) as

ω̇i = −
1

τi,p
ωi −

mi,p
τi,p

Pi +
mi,p
τi,p

P∗
i +

1
τi,p

ωn. (3)

The MPC shall adjust the pre-event active power set-point
P∗

0,i by setting 1P∗
i , so that the input to the IBR is defined by

P∗
i = P∗

0,i + 1P∗
i .

We envision that P∗

0,i is obtained by a higher level control
or market mechanism that optimizes the active power
scheduling, balances load and generation on a longer time
scale, and ensures the availability of reserve power for the
primary and secondary control.

While the first state equation (3) describes the IBR
frequency dynamics, an additional state equation is derived
to describe the output active power modeled as the active
power flow over the output inductance Xig. The voltage angle
difference is considered small so that sin δ ≈ δ. Assuming
that the impact of active power and frequency dynamics on
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the bus voltage is negligible, the active power dynamics are
formulated as

Ṗi =
ViVg
Xig

δ̇ig, (4)

with the transmission angle dynamics

δ̇ig = ωi − ωg. (5)

The index g denotes the grid side bus of the IBR output
inductance.

The frequency divider matrix D is calculated from the
systems admittance matrix as described in [13]. Using D, the
angular frequency ωg can be expressed as interpolation of the
generator frequencies in the system as

ωg = Dg
[
ω1 . . . ωni

]T︸ ︷︷ ︸
ωG

. (6)

Here, Dg denotes the row of D corresponding to the grid
side bus g. The vector ωG comprises all generator-, i.e., IBR
frequencies. From (4), (5), and (6), the second state equation
is obtained as

Ṗi =
ViVg
Xig

(
ωi − Dg ωG

)
. (7)

The frequency prediction model takes the form of a
continuous state-space model

ẋ = A x + B u+ E z (8a)

y = C x (8b)

and is composed of (3) and (7) for each IBR. The state, control
input, and disturbance vectors are obtained by stacking as

x = {xi}
ni
i=1, xi = [ωi Pi]T (9a)

u = {ui}
ni
i=1, ui = 1P∗

i (9b)

z = {zi}
ni
i=1, zi = [P∗

0,i ωn]T (9c)

y = {yi}
ni
i=1, yi = ωi. (9d)

The model (8a)–(8b) assumes constant voltages over the
prediction horizon to adopt the LTI property. The IBRs in
this paper are equipped with a primary PI voltage control
regulating the grid side voltage to 1.0 p.u. In the simulations,
bus voltages remain in a 0.9 - 1.11 p.u. band, whereas
individual IBR voltages fluctuate by less than 0.06 p.u.
during a single transient. This affects the accuracy of the
state equation with a good margin below the allowed voltage
band. As a result, decoupled and constant voltage control is
assumed.

C. CENTRALIZED OPTIMIZATION PROBLEM
This Section defines a centralized optimal control problem
(OCP) based on the prediction model. Like the prediction
model, the OCP is adopted from our previous work in [19].
The OCP is suited to be solved in a receding horizon
fashion by a centralized MPC. After presenting the OCP,
we identify its implementation challenges in a distributed
MPC framework.

The OCP consists of an objective function, the prediction
model, and constraints. When applying MPC, at every time-
step k , we solve a finite-time OCP over a prediction horizon
Hp. The decision variables are the control inputs over the
control horizonHu. After the optimization problem is solved,
only the first control input is applied, and the optimization
is repeated using moving horizons at time k + 1. Hereafter,
{·} (k + j | k) refers to the prediction of a variable {·} at the
future time step k + j given the information available at the
time k . The objective function J of the optimization problem
is defined as a convex, quadratic function of the form

J (u(· | k), ϵω, ϵ1ω, ϵP)

= Q
Hp∑
j=1

(y− yref)2 (k + j | k)

+ R
Hu−1∑
j=0

1u(k + j | k)2 + S
Hp−1∑
j=0

u(k + j | k)2

+ ρ1 ϵ2ω + ρ2 ϵ21ω + ρ3 ϵ2P. (10)

Q, R and S represent positive scalar weights while ρ1,
ρ2 and ρ3 are the slack variables’ weights. The first term in
the objective function penalizes deviations of the controlled
outputs from their reference trajectories over the prediction
horizon Hp. The second and third terms in (10) penalize the
changes and absolute values of the control inputs over the
control horizon Hu to restrict control action. The remaining
terms in the objective function correspond to the quadratically
penalized slack variables and assure the feasibility of the
optimization problem.

We introduce constraints on the prediction model’s states,
inputs, and outputs to fully define the OCP. The constraints
represent either physical system limitations or requirements
for system operation. Firstly, limitations on the active
power injection at the IBR buses translate into constraints
on the inputs 1P∗

i and constraints on the second state
Pi of each IBR as

umin ≤ u(k + j | k) ≤ umax , j ∈ N[1,Hu] (11)

x[2]i (k+ j |k)≤Pi,max + ϵP, i ∈ N[1,ni], j ∈ N[1,Hp] (12a)

x[2]i (k+ j |k)≥Pi,min− ϵP, i ∈ N[1,ni], j ∈ N[1,Hp]. (12b)

These constraints impose the limitation of available active
power from the primary DC source of the IBR. Further,
we constrain the IBRs’ output frequencies and rate of change
of frequency (RoCoF):

y(k + j | k) ≤ ωmax + ϵω, j ∈ N[1,Hp] (13a)

y(k + j | k) ≥ ωmin − ϵω, j ∈ N[1,Hp] (13b)

1y(k + j | k) ≤ 1ωmax + ϵ1ω, j ∈ N[1,Hp] (13c)

1y(k + j | k) ≥ 1ωmin − ϵ1ω, j ∈ N[1,Hp], (13d)

where 1y(k + j | k) denotes the difference of frequencies
between two consecutive time steps, i.e., 1y(k + j | k) =

y(k + j | k) − y(k + j − 1 | k). The state constraints (12a)
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and (12b) include the definition of the frequency divider
formula, as (7) connects each IBR’s power state Pi with
a linear combination of the frequencies at all generation
buses. Similarly, the output constraints (13a)–(13d) contain
the frequency divider formula, as the outputs are defined
as the frequency states of each IBR ωi. These states are
connected to the frequency divider-dependent power states
via (3). Hence, the state and output constraints pose coupling
constraints that connect states and inputs of all IBRs in the
optimization problem. Lastly, the slack variables can only
take non-negative values

ϵω ≥ 0, ϵ1ω ≥ 0, ϵP ≥ 0. (14)

The centralized OCP can be summarized as

min
u(·|k),ϵω,ϵ1ω,ϵP

J (u(· | k), ϵω, ϵ1ω, ϵP)

s.t. disc. system dynamics, i.e.,

x(k + 1) = Adx(k) + Bdu(k) + Edz(k)

y(k) = Cdx(k)

x(k | k) = x(k),

input constraints (11), (14),

state constraints (12a), (12b),

output constraints (13a)–(13d). (15)

The resulting OCP in (15) is a convex optimization
problem with a quadratic cost function. Hence, it can be
represented in quadratic programming (QP) form. We adopt
the definitions introduced in [22] and use the notation of a
stacked input vector U(k) to obtain a compact representation
of the OCP in QP form

min
U (k)

UT (k)HU(k) − GT (k)U(k)

s.t. �U(k) ≤ b(k), (16)

where H and G(k) represent the Hessian matrix and the
gradient vector, respectively, while the matrix � and the
vector b(k) are defined to combine the constraints (11)–(14)
into a single matrix inequality. UnlikeH and�, G(k) and b(k)
depend on the time step k . The stacked input vector is defined
as

U(k) :=

[
uT (k | k) . . . uT (k + Hu − 1 | k) ϵω ϵ1ω ϵP

]T
,

consisting of all decision variables over the control
horizon, including the slack variables.

As discussed, state coupling between the different IBRs
in the prediction model is rooted in the frequency divider
matrix. The grid bus frequencies of each IBR are stated as
an interpolation of all generation frequencies. Hence, each
IBR is coupled with all other IBRs. This global state coupling
carries over to global coupling of the decision variables in the
OCP cost function (10) and in the coupling constraints (12a)–
(13d). In particular, each IBR’s control input u is coupled
with all other IBRs, resulting in a globally cost- and

constraint-coupled optimization problem. A reformulation of
such a problem that is solvable by a distributed optimization
algorithm involves dividing the OCP into subproblems and
introducing local copies of all decision variables in each
such subproblem [23]. Hence, each individual subproblem
involves as many decision variables as the centralized OCP
and has a complexity similar to the original problem. As a
result, no advantages of distributed control are leveraged.

Therefore, a fully distributed MPC scheme can not be
based on the presented centralized prediction model, and it
is necessary to adjust the prediction model so that the IBRs’
state coupling is no longer global.

III. PROPOSED SOLUTION
We present a procedure to remove state couplings between
the IBRs by adjustment of the frequency divider matrix D.
In particular, the procedure removes negligible frequency
divider entries while preserving the physical interpretability
of the frequency values. Afterward, we introduce how
the resulting OCP can be partitioned into partly coupled
subproblems to be applicable in a practical distributed control
setting.

A. FREQUENCY DIVIDER TRIMMING
An entry D(r,i) in the frequency divider matrix gives the
contribution of the generation frequency ωi to an arbitrary
bus frequency ωr . Since the frequency divider calculation
is based on the nodal admittance matrix, the magnitude of
any D(r,i) depends on the electrical distance between the
corresponding two buses. The higher the impedance between
them, the lower the magnitude of D(r,i). In large-scale
systems, the relative electrical distance of certain generator-
bus-combinations might be very high. In such cases, D(r,i)
becomes negligibly small, i.e., the impact of a set of distant
generators on the dynamics at a particular network node is
unimportant. If such entries are approximated to zero, the
local frequency only depends on electrically close generators,
and some state couplings introduced by (7) are neglected.

We call this procedure frequency divider trimming. It con-
sists of two steps: 1) entries of D are set to zero based on
specific criteria to obtain the matrix Dneglect; 2) the rows of
Dneglect are scaled to obtain the trimmed frequency divider
matrixDtrim. In particular, each row is scaled up to a row sum
of 1 by applying the following formula

Dtrim
(r,i)=

Dneglect
(r,i)∑(nb−ni)

r=1 Dneglect
(r,i)

, r ∈N[1,(nb−ni)], i∈N[1,ni], (17)

where Dneglect and Dtrim are (nb − ni)× ni-matrices, while nb
is the number of total buses in the grid and ni is the number
of IBRs.

A particular bus frequency ωr is calculated by multiplica-
tion of the corresponding frequency divider matrix row Dr
with ωG (see (6)), such that the result is a weighted average
of all generation frequencies. Hence, the row scaling is
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FIGURE 1. Single-line representation of an example grid with four
generators.

conducted to ensure that each bus frequency estimated using
Dtrim maintains a total weight of 1, preserving the physical
interpretability of the frequency divider after trimming.

We define the procedure for neglecting entries as follows,
using two different criteria:

1) Define a threshold th.
2) Define a minimum number of neighbors Nmin.
3) Obtain Dneglect: If the number of (non-zero) entries in

a row Dr remains greater thanNmin, set to zero entries
D(r,i) ≤ th— starting with the smallest entry.

Frequency divider trimming allows adjusting the degree of
inter-IBR coupling in the centralized prediction model.

To illustrate the procedure, we consider an exemplary
power system shown in Fig. 1 that includes four generators
and ten buses.

The generators G1, . . . ,G4 are connected to buses 1 to 4.
According to (6),ωG consists of the generation frequencies

ω1, . . . , ω4; the remaining bus frequencies are calculated by
the frequency divider formula

[ω5 ω6 ω7 ω8 ω9 ω10]T =D [ω1 ω2 ω3 ω4]T .

Evaluating the frequency divider for ω6, ω7, and ω9 yields

ω6 = 0.15ω1 + 0.75ω2 + 0.02ω3 + 0.08ω4

ω7 = 0.13ω1 + 0.03ω2 + 0.82ω3 + 0.02ω4

ω9 = 0.5ω1 + 0.22ω2 + 0.1ω3 + 0.18ω4.

Themagnitude of frequency divider entries coincideswith the
electrical distance between buses. For example, the frequency
ω6 is dominated byω2 due to the proximity of bus 6 and bus 2.
On the contrary, ω3 contributes very little to ω6 because of
the large electrical distance between bus 3 and bus 6. Similar
observations hold for ω7 and ω9.

For the frequency divider trimming we choose th = 5%
andNmin = 2. The trimming process yieldsDtrim. Evaluating
the trimmed frequency divider for the previously observed
frequencies yields

ω6 ≈ 0.153ω1 + 0.765ω2 + 0ω3 + 0.082ω4

ω7 ≈ 0.133ω1 + 0.031ω2 + 0.837ω3 + 0ω4

ω9 = 0.5ω1 + 0.22ω2 + 0.1ω3 + 0.18ω4.

The three frequencies illustrate the effect of the trimming
criteria in the trimming process: For ω6, the influence of

ω3 is neglected, removing the coupling between the two
frequencies. The threshold of 5% prevents the neglect of
the contribution of ω4. For ω7, the influences of both
ω2 and ω4 are below the threshold and, hence, considered
for neglect. However, the minimum number of neighbors
Nmin = 2 prevents the neglect of both contributions. Only
the more minor contribution of ω4 is neglected. In the case
of ω9, frequency divider trimming does not remove any
couplings, as bus 9 has an intermediate electrical distance to
all generators.

Summarizing, th and Nmin pose the tuning knobs for
methodical frequency divider trimming, yielding a more
or less rigorous neglect of entries in D. The threshold
criterion assures that negligible frequency couplings are
removed during trimming; theminimumnumber of neighbors
criterion provides a baseline for the number of frequency
couplings persisting after trimming. UsingDtrim instead ofD,
a centralized prediction model can be constructed with fewer
state couplings between the different IBRs.

B. PARTITIONING
We demonstrated how to use frequency divider trim-
ming to reduce the state couplings between IBRs in the
prediction model, such that state coupling is no longer
global. However, each IBR has an individual set of state
couplings. Therefore, a resulting centralized OCP might
still involve global decision variable coupling in the cost
function (10) and the coupling constraints (12a)–(13d), due
to the prediction horizon spanning multiple time steps and
the decision variable couplings blending with each prediction
timestep.

The issue of global decision variable coupling in the
centralized OCP, despite the state coupling of the IBRs in
the prediction model being only local, motivates further
adjustment of the OCP. Inspired by [11], we construct
individual partitioned prediction models for each IBR i as

x(i)(k + 1) = A(i)x(i)(k) + B(i)u(i)(k) + E (i)z(i)(k)

y(i)(k) = C (i)x(i)(k). (18)

Here, x(i) is a stacked vector containing {xi, {xj}j∈Nj,i} where
Nj,i is the set of neighbors of IBR i, defined by the remaining
state couplings of IBR i after frequency divider trimming.
In particular, the neighbors are determined by the IBR
frequencies needed to evaluate (6) for IBR i usingDtrim. Note
that frequency divider trimming with a certain Nmin ensures∣∣Nj,i

∣∣ ≥ Nmin for all IBRs i. Similar to x(i), the vectors u(i)

and z(i) are defined as

u(i) = {ui, {uj}j∈Nj,i}

z(i) = {zi, {zj}j∈Nj,i}.

In the centralized prediction model, the states of a neighbor
j are coupled to different states than the states of IBR i
so that the coupling propagates for an increasing number
of prediction steps. We set the boundary that each IBR i’s
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FIGURE 2. Construction of partitioned models for IBRs 1 and 3 in the IEEE
39-bus system.

partitioned prediction model shall only include its initial
set of neighbors Nj,i as defined by the frequency divider
trimming. Consequently, the prediction model of IBR i
includes the state couplings between i and its neighbors j,
whereas couplings between any neighbor j and IBRs /∈ Nj,i
are discarded.

As such, an OCP constructed using the partitioned model
of IBR i considers the state information of a limited section in
the power system. The trimming criteria th and Nmin define
the size of these sections and are tuned so that the sections
overlap. Hereby, the overlap of sections ensures that the IBRs’
individual OCPs are partly coupled. This means they share a
part of their decision variables, particularly the inputs of IBRs
considered in multiple partitioned prediction models.

The partitioning approach is illustrated using the example
in Fig. 2 with highlighted sections for the IBRs 1 and 3 in
the IEEE 39-bus system, which we use for demonstration of
the control scheme in Section IV. In this example, the IBRs
1 and 3 consider the state information and coupling with
an individual set of 5 neighbors in their prediction model.
The IBRs 1, 2, 3, and 10 pose the overlapping part of these
sections and are considered in both IBR 1’s and 3’s prediction
models. On the contrary, IBRs 8 and 9 are only part of IBR
1’s model, while only IBR 3 considers coupling with IBRs
6 and 7. Neither of the two depicted sections considers the
dynamics of the IBRs 4 and 5. Similarly to the shown sections
of IBRs 1 and 3, all other IBRs consider individual grid
sections, resulting in 10 partly overlapping sections.

The overall procedure for obtaining the partitioned predic-
tion models is summarized in Algorithm 1.

After obtaining the partitioned prediction models, an OCP
of the form of (15) can be constructed for each IBR. The
resulting individual OCPs for each IBR combine into an
overall OCP with a so-called partition-based structure that

Algorithm 1 Construction of Partitioned Prediction Models
via Frequency Divider Trimming

Input: Frequency divider matrix D
1) Extract all rows Dg corresponding to grid side buses

from D to obtain the matrix DG:

DG :=

 −Dg1−
...

−Dgni−


2) Trim DG using the following criteria:

a) Only entries ≤ th are trimmed
b) Each row has at leastNmin + 1 entries that are ̸= 0
c) All couplings after trimming are bidirectional:

If an entry in row g and column i is non-zero after
trimming, the entry in the row corresponding to
the grid-side bus of i and column corresponding
to the IBR of g is also non-zero.

for i ∈ Ni do
3) Use Dtrim

G to construct individual submatrices D(i) for
each IBR:
a) Define the neighborhood of IBR i,Nj,i:

If Dtrim
G(i,j) ̸= 0, IBR j is in the neighborhood of

IBR i. By definition, i ∈ Nj,i = {i, Nj,i}.
b) Remove all rows of Dtrim

G which correspond to
buses of IBRs outside ofNj,i.

c) Remove all columns j /∈ Nj,i.
d) To obtain D(i), scale all rows of the remaining

matrix, such that each row has a row sum of 1.
4) Construct IBR i’s partitioned prediction model (18)

analog to the centralized prediction model using
D(i), (3), and (7).

end for

involves overlapping of the individual decision variables,
as in [24]

min
{Ui}i∈Ni

ni∑
i=1

Ji
({
Ui,

{
Uj

}
j∈Nj,i

})
s.t.

{
Ui,

{
Uj

}
j∈Nj,i

}
︸ ︷︷ ︸

U (i)

∈ Ci ∀i ∈ Ni. (19)

In this OCP form, each IBR i is optimizing its local cost
function Ji subject to its local constraint set Ci. The cost
function and the constraints depend on the IBR’s local
decision variables Ui and those of its neighboring peers Uj,
combining to the partitioned decision vectorU (i). The optimal
solution vector U∗ contains all U∗

i as components [23].
The decision variable coupling of the IBRs’ local problems

in (19) is identical to the state coupling in their respective
prediction models. Thus, the choice of the frequency divider
trimming criteria th and Nmin critically influences the
coupling structure of the partition-based OCP. In order
to indirectly preserve the global coupling nature of the
centralized OCP after partitioning, we require the decision
variable coupling structure of the partition-based OCP (19)
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to be based on a connected graph. We deduce the following
requirements:

1) Choose th at least large enough, such that coupling in
Dtrim
G is not global.

2) Choose Nmin large enough, such that the coupling
graph defined by Dtrim

G is connected.

C. OPTIMIZATION ALGORITHM
An optimization problem with the structure of (19) can be
solved by the algorithms distributed dual decomposition and
distributed ADMM. Some variants of these algorithms are
tailored to exploit the partitioned structure [23], such as the
partition-based relaxed ADMM introduced in [25], which we
adopt in this paper. One of the main advantages of these
specified algorithms is that each agent/IBR only has access
to the decision variables associated with its own problem,
while a straightforward application of existing consensus
methods would lead to poor scalability and redundancy of
shared information [26]. Further, all such algorithms are
truly distributed, incorporating a neighbor-to-neighbor com-
munication scheme. The advantages of the partition-based
relaxed ADMM include convergence for a clearly defined
and wide range of parameter choices. Additionally, the
algorithm’s convergence is guaranteed under communication
losses, which is relevant in a practical implementation. Lastly,
ADMM schemes are generally expected to converge faster
than dual decomposition algorithms [27].
A detailed pseudo-code description of the partition-based

relaxedADMM is given in [25]. To fully define the algorithm,
the parameters νmax, ρ, and α need to be specified. The
maximum number of iterations νmax poses the stopping
criterion, ρ is an arbitrary penalty parameter as in classical
ADMM, and α is a choosable relaxation parameter used to
update auxiliary update variables during algorithm execution.

The selected algorithm is designed for bidirectional com-
munication between the executing agents. The communica-
tion structure coincides with the inter-IBR coupling structure
since coupled agents need to exchange information to reach a
consensus on their shared decision variables. As specified in
Section III-B, the inter-IBR coupling graph is required to be
connected. Thus, we utilize a communication scheme based
on a bidirectional and connected communication graph.

D. PROPOSED DISTRIBUTED MPC SCHEME
The proposed distributed MPC scheme consists of local
controllers at each IBR collectively performing the
partition-based relaxed ADMMalgorithm to solve the overall
partitioned OCP consisting of the IBRs’ local problems with
overlapping decision variables. The deployed communication
scheme is based on a connected communication graph that
directly follows from the IBR couplings remaining after
frequency divider trimming. As required in Section III-B,
the trimming criteria are chosen so that a connected com-
munication/coupling graph results. This design procedure is
independent of the system’s operating point since it is based

FIGURE 3. Frequency control configuration of each IBR in the distributed
MPC scheme.

solely on the system’s admittance matrix. Online changes in
the grid topology impact the admittance matrix. However,
in that case, only the values and not the sparsity structure of
Dtrim
G should be updated since changing the sparsity of Dtrim

G
would be associatedwithmodifications to the communication
scheme. Online addition of communication links is not
intended and would be impractical. The removal of available
communication links would be wasteful.

While keeping the structure of the distributed control
problem constant, the OCP has to be initialized in every
execution with the current system information. Fig. 3 shows
the control configuration of each IBR in the distributed MPC
scheme. At each execution call, an IBR i gathers current
state information, voltage measurements, and disturbance
values associated with itself and each of its neighboring
IBRs. After initialization of the OCP, IBR i communicates
exchange variables with its neighbors in each iteration of the
optimization algorithm.

A flowchart of the distributed MPC scheme is given in
Fig. 4. It contains the computation and communication steps
of the agents/IBRs as part of the partition-based relaxed
ADMM algorithm.

In particular, each IBR i augments its local OCP using
auxiliary update variables p(j,i)i and p(j,i)j . During each
iteration of the algorithm, IBR i sends the exchange variables
q(i→j)
i and q(i→j)

j to its neighbors j while gathering the

exchange variables q(j→i)
i and q(j→i)

j . The auxiliary update
variables are then updated at the end of each iteration. Note
that slacks are kept local decision variables and are not
exchanged during the iterations. After the stopping criterion
is reached, each IBR has obtained its optimal partitioned
decision variable vector U (i)∗ from which only the first and
only the local control input u∗

i (k | k) is extracted and used. ν
denotes the iteration number.

In case of a short communication loss of an IBR i
during the execution of the iterative distributed optimization
process, IBR i does not exchange any exchange variables
with its neighbors for one or more iterations. In such cases,
the algorithm is guaranteed to converge by only updating
the auxiliary update variables associated with received
exchanged variables. In case of a longer communication
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FIGURE 4. Flowchart of the distributed MPC scheme.

loss, IBR i cannot exchange information with its neighbors,
including current state and voltagemeasurement information.
Hence, IBR i’s OCP is not being updated at a new MPC
execution call. In such cases, the distributed MPC scheme
maintains operation by each IBR using the latest available
information from its neighbors for its current local OCP.

IV. EVALUATION
The proposed distributed MPC for secondary frequency
control is evaluated in numerical time-domain simulations of
the IEEE 39-bus system and an extended CIGRE medium
voltage power system, carried out in MATLAB/Simulink.
The distributed control scheme is initially compared to
the centralized version of the controller presented in [19].
Additionally, scenarios of communication loss are considered
to evaluate the robustness, and the influence of different
tuning parameters is discussed.

A. SYSTEM DESCRIPTION IEEE 39-BUS SYSTEM
The chosen system for implementing the distributed MPC
is the IEEE 39-bus system, a model of the high-voltage
transmission system of the New England area. The power
system model represents a meshed network consisting of
10 generators, 19 loads, and 46 lines. In the original model,
all generation is synchronous. To obtain an inverter-based
power system, we replace all the synchronous generationwith
IBRs. The IBRs all are operated as voltage sources in the
grid-forming control mode. As such they establish a voltage
and frequency independently without relying on an external
grid. Furthermore, they provide a virtual inertia and primary
frequency response via the well-known droop control [1].
Inner control loops and LCL filter dynamics of each IBR are
modeled in the simulation as described in [19].

The nominal system voltage is Vn = 345 kV. Like the
original synchronous generators, we operate the IBRs in
conjunction with step-up transformers, such that the nominal
voltage of buses 30–38 is 22 kV. The system is operated at a
nominal frequency of fn = 50Hz, and each IBR is rated with
the base apparent power of 100MVA.

Active power and voltage set-points are assumed to be
determined in steady-state by a higher-level control instance
that optimizes the power flow. The secondary frequency
control is implemented by the distributedMPC, which adjusts
the steady-state active power set-points by 1P∗

i .

B. FREQUENCY DIVIDER TRIMMING SENSITIVITY
ANALYSIS
A quantitative study was performed to analyze the impact
of frequency divider trimming and its criteria threshold th
and minimum number of neighbors Nmin on the accuracy
of the prediction model. We have considered 25 trimming
cases with th ranging from 2.5% to 10% and Nmin
ranging from 1 to 5. For these 25 cases, the proposed
frequency divider trimming procedure was applied, and the
corresponding trimmed frequency divider matrices Dtrim

were stored. The resulting coupling/communication graphs
are highly meshed for low values of th and high values
of Nmin. The communication graphs become increasingly
sparse when the threshold is increased and the minimum
number of neighbors is decreased. In summary, the trimming
removes many inter-IBR couplings when th is high andNmin
is low.

To quantitatively study the impact of trimming, a quasi
Monte Carlo simulation approach was conducted using
Halton sequences. Through Halton sequences, randomized
load steps at buses 12, 15, 16, 23, 24, and 27 were
generated with a magnitude between defined limits Pstep,min
and Pstep,max. The sum of all worst case load steps was
525MW. Using Halton sequences allows to uniformly cover
the load step scenarios without bias. A total of 70 simulation
runs were performed and the normalized root mean square
error (RMSE) of the frequency estimation by each trimmed
frequency divider matrix was calculated by comparing it with
the phasor measurement unit (PMU) frequency at each IBR’s
grid side bus. Additionally, the RMSE of the non-trimmed
frequency divider was calculated. For easy visualization, the
RMSE of each trimming case was scaled with the RMSE of
the non-trimmed frequency divider.

RMSEtrim,scaled =
RMSEDtrim

RMSED

To study the overall impact of the various trimming cases,
the scaled RMSEtrim,scaled averaged over all grid side buses
was investigated. Fig. 5 shows the scaled RMSE for all
variations of th and Nmin. It can be observed that the scaled
RMSE for trimming cases with a given Nmin approaches
unity when th is decreased. Vice versa, for a given th,
increasing Nmin also reduces the scaled RMSE towards 1.
Cases with a scaled RMSE close to 1 involve a high number
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FIGURE 5. Scaled RMSE over all buses as threshold and minimum
number of neighbors are varied in frequency divider trimming.

FIGURE 6. Scaled RMSE at all IBR grid side buses in the IEEE-39-bus
system.

of couplings, while in cases with a high RMSE, the coupling
scheme is less complex. Thus, the selection of th andNmin is a
tradeoff between accuracy and the number of IBR couplings.

For the distributed MPC in the IEEE 39-bus system,
the choice of the frequency divider trimming criteria was
made according to the requirements defined in Section III-B,
i.e., such that a connected coupling graph results while
considering the insights given in Fig. 5. The proposed
trimming criteria are th = 5% and Nmin = 3. The accuracy
of the proposed trimming case is approximately within 3%
of the non-trimmed frequency divider.

To study the accuracy using Dtrim at each IBR’s grid side
bus individually, the scaled RMSE was evaluated at each of
these buses. We considered three trimming cases: case 1 with
th = 10% andNmin = 1 resulting in a disconnected coupling
graph, the selected case 2 with th = 5% and Nmin = 3,
and case 3 with th = 3.75% and Nmin = 4 with a complex
coupling structure. Fig. 6 shows the scaled RMSE at each grid
side bus for the three trimming cases. As observed, the RMSE
is worst for case 1, whereas cases 2 and 3 have a similar
RMSE for most buses. This further justifies the proposed
trimming criteria selection.

Reducing the threshold and increasing the minimum
number of neighbors further does not lead to a significant
RMSE reduction, while the number of communication links
increases, thereby losing practical significance.

To further analyze the effect of frequency divider trimming,
time domain simulations were performed, in which the
frequency measurements obtained from a PMU and the
frequency estimation of the non-trimmed frequency divider
are evaluated alongwith the estimations using trimming cases

FIGURE 7. Comparison of frequency estimations at bus 10 in the IEEE
39-bus system after a load step.

1 and 2. These simulations involve a load step at t = 2 s.
The time domain results at bus 10 are shown in Fig. 7. It is
observed that both case 1 and 2 are in close agreement with
the non-trimmed frequency divider D. However, as shown
in the zoomed scope, the frequency estimation of trimming
case 2 is closer to D than trimming case 1. These results are
consistent at each grid side bus.

C. CONTROLLER DESIGN
Designing the distributed MPC scheme involves specifying
the inter-IBR communication/coupling structure resulting
from frequency divider trimming and choosing the controller
parameters.

The frequency divider trimming criteria were specified
according to the sensitivity analysis in Section IV-B as th =

5% and Nmin = 3. The resulting partitioning defines the
communication scheme of the distributed MPC, as depicted
in Fig. 8. Subsequently, the parameters of the distributed
MPC scheme were specified as shown in Table 1. The
parameters related to the partition-based relaxed ADMM
ρ and α were tuned in a try-and-error procedure for fast
convergence of the algorithm within the simulation setup
described in Subsection IV-E. Afterward, νmax was specified
as a value guaranteeing sufficient solution accuracy.

A warm start strategy was implemented in the MPC
scheme, meaning that all IBRs store the auxiliary update and
exchange variables as well as their solutions at the end of
each MPC execution to use them as initial values in the next
algorithm execution. It was observed that the implementation
of a warm start speeds up the convergence of the algorithm.

The MPC tuning parameters are Q, R, S, and the equally
specified horizons Hp = Hu. Q is orders of magnitude higher
than R and S, since the numerical values of y(k + j | k) are
orders of magnitude smaller than u(k + j | k). Additionally,
the value of Q is weighted much higher than R and S
to ensure that frequency regulation is the primary control
objective of the proposed OCP. The value of R was tuned
to achieve a damped control response. A small value of S
was chosen to incentivize the MPC to optimize for equal
power sharing in steady-state while not interfering with the
frequency regulation objective. The horizons Hp = Hu were
chosen in an iterative tuning procedure starting from an initial
value of 3. The chosen value of 4 achieves a balanced tradeoff
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FIGURE 8. Communication/coupling graph of the distributed MPC in the
IEEE 39-bus system.

TABLE 1. Parameters of the distributed MPC in the IEEE 39-bus system.

between control performance and algorithm convergence
speed. During the tuning process, we observed that larger
horizons yielded better overall performance of the distributed
MPC in the simulations, while the algorithm converged
within fewer iterations for smaller horizons.

D. COMMUNICATION DELAYS
Classical secondary frequency control has been assigned
a time range of 15 s to 15min after an event, e.g., [28],
and correspondingly communication delays of 250ms or
more have been considered acceptable [29] for monitoring
frequency stability. However, the novel method proposed in
this paper operates at a faster timescale and, in particular, the
MPC samples at 100ms. For this application, typical existing
IP-based networks, e.g., using PMUs, will likely not fulfill the
required communication speed. For example, measurements
of a real communication network in [30] indicate several hun-
dreds of milliseconds of communication delay (depending

TABLE 2. Load step events.

FIGURE 9. IBR frequencies and active power outputs controlled by the
distributed MPC in the IEEE 39-bus system.

on the distance). Instead, a dedicated, fast, and deterministic
communication is assumed for the application of the novel
control method proposed in this paper, e.g. using dedicated
fiber optics, leading to presumably negligible communication
delays of a few milliseconds/100 km.

E. SIMULATION RESULTS IEEE 39-BUS SYSTEM
The performance of the control response is validated for a
step increase and subsequent decrease of the system load. The
initial system load sums up to Pload,total = 600MW. At t =

5 s, the load is increased at several buses, adding up to a total
step of 335MW. The additional load is removed at t = 10 s.
A detailed summary of the load changes is given by Table 2.
Fig. 9 shows each IBR’s frequency and active power output
during a simulation run while the secondary distributed MPC
is active.

It is observed that the active powers are quickly stabilized,
and the frequency is recovered into a ±0.01Hz band around
50Hz within 510ms in both transients.

To properly evaluate the distributed MPC, it is compared
to the centralized version of the controller in [19] and
a centralized PI controller. Since the centralized MPC
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FIGURE 10. Average of the IBR frequencies in the IEEE 39-bus system for
the proposed distributed MPC, the centralized MPC, and a centralized PI
controller.

TABLE 3. Performance measures in the IEEE 39 bus system.

uses the same prediction model as the distributed MPC
but without frequency divider trimming, it serves as an
upper bound for control performance. The PI controller
serves as a performance benchmark. Fig. 10 shows the
average of the IBR frequencies during a simulation run
for all three considered controllers. The control response
of the distributed MPC is observed to be similar to the
centralized MPC and significantly faster than the centralized
PI controller. The frequency recovery time of the distributed
MPC is slightly increased by approximately 70ms. The
frequency nadirs are almost identical for the centralized and
the distributed MPC, in particular, 49.725Hz (distributed)
compared to 49.724Hz for the positive load step. The
nadirs for the negative load step are 50.278Hz (distributed)
and 50.280Hz, respectively. In contrast, the nadirs of the
centralized PI controller deviate an additional 120mHz from
the nominal frequency for each load step. Table 3 shows a
quantitative comparison between the controllers in terms of
performance measures, i.e., the steady-state frequency error
ess,max, the integral squared error ISEmax, and the frequency
recovery time trec,max. The index max denotes that the
worst-case value among all IBRs is observed. All controllers
achieve a steady state error in the order of 10−4Hz.
Overall, the performance of distributed and centralized

MPC remains comparable, which is emphasized by the
similar values of the ISE , a measure of overall performance.
Thus, the distributed MPC proves advantageous since it can
leverage benefits of distributed control, such as scalability,
avoiding a single point of failure, and limited requirements on
communication infrastructure by requiring only information
exchange within a defined neighborhood. When comparing
distributed MPC and centralized MPC, we note that there
is, in general, no guarantee that satisfying the constraints
of the partitioned OCP implies that the constraints for the

FIGURE 11. IBR frequencies and active power outputs controlled by the
distributed MPC in the IEEE 39-bus system, while each MPC execution call
is terminated after one iteration.

more accurate centralized OCP are satisfied. However, the
principal difference between the models is the estimation
of the frequency fg at the each IBR’s grid side bus. When
approaching steady state, all IBR frequencies approach the
nominal frequency, and the error introduced by frequency
divider trimming with respect to the frequency amplitude
vanishes, such that the constraints of the centralized OCP are
met with negligible error.

As described in Section III-C, the IBRs in the distributed
optimization algorithm are iteratively exchanging informa-
tion about their decision variables, i.e., the control inputs
over the control horizon U∗(k), with other IBRs within their
predetermined control sections. In Fig. 9, the distributed
optimization was stopped after νmax = 10 iterations in
each algorithm call, a value that guaranteed convergence
close to the optimal solution. The optimization algorithm
can be terminated earlier to reduce the vulnerability to
communication delays and information loss as well as to
decrease the computational burden. Fig. 11 presents the
simulation results when the optimization is terminated after
only νmax = 1 iteration.

It can be seen that the control performance does not
critically decline. In this case, the frequency has a slight
overshoot, and the active power response has a marginally
longer transient, such that the system reaches steady-state
(±0.01Hz) after 1040ms.We conclude that the requirements
on the computation and communication systems can be
significantly reduced for an acceptable cost of performance.

In Fig. 12 the communication with IBR 4 is lost from
t = 7.5 s until t = 12.5 s. A total loss of communication
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FIGURE 12. IBR frequencies and active power outputs controlled by the
distributed MPC in the IEEE 39-bus system during a communication loss
of IBR 4 (7.5 s–12.5 s).

over the span of multiple sampling times means that IBR
4 is neither sending nor receiving any information to/from
its neighboring IBRs. According to Fig. 3, this results in
missing updates of state variables, voltagemeasurements, and
algorithm exchange variables. As specified in Section III-D,
the distributed MPC continues execution using the latest
available information. The maximum number of iterations of
the optimization is again set to 10.

During steady-state, the loss of communication has no
impact on the power system. Due to the warm start strategy,
the optimization is initialized with the variables and solution
from the previous time step. Thus, no deviation due to com-
munication loss is observed. The communication is restored
2.5 s after the load step at t = 10 s. It can be observed that
the frequency recovers with a stable response. In particular,
steady-state (±0.01Hz) is reached within 1180ms. When the
communication is restored, IBR 4 reattains access to state
and voltage information updates. As a result, the steady-state
frequency error tightens, as emphasized in the zoomed scope.
Due to the communication loss, the frequency at IBR 4 shows
an increased nadir of 50.402Hz and overshoots noticeably.
The active power sharing is more uneven compared to the
previous cases, and the power output is subject to a larger
overshoot. However, the spread in power outputs slowly
reduces after t = 12.5 s due to the penalty on absolute
inputs. We note that the system remains stable also for a

FIGURE 13. Single-line diagram of the extended CIGRE MV system.

longer, simultaneous communication loss of two IBRs until
t = 15 s, however, at the cost of larger transient responses in
the frequency and active power.

In general, the distributed MPC can handle a loss of
communication of some IBRs. If too many IBRs lose
communication simultaneously for an extended amount of
time, fallback strategies should be implemented, such as
reverting to a decentralized secondary control or turning the
secondary control off and relying only on the primary control.
However, the design of such fallback strategies is outside the
scope of this paper.

F. SYSTEM DESCRIPTION EXTENDED CIGRE MV SYSTEM
The second chosen system for implementation and simulation
of the proposed distributed MPC is an extension of the
medium voltage distribution network benchmark introduced
by CIGRE in [31]. The extended CIGRE MV system in
this paper is modeled as a parallel connection of two MV
systems in the European configuration to a common bus. The
extended CIGRE MV system has a total of 25 buses. Nine
grid-forming IBRs, which serve as the only generation units,
were placed evenly throughout the grid. A single-line diagram
of the system is shown in Fig. 13. The two subsystems are
not identical due to the different placement of the IBRs and
different switch positions. As depicted in Fig. 13, switch S4 is
closed to form a ring connection in the right subsystem while
the other switches are open, so that the remaining grid has
a mostly radial structure. The IBRs each have a rated power
of 5MW with an equal time constant of 100ms of the first
order active power filter. The system has a nominal voltage
of 20 kV. Further system parameters are obtained from [31].

G. SIMULATION RESULTS EXTENDED CIGRE MV SYSTEM
Overall, the controller design of the distributed MPC was
conducted similarly to the IEEE 39-bus system, with the
difference that prediction model and OCP were set up using a
per-unit representation of all variables. The frequency divider
trimming criteria were chosen as th = 6.25% and Nmin =

1, according to the guidelines provided in Sections III-B
and IV-B. The resulting communication/coupling graph of the
distributed MPC is displayed in Fig. 14.
A summary of the selected control parameters is given

in Table 4. The sampling time was reduced from 100ms
to 25ms to account for the faster frequency dynamics

53262 VOLUME 12, 2024



M. Moritz et al.: Distributed Model Predictive Frequency Control of Inverter-Based Power Systems

FIGURE 14. Communication/coupling graph of the distributed MPC in the
extended CIGRE MV system.

TABLE 4. Parameters of the distributed MPC in the extended CIGRE MV
system.

FIGURE 15. Controlled IBR frequencies in the extended CIGRE MV system
using the distributed MPC.

due to shorter line lengths. The weights Q, R, and S,
as well as the penalty parameter ρ, have different orders
of magnitude compared to the IEEE 39-bus system case in
Table 1, since the per-unit method was used. Again, a warm
start was implemented to accelerate the convergence of the
optimization algorithm.

The considered simulation scenario includes a load step
increase at various buses in the system at t = 2 s, with a
total of 9MW. The initial system load is 9.43MW. Fig. 15
shows the corresponding IBR frequencies controlled by the
distributed MPC.

As noted in Table 4, the control scheme could achieve
convergence to sufficient accuracy after a maximum of
νmax = 6 iterations in every execution call. The IBR
frequencies recover to a ±0.01Hz band around 50Hz within
190ms after the load step. The maximum frequency nadir is
49.786Hz. A quantitative performance comparison with the

TABLE 5. Performance measures in the extended CIGRE benchmark
system.

centralized version of theMPC and a centralized PI controller
is given in Table 5.

The distributed MPC performs almost identically to the
centralized MPC, which uses the same control parameters.
The integral squared error and the recovery time of the MPCs
are by a factor of four smaller than for the centralized PI
controller. At the same time, the MPCs achieve a 35mHz
smaller maximum frequency deviation. The steady-state error
of the MPCs is again in the order of 10−4Hz.

To evaluate the computational effort of the distributed
MPC, a runtime analysis of the described simulation run
was conducted, using a PC with Intel Core i5-10210U CPU
and 16GBofRAM.During the simulation run, the distributed
MPC was executed 160 times. The total required execution
time associated with construction of the IBRs’ local OCPs
was 0.503 s, while performing the partition-based relaxed
ADMM algorithm required a total of 2.497 s. The resulting
computation time per execution of the distributed MPC was
18.9ms. If considering a simultaneous parallel execution by
each IBR’s computation unit, the average computation time
per execution per IBR would be texec,i = 2.1ms. These
results show that the computation of the optimal control
signals can be performed in a fraction of the MPC sampling
time Ts = 25ms. The remaining time difference of 22.9ms
would be available for communication delays, which were
not considered in the implementation in MATLAB/Simulink.
The delay, which a real dedicated communication scheme
would introduce, might be greater than the available time
difference between Ts and texec,i, however, the computation
time using optimized code running on specialized control
hardware is likely to be lower than in the presented runtime
analysis.

Similarly to the IEEE 39-bus system, the robustness of the
distributed MPC is evaluated by investigating the effects of
two scenarios: 1) early termination of each MPC execution
call after one iteration and 2) communication loss of an
arbitrary IBR. Fig. 16 shows the IBR frequencies in the
two considered scenarios, and for the unimpaired distributed
MPC. Stable frequency responses are observed in all
scenarios. The control performance under early termination
is comparable to the base case without communication
loss, with a 13% increase in maximum frequency recovery
time and an 11% larger maximum frequency nadir. During
the communication loss of IBR 6 between 1.5 s and 3.5 s,
no effect is visible in steady state. However, the IBR
frequencies recover slower after the load step than in the base
case without communication loss. After the communication
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FIGURE 16. Controlled IBR frequencies in the extended CIGRE MV system
using the distributed MPC for different scenarios.

is restored at 3.5 s, the small remaining frequency error
vanishes. In summary, the observed results are consistent with
the results of the IEEE 39-bus system.

V. CONCLUSION
This paper presents a distributed MPC scheme for secondary
frequency control of inverter-based power systems. The
distributed MPC is based on the partition-based relaxed
ADMM, which solves a global optimization problem that is
partitioned into local subproblems with overlapping decision
variables. The proposed control architecture consists of local
controllers at each IBR that exchange local measurement
information and temporary exchange variables among a
defined set of neighbors. We propose the method of
frequency divider trimming for generating an approximation
of the frequency divider by introducing sparsity into the fre-
quency divider matrix D. The method enables the creation of
partitioned submodels by splitting the centralized frequency
prediction model into overlapping sections while preserving
the physical interpretability of the first-principles modeling
equations. In simulations, it was shown that:

1) Transient frequency estimations using a trimmed
frequency divider matrix Dtrim are in close agreement
with the full frequency divider if the trimming criteria
are selected accordingly. In the performed sensitivity
analysis, the errors are in the range of < 3%.

2) The proposed distributed MPC scheme achieves a
control performance comparable to the centralized
MPC in [19] based on the same predictionmodel. In the
two considered test systems, the frequency recovery
time of the distributed MPC after a load step is 0%–
16% longer, while the occurring frequency nadir is
identical to the centralized MPC.

3) The distributed MPC leverages two advantages of
distributed control. In particular, it is scalable, as the
complexity of each IBR’s local OCP does not scalewith
the number of IBRs in the grid. Further, the required
communication scheme only involves neighbor-to-
neighbor communication.

4) By terminating the algorithm after one iteration, the
computational burden and requirements on commu-
nication systems can be significantly reduced at an

acceptable expense of additional frequency recovery
time, i.e., 13%–104% in the performed simulations.

5) The distributed MPC scheme is robust against commu-
nication losses spanning multiple controller sampling
times.
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