Deep Reinforcement Learning for Optimal Building Energy System
Operation

Deep Reinforcement Learning fiir den optimalen Betrieb von Gebdudeenergiesystemen

Von der Fakultat fiir Maschinenwesen der Rheinisch-Westfalischen Technischen Hochschule Aachen zur

Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation
vorgelegt von

Thomas Bruno Schreiber

Berichter: Univ.- Prof. Dr.-Ing. Dirk Miiller
Univ.- Prof. Dr.-Ing. Veit Hagenmeyer

Tag der miindlichen Prifung: 24. Mai 2024

Diese Dissertation ist auf den Internetseiten der Universitatsbibliothek online verfiigbar.



Vorwort

Die vorliegende Dissertationsschrift entstand im Rahmen meiner Tétigkeit am Lehrstuhl fiir
Gebaude- und Raumklimatechnik des E.ON Energieforschungszentrums der RWTH Aachen
University. Wahrend meiner Arbeit in 6ffentlich geférderten Forschungsprojekten wurde ich
wiederkehrend vor die Herausforderung gestellt, den Betrieb von Geb&udeenergiesystemen
unter dynamischen Randbedingungen zu optimieren. Gleichzeitig zeichnete sich in der Lit-
eratur der Trend ab, dass die KI-Algorithmenfamilie Deep Reinforcement Learning immer
vielversprechender fiir die Anwendung im Bereich der Betriebsoptimierung technischer Sys-
teme wurde. Diese Entwicklung ergab sich im Wesentlichen getrieben durch einige beein-

druckende Erfolge in der Grundlagenforschung. So entstand die Idee fiir diese Dissertation.

Ich méchte mich ganz herzlich bei meinem Doktorvater, Univ.- Prof. Dr.-Ing. Dirk Miiller, fiir
die Freiheit dieses Dissertationsthema voranzutreiben sowie fiir die produktive und gehaltvolle
Forschungs- und Arbeitsatmosphére am Lehrstuhl bedanken. Mein besonderer Dank gilt
auferdem Univ.- Prof. Dr.-Ing. Veit Hagenmeyer fiir die angeregten Diskussionen und die
wertvollen Einblicke im Rahmen des Promotionsprozesses sowie Univ.- Prof. Dr.-Ing. Andrea

Benigni fiir den Priifungsvorsitz im Rahmen der miindlichen Priifung.

Des Weiteren mochte ich mich bei meinen Kolleginnen und Kollegen bedanken, die mich
bei meiner Arbeit immer wieder unterstiitzt haben, mit mir iiber Ideen und Forschungsfra-
gen diskutiert haben und die Zeit am Institut auch iiber die reine Arbeit hinaus zu einem
unvergesslichen Lebensabschnitt gemacht haben. Besonders Marc Baranski, Phillip Stoffel,
Laura Maier, meinen lieben Kolleginnen und Kollegen im Kreis der Teamleiter und meinen
Teammitgliedern im Team Urbane Energiesysteme mochte ich von Herzen danken. Ein weit-
erer Dank ist meinen vielen studentischen Abschlussarbeitern gewidmet, die mich durch ihre
exzellente Forschungsarbeit vielseitig unterstiitzt haben. Ein besonderer Dank gilt hier Séren
Eschweiler, Aron Schwartz, Christoph Netsch und Vincent Evenschor, unter deren Betreu-
ung die Journal- und Konferenzartikel entstanden sind, die in das Anwendungskapitel dieser

Dissertationsschrift eingeflossen sind.

Ein ganz personlicher Dank gilt meiner Ehefrau Carla Schreiber, die meine Entscheidung,
noch einmal fiinf Jahre in Aachen zu arbeiten, mitgetragen und mir die Freirdume geschenkt
hat, mich auch neben der Arbeit mit meiner Dissertation zu beschéftigen. Meinen beiden
Kindern Carlotta und Kasimir mochte ich fiir die Stunden danken, die sie geduldig auf mich
verzichtet haben und fiir einen ganz neuen Blick auf Leben und Arbeit, den ich ohne sie wohl

nicht erlangt hitte. Schliefilich m6chte ich meiner Familie und meinen Freunden fiir die vielen



unterstiitzenden Worte und spannenden Diskussionen iiber meine Forschungsarbeit danken.

Auch da sie mir ein Umfeld geschaffen haben, in dem ich bis zu diesem Punkt wachsen konnte.

Aachen, Mai 2024

Thomas Schreiber



Abstract

International climate protection targets make the development of scalable methods for in-
creasing the efficiency and sustainability of energy systems a necessity. At the same time, the
digital revolution continues to advance and algorithms from the field of artificial intelligence
are finding their way into more and more areas of life. Deep Reinforcement Learning (DRL)
is a class of algorithms designed to solve sequential decision-making problems using neural
networks, which has been successfully demonstrated for a variety of problem classes in recent
years. Motivated by this, the applicability for optimization problems in building engineer-
ing is investigated in this dissertation. Relevant research questions are identified and the
advantages and disadvantages compared to the popular Model Predictive Control approach
are discussed. Based on the introduction, a workflow for the development of DRL-supported
building automation is presented. The workflow chapter concludes with the presentation
of a collaborative work in which a DRL algorithm is compared and discussed with other
novel control methods. The application scenarios in the application chapter are selected from
current research projects on the operation optimization of building energy systems. The pro-
posed workflow is demonstrated, addressing questions of algorithm comparisons, practicable
training times, use of monitoring data for training, selection of hyper-parameters, data infras-
tructures, and applicability of simulation-based trained algorithms to real control problems.
In the subsequent discussion chapter, the opportunities and challenges of the algorithms and
the experiences gained in the course of the work are discussed in detail. The results of the
work can be summarized as follows. DRL algorithms have promising properties and can
compete with other novel approaches in terms of performance, but the technical effort re-
quired for implementation should not be underestimated. The advantages lie in the inherent
adaptability to variable environmental conditions, the low computational costs after training,
and the potential to process large stochastic problems with high performance. The disadvan-
tages lie in the difficult interpretability, the data-intensive training, and the unavoidability of
stochastic actions. Nevertheless, great potential is seen in publishing pre-trained algorithms
for recurring optimization tasks and using them as expert systems in product development. In
particular, since development, implementation, and training are one-time processes, the effort
is worthwhile. Ultimately, the result can be a self-optimizing software module that continues

to improve along with the technical system in its operational environment.
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Kurzfassung

Internationale Klimaschutzziele machen die Entwicklung skalierbarer Methoden notwendig,
um Effizienz und Nachhaltigkeit von Energiesystemen zu erhohen. Gleichzeitig schreitet die
Digitale Revolution weiter voran und Algorithmen aus dem Bereich der Kiinstlichen Intelli-
genz halten Einzug in immer mehr Lebensbereichen. Deep Reinforcement Learning (DRL)
ist eine Klasse von Algorithmen fiir die Losung sequenzieller Entscheidungsprobleme unter
Verwendung Neuronaler Netze, welche in den vergangenen Jahren fiir vielfdltige Problemk-
lassen erfolgreich demonstriert wurde. Hierdurch motiviert, wird in dieser Arbeit die An-
wendbarkeit fiir Optimierungsprobleme aus der Gebdudetechnik untersucht. Es werden rele-
vante Fragestellungen herausgearbeitet und die Vor- und Nachteile gegeniiber der populédren
Modellpradiktiven Regelung diskutiert. Auf Basis der Einfihrung wird ein Workflow fiir
die Entwicklung DRL unterstiitzter Gebdudeautomation vorgestellt. Das Workflow-Kapitel
schliefft mit der Vorstellung einer kollaborativen Arbeit ab, in der ein DRL-Algorithmus
gegen weitere neuartige Regelungsverfahren verglichen und diskutiert wird. Die Anwen-
dungsszenarien des Anwendungskapitels wurden aus aktuellen Forschungsprojekten zur Be-
triebsoptimierung von Geb#dudeenergiesystemen ausgewéhlt. Der vorgeschlagene Workflow
wird demonstriert; hierbei werden Fragen zu Algorithmusvergleichen, praktikablen Train-
ingszeiten, Nutzung von Monitoringdaten beim Training, Auswahl von Hyper-Parametern,
Dateninfrastrukturen und Anwendbarkeit simulationsbasiert trainierter Algorithmen auf reale
Regelungsprobleme, behandelt. Im anschliefenden Diskussionskapitel werden die Chancen
und Herausforderungen der Algorithmen sowie die im Zuge der Arbeit gemachten Erfahrun-
gen detailliert diskutiert. Die Ergebnisse der Arbeit lassen sich wie folgt zusammenfassen.
DRL-Algorithmen besitzen vielversprechende Eigenschaften und kénnen in ihrer Leistungs-
fahigkeit mit konkurrierenden Verfahren mithalten, allerdings ist der technische Aufwand fiir
die Implementierung nicht zu unterschitzen. Die Vorteile liegen in der inhdrenten Anpassungs-
fahigkeit an variable Umweltbedingungen, dem geringen Rechenaufwand nach dem Training
und dem Potenzial, grofle stochastische Probleme performant zu verarbeiten. Die Nachteile
liegen in der schwierigen Interpretierbarkeit, dem datenintensiven Training und der Unver-
meidbarkeit von stochastischen Aktionen. Dennoch wird ein grofles Potenzial darin gesehen,
fiir wiederkehrende Optimierungsaufgaben vortrainierte Algorithmen zu veréffentlichen und in
der Produktentwicklung als Expertensysteme einzusetzen. Insbesondere, da Entwicklung, Im-
plementierung und Training dann einmalige Prozesse sind, lohnt sich der Aufwand. Schliefilich
kann das Ergebnis ein sich selbst optimierendes Softwaremodul sein, das sich zusammen mit

dem technischen System in seiner Einsatzumgebung immer weiter verbessert.
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1 Introduction

In this chapter, the presented dissertation is motivated. For this purpose, the need for research
is discussed first. This is followed by a discussion of one of the most promising methods
in the field of optimal control for building energy systems, along with its advantages and
disadvantages. It is described how data-driven methods are changing the research field, and
finally an introduction is given regarding the algorithms that are investigated, discussed, and

validated via experiments in the course of this work.

1.1 Motivation and background

We are living in times of great transitions. Climate change is putting pressure on governments
around the globe to set ambitious targets for reducing greenhouse gas emissions [IPCC, 2018]
and current geopolitical instabilities make the necessitate reducing the share of fossil gas
from leading energy sources. The optimization of building energy systems (BES) is one key
challenge as buildings account for 36 % of the energy use and almost 40 % of the CO5 emissions
globally [IEA - International energy Agency, 2018] and for around 40 % of the energy use and
around 33 % of the COy emissions in Germany [Deutsche Energie-Agentur, 2018]. In order
to meet the political targets regarding the reduction of greenhouse gases, ambitious measures

are necessary [IEA - International energy Agency, 2013].

Besides the modernization of the building envelope, the modernization of the technical equip-
ment, and the influence of the user behavior, a high potential lies in an optimized energy
system operation. Optimized operation strategies aim to optimally use the local BES un-
der dynamic boundary conditions, such as weather forecasts, internal thermal loads of the
buildings, and dynamic energy prices. Also, contemporary challenges can only be addressed
by increased interconnection of the energy sectors electricity, heating, and cooling [Wietschel
et al., 2018]. Demand response management is a key concept here that has been present in the
literature for decades [Kilkis, 1999]. The reason is that it enables reduction of COj emissions,
while reducing operation costs and increasing electrical grid stability [Leibowicz et al., 2018;
Palensky and Dietrich, 2011]. In particular, the optimal use of energy storage systems with
respect to dynamic boundary conditions can increase the flexibility of local energy systems
[Santos et al., 2017]. Driven by this prospect, the requirements for automation infrastruc-
ture are increasing [Han and Lim, 2010] due to the more complex processing of internal and

external influencing signals for energy management applications - a trend that will continue
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in the coming years [Shah et al., 2019]. Therefore, the implementation of robust, predictive,
and self-adapting BES control algorithms that increase optimization capabilities, based on

the available infrastructure, is one of the long-term goals of scientific work in this field.

Through operation optimization of BES, savings between 20 % and 50 % are usually published
in the scientific literature [Afram and Janabi-Sharifi, 2014; Alvarez et al., 2013; Baranski et al.,
2018; Deng et al., 2015; Gruber et al., 2014; Kolokotsa et al., 2009; Oldewurtel et al., 2012;
Wang and Ma, 2008]. As a benchmark, a rule-based control (RBC) mode is usually used,
which corresponds to the state-of-the-art in BES [Fiitterer et al., 2017]. Here, a set of hard-
coded rules is used to react to current sensor signals such as the outside temperature or the
heating and/or cooling demands of the building [Bode et al., 2018]. RBC as the current
state-of-the-art even in modern BES is generally neither predictive nor adaptive due to its
limitation to pre-defined thresholds and static integration only of current sensor signals. RBC
is therefore unsuitable for dealing with the increasing complexity in BES. The promising
results from the literature are achieved via optimized and predictive operation, based on
forecasts of the influencing boundary conditions and from automatic adaptation of the control

logic to changing conditions.

Despite the high potential, outside of the scientific research, operation optimization of BES
does not play a major role in the BES industry. However, a few companies have already
entered this market segment in Germany and also promise energy saving potentials between
20 % and 44 % to their customers [Kiebacké9Peter, 2020; Meteo Viva GmbH, 2020; Recogizer
Group GmbH, 2020]. To determine the reasons for the low dissemination of structured oper-
ation optimization and the use of optimization methods in practice, the Institute for Energy
Efficient Buildings and Indoor Climate in Aachen, Germany conducted a survey among BES
planners, operators, and system integrators [Schild et al., 2019]. The survey showed that
while respondents see great potential in operation optimization, there are many barriers to
its widespread application in practice. One of the reasons for this is that the constructor of
the building is seldom the operator, and the energetic efficiency of the later operation plays a
subordinate role during the planning and construction process. While the goal during these
early phases is to save investment costs, the later operator would benefit from higher invest-
ments in BES and the implementation of optimal control algorithms, through lower operation
costs. This makes optimization methods particularly interesting, which can be implemented
after completion of the construction phase, without high engineering efforts. Subsequently,
these optimization methods adapt to and improve existing BES autonomously. However, the
most significant reasons are lack of knowledge, unwillingness to invest (due to relative low
energy prices compared to engineering services), and also low available computing power in
local automation systems. Especially the latter is a particular obstacle for optimization-based

methods.

In the following, Model Predictive Control (MPC), which is an optimization-based control
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approach widely used in scientific research, is presented and discussed, focusing on how data-
driven methods have changed the methodology in the literature in recent years. According to
the literature, a particularly high potential lies especially in the combination of data-driven
and optimization-based approaches to overcome the obstacles from practice [Afram et al.,
2017].

1.2 Model Predictive Control and data-driven methods

After introducing the motivation for BES operation optimization and the difficulties in apply-
ing the methods in practice in the last section, this section presents one of the most promising
methods from the literature. It also discusses how data-driven methods have shaped and

changed the research field in recent years.

Some of the most promising results in operation optimization of BES are achieved by applying
MPC to the control problems [Lee et al., 2009; Lu et al., 2015; Ooka and Ikeda, 2015; Sanaye
and Shirazi, 2013]. As illustrated in figure 1.1, MPC is based on a model of the system to be
controlled, which is combined with actual sensor measurements to represent the current state
of the system. Based on the current state and the forecasts of the influencing environment
conditions, the model is used to calculate the optimal sequence of control signals for a defined
number of time-steps in the future. Algorithms to convert state and forecasts into optimal
actions usually come from the field of mathematical optimization and aim to obtain the
optimal sequence of actions for the forecast horizon with as few iterations as possible. In
most optimization studies, the aim is to achieve a balance between energy consumption and
user comfort, but there is also a number of studies where different optimization objectives,
like demand response control, are investigated. A comprehensive summary of MPC for BES,

including implementation guidelines, is provided to the literature in [Drgona et al., 2020].

In [Deng et al., 2015], the authors formulated a MPC problem for the optimal control of a
cooling supply system with a chiller bank and a thermal storage, supplying a large campus
site at the University of California. Aside from the uncertainties in the predictions, they
achieved nearly optimal operation. In [Kolokotsa et al., 2009], a real-world application of MPC
integrated into a BES was demonstrated. The controller obtained near-optimal setpoints by
balancing energy consumption and indoor air quality. In addition to the formulation of the
optimization problem, the handling strategy of uncertainties in the model and forecasts is
of decisive importance. The authors of [Oldewurtel et al., 2012] integrated weather forecasts
successfully into their MPC controller by integrating probabilistic constraints into the problem
formulation. Reviews of further applications of MPC for BES can be found in [Afram and
Janabi-Sharifi, 2014; Afram et al., 2017] and in [Wang and Ma, 2008].

One obstacle of MPC that has not yet been sufficiently solved in the literature arises from

the optimization loop that must be continuously executed during operation, resulting in high
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computational power requirements to solve the MPC problem in real-time. This follows
especially from the optimization procedure which must execute the model until the optimum
control actions (with respect to the objective function and the forecasts) are found. The
required computing power thus depends in particular on the complexity of the model, the
efficiency of the optimization procedure, and the number of time-steps considered in the
future. In [Alvarez et al., 2013] and [Gruber et al., 2014] the authors addressed this problem
by introducing parallelisation in computation for their MPC and a handling strategy for
simplified models. Another promising approach is to divide the optimization problem into
many smaller problems that can be solved more quickly and easily. The authors of [Baranski
et al., 2018] presented an approach for distributed exergy-aware MPC and yielded promising
results for a typical BES.

Design parameters - —
— o —— Potential application of

| data-driven methods

Performance criteria

Dynamic model and system | Weather and internal gains
constraints predictions

———-q----

Obtain sequence of future
control inputs

Optimization problem

Measurements
Apply first > Building
control input l———————— CLCnergy use
Comfort

Figure 1.1: The conventional MPC framework for BES [Oldewurtel et al., 2012]. The red
rectangles mark where data-driven methods have been already proposed in the
literature. The optimization problem is shown, consisting of the performance cri-
teria, the dynamic system model, and the disturbance (weather and internal gains)
prediction. Based on the prediction of the disturbance variables and the current
system state (sensor measurements in combination with the system model), the
optimal sequence of actions is generated via an optimization problem. The first
action is written to the BES actuators and the loop starts again.

Besides forecasting the boundary conditions reliably, the accuracy of the used model is a

decisive factor for the control quality with MPC. Three modeling approaches are distinguished
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in the literature, differing mainly in whether they are based on expert knowledge about the
system to be controlled, monitoring data from the system, or a combination of both. One
major challenge with MPC for BES is the lack of resources (monetary and domain experts)
and detailed system information that would be required to create a detailed physical model
(white-box model). The approach to increase model accuracy and at the same time reduce
the labor intensive physical modeling is to create grey-box models of the system. Here,
comparatively simple physical or statistical equations are calibrated with monitoring data
[Wang and Ma, 2008]. The purely data-driven method is referred to as black-box modeling
[Afram et al., 2017].

The high effort in the model creation especially for white- and grey-box models is considered
an obstacle, as the modeling can only be economically realized for systems with high energy
demands and where the operator is motivated to improve the efficiency. Another issue is that
the modeling is error-prone and time-consuming, even for domain experts. Furthermore, the
models do not automatically adapt to changes in the systems, which leads to repetitions of
the time-consuming procedure [Ahmad et al., 2017]. While for a long time these obstacles in
the implementation of BES models could only be overcome in the context of research projects,
some of the difficulties could be overcome in the future by applying data-driven methods also

in the context of practical applications.

We are living in the age of data and data-driven methods are penetrating more and more areas
of industry and research. Driven by the ever-improving availability of data infrastructure
and low-cost wireless sensors, the availability of algorithms to learn functional relationships
from data is also increasing [Minoli et al., 2017]. This applies to traditional statistics, but
increasingly also to algorithms from the field of machine-learning [Alfred, 2016]. As shown in
figure 1.1, there are also potential applications for data-driven methods for MPC, both in the
forecast of boundary conditions as well as in the modeling of the dynamics of the system to

be controlled.

In recent years, numerous studies have repeatedly proven that machine-learning and deep-
learning techniques allow to learn highly non-linear relationships and therefore are promising
tools for forecasting boundary conditions [Ahmad et al., 2017; Hassan et al., 2019; Mocanu
et al., 2018]. In [Ahmad et al., 2017], the authors compared two promising architectures,
namely artificial neural networks (ANN) and random forests (RF) for the prediction of the
hourly HVAC energy consumption of a hotel in Madrid, Spain. Although the neural networks
showed slightly better results, both algorithms were well suited for this application. The
authors of [Hassan et al., 2019] applied support vector machines for the purpose of predicting
the energy consumption of an office building in the Mediterranean region. After parameter
tuning, they reached very low deviations from actual measurements and recommended their
approach for further application. An application of deep-learning techniques, in particular

recurrent neural networks for occupancy prediction in a smart home application can be found
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in [Javed et al., 2017]. The interested reader is also referred to the following successful
applications [Piotr Zymelka, 2019; Ryu et al., 2017 ] and to these comprehensive review papers
[Mocanu et al., 2018; Sun et al., 2020; Wang and Srinivasan, 2015].

From the different studies, is also is evident that the optimal algorithm, as well as its pa-
rameters, are highly dependent on the application scenario and the data. Therefore, efforts
are also being made to completely automate this process. For the purpose of energy system
modeling, the authors of [Rétz et al., 2019] developed a tool which finds the best combina-
tion of algorithms, parameters, and time windows with respect to validation data. A similar
approach but with a focus on linear piecewise regression models was presented in [Kdmper
et al., 2021]

Data-driven models are also successfully used for system identification (thus for the modeling
of the technical equipment of the BES) in the following studies [Stepancic et al., 2015; Yang
et al., 2020]. In one published approach, often referred to as data-predictive control, the
authors successfully combined the advantages of MPC and a machine-learning algorithm called
random trees and demonstrated how peak power consumption can be reduced by following
their method [Jain et al., 2017, 2016; Smarra et al., 2018]. They also emphasize that black-box
modeling of the system dynamics is always an alternative if the costs of creating white- or
grey-box models are high. Comprehensive reviews on the application of data-driven models
for BES control applications can be found in [Kathirgamanathan et al., 2021; Maddalena
et al., 2020].

In this section, successful MPC applications for BES were presented. Furthermore, the trend
to integrate data-driven methods for the environment condition forecasts and for the BES
models itself has been introduced. Both applications show a high potential to reduce the
necessary engineering efforts during the implementation of optimal BES control. The next
section focuses on the unsolved obstacles and how another family of artificial intelligence
algorithms called Reinforcement Learning could also be a promising tool in the future of BES

control.

1.3 Problems with Model Predictive Control and Reinforcement Learning as a
possible alternative

As promising as the results achieved and published using MPC for BES control are, as briefly
discussed in the last section, there are still some obstacles in the way of widespread practical
application. This is mainly because MPC still requires much greater engineering effort com-
pared to standardd RBC, which is often uneconomical. The effort results mainly from the
fact that the modeling of the system to be controlled is not trivial, often time-consuming,
and error-prone even for experts [Haji Hosseinloo et al., 2020]. Further, the choice of the

appropriate cost function and forecast horizon is also crucial, since it directly influences the
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behavior of the controller and thus of the system to be controlled. In addition, the modeling
process must be repeated after each change of the system [Dowling and Haridi, 2008]. If a
component is replaced, parts of the building are refurbished or the type of usage changes, the

models must be adapted to the new system behavior manually.

While there is great potential here in automated modeling through data-driven methods, some
obstacles remain even with continuously re-calibrated black-box models. A major challenge
in these approaches is the poor ability of non-linear data-driven models to extrapolate beyond
the limits of training data [McCartney et al., 2020; Rétz et al., 2019; Zhao et al., 2019]. This
means that the model integrated into the MPC algorithm can reliably represent the system
behavior only within operating states that have already been approached. In addition, the
appropriate time windows for re-calibrating the models still have to be set manually, which
again leads to a high engineering effort. Another issue arises from the design feature that with
MPC, the results of already executed computing operations are not stored. This results in
high computational costs during the entire operation and thus high demands on the hardware

of the building automation system [Marantos et al., 2020].

Therefore, driven by these obstacles, another promising control approach has gained more
attention in the scientific literature in recent years called Reinforcement Learning (RL). RL
algorithms are inherently adaptive to their environment and some are also referred to as model-
free. Therefore, there is the potential to avoid (or at least reduce) the labor-intensive and error-
prone modeling of the system and at the same time ensure adaption to changing environments.
A more detailed differentiation between the methods, as well as a discussion of the term
model and what functionalities it fulfills in the different algorithms, is provided in chapter
2. Generally, with RL, a software agent learns a tailored control policy from the interaction
with an environment. For the agent, it is mandatory to collect data trough exploration of the
environment dynamics. When it comes to BES, this exploration can potentially be carried
out in time windows when there are no occupants in the building or within boundaries where
no efficiency and comfort related constraints are violated. Trained RL algorithms encode the
optimal action in certain system states and therefore map states directly to actions, a feature

that leads to significant lower computational costs compared to MPC [Gérges, 2017].

In contrast to MPC, the exploration with RL is inherent and the degree of exploration can
be determined by a single parameter. As outlined, the computational costs of trained RL
algorithms are comparatively low, as the results of operations already executed are stored
and encoded in the algorithm. In the field of RL, promising results have been published
regarding the control of complex environments like Atari games or the Chinese board game
Go in recent years [Li, 2017; Mnih et al., 2015; Silver et al., 2017].

In summary, according to the literature, RL has three main advantageous areas over classic

control approaches:

e Effort: For systems where the creation of a model is too complicated or costly, a policy
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can be learned with comparatively little effort.

e Computation: Even high-resolution state-spaces can be processed with relatively little

computational costs.

e Adaptiveness: The controller can easily adapt to changing environmental conditions,

like aging BES or changing user behavior.

However, these advantages are also contrasted by some challenges. The exploration of large
state-spaces cannot be performed in real-time interaction and requires pre-training with moni-
toring data or simulations. Further, since RL as a subgroup of machine-learning is a statistical
method, inefficient or even system-damaging actions cannot be completely excluded, which

makes a rule-based security layer necessary.

Therefore, in this dissertation, the aim is to investigate the potential of RL for BES by
reviewing the scientific literature, proposing a promising design workflow, and performing
several experiments, to address some of the most urgent current research questions. The
experiments are performed considering real-world energy systems, taken from finished and
ongoing research projects that are kindly supported by the German Federal Ministry for
Economic Affairs and Climate Action. Inspired by these real-world application scenarios, the
conducted experiments make use of data-driven models of the real systems, simulation models
written in the modeling language Modelica [Miiller et al., 2016], and a control application in
a real-world BES. For the implementation of the used RL algorithms, the Python library
Tensorflow [Agarwal et al., 2015] is used.

After elaborating on the open challenges in the use of MPC for BES and introducing RL
as an alternative with potential, the next section focuses on the goals and structure of this
dissertation. A structure is developed, which contains a workflow for the implementation of
RL-supported BES control systems, based on the motivation and the state-of-the-art review.
The presented procedure is then applied to the three application examples, which have been
inspired from the scientific work in research projects with real BES. The structure concludes
with a concluding discussion of the results and additional aspects addressing the experiences
made during the investigations, a conclusion, and an outlook for future research pathways

and possible products.

1.4 Goal and structure of the presented work

The structure of the presented work is visualized in figure 1.2. The objective of the work is
to investigate the applicability of novel RL algorithms for optimal control applications in the
context of BES control. For this purpose, the scientific literature is reviewed, a promising
RL control design workflow is proposed, several questions currently discussed in the scientific
literature are addressed, and associated experiments are conducted. The objectives of the

application case studies are:
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e to investigate the plug-and-play capabilities of RL algorithms,
e to investigate novel methods of monitoring data-driven pre-training of the algorithms,

e and finally to investigate the transferability of pre-trained algorithms from a simulation

into a real system.

The previous two sections motivate the presented work by introducing the challenges regarding
the optimal control of BES, the difficulties that come with the promising MPC approach, and
the potential of data-driven methods and RL.

First, in the next chapter, the fundamentals of RL are introduced and a detailed literature
review is conducted covering the fundamental research as well as the application of the al-
gorithms for BES. Based on this, the following chapter elaborates on the necessary steps
when developing a RL-supported BES automation and proposes a promising workflow. The
experiment framework developed in the course of this work as well as the tools and implemen-
tations used are presented in the following. Furthermore, an efficient method for the optimal
hyper-parameter identification of a RL controller is introduced. The chapter concludes with a
summary section of a comparison paper that has been published collaboratively with colleges
from the institute, in which a RL algorithm has been compared, evaluated, and discussed
against other novel BES control approaches. This is followed by an application chapter in
which three different application scenarios with different control objectives are presented. The
three application case studies are inspired by real-world energy systems investigated in the
course of finished and ongoing research projects. From case study to case study, lessons learned
are extracted, which are particularly relevant and therefore discussed for future work. Each
case study contains its own results and discussion section. The subsequent chapter provides
a consolidated discussion of the case studies covering also the lessons learned between the
case studies, and relevant aspects in future research and practical application. In the final
chapter, general conclusions are drawn and possible future research and product development

pathways are presented.
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The last chapter introduced the general motivation to investigate optimal control methods
and data-driven methods in the field of BES. The promising MPC method with its advantages
and disadvantages has been described, and it has been elaborated how novel RL algorithms
can be a promising alternative. In this chapter, the key concepts of RL are introduced and
the potential for applying this promising approach to BES control applications is elaborated.
First, an introduction to the basic principles is presented, followed by a review of the funda-
mental research, and a classification of available algorithms in the field. The classification of
the algorithms includes a discussion of their characterizing design principles and their poten-
tial for the application in BES. After the presentation of the state-of-the-art of RL, a literature
review and discussion of the successful applications of the algorithms in BES control applica-
tions follows. The available application and review papers considered as particularly relevant
in the current scientific discussion are presented and discussed in more detail in a designated

section.

2.1 Fundamentals of Reinforcement Learning

As a subfamily of machine-learning algorithms, RL algorithms can be distinguished from the
other subfamilies by the type of feedback the algorithm receives during training. With unsu-
pervised learning algorithms, similarities are learned and the algorithm receives no feedback
at all. Contrarily, supervised learning algorithms receive immediate performance feedback for
the generated output. In RL, the algorithm receives delayed feedback and adjusts its actions
in order to maximize the numerical performance feedback (reward) from its environment over
time. Therefore, RL algorithms are particularly promising for optimal control applications,
where actions are performed to maximize a reward signal over time and sometimes actions
are rewarded with delay. Unless otherwise indicated, the introduced definitions refer to the

corresponding handbooks [Francois-Lavet et al., 2018; Sutton and Barto, 2018].

Figure 2.1 shows the basic framework of any RL process on the one hand and the loop
between pre-training and online interaction on the other hand. The algorithm receives state
observations and rewards from an environment, in our case a BES, and executes actions based
on these observations. In RL terminology (or, as introduced in the next section, Markov
Decision Process terminology), the state describes the current condition of the environment

and the state-space describes the space of all possible states an environment can have. The
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Figure 2.1: The basic concept: A RL algorithm interacts with an environment. It performs
actions, based on state observations, rewards, and resulting next states. In addi-
tion, the pre-training and deployment loop is illustrated, which should be added
for technical systems.

same applies to the executed action, where the space of all possible actions is referred to as
the action-space. The reward is a numerical signal from the environment, which evaluates
a state usually via a mathematical function. When it comes to policy learning, for example
in the case of the RL subcategory Q-Learning, the experience of the algorithm is stored in
a learned state-action-value relationship (called Q-values) that maps state-action pairs to
action-values. The Q-values, i.e. the value of performing a certain action in a certain state,
result from a designed reward function in combination with the historical actions selected.
In its simplest and original form, Q-values are stored in a lookup table as exemplarily shown
in figure 2.2. Here, each possible action in a given state is assigned a value based on the
immediate and future possible reward. More on Q-Learning and its further developments
in recent years in section 2.4. The characteristics of the algorithm is influenced by several
parameters (called hyper-parameters). Fundamental hyper-parameters are the learning rate,
the exploration rate, and the discount factor. By manipulating these numerical values, it is
possible to determine multiple aspects: how quickly the algorithm adapts to new observations,
whether the algorithm performs the action that appears to be the optimal one in a given state,
or whether it takes new paths through the environment to enhance the system experience, and
how strongly the algorithm weights large rewards in the future against small rewards from the
current state. If the information from the environment is complete and the hyper-parameters
and reward signal are well chosen, the algorithm improves its policy in order to maximize the

reward from the environment over time.
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Figure 2.2: Exemplary representation of a Q-value lookup table. Each possible action, of each
possible system state receives a value, which indicates the preferable action deci-
sion. A Q-value is composed of the immediate expected reward and the maximum
Q-value of the resulting next state.

For technical systems where training of the RL algorithm on the real system is not possible, e.g.
because the training time until optimal actions are learned is impractical, a pre-training phase
is necessary. In this pre-training phase, the algorithm is trained either offline, by means of
monitoring data, by an appropriate simulation, or on a test bench. If the defined performance
criterion is fulfilled, the algorithm can be used on the real system. If, on the other hand,
performance criteria are violated during application on the real system, for example because
temperature limits are exceeded or not reached, the algorithm must return to pre-training
after the problem has been evaluated by an expert. Possible reasons that an algorithm shows
a different policy when applied to a real system after pre-training are, for example, data
quality obtained via sensors or inaccuracies of used forecasts. These aspects will be further

addressed in chapter 3.

2.2 History of fundamental Reinforcement Learning research

After giving an overview over the basic concepts of RL in the last section, a summary of the

fundamental research in the field is presented in this section.

Like MPC, RL has its roots in optimal control theory for dynamic systems, which was further
developed in 1957 through Richard E. Bellman’s dynamic programming and is based on earlier
work (early 19th century) done in the context of the Hamilton-Jacobi theory [Bryson, 1996].
The idea behind any optimal control approach is always to compute the optimal control actions

for a controlled system. This requires some kind of description of the system dynamics and a
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cost function that assigns a certain value to certain system states. On this basis, the optimal
combination of actions for a system can be calculated, for example, by means of dynamic

programming.

Traditionally, and as still done today in white-box MPC, the system description is given
through a mathematical description of the system to be controlled, which can be used for
mathematical optimization. The mathematical description fulfills the functionality of a system
model, which returns for different actions correspondingly different resulting system states.
These are then evaluated with respect to the cost (or objective) functions. The term model is
particularly important here, since it represents the essential distinguishing criterion between
the different optimal control families and thus also the different MPC and RL families. It is
not clearly described what exactly fulfills the properties of a model and the definitions differ
in different areas of science. Generally speaking, scientific models always have the purpose
to describe a certain part of the world in a simplified way and to generate useful outputs for
defined inputs [Frigg and Hartmann, 2020]. The question of which part of the discussed MPC
and RL algorithms fulfills this property will be discussed again in the following. In most RL
families, stochastic models are used, which approximate certain equations from the optimal
control theory. However, this is also the case for black-box MPC, which already shows the

difficulty of a sharp separation of these two control approaches.

As illustrated in figure 2.3, there has been a strong increase in the number of publications
in the last decade. One reason is that some fundamental stability problems in the training
of neural networks as function approximators were solved and published in 2013. This led
to a significant increase in generalizability of the algorithms and the potential to process

high-dimensional inputs.
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As visualized in figure 2.4, the basic concept of a value function, which not just includes the
immediate reward of an action but provides a numerical signal of how valuable an action
in a certain state is, goes back to the early years of optimal control theory [Bellman, 1954].
In addition to the basics from this field, the Markov Decision Process (MDP) represents
another key concept for RL; It was proposed in 1957 by the Russian mathematician Andrei
Andreyevich Markov and represents a form of his state chains, extended by actions and reward
signals, and has become the standardized framework for the description of sequential decision

problems.

The promising results published since 2013 in this research field, however, have been achieved
by using neural networks [Rosenblatt, 1958] as function approximators. The research group
DeepMind demonstrated how RL algorithms with neural networks-based state-space approx-
imation can be trained to play Atari games on a super human performance level [Mnih et al.,
2015], not only in discrete action-spaces (finite number of actions) but also in continuous
action-spaces (actions in the form of a float number within defined bounds) [Lillicrap et al.,
2015]. These RL algorithms showed promising results by learning the value function not only
by performing actions but also by learning through passive observation of an applied control
policy [Hester et al., 2018]. The last publication is particularly interesting because model-free
RL shows its full potential to reduce manual engineering if the modeling of a training environ-
ment can be avoided. In 2017, a publication led to learning an optimal policy for the Asian
board game Go using a RL algorithm. [Silver et al., 2017]. The algorithm beat the current
champions of the game in a competition. The game was previously considered impossible
to solve by machines because of its almost infinite state- and action-space and its stochastic
nature. Annually, numerous publications appear, in which the presented RL algorithms are
trained to be more data-efficient and to interact more and more robustly with highly dynamic
and hard-to-predict environments.

Dynamic
Programming

Learning from
Examples

Deep RL

Continuous
Control

MDP |

AlphaGo

Human level
Atari

Figure 2.4: Time-line of selected research in the field of RL.
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2.3 Classification of Reinforcement Learning algorithms

In this section, a classification of published/available RL algorithms is given. As shown in
figure 2.5, RL algorithms are initially divided into two families: algorithms in which the control
actions are performed on the basis of a model of the controlled environment and algorithms
where the control actions are performed without a model. "Without model" in this context
refers to the absence of a black-box or white-box model representing the physical dynamics of
the system only in combination with a planner (optimizer), which executes the model to plan
the optimal action pathway. Nevertheless, in the course of learning, (in the light of different
definitions of the term model) model building takes place in the form of learning to forecast

the expected future rewards that result from a certain action in a certain state.

While model-based algorithms typically use data from interactions to learn a model of the en-
vironment, which is then used for stochastic or deterministic planning, model-free algorithms
use the data to learn other functional relationships from optimal control theory, to evaluate
and select the control actions. In the case of model-based approaches, the distinction from
data-driven MPC is not fully determined in the literature. An attempt of a clear classification
was made in [Nagy et al., 2018]. The authors elaborate that only the exploration strategy,
i.e. the structured increase of system experience (in the form of interaction data) as well as
the adaptivity of the policy itself, are unique for RL. While in MPC typically a strict math-
ematical optimization is performed based on the model of the environment, model-based RL
learns the best practice for the controlled environment using a combination of an adaptive

model and an adaptive policy.

However, algorithms referred to as model-free have some highly promising advantages for the
use in BES control applications. With comparable good control performance, the resulting
computational costs (after training) are significantly lower, which is particularly relevant for
the use in existing buildings, where the computing power is often a limiting factor for the
implementation of energy management and contol logics. Further, the adaptation to changes
in the controlled environment is much faster, as long as the overall relationship between
states, actions, and rewards of the control task does not change. This is supported by the
results also published in [Nagy et al., 2018], where the authors compared white-box MPC,
black-box MPC, model-based RL, and model-free RL for space heating control of a simulated
building model [Ruelens, 2016]. They elaborate that with comparable performances, the
computational costs of model-based RL are more than 20 times higher than those of the
model-free RL algorithm. They also underline the stability of the model-free RL approach
against sudden changes in the environment. At the same time, they emphasize the higher
sample efficiency and overall performance of the model-based approach. However, the sample
efficiency in particular has been significantly increased for model-free algorithms since then
[Haarnoja et al., 2018; Hessel et al., 2017]. Even though model-based algorithms can achieve a

higher maximum control performance in theory, the model-free algorithms are evaluated being
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more promising for real-world BES control applications due to their lower required computing
power and higher robustness against changes in the system (which with the model-based family
lead to instant model errors and thus critical losses in control performance). The model-free

family of algorithms is therefore considered in the course of this work.

The model-free family is further divided into algorithms where the control policy is directly
learned, for example using gradient descent methods with neural networks, and those where a
state-action-value function is learned. The latter, referred to as Q-Learning, in turn have some
inherent advantages for use in BES control applications. Here the state-action-value function is
learned from environment transitions (in form of: [state, action, next state, reward] samples),
thus the experience can be extracted from data fragments from the system. Monitoring data
can be used for training, and the algorithms can therefore be trained by passive observation

of other control policies.

In the other group (called policy optimization) the policy is learned directly on the basis
of the reward history during fixed episodes of interaction. A new policy must always be
applied for a fixed episode (period of time, for example weeks) before the algorithm computes
the series of rewards received during that episode and updates the policy according to the
gradients. In contrast to Q-Learning, the algorithm evaluates not only the benefits of the
immediately following states, but also the reward history of the entire episode. Every update
to the policy must be tested by interacting with the system, under the constraint that the
policy is not updated during the episodes. Until the optimal policy is reached, many test
weeks with suboptimal policies may have to be carried out. The data-efficiency of the policy
optimization-based family is therefore lower. This significantly limits the potential for use
in real systems. Emphasizing this, the authors of [Biemann et al., 2021] found that, with
a state-of-the-art Q-Learning-based algorithm for continuous control (the SAC algorithm), a
typical data center cooling control problem was solved with ten times less data compared to

a state-of-the-art policy optimization-based algorithm.

Therefore, taking the comparable final control performance, the data-efficiency, and the offline
training ability into account, the focus of most publications in the field and of the investigations
carried out in the course of this work consider Q-Learning and hybrid algorithms (combining
Q-Learning and policy optimization techniques). Algorithms for continuous as well as discrete
control actions are available, and stability and performance improvements for the algorithm
architectures are published almost monthly. This is also clearly reflected in the representation

of these algorithms in the discussed papers in section 2.7.
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Figure 2.5: Families of RL algorithms according to the popular Deep RL OpenAl repository
Spinning Up [OpenAI Spinning Up, 2020]. The algorithms relevant for this work
are marked in red. PPO: Proximal Policy Optimization, DDPG: Deep Determin-
istic Policy Gradient, SAC: Soft-Actor-Critic, and DQN: Deep Q-Network.

2.4 Markov Decision Processes and Q-Learning

The established framework for the description of RL problems is the Markov Decision Process
(MDP), which represents a formalized description for sequential decision problems [Sutton
and Barto, 2018]. A MDP is characterized by its state-space S, action-space A, transition
probabilities (from one state to a next state S') Pr: S x A x S’, a reward function R : S x A,
and a discount factor . If the MDP is well formulated, the interacting RL algorithm learns the
optimal actions in the possible MDP states, encoded in the optimal policy (7*) and maximizes

the expected total reward over time.

If the transition probabilities are known, the MDP is considered as a planning problem [Sam-
mut and Webb, 2017]. In this case, the MDP can be solved via dynamic programming: since
the transition probabilities encode the dynamic behavior of the environment to be controlled,
an optimizer can test its control actions on this model and calculate the optimal set of actions
with respect to the reward function. The white- or black-box models used for traditional and
data-driven MPC, as well as the model in model-based RL, therefore encode the transition

probabilities of the environment in MDP terminology.

However, since in most real-world applications a detailed model of the controlled environment
is not available (or only with high engineering effort), methods have been developed to solve
the MDP without prior knowledge of the system dynamics [Wooldridge, 2001]. The optimal
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policy (7* : S — A) is the functional relationship which maps states to actions and represents
the relationship to be learned in those approaches. Among this family of algorithms referred to
as model-free, a further distinction is made between policy optimization-based approaches and
value-based approaches. As outlined in section 2.3, value-based approaches are particularly
interesting for BES as the algorithms can learn from incomplete episodes, can be trained
with historical data, and are more robust against changes in the controlled environment while

reaching a similar control performance as the policy-based algorithms.

A well researched family of algorithms encoding the optimal policy in form of the Q-values
(state-action-values) is called Q-Learning. With Q-Learning, the optimal policy is learned
implicitly in the form of the values of states and the actions in states. Those combinations are
called Q-values, and therefore the learning process is referred to as Q-Learning. In the basic
form, the Q-values (which encode the direct and future rewards from an action in a state)
are stored in a lookup table, as illustrated in figure 2.2. During learning, the updates of the
Q-values (Q(s, a)) are then propagated back through the table using the Bellmann equation
[Bellman, 1956]:

Q(s,a) <+ (1-a)-Q(s,a)+ o, (r(s,a)+ gl - maxQ(sd) ) (21)
~—— ~—— ~ ~—— ~~ a’
new value oldvalue learning rate  ,eyard  discount factor —

expected reward

According to equation 2.1, Q(s,a) is an estimation of the future discounted () rewards, ex-
pected when selecting a certain action (a) in a given state (s). The learning rate « represents
the sensitivity against new experiences over past experiences, and the discount factor v deter-
mines the weighting between immediate and future rewards. Therefore, the maximum (max)
Q-value of the next state (which is expected to result from the current action) encodes how
beneficial the action will be for future rewards. The discount factor determines () how much
the algorithm should plan, which means how much future possible rewards (encoded in the

maximum Q-value of the next state) are weighed against immediate rewards.

During training, random actions are chosen with a decreasing probability. The e-greedy
exploration strategy is one approach to balance exploration and exploitation throughout the
training process: ¢ specifies the probability for the controller to select a random action against
exploiting the learned policy. During training, € is progressively decreased in each training

episode (n): € — 0 for n — Nypaq.

After training, the action is selected from the table via:

a = arg max Q(s, a) (2.2)
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Therefore, this approach does not require a separate optimizer which tests control actions on
a model of the system dynamics, hence the classification as model-free. Nevertheless, a kind of
model building takes place by learning to predict the expected immediate and future rewards
that result from a particular action in a particular state. The Q-values therefore encode the

result of an optimization leading to the optimal actions in certain states.

2.5 State-of-the-art for discrete control applications

Discrete control applications are characterized by the actions only being selected from a
given and countable set of possibilities. For large and/or stochastic state-spaces, tabular Q-
Learning is not suitable due to the "curse of dimensionality", which referrers to the issue that
with each added state-space feature, the dimension of the space and therefore the complexity
of the MDP increases over-proportionally. Therefore, for complex applications (as most real-
world applications are) function approximation of the state-action-values (Q™ (s, a)) has been
established in the literature [Buchanan, 2005].

While early implementations were characterized by poor generalizability and performance, the
promising results published in recent years have been achieved by using neural networks as
approximators. A solution for the stable training of neural networks as function approximators
was first published in 2013 [Mnih et al., 2013]. With the proposed design principles, much
more complex and highly non-linear problems have become solvable, as it was demonstrated
on 49 Atari 2600 games [Mnih et al., 2015]. Since then, deep neural networks have become

an established method for the approximation of the Q-function.

The schematic structure of a Deep Q-Network (DQN) for state-action-value approximation
is shown in figure 2.7. The input layer is the state-vector s with n entries. After a certain
number of hidden layers, the output layer with m possible actions contains a value-entry for
each action (aj_.,). This design is necessary for the integration of the neural network into
the Q-Learning architecture. While after training a single output neuron would be sufficient,
which outputs the selected action, the update function (Bellmann equation 2.1) processes
the evaluation of all possible action values. Hence, the architecture of assigning a value to
each action and then, after training, choosing the action according to the highest value. The
tunable parameters of a DQN are iteratively updated via stochastic gradient descent and back-
propagated through the network. After training, the DQN represents a data-driven model
that does not only represent the dynamics of the environment but also a predictive model of

future states and the resulting future expected reward value.

The authors of [Mnih et al., 2015] introduced a novel DQN architecture, as visualized in
figure 2.6. The two effective improvements are: To reduce the correlations in the sequence of
training samples resulting from direct training with data from online interaction, experience

replay in the form of a data replay memory is used. Transitions (s, a,r, s") are stored, and for
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each network update, a certain number is randomly selected for training the DQN parameters
(#). Further, to improve the stability of learning, a target-network (with own parameters 67)
is introduced, whose trainable parameters remain constant for a fixed number of steps. The
target-network is used to calculate the target-Q-values for the Q-network updates according to
the Bellman equation (2.1). Thus, the modified loss function resulting from a set of randomly

selected transitions from the experience memory is:

Li(6;) = E [(r(s,a) +ymaxQ(s',a'|07) — Q(s,al6) )’] (2.3)
(s,a,r,s") a’ ——
Target Q Predicted Q

Calculation loss for the DQN training

Gradient loss Predicted Q Target Q

(a)

(s)

O
Target-network

Environment

Replay Memory

(s,a,r,s)

Figure 2.6: The DQN architecture proposed by the authors of [Mnih et al., 2015]. The target-
network predicts the value of the next state for training the Q-network. The
Q-network interacts with the environment. The loss function gives the gradient
for training the Q-network. Training is not performed with correlated data from
the immediate interaction but with random data from the replay memory. The
target-network is updated from the Q-network regularly but not in every training
cycle, which stabilizes the training.

A well-tested implementation of the algorithm is provided within the Python package Stable-
Baseline [Hill et al., 2018]. The implementation includes the state-of-the-art improvements to
the DQN training process: A replay memory serves as an internal sample storage and breaks
correlations within the training samples and further increases sample efficiency by selecting
and reusing random training samples from the storage [Schaul et al., 2015]. Prioritized replay
accelerates the training speed by selecting training samples from the replay memory, which

lead to a higher loss and therefore to faster training of the neural network [Schaul et al.,
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2015]. Double Q-Learning improves numerical stability by alternatingly using one network
(i.e. the current network) to predict the current @-values while the other one is updated
with the training samples (i.e. the target-network) [Hasselt et al., 2016]. The "dueling" DQN
architecture divides the Q-value estimation in two separate sequences of fully-connected layers
after the entry layer [Wang et al., 2016]. The streams estimate a state-value and an action
advantage, which are combined at the end for the Q-value estimation of the state-action pair.
This extension restricts the action-space to actions that are more promising in the state, thus
speeding up the training. In the default settings, two hidden layers with 64 neurons, using

rectified linear units (ReLU) activation functions, are implemented.

Hidden layer
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Input state-vector
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Figure 2.7: State-action-value approximation with a neural network. The network receives
the state and returns the Q-values for m discrete actions possible in that state.
While after training a single output neuron would be sufficient (which outputs
the selected action) the update function (Bellmann equation 2.1) processes the
evaluation of all possible action-values.

2.6 State-of-the-art for continuous control applications

Unlike discrete control tasks, continuous tasks do not limit the number of possible actions.
Rather, a floating number within defined limits is calculated. The corresponding family of
algorithms is therefore more suitable when the action-space is limited but the optimal outputs
cannot be defined in advance by countable actions. A possible action-space would be, for
example, a valve position, which can only be between 0 % and 100 %, and can have any value
in between. For discrete algorithms, 100 possible actions would have to be given, which would
be completely independent of each other for the algorithm and would all have to be tested for
each state of the MDP.

The state-of-the-art for continuous control tasks in continuous action-spaces follows the actor-
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critic architecture, a hybrid between policy-based algorithms and value-based algorithms.
In the actor-critic approach, the actor-network learns a control policy 7y(s,a) (stochastic
or deterministic) by updating the policy parameters 6 via gradient ascent [Sutton et al.,
2000]. The critic-network represents the approximation of the state-action-value function
Q(s,alay = mp(s)), as described in section 2.5. Q(s,ala; = my(s)) is used to calculate the
gradients for the actor-network updates and thereby iteratively optimizes the policy mg. The
schematic structure of the architecture is shown in figure 2.8. For each interaction with the
environment, the reward from the environment is used together with the current state and
the action performed by the actor-network to train the critic-network. This way it is possible
to learn the value of an action in a state even without pre-defining the number of actions.
The continuous output of the actor-network serves as input for the critic-network along with
the observation (current state) from the environment. The Q-value output from the critic-
network, on the other hand, is used to evaluate the action performed by the actor-network and
is used to determine the gradients for the gradient ascent-based update of the critic-network.
A closed loop of improving the policy (through an updated actor-network) and improving
the action evaluation (through an updated critic-network) results. After training, the critic-

network is not needed anymore and the trained actor-network can be deployed independently.

(s)

0

Actor-network Critic-network
Update actor

Figure 2.8: Schematic structure of the actor-critic approach: The critic-network is used to
calculate the value (Q) of state-action pairs (s,a). Q is used to calculate the
gradient for the training of the actor-network, which is via states (s) and actions
(a) in direct interaction with the environment. The reward is used to evaluate
the action of the actor-network by the critic-network on the one hand and on the
other to calculate the gradient for the update of the critic-network. A closed loop
of improving the policy (through an updated actor-network) and improving the
action evaluation (through an updated critic-network) results.

U

Calculation loss for

training actor- and critic-
network

Update critic

For DDPG (Deep Deterministic Policy Gradient), a well-tested implementation of the ap-
proach is also provided within the Python package Stable-Baseline [Hill et al., 2018]. Both
networks are updated with target-networks and the critic has a replay memory (like the DQN
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introduced in section 2.5). The DDPG can therefore be understood as an extension of the
DQN for continuous action-spaces. For a comprehensive description of the underlying mathe-

matics, the following literature is recommended: [Silver et al., 2014; Sutton and Barto, 2018].

The best results in terms of convergence speed, stability, and final performance in literature
are achieved by the so-called Soft-Actor-Critic (SAC) algorithm. SAC is a slightly modified
version of the DDPG algorithm [Lillicrap et al., 2015] that uses entropy’® regularization for the
exploration-exploitation trade-off and optimizes a stochastic policy that allows to incorporate
uncertainties in the environment better [Haarnoja et al., 2018]. With entropy regularization,
the policy is optimized by maximizing a trade-off between expected reward and entropy (reg-
ulating the exploration-exploitation process). Within the context of entropy-regularized RL,
entropy is an indicator for the information density of samples from a stochastic source (the
environment). The idea is to incorporate the predictability of the effects that actions (se-
lected by an algorithm) have on the environment. Entropy-regularized RL therefore changes
the standard objective function by adding an entropy term. This way, the algorithm receives
a bonus reward at each time-step that is proportional to the entropy of the policy in the given

state.

2.7 Review of applications in the field of building energy systems

In this section, a general overview of the current literature in the field of RL for BES is
presented first. This is followed by a more detailed discussion of selected publications. Based
on this, in the next section, open research questions are elaborated, which are addressed in

this work.

2.7.1 Literature overview

RL has been studied in recent years for many different optimal control problems in energy
systems in general and also for BES. In the literature, the investigated systems can be divided
into four categories: Optimal HVAC and BES system operation [Wan et al., 2018; Wang et al.,
2017; Yang et al., 2015], smart grids and energy systems [Bahrami et al., 2018; Biemann et al.,
2021; Rayati et al., 2015], distributed energy systems [Kofinas et al., 2018; Pinto, Piscitelli,
Véazquez-Canteli, Nagy and Capozzoli, 2021; Touzani et al., 2021], and optimal electric vehicle
operation [Dorokhova et al., 2021; Vandael et al., 2015]. The recurring control objectives are:
Energy efficiency and occupant comfort in buildings [Nagy et al., 2018; Zhang et al., 2018],

reduction of temperature deviations from setpoints in energy systems [Al-jabery et al., 2017]

'Entropy originates from thermodynamics and describes the increasing stochastic disorder of the particles of
a closed system in the context of the second law, when heat or matter is added. In contrast to this, entropy
in computer science is also a measure of disorder, but it refers to interference signals that occur with the
actual signal and to the computational effort required to expose the actual signal.
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or adaptivity to external signals in demand response applications [Vazquez-Canteli, Ulyanin,
Kéampf and Nagy, 2019; Zhong et al., 2021]. As with other optimal control methods for BES,
the use of thermal energy storages under dynamic boundary conditions has been investigated
in many studies. The applicability of RL for the optimal use of thermal storage systems
was already investigated with a simulated laboratory environment in 2006. The authors
demonstrated that although RL does not reach the performance of MPC, RBC was clearly
outperformed [Liu and Henze, 2006]. Three years later, the authors of a comparative study
between MPC and RL in a BES control application concluded that the control performance
of RL can reach the control performance of MPC, even in cases where a deterministic system
model is available [Ernst et al., 2009].

Since then, RL has been studied for the control of low exergy BES [Yang et al., 2015], energy
management in microgrids [Kofinas et al., 2018], process energy control [Dong et al., 2020;
Filipe et al., 2019], for optimal control of HVAC systems [Brandi et al., 2020; Chen et al.,
2018; Jia et al., 2019], battery storages [Shang et al., 2020], and the coordination of thermostat
controllable loads [Kazmi et al., 2019]. In [Yang et al., 2015] the authors demonstrated how
RL can find a control policy for a low-exergy building equipped with PV and geothermal
heat pumps for which MPC would have been unnecessarily complex. They also demonstrated
how to overcome the potentially data-inefficient controller training by linking training data
generation to a simple guiding RBC. In [Vazquez-Canteli et al., 2017], the authors used Q-
Learning to optimize the heating and cooling of a heat pump and storage equipped building. In
[Chen et al., 2018], the authors used tabular Q-Learning to control a HVAC system combined
with controllable windows for natural ventilation. Compared to a classical RBC strategy,
up to 23 % energy savings were achieved with significant increase in occupant comfort. A
drawback is that with tabular Q-Learning, the learning process can be unstable with large

time gaps between actions and associated rewards.

Driven by the reasons introduced in section 2.3, in the literature on RL for energy systems,
there is a strong trend towards model-free, value-based approaches, such as Q-Learning. Deep
Q-Learning is the most widely used RL technique [Han et al., 2019] and energy savings of
10-20 % (compared to RBC) are typically published [Mason and Grijalva, 2019]. However,
although offline training with monitoring data is a promising option for such algorithms,
comparatively few studies have focused on the possibility of training the RL controller in
this way [Vazquez-Canteli, Ulyanin, Kdmpf and Nagy, 2019; Yang et al., 2015], and even
fewer studies have investigated the potential of using monitoring data to learn a data-driven
training environment for the algorithm. [Di Natale et al., 2021; Lork et al., 2020; Schubnel
et al., 2018].

Some studies also investigated control applications with continuous action-spaces. In [Li,
2017], an actor-critic algorithm was used to control the HVAC system of a data-center. With
data-calibrated EnergyPlus models, the authors saved 15 % energy costs. The authors of
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[Biemann et al., 2021] investigated a similar use case and highlighted the robustness, per-
formance, and training data efficiency of the used SAC algorithm. A real-world system was
controlled in [Ruelens et al., 2018]. The authors used Fitted Q-Iteration (an earlier version
of machine-learning based Q-Learning) for electric water heater control in a laboratory and
reduced energy consumption over 40 days by 15 % compared to classic thermostatic control.
In [Kofinas et al., 2018], the authors proposed a cooperative multi-agent RL technique with
fuzzy state-space approximation in a continuous action-space. The controlled microgrid in-
cluded PV, a fuel cell, and a diesel generator as well as a battery bank and was efficiently

controlled by the coordinated agents.

Rather few studies provide critical views on RL algorithms. One is provided in [Khayatian
et al., 2021]. The authors investigated the robustness of RL algorithms against uncertainties.
For this purpose, artificial load profiles of buildings were generated and used as a basis for
decision making for both a RBC algorithm and a trained RL algorithm. They found that
the RL algorithm, as long as it is trained with little data, is very sensitive to uncertainties
and unseen system states. They conclude that the control performance of RL algorithms for

real-world applications might be over-estimated.

In recent years, some comprehensive review articles have been published on the topic. A
comprehensive review, with the focus on RL in demand response applications, can be found
in [Vazquez-Canteli and Nagy, 2019]. More recently, another comprehensive review about the
current state of research has been published in [Wang and Hong, 2020]. Based on 77 eval-
uated studies, a wide variety of BES, algorithms, and control objectives are discussed. The
authors conclude that, due to the inherent trial-and-error process, RL online training can be
very data- and time-demanding. They also address the question of how to avoid undesirable
actions during training and conclude that pre-training with monitoring data and with a simu-
lation environment as well as the use of expert knowledge are particularly promising. Further
published reviews for BES control RL application with a focus on autonomous BES control
and controlling occupant comfort can be found in [Mason and Grijalva, 2019] and in [Han
et al., 2019]. As well as one review with a broader focus on the application of RL to different
energy systems, not only BES [Perera and Kamalaruban, 2021]. This study also highlights
how the popularity of the method continues to grow, whereas the popularity of MPC has
plateaued at a high level.

2.7.2 Discussion of selected publications

After providing an overview of the literature on RL for BES in the last subsection, this

subsection now discusses selected publications in more detail.

Important groundwork for the use of RL for demand response with residential buildings was

carried out in the course of a dissertation at the KU Leuven [Ruelens, 2016]. As well as
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in the course of the from this dissertation extracted and through it inspired publications
[Nagy et al., 2018; Ruelens et al., 2018]. The authors investigated the limits of buffer storage
sensor encoding with an innovative neural network architecture (autoencoder) and tested their
algorithm in a real-world application with the objective to exploit the storage capacities of
electric water heaters for demand response. Besides this interesting case study, an essential
contribution lies in the scientific comparison of data-driven MPC, model-based RL, and model-
free RL. On the one hand, a distinction between data-driven MPC was elaborated, which has
been discussed in section 2.3. On the other hand, a performance comparison between model-
free and model-based RL for a typical demand response use case for a single family building
was published here. While model-based RL can almost reach the performance of MPC and is
slightly more data-efficient, the strengths of model-free RL are the much lower computational
costs and the robustness of the algorithms against changes in the controlled system. This is
especially relevant considering BES where computing power is a limiting factor and system

changes (due to changes in occupant behavior or aging energy systems) are unavoidable.

Another effort to compare the performance of different RL algorithms against MPC was made
in [Dorokhova et al., 2021]. The authors compared the continuous control DDPG, the discrete
control DQN, stochastic MPC, deterministic MPC, and a RBC for the control task of maxi-
mizing the PV self-consumption for electric vehicle charging. The competing control objective
has been defined as the state of charge of the battery of the vehicle when the vehicle is started.
In their mathematically formulated experimental setup, the RL algorithms achieved slightly
lower but comparable performance compared to the MPC algorithms, but with significantly
shorter computation times. The MPC algorithms clearly achieved the highest control perfor-
mance but were critically evaluated, in particular because of the complex model formulation
and the long computation times. It is noteworthy that the RBC algorithm also performed
very well. However, the authors argue that the potential is limited when systems become
more complex, especially if vehicle-to-grid would become relevant for power grid stabilization

in the future, the control rules would be too complex for such applications.

One of the most comprehensive reviews of RL for BES control was published in [Wang and
Hong, 2020]. The authors discussed 77 studies with a special focus on the correct application
of RL-specific design principles. Namely the consideration of the Markov Property, which
declares that the future of a MDP must be predictable from its current state only [Sutton and
Barto, 2018]. They found that this was hardly fulfilled in most of the investigated problem

formulations, because:

e 91 % did not include historical data, which is problematic, considering the slow building

thermal dynamics, and

e 83 % did not include predicted states, such as weather forecasts.

Both aspects are critical with respect to the achievable performance of the algorithms. The

first because the current dynamics of the system are hardly assessable purely on the basis
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of current sensor values and the second because the algorithm is not provided with impor-
tant information for forward-planning actions and thus tends to operate the system overly
cautiously. Further, the authors stated that even most of the very recent publications use
comparatively simple algorithms and do not make use of recent RL innovations in terms of
stability and convergence speed. They also found that very few studies make it into practical

application, just 11 % of the controllers were implemented in actual buildings.

The authors concluded with three main challenges that need to be addressed to exploit the
full potential of RL for BES:

e To increase the applicability in real buildings, the training speed and robustness must

be improved.

e To establish comparability between RL controllers, standardized open-source testbeds

and datasets are required.

e To use trained RL controllers for different tasks, the generalization capabilities need to

be improved.

One of the most visible projects in RL for demand response for BES is the CityLean challenge
[Nagy et al., 2021]. The challenge was originally started to address the problem of lack-
ing comparability of different RL algorithms and methods by publishing a documented and
standardized training and testing environment on GitHub. The task of the RL application
consists in the coordinated electricity supply of 10 buildings (residential and non-residential)
with the aim to avoid peaks in demand and to keep the total energy demand as low as pos-
sible. For this purpose, the thermal demands of the buildings in four different climate zones
were simulated upfront and added to the environment. The electricity demand results from
the operation of air-to-water heat pumps and chillers which can be controlled together with
the temperature setpoints for thermal storages in the buildings. The buildings are equipped
with different systems, for example, some have PV panels on the roof. This leads to dif-
ferent state-spaces for the individual buildings. Unpublished test demand time-series were
used to evaluate the solutions proposed by the participants, and the submitted RL algorithms
and problem formulations were compared in terms of their performance. The challenge en-
tered its second phase in 2021 and several creative solutions were published for the problem
[Pinto, Deltetto and Capozzoli, 2021; Pinto, Piscitelli, Vazquez-Canteli, Nagy and Capoz-
zoli, 2021; Vazquez-Canteli, Detjeen, Henze, Kdmpf and Nagy, 2019; Vazquez-Canteli et al.,
2020]. One of the most promising spproaches comes from one of the challenge developers
himself [Vazquez-Canteli et al., 2020]. It involves controlling each building with a SAC algo-
rithm that calculates the actions. At the same time, each building has a simple prediction
algorithm of the future energy demand of the building. The RL algorithm receives the current
state of its building, along with this prediction and the demands of its direct neighbors. By

formulating the problem in this way and rewarding coordinated actions, coordinated agent
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actions are generated; this approach theoretically works for a very large number of buildings,

as in the case of a large city.

Two studies addressing the problems of applying RL in practice were published in [Touzani
et al., 2021] and in [Zhang et al., 2021]. In [Zhang et al., 2021}, the authors implemented
a testbed for RL-based energy management for demand response. The authors describe the
necessary hard- and software to translate signals from a cloud-based RL energy management
system into real actuator signals. The developed testbed, including monitoring of the technical
equipment, is presented and the interaction with a Q-Learning algorithm is described. Al-
though the published energy savings after training the algorithm are very promising, the main
contribution is the description of the interaction between the RL algorithm and the real sen-
sors and actuators. An application of RL for a real BES was also published in [Touzani et al.,
2021]. The authors use a DDPG algorithm to control the BES of the so-called FLEXLAB,
a well-equipped experimental test facility at the Lawrence Berkeley National Laboratory in
Berkeley, California, United States. The HVAC systems of the building are controlled in
combination with a battery storage and a PV system. The DDPG was previously trained
with a simulation and was subsequently evaluated against a state-of-the-art RBC algorithm.
Under dynamic price signals, load shifting saved up to 39 % costs while maintaining thermal

comfort.

In [Brandi et al., 2020], the authors demonstrated Deep Q-Learning for the optimization of
indoor temperature control and heating energy consumption in a simulated office building.
The control objective was to optimize the energy consumption of the environment, designed
to meet the dynamic behavior of an office building case study located in Torino, Italy. The
authors emphasize that activated learning (learning rate > 0) can lead to instable interaction,
if the problem is not well formulated. After a sensitivity analysis of the hyper-parameters,
they published energy savings between 5 % and 12 %. Although the analysis was carried out
carefully, the authors did not aim for an optimal hyper-parameter selection for this problem. A
question raised by this work is whether the process of optimal hyper-parameter determination
can be automated and improved by available stochastic methods such as Bayesian hyper-

parameter search.

The authors of [Kotevska et al., 2020] identified the interpretability and the trust of operators
in the quality of the actions performed by RL algorithms as a core challenge of RL research
in the BES domain. To address this challenge, methods are presented to compute correla-
tions between the input features from the state-space and the probability that the algorithm
performs a certain action. For demonstration purposes, data from a real building is used
and coupled with a simulation environment. The algorithm used (DQN) is trained to control
a heat pump and temperature setpoints from two rooms under dynamic outdoor tempera-
tures and price signals. After training, the action probabilities of the algorithm, the feature

importance for certain actions, and other metrics are calculated for each system state. The
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presented approach by means of visualization and the interpretation of the actions via expert
knowledge enables an interpretation of the RL actions. Thus, confidence in the reliability and

performance of the systems can be generated by the proposed procedure.

2.8 Open research questions

The literature review conducted shows that despite the large number of successful demon-
strations, there is still a significant need for research before RL can be widely used for BES
control application. In many still not investigated application scenarios, the challenge will
be to exploit the adaptivity and control performance of RL algorithms for widespread use,
without having to repeatedly undertake the same high degree of training and engineering
effort for each individual energy system. Since, after training, RL algorithms map system
states directly to optimal actions without much computing power requirements, there is great
potential for the implementation directly with the building automation infrastructure. How-
ever, the plug-and-play capabilities of the algorithms to solve BES control problems (when
used as published and just connected to sensors) are not yet sufficient to actually reduce the
engineering effort. Also, the issue of selecting the optimal hyper-parameters, which have a
significant impact on the final controller performance and the necessary training times, is not
considered at all in most studies, or only through sensitivity analyzes. In addition, there is a
need for further research on the transferability of trained algorithms to other control problems
(transfer learning) and on the question of how monitoring data can be used appropriately for
training the algorithms. To support the scientific work on these challenges, this dissertation
defines a workflow for the development of RL-based BES control systems and presents three
application examples in which various current issues in the scientific literature are addressed
using RL-based BES control for applications inspired by current BES related research projects.
Discrete and continuous algorithms for load shifting tasks are compared, different monitoring
data-based RL controller training strategies are evaluated, innovative state-space descriptions
are investigated and the transferability of trained controllers to new systems is explored. The
question of the selection of the optimal hyper-parameters is considered in all case studies,

which is addressed by a method introduced within the workflow chapter (chapter 3).
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automation design

After deriving the general motivation and the potential of RL for BES from the available
scientific literature as well as introducing the state-of-the-art of the most promising RL al-
gorithms, in the last chapter; this chapter presents the methods and tools used in this work.
This includes the implementations, design principles, frameworks, and experiment workflows.
Furthermore, an efficient method for the design and parameterization of the algorithms is in-
troduced. The chapter concludes with a summary section of a comparison paper that has been
published collaboratively with colleges from the institute, in which a RL algorithm (designed
following the proposed workflow) has been compared, evaluated, and discussed against other
novel BES control approaches. Thus, a complete workflow is presented (and benchmarked)

with which RL-supported control of BES can be developed.

First, section 3.1 gives a high-level overview of the general workflow and the training and
interaction variations for RL-supported control design. All aspects are briefly introduced
before providing a more in-depth discussion in the fallowing sections. Section 3.2 introduces
the most important considerations to be taken into account when formulating the control
task (or in RL terminology: the MDP). This is followed by a discussion of the criteria that
should be considered when selecting a suitable algorithm and a training strategy for the
MDP, in sections 3.3 and 3.4 respectively. Section 3.5 subsequently focuses on the design
of safe interaction between the RL algorithm and real BES. Sections 3.6 and 3.7 deal with
the concrete implementation of the RL-supported BES control and the optimization of the
algorithm-specific hyper-parameters in the programming language Python. Finally, in section
3.8 the workflow is benchmarked against other novel BES control approaches. The presented
workflow is based on RL-specific handbooks [Francois-Lavet et al., 2018; Sutton and Barto,
2018|, best practices from RL-related publications (with a focus on BES application and
a broader focus on RL), and the authors own experiences through working with BES and
RL algorithms. A more detailed discussion, addressing the experiences made through the

application described in chapter 4, is provided in chapter 5.
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Figure 3.1: Basic workflow of RL-supported BES automation development.

3.1 Reinforcement Learning controller for building energy system automation -
overview

Figure 3.1 shows the steps necessary for the design of a tailored, RL-supported BES au-
tomation system. As with all machine-learning algorithms, the problem formulation and the
training of the algorithm are the most critical elements. The behavior of the algorithm, after

training, is significantly influenced by the type of training and the input data used.

When formulating the control problem (MDP formulation), it is important to ensure that
the state-space contains all the features needed to predict the future behavior of the MDP
and the associated reward function. Otherwise, they are considered partly observable MDPs,
and the control problem becomes much more complicated, which also limits the applicable
algorithms drastically. For continuous control actions, the choice of algorithms is again limited.
Traditionally, the algorithms for continuous actions also tended to demand more training data
until they learn an optimal policy. This changed with the SAC algorithm, which (compared to
the DQN with all its published extensions) generated similarly high, and in some cases even
higher, convergence rates in the associated literature. At the same time, the convergence speed
is especially dependent on the dimension of the problem, therefore the state-space should be
as compact as possible (while including all necessary information). The action-space should
also be compact, but at the same time it has to provide the necessary interactions to control
the system. In other words, action- and state-space must satisfy the two most important RL
design criteria: the future of the MDP must depend exclusively on its current state and the
evolution of the reward function must be well predictable by the current state in combination

with the performed action. This should be fulfilled, while the action- and state-space should
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contain as little unnecessary or redundant information as possible, because this must be
filtered by the algorithm through additional computational operations to identify the features

that are essential for the control problem.

The training strategy depends crucially on the available information about the BES to be
controlled. The effort to build a customized, simulation-based training environment based on
plans and technical documentation is not economical for most individual BES. Moreover, this
overhead limits the advantage of RL over white-box MPC, since such a model could also be
used directly in a MPC application. On the other hand, training by means of an extensive
simulation or even a real system in a test bench can be a promising option for a component
manufacturer. For products which are sold many times, it is worth the effort, since the trained
algorithm can represent an optimal and adaptive control for the individual system. If a RL
algorithm should be trained for an existing system, the training with monitoring data can be
beneficial; either by direct offline training of the algorithm, in which case the problem of over-
adaptation to the observed policy must be taken into account; or via the intermediate step of
learning a data-driven training environment based on the monitoring data. In this approach,
the algorithm can then use the available exploration strategies to learn the policy during
interactions with the data-driven model representing the system dynamics. If the training is
performed via a simulation or a data-driven training environment, the hyper-prameter (e.g.
learning rate, exploration rate, or the discount factor) can be optimized for the MDP. Since
the training of RL algorithms is very time-consuming, efficient methods are needed to find
the optimum. In section 3.7, the selection process of the proposed Bayesian hyper-parameter

search is presented.

RL algorithms are statistical methods that lead to optimized system control after a large
number of interactions. In order to integrate them into robust and secure BES automation,
a concept for the actual operation is required in addition to the pure design and training of
the algorithm. The concept must include safety barriers in the form of threshold monitoring,
above which the actions of the algorithm are overwritten by a conventional, robust system
control. In order to adapt the algorithm to changing systems, exploration phases can be
defined in which random actions in a defined range increase the size of the system training
dataset, for example, while there are no occupants in a building. An advanced concept could
also include a targeted manipulation of exploration and learning rates during operation; for
example, after a change in system dynamics, both could be adjusted to adapt to the new

dynamics faster.

3.2 Formulation of the Markov Decision Process

The MDP represents the problem formulation to be solved by the RL algorithm. Even the

most novel and best-performing algorithm from literature cannot solve a poorly formulated
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problem. In this context, poorly refers to: that the algorithm does not have all the information
that determine the future of the MDP, its actions do not or only slightly affect the course of
the rewards, or the reward function is not formulated in such a way that the desired policy is
rewarded. Finally, also the step-size (how often the algorithm interacts with the environment)
and the prediction horizon (how many steps in the future the algorithm takes into account)
are crucial. The algorithm must be able to interact with the MDP sufficiently often to control
it stable. At the same time, the training is stabilized by the observability of the effect of an
action in the state before the next action is executed. Predictions of the boundary conditions
(whose horizon match the flexible elements in the system and the possible actions) complete
the state-space and make it possible not only to learn a statistical best practice, but actually

to plan ahead.

The state thus defines what numerical inputs the algorithm receives in each time-step from
the environment, or the technical system with which it interacts. In BES applications, these
can be, for example, storage states, temperature setpoints, actual temperatures, outdoor
temperatures, solar radiation, electricity prices, and other internal variables from the technical
systems such as volume flows, pressures, or rotation speeds. At the same time, a particular
strength of RL is that not all internal quantities from the technical systems have to appear
in the state-space, but just exactly those that make the future of the reward function and the
dynamic next states of the MDP predictable with respect to the selected actions. A simple
example: If a RL algorithm is used to control the air handling unit (AHU) of a building,
the AHU itself is a component of the technical system, which (assuming no malfunction)
always shows the same dynamics. However, the boundary conditions from the environment
(temperatures and solar radiation), the presence of occupants, and the use of appliances
resulting in internal loads are different. Since the dynamic of the AHU remains the same, the
information from the air setpoint temperatures, actual air temperature, presence sensors (or
time signals such as day of the week or hour of the day), the status of mechanical shading,
and the boundary conditions from the environment are sufficient to predict the effects of an
action on the evolution of the reward function (for example, maintaining a temperature band
around the setpoint), while many internal measurements from the AHU do not represent
additional information for the RL algorithm. Internal measurements from the AHU are thus
no longer required for the control of the AHU alone, while the sensors in the target system
(temperature in the heated rooms) become more important. If, in addition to the target
temperature, the energy consumption is also to be optimized, the required energy of the AHU
in certain operation states is needed as a data point, although here as well, no sensors from the
internal control of the AHU are required; the energy consumption of the AHU as a function
of its influencing ambient conditions is sufficient, as long as no malfunction strongly alters its
dynamic behavior. This is one feature of RL that is particularly suitable for saving sensors in
BES. At the same time, as already pointed out in the discussion of the literature in subsection

2.7.2, the consideration of historical sensor values is of high importance for the RL algorithm
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to learn the dynamics of the system to be controlled. This is also addressed again in the
demonstration chapter 4. Since heating and cooling effects on the system can be learned not
only from the current sensor value but from the history of the sensor values over time, at
least one historical value (or the gradient of the measurement) must be added for short-term
effects, or a series of historical values for long-term effects. Also the historical actions of
the algorithm should be taken into account. Since RL algorithms do not necessarily have
a memory, to process actions from the last time-steps within the training, this is important
for technical systems. The algorithm can learn from this information, in the state-space the
difference of the influence from its own actions to the influence of the boundary conditions on
the environment. Without this information, the training can be unstable and, in particular,

drastic changes in the actions can hardly be avoided.

In addition to the definition of the state-vector (what the algorithm receives from the MDP in
each time-step), it is important to define the temporal component. This involves the time-step
width (how much time passes between two actions) as well as the prediction horizon (how
far in the future does the algorithm plan). Both aspects must match the possible actions
that the algorithm can execute. For example, if the algorithm can load a storage with a
defined or limited thermal power, the step-size and prediction horizons should be chosen
in such a way that the algorithm can load and unload sufficiently often (in the sense of a
planning sequence of actions) in the prediction horizon to take advantage of the flexibility
and at the same time react to drastic changes at the end of the prediction horizon. The
first aspect, the time-step width, is furthermore influenced by a RL specific feature. Namely,
that the training and the interaction with the MDP can be significantly stabilized if the
effect of an action is already observable in the next time-step. While RL algorithms can also
solve MDPs where rewards are rarely returned, the MDP is more straightforward to solve
by the algorithm if the next state already represents the effect of the last action. As a basis
here, the time constants (especially the delay between an action and the observable effect of
the action in the state-vector ) of the system to be controlled must be considered. Time-step
widths from the literature for BES control applications are: 1 minute for actuator level control
tasks, 5 to 15 minutes for BES-level energy management, and 15 minutes to hours, or even
days, for district-level energy management. An additional aspect concerns the resolution of
available data APIs for the boundary conditions such as weather services or electricity price
predictions, which are mostly provided in a resolution of 15 minutes. Another important
aspect is that the prediction horizon must essentially fit the control task. If a prediction of
one day is made available to the algorithm in an hourly resolution, the state-vector already
increases by 24 entries. Considering that in most BES applications this already exceeds the
number of available sensors in the system, it is clear how each additional day increases the
problem complexity and thus the training time required. Twenty-four hours have therefore
become widely used in BES applications. However, if the flexible elements in the system have

sufficient capacities to allow for load shifting over several days, longer prediction periods can
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be efficiently included in the form of coarser resolutions or statistical features of the prediction

time-series.

In addition to the interaction rate and the state-space, the action-space has to be defined.
The action-space can be continuous or discrete, as described in the sections 2.5 and 2.6.
Continuous action-spaces are particularly suitable for control tasks where the algorithm has
to reach a setpoint through its actions. Discrete action-space algorithms, on the other hand,
are well suited for energy management tasks or tasks where the algorithm has to select from a
pre-defined number of system states. As with the state-space, the goal should be to keep the
action-space as compact as possible. Five possible actions in a discrete control task already
imply that the algorithm has to approach all possible states of the MDP five times during
training in order to learn all following system responses from the MDP. The same is applicable
to the dimension of a continuously operating algorithm. For example, a pump speed and a
valve position to be combined and continuously controlled by an algorithm corresponds to
an action-space dimension of two. A key advantage here, especially for actuator level control
tasks is that continuous control algorithms can learn the relation between the gradient of
the reward function and the gradient of the action-space and, unlike discrete algorithms,
interpolate not only between states but also between actions. For energy management with
a limited number of decisions in each time-step, discrete algorithms should nevertheless be
chosen, since continuous interventions are usually not provided by the BES automation (except

setpoint optimization which can be designed as a continuous energy management task).

The last element of the MDP to be defined is the reward function. In policy-based algorithms,
unlike value-based algorithms, rewards are only evaluated at the end of training epochs, which
leads to more training intervals with suboptimal actions and is mostly impractical in the BES
domain. Value-based algorithms, on the other hand, calculate the reward for the current and
subsequent time-steps. Historization and the calculation of cumulative rewards are processed
internally in the algorithm and therefore do not need to be specified in the reward function.
The reward function should encode the desired policy that the algorithm should show after
training, with respect to state-space and action-space. For example, if there is a trade-off
between energy consumption and user comfort, both aspects must be provided in the reward
function, for instance in the form of the room temperature and the current energy demand.
Appropriate weighting factors have to be used to balance the two elements of the reward
function. In order to smooth the actions, additional quantities can be implemented, which
slightly penalize action changes or take temperature gradients into account. For training, it
is advantageous if there are not infrequent large rewards but rather if the gradient of the
reward function increases over many small rewards up to the highest rewards, which is easier
to learn. The trade-off between temporarily lower rewards for loading a storage at a favorable
time against unloading it later to avoid even lower rewards is then the task that the algorithm

learns.
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3.3 Algorithm selection

As outlined in section 2.3, there is a wide range of available RL algorithms that can be classified
into different families. This work focuses on the model-free RL algorithms, as discussed in
chapter 2. While the model-based algorithms come with the strengths and weaknesses of
data-driven MPC, in the model-free algorithms lies a particular potential for optimal BES
control with low demands on the available computing power. The most important constraints

for selecting the model-free RL algorithm for the BES to be controlled are the following:

e [s the control problem discrete or continuous according to the definitions provided in
the sections 2.5 and 2.67

e Does efficient handling of training data matter? Should the algorithm be trained offline

or is a simulation available as a training environment?

e Can the control quality of the algorithm be determined for each time-step or can it only

be evaluated at the end of episodes when complete control trajectories are available?

Overall, for any RL application, care should be taken to select the most current algorithm
for which stable implementations are available according to the respective selection criteria.
RL research is a very active field and, as it has been elaborated in [Wang and Hong, 2020],
many publications in the field use older algorithms for their studies and therefore do not take

advantage of recent RL research.

For discrete control tasks via Q-Learning, the most common algorithm is the DQN with the
extensions published in recent years. Through various design paradigms such as the use of a
replay buffer, a target network, or prioritized training sample selection, the stability, perfor-
mance, and sample efficiency has been improved and the latest implementations outperform

the original implementations in all categories by several orders of magnitude.

For continuous control tasks where a stochastic policy is explicable, the SAC algorithm should
be chosen, which (like its predecessor, the DDPG) is a hybrid of Q-Learning and policy
optimization. However, while with the DDPG (due to its comparatively simple exploration
strategy) good policies are found only after very intensive training times and long phases with
suboptimal policies, this subfamily of algorithms was significantly improved by extending the
value function by an entropy term that determines the exploration, which led to the proposed

SAC algorithm becoming the state-of-the-art in this subfamily.

Another algorithm that can be considered for selected problems is the Proximal Policy Op-
timization (PPO) algorithm. This is a purely policy optimization-based algorithm, which
means that it cannot be trained with historical data, unlike SAC and DQN. Another disad-
vantage is the comparatively inefficient data usage, since each new policy has to be tried on
the real system or a simulation. Thus, the PPO (as discussed in chapter 2 on policy-based

algorithms) is only of interest if a high quality training environment in the form of a simulator
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is available and the system to be controlled is not subject to large changes. Advantages of the
PPO are its comparatively stable convergence towards the optimal policy, its parallelization
capability during training in newer implementations, and its usability for discrete as well as

for continuous control problems.

3.4 Training strategies

As with all machine-learning methods, the training of the algorithms is one of the major
factors influencing the functional relationship which is later represented by it. However,
unlike supervised learning, the training dataset in RL is not static, but is generated with a
dynamic training environment during the interaction with the algorithm. An exception is
offline training of value-based RL algorithms. Here, algorithms such as SAC or DQN are

trained with static datasets, for example using monitoring data of a system.

All other training methods require a dynamic training environment. There are two options
for creating such a training environment. On the one hand, a physics-based simulation envi-
ronment of the system to be controlled can be created. Here, it should be considered that the
effort has to be weighed against MPC. If a simulation model of a high quality is available, it
can be used directly within a MPC application. The advantage of RL is then reduced to the
lower computing power required during operation, the inherent adaptivity to changing system
behavior, and the performant computing of large, stochastic states. However, the latter can
still be of interest when a model is available but the algorithm is to be used under highly

varying boundary conditions in practice.

The second way to generate a training environment is to learn a data-driven training envi-
ronment from operational data. This method like offline training, is also based on monitoring
data, but it increases the training potential significantly, since different policies can be tested
by the algorithm on the learned models. Like in a simulation environment, not only is an
observed policy learned, but the policy is also optimized in interaction with the dynamic en-
vironment. However, there are also some critical aspects that have to be considered. On the
one hand, the dataset must cover as large a range of operating states as possible, which the
algorithm will also reach in later operation. Furthermore, the data-driven training environ-
ment must be tested. If it shows physically implausible behavior in some operating states,
a policy can be learned that, for example, exploits sensor noise or other model properties to
maximize the reward function rather than solving the physical control problem. Nevertheless,
this training option holds promise when local computing power does not meet the require-
ments for MPC, sufficient monitoring data is available, and later adaptation in operation is

desired.

The aforementioned training through monitoring data (offline learning) is a promising method

if a large amount of monitoring data for a certain system is available, at best controlled with

38



3 Reinforcement Learning-supported building energy system automation design

different policies. From such a dataset, a good policy can be learned by offline training with a
RL algorithm, which can serve as a starting point for later use with the real system. However,
if only monitoring data for a certain system controlled with a certain policy are available,
there is the risk of over-fitting to a suboptimal policy; this effect can only be compensated by

extensive exploration on the real system and thus reduces the potential for offline training.

The last variant is the training on the real system. If the MDP formulation is compact and
the relationships in the system are simple, training on the real system can be considered.
Here, it is important to have a comprehensive interaction strategy, including a backup RBC,
since random actions are chosen during the exploration and this may cause comfort losses
and inefficient operation. In contrast, if a policy is learned for a specific component, training
in a testbench can also be considered. In the process, different boundary conditions can be
learned in a targeted manner, thus ensuring free exploration of the algorithm. After training,
an algorithm trained in this way is a lightweight software component that can be delivered
together with the BES; furthermore, this algorithm has learned the optimal system behavior,

and quickly adapts to deviating environmental conditions.

3.5 Interaction design

Another important issue to be addressed when using RL in interaction with real BES is
the one of safe interaction. A concept is needed with which the promising properties of RL
algorithms, such as their tendency towards the optimal control policy, their adaptivity, and
their low hardware requirements, can be exploited without their stochastic action selection
during training negatively affecting BES operation. As described in the last section, pre-
trained algorithms are recommended for most applications, but even if the algorithm has

been pre-trained extensively, suboptimal actions cannot be completely excluded.

In principle, there are two possible variants to address this aspect in a RL-based BES au-
tomation. The first variant is to allow the algorithm to select only from pre-defined operation
states (for example during the course of energy management application) in which the supply
security of the consumer systems is not affected by the actions but only the BES mode is
affected. The second variant, if the algorithm also imposes actions that affect the quality
of supply, such as comfort (for example, measured via the deviation of a room temperature
from a setpoint), is to implement a state-of-the-art rule-based automation as backup control.
As illustrated in figure 2.1, after training, the algorithm can interact with the real system
until a defined performance criterion is violated. In this case, the state-of-the-art automation
implemented using RBC and conventional feedback control takes over. Using room control
as an example, a temperature limit could be implemented before the actual comfort violating
temperature limit is reached, which is learned via high penalty signals as a barrier for the

algorithm and activates the takeover by a conventional PID controller. If the BES is then
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again in a stable and safe operation, the RL automation can be reactivated. The data gener-
ated during the control by the backup automation can be used again for the offline training
if value-based algorithms (such as DQN or SAC) are used. However, to avoid the risk of
over-fitting to the conventional automation, the takeover by the backup automation should
also be accompanied by high penalties, which over time will lead to the avoidance of these
operation states. Over the duration of BES operation, the conventional backup automation

will then be activated less and less frequently and eventually become redundant.

In addition to implementing safety mechanisms, there are further aspects to consider if RL
algorithms are connected to data from real-world BES. Sensor raw data can contain noise
on the one hand and sensors can fail on the other hand. There are two ways to cope with
sensor failures. On the one hand, sensors have to be monitored extensively to detect a failure
early, to replace faulty sensors early, and to avoid an adaptation of the RL algorithm to the
no-longer-deterministic system behavior. At the same time, regular backups of the algorithm
must be stored frequently in order to avoid that the algorithm has to be trained again from
scratch after an operation phase with faulty sensors. Rather, it should always be possible to
backtrack and revert the training status of the algorithm to a certain (stable) algorithm state

in the application history.

If a safe interaction with the real system and a strategy for the failure of sensors are given,
the adaptation of the hyper-parameters of the algorithm can be considered during operation.
While RL algorithms have an inherent adaptivity that continuously learns slowly changing
system dynamics (such as valve characteristics) or changing building usage, this process can be
positively influenced by choosing appropriate hyper-parameters during operation. For major
changes in the BES, the learning rate and exploration factor parameters can be adjusted to

accelerate the adaptation of RL-based building automation to the new system behavior.

3.6 Implementation

There are numerous frameworks that provide implemented RL algorithms. Python is by far
the most widely used programming language in this field and the neural networks used in the
context of Deep RL are typically implemented using the highly specialized libraries, Tensorflow
(Google) [Agarwal et al., 2015] or PyTorch (Facebook) [Paszke et al., 2019]. While it is indeed
possible to implement RL algorithms directly from the respective publications, frameworks
are available here that make the published algorithms available via implemented and tested
APIs. Some of the most popular are: Tensorflow Agents, Google Dopamine, Keras-RL, and
OpenAl (Baselines and Spinning Up). Which framework should be used depends mainly on
how active the community is, how well the algorithms are tested, and finally, how intuitive
the usability is. OpenAl Baseline sets a standard here with its community. Since the OpenAl

company also provides the OpenAl Gym collection of training environments and the GitHub
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projects made available constantly incorporate the latest innovations from the field into the
respective algorithms, they set a standard also in the industry. However, the implementations
are often not intuitive and can only be used by specialized developers with a high level of
effort. This is where Stable-Baselines can be useful. As a fork of OpenAl Baselines, Stable-
Baselines provides further developed, improved, and tested RL algorithms based on OpenAl
Baselines. With an API inspired by the comparatively user-friendly Scikit-Learn Python
machine-learning library, the usability of the algorithms are high and RL experiments can
be implemented in a user-friendly and comprehensible way. Stable-Baselines also provides
methods that make the training concepts described in section 3.4, such as hyper-parameter
adaptation, and offline training available in a comparatively user-friendly way. Therefore, in

the course of this work, implementations from this framework are used.

For the modeling of thermal systems, the open-source Modelica library AixLib [Miiller et al.,
2016] is used. The models are integrated and simulated as functional mock-up units (FMU)
[Blockwitz et al., 2012]. Interfaces (action-, state-space, and rewards) are implemented ac-
cording to the standards defined by the OpenAIl Gym [Brockman et al., 2016]. Figure 3.2
shows the schematic structure of the RL algorithm when interacting with a FMU. In each
iteration, a FMU is simulated for one time-step and a state-vector is generated. Both the
state-vector and the reward signal are processed by the algorithm, then the control signal is
forwarded to the FMU. Subsequently, a new state-vector is generated then a new iteration
begins. Additionally, external state variables, like monitoring data, are passed to the FMU.
To obtain standardized and RL-processable interfaces, all control actions and state-vectors

are normalized to the range from -1 to 1.
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Figure 3.2: Exemplary illustration of a FMU-based training framework with an interface for
continuous and discrete controlling RL algorithms.
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For data-driven modeling and the implementation of data-driven training environments, Scikit-
Learn is used. As the most successful library for data-driven models, Scikit-Learn provides
classic machine-learning algorithms from the areas of supervised learning, unsupervised learn-
ing, and regression with comprehensible implementations and supported by an active commu-
nity. Using Scikit-Learn, machine-learning algorithms can be applied to individual problems,
tested, and graphically evaluated with a few lines of code. The Scikit-Learn library also
provides training routines and evaluation metrics. Therefore, in the course of this work,

implementations from this library are used.

3.7 Bayesian hyper-parameter optimization

The configuration of the hyper-parameters significantly influences the convergence speed, as
well as the final policy [Liessner et al., 2019]. Finding the optimal set of hyper-parameters is
not trivial. Setting the hyper-parameters manually is time-consuming and error-prone even
for domain experts [Chollet, 2018]. On the other hand, unlike with simple supervised learning
tasks, such as classification or regression with lower complexity, it is not feasible to try all
combinations of hyper-parameters. This is not practical for RL because of the comparatively
long training times. Moreover, the convergence of Deep RL is not guaranteed even for well-
formulated MDPs and depends largely on the choice of hyper-parameters [Liessner et al.,
2019]. A well-chosen set of hyper-parameters should quickly lead to a policy that results in
high rewards for a given MDP.

In many publications, different methods to determine the optimal hyper-parameters have
been proposed and compared. The authors of [Putatunda and Rama, 2018] compare Bayesian
hyper-parameter search with random search, and grid search for XGBoost classification tasks
on six real-world datasets. They find that Bayesian hyper-parameter search yields the best
results when speed and accuracy are considered equally. In a comparable study the authors
of [Shekhar et al., 2021] highlight the performance of Bayesian search for the optimization
of hyper-parameters of neural networks. In a comprehensive study, the authors of [Bischl
et al., 2023] compare a variety of different hyper-parameter search methods for different use
cases. In the analysis of accuracy, efficiency, and other practical aspects of applicability, a
recommendation for the use of model-based search methods such as Bayesian search is given
for deep-learning and RL. In particular, the computationally expensive training (compared to

simpler machine-learning applications) is given here as the mayor reason.

In the following, the most common methods for hyper-parameter search from the literature are
analyzed and discussed for their applicability to RL. Figure 3.3 shows a qualitative evaluation
of the procedures according to multiple aspects: usability, computational cost, data efficiency,

robustness against local optima, and the expert knowledge required for the application.
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Figure 3.3: Strengths and weaknesses of different methods for hyper-parameter optimization.

Manual setting of the hyper-parameters does not lead to an optimal selection in most cases,
since it is error-prone and time-consuming even for experts. The iterative procedure here
is not practical for the long training times of RL and is also not well-suited to address the
interdependencies of hyper-parameters. Nevertheless, this method is still one of the most
widespread in all areas of machine-learning [Chollet, 2018; Liessner et al., 2019], which is due
to the very individual and therefore diverse procedure also problematic from a reproducibility
perspective [Bergstra and Bengio, 2012]. The procedure to automate the manual setting of
hyper-parameters, referred to as "one by one', comes with similar difficulties. Although the
required expert knowledge can be reduced slightly, the hyper-parameters are still optimized

without considering their interdependencies.

These methods are contrasted by the grid search method, a brute-force procedure in which the
optimal combination of hyper-parameters is determined by trying all possible combinations
[Liessner et al., 2019; Pedregosa et al., 2011]. Although this method is the only one that guar-
antees finding the global optimum, it is highly inefficient. It iterates through a high number of
combinations without major improvements to the performance [Bergstra and Bengio, 2012].
Thus, grid search is not suitable even for many supervised learning tasks and is not applicable

for performing RL experiments in an adequate time.
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The random search method, in which the hyper-parameters are selected randomly, is often
much more efficient. Although the method is based on luck, it has been shown that comparably
good combinations as with the grid search method can be found usually with significantly fewer

iterations. [Bergstra and Bengio, 2012].

According to recent literature, the method considered as the most promising for RL control
problems is the model-based method called Bayesian hyper-parameter search. Here, the idea
is to create a simple statistical model (Tree Parzen Estimator for example) of the hyper-
parameter space and to select the next combination to be tested based on this model [Barsce
et al., 2017; Bergstra et al., 2015; Liessner et al., 2019]. In other words, during the Bayesian
hyper-parameter search process, a statistical surrogate model is trained to predict the per-
formance of a hyper-parameter combination. This model is much less expensive to compute
compared to the objective function (the performance of the trained RL algorithm) and serves
as a basis for the selection of the next hyper-parameter combination to be tested. This is a
very important feature when it comes to the applicability of hyper-parameter optimization
methods to RL experiments. The method represents the best trade-off between applicability

and reliability and is therefore recommended and used in this work.

3.8 Performance comparison and discussion of Reinforcement Learning against
other novel building energy system operation optimization methods

This section summarizes a collaborative paper, which has been published in the course of this
work, in which RL (represented by a SAC algorithm) has been compared against other novel
control approaches [Stoffel et al., 2023]. The previously described workflow for the design
of RL-supported BES automation was applied here as well. The approaches against which
the SAC algorithm has been compared were: White-box MPC, Adaptive Grey-box MPC,
Adaptive Black-box MPC, and Approximate MPC. With these methods, more and more re-
lationships of the system are learned by the algorithms for the control. The SAC algorithm
is in parallel with Approximate MPC in this sense, because in both cases, state observations
are directly mapped to actions. As a benchmark problem, the air conditioning of a thermal
zone was chosen, which includes thermal inertia, internal thermal loads (stochastically present
people and appliances), and other disturbance variables in the form of outdoor temperature
and solar radiation. A carefully implemented rule-based strategy was selected as the base-
line for comparison. The possible continuous actions were the setpoint temperature of the
water circuit of a HVAC system and the thermal power to be supplied to a concrete core
activation system. Thus, the algorithms had to find a trade-off between a highly sluggish but
persistent heating system and a highly responsive but more energy-intensive heating system.
For this purpose, weather forecasts and time programs of the setpoint indoor temperatures

were provided. The performance indicators chosen were the Kelvin hours of discomfort over
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one year and the total heating energy required. In addition, softer criteria, such as the com-
puting power required to calculate the setpoints, were also taken into account, as well as
an assessment of the approaches in the following categories: pre-operation data need, data
quality requirements, model developing effort, MIMO (Multiple Input Multiple Output) han-
dling, adaptability, I'T requirements, know-how dependence, interpretability, transferability,
and scalability.

As can be seen in figure 3.4, all methods can achieve significant energy savings compared to
the rule-based (RB) approach with improved thermal comfort. The SAC algorithm achieved
nearly the same energy savings as the MPC variants, but the thermal comfort achieved does

not quite reach the level of the MPC controllers.
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Figure 3.4: The performance of different novel control approaches for a benchmark problem.
On the x-axis, the percentage energy savings compared to a rule-based (RB) con-
trol are plotted. On the y-axis, the annual Kelvin hours of discomfort. The
methods studied are: White-box MPC (WBMPC), Grey-box MPC (GBMPC),
Black-box MPC (BBMPC), Black-box MPC with online learning (BBMPC-OL),
Approximate MPC (AMPC), and Reinforcement Learning (RL).

On the other hand, AMPC and RL require significantly less computation time for calculating
the next setpoint, which is achieved by direct mapping of states to actions, whereas in the
MPC approaches the optimizer iterates through several solution alternatives. For the other
soft evaluation criteria, all methods have strengths and weaknesses and specific application
scenarios for each method are conceivable. The SAC algorithm has been evaluated positively
in the criteria: Transferability, MIMO handling, and adaptability. Transferability in this
context refers to the transferability of trained algorithms to related problems, MIMO handling
describes the ability to handle higher-dimensional state- and action-spaces, and adaptability

refers to the ability of the approaches to adapt to changes in the system to be controlled or in
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the boundary conditions. A slightly positive rating was given for the criteria scalability and
model developing effort. Scalability, in contrast to transferability, describes the increase in the
size (state-vector) of the problem with the same general system interdependencies, and model
developing effort describes the effort required to design the control strategy by an expert.
A neutral rating was given in the categories IT requirements and know-how dependence,
which address the need to execute higher programming languages common to all methods as
well as the need for expert knowledge in the respective methodology. A negative evaluation
was given to the SAC algorithm in the categories: Pre-operation data need, data quality
requirements, and interpretability. This results especially from the fact that the algorithm has
to learn by random actions, which requires pre-training on a simulation or at least supported
by monitoring data. Furthermore, erroneous data influence the algorithm more than other
methods, since it requires filtering the disturbances in addition to learning the action-reaction
relationships of the system. Finally, the interpretability of the trained algorithm is difficult,
as it can only be achieved by additional stochastic analyses as described in [Kotevska et al.,
2020].

In summary, the SAC algorithm and RL in general, like the other methods considered, have
strengths and weaknesses that have advantages and disadvantages for the respective appli-
cation scenarios. Its performance for the benchmark problem can compete with the other

methods investigated.
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After the previous chapters introduced the motivation for the application of RL for BES
(through relevant literature), and presented a workflow for the design of RL-supported BES
automation systems, this chapter presents a selection of three case studies. The control
problems are selected from systems which are the subject of German research projects funded
by the Federal Ministry for Economic Affairs and Climate Action. The introduced algorithms
and concepts are applied in the three case studies to different application scenarios, targeting

different current research questions.

In the first case study, two different algorithms for load shifting in a simulated cooling supply
system are applied. Here the focus is on three different aspects. Firstly, the out-of-the-box use
of two state-of-the-art algorithms is evaluated; secondly, an algorithm which allows discrete
control only (DQN) is compared with an algorithm that allows continuous control (DDPG);
and thirdly, the applicability of RL algorithms to the problem of load shifting in a cooling

network is investigated.

In the second case study, a further investigation is carried out based on a specific supply site
of the same cooling network. The aspects that are considered here are DQN as an expert
system for energy management of an ice storage system under dynamic constraints, Bayesian
hyper-parameter search as a method for optimal selection of training hyper-parameters, and

monitoring data-driven training of RL algorithms.

Finally, in the third case study, RL is used to control a real valve of an AHU. Here, the trans-
ferability of algorithms, pre-trained through a simulation, to a real system is investigated.
Furthermore, aspects of the necessary data infrastructure and an innovative state-space de-

scription are addressed.

In addition to the problem formulation, all case studies have a detailed presentation and
discussion of the results. Lessons learned for future work are derived. In addition, all insights
from the application and the observed results are finally incorporated into a summarizing

discussion of all results in the next chapter.

4.1 Case study one

In the first case study, two RL algorithms (DQN [Mnih et al., 2015] and DDPG [Lillicrap

et al., 2015]) are investigated, with the aim to learn an improved operation policy for load
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shifting in a simulated cooling network. Improvements have been proposed for both algorithms
since their first publication, but the DDPG, in its applied form, can be understood as an
extension of the DQN for continuous action-spaces. This allows, comparing the advantage of
continuous control actions with discretized actions for the use case. In a subsequent section, it
is also demonstrated how training and performance are improved by choosing optimal hyper-

parameters and using state-of-the-art algorithms for the use case problem.

The investigated cooling supply system is part of a hydronic cooling network of a business and
research facility located in Berlin, Germany. The campus comprises seven buildings, divided
into three sites. The cooling demand results from process cooling, equipment cooling, and
cooling energy for HVAC systems. The total amount of energy, purchased for one year, is
about 1800 MWh.

In the considered operation mode, illustrated in figure 4.1, all locations are supplied by one
central compression chiller (Qma:c = 600 kW), which is operated with power from the electric
grid. The chiller feeds into a glycol-circuit, which transfers the cooling energy to the network
via a heat exchanger. While the chiller receives the setpoint value for the temperature in the
glycol-circuit as control input, the mass-flow can be controlled by a separate pump. Due to
the relatively constant operation, the heat exchanger is modeled with an efficiency of n = 0.9.
The supply of the consumers is carried out via a pipe network, which is operated with water
as the medium. The dynamic pipe model from the AixLib [Miiller et al., 2016] is used and
parameterized as a steel pipe of d = 200 mm. The total length of the pipes (flow and return)
is 644 m [Bschorer et al., 2019]. For the efficiency of the chiller (EER), the following ambient

temperature (Ty,,) dependency is derived from the monitoring data:

Tamb +2°C Qchiller

EER =6 35
32°C + 2 °C Qchiller mazx

(4.1)

This equation results, together with the cooling load (Qchmew), in the current electricity

consumption of the chiller:

_ Qchiller
P, = TER (4.2)

The loads of the buildings are aggregated to the three consumer sites. The potential, which
the algorithms can use for load shifting, results from the thermal mass of the concrete of the
supplied buildings, as well as from the temperature tolerance of the linked manufacturing
processes within the buildings. From monitoring data, the capacity for all three locations is
estimated with a capacity of 500 kW h each, with m-¢, = 77 %, in the range from 5.5 °C to
12 °C. This range corresponds to the minimum and maximum temperature for the connected

cooling appliances in the real system.
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The dynamic price signal is determined by the historical data of the day-ahead electricity
prices that are traded on the European Energy Exchange spot market, for the market area
in Germany Luxembourg (DELU). The data is downloaded via the API of the European
Network of Transmission System Operators for Electricity (short: ENTSO-E [Hirth et al.,
2018]). It is assumed that a dynamic electricity price contract, which would be offered to an
industrial customer, would have an offset, but would generally follow the dynamics observed

on the spot market.
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Figure 4.1: Schematic structure of the simulated energy system and data interfaces. Monitor-
ing data of the cooling loads at the consumer sites are included together with the
electricity price and the ambient temperature as exogenous inputs to the system.

4.1.1 The environment

The interaction between the algorithm and the environment for one week of operation is
visualized in figure 4.2. The dotted line marks the current time-step. The interaction with
the environment as well as the simulation of the cooling network is carried out with a 15-
minute resolution. This reflects the available resolution of the price signal and weather data
on the one hand and represents a feasible trade-off between the granularity of control and
observability of the effects of an action in the next state. The state-vector is composed of 75
entries. The observation contains electricity prices (k¢;) and weather data (7y,,p) for the next

12 hours in a hourly resolution (first and second graph).
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Figure 4.2: Visualization of the state-space, the action-space, and the reward signal. The al-
gorithm receives at a given time-step (dotted line) current and historical consumer
loads and temperatures, as well as price and ambient temperature forecasts.

According to the Markov Property, the future of a MDP must depend on its current state
only. In this case, this is fulfilled by including the consumer loads (Qgite_ii € [1,2,3]) and
temperatures (Ts;iei i € [1,2,3]) for the last 4 hours (third graph and fourth graph), also in
a hourly resolution . Thus, the algorithm is able to learn, based on the gradients, whether
the consumption or the temperature of the thermal mass is rising or falling and how fast. In
addition, for the algorithm to learn relationships such as working hours and weekdays, the

state-vector includes information about the weekday and the quarter of the day (one-hot-
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encoded) as well as the last 4 control actions. The latter serves as an indication about own

influence of the algorithm on the system dynamics.

The baseline for the system is the currently in the real system applied purely demand-oriented
policy: current cooling loads are provided by the chiller, regardless of the electricity price and
without the use of flexibility at the consumption sites. The reward (equation 4.3), includes
one term for the energy costs (compared to baseline) and one penalty for temperature range
violations. The cost term (AW, - k¢) is calculated from the difference between the current
consumer load (Qload) and the current supply load (qupplied), divided by the current ambient
temperature-related EER of the chiller, multiplied by the electricity price (ke;). This reflects
the difference in electricity purchases compared to the direct load coverage and rewards the
shift to periods with lower electricity prices. The penalty term (ATpenqity) for deviations from
the temperature limit at the consumer sites (11.5°C) is designed to balance it with the cost
term. The exponential function is used to allow small temperature deviations as a trade-off

to high cost savings, whereas larger deviations are penalized over-proportionally.

reward = AWy + ke + ATpemlty

AWel _ quppEleyE_RQload (43)

1 o
ATpenalty = _g : Z e:pp(maw((), (115 C- TSite.—i)))
i

Monitoring data of the cooling loads at the consumer sites and the ambient temperature are
available for 87 weeks of operation. The data is split according to figure 4.3; after four weeks,

one week is removed from the dataset for testing.

[Training weeks}

112 34567 8 910111213 14/1516 --- 85/8687

{ Test weeks ]

Figure 4.3: Division of the available weeks into training- and test-weeks.

Since the DQN is limited to discrete actions, the operation parameters of the chiller (tem-
perature setpoint (Tsuppiy,chitler) and mass-flow (171, 101)) are devised in 6 operation modes,
leading to 6 equidistant flow temperature levels in the cooling network:

Thet € [3.5,4.5,5.5,6.5,7.5,8.5]°C. Since the action-space is limited in size by this discretiza-
tion, the valves at the consumer locations (figure 4.1) are controlled independently of the

algorithm; the cooling energy is distributed to the consumers in proportion to their demand.

The DDPG on the other hand returns an action vector of 4 float numbers. The entries are

summarized in table 4.1. The vector includes the parameters of the chiller (Tsuppl%chmer and
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T tot) as well as the position of the two valves (kswy.1 and kswv.2). The valves distribute the
cooling water to the consumer sites and can be considered, due to the continuous action-space
of the DDPG. Tsyppiy chitier is controllable in the range from 2 °C to 7 °C, the water mass-flow
(1 tot) is calculated within the environment and results from the controllable target network
temperature T}, in the range from 3.5 °C to 8.5 °C, and the two valves within the network
can be opened between 0 % and 100 %. All control signals (a; — a4) are scaled between

between -1 and 1.

Table 4.1: List of the control signal ranges for the DDPG algorithm.

Action Min Max
a; meaning value | scaled | value | scaled
a1 | Tsupply,chiller 2°C -1 7°C 1
az | Mot — Thet | 3.5 °C -1 8.5°C 1
as kswv-1 0 -1 1 1
aq kswv-2 0 -1 1 1

4.1.2 Results of case study one

This section presents the results of the first case study. The learning process is presented,
the resulting control policies are compared, and finally the possible improvements through

hyper-parameter optimization and the use of state-of-the art algorithms are shown.

Learning progress

Figure 4.4 shows the two averaged terms (AK. and AT}epairy) of the reward function for the
70 training episodes. Both algorithms were trained on a regular desktop computer (CPU:
Intel Core i5- 8265U 1.60 GHz; RAM: 16 GB). The training of the DQN required ~ 7 hours,
and that of the DDPG ~ 14 hours. Both algorithms show almost identical convergence
behavior over 70 training episodes and the training processes for both are robust against the
initialization of the neural networks. One episode is defined as one cycle through the training
dataset. The exploration factor € continuously decreases and asymptotically approaches O.
Both elements of the reward function increase and finally converge towards a threshold. At
the end of the training, the flexibility use saves on average ~ 40 € per week, which is about 14
% of the total operating costs. The average penalty received per week is —5 < ATpepairy < 0,
which corresponds to a deviation of the temperature of the three thermal masses of about

0.5 °C over a period of 3 hours.
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Figure 4.4: The average reward and penalty during the training of the DQN. The top plot
shows the absolute averaged reward for the algorithm over 70 training cycles, the
middle plot the evolution of the two parts of the reward function, the monetary cost
term and the penalty term for temperature deviations from the set temperature,
and the bottom plot, the asymptotically decreasing exploration factor.

Policy of the DQN

In figure 4.5, the learned operation policy for the investigated system, with boundary condi-
tions of one week from the test dataset, is presented. The consumer loads and the cooling
energy provided by the chiller are shown. With T§ gyr0 (Tsupplyychmer) and 77, tot, the control
actions of the algorithm are visualized. Below that, the time-series of the temperatures of the
three thermal masses are added. The electricity price and the ambient temperature are also
included. The accumulated operating costs over the operating time is shown below. The green
line represents the costs resulting from the learned operation policy. The grey line represents
the costs that would result from the baseline. By load shifting to times of low electricity prices
and low ambient temperatures, the algorithm saves about 20 % of the operation costs for this
week. It is also ensured that the temperature limit of 11.5 °C of the thermal masses is rarely
violated and that all deviations are significantly below 1 °C (AT < 0.7 °C), occuring only for
a short period of a few hours. Large savings are achieved by maximum cooling of the thermal

masses during a period with electricity prices ke; ~ 0 €/kWh.
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Figure 4.5: DQN operation of the cooling supply system with the learned policy for an exem-
plary week. The top plot shows the total cooling load at the consumer sites and
the supplied cooling power. Plots two and three show the temperatures in the
cooling circuit of the chiller and the temperatures of the thermal masses at the
consumer sites. Plot four shows the mass flow in the cooling network with and
without DQN control. The two plots below show the boundary conditions elec-
tricity price and outside temperature and the bottom plot shows the accumulated
operation costs with and without DQN control.
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Additionally, figure 4.6 shows the reward value that the algorithm receives during interaction
with the system. The plot shows that the algorithm accepts small and negative rewards in
the short- to mid-term in order to maximize long-term rewards. If the algorithm supplies
more cooling energy than the current accumulated consumer loads, the rewards are negative,
because the operation costs for this time-step are higher as they would be when following the
baseline policy. In the long-term, the cooling energy is then used to supply correspondingly

less energy when the electricity costs and/or outside temperatures are high.

2.5

0.0

reward

-2.5

Mon Tue Wed Thu Fri Sat Sun Mon

Figure 4.6: The algorithm receives temporarily small or negative rewards to achieve larger
ones later.

Comparison of the algorithms

In figure 4.7, the performance of the two algorithms is compared. The results for training-
weeks (left) and test-weeks (right) are very similar in all cases, which suggests that despite the
many training cycles on the training-weeks, no over-adaptation to these boundary conditions

has taken place.

A minimum of 4.7 % of the energy costs are saved during the 16 test-weeks. The average
cost savings of 12.7 % for the test-weeks are slightly higher than for the train-weeks. The
maximum value of the operation cost savings is 30.3 %. A similar trend can be observed in
the evaluation of temperature limits. A deviation of 0.5 °C for the duration of one hour leads
to a penalty of AT}epairy = —1.65. The average penalty of ATepa1y = —3.5 for the test-weeks
is therefore considered very low. On average, the savings are close but the maximum value is
slightly lower for the DDPG. The DDPG algorithm achieves 15 % higher savings compared
to the DQN algorithm in the test-weeks with the lowest savings.

According to the observations, the temperature limit of the thermal masses is better-maintained
by the DDPG. The penalty received with the DDPG algorithm is reduced by 70 - 80 % for
test-weeks and training-weeks, compared to the DQN. The maximum penalty received in one
week is 60 - 70 % lower for the DDPG. Because of the slight superiority of the DDPG, the
following two evaluations regarding the adaptability and the influence of the thermal masses

are carried out with this algorithm.
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Figure 4.7: Comparison of the two investigated RL algorithms. Shown are the two terms of the
reward function for the two algorithms compared for the three cases: Week with
the smallest rewards (left), the rewards mean over all weeks (middle), and the week
with the maximum rewards (right). Additionally in each case the performance on
the training and the testing data is shown. The difference between the algorithms
in each case is also given as percentages.

Flexibility potential

The size of the thermal masses at the consumer sites determines the available flexibility in the
system, which the algorithm can exploit. To investigate their influence on the learned oper-
ation policy, three different capacities are studied here. Starting from the reference (storage
capacity of 500 kW h over the temperature range from 5.5°C to 12°C), the size of the thermal
mass is doubled or halved respectively. The results of the three modifications are presented

in figure 4.8.

The operation cost savings can be increased by increasing the thermal mass of the consumers.
An almost linear increase, when considering the minimum savings (left), is observed. In other
words, a doubling of the thermal mass also leads to a doubling of the saved operating costs.
This is not the case for average (middle) and maximum (right) savings. If the thermal mass
is doubled from the lowest to the reference value, the operating cost savings for the test weeks
are increased by 74 %. A further doubling of the thermal mass results in additional savings
of 33 % for the test-weeks. In the first step, the maximum value increases by 53 %. In the

second doubling of the capacity, the increase is only by 38 %. The reason for this is related to
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the limited maximum cooling load that can be supplied to the cooling network by the chiller.
This is therefore an environment-related limitation. The penalty received due to violations
of the specified temperature limit increases over-proportionally for minimum, maximum, and
average values. But even with the largest thermal mass, the average penalty received per week
is just -3.2 for the test-weeks. This corresponds to a violation of the temperature limit of the
3 thermal masses of 0.5 °C over a period of less than 2 hours. However, the increased inertia
due to the larger masses actually seems to result in a more difficult system to control. The

temperature limits are still well-maintained, but violations become disproportionately longer

and/or higher with the increase in mass at the consumer sites.
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Figure 4.8: Investigation of the influence of the thermal masses on the learned policy. Shown
are the two terms of the reward function for three different sizes of the thermal
masses at the consumer sites and three cases: Week with the smallest rewards
(left), the rewards mean over all weeks (middle), and the week with the maximum
rewards (right). Additionally in each case the performance on the training and
the testing data is shown. The difference from the change of the mass is given as
percentages.

Adaptability

In this subsection the capability of the DDPG algorithm to adapt to changes in the controlled
environment is investigated. The exploration is switched off with ¢ = 0. For the experiment,
it is assumed that the two three-way-valves have an offset value of - 15 %, which could occur
after a faulty calibration process or through clogging over time, for example. The two valves

can therefore only open to a maximum of 85 %, and valve positions between 0 % and 15
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Figure 4.9: Investigation of the influence of a change in the system behavior. Like in figure
4.4 the top plot shows the absolute averaged reward for the algorithm, the middle
plot the evolution of the two parts of the reward function, the monetary cost term
and the penalty term for temperature deviations from the set temperature, and
the bottom plot the exploration factor (set to zero). Here, a sudden change in
the dynamic of the three-way-valves is implemented after the fifth episode which
leads to a visible decrease of performance in episode six and an adaption of the
policy (visible in the recovered performance of the algorithm) in episode seven.

% have no effect because they are already completely closed with the offset at 15 %. The

algorithm must therefore learn to open the valves wider for the same mass flow and at the

same time learn to handle the new limits.

The time-series of the reward values obtained for the described investigation are shown in

figure 4.9. The red dotted line marks the time from which the offset value ks is subtracted

in the simulation. In the following episode, the penalty increases significantly and is more

than four times higher compared to the reference (ATenqiry drops from -6 to -24). The saved

operation costs decrease, but remain on a similar level (less than 4 %). The average reward

received decreases by about 40 %. It should be noted that the reward received for the next

episode rises again to almost the level before the system change. Thus, the DDPG already

reaches the old level of performance one training cycle after the occurrence of the change.
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Improvements through state-of-the-art methods

In this section, it is investigated how the training process is influenced by the use of state-of-
the-art modifications of the applied algorithms as well as by an optimized selection of the used
hyper-parameters. As stated before, the DDPG in its used form can be viewed as an extension
of the DQN for continuous action-spaces. However, both algorithms have been continuously

improved in recent years.

Instead of the DDPG, the SAC algorithm is now used for continuous control. SAC adds an
entropy term to the value function that returns what value an action has in a given state
with respect to system exploration. Areas of the state-space in which the algorithm has little
data on the system dynamics have high entropy and are thus more likely to be approached.
The exploration and training becomes inherent in the calculation of the action values and the
e-greedy procedure, with which the exploration is controlled in the DDPG, is replaced. Two
additional improvements are also added for the DQN. The first, called prioritized experience
replay [Schaul et al., 2015], affects the selection of training samples from the replay buffer.
While this was implemented purely randomly in the classic architecture, this implementation
adds a prioritization of the samples. The priority is added to the state-action-next state-
reward pairs already during storage and results from the deviation from the expected course
of the value function to the actual course of the value function. A high deviation indicates
a region where the algorithm needs more training. Therefore, such samples are selected with
higher priority. The second extension is called dueling networks. Here, the state-action-value
approximator is divided into two separate estimators: one for the state-value function and
one for a state-dependent action advantage function. The advantage of this factorization is
that state-action combinations are excluded from the possible actions in a state that would
immediately have a strong negative effect on the rewards. The smaller dimension of the
action-space thus speeds up the training. While in the classical approach the current state is
processed together with all possible actions directly, the state-value as well as the advantage
of a certain action is processed separately and combined afterward [Wang et al., 2016]. This
architecture has proven effective for numerous applications and was therefore also included in

the implementation used.

To find good hyper-parameters for both algorithms, 25 iterations of a Bayesian hyper-parameter
optimization (section 3.7) are performed. The search-space and the considered hyper-parameters
are shown for the DQN in table 4.2 and for the SAC algorithm in table 4.3. The distribution
of the search-space is plausibly chosen based on the literature and the search distributions are
divided into uniform and logarithmic uniform value ranges. The resulting hyper-parameters
for the DQN algorithm are: a = 8.00e — 5, v = 0.9807, D = 34263, B = 99, €5, = 0.0673,
expl. frac. = 0.4062, and targ.update = 2377;

the ones for the SAC algorithm are: o = 7.49¢ — 4, v = 0.9926, D = 64476, B = 118, and
p=3.11le — 3.
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Table 4.2: Hyper-parameter search space for the DQN algorithm

Hyper-parameter Search Distribution
learning rate o loguniform(le-5, le-3)
discount factor ~y loguniform(0.9, 0.995)
replay buffer size D loguniform(10e3, 10e4)
batch size B uniform(64, 256)
final exploration rate egy uniform(0.02, 0.075)
exploration fraction uniform(0.3, 0.7)

target network update interval uniform(500, 5000)

Table 4.3: Hyper-parameter search space for the SAC algorithm

Hyper-parameter Search Distribution

learning rate « loguniform(le-5, le-3)
discount factor ~y loguniform(0.9, 0.995)
replay buffer size D loguniform(10e3, 10e4)
batch size B uniform(64, 256)

Polyak update p loguniform(le-4, 0.1)

The discount factor () is chosen in a similar range for both algorithms, which means that the
abilities of both algorithms to plan for the future appear similar to the optimization. It should
also be noted that the reduction of the exploration factor selected for the DQN (expl. frac.=
0.4062) is much larger than the value used in the original DQN and DDPG implementations
(0.001). This indicates that the training process can be accelerated significantly by a faster

reduction of the exploration factor.

Figure 4.10 shows the training processes of both algorithms after hyper-parameter optimiza-
tion. It can be seen that the training processes have been accelerated by several orders of
magnitude. With the original setup, 70 training epochs with all available training weeks were
necessary, but now both algorithms show a positive performance already after 50 weeks and
stabilize already after 200 weeks. For the DQN, the decisive factor here is in particular the
faster lowering of the exploration factor, which leads to a clear acceleration of the training.
Interestingly, the entropy-based exploration mechanism of the SAC algorithm still shows ac-
celerated training even compared to the accelerated exploration of the DQN. After 250 weeks
of training, however, the effect is over and both algorithms stabilize at an almost constant

performance.
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Figure 4.10: Training process of the DQN and the SAC algorithm after hyper-parameter op-
timization.

4.1.3 Discussion and lessons learned from case study one

This subsection summarizes the key results of the case study, discusses them, and also derives
lessons learned for future work. This is based on the result plots presented in the previous

subsection and the experience gained in the implementation process of the case study.

The application of the model-free algorithms for load shifting in a simulated cooling network
was evaluated. The results show that the implemented algorithms are capable of learning
an operation policy for the simulated cooling supply system that leads to a more economical
operation for all training- and test-weeks. In this combined approach, 70 weeks of boundary
condition data are enough to learn a superior policy, and although extensive training cycles
were applied on the training data, no over-fitting (lower performance on the test-data) has
been observed. The learned policies of both algorithms do not lead to large or long-lasting

violations of the temperature limits.

The DDPG shows a slight superiority, but since the deviations from the temperature limits are
already low with the DQN, the superiority of the DDPG is marginal. The ability of the DDPG
of adjusting the policy to rapidly changing environment dynamics (offset in the controlled
valves) was demonstrated. Exploration was disabled here and the networks control inputs
were therefore adjusted based on the previously learned policy. Other hyper-parameters were
not considered in the first five result subsections in order to evaluate the out-of-the-box use
of the applied algorithms. It was also shown how the convergence behavior of the algorithms
can be accelerated if state-of-the-art design principles are taken into account and optimized
hyper-parameters are selected. For the DQN, the largest effect was observed by lowering the

exploration factor faster. Using an entropy-based exploration strategy, the SAC algorithm

61



4 Application

found the optimal policy significantly faster, compared to the DDPG and even to the DQN

with optimized hyper-parameters.

The influence of the thermal masses in the system was also analyzed. The learned policies
are able to comply with the given temperature limit almost at all times. The tendency that
the received penalty increases with the increase of the thermal mass can be explained by the
increasing cost saving potential: with larger capacity, the operation cost savings potential
dominates the reward signals and the algorithm allows longer violations of the temperature
limit.

Based on the study, the following lessons learned can be derived for future work:

e RL is generally well-suited for energy management tasks with high-dimensional state-
spaces. However, the effort for generating the training environment should be critically

weighed against the effort for a MPC application.

e If the problem is well-formulated, a discrete control algorithm can achieve similarly good
performance as a continuous controlling algorithm. The dimension of the action-space
is crucial here. Discrete control should only be used if there are a limited number of pre-
defined system interactions to choose from. The DQN processes each action separately

and cannot learn a relationship between neighboring actions.

e The selection of algorithms should take into account the latest design principles from
RL research. The ability to find the optimal policy for reference problems has improved
by a factor of 10 in the recent literature. This was also evident here, through the high
convergence speed of the SAC algorithm, which (with its entropy-based exploration
mechanism) also outperformed the convergence speed of the DQN with optimized hyper-
parameters. Also, the selection of optimal hyper-parameters is important. In this study,
in particular, the adjusted lowering of the exploration factor led to a significant speed-up
of the training process. If hyper-parameter optimization is not possible for the problem,

it is recommended to use literature values for problems with a comparable complexity.

4.2 Case study two

In the previous case study section, the applicability of RL for load shifting in a cooling supply
system has been demonstrated. The two investigated algorithms (DQN and DDPG) are
generally both applicable for this purpose. However, it has been found that the out-of-box
use of these two algorithms does not lead to sufficient convergence speeds. Therefore, in this
case study, the focus is on strategies to reduce the necessary interactions with the real system
by applying different pre-training strategies (PS). In most existing studies, the training of RL

controllers has been mostly performed with physical simulations of the investigated systems
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[Han et al., 2019; Mason and Grijalva, 2019]. This approach, however, makes the time-
consuming and error-prone modeling of the system dynamics necessary, which reduces an
advantage of RL over MPC. In this case study, therefore, a fully data-driven RL training
approach is demonstrated, using data of a real-world cooling supply system. State-of-the-
art methods from the fields of data-driven modeling, offline training, Deep Q-Learning, and
Bayesian hyper-parameter optimization are used for this purpose. Five promising PS are
investigated with the aim of evaluating the final control performance and convergence speed
of the trained algorithm (DQN).

The rest of this section is organized as follows. In the next subsection, the experiment design
is presented. All steps from the raw monitoring data through a data-driven training and
evaluation environment to the trained and evaluated RL controller are described. In subsection
4.2.4, the results are presented, which are then discussed in subsection 4.2.5. First, the
description of the data-driven training and evaluation environment is presented. Based on
this environment, the control problem (MDP) to be solved by the RL controller is introduced.
In order to learn the optimal control policy for the system, five different PS are considered,
about which an overview is given in the following. Finally, additional concepts from offline
training and expert guidance used in this case study are introduced. As introduced in section
3.6, all implementations are built upon freely available Python packages, namely Scikit-Learn
[Pedregosa et al., 2011], Keras [Chollet and et al., 2015], Stable-Baselines [Hill et al., 2018],
and HyperOpt [Bergstra et al., 2015].

As in the last case study section, the investigated energy system is part of the same business
and research facility in Berlin, Germany. At the considered supply site, the cooling energy de-
mand also results from indoor air-conditioning, process cooling, and device cooling. In total,
the thermal cooling demand fluctuates between 50 kW and 650 kW. Figure 4.11 shows a pho-
tograph of the considered cooling energy supply system, and figure 4.15 shows the schematic

system structure together with the representative operation modes of the subsystems.

The supply system consists of two compression chillers with approximately 500 kW cooling
power each and an ice storage with a maximum cooling power of 900 kW and a total capacity
of 8.040 kWh. The cooling network is operated with a supply temperature level of 6 °C. While
both chillers are technically designed for this, only chiller 1 can be operated at a temperature
level that is also sufficiently low to load the ice storage. The cooling energy demand, the
ambient temperature, and the historical day-ahead spot market electricity prices (DE-LU),
from the ENTSO-E platform [Hirth et al., 2018], are considered as dynamic constrains.

The entire system is equipped with sensors, which continuously monitor all relevant volume
flows, flow temperatures, cooling powers, and electric powers. All data is recorded in an event-
based way, submitted using the IoT MQTT protocol, and stored in a time-series database; the
access is realized via a REST API. Monitoring data of the system is available from the time

period July 13, 2017 to January 01, 2020. After pre-processing (NaN- and outlier-handling)
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a dataset of 40 weeks with a high data quality is generated.

The dataset with 26,880 samples in a 15-minute resolution is split into a training and a testing
dataset. This is done by dividing the dataset into six equally long segments with a training
episode length of 40 days and a test episode length of 7days, each. The training samples are
used for offline training, online training, and hyper-parameter tuning, while the testing weeks

are used for the final RL controller evaluation.

Figure 4.11: A photograph of the cooling supply system investigated in case study two. The
two compression chillers and the ice storage tanks are visible [EnBA-M, 2018].

4.2.1 Data-driven training and evaluation environment

For this experiment a data-driven model of the aggregated energy system is developed. In
order to learn data-driven models from monitoring data, a semi-automated, data-driven mod-
eling workflow is applied, similar to the one published in [Rétz et al., 2019]. The workflow
includes data pre-processing, model training, and hyper-parameter tuning, model selection as
well as the initial system decomposition and the final system aggregation. Different machine-
learning algorithms are trained and tuned, according to the workflow illustrated in figure
4.12, to represent the dynamics of all subsystems in their representative operation modes.
Considered algorithms are linear regression (LR) [Hiittermann et al., 2019], support vector
regression (SVR) [Jain et al., 2014; Zhang et al., 2016], random forests (RF) [Ahmad et al.,
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2017; Jain et al., 2017, 2016], and ANN [Ahmad et al., 2017; Mocanu et al., 2018; Ryu et al.,
2017].

In order to capture the thermal dynamics of the system, the data-driven models are designed
with a resolution of 5 minutes, which represents a trade-off between system inertia, sensor
accuracy, and capturing the system dynamics. In contrast, the control actions and dynamic
constrains are implemented in a 15-minute resolution, which on the one hand addresses the
available resolution of the constraints and on the other hand favors the observability of action
effects in the next state. The model tuning is performed via Bayesian hyper-parameter op-
timization and all models are evaluated based on their root-mean-square-error (RMSE) and

coefficient of determination (R2-score).

[
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Figure 4.12: The data-driven modeling workflow. Starting with the selection of training data
and the choice of suitable features; models and hyper-parameters are optimized
with respect to validation data.

Modeling of the compression chillers

The models of the compression chillers are designed to approximate the electric power con-
sumption FP,;. Both the cooling power setpoint Qset and the ambient temperature Tymp,
influence the compression chiller’s energy efficiency ratio (EER). The functional relationship

to be learned is provided in equation 4.4.

Qset

EER =
Pel

— f (Tamb; Treturn) — Pel ~ f (TambaQset) (44)

It is derived from the monitoring data that chiller 1 operates on two different temperature
levels, which results in two different operation modes. Therefore, two independent data-driven
models are used here for the two operation modes; one for ice storage charging and one for

direct supply of the cooling demand from the cooling network.

Figure 4.13 illustrates how data pre-processing reduces the feature values to those relevant for

identifying the physical relationships. The input data for the data-driven model of chiller 2
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are visualized in the form of the feature pair plot and the feature histogram before and after
data pre-processing. The histograms show how pre-processing the data effectively increases
the density of samples with physically plausible feature values. At the same time, irrelevant

monitoring data, for example from inactive periods, are excluded.
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Figure 4.13: Data pre-processing of chiller 2. The top three plots show the correlations of
the features cooling power, electrical power, and ambient temperature with each
other (feature pair plots). The three lower plots show the uniform relative fre-
quency of the features in the dataset before and after pre-processing (histogram).

By applying outlier- and NaN-handling, erroneous values, for example from sensor malfunc-
tion, are excluded. Values outside physically plausible limits, such as negative cooling loads,
are eliminated as well. For example, a period in the dataset is identified and deleted from the
training data where the outdoor temperature sensor recorded constant T,,,, = —9.1°C over
four weeks in the spring of 2018.

Modeling of the ice storage

The ice storage system is designed with three operation modes, namely loading, unloading,
and idle. During the idle mode, the ice storage does not interact with any other subsystem
model. Nevertheless, a decrease in the state of charge (SOC in percentage of ice) results from
heating from the environment, correlating with the ambient temperature (7). The feature
space includes one feature to provide the machine-learning model with information about the
state of charge of the previous time-step SOC*~1:

SOCidle ~ f( Tamba SOCtil) (45)
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SOC; ~ f (Ql, Toumbs SOCt_l) ie[loading, unloading] (4.6)
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Figure 4.14: Data pre-processing of the ice storage in loading mode. The top three plots show
the correlations of the features cooling power, ambient temperature, and state
of charge with the state of charge and the state of charge in the last time-step
(feature pair plots). The three lower plots show the uniform relative frequency
of the features in the dataset before and after pre-processing (histogram).

For the operation modes loading and unloading, it is assumed that the state of the ice storage
is only sufficiently characterized, if historical information is included in the form of a series
of past state of charge values. In contrast to these consideration, the addition of more than
one historical value did not show further model improvements. Therefore, only the state of

charge of the last time-step is used as a feature for the data-driven model.

In figure 4.14, the input data for the loading model of the ice storage is visualized in the
form of the feature pair plots and the feature histograms before and after data pre-processing.
As the figure illustrates, pre-processing the data significantly reduces the number of outliers.
In contrast to the data visualization of the input data of the compression chiller 2 in figure
4.13, the functional relationships between the features Q, Tymp, and the resulting SOC are
not directly visible by means of a linear one-to-one correlation. Naturally, a linear correlation
between the SOC and its prior value SOC*™! can be observed.

Modeling of the interconnected energy system

The data-driven models of each operation mode of each subsystem are aggregated to represent

the dynamics of the whole cooling energy supply system. Therefore, the trained models are
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interconnected to enable energy exchange between compression chiller 1 and the ice storage.
The cooling energy supply system, consisting of the two compression chillers, the ice storage
tanks, and a heat exchanger (between the glycol circuit and water circuit) is aggregated
as shown in figure 4.15. The generation units are designed to meet a given cooling demand
Qload, Which is extracted at the heat exchanger. The cooling load Qoeq along with the ambient
temperature Ty, are exogenous boundary conditions for the aggregated model. Inspired by
the operation modes implemented in the automation of the real system, three operation modes
OM-0, OM-1, and OM-2 are implemented, as listed in table 4.4.
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Figure 4.15: The schematic structure of the aggregated case study two cooling system, consist-
ing of the six interconnected machine-learning models: three models to predict
the SOC of the ice storage (loading, unloading, and idle); two to predict the
electric power consumption of chiller 1 (P, chiner1: one for ice storage loading
and one for direct network supply); and one to predict the electric power con-
sumption of chiller 2 (Py;, chitter2)-
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Results of the data-driven modeling

In this section, the results of the data-driven modeling approach are presented and discussed.
Figure 4.17 shows the RMSE and the R2-scores, of all the applied algorithms for all 6 individual
subsystem operation mode models, after hyper-parameter tuning. The LR baseline models
generally provide less accurate scores compared to the other models. It is outperformed by
RF, ANN, and SVR in all cases. RF reduces the RMSE down to 79.2 % in relation to the
LR baseline. The same is observed for the R?-score, which shows highly similar trends in all
cases. Therefore, the algorithm for the corresponding subsystem model is selected based on

the RMSE score on the test dataset, after hyper-parameter tuning.
RF and SVR provide the most accurate subsystem models. SVR outperforms RF and ANN

for the chiller 1 subsystem models, for which fewer training data samples are available, and
slightly outperforms RF and ANN for the ice storage charging model. The prediction of the
electric power demand of the compression chillers is learned with R?-scores between 0.94 and
0.99 and RMSE values between 2.02 kW and 3.51 kW. Also, the prediction of the percentage
of ice formation within the ice storage is learned accurately with a R?-score of near 1 and
RMSE values between 0.08 % and 0.72 %. These results show that the dynamic behavior of

the subsystems is successfully learned.

A few interesting observations were made in the course of the hyper-parameter tuning:

e The hyper-parameter tuning of the ANN models shows that small batch sizes (in this
case, 5-15 samples per batch) lead to the best results. Naturally, the RMSE improves
with more training epochs until it reaches a threshold value. If training continues after
the threshold is reached, over-fitting occurs and the prediction accuracy on the test data
decreases again. The maximum value is generally lower for models that converge after
a relatively small number (5-10) of training epochs. Further, the score of most models

does not significantly improve beyond 5 neurons within the hidden layers.

e Throughout all experiments conducted with SVR, the RMSE score declines with higher
values of the regularization parameter C' and the kernel parameter gamma. While the
accuracy improvements become small with C' > 10, variations of gamma have notable
effects on the RMSE over the entire range of the search space. Apparently, the choice
of a high regularization parameter C' (C' > 1,000), can compensate for a poor choice of

gamma.

e The experiments confirm that RF is insensitive to changes in its hyper-parameters. Since
the number of nodes (Decision Trees) has the biggest influence, an optimal number for
each model is identified; improvements were insignificant beyond a certain threshold

(once the number of nodes is higher than 7).

The experiments also confirm the poor extrapolation capabilities of non-linear data-driven

models. This is observed especially for ambient temperatures (Ty,,;), beyond the bounds
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in the training dataset. Nevertheless, it was possible to learn the relevant characteristics
of all subsystems and operation modes based on the available data. Figure 4.16 shows the
characteristic of chiller 1 in ice storage loading mode, learned with a SVR model. Although
the model appears to be rather accurate, with a RMSE of 2.02 kW, the predictions become
inaccurate in areas of the feature space where no monitoring data is available: electrical power

P.; increases with decreasing cooling load Q at high T,mp-
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Figure 4.16: The dynamics of chiller 1, learned via a SVR model in the three dimensions:
Cooling power, electrical power, and ambient temperature. The diagram shows
the expected trend towards more electrical power at higher ambient temperatures
and higher required cooling power. However, it also shows the limits of the
model in regions which were not represented in the dataset (low cooling load at
high outdoor temperatures: physically implausible drop in the required electrical
power at the top left corner of the plot).

As indicated by the RMSE and R? scores in figure 4.17, all subsystem models show highly
accurate operation characteristics. The ice storage model is the most accurate and coincides
with the time-series from the monitoring data for almost all time periods. In general, it is
shown that the interaction characteristics of the data-driven models represent the character-
istics of all components in the supply site with high accuracy. The aggregated model is thus

suitable for the use as a data-driven training and evaluation environment.

4.2.2 Markov Decision Process formulation

The formulation of the MDP, with its action-space, state-space, and reward function r(a;, s¢)

is presented in this section. The possible actions of the MDP are the three energy management
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operation modes from table 4.4. The possible actions are: OM-0, where the cooling demand of
the network is provided by chiller 2, while chiller 1 loads the storage. In the operation modes
OM-1 and OM-2, the cooling demand of the network is supplied by unloading the storage
or by direct supply through chiller 2, respectively. The control action is performed every 15
minutes (every third simulated time-step). The state-vector consists of 15 variables, as listed
in table 4.5.
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Figure 4.17: Comparison of the best data-driven models for the six operation modes of the
thee components after hyper-parameter tuning, based on the RMSE and R?-
scores.

The authors of [Wang and Hong, 2020], highlighted that the control performance of a RL
controller can benefit significantly from the inclusion of forecasts of the control problems
constraints. In order to find a trade-off between including forecasts and the size of the state-
vector, statistical features (minimum, maximum, and mean) are used here, instead of the
complete time-series, with a rolling 16 h horizon. A perfect forecast is used based on historical
data of the ambient temperature and the electricity price. Due to the rolling horizon, it can
be assumed that the influence of the inaccuracy in real forecasts, as with MPC, is relatively
small. Further, meta information regarding the hour of the day t;, the day of the week t4,
and the month of the year t;; are included as sinusoidal signals The electricity costs Ce
compared to the costs C° o,¢» Tesulting from a baseline policy 7 (in €), represent the reward

signal:

ri(as,50) = (Clhy = Cae) = 0.1(if = ar # ar1) — 0.5A50C (4.7)
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The baseline policy 7° used to evaluate the savings, (realized with a RL controller, trained
under one of the applied PS) reflects the case of direct load coverage. In this case, OM-2
is constantly active, chiller 2 supplies the network, and neither the electricity price nor the
forecast of it are taken into account. In addition, two small terms are added in order to
facilitate reasonable control behavior from an engineering perspective. Since an increasing
number of chiller starts and shutdowns are undesirable from an engineering point of view,
a small term (0.1) penalizes action changes. Further, penalizing the difference of the SOC
between the first and current time-step of an episode leads to another term (0.5ASOC). This
guides the RL controller to learn policies that do not empty the ice storage at the end of
each episode. Therefore, the policy of the RL controller is influenced towards a more system-
friendly operation, from an engineering point of view. All RL controllers are evaluated based

on their mean episode savings.

Table 4.4: The three possible operation modes of the aggregated energy system.

Action Chiller 1 Chiller 2 Ice Storage
(510EW) (500EW) (900kW; 8,040kW h)
OM-0 load ice storage supply network loading
OM-1 inactive inactive supply network
OM-2 inactive supply network inactive

Table 4.5: The state-space variables presented to the RL controller at each time-step an action
is performed.

State-space variables

P, chitter1: electrical power chiller 1 P, chitier2: electrical power chiller 2
SOC'" ice storage SOC Qdem: cooling energy demand

Toump: amb. temperature T;gb’maz, T;S,Lb’mm, T;ﬁbb: forecast
ker: electricity price k;ﬁmm, k;ﬁmm, I%;ZG: forecast

tp: hour of day tpr: month of year

tq: day of week

4.2.3 Overview of the investigated pre-training strategies

The different PS, evaluated in this case study, are visualized in figure 4.18 and summarized
in table 4.6. These PS represent three different approaches: PS-A refers to online RL in
interaction with the data-driven model of the energy system; in PS-B, an online training
phase is combined with offline training, based on artificially generated expert trajectories;

and with PS-C, training is realized, with monitoring data only. It is further differentiated
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Table 4.6: The evaluated PS combinations, leading to five implemented workflows.

Concept PS-A PS-B PS-C
Offline training X 4 v
Expert trajectories X v X
Monitoring data X X v
Guiding RBC Al:v/ A2:X Bl./ B2:X v

between variation 1 and variation 2, in which a guiding RBC controller is either implemented

or not, respectively.

expert trajectory
generation

MDP formulation

data-driven modelling

_]___
1
1

sys. disaggregation T hyper-parameter

optimization

\

data pre-processing

pemee———weee——— offline training ](
monitoring data model parameter tuning & > : v
evaluation training online training
del selecti 1: guided
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A: simulator online training )
B: simulator trajectory generation system aggregation
and offline training

( controller ]—
C: direct training from monitoring system evaluation —cvaluation
data trajectories
Figure 4.18: The evaluated PS, where different workflows are compared: direct online train-
ing with the data-driven model (PS-A) and offline training either with expert
trajectories (PS-B) or with monitoring data (PS-C). For PS-A and PS-B, the

performance is additionally compared with and without a guiding RBC con-
troller (1: guided; 2: unguided).

The data-driven model is used in combination with the training dataset, first for expert trajec-
tory generation, secondly for online controller training, and thirdly for controller evaluation,
using the test dataset. The expert trajectories used for PS-B are generated by running simula-
tions of the model using a computationally cheap RBC. Alternatively, the expert trajectories
used for PS-C are directly extracted from monitoring data. The difference is, therefore, that in
PS-B, expert trajectories are generated using the simulation, and for PS-C, only the realized

control actions observed in the monitoring dataset from the real system are used.

Since an efficiency-based RBC is implemented for the real system, in which the ice storage is
always loaded overnight, PS-C represents this case. Between 10 and 12 o’clock at night, the ice
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storage is fully loaded, which is usually completed in the early morning hours. The strategy
aims to exploit the lower outdoor temperatures at night for loading in order to increase the
efficiency of chiller 1 during operation. All PS are evaluated in terms of their mean episodic
savings over the baseline policy. Further, all PS are studied with their representative optimal

hyper-parameter combinations.

Offline training and RBC guidance

In offline RL training, the RL algorithm goes through supervised training, to approximate
the state-action-value function prior to online RL training. The aim is to reduce the number
of necessary interactions with the real system till the optimal policy is learned. In analogy
to online training, during offline training, batches of stored environment transition samples
are backpropagated through the network of the DQN via stochastic gradient-descent. The

number of training epochs is considered as a tunable hyper-parameter.

An expert trajectory, used for DQN training, contains a temporal sequence of (state, action,
reward, next state) pairs. The corresponding trajectories are generated differently for PS-B
and PS-C. While the expert trajectory for PS-C is extracted directly from the monitoring data
(and thus encodes the currently applied RBC), the trajectory for PS-B is generated artificially

by applying an electricity price-based RBC in the data-driven training environment.

In the case of PS-C (where expert trajectories for the offline training are generated directly
from monitoring data) the historic control actions are detected and marked within the moni-
toring dataset by using a simple conditional action classifier. The trajectories therefore result
from the "load at night" RBC, introduced along with the PS overview in the last section. As
introduced, this RBC does not take the price signal into consideration but exploits the lower

ambient temperatures at night to operate the chillers with higher EER values.

For the offline training with PS-B, a more economic, price-based RBC is implemented. This
RBC takes the forecast of the electricity price for the next 16 hours into account when making
the control action. It exploits fluctuations of the electricity price by loading the ice storage
(OM-0) whenever the SOC is below 50 % and the current electricity price is lower as the mean
value of the forecast (ke; < k'f). Unloading of the ice storage (OM-1) is chosen if the price is
higher (ke > kL9).

In addition to pre-training of the RL controller with different expert trajectories, the chal-
lenging transition from offline to online training is addressed by stabilizing the initial phase
with a guiding RBC. The respective RBC follows the expert trajectory with which the RL
controller is pre-trained offline and interferes with the action of the online RL controller un-
der a decreasing probability 8. § is initialized with Sy = 1 (RBC) and is linearly reduced to
B; — 0 (RL) over time. The number of training steps the RBC intervenes in the RL controller

action is considered as a tuneable hyper-parameter. The PS are distinguished by the numbers
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1 and 2; PS-A1, PS-B1, and PS-C are the variants with implemented RBC guidance, while
PS-A2 and PS-B2 do not include RBC guidance.

4.2.4 Results of case study two

In this section, the results of case study two are presented. All experiments are conducted
with an ordinary PC (CPU: Intel Core i5- 8265U 1.60 GHz; RAM: 16 GB). The training of

one DQN under a certain PS took 1,093 seconds on average.

Hyper-parameter optimization

The hyper-parameters found via HyperOpt [Bergstra et al., 2015] are shown in table 4.7. The
search-space is reasonably selected on the basis of the literature and each PS is optimized for
40 iterations. In the conducted experiments, hyper-parameters are the ones of the training
process itself. For the DQN structure, on the other hand, the default settings from the
Stable-Baseline implementation [Hill et al., 2018] are used. Throughout all PS, RL controller
performance improvements between 105 % and 184 % are observed in relation to the average
savings over the baseline policy (before hyper-parameter optimization). At the same time,
the necessary interactions until convergence are reduced from ~800,000 to ~125,000. All

following results are based on the best hyper-parameter sets for the respective PS.

Comparison of the PS

The learning curves of the RL controllers, trained with all introduced PS are shown in figure

J_train

cpa'™) and the deviation (shaded area) over

4.19. The plot shows the mean episodic savings (
a period of 30,000 simulated hours with the training dataset. In table 4.8, five performance

indicators are additionally presented.

The standard deviations are constantly high for all PS because the training environment is
randomly initialized repeatedly over the course of the simulated 30,000 hours. The reason
is that only 6 * 40 days (5,760 hours) of data are available for the training. Therefore,
it is necessary to extend the possible training epochs with the available data, by random
initialization of the environment: In order to generate more data for the training and at the
same time avoid over-fitting to known data, the training process repeatedly starts at a new,
randomly selected time-step. Even a perfect policy could thus only act within the limits of
its suboptimal starting conditions. However, the convergence of the RL controllers can be

clearly observed in the time-series of the mean episodic savings.

The offline pre-trained DQN, with implemented RBC guidance (PS-B1) consistently yields

positive savings and the performance is also slightly higher than the one of the "price based"
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RBC, with which it is pre-trained. The guided DQN without offline pre-training (PS-A1)
achieves the highest monetary savings after the 30,000 simulated hours. The other PS also
yield consistently positive but lower savings at the end of the evaluation period. The first-year
savings are used to compare the PS based on their costs of training caused by system exploring
control actions during the initial phase of online interaction. Due to its rapid convergence,
the unguided DQN (PS-A2) yields the highest savings within the first year (8,785.7 EUR).

800 - .......... : .......... - -
600 e i st e e Emeal e e
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400 AL |
200 ‘ R
[ YA \/ N/
= D, /V/
§3 e e e = = = e
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Figure 4.19: Convergence behavior of online training of all five differently designed RL con-
trollers over 30,000 simulated hours on the training dataset. The baseline policies
are highlighted with dashed lines. The solid lines represent the mean episodic
rewards and the shaded area represents the spectrum between best performing
episode and worst performing episode.

With PS-A1, where the RBC guidance is implemented with no prior offline pre-training, the
training process is finished with the highest savings. In comparison, the DQN trained under
PS-A2; where the interaction is unguided, converges more rapidly (break-even time and first-

year savings).

Regarding those PS, where the DQN is initialized with offline pre-training (PS-B1, PS-B2,
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and PS-C), it is shown that high exploration values in the initial phase of the interaction lead
to a significant negative controller performance, as it can be seen in the learning curves of
PS-B2 and PS-C. Once online training is initialized, both respective controllers underperform
the control performance of the expert policies they are offline pre-trained with. In summary:
In the initial phase of online interaction (at best), the pre-trained RL controllers reflect the

trivial baseline RBC encoded in the expert trajectories they are trained with.

Table 4.7: Results of hyper-parameter optimization after 40 search iterations.

Hyper-parameter PS-A1| PS-A2 | PS-B1 | PS-B2 | PS-C
offline learning rate n/a n/a 9.9¢-3 | 9.9¢-3 | 9.9¢-3
offline epochs n/a n/a 40 40 40
discount factor (vy) 0.93 0.97 0.91 0.93 0.95
learning rate () 5.01e-5 6.37e-5 | 4.61e-6 | 1.48e-5 | 5.43e-5
buffer size 94900 | 3400 3600 33400 | 36600
batch size 56 84 60 116 44
init. exploration rate (¢) 0.65 0.75 1.0 1.0 0.75
fin. exploration rate 0.04 0.01 0.02 0.01 0.03
init. RBC interference 0.7 n/a 0.75 n/a 0.9
time-steps with RBC 21000 | n/a 34000 n/a 32000

RL controller performance on test data

In figure 4.20, the performance of all RL controllers trained with their respective PS for a
three-week period of the test dataset is shown. The central subplot shows the electricity cost
savings compared to the baseline policy, the lower subplot the electricity price for this time
period, and the top subplot the storage loading and unloading cycles resulting from PS-A1 and
PS-B1. The used colors for the time-series of the top and the central subplots are listed in the
legend. All PS outperform the heuristic "price based" RBC, based on the dynamic electricity
price forecast. The visualization of the ice storage SOC (top subplot) is used to compare the
time-series of PS-A1, PS-B1, and the "price based" RBC. Therefore, the differences between
two variations, one with and one without offline pre-training and both with guiding RBC, are
compared. For these two policies, an additional analysis is conducted. The selected actions
are analyzed, by extracting the action probabilities (the normalized Q-values), at each time-
step. This determines the probability of the RL controller to select one of the possible actions
(OM-0, OM-1, and OM-2).
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Figure 4.20: Time-series plots of the trained RL controllers throughout a three-week test pe-
riod. In the legend, the time-series of the storage SOC (top subplot) as well as
the time-series of the savings, compared to the baseline policy (central subplot),
are assigned to the respective PS. PS-B1 results in a policy that resembles the
"price based" RBC policy, while PS-A1 is characterized by a higher frequency of
storage loading cycles. The savings are highest with PS-A1 & 2.

Table 4.8: Performance metrics of the investigated PS. The PS are evaluated in terms of the
final mean episode savings, using the training dataset (Jé;gm) and by using the test
dataset (J%), as well as by the first-year savings and the break-even time.

eps
savings PS-A1 PS-A2 PS-B1 PS-B2 PS-C
mean (train) (€] 429.1 315.9 156.9 185.3 267.5
first-year (train) [€] 4,336.5 8,785.7 2,397.2 -525.3 -10,649.6
break-even (train) [days] 89.9 67.4 0 164.6 862.6
mean (test) [€] 102.9 107.7 35.6 75.0 112.9
10-day (test) %] 11.4 11.9 3.94 8.3 12.5

On this basis, the coefficient of determination (R2-score) is calculated to evaluate the cor-
relation between the action probabilities and the constraints (electricity price ke;, ambient

temperature Ty,,;, and cooling demand Qdem). Among the three features analyzed, PS-B1
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indicates being predominantly influenced by fluctuations of the electricity price (Riel = 0.39,

R?pamb = 0.03, Réd = 0.07). In comparison, when following PS-A1l, no state-space fea-
ture appears to be statistically more significant than the others (R%el = 0.17, R%amb = (.21,
Réd = 0.15). PS-A1 therefore leads to a more complex policy in which the other constraints,

in addition to the electricity price, have a significant influence on the control action.

4.2.5 Discussion and lessons learned from case study two

This subsection summarizes the key results of the case study, discusses them, and also derives
lessons learned for future work. This is based on the result plots presented in the previous

subsection and the experience gained in the implementation process of the case study.

The results show that with a guiding RBC, it is possible to implement a RL controller that
outperforms this guiding RBC. Offline training of the RL controllers (PS-B and PS-C) leads
to policies similar to those expert policies the RL controllers are offline pre-trained with.
However, especially in the initial phase, the RL controllers show significant lower control
performances. This observation underlines the findings published in [Ross and Bagnell, 2010],
regarding a growth of deviations from the offline trained policy caused by the lacking ability of
the RL controller to extrapolate to unseen states. The performance of the already sub-optimal
policy is further decreased by random exploration [Hester et al., 2018]. Maintaining an online
training process that outperforms the RBC is only possible when following PS-B1, in which
the RL controller shows higher electricity cost savings compared to the "price based" RBC.

Generally, RBC guidance stabilizes the learning process in exchange for slower convergence.

The use of monitoring data for offline training (PS-C) does not lead to a promising controller
performance, especially directly after the offline pre-training. The trained RL controller seems
to over-fit to the sub-optimal policy in the historic trajectories. This calls for an early stopping
strategy for offline RL controller training, in order to exploit the information about the system
dynamics encoded in the data but at the same time avoid over-fitting to the observed policy.
Another possibility is the use of more diverse training trajectories, for example if different
control trajectories in different monitoring datasets for a similar system are available. Fur-
thermore, PS-C was the most costly during the online training process. In spite of the results
on the test period (figure 4.20), PS-C performs best on the test dataset on average (table
4.6: mean (test)). It is concluded that due to the costly training process, a more diverse set
of trajectories has been processed leading to the ability to exploit more diverse combinations
of constraints. A temporarily negative cost savings term may be tolerable, in cases where
user comfort and safety requirements remain unaffected by the selection of RL controller ac-
tions. As the results show, the initial financial burden of the trial-and-error learning process is
quickly compensated when following both variations of PS-A and leads to higher accumulated

savings throughout the entire training process.
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In the SOC time-series subplot of figure 4.20, there is a visible discrepancy between the poli-
cies learned trough PS-A1 and trough PS-B1. PS-B1 closely resembles the expert trajectories
of the implemented guiding RBC. This suggests that the combined influence of offline pre-
training and RBC guidance influences the policy (learned via PS-B1) throughout the entire
training process and afterwards. Based on the significant differences in the correlations be-
tween the state-space features and the Q-values, it is concluded that the policy resulting from
PS-B1 strongly adapted and only slightly improved the "price based" RBC policy. By com-
parison, the RL controller trained under PS-A1 has also learned to exploit fluctuations in the

ambient temperature (T,,,;) and in the cooling energy demand (Qgem)-

One controller (trained under PS-A2) outperformed the RBC based on price signal forecasts,
after 67 days of online training. The controller was not pre-trained offline before the first
interaction with the environment. This demonstrates (for this case study) that training under
real-time conditions is possible if the state-space is compact and the set of hyper-parameters is
well chosen. This is a promising result, as the approach of creating a data-driven pre-training
environment for a system appears only reasonable if both the quality of the monitoring data

and the potential savings justify the effort.

The intuitive approach of offline pre-training of the RL controller with historical data did
not yield promising results. Future research should focus on how historical data can be used
for offline pre-training and how this step affects the performance of the RL controller during

exploration and online training.

An essential prerequisite for the approach and the use of RL in BES (in general) is the
availability of the necessary IT infrastructure. Data-points, sensors, and actuators, as well as
interfaces to external data sources must be available for the algorithm. In this study it was
possible to show that if these prerequisites are met RL controllers can make promising control
actions few weeks after deployment. Nevertheless, increasing digitalisation and the spread of
building automation and control systems (BACS) are key when it comes to bringing advanced

methods from the field of adaptive and predictive control from science into practice.

The problem of the error-prone and time-consuming physical modeling, which was carried out
in most previous studies was addressed, by applying state-of-the-art machine-learning algo-
rithms, using monitoring data of the investigated system. The learned models were designed
to represent the dynamics of two compression chillers and an ice storage in an interconnected
cooling energy system. The modeling process is automated to a large extent and can (under

the premise that high quality monitoring data are available) be applied to diverse systems.

Bayesian hyper-parameter optimization led to control performance improvements of up to 184
% and reduced the necessary interactions with the training environment from ~ 800,000 to
~ 125,000. Future studies should investigate how transferable hyper-parameter selections for
RL controllers are. Since some of the hyper-parameters are of similar magnitude for all PS,

it seems plausible that they are transferable for similar applications. The main influencing
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factors here are the completeness and size of the state-space, the size of the action-space,
and the delay as well as the design of the reward signal. In future work, the issue of hyper-
parameter selection should always be considered. In this case, Bayesian hyper-parameter
optimization proved to be a good choice. However, a sensitivity analysis can also be used as

a first estimation.

Based on the study, the following lessons learned can be derived for future work:

e [f the quality of the monitoring data is ensured by a modern IT infrastructure, a complete

workflow of data-driven system modeling and RL algorithm training can be applied.

e Training with monitoring data without the intermediate step of building a data-driven
training environment comes with several problems. If only data for a certain training
policy is available, a strong tendency to over-fit to this policy can be observed. The
performance of the algorithm then (especially through additional exploration) does not
reach the performance of the observed policy in the training data. This problem could

be overcome if more diverse policies were available for offline training.

o If RL algorithms are used for energy management and the quality of supply is not
influenced by the actions performed by the algorithm, training on the real system is
feasible. With a compact state- and action-space, a RL algorithm can learn a superior

policy in a few weeks and thus represent an expert system for energy management.

4.3 Case study three

After the previous two case studies focused on the training and performance of RL algorithms
using dynamic simulations and data-driven models, the third case study now examines an
application on a real system. While case study one dealt with the application of RL for load
shifting in a cooling network and case study two with an energy management application
for an ice storage under dynamic boundary conditions, now a feedback control application is
investigated. Special focus is given to a generalizable problem formulation for the selected
task as well as to the transferability of simulation-trained algorithms to real systems. It is

demonstrated how a DQN algorithm can be used for self-improving valve control.

Valve control is a recurring problem in BES control. Often, poorly tuned PID controllers lead
to poor control performance and aging components resulting in (for example) changing valve
characteristics, further reduce the control performance over time. Due to its adaptive charac-
teristics and low computational requirements (after training), RL has a particular potential to
extend BES automation by self-learning and self-improving software components. Therefore,
an adaptive valve control for HVAC systems by means of RL is investigated. One of the
biggest energy consumers in buildings are HVAC system [Yuan et al., 2019]. Thus, optimal

control strategies for those systems and the associated subsystems are becoming increasingly
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important for sustainable building operation [Zhang et al., 2018]. Conventional HVAC control
is based on On/Off rules and PID controllers, which are comparatively easy to implement and
have low initial costs [Mirinejad et al., 2008]. However, in practice, the parameters of PID
controllers are often not set optimally, which significantly reduces their control performance
and results in inefficient operation [Wemhoff, 2012]. Also for HVAC systems, MPC promises
a nearly optimal operation but demands computing power and an accurate system model
[Afram and Janabi-Sharifi, 2014]. Especially the creation of the model is uneconomic in many
cases and must be repeated after every change in the system. Due to its model-free nature
and recent developments in deep-learning, optimal HVAC control with (model-free) RL is also
considered within this context as a promising alternative [Wang and Hong, 2020]. The low
computational costs (after training) and inherent adaptiveness promise significant advantages
over other methods [Gorges, 2017].

The investigated task is to control the outgoing air temperature of a cooler by adjusting the
valve of the water/air heat exchanger with respect to the incoming air temperature and the
setpoint temperature. Solving this problem via RL requires the definition of a MDP which
should be as generic as possible, to allow the transfer from a simulation to different real-world

heat exchangers.

Besides the application to different real-world scenarios with different hydraulic character-
istics, transferability is also important because the simulation model generally reflects the
reality only to a limited extent, therefore an adaption to the actual system dynamics is nec-
essary. The hydraulic system determines the effect of a change of the valve position on the
outgoing air temperature [Recknagel, 2017]. The underlying hydraulic system of the cooler
is a throttle circuit [Recknagel, 2017]. The RL algorithm training as well as the final con-
trol script are implemented on an ordinary PC. The communication between the PC and the
HVAC automation is realized via a REST API, a database, and a MQTT broker.

Figure 4.21 shows the hydraulic scheme of the considered AHU and figure 4.22 the available
data points of the investigated subsystem. The AHU provides temperature-controlled fresh
air to a workshop and a laboratory. In addition to the heat exchangers shown, the components
(a to d) show flaps, fans, and filters along the air inflow and outflow. In the next section, the

considered subsystem and the control task are discussed in more detail.

4.3.1 A generic problem formulation for AHU valve control

As shown in figure 4.21, the incoming air with temperature T3 streams through the cooler
before it enters the reheater. Both heat exchangers are connected to different supply water
circuits. The task is to learn to control the cooling heat exchanger outgoing air temperature
T, (like a PID controller) with respect to a setpoint signal under the dynamic environment

conditions (incoming air temperature and cooling water temperature). A further influencing
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factor is the humidity, but since this is not measured directly after the cooler, the combination
of incoming air temperature and valve position leading to a certain outgoing air temperature
must be somehow differently be encoded in the state-vector. In the cooling case, the setpoint
temperature which can be set in the laboratory and the workshop directly corresponds to
the setpoint temperature behind the cooler. In figure 4.22, the temperature with the highest
influence are the temperature of the incoming air (73) and the temperature of the cooling
water (cooler (Ty,1)). The reward signal is designed to solely depend on the deviation of the

outgoing temperature from the setpoint: r = f(|T — T¥|).
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Figure 4.21: The hydraulic scheme of the considered AHU. The AHU supplies a laboratory
and a workshop with conditioned fresh air and has a heat recovery system, a
preheater as well as a cooler and a reheater. For this case study, the throttle
valve at the cooler is controlled.

Figure 4.23 shows the reward function. Maintaining the temperature in a range of 1 °C
around the setpoint leads to the highest rewards. All sections of the reward function have a
slope higher than 0 to steer the algorithm in the direction of the smallest deviations. If the
discount factor is higher than 0, the Q-values represent not only the immediate reward but
also the estimated future rewards resulting from an action. Therefore, it is assumed that the
DQN will learn a policy that also avoids overshooting. The algorithm can take three possible
actions; it can open, hold, or close the valve: a; = [+X,£0,—X]. This has two advantages
over the specification of fixed valve positions. Firstly, the online interaction with the real
system is safer since the algorithm is not able to select extremely different valve positions
from one time step to the next. Secondly, the MDP is of a much lower dimension, due to the
smaller action-space, and therefore the training is less data-demanding. On the other hand,
the selection of X requires a trade-off between strong intervention in extreme situations and

a granular control.
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Cooler Reheater

Figure 4.22: The hydraulic scheme of the cooler and the reheater subsystem with shown sen-
sors and actuators.

The definition of the state-vector is a key challenge, since not only must it include all informa-
tion necessary to solve the control problem, but it should also be as compact as possible (to
reduce training times), and should be generic enough to transfer the applicability of the al-
gorithm from the simulation to different heat exchangers. Including all available data-points,
together with historical values (to learn the dynamic of the thermal inertia) would result
in a very large and over-specified state-vector. Taking these requirements into account, the

state-vector is defined as follows:

St = [Ttset - Ttwta Ttsfli - t%fa ﬂsfg - tol%a Ttsfg - togg’ Ttsfi - tofiy At—1, A2, Qt—3, A4, Qt—5]
This state-vector incorporates the deviation from the setpoint in the current and the four
steps before as well as the last actions, selected by the algorithm. This makes the state-
vector generic because the deviation is not dependent on the temperature levels of the heat
exchanger. The past selected actions provide the algorithm with information about the effect

of its actions on the outgoing air temperature under unknown boundary conditions in a generic

way.

Figure 4.24 visualizes the state-vector. The dotted line plots a setpoint of 21 °C and the black
line plots an exemplary course of an outgoing air temperature. The red lines and the blue

lines mark the deviations from the setpoint.

4.3.2 Deep Q-Network training

For the pre-training, a simple Modelica simulation model of a water/air heat exchanger with

an admixing water circuit is used. The used model is freely available in the AixLib GitHub
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repository [Miiller et al., 2016] and provides the physical relationships sufficiently for this
purpose. The simulation model is exported as a FMU [Blockwitz et al., 2012] and is connected
to the algorithm following the standardized OpenAI Gym interfaces [Brockman et al., 2016].
The incoming air temperature is designed as a sinus function, which is initialized with random
parameters, each training episode. The incoming air temperature varies between 1 and 10 °C
below the setpoint with different frequencies. The setpoint is constantly set to 21 °C. One
episode consists of 50 simulated minutes with one interaction every other minute. X in the

action-space is set to 10.

0 8 6 4 2 0 2 4 6 8 10
TESh = TeE [°C)

Figure 4.23: The reward function in this case study is designed to lead the algorithm with
linear rewards in the direction of 4 °C deviation from the setpoint and leads the
algorithm here with higher gradients in the area of minimal deviations.

For this setup, HyperOpt [Bergstra et al., 2015] is used to identify the optimal hyper-
parameters for the used DQN via a Bayesian hyper-parameter search. The resulting hyper-

parameters are:

e batch size (64),

e replay buffer size (10,000: approximately 167 hours of interaction),
e minimum replay buffer size (480: training starts after 8 hours),

e target-network update frequency (30),

e number of neurons (30),

e and discount factor v (0.36).
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The exploration versus exploitation trade-off is handled via e-greedy: The probability to select

a random action after every interaction is reduced by 0.001.
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Figure 4.24: Visualization of the state-vector, consisting of the temperature deviations from
the setpoint. Here exemplarily represented by the positive deviations from the
setpoint (21 °C) for the time-steps t-7 to t-3 and the negative deviation from the
setpoint for the time-steps t-1 to t.

Figure 4.25 shows a positive trend in the rewards in the course of 10.000 training episodes.
Considering the limiting influence of the randomly initialized input air temperature, the al-
gorithm significantly improves in exploiting the rewards from the training environment from
the beginning. The training is stopped at this point to avoid over-adaption to the simulation
and to keep a sufficient degree of adaptability in the online interaction phase. It is also visible
how the optimal selection of the DQN hyper-parameters not only accelerates the algorithm’s
search for the optimal policy, but also stabilizes the training significantly. While the DQN
with optimized hyper-parameters follows a stable policy after 2,000 training episodes, the
default hyper-parameters lead to a significant performance drop after 2,000 episodes and the
maximum performance is also reduced. Generally, the positive trend also indicates that the
MDP, consisting of a reward signal, a state-space and an action-space, generally provides the
appropriate information for the algorithm to improve its policy over the course of the training

episodes.

4.3.3 IT infrastructure

The IT infrastructure is shown in figure 4.26, which illustrates the communication between the

optimization script and the AHU. The central tool for the interaction is a cloud-based data
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infrastructure [Bode et al., 2019], whose main components are a time-series database, a REST
API, and a MQTT broker. The time-series database contains all actual measurements and
setpoint values of the AHU automation. For communication with the database via HTTPS,
the REST API provides standardized interfaces. The MQTT broker is used for the secure
and high-performance communication between the AHU automation and the platform via
the MQTT protocol. The MDP and the DQN are implemented as a script on an ordinary
PC. For the interaction via MQTT, an industrial PC (data logger) is integrated into the
local automation system which exchanges actual measurements and setpoint values with the
AHU automation and acts as a translator between the local BACnet protocol and the MQTT
protocol. With this setup, it is possible to control the system remotely via the internet and

to perform the experiments without being physically close to the system.
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Figure 4.25: Visualization of the DQN learning curve with optimized hyper-parameters. The
influence of hyper-parameter optimization on the training of the algorithm is
clearly visible. While the algorithm with default parameters shows several partly
heavy performance drops, the DQN with optimized hyper-parameters shows a
rapid performance increase and stabilizes at a higher level after 3000 episodes.
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4.3.4 Results of case study three
Online valve control

Figure 4.27 shows the development of the average reward of the DQN in interaction with the
real cooler valve (top subplot) and of the associated exploration (bottom subplot). A positive
trend in the average rewards is observed. Due to the selected minimum replay memory size,
the DQN controls the valve based on the initial policy from the simulation pre-training in
the first eight hours. During this period, the standard deviation (shaded area) is relatively

high compared to a later interaction where the policy is updated using data from the online

interaction.
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Figure 4.26: The required IT infrastructure. The state variables from the AHU are translated
from the BACnet protocol into the MQTT protocol via an industrial PC (data
logger) in the automation network and sent to a MQTT broker. This broker
writes the data to a time-series database where it is then available to a personal
computer running a Python script and accessing it via HTTPS, using a REST
API. The setpoints from the script are written back to the AHU automation
network via the same path.

After ten more hours of interaction, the rewards drop, increase again in the following 30
hours, and after 60 hours, the rewards rise to 5 with a significant lower standard deviation.
A high standard deviation indicates a high fluctuation of the outgoing air temperature, a
decreasing standard deviation can therefore be interpreted as a reduced oscillation around
the setpoint. The real heat exchanger reacts more sensitively to valve opening changes than
the simulated heat exchanger. Therefore, acoorer = [+3, 10, —3] is chosen. Further, using the
DQN for the cooler requires to negate the deviations from the setpoint in the cooler’s DQN
state-vector, because unlike with the simulated heating water/air heat exchanger, opening
leads to a temperature reduction and closing to a temperature increase. The DQN shows the
expected behavior: if the temperature is too high, the algorithm increases the valve opening,
whereas the valve opening is decreased when the temperature is too low. On the other hand,

the DQN starts with strong oscillations around the setpoint.

Figure 4.28 shows the learned Q-values with respect to the current deviation from the setpoint.

The current deviation from the setpoint is displayed on the x-axis while the y-axis shows the
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available actions. The surface illustrates the Q-value of each state-action pair. The red line
shows the greedy action. In spite of the initial policy, where the algorithm does not change
the valve position if the deviations are smaller than 1 °C, the control behavior improved.
There is no deviation from the setpoint where the DQN does not change the valve position.
Naturally, the Q-value and thus the action in a given state depends on more factors than the
current deviation (namely the history of deviations and actions), but the visualization in the
form of such a 3D Q-value plot is a good option to show the relationship between values in
the state-vector and their influence on the Q-values. The red line shows the highest Q-values

in each state, and thus the action that would be selected by a greedy policy.
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Figure 4.27: Rewards and exploration during online interaction. The upper plot shows the
progression of the reward, averaged over one hour of interaction. The lower plot
shows the exploration value, decreasing to 0.2 during the first 5 hours.

Additionally, figure 4.29 shows the plot of the temperatures and valve positions on the last
day of online training. The outgoing air temperature no longer oscillates around the setpoint.
At the beginning (07:00 - 09:00), the temperature is slightly below the setpoint. However, the
DQN correctly recalibrates the temperature firstly by gradually reducing the valve position
(09:00 - 10:00), then gradually increasing the valve position again as the water temperature
rises from 14 °C to 15.5 °C (10:00 - 11:00). From that point on, the DQN selects to alternately
increase and decrease the valve position. After 70 hours, the algorithm has already adapted to
the real valve and learned to keep the temperature within a good range around the setpoint

temperature. It is worth mentioning that, in contrast to its initial policy, the DQN now
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only very rarely chooses the action of not changing the valve position, which leads to good
temperature maintenance on the one hand, but also to a high number of valve position changes

on the other, which is not optimal in terms of maintenance-free operation.
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Figure 4.28: Three dimensional representation of the Q-values of the three possible actions
for different deviations from the set temperature. The greedy action (the action
that is selected without exploration based on the highest Q-values) is plotted in
red. It can be seen that the algorithm has learned to open or close the valve
according to the deviation.

Setpoint jump

In order to compare the control behavior of the DQN after 70 hours of online interaction
against an established control using a PID, a setpoint jump from 18 °C to 16 °C is performed
with both variants under similar boundary conditions. The results of this setpoint jump
experiment are shown in figure 4.30. The PID parameters are set manually, achieving a
significantly better control performance than the setting according to the established method
of Ziegler and Nichols [Abel, 2018]. Nevertheless, it can be observed that the PID leads to an
oscillation around the setpoint. A similar situation, but with higher frequency and amplitude,
can be observed with the DQN: Although the algorithm that performed well after 70 hours is

used here, the set temperature is now barely maintained. It should be noted that the supply
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temperature is now cooler than in the period shown in figure 4.29. This indicates that the
behavior of the real valve is not yet sufficiently well-learned in all areas of the state-space and
further training would be necessary to obtain a better control performance even under more

varying boundary conditions.

It is noticeable that both the PID and the DQN stop oscillating after the setpoint jump and
strive towards a good maintenance of the setpoint temperature. Since the difference between
the cooling circuit and the setpoint temperature is smaller after the setpoint jump, changes
in the valve position show a smaller change in the output temperature, so the system is less
sensitive in this state, easier to control, and the differences in the state-vector are closer to
those from the period in figure 4.29. For the DQN and the PID, the summed deviation
from the setpoint, and thus the control performance for this setpoint jump, is calculated
(Jabs = J [ Toer — Tal dt):

o JPON _ 196.17

abs

o JUID — g1 .98.

abs

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00

Time
— Tair,in=T3 === Tset — UWvalve, cooler
Tair,out =Ta — lwater = w1

Figure 4.29: Undisturbed policy after 70 hours of online training. Plotted are the outgoing
air temperature of the AHU and the incoming air temperature before the cooler,
as well as the set temperature (dashed). In the middle plot, the cooling water
temperature is shown as a significant influencing variable. The lowest plot shows
the valve position set by the algorithm. It is noticeable that the algorithm al-
most never maintains the valve position, but achieves the stable temperature by
alternately opening and closing the valve.
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The results show that the DQN does not yet reach the control performance of a manually
calibrated PID after 70 hours of online interaction. In particular, the strong oscillation before
the setpoint jump and a larger (although generally small) constant deviation from the setpoint

after the jump degrades the result.

Therefore, it has been shown that by pre-training with a simulation, a DQN significantly
improves its control behavior after 70 hours of operation on a real valve. However, the real
behavior with its thermal inertia under varying boundary conditions is not yet sufficiently

well-adapted in the policy of the DQN to outperform a manually calibrated PID in its control

performance.
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Figure 4.30: Setpoint jump comparison between DQN and PID control. In both cases, the
system starts oscillating around the setpoint. Both the PID controller and the
DQN algorithm can control the system to reach the setpoint after the setpoint

jump. However, the alternating valve position is visible again in the valve position
plot of the DQN.

4.3.5 Discussion and lessons learned from case study three

The presented results show that with the introduced MDP formulation, a pre-trained DQN
can significantly improve the learned policy within 70 hours of online interaction. In con-
trast to the beginning, there is no oscillation around the setpoint on the last day of online
training. Against this observation, changes in the boundary conditions led to significantly
lower control performance, therefore it is expected that there is still a high potential for im-
provement. During the pre-training, the DQN was trained with 75,000 interactions, while

70 hours of online training are equivalent to 4,200 interactions. The fact that the learned

92



4 Application

DQN valve control policy improved visibly in such a short time highlights the benefits of the
compact formulation of state- and action-space. Interestingly, without its own past actions,
the algorithm is not able to control the valve correctly. It is concluded that this is important
for the DQN to distinguish between its own influence and the influence of changing boundary
conditions. In order to realize a more precise control, it could also be of interest to extend
the action-space with more control options (4 = [+Y,+X,+0,—X, —Y]) or directly use a
continuously controlling algorithm, like the SAC algorithm (with the risk of extreme action

during online training).

This case study contributes to the development of self-calibrating building automation sys-
tems. It has been demonstrated that with a generic MDP formulation, a fast adaption of
a pre-trained DQN algorithm to a real hydraulic system is possible. The results show that
the time required for online training can be significantly reduced by pre-training. In the case
of the real cooler valve, the simulated heat exchanger has both an opposite dynamic and a
different hydraulic system. After oscillating around the setpoint at the beginning of the online
training, the outgoing air temperature was maintained at the setpoint at the end, without
oscillating. At the same time, the setpoint jump experiment showed, that there is still a high
potential for improvements. The application of Long Short-Term Memory (LSTM) function
approximators could be investigated to move historical data from the state-space to the in-
ternal memory of the neural networks. Additionally, the pre-training process could be further

refined by running specific scenarios such as setpoint jumps.

Based on the study, the following lessons learned can be derived for future work:

e Through a generic formulation of recurring control tasks and pre-training with simula-
tions, it is possible to train RL algorithms that adapt to the behavior of real systems

within feasible training times.

e Besides the history of state-values from the environment, it is important to include the
history of the selected actions in the state-vector. This is important for the algorithm to

learn the relationship between its own actions and the state change in the environment.

e With a suitable automation infrastructure, extended by a cloud platform, it is possible to
establish a direct communication between state-of-the-art RL Python implementations
and a BES control. Besides implementing the trained algorithms directly on the BES
automation hardware, this is a way to detach the operation logic from the BES location

and make use of higher programming languages during implementation.
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In this chapter, the application of novel RL algorithms for different BES application areas is
discussed. Based on the results of the conducted case studies and the derivation of the poten-
tial based on the literature, different aspects are addressed. These include the performance
of the methods and typical RL design principles, as well as aspects of practical applicability,

future challenges in science and practice, and possible future products.

5.1 Reinforcement Learning control performance for energy management tasks

In general, the investigations carried out in case study one and case study two confirm the
promising results that have also been published for other application examples. In both cases,
state-of-the-art algorithms were used to exploit flexible elements in the BES for energy man-
agement with respect to dynamic boundary conditions. Using the design principles presented
in chapter 3, in both case studies RL algorithms were selected, parameterized, and trained to
solve the given optimal control problem. The two case studies, which were published in dif-
ferent scientific journals and conference articles, addressed some of the more pressing research

questions currently being discussed in the scientific community.

For case study one, the simulation model, modeled based on a real cooling network, was used
as a training and evaluation environment for state-of-the-art RL algorithms. While the pipe
network itself was physically modeled, real monitoring data was used for consumer load data,
electricity prices, and weather data. The state-space can be considered comparatively large,
since all data points (environmental values, historical values, and forecast data) were initially
passed to the algorithms unprocessed in each state of the environment. The two compared
algorithms, widely used in the literature (DQN and DDPG), are typical representatives for
discrete and continuous action-spaces. Only a slight superiority of the DDPG was observed.
This suggests that dicretized action-spaces can also obtain good results if the control prob-
lem is well-formulated. The learned policies are able to exploit the dynamics of the thermal
masses in the considered cooling network under time-variable boundary conditions. Depend-
ing on the capacity, flexibility can be exploited, saving 14 % operation costs on average. The
learned policies are based on generalized relationships and lead to meaningful control actions
under unknown test boundary conditions. However, only the adaptation of the exploration
in the course of a hyper-parameter optimization in the discrete case (DQN) and the use of

an adjusted algorithm in the continuous case (SAC) led to training times that would have
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been practicable in interaction with the real system. Thus, state-of-the-art RL algorithms are
indeed suitable to map high-dimensional state-vectors to optimal actions, but in order to keep
the training times within practical time frames, it is necessary to use the latest algorithms
with well-chosen hyper-parameters. Although the results of the simulation study in case study
one are very promising, further investigations are needed regarding the interpretability and
transferability of RL algorithms in BES. For interpretability, correlations between the features
in the state-space and the Q-values that determine the control action should be investigated
in future studies. Thus, it can be visualized what kind of correlation is encoded in the state-
action-value function. Regarding the transferability of RL algorithms to similar control tasks,
two promising approaches are proposed: Firstly, state-space definitions with relative and thus
generic features can be chosen, which favors to adapt the pre-trained state-action-value func-
tion to similar problems. The second alternative was elaborated in a comprehensive literature
review [Wang and Hong, 2020]. The authors have elaborated that on-policy algorithms are
particularly suitable for transfer learning, which deals with the transferability of trained neu-
ral networks to other application areas. This feature should be used in future work to apply
trained algorithms to similar problems. When it comes to interactions with real systems, one
promising approach is also the targeted manipulation of hyper-parameters during the inter-
action. For example, exploration and learning rate can be increased in a systematic way after
the reward signal drops under known conditions. The adaptivity of the algorithm can thus

be purposefully controlled during operation.

In case study two, the creation of the training and evaluation environment itself was data-
driven. By modeling the energy supply system, consisting of two compression chillers and
an ice storage, a complete workflow from monitoring data to the trained RL algorithm was
demonstrated. The task for the RL algorithm was to use the ice storage optimally under
dynamic electricity prices and outdoor temperatures. To get from the monitoring data to
the trained algorithm, five different pre-training strategies were compared and evaluated.
The training procedures include offline and online training as well as variations with and
without guiding RBC. The case study contributed to the objective of enhancing the real-
world applicability of RL by demonstrating a fast learning approach on the one hand and an
approach that outperforms a guiding RBC from the first moments of online interaction on
the other hand. The latter represents a safe option for cases where failing to meet a baseline
is intolerable. Against the initial assumptions, with pure try and error online training, the
highest cost savings and the fastest convergence was achieved with the used DQN with well
selected hyper-parameters. By a compact formulation of the forecast data in the form of
statistical features of the time-series, the dimension of the state-vector was kept comparatively
small. Therefore, a try and error online learning on the real system would lead after a few
months to a policy that outperforms a well-designed RBC policy. The goal of adaptive BES
management systems, which are both robust on the one hand and able to cope with changing

environment conditions on the other hand, is therefore achievable when using compact MDP
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formulations. The intuitive approach of using monitoring data for training did not produce
promising results. The algorithm quickly adapted to the suboptimal policy in the training
data, an effect that had to be compensated by extensive exploration during the online training.
Although the use of monitoring data for the training of algorithms seems to be promising,
there is a crucial challenge. When value-based algorithms are trained offline with monitoring
data, there is a tendency for the algorithms to over-adapt to the observed policy [Hester
et al., 2018]. This should then be addressed with an early stopping strategy within the offline
training process, which should be based on the measurement of the adaption of the neural
networks, internal weights or the tracking of the course of the reward signal. Seventy weeks
(case study one) might be too little data in this case, thus it would take more data, especially

with different observable policies, to extract a superior policy.

When applying the trained algorithms in real systems, some additional difficulties are ex-
pected. The required system data must go through extensive pre-processing to reduce the
data to the physical relationships, to reach a similar quality as observed from the simulation.
The used sensors have to be monitored carefully to replace faulty sensors as soon as possible.
In such situations, the training of the algorithms must be stopped in order to avoid adapta-
tion to physically implausible system behavior. The data for the prediction of the boundary
conditions must be available to the algorithm. For this purpose, an interface to the respec-
tive database operators must be available. The uncertainty in the forecasts of the boundary
conditions is not considered to be very critical, because the control decision is continuously

corrected, similar to MPC.

An important limitation to the practical application of RL for energy management applica-
tions is the availability of dynamic electricity price tariffs for end customers. Although the
algorithms can also be used to improve the efficiency of BES under dynamically changing
usage and outdoor temperatures, the full potential is realized (as with MPC) when energy
can be purchased at certain times at particularly good conditions. This was assumed in both
case studies. Another limitation may arise from the fact that higher programming languages
often cannot be executed on state-of-the-art building automation hardware. The automation
hardware should ideally be able to execute higher programming languages or (if not) should
have an internet connection to calculate the optimized actions independent from the loca-
tion on a different hardware. The potential of RL algorithms for BES energy management
applications has been shown in the literature as well as in the conducted investigations. By
identifying recurring tasks, pre-trained algorithms could be provided in the future that can
adapt to the individual conditions in specific application scenarios in a manageable time. If
monitoring data from different application scenarios with different operation policies are avail-
able in large quantities for a BES, offline training procedures can become of interest again,
since over-fitting to a single specific, suboptimal policy can then be avoided. In addition
to pre-trianing, compact problem formulation has shown to be effective for rapid training.

To enable the coordination of multiple BESs in an area in the future (for example, for co-
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ordinated power purchase), the exploration of RL algorithms with multiple agents is also
proposed. Such a system could reward coordination and thus avoid all RL-controlled BESs
drawing power at the same time [Vazquez-Canteli et al., 2020]. Following these proposals,
a self-calibrating, self-optimizing energy management system becomes possible, which could

reduce manual engineering in the future.

5.2 Reinforcement Learning for feedback control automation tasks

The experiment which was conducted in the course of case study three shows a less clear
picture compared to the application for the case studies focusing on energy management
tasks. Also in the literature, while RL for BES energy management has been investigated
with increasing interest in recent years, the application for automation and feedback control
on the actuator level remains behind in the scientific literature. While RL is used for these
purposes in the fields of robotics or autonomous driving, applications in the building sector

mostly remain on the level of energy management.

Case study three has shown that the workflow of pre-training on a generic simulation model in
combination with a generic MDP formulation leads to promising online adaption times, where
the trained algorithm can be adapted to a real valve within a few days. On the other hand,
the trained DQN algorithm could not yet outperform a manually calibrated PID controller in
its control performance in a setpoint jump experiment. Further investigations are necessary
to find the optimal combination of algorithm, hyper-parameter set, and MDP formulation,
which by training on the simulation, not only improves for the special model, but also leaves
potential for fast adaptation to real systems. If this is achieved, there is a high potential
for product manufacturers and automation companies, which could provide a self-calibrating,

self-optimizing valve controller after a one-time engineering effort.

In contrast to energy management applications, however, the potential is rather ambiguous.
While optimal control methods are clearly recommended with dynamic electricity prices or
for optimal operation of BES storage capacity under fluctuating outdoor temperatures, good
BES automation at the actuator level can also be achieved with well-adapted PID controllers.
However, in practice, the controllers are often set under time pressure on construction sites,
following standard procedures, therefore there is great potential for the use of automated
calibration methods. Here RL can be a promising alternative, but other methods are also
feasible, such as automated Bayesian calibration of the PID parameters in the initial phase of
the BES. As for energy management applications, modern IT and automation infrastructure
is crucial. This can be achieved by a local hardware which can execute higher programming
languages or by outsourcing the automation to the cloud in the context of an IoT-based BES

automation.
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5.3 Importance of Markov Decision Process formulation

In the course of the case studies, it was found that the formulation of the optimal control
problem is of major importance in order to be able to use state-of-the-art RL algorithms for
BES control applications. The assumption that RL algorithms are simply connected to sensor
data and actuators and only improve in the selection of their actions unfortunately does not
hold. Crucial is program code, which is executed between the sensors and the algorithm and
translates the sensor data from the BES to be controlled into a MDP, which can be processed
by RL algorithms, and translates the actions of the algorithm into corresponding actuator

signals.

For an efficient and error-free processing of the MDP, it is important that it represents all
influencing factors of the targeted control problem. To satisfy the Markov Property [Sutton
and Barto, 2018], the future of a MDP, i.e. the further development of its states and its reward
signals, should only depend on the current state and the policy of the RL algorithm. However,
since BES depend on a large number of influencing factors that are difficult to predict and,
in some cases, unobservable, the MDP is usually only partially observable. Another aspect
is the inertia in thermal systems, which leads to the property that actions (like increasing
the heating power) become observable in the sensor data (i.e. in the state-vector) only after
some time. A pragmatic solution that appears repeatedly in the literature, which was also
successfully implemented in case study one and three, is the integration of historical state and
action values from past time-steps in the current state-vector. This makes not only the current
state but also the current dynamics of the MDP observable for the RL algorithm. External
influencing factors that are not directly observable in the sensor data are also encoded in the
history and can be taken into account as indicators by the algorithm for its actions. Other
options to consider the history of the MDP in the current state is to include gradients of
the sensor values time-series into the state-vector or in the use of recurrent neural networks,

which themselves have an internal memory for past input data.

A simple linear reward function has also shown to be important for guiding the algorithm.
Although RL algorithms can also be trained with MDPs in which there are only infrequent
rewards, the search of the RL algorithm for the optimal policy is much more difficult and many
policies have to be tried until it can be learned which action in which state leads to a later
reward. Therefore, the reward function should be guiding, in the sense that small rewards
lead to larger ones in optimal operation states. For example, minimizing the deviation from a
target temperature value can be rewarded in an inversely-proportional way to the temperature
deviation. Long chains of quadratic elements of the reward function seem problematic. While
quadratic reward functions are suitable for many MPC approaches, the RL algorithm’s lack of
observability about the function can lead to divergence when signals fluctuate widely. Since
the reward function is part of the MDP black-box, unlike in MPC, large changes in the

quadratic function terms here can lead to unstable training and eventually poor policies. It is
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recommended, similar to case studies one and two, that simple concatenations of the target
variables with simple weights should be used. Forecast data, used in both case studies, also
proved to be promising. While RL methods also promise some forecasting capability, all the
data needed for an informed forecast (e.g., outdoor temperature) would be too complex to

process for the problem, so integrating available forecast data is more appropriate.

In summary, the MDP should be designed such that the information contained in the state
data is sufficient to predict well the evolution of the reward signal over the optimization
horizon. Then, RL aLgorithms can learn and compute an optimal policy (encoded in a

sequence of actions) for the respective MDP.

5.4 Importance of state-of-the-art algorithms, design principles, and
hyper-parameter optimization

In all case studies conducted, state-of-the-art RL algorithms from the family of value-based
algorithms (Q-Learning) were used for discrete control tasks and hybrid algorithms between

value-based and policy-based algorithms for continuous control tasks.

In case study one, the comparison of the continuous controlling DDPG and the discrete
controlling DQN showed that a discretized action-space can also lead to comparably promising
results. By using the DDPG, which can be seen as an extension of the DQN for continuous
control tasks, two similar algorithms were tested for the same problem. While significant
savings could be achieved with both algorithms, only the optimization of the exploration
led to training times that would be feasible in practice on real systems. This confirms the
statement that it is problematic that many recent studies on RL for BES do not use the
latest algorithms and design principles [Wang and Hong, 2020]. Subsequent to the direct
comparison of the two basic algorithms, significant improvements in training times have been
achieved through improved algorithms and optimized hyper-parameters. The used DQN is
continuously developed further and the extensions which are available in the form of robust
implementations should be used. Currently, this concerns the use of a replay buffer, the use
of target-networks, prioritized replay, and dueling networks. In the case of case study one,
however, the most significant improvement was achieved by optimizing the decrease of the
exploration, which was significantly too slow in the base implementation. For the continuous
case, the use of SAC instead of DDPG led to a similar improvement. SAC can be seen as an
extension of DDPG with a stochastic policy and an entropy-based exploration mechanism.
These extensions resulted in similar fast convergence for the case study one system as it was
achieved using the optimized DQN, but without any adjustment of the exploration. Thus,
for the specific application, consideration should always be given to the MDP (discrete or
continuous action-space), and based on this, the latest algorithms should be used for the case

under consideration. No algorithms from the area of model-based RL algorithms or from the
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area of direct policy optimization were used in the course of the investigations carried out.
Model-based algorithms were intentionally excluded because the transition to data-driven
MPC is fuzzy and the algorithms share the same strengths and weaknesses. Nevertheless,
future work can carry out valuable investigations at these interfaces and address the question
for which applications in the BES area it makes sense to provide the required higher computing
power in order to achieve even better optimization results by model-based methods. As
discussed in section 3.3, algorithms from the area of direct policy optimization can be useful
for certain use cases. The PPO is the most popular algorithm from this family and achieved
comparable results to the DQN in many studies. However, the limitations that no offline
training is possible and that the policy must always be applied for a complete episode before
it is updated are disadvantages compared to the DQN, which in turn has no disadvantageous
compared to the PPO in terms of convergence speed and performance. The selection of
algorithms in the course of this work thus follows the trends that can be observed in current
studies in the field of RL.

In all three case studies, hyper-parameter optimizations were performed and training times
over 10 times faster were observed with the same, or better, final performance. This obser-
vation underlines the importance of optimized hyper-parameters, which is discussed in the
current RL literature. In particular, the hyper-parameters learning rate, exploration factor,
and discount factor should be well chosen for the considered control problem, since they signif-
icantly influence the stability of the training, the number of random actions, and the weighting
of direct versus future rewards. Bayesian hyper-parameter optimization has proven to be a
suitable method, which quickly leads to good hyper-parameters via informed experiments and
also takes into account the interdependencies between the hyper-parameters. Based on the
observations, it is recommended to use this method and to replace the common practice of

using the default parameters or performing a sensitivity analysis on it.

5.5 Frameworks and implementations

In the course of this work, existing open source frameworks were built upon. Particularly

worth mentioning and recommended here are:

e Stable-Baselines [Hill et al., 2018] with a Tensorflow [Agarwal et al., 2015] backend for

RL algorithms, training, and evaluation routines;

e Open AI Gym [Brockman et al., 2016] for standardized interfaces between RL algorithms

and the environment;
e the AixLib [Miiller et al., 2016] library for physical system models in Modelica;
e FMPy [Sommer et al., 2017] for running Modelica FMUs in Python environments;

e Scikit-Learn [Pedregosa et al., 2011] for data-driven machine-learning models in Python;
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e HyperOpt [Bergstra et al., 2015] for Bayesian optimization in Python;

e as well as standard Python libraries for the implementation of wrappers for the respective

environments and evaluation and visualization routines.

For engineers working with artificial intelligence, the Python programming language is clearly
recommended. This is mainly due to the intuitive and comparatively user-friendly syntax, the
wide distribution and thus very active community, and the availability of further supporting
libraries. In addition to Python, deep-learning frameworks exist in the programming languages
JavaScript and R, as well as C++ (which can be interesting for projects targeting applications

on edge devices).

The investigations have shown that a great deal of programming work, and thus time-
consuming debugging, takes place in the wrapper implementation, where the signals from
the environment and the actions from the algorithm are formulated in a MDP. Therefore,
it is important to perform a careful and structured approach in this step. Well-documented
Python code is well-suited for this purpose. Well-documented frameworks such as Stable-
Baselines, Tensorflow, or Scikit-Learn help with code examples and their active community to
make the latest innovations from the fields of machine-learning, deep-learning, and RL usable

for engineers.

Engineers should generally avoid programming complex neural networks themselves. Publica-
tions in which RL algorithms are described are strongly influenced by the scientific language
in the research field and can only be interpreted and implemented by engineers with a high
degree of time effort and required specialization. It should be rather developed upon well
maintained, documented, and tested libraries. The libraries used in this work do have alter-
natives. There are numerous comparably good libraries such as Google Dopamine, Keras-RL,
or Tensorflow Agents. When making the selection, especially with GitHub projects, attention
should be paid to how many developers actively maintain the repositories (contributors), how
recent the last commit is (last commit), how many users have favorited the project (stars),
how many problems have been solved (closed issues), how actively people contribute (commit
activity), and finally whether the syntax and the available documentation are well-suited and

fit the individual way of working and programming.

According to these criteria, the used libraries were selected and in the course of this work
successfully used to produce the results. Since the formulation of the MDP requires the
most engineering effort and the debugging must be performed efficiently, a setup should be
established in which the RL BES developer is able to design structured and (if possible)

automated experiments.
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5.6 Critical discussion of the engineering effort compared to other methods

In this section, a critical discussion of the engineering effort of RL compared to other BES
control methods is conducted. A distinction has to be made between the effort for the selection
of the algorithm and the appropriate hyper-parameters, the formulation of the MDP, and the
training process. The methods with which a critical comparison can be made are the state-
of-the-art BES automation, consisting of RBC logics and conventional feedback controllers as

the lower benchmark and MPC (physics-driven and data-driven) as the upper benchmark.

In case studies one and two, the algorithms were trained and tested on the same environment.
In both cases, modeling was performed (physics-driven in case study one and data-driven in
case study two) to represent the behavior of the real systems and to test RL applications
on them. In both cases, considerable effort was invested in formulating the MDP and in
optimizing the hyper-parameters. In principle, the resulting models would have been suitable
for direct use in a MPC application to optimize the real systems. In these cases, the advan-
tage of RL over MPC (physics-driven and data-driven) is reduced to the significantly lower
computing power required after training and the inherent adaptivity. However, in both cases,
MDP formulations and hyper-parameter combinations have been found, which (assuming a
robust data infrastructure) would have allowed training on the real system in feasible times.
The technical effort has thus been worthwhile in the sense that results have been produced
that support future work addressing the development of RL BES controllers (which can be
adapted to real systems in a reasonable time). Thus, assuming a state-of-the-art algorithm, a
compact and complete MDP, and a good hyper-parameter selection, the effort for optimiza-
tion can be significantly reduced compared to MPC. At the same time, the implementation
of a monitoring, is even more necessary, which detects security of supply effecting actions of
the algorithm and activates a conventional automation in such cases. This increases the effort
compared to physics-driven MPC, but not compared to data-driven MPC, where a similar
mechanism is required. Furthermore, in the course of case study two, it was demonstrated
that a RBC approach for predictive storage management was outperformed by the RL-based

approach in operational performance optimization after a few months of operation.

In case study three, the training was also realized by means of a physical simulation model.
However, it was shown that with a generic MDP formulation, a transfer to different, real sys-
tems with similar dynamics is possible. Although the algorithm trained on the simulation of
a mixing valve did not yet perform better than a manually calibrated PID, within the context
of a setpoint jump experiment on a throttle circuit of a real heat exchanger, a significant
adaptation to the real system already took place after 70 hours of online interaction. The
results show that a generic problem formulation makes it possible to provide self-optimizing,
self-calibrating BES energy management and automation systems for recurring use cases. The
engineering effort for algorithm selection, MDP formulation, and hyper-parameter optimiza-

tion thus becomes a one-time operation and the actual application can be implemented with

102



5 Discussion

little effort after that. This represents an advantage over MPC in terms of effort and required
computing power. It remains an open question for which use cases RL achieves the control
performance required to represent a feasible alternative to MPC. The self-calibration potential
is a promising feature compared to established methods where plant automation engineers are
often engaged for several years with the calibration of complex BES. A critical point is that
even with the application of RL at the automation level, a backup control must be provided

in order to exclude actions that are harmful to operation.

In summary, RL has the potential to reduce the engineering effort for optimized BES energy
management and automation. Compared to physics-driven MPC, it has the potential to
avoid manual modeling of systems. Compared to data-driven MPC, the advantage is reduced
to the lower required computational power and the inherent system exploration, which has
to be implemented manually in data-driven MPC. When using RL, the required know-how
shifts slightly from physics to computer science compared to MPC. Since only the necessary
inputs, outputs, and rewards for actions to solve a MDP need to be defined, less know-how
about physical processes in BES and disturbance modeling is required. At the same time, the
application of RL requires a solid basic understanding of the algorithms, the MDP typical
design principles, and the influence of hyper-parameters. Therefore, a similar amount of
know-how is needed for RL, only from other technology fields. With both RL and data-driven
MPC, BES system providers have the opportunity to offer products that are self-calibrating
and self-optimizing for individual environmental conditions, and continuously improving in

operation after a one-time engineering effort.

5.7 Challenges and opportunities in research

Research in the field of RL for BES faces several challenges and opportunities, some of which

are specific to RL and others of which apply to all approaches to optimal control for BES.

One of the most important challenges, which applies to all methods, is the identification of op-
timal application scenarios for the methods. While there are numerous successful application
studies for RL algorithms, MPC algorithms, and other methods, there is no structured anal-
ysis of which use cases have which inherent properties (flexibility potential, speed of system
dynamics, relevance of user comfort, or available computing power in the automation). Such
a structured discussion, e.g. in the form of a combined review and method/problem classifi-
cation, could identify the optimal application areas for the respective methods and show the

need for further comparative studies if no clear statement can be made.

A similar issue is the reproducibility of results. Especially studies performed on real systems
are often difficult to reproduce and a high degree of trust in the carefulness of the publishing
researchers is necessary. Therefore, publications in the field of BES optimal control should

increase their potential for comparability by standardized description of their experimental
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setup. This should include not only the textual description of the problem, but also formulas
and tables of system properties, models, or hyper-parameters. To develop a standardized
template for this would be a great help for the research area. In the field of RL research,
there are also efforts to provide standardized training and test environments for BES appli-
cations in the standardized Open AI Gym format. This is a promising opportunity, since
different methods can be tested in these standardized open source environments and thus be
made comparable. Unfortunately, the available environments so far cover only very isolated
application scenarios, which leaves a great potential for the development of such environments

open.

Another aspect concerns experiments on real systems. As in this work, a large part of the
studies is performed on simulated environments. When applied to real systems, a number of
challenges arise especially concerning the aspects of safe operation, data quality, and debug-
ging of the optimization algorithm. These challenges are similar for all optimization methods
and require further research in the area of robust integration of novel methods into state-of-

the-art automation systems and robust BES and sensor monitoring.

In terms of available algorithms, there is also still a high need for research. One of the most
promising research paths is the one of transfer learning. Transfer learning approaches address
the question of how trained algorithms can be made applicable to similar problems or which
components of algorithms can be transferred and adapted to other individual problems in order
to speed up the otherwise long online training process. For this purpose, the identification
of corresponding recurring automation tasks is needed. When using neural networks in RL
algorithms, classical ANNs are usually employed. However, by using CNNs or LSTMs, it is
also possible to design algorithms that use image data to determine their actions and ones
that have a memory for past system states via an internal data storage. Finally, the research
field of online hyper-parameter adaptation after training is still hardly addressed. In principle,
the hyper-parameters learning rate and exploration rate could be (triggered by certain events
during interaction) adjusted selectively, and thus a faster adaptation to changing system

behavior could be achieved.

5.8 Challenges and opportunities in practical application

The challenges in the practical application of RL for BES products and services are partly
different from those in research. In order to bring RL algorithms into practical application,
several questions need to be addressed. For economic and safety reasons, the complete explo-
ration of the real system environment cannot be carried out in all cases starting from zero.
On the other hand, performing expensive, time-consuming, and error-prone model creation
should be avoided for applications where the effort does not lead to substantial performance

improvements.
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All libraries and algorithms used in the course of this work are freely available and can be used
for real-world application projects. BES component manufacturers, automation companies,
and energy providers only have to make the strategic decision to build up know-how in the
area of artificial intelligence and RL. For this, corresponding methods should also be covered
in engineering studies, in application-oriented lectures. In the long term, artificial intelligence
will be established alongside simulation, experimentation, surveys, and optimization as a
method for BES engineers and the necessary know-how should therefore already be covered

in the course of the respective studies.

Especially in case study three, some of the challenges that have to be addressed in the practical
application of RL have been addressed. In addition to a robust data infrastructure and data
pre-processing, which ensures comparable data quality as in a simulation, regular backups of
the RL algorithms should be created at different points in the interaction history. Thus, after
an adaptation to non-physical behavior, for example, due to the failure of a sensor, an earlier
version of the algorithm, before the failure, can be accessed. The technical requirements
for the operation optimization thus shift from computational power to data storage. Since
(after training) RL algorithms map system states directly to actions, the computational power
required is minimal compared to MPC (where the optimization must be performed at each
time-step). At the same time, MPC does not necessarily require backups or a training data

storage.

Product developers face several challenges when applying RL. In particular, a suitable algo-
rithm has to be selected and a training strategy has to be developed. Training by means
of data-driven models from monitoring data can be reasonable for highly cost-intensive, ex-
isting BES. For products that are sold in large quantities (such as heat pumps or boilers),
where the physical behavior should not differ but which are used in changing environmental
conditions, a more complex training procedure may be considered. Here, an algorithm for
performance maximization could be pre-trained on a simulation model and set with optimal
hyper-parameters. To ensure that the initialization of the ANN parameters does not have
an overly large influence on the final policy, the optimization should be tested several times
for each setup, or alternatively always with the same initialization of the ANN. After the
pre-training phase, the algorithm can be tested on a test bench, further trained, and the
hyper-parameters tuned for a quick adaptation to the real system. Care should be taken that
the algorithm is not trained too long with a flat performance gradient on the simulation, as
there is a risk of over-fitting to the simulation model. For components with sufficient moni-
toring data from real operation, the data can be used for additional offline training. However,
if the components are operated with the same operation policy over the entire dataset, the
danger of over-fitting to a suboptimal policy (as observed in case study two) must be taken
into account. Using the described workflow, a component manufacturer can offer an adaptive,

self-optimizing control for its product, which continuously improves during operation.
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A major challenge in the practical application of RL for BES is the guarantee that no actions
harmful to the operation are performed. In particular, this is crucial during the exploration
of the BES dynamics but also afterwards. Therefore, as with other methods, a comprehensive
monitoring of the system behavior is necessary. Fault detection and threshold monitoring are
crucial requirements and should be implemented as pre-defined software components for each
RL-supported BES. If the RL control is deactivated, a robust state-of-the-art backup control
can take over. At the same time, the RL algorithm should be trained by a large negative

reward signal not to return to a known failing system state in the future.

An important prerequisite for the implementation of the described methods is a building
automation able to process optimization results. As buildings become more complex in the
coming years due to greater pressure to decarbonize their operation and the associated increase
in electrification, the automation and IT infrastructure must provide a suitable environment
for executing modern methods and higher programming languages. This can be done by
outsourcing the energy management level, or even the automation level (in the course of IoT
automation), to the cloud. A key advantage is also that the operation logic can be tested
and maintained independently of the location. However, a decisive obstacle (especially in
Germany) is data protection, which places high demands on data collection and processing. It
is hoped that in the future, a political decision will be made in the field of energy systems that
defines sensitive data and facilitates the collection of data needed to increase the efficiency of
energy systems. A second option is the implementation of RL automation on a local industrial
PC. Here the lower required computing power is a clear advantage compared to MPC, which

makes RL also interesting for legacy BES with recurring structures.

5.9 Possible products in the coming years

It can be assumed that RL algorithms will be incorporated into product development around
BES software in the future. The challenges and opportunities were discussed in the last two
sections. In particular, the property of RL algorithms to encode optimization results from a
large number of system states into state-action relations in a performant way, and at the same
time to keep open a high potential for further adaptation to new environmental conditions,

makes RL algorithms promising here.

In the field of home energy management systems (HEMS), system providers could offer differ-
ent RL-based expert systems. For recurring configurations (e.g. the combination E-vehicle,
heat pump, PV system, and thermal storage), an algorithm pre-trained on a generic simula-
tion covering the basic dynamics could be used to make optimal energy management decisions
based on the individual user behavior. Furthermore, if a variable electricity price is made avail-
able by the energy provider, such a system could also be used to operate a cluster of buildings

in a grid-stabilizing manner via the RL algorithms implemented in the HEMS.
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In the field of building energy management systems (BEMS), complex non-residential build-
ings could be automated using pre-trained RL algorithms. While currently the building
automation is implemented and calibrated under great time pressure during the construction
of a building, RL algorithms can support automating this process. Since the builder of a
building is usually not the later operator, efficient and well-adjusted automation and energy
management layers are often not prioritized enough and building technicians are occupied
with setting up the BES correctly for several years. Using specific software components,
where RL algorithms as well as training and safety backup rules are included, this process
could be automated and a product family of self-calibrating, self-optimizing BEMS could be
developed.

Room control also offers great potential for RL applications due to the recurring sensor and
actuator structure. Since the target variables air quality (in the form of COs and VOC)
and room temperature are often the same and the available actions (valve position cooling,
valve position heating, and fresh air flow rate) are also recurring, RL algorithms could be
pre-trained here on the basic interrelationships with generic MDPs and adapt to individual
rooms (different due to room size, building age, and use). An automation of the room shading
would also be worthy of consideration. Due to the property of RL algorithms to map even
high-dimensional state-vectors to actions in a performant way, image-processing CNNs could

be used, which include radiation intensity and sun position in the optimized room control.

Further application scenarios are possible. For example, research is currently being conducted
in the area of optimized de-icing control of outdoor air heat pumps. Also, a heating curve
adapted to individual BES and user needs could be realized via RL algorithms. In addition
to the products listed here, many other products are possible, in application scenarios where
generic pre-training and policy fine tuning in an online training phase is technically and
economically feasible. The prerequisites for a successful application are only the available
know-how and the potential to invest in the RL specific workflow. Then adaptive, self-

optimizing energy management and automation systems can be realized for various use cases.
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In this dissertation, the applicability and potential of novel artificial intelligence algorithms
from the field of RL for the optimization of BES was investigated. For this purpose, the
necessity of using novel optimization methods for BES was first described and a differenti-
ation of artificial intelligence-based methods from more established methods was presented.
Subsequently, the research area of RL, as a subfamily of artificial intelligence research, was
introduced with its different algorithm families; advantages and disadvantages were described
and the most promising methods for the building sector were identified. The fundamental
assessment was concluded by a review of the literature in the area of RL for BES, where

selected publications were discussed in detail and open research questions were identified.

Based on the introduced fundamentals, a workflow was defined and presented according to
which engineers can develop a RL-supported building automation. For this purpose, all rele-
vant aspects from the problem formulation, the selection of suitable algorithms, and training
strategies to the optimization of hyper-parameters were described based on different initial
settings. In addition, application-oriented aspects such as the procedure for implementation
and interaction strategies between algorithms and real systems were discussed in separate

sections.

Based on the literature and the definition of a suitable workflow, three specific case study
systems were investigated in the application chapter, thus demonstrating the applicability and
potential of RL for BES. All case studies were inspired from real optimization tasks, which
are part of current work packages in public research projects in Germany, kindly funded by
the Federal Ministry for Economic Affairs and Climate Action. The results were published
in international conference proceedings as well as in scientific journals and discussed in the
scientific community. The current state of research is thus extended by studies addressing in
particular algorithm comparisons, training and problem formulation strategies, and algorithm
parameterization. Among the insights gained, Bayesian hyper-parameter optimization has
been identified as an efficient tool that should be preferred over manual parameterization of
algorithms in future studies. In addition, the application of RL for energy management, load
shifting, and control applications has been investigated during the studies. In the course of
the case studies, energy management applications and control applications were investigated
on the basis of physical simulations, on the basis of data-driven models, and in interaction
with a real system. The research has shown that RL is well suited to automate optimization

tasks for BES, considering the design principles defined in the workflow. At the same time,
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however, the problem formulation, the choice of algorithms, and the use of optimized hyper-
parameters have a major impact on the final performance and speed of training. However, if
these aspects are carefully considered, algorithms can learn superior control policies within a

few month, even without pre-training.

Finally, based on the previous chapters, an extensive discussion of the case studies, the lessons
learned, and best practices resulting from the work, was conducted. Based on the experience
gained in the course of this work, the applicability of RL for energy management and control
tasks was discussed. The relevance of the different design aspects as well as concrete sugges-
tions for the implementation were presented. In addition, a critical evaluation of the methods
compared to other methods was performed. The chapter was concluded with a discussion of
the challenges and opportunities in research as well as in practice, including possible products

that could arise in the future from the knowledge gained.

However, a number of research questions remain open. On the one hand, in the area of
algorithms, further studies can help to select the best ones for families of application scenarios
and to distinguish the optimal use cases from the ones for other methods such as MPC. In
the area of energy management tasks, it should be investigated how the property of RL
algorithms to process even high-dimensional state-vectors in a performant way can be used
to realize coordination tasks of many technical systems or even whole districts. In the area of
closed loop control applications, problem classes should be identified that can be described and
learned as generically as possible. In this way, algorithms can be pre-trained and transferred
to different but similar application scenarios. For both areas, safe interaction and operation
strategies have to be developed. Since RL, like all artificial intelligence methods, is a stochastic
technique, robust backup and security mechanisms need to be implemented. Studies on the
robust use of RL on real systems are still rare and successful applications should be published

in a comprehensible way.

With the increasing availability of low-cost sensors and data infrastructures, artificial intel-
ligence is expected to become another permanent group of tools in the toolbox of energy
system engineers. Wherever substantial sensor and data infrastructure is envisioned, artificial
intelligence algorithms can provide significant benefits by processing data in a performant
manner, identifying structures in the data that are invisible to humans, pre-processing data
for expert decision-making, or as in the case of RL, even making optimal operation decisions
autonomously. As the algorithms continue to improve on corresponding benchmark problems,
the challenge in the coming years will be for technicians and engineers to develop a broad
understanding of the possibilities and problems in order to recognize the problems that can
be addressed by artificial intelligence in their respective fields of work. Then, these algorithms

can make a decisive contribution to the efficient achievement of climate policy goals.

In view of the current climate and geopolitical events in the world, it can be assumed that

there will be an increasing demand for decarbonization measures in the major energy sectors.
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As one of the largest consumers of gas, and thus emitters of climate emissions, the building
sector is an important area of work here. With rising commodity prices, energy management
and optimal control applications are becoming increasingly important for the building sector
as well. At the same time, it cannot be assumed that these challenges can be addressed
individually for each building, due to the high engineering efforts. It is therefore expected
that RL algorithms together with other optimization techniques will be integrated in many
products in the next decades. Wherever the same arrangement of systems and sensors is
required and an adaptation to individual user and environmental conditions is desired, the
design and pre-training of RL-supported energy management and control systems can be
beneficial. In this way, current research in the field of RL can make a decisive contribution to

making the vision of a self-calibrating, self-optimizing building control system a reality.

110



Bibliography

Abel, D. [2018], Umdruck zur Vorlesung Regelungstechnik und Erginzungen (Hohere Regelung-
stechnik), Verlaghaus Mainz.

Afram, A. and Janabi-Sharifi, F. [2014], ‘Theory and applications of hvac control systems — a
review of model predictive control (mpc)’, Building and Environment 72, 343-355.
URL: http://www.sciencedirect.com/science/article/pii/S0360132313003363

Afram, A., Janabi-Sharifi, F., Fung, A. S. and Raahemifar, K. [2017], ‘Artificial neural network
(ann) based model predictive control (mpc) and optimization of hvac systems: A state of
the art review and case study of a residential hvac system’, Energy and Buildings 141, 96—
113.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778816310799

Agarwal, A., Barham, P., Brevdo, E., Chen, Z. and et al [2015], Tensorflow:large-scale machine
learning on heterogeneous distributed systems. Software available from tensorflow.org.
URL: hitps://www.tensorflow.org/

Ahmad, M. W., Mourshed, M. and Rezgui, Y. [2017], ‘Trees vs neurons: Comparison between
random forest and ann for high-resolution prediction of building energy consumption’, En-
ergy and Buildings 147, 77-89.

URL: https://www.sciencedirect.com/science/article/pii/S0378778816313937

Al-jabery, K., Xu, Z., Yu, W., Wunsch, D. C., Xiong, J. and Shi, Y. [2017], ‘Demand-side man-
agement of domestic electric water heaters using approximate dynamic programming’, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 36(5), 7T75—788.
URL: https://ieeexplore.ieee.org/document/ 753621/

Alfred, R. [2016], The rise of machine learning for big data analytics, in ‘2nd International
Conference on Science in Information Technology (ICSITech)’, pp. 1-1.
URL: https://ieeexplore.ieee.org/document/ 7852593

Alvarez, J. D., Redondo, J. L., Camponogara, E., Normey-Rico, J., Berenguel, M. and Or-
tigosa, P. M. [2013], ‘Optimizing building comfort temperature regulation via model pre-
dictive control’, Energy and Buildings 57, 361-372.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778812005610

111



Bibliography

Bahrami, S., Wong, V. W. S. and Huang, J. [2018], ‘An online learning algorithm for demand
response in smart grid’, IEEE Transactions on Smart Grid 9(5), 4712-4725.
URL: https://ieecexplore.ieee.org/document /7849144

Baranski, M., Fitterer, J. and Miiller, D. [2018], ‘Distributed exergy-based simulation-assisted
control of hvac supply chains’, Energy and Buildings 175, 131-140.
URL: https://www.sciencedirect.com/science/article/abs/pii/S037877881733980

Barsce, J. C., Palombarini, J. A. and Martinez, E. C. [2017], Towards autonomous reinforce-
ment learning: Automatic setting of hyper-parameters using bayesian optimization, in ‘2017
XLIII Latin American Computer Conference (CLEI)’, pp. 1-9.

URL: hittp://arziv.org/pdf/1805.04748v1

Bellman, R. [1954], ‘Dynamic programming and a new formalism in the calculus of variations’,
Proceedings of the National Academy of Sciences of the United States of America 40(4), 231—
235.

URL: hittps://www.ncbi.nlm.nih.gov/pmc/articles/PMC527981/

Bellman, R. [1956], Dynamic programming, Dover Books on Computer Science, Dover Publi-
cations, Newburyport.
URL: http://gbv.eblib.com/patron/FullRecord.aspr?p=189742/

Bergstra, J. and Bengio, Y. [2012], ‘Random search for hyper-parameter optimization’, Jour-
nal of Machine Learning Research 13, 281-305.
URL: https://www.jmlr.org/papers/volumel 3 /bergstral2a/bergstral2a.pdf

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. and Cox, D. D. [2015], ‘Making a science
of model search: Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures’, Computational Science & Discovery (8(1)), 014008.

URL: hitps://proceedings.mlir.press/v28/bergstral3.html

Biemann, M., Scheller, F., Liu, X. and Huang, L. [2021], ‘Experimental evaluation of
model-free reinforcement learning algorithms for continuous hvac control’, Applied Energy
298, 117164.

URL: hitps://www.sciencedirect.com/science/article/pii/S0306261921005961

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann,
T., Becker, M., Boulesteix, A.-L., Deng, D. and Lindauer, M. [2023], ‘Hyperparameter
optimization: Foundations, algorithms, best practices, and open challenges’, WIRFEs Data
Mining and Knowledge Discovery 13(2), e1484.

URL: hitps://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1484

112



Bibliography

Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss and et al. [2012], Functional mockup
interface 2.0: The standard for tool independent exchange of simulation models, in ‘Pro-
ceedings of the 9th International MODELICA Conference, September 3-5, 2012, Munich,
Germany’, pp. 173-184.

URL: https://ep.liu.se/ecp/076/017/ecp12076017.pdf

Bode, G., Baranski, M., Schraven, M., Kimpel, A., Storek, T., Nurenberg, M., Miiller, D.,
Rothe, A., Ziegeldorf, J. H., Fiitterer, J. and Scheuffele, B. [2019], ‘Cloud, wireless technol-
ogy, internet of things: the next generation of building automation systems?’, Journal of
Physics: Conference Series 1343(1), 012059.

URL: https://doi.org/10.1088/1742-6596/13453/1/012059

Bode, G., Fitterer, J. and Miiller, D. [2018], ‘Mode and storage load based control of a
complex building system with a geothermal field’, Energy and Buildings 158, 1337-1345.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0378778816317832

Brandi, S., Piscitelli, M. S., Martellacci, M. and Capozzoli, A. [2020], ‘Deep reinforcement
learning to optimise indoor temperature control and heating energy consumption in build-
ings’, Energy and Buildings 224, 110225.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778820308963

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. and Zaremba,
W. [2016], ‘Openai gym’. Accessed: 2022-06-19.
URL: https://arziv.org/pdf/1606.01540

Bryson, A. E. [1996], ‘Optimal control-1950 to 1985, IEEE Control Systems 16(3), 26-33.
URL: https://ieeexplore.ieee.org/document/506395

Bschorer, S., Buchholz, R., Hanike, A., Langemeyer, S., Petermann, C. and Rohde, F. [2019],
Energienetz Berlin Adlershof: Schlussbericht. Forderkennzeichen 03ET1038E.
URL: https://www.tib.eu

Buchanan, B. G. [2005], ‘A (very) brief history of artificial intelligence’, AI Magazine (26).
URL: hittps://ojs.aaai.org//index.php/aimagazine/article /view/1848

Chen, Y., Norford, L. K., Samuelson, H. W. and Malkawi, A. [2018], ‘Optimal control of hvac
and window systems for natural ventilation through reinforcement learning’, Energy and
Buildings 169, 195-205.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S037877881830218/

Chollet, F. [2018], Deep learning with Python, Safari Tech Books Online, Manning, Shelter
Island, NY.
URL: http://proquest.safaribooksonline.com/9781617294433

113



Bibliography

Chollet, F. and et al. [2015], ‘Keras’ Accessed: 2022-06-19.
URL: keras.io/

Deng, K., Sun, Y., Li, S., Lu, Y., Brouwer, J., Mehta, P. G., Zhou, M. and Chakraborty,
A. [2015], ‘Model predictive control of central chiller plant with thermal energy storage
via dynamic programming and mixed-integer linear programming’, IEEE Transactions on
Automation Science and Engineering 12(2), 565-579.

URL: hitps://iecexplore.iece.org/document/6899700

Deutsche Energie-Agentur [2018], ‘Integrierte energiewende - impulse fiir die gestaltung des
energiesystems bis 2050,

URL: https://www.dena.de/integrierte-energiewende

Di Natale, L., Svetozarevic, B., Heer, P. and Jones, C. N. [2021], ‘Deep reinforcement learn-
ing for room temperature control: a black-box pipeline from data to policies’, Journal of
Physics: Conference Series 2042(1), 012004.

URL: hitps://iopscience.iop.org/article/10.1088/1742-6596,/2042/1/012004

Dong, Z., Huang, X., Dong, Y. and Zhang, Z. [2020], ‘Multilayer perception based reinforce-
ment learning supervisory control of energy systems with application to a nuclear steam
supply system’, Applied Energy 259, 114193.

URL: https://www.sciencedirect.com/science/article/abs/pii/S030626191931880X

Dorokhova, M., Martinson, Y., Ballif, C. and Wyrsch, N. [2021], ‘Deep reinforcement learn-
ing control of electric vehicle charging in the presence of photovoltaic generation’, Applied
Energy 301(18), 117504.

URL: https://www.sciencedirect.com/science/article/pii/S0306261921008874

Dowling, J. and Haridi, S. [2008], Decentralized reinforcement learning for the online optimiza-
tion of distributed systems, in C. Weber, M. Elshaw and N. M. Mayer, eds, ‘Reinforcement
Learning’, IntechOpen, Rijeka, chapter 8.

URL: https://doi.orq/10.5772/5279

Drgona, J., Arroyo, J., Cupeiro Figueroa, 1., Blum, D., Arendt, K., Kim, D., Oll¢, E. P,
Oravec, J., Wetter, M., Vrabie, D. L. and Helsen, L. [2020], ‘All you need to know about

model predictive control for buildings’, Annual Reviews in Control 50, 190-232.
URL: hitps://www.sciencedirect.com/science/article/pii/S1367578820300584

EnBA-M [2018], ‘Energienetz berlin adlershof: Monitoring und optimierung 2018-2021".
Accessed: 2022-06-19.
URL: http://www.energienetz-berlin-adlershof.de/monitoring-und-optimierung-2018-
2021/

114



Bibliography

Ernst, D., Glavic, M., Capitanescu, F. and Wehenkel, L. [2009], ‘Reinforcement learning versus
model predictive control: a comparison on a power system problem’, IEEE transactions on
systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems,
Man, and Cybernetics Society 39(2), 517-529.

URL: hittps://ieeexplore.iece.org/document/4 717266

Filipe, J., Bessa, R. J., Reis, M., Alves, R. and Pévoa, P. [2019], ‘Data-driven predictive
energy optimization in a wastewater pumping station’, Applied Energy 252, 113423.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0306261919310979

Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G. and Pineau, J. [2018], ‘An
introduction to deep reinforcement learning’, Foundations and Trends® in Machine Learn-
ing 11(3-4), 219-354.

URL: http://arxiv.org/pdf/1811.12560v2

Frigg, R. and Hartmann, S. [2020], Models in Science, in E. N. Zalta, ed., ‘The Stanford Ency-
clopedia of Philosophy’, Spring 2020 edn, Metaphysics Research Lab, Stanford University.

Fiitterer, J., Schild, T. and Miiller, D. [2017], ‘Building automation systems in practice’
URL: http://publications.rwth-aachen.de/record/691150

Gorges, D. [2017], ‘Relations between model predictive control and reinforcement learning’,
IFAC-PapersOnLine 50(1), 4920-4928.
URL: hitps://www.sciencedirect.com/science/article/pii/S2405896317311941

Gruber, M., Triischel, A. and Dalenbéck, J.-O. [2014], ‘Model-based controllers for indoor
climate control in office buildings — complexity and performance evaluation’, Energy and
Buildings 68, 213-222.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0378778813005951

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. [2018], ‘Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor’, arXiv e-prints
p. arXiv:1801.01290.

URL: hitps://arziv.org/pdf/1801.01290.pdf

Haji Hosseinloo, A., Ryzhov, A., Bischi, A., Ouerdane, H., Turitsyn, K. and Dahleh, M. A.
[2020], ‘Data-driven control of micro-climate in buildings: An event-triggered reinforcement
learning approach’, Applied Energy 277, 115451.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0306261920309636

Han, D.-M. and Lim, J.-H. [2010], ‘Design and implementation of smart home energy manage-
ment systems based on zigbee’, IEEE Transactions on Consumer Electronics 56(3), 1417—
1425.

URL: hitps://ieeexplore.iece.org/document/5606278

115



Bibliography

Han, M., May, R., Zhang, X., Wang, X., Pan, S., Yan, D., Jin, Y. and Xu, L. [2019], ‘A
review of reinforcement learning methodologies for controlling occupant comfort in build-
ings’, Sustainable Cities and Society 51, 101748.

URL: hitps://www.sciencedirect.com/science/article/pii/S2210670719307589

Hassan, M. H., Awada, M., Khoury, H. and Srour, I. [2019], ‘A machine learning approach
for predicting office energy consumption in a mediterranean region’, Proceedings of ECOS
2019 .

URL: https://www.proceedings.com/52893.html

Hasselt, H. v., Guez, A. and Silver, D. [2016], Deep reinforcement learning with double q-
learning, in ‘Proceedings of the Thirtieth AA AT Conference on Artificial Intelligence’, AAAI
Press, p. 2094-2100.

URL: hittps://dl.acm.org/doi/10.5555/3016100.3016191

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M. and Silver, D. [2017], ‘Rainbow: Combining improvements in deep
reinforcement learning’.

URL: hitps://arziv.org/pdf/1710.02298

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,
J., Sendonaris, A., Dulac-Arnold, G., Osband, I., Agapiou, J., Leibo, J. Z. and Gruslys, A.
[2018], ‘Deep g-learning from demonstrations’.

URL: https://arziv.org/pdf/1704.03732

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse,
C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S. and Wu, Y.
[2018], ‘Stable baselines’, GitHub repository .

URL: https://github.com/hill-a/stable-baselines

Hirth, L., Miihlenpfordt, J. and Bulkeley, M. [2018], ‘The entso-e transparency platform —
a review of europe’s most ambitious electricity data platform’, Applied Energy 225, 1054—
1067.

URL: hitps://www.sciencedirect.com/science/article/pii/S0306261918306068

Huttermann, A., Leenders, L., Bahl, B. and Bardow, A. [2019], ‘Automated data-driven model

generation of energy systems using piecewise linear regression’, Proceedings of ECOS 2019

URL: hitps://www.proceedings.com,/52893.html

IEA - International energy Agency [2013], Transition to sustainable buildings: Strategies and
opportunities to 2050, Organisation for Economic Cooperation and Development, Paris.

URL: hittps://www.iea.org/reports/transition-to-sustainable-buildings

116



Bibliography

IEA - International energy Agency [2018], ‘2018 global status report: For the global alliance
for buildings and construction (globalabc)”.
URL: https://globalabe.org/resources/publications

IPCC [2018], ‘Global warming of 1.5°c. an ipcc special report on the impacts of global warming
of 1.5°c above pre-industrial levels and related global greenhouse gas emission pathways, in
the context of strengthening the global response to the threat of climate change, sustainable
development, and efforts to eradicate poverty’.

URL: https://www.ipcc.ch/sr15/download/

Jain, A., Behl, M. and Mangharam, R. [2017], ‘Data predictive control for building energy
management’, Proceedings of 2017 American Control Conference (ACC) pp. 44-49.
URL: https://ieeexplore.ieee.org/document/ 7962928

Jain, A., Mangharam, R. and Behl, M. [2016], ‘Data predictive control for peak power reduc-
tion’, Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient
Built Environments - BuildSys ’16 pp. 109-118.

URL: https://repository.upenn.edu/mlabyapers/92/

Jain, R. K., Smith, K. M., Culligan, P. J. and Taylor, J. E. [2014], ‘Forecasting energy con-
sumption of multi-family residential buildings using support vector regression: Investigating
the impact of temporal and spatial monitoring granularity on performance accuracy’, Ap-
plied Energy 123, 168-178.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261914002013

Javed, A., Larijani, H., Ahmadinia, A. and Des Gibson [2017], ‘Smart random neural network
controller for hvac using cloud computing technology’, IEFEE Transactions on Industrial
Informatics 13(1), 351-360.

URL: https://ieeexplore.ieee.org/document/ 7529229

Jia, R., Jin, M., Sun, K., Hong, T. and Spanos, C. [2019], ‘Advanced building control via deep
reinforcement learning’, Energy Procedia 158, 6158-6163.
URL: https://www.sciencedirect.com/science/article/pii/S187661021930517X

Kéamper, A., Leenders, L., Bahl, B. and Bardow, A. [2021], ‘Automog: Automated data-driven
model generation of multi-energy systems using piecewise-linear regression’, Computers &
Chemical Engineering 145(6), 107162.

URL: https://www.sciencedirect.com/science/article/pii/S00981354 20306852

Kathirgamanathan, A., de Rosa, M., Mangina, E. and Finn, D. P. [2021], ‘Data-driven predic-
tive control for unlocking building energy flexibility: A review’, Renewable and Sustainable
Energy Reviews 135, 110120.

URL: hitps://www.sciencedirect.com/science/article/pii/S1364032120304111

117



Bibliography

Kazmi, H., Suykens, J., Balint, A. and Driesen, J. [2019], ‘Multi-agent reinforcement learning
for modeling and control of thermostatically controlled loads’, Applied Energy 238, 1022—
1035.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S030626191930156/

Khayatian, F., Nagy, Z. and Bollinger, A. [2021], ‘Using generative adversarial networks to
evaluate robustness of reinforcement learning agents against uncertainties’, Energy and
Buildings p. 111334.

URL: https://www.sciencedirect.com/science/article/pii/S0378778821006186

Kiebacké Peter [2020]. Accessed: 2022-06-19.
URL: hittps://www.kieback-peter.com/de/

Kilkis, I. B. [1999], ‘Utilization of wind energy in space heating and cooling with hybrid hvac
systems and heat pumps’, Energy and Buildings 30(2), 147-153.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778898000826

Kofinas, P., Dounis, A. I. and Vouros, G. A. [2018], ‘Fuzzy g-learning for multi-agent decen-
tralized energy management in microgrids’, Applied Energy 219, 53-67.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261918303465

Kolokotsa, D., Pouliezos, A., Stavrakakis, G. and Lazos, C. [2009], ‘Predictive control tech-
niques for energy and indoor environmental quality management in buildings’, Building and
Environment 44(9), 1850-1863.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0360132308002990

Kotevska, O., Munk, J., Kurte, K., Du, Y., Amasyali, K., Smith, R. W. and Zandi, H. [2020],
Methodology for interpretable reinforcement learning model for hvac energy control, in
‘2020 IEEE International Conference on Big Data (Big Data)’, IEEE, pp. 1555-1564.
URL: hitps://iecexplore.iece.org/document/9377735

Lee, W.-S., Chen, Y. T. and Wu, T.-H. [2009], ‘Optimization for ice-storage air-conditioning
system using particle swarm algorithm’, Applied Energy 86(9), 1589-1595.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261908003528

Leibowicz, B. D., Lanham, C. M., Brozynski, M. T., Vazquez-Canteli, J. R., Castejon, N. C.
and Nagy, Z. [2018], ‘Optimal decarbonization pathways for urban residential building
energy services’, Applied Energy 230, 1311-1325.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0306261918313552

Li, Y. [2017], ‘Deep reinforcement learning: An overview’.
URL: http://arxiv.org/pdf/1701.07274v6

118



Bibliography

Liessner, R., Schmitt, J., Dietermann, A. and Béker, B. [2019], ‘Hyperparameter optimization
for deep reinforcement learning in vehicle energy management’, Proceedings of the 11th
International Conference on Agents and Artificial pp. 134-144.

URL: hitps://www.scitepress.org/Link.aspz?doi=10.5220/0007364701340144

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and Wierstra,
D. [2015], ‘Continuous control with deep reinforcement learning’.
URL: http://arziv.org/pdf/1509.02971v5

Liu, S. and Henze, G. P. [2006], ‘Experimental analysis of simulated reinforcement learning
control for active and passive building thermal storage inventory’, Energy and Buildings
38(2), 148-161.

URL: https://www.sciencedirect.com/science/article/abs/pii/S037877880500085X

Lork, C., Li, W.-T., Qin, Y., Zhou, Y., Yuen, C., Tushar, W. and Saha, T. K. [2020], ‘An
uncertainty-aware deep reinforcement learning framework for residential air conditioning
energy management’, Applied Energy 276, 115426.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261920309387

Lu, Y., Wang, S., Sun, Y. and Yan, C. [2015], ‘Optimal scheduling of buildings with energy
generation and thermal energy storage under dynamic electricity pricing using mixed-integer
nonlinear programming’, Applied Energy 147, 49-58.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0306261915002378

Maddalena, E. T., Lian, Y. and Jones, C. N. [2020], ‘Data-driven methods for building control
— a review and promising future directions’, Control Engineering Practice 95, 104211.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0967066119301832

Marantos, C., Siozios, K. and Soudris, D. [2020], ‘Rapid prototyping of low-complexity orches-
trator targeting cyberphysical systems: The smart-thermostat usecase’, IEEE Transactions
on Control Systems Technology 28(5), 1831-1845.

URL: https://iecexplore.ieee.org/document/8770296

Mason, K. and Grijalva, S. [2019], ‘A review of reinforcement learning for autonomous building
energy management’, Computers Flectrical Engineering 78, 300-312.
URL: hitps://www.sciencedirect.com/science/article/pii/S0045790618333421

McCartney, M., Haeringer, M. and Polifke, W. [2020], ‘Comparison of machine learning al-
gorithms in the interpolation and extrapolation of flame describing functions’, Journal of
Engineering for Gas Turbines and Power 142(6).

URL: hitps://asmedigitalcollection.asme.org

Meteo Viva GmbH [2020]. Accessed: 2022-06-19.
URL: hitps://meteoviva.com/en/

119



Bibliography

Minoli, D., Sohraby, K. and Occhiogrosso, B. [2017], ‘Iot considerations, requirements, and
architectures for smart buildings—energy optimization and next-generation building man-
agement systems’, IEEE Internet of Things Journal 4(1), 269-283.

URL: hitps://ieeexplore.ieee.org/document/ 7805265

Mirinejad, H., Sadati, H., Maryam, G. and Hamid, T. [2008], ‘Control techniques in heating,
ventilating and air conditioning (hvac) systems 1’, Journal of Computer Science 4.

URL: hitps://thescipub.com/pdf/jcssp.2008.777.783.pdf

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D. and Ried-
miller, M. [2013], ‘Playing atari with deep reinforcement learning’.
URL: hittps://www.deepmind.com /publications

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. and Hassabis, D. [2015],
‘Human-level control through deep reinforcement learning’, Nature 518(7540), 529-533.
URL: https://www.nature.com/articles/nature14236

Mocanu, E., Nguyen, P. H. and Gibescu, M. [2018], Chapter 7 - deep learning for power
system data analysis, in R. Arghandeh and Y. Zhou, eds, ‘Big Data Application in Power
Systems’, Elsevier, pp. 125—158.

URL: hittps://www.sciencedirect.com/science/article/pii/B9780128119686000073

Miiller, D., Lauster, M., Constantin, A. and Remmen, P. [2016], Aixlib - an open-source
modelica library within the iea-ebc annex 60 framework, Proceedings of BauSim 2016,

pp. 3-9.
URL: hitps://www.iea-annex60.orq/downloads/2016-bausim-aixlib. pdf

Nagy, A., Kazmi, H., Cheaib, F. and Driesen, J. [2018], ‘Deep reinforcement learning for
optimal control of space heating’, Proceedings of Building Simulation and Optimization
2018 .

URL: http://www.ibpsa.org/proceedings/BS02018/1C-4.pdf

Nagy, Z., Vazquez-Canteli, J. R., Dey, S. and Henze, G. [2021], The citylearn challenge 2021,
in ‘Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation’, BuildSys 21, Association for Computing Machinery,
New York, NY, USA, p. 218-219.

URL: hitps://doi.org/10.1145/3486611.3492226

Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann,

B. and Morari, M. [2012], ‘Use of model predictive control and weather forecasts for energy

120



Bibliography

efficient building climate control’, Fnergy and Buildings 45, 15-27.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0378778811004105

Ooka, R. and Ikeda, S. [2015], ‘A review on optimization techniques for active thermal energy
storage control’, Energy and Buildings 106, 225-233.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0378778815301420

OpenAlI Spinning Up [2020]. Accessed: 2022-06-19.
URL: https://spinningup.openai.com/en/latest/

Palensky, P. and Dietrich, D. [2011], ‘Demand side management: Demand response, intelligent
energy systems, and smart loads’, IEEF transactions on industrial informatics pp. 381-388.
URL: hitps://ieeexplore.ieee.org/document/5930335

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. [2019], Pytorch:
An imperative style, high-performance deep learning library, in H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox and R. Garnett, eds, ‘Advances in Neural Informa-
tion Processing Systems 32’, Curran Associates, Inc., pp. 8024-8035.

URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E. [2011], ‘Scikit-learn: Machine learning in
python’.

URL: hittp://www.jmlr.org/papers/volumel2/pedregosalla/ pedregosalla.pdf

Perera, A. and Kamalaruban, P. [2021], ‘Applications of reinforcement learning in energy
systems’, Renewable and Sustainable Energy Reviews 137(4), 110618.
URL: hitps://www.sciencedirect.com/science/article/pii/S1364032120309023

Pinto, G., Deltetto, D. and Capozzoli, A. [2021], ‘Data-driven district energy management
with surrogate models and deep reinforcement learning’, Applied Energy 304, 117642.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261921010096

Pinto, G., Piscitelli, M. S., Vazquez-Canteli, J. R., Nagy, Z. and Capozzoli, A. [2021], ‘Coor-
dinated energy management for a cluster of buildings through deep reinforcement learning’,
Energy 229, 120725.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0360544 221009737

121



Bibliography

Piotr Zymetka, M. S. [2019], ‘Short-term scheduling of gas-fired chp plant with thermal storage
using optimiz ation algorithm’, Proceedings of ECOS 2019 .
URL: https://www.proceedings.com/52893.html

Putatunda, S. and Rama, K. [2018], A comparative analysis of hyperopt as against other ap-
proaches for hyper-parameter optimization of xghoost, in ‘Proceedings of the 2018 Interna-
tional Conference on Signal Processing and Machine Learning’, Association for Computing
Machinery, New York, NY, USA, p. 6-10.

URL: https://doi.org/10.1145/3297067.3297080

Rétz, M., Javadi, A. P., Baranski, M., Finkbeiner, K. and Miiller, D. [2019], ‘Automated
data-driven modeling of building energy systems via machine learning algorithms’, Energy
and Buildings 202, 109384.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778819316585

Rayati, M., Sheikhi, A. and Ranjbar, A. M. [2015], Applying reinforcement learning method
to optimize an energy hub operation in the smart grid, in ‘2015 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT)’, IEEE, pp. 1-5.

URL: hitps://iecexplore.iece.org/document/ 7131906

Recknagel [2017], Taschenbuch fir Heizung + Klimatechnik 2017/2018, Recknagel - Sprenger
- Albers.

Recogizer Group GmbH [2020]. Accessed: 2022-06-19.
URL: https://recogizer.com/

Rosenblatt, F. [1958], ‘The perceptron: A probabilistic model for information storage and
organization in the brain’, Psychological Review 65(6), 386-408.
URL: https://doi.org/10.1037/h0042519

Ross, S. and Bagnell, D. [2010], ‘Efficient reductions for imitation learning’, Journal of Ma-
chine Learning Research - Proceedings (9), 661-668.
URL: https://proceedings.mlr.press/v9/ross10a.html

Ruelens, F. [2016], Residential Demand Response Using Reinforcement Learning: From The-
ory to Practice.
URL: hitps://limo.libis.be /primo-explore/search?vid=KADO CfromLogin=true

Ruelens, F., Claessens, B. J., Quaiyum, S., de Schutter, B., Babuska, R. and Belmans, R.
[2018], ‘Reinforcement learning applied to an electric water heater: From theory to practice’,
IEEE Transactions on Smart Grid 9(4), 3792-3800.

URL: https://ieeexplore.ieee.org/document/ 7792709

122



Bibliography

Ryu, S., Noh, J. and Kim, H. [2017], ‘Deep neural network based demand side short term
load forecasting’, Energies 10(1), 3.
URL: https://www.mdpi.com/1996-1073/10/1/3

Sammut, C. and Webb, G. 1., eds [2017], Encyclopedia of machine learning and data mining,
Springer Reference, 2nd ed. edn, Springer, New York.
URL: https://link.springer.com/referencework/10.1007/978-1-4899-7687-1

Sanaye, S. and Shirazi, A. [2013], ‘Thermo-economic optimization of an ice thermal energy
storage system for air-conditioning applications’, Energy and Buildings 60, 100-109.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778813000133

Santos, S. F., Fitiwi, D. Z., Cruz, M. R., Cabrita, C. M. and Cataldo, J. P. [2017], ‘Impacts of
optimal energy storage deployment and network reconfiguration on renewable integration
level in distribution systems’, Applied Energy 185, 44-55.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261916314970

Schaul, T., Quan, J., Antonoglou, I. and Silver, D. [2015], ‘Prioritized experience replay’,
arXiv preprint (2015) .
URL: https://www.deepmind.com/publications/prioritized-experience-replay

Schild, T. P., Rademacher, M., Baranski, M. A. and Miiller, D. [2019], ‘Building automation
systems in practice - advanced control methods’.
URL: hittp://publications.rwth-aachen.de/record /753892

Schubnel, B., Carillo, R., Hutter, A. and Alet, P.-J. [2018], ‘Data-driven reinforcement learning
for smart controllers in large building facilities’, CSEM Scientific and Technical Report .
URL: hitps://www.csem.ch/Doc.aspr?id=123853

Shah, A., Nasir, H., Fayaz, M., Lajis, A. and Shah, A. [2019], ‘A review on energy consumption
optimization techniques in iot based smart building environments’, Information 10(3), 108.
URL: https://www.mdpi.com/2078-2489/10/3/108

Shang, Y., Wu, W., Guo, J., Ma, Z., Sheng, W., Lv, Z. and Fu, C. [2020], ‘Stochastic dispatch
of energy storage in microgrids: An augmented reinforcement learning approach’, Applied
Energy 261, 114423.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0306261919321105

Shekhar, S., Bansode, A. and Salim, A. [2021], A comparative study of hyper-parameter
optimization tools, in ‘2021 IEEE Asia-Pacific Conference on Computer Science and Data
Engineering (CSDE)’, pp. 1-6.

URL: hitps://doi.org/10.1145/3297067.3297080

123



Bibliography

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. and Riedmiller, M. [2014], ‘Deter-
ministic policy gradient algorithms’, Proceedings of Machine Learning Research 2014.
URL: http://proceedings.mir.press/v32/silver1/.pdf

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I. and et al. [2017], ‘Mastering the
game of go without human knowledge’, Nature 550(7676), 354-359.
URL: https://www.nature.com/articles/nature24270

Smarra, F., Jain, A., de Rubeis, T., Ambrosini, D., D’Innocenzo, A. and Mangharam, R.
[2018], ‘Data-driven model predictive control using random forests for building energy op-
timization and climate control’, Applied Energy 226, 1252—-1272.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261918302575

Sommer, T., Kessler, M. and Thorade, M. [2017], ‘Fmpy: Free python library to simulate
functional mock-up units (fmus)’. Accessed: 2022-05-31.
URL: https://github.com/CATIA-Systems/FMPy

Stepancic, M., Grancharova, A. and Kocijan, J. [2015], ‘Adaptive mpc based on probabilistic
black-box input-output model’;, Comptes rendus de I’Académie bulgare des Sciences 68(6).
URL: https://inis.iaea.org/search/

Stoffel, P., Maier, L., Kiimpel, A., Schreiber, T. and Miiller, D. [2023], ‘Evaluation of advanced
control strategies for building energy systems’, Energy and Buildings 280, 112709.
URL: hitps://www.sciencedirect.com/science/article/pii/S0378778822008805

Sun, Y., Haghighat, F. and Fung, B. C. [2020], ‘A review of the-state-of-the-art in data-driven
approaches for building energy prediction’, Energy and Buildings 221(4), 110022.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0378778819339313

Sutton, R. S. and Barto, A. [2018], Reinforcement learning: An introduction, Adaptive com-
putation and machine learning, second edition edn, The MIT Press, Cambridge, MA and
London.

URL: https://mitpress.mit.edu/books /reinforcement-learning-second-edition

Sutton, R. S., McAllester, D. A. and Singh, S. P. [2000], ‘Policy gradient methods for rein-
forcement learning with function approximation’, Advances in Neural Information Process-
ing Systems pp. 1057-1063.

URL: https://dl.acm.org/doi/10.5555/3009657.3009806

Touzani, S., Prakash, A. K., Wang, Z., Agarwal, S., Pritoni, M., Kiran, M., Brown, R.
and Granderson, J. [2021], ‘Controlling distributed energy resources via deep reinforcement
learning for load flexibility and energy efficiency’, Applied Energy 304(5), 117733.

URL: hittps://www.sciencedirect.com/science/article/pii/S0306261921010801

124



Bibliography

Vandael, S., Claessens, B., Ernst, D., Holvoet, T. and Deconinck, G. [2015], ‘Reinforcement
learning of heuristic ev fleet charging in a day-ahead electricity market’, IEEE Transactions
on Smart Grid 6(4), 1795-1805.

URL: hitps://iecexplore.ieee.org/document/ 7056534

Vazquez-Canteli, J., Kampf, J. and Nagy, Z. [2017], ‘Balancing comfort and energy consump-
tion of a heat pump using batch reinforcement learning with fitted g-iteration’, Energy
Procedia 122, 415-420.

URL: hitps://www.sciencedirect.com/science/article/pii/S1876610217332629

Véazquez-Canteli, J. R. e., Detjeen, T., Henze, G., Kadmpf, J. and Nagy, Z. [2019], ‘Multi-agent
reinforcement learning for adaptive demand response in smart cities’, Journal of Physics:
Conference Series 1343, 012058.

URL: https://iopscience.iop.org/article/10.1088/1742-6596/1343/1/012058

Véazquez-Canteli, J. R., Henze, G. and Nagy, Z. [2020], Marlisa: Multi-agent reinforcement
learning with iterative sequential action selection for load shaping of grid-interactive con-
nected buildings, in ‘Proceedings of the 7th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation’, BuildSys 20, Association for Com-
puting Machinery, New York, NY, USA, p. 170-179.

URL: https://doi.org/10.1145/3408308.342760

Véazquez-Canteli, J. R. and Nagy, Z. [2019], ‘Reinforcement learning for demand response: A
review of algorithms and modeling techniques’, Applied Energy 235, 1072—-1089.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261918317082

Véazquez-Canteli, J. R., Ulyanin, S., Kdmpf, J. and Nagy, Z. [2019], ‘Fusing tensorflow with
building energy simulation for intelligent energy management in smart cities’, Sustainable
Cities and Society 45, 243-257.

URL: https://www.sciencedirect.com/science/article/abs/pii/S2210670718314380

Wan, Z., Li, H. and He, H. [2018], Residential energy management with deep reinforcement
learning, in ‘2018 International Joint Conference on Neural Networks (IJCNN): 2018 pro-
ceedings’, IEEE, Piscataway, NJ, pp. 1-7.

URL: hitps://ieeexplore.ieee.org/document/8489210

Wang, S. and Ma, Z. [2008], ‘Supervisory and optimal control of building hvac systems: A
review’, HVACER Research 14(1), 3-32.
URL: https://www.tandfonline.com/doi/abs/10.1080/10789669.2008.10390991

Wang, Y., Velswamy, K. and Biao, H. [2017], ‘A long-short term memory recurrent neural
network based reinforcement learning controller for office heating ventilation and air con-
ditioning systems’, Processes 5(4), 46.

URL: https://www.mdpi.com/2227-9717/5/3/46

125



Bibliography

Wang, Z. and Hong, T. [2020], ‘Reinforcement learning for building controls: The opportuni-
ties and challenges’, Applied Energy 269, 115036.
URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261920305481

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M. and De Freitas, N. [2016],
Dueling network architectures for deep reinforcement learning, in ‘Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48’
ICML’16, JMLR.org, p. 1995-2003.

URL: hitps://dl.acm.org/doi/10.5555/3045390.3045601

Wang, Z. and Srinivasan, R. S. [2015], A review of artificial intelligence based building energy
prediction with a focus on ensemble prediction models, in ‘2015 Winter Simulation Confer-
ence (WSC)’, pp. 3438-3448.

URL: https://ieeexplore.ieee.org/document/ 7408504

Wembhoff, A. [2012], ‘Calibration of hvac equipment pid coefficients for energy conservation’,
Energy and Buildings 45, 60-66.
URL: hittps://www.sciencedirect.com/science/article/pii/S0378778811004658

Wietschel, M., Plotz, P., Pfluger, B., Klobasa, M., Efler, A., Haendel, M., Miiller-
Kirchenbauer, J., Kochems, J., Hermann, L., Grosse, B., Nacken, L., Kiister, M., Pacem,
J., Naumann, D., Kost, C., Kohrs, R., Fahl, U., Schifer-Stradowsky, S., Timmermann, D.
and Albert, D. [2018], ‘Sektorkopplung: Definition, chancen und herausforderungen’.
URL: https://www.econstor.eu/handle/10419/175574

Wooldridge, M. [2001], Intelligent agents: The key concepts, Vol. 2322, pp. 3-43.
URL: https://link.springer.com/chapter/10.1007/3-540-45982-0

Yang, L., Nagy, Z., Goffin, P. and Schlueter, A. [2015], ‘Reinforcement learning for optimal
control of low exergy buildings’, Applied Energy 156, 577-586.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S030626191500879X

Yang, S., Wan, M. P., Chen, W., Ng, B. F. and Dubey, S. [2020], ‘Model predictive control
with adaptive machine-learning-based model for building energy efficiency and comfort
optimization’, Applied Energy 271, 115147.

URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0306261920306590

Yuan, X., Pan, Y., Yang, J., Wang, W. and Huang, Z. [2019], ‘Study on the application of
reinforcement learning in the operation optimization of hvac system’, Building Simulation
14.

URL: hitps://link.springer.com/article/10.1007/s12273-020-0602-9

Zhang, F., Deb, C., Lee, S. E., Yang, J. and Shah, K. W. [2016], ‘Time series forecasting

for building energy consumption using weighted support vector regression with differential

126



Bibliography

evolution optimization technique’, Energy and Buildings 126, 94-103.
URL: hitps://www.sciencedirect.com/science/article/abs/pii/S0378778816303899

Zhang, X., Lu, R., Jiang, J., Hong, S. H. and Song, W. S. [2021], ‘Testbed implementation of
reinforcement learning-based demand response energy management system’, Applied Enerqgy
297(1), 117131.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261921005705

Zhang, Z., Chong, A., Pan, Y., Zhang, C., Lu, S. and Lam, K. [2018], ‘A deep reinforce-
ment learning approach to using whole building energy model for hvac optimal control’,
ASHRAE/IBPSA-USA Building Performance Analysis Conference and SimBuild .

URL: https://cpb-us-w2.wpmucdn.com/blog.nus.edu.sqg/dist/8/9027/files/2018/01 /1308-
revision-26hr9b/.pdf

Zhao, Y., Li, T., Zhang, X. and Zhang, C. [2019], ‘Artificial intelligence-based fault detection
and diagnosis methods for building energy systems: Advantages, challenges and the future’,
Renewable and Sustainable Energy Reviews 109, 85—-101.

URL: hittps://ideas.repec.org/a/eee/rensus/v109y2019icp85-101.html

Zhong, S., Wang, X., Zhao, J., Li, W., Li, H., Wang, Y., Deng, S. and Zhu, J. [2021], ‘Deep
reinforcement learning framework for dynamic pricing demand response of regenerative
electric heating’, Applied Energy 288, 116623.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261921001586

127



Appendix



A List of publications in the course of this dissertation

A.1 Journal articles integrated into this dissertation

Schreiber, Thomas and Eschweiler, Séren and Baranski, Marc and Miller, Dirk. Application
of two promising Reinforcement Learning algorithms for load shifting in a cooling supply
system. Energy and Buildings. 2020. 229 (110490).

URL: https://www.sciencedirect.com/science/article/pii/S0378778820320922

Schreiber, Thomas and Netsch, Christoph and Baranski, Marc and Miiller, Dirk. Monitoring
data-driven Reinforcement Learning controller training: A comparative study of different
training strategies for a real-world energy system. Energy and Buildings. 2021. 239 (110856).
URL: https://www.sciencedirect.com/science/article/pii/S0378778821001407

Schreiber, Thomas and Netsch, Christoph and Séren, Eschweiler and Wang, Tianyuan and
Storek, Thomas and Baranski, Marc and Miiller, Dirk. Application of data-driven methods
for energy system modelling demonstrated on an adaptive cooling supply system. Energy.
2021. 230 (120894).

URL: https://www.sciencedirect.com/science/article/pii/S0360544221011427

Stoffel, Phillip and Maier, Laura and Kimpel, Alexander and Schreiber, Thomas and Miller,
Dirk. Evaluation of advanced control strategies for building energy systems. Energy and
Buildings. 2023. 280 (112709).

URL: https://www.sciencedirect.com/science/article/pii/S0378778822008805

A.2 Conference articles integrated into this dissertation

Schreiber, Thomas and Schwartz, Aron and Miller, Dirk. Towards an intelligent HVAC
system automation using Reinforcement Learning. Journal of Physics: Conference Series.
2021. 2042 (Proceedings of CISBAT 2021).

URL: https://iopscience.iop.org/article/10.1088/1742-6596,/2042/1/012028

Schreiber, Thomas and Evenschor, Vincent and Miiller, Dirk. Improving the application of
Reinforcement Learning for load shifting in a cooling system through state-of-the-art algo-
rithms and hyper-parameter optimization. Proceedings of ECOS 2022.

URL: https://orbit.dtu.dk/en/publications/proceedings-of-ecos-2022-the-35th-international-

conference-on-eff

129



A List of publications in the course of this dissertation

A.3 Journal articles that were contributed to in the course of this dissertation

Bode, Gerrit and Schreiber, Thomas and Baranski, Marc and Miiller, Dirk. A time series
clustering approach for Building Automation and Control Systems. Applied Energy. 2019.
238 (1337-1345).

URL: https://www.sciencedirect.com/science/article/abs/pii/S0306261919302089

Wirtz, Marco and Hahn, Maria and Schreiber, Thomas and Miiller, Dirk. Design optimization
of multi-energy systems using mixed-integer linear programming: Which model complexity
and level of detail is sufficient?. Energy Conversion and Management. 2021. 240 (114249).
URL: https://www.sciencedirect.com/science/article/pii/S0196890421004258

Mans, Michael and Blacha, Tobias and Schreiber, Thomas and Miiller, Dirk. Development
and Application of an Open-Source Framework for Automated Thermal Network Generation
and Simulations in Modelica. Energies. 2022. 15(12). 4372.

URL: https://doi.org/10.3390/en15124372

Wirtz, Marco and Schreiber, Thomas and Miiller, Dirk. Survey of 53 Fifth-Generation District
Heating and Cooling (5GDHC) Networks in Germany. Energy Technology. 2022. 10(9).
2200749.

URL: https://doi.org/10.1002/ente.202200749

Wirtz, Marco and Heleno, Miguel and Moreira, Alexandre and Schreiber, Thomas and Miiller,
Dirk. 5th generation district heating and cooling network planning: A Dantzig—Wolfe decom-
position approach. Energy Conversion and Management. 2023. 276 (116593).

URL: https://www.sciencedirect.com/science/article/abs/pii/S0196890422013711

Wirtz, Marco and Heleno, Miguel and Romberg, Hannah and Schreiber, Thomas and Miiller,
Dirk. Multi-period design optimization for a 5th generation district heating and cooling
network. Energy and Buildings. 2023. 284 (112858).

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378778823000889

A.4 Conference articles that were contributed to in the course of this
dissertation

Bode, Gerrit and Schreiber, Thomas and Baranski, Marc and Miiller, Dirk. Comparing
unsupervised and supervised machine learning techniques to improve time-series classification
in building and energy data. Proceedings of ECOS 2018.

URL: https://www.researchgate.net/publication/327281617

Bode, Gerrit and Stinner, Florian and Baranski, Marc and Brimmendorf, Erik and Cali,
Xiaoye and Kiimpel, Alexander and Schraven, Markus and Schreiber, Thomas and Stoffel,
Phillip and Storek, Thomas and Miiller, Dirk. From plans to programs: A holistic toolchain

130



A List of publications in the course of this dissertation

for building data applications Journal of Physics: Conference Series. 2019. 1343 (Proceedings
of CISBAT 2019).
URL: https://iopscience.iop.org/article/10.1088/1742-6596,/1343/1/012117

Stoffel, Phillip and Baranski, Marc and Schreiber, Thomas and Miiller, Dirk. Monitoring,
Analyse der Energieeffizienz und nachhaltige Nutzung eines Geothermiefeldes zur Gebédudek-

limatisierung. Konferenzband: Der Geothermie Kongress 2019.
URL: https://publications.rwth-aachen.de/record/780999

Schreiber, Thomas and Bode, Gerrit and Baranski, Marc and Miiller, Dirk. An automated
feature selection for time-series classification in building automation and control systems.
Proceedings of ECOS 2019.

URL: https://www.proceedings.com/52893.html

Stinner, Florian and Yang, Yingying and Schreiber, Thomas and Bode, Gerrit and Baranski,
Marc and Miiller, Dirk. Generating Generic Data Sets for Machine Learning Applications in
Building Services Using Standardized Time Series Data. Proceedings of ISARC 2019.

URL: https://www.iaarc.org/publications/

Cai, Xiaoye and Schild, Thomas and Schreiber, Thomas and Miiller, Dirk. Modeling of Petri-
Net-based control algorithms for the simulation-based improvement of the planning process
of building energy systems. Journal of Physics: Conference Series. 2019. 1343 (Proceedings
of CISBAT 2019).

URL: https://iopscience.iop.org/article/10.1088,/1742-6596,/1343/1/012123

Oberkirsch, Laurin and Kriwet, Jonathan and Baranski, Marc and Schreiber, Thomas and
Storek, Thomas and Miiller, Dirk. Auto-generation of hybrid automata for real-time operation
optimization of building energy systems. Proceedings of ECOS 2020.

URL: https://www.proceedings.com/55242.html

Maier, Laura and Schreiber, Thomas and Kimpel, Alexander and Mehrfeld, Philipp and
Miiller, Dirk. Integration of Advanced Control Methods into Mode-Based Control Logics of
Building Energy Systems. Proceedings of ECOS 2021.

URL: https://doi.org/10.52202/062738-0058

Beckholter, Tobias and Matthes, Julian and Schreiber, Thomas and Miiller, Dirk. Compar-
ison of optimization-based operation strategies for a hydrogen-based district energy system.
Proceedings of ECOS 2022.

URL: https://orbit.dtu.dk/en/publications/proceedings-of-ecos-2022-the-35th-international-

conference-on-eff

Zhang, Yizhuo and Wiederhoft, Tori and Schreiber, Thomas and Miiller, Dirk. Optimization
of a grid-interactive building energy system considering user satisfaction. Proceedings of
BauSim Conference 2022: 9th Conference of IBPSA-Germany and Austria.

URL: https://publications.ibpsa.org/conference/?id=bausim2022

131



A List of publications in the course of this dissertation

Schreiber, Thomas and Beckholter, Tobias and Derzsi, Kai and Droste, Kai and Karuvingal,
Rahul and Nie, Yi and Wackerbauer, David and Wirtz, Marco and Welter, Sarah and Zhang,
Yizhuo and Miiller, Dirk. Planning the Design and Operation of Urban Energy Systems
with Limited Data Availability: A Holistic Open-Source Tool Chain. Journal of Physics:
Conference Series. 2023. 2600 (Proceedings of CISBAT 2023).

URL: https://https://iopscience.iop.org/article/10.1088/1742-6596/2600/8 /082023

132



	Nomenclature
	List of figures
	List of tables
	Introduction
	Motivation and background
	Model Predictive Control and data-driven methods
	Problems with Model Predictive Control and Reinforcement Learning as a possible alternative
	Goal and structure of the presented work

	Reinforcement Learning
	Fundamentals of Reinforcement Learning
	History of fundamental Reinforcement Learning research
	Classification of Reinforcement Learning algorithms
	Markov Decision Processes and Q-Learning
	State-of-the-art for discrete control applications
	State-of-the-art for continuous control applications
	Review of applications in the field of building energy systems
	Literature overview
	Discussion of selected publications

	Open research questions

	Reinforcement Learning-supported building energy system automation design
	Reinforcement Learning controller for building energy system automation - overview
	Formulation of the Markov Decision Process
	Algorithm selection
	Training strategies
	Interaction design
	Implementation
	Bayesian hyper-parameter optimization
	Performance comparison and discussion of Reinforcement Learning against other novel building energy system operation optimization methods

	Application
	Case study one
	The environment
	Results of case study one
	Discussion and lessons learned from case study one

	Case study two
	Data-driven training and evaluation environment
	Markov Decision Process formulation
	Overview of the investigated pre-training strategies
	Results of case study two
	Discussion and lessons learned from case study two

	Case study three
	A generic problem formulation for AHU valve control
	Deep Q-Network training
	IT infrastructure
	Results of case study three
	Discussion and lessons learned from case study three


	Discussion
	Reinforcement Learning control performance for energy management tasks
	Reinforcement Learning for feedback control automation tasks
	Importance of Markov Decision Process formulation
	Importance of state-of-the-art algorithms, design principles, and hyper-parameter optimization
	Frameworks and implementations
	Critical discussion of the engineering effort compared to other methods
	Challenges and opportunities in research
	Challenges and opportunities in practical application
	Possible products in the coming years

	Summary and outlook
	Bibliography
	List of publications in the course of this dissertation
	Journal articles integrated into this dissertation
	Conference articles integrated into this dissertation
	Journal articles that were contributed to in the course of this dissertation
	Conference articles that were contributed to in the course of this dissertation


