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Abstract

International climate protection targets make the development of scalable methods for in-

creasing the efficiency and sustainability of energy systems a necessity. At the same time, the

digital revolution continues to advance and algorithms from the field of artificial intelligence

are finding their way into more and more areas of life. Deep Reinforcement Learning (DRL)

is a class of algorithms designed to solve sequential decision-making problems using neural

networks, which has been successfully demonstrated for a variety of problem classes in recent

years. Motivated by this, the applicability for optimization problems in building engineer-

ing is investigated in this dissertation. Relevant research questions are identified and the

advantages and disadvantages compared to the popular Model Predictive Control approach

are discussed. Based on the introduction, a workflow for the development of DRL-supported

building automation is presented. The workflow chapter concludes with the presentation

of a collaborative work in which a DRL algorithm is compared and discussed with other

novel control methods. The application scenarios in the application chapter are selected from

current research projects on the operation optimization of building energy systems. The pro-

posed workflow is demonstrated, addressing questions of algorithm comparisons, practicable

training times, use of monitoring data for training, selection of hyper-parameters, data infras-

tructures, and applicability of simulation-based trained algorithms to real control problems.

In the subsequent discussion chapter, the opportunities and challenges of the algorithms and

the experiences gained in the course of the work are discussed in detail. The results of the

work can be summarized as follows. DRL algorithms have promising properties and can

compete with other novel approaches in terms of performance, but the technical effort re-

quired for implementation should not be underestimated. The advantages lie in the inherent

adaptability to variable environmental conditions, the low computational costs after training,

and the potential to process large stochastic problems with high performance. The disadvan-

tages lie in the difficult interpretability, the data-intensive training, and the unavoidability of

stochastic actions. Nevertheless, great potential is seen in publishing pre-trained algorithms

for recurring optimization tasks and using them as expert systems in product development. In

particular, since development, implementation, and training are one-time processes, the effort

is worthwhile. Ultimately, the result can be a self-optimizing software module that continues

to improve along with the technical system in its operational environment.
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Kurzfassung

Internationale Klimaschutzziele machen die Entwicklung skalierbarer Methoden notwendig,

um Effizienz und Nachhaltigkeit von Energiesystemen zu erhöhen. Gleichzeitig schreitet die

Digitale Revolution weiter voran und Algorithmen aus dem Bereich der Künstlichen Intelli-

genz halten Einzug in immer mehr Lebensbereichen. Deep Reinforcement Learning (DRL)

ist eine Klasse von Algorithmen für die Lösung sequenzieller Entscheidungsprobleme unter

Verwendung Neuronaler Netze, welche in den vergangenen Jahren für vielfältige Problemk-

lassen erfolgreich demonstriert wurde. Hierdurch motiviert, wird in dieser Arbeit die An-

wendbarkeit für Optimierungsprobleme aus der Gebäudetechnik untersucht. Es werden rele-

vante Fragestellungen herausgearbeitet und die Vor- und Nachteile gegenüber der populären

Modellprädiktiven Regelung diskutiert. Auf Basis der Einführung wird ein Workflow für

die Entwicklung DRL unterstützter Gebäudeautomation vorgestellt. Das Workflow-Kapitel

schließt mit der Vorstellung einer kollaborativen Arbeit ab, in der ein DRL-Algorithmus

gegen weitere neuartige Regelungsverfahren verglichen und diskutiert wird. Die Anwen-

dungsszenarien des Anwendungskapitels wurden aus aktuellen Forschungsprojekten zur Be-

triebsoptimierung von Gebäudeenergiesystemen ausgewählt. Der vorgeschlagene Workflow

wird demonstriert; hierbei werden Fragen zu Algorithmusvergleichen, praktikablen Train-

ingszeiten, Nutzung von Monitoringdaten beim Training, Auswahl von Hyper-Parametern,

Dateninfrastrukturen und Anwendbarkeit simulationsbasiert trainierter Algorithmen auf reale

Regelungsprobleme, behandelt. Im anschließenden Diskussionskapitel werden die Chancen

und Herausforderungen der Algorithmen sowie die im Zuge der Arbeit gemachten Erfahrun-

gen detailliert diskutiert. Die Ergebnisse der Arbeit lassen sich wie folgt zusammenfassen.

DRL-Algorithmen besitzen vielversprechende Eigenschaften und können in ihrer Leistungs-

fähigkeit mit konkurrierenden Verfahren mithalten, allerdings ist der technische Aufwand für

die Implementierung nicht zu unterschätzen. Die Vorteile liegen in der inhärenten Anpassungs-

fähigkeit an variable Umweltbedingungen, dem geringen Rechenaufwand nach dem Training

und dem Potenzial, große stochastische Probleme performant zu verarbeiten. Die Nachteile

liegen in der schwierigen Interpretierbarkeit, dem datenintensiven Training und der Unver-

meidbarkeit von stochastischen Aktionen. Dennoch wird ein großes Potenzial darin gesehen,

für wiederkehrende Optimierungsaufgaben vortrainierte Algorithmen zu veröffentlichen und in

der Produktentwicklung als Expertensysteme einzusetzen. Insbesondere, da Entwicklung, Im-

plementierung und Training dann einmalige Prozesse sind, lohnt sich der Aufwand. Schließlich

kann das Ergebnis ein sich selbst optimierendes Softwaremodul sein, das sich zusammen mit

dem technischen System in seiner Einsatzumgebung immer weiter verbessert.

IV



Contents

Nomenclature VIII

List of figures XII

List of tables XIV

1 Introduction 1

1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Model Predictive Control and data-driven methods . . . . . . . . . . . . . . . . 3

1.3 Problems with Model Predictive Control and Reinforcement Learning as a pos-

sible alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Goal and structure of the presented work . . . . . . . . . . . . . . . . . . . . . 8

2 Reinforcement Learning 11

2.1 Fundamentals of Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 11

2.2 History of fundamental Reinforcement Learning research . . . . . . . . . . . . . 13

2.3 Classification of Reinforcement Learning algorithms . . . . . . . . . . . . . . . 16

2.4 Markov Decision Processes and Q-Learning . . . . . . . . . . . . . . . . . . . . 18

2.5 State-of-the-art for discrete control applications . . . . . . . . . . . . . . . . . . 20

2.6 State-of-the-art for continuous control applications . . . . . . . . . . . . . . . . 22

2.7 Review of applications in the field of building energy systems . . . . . . . . . . 24

2.7.1 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.2 Discussion of selected publications . . . . . . . . . . . . . . . . . . . . . 26

2.8 Open research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Reinforcement Learning-supported building energy system automation design 31

3.1 Reinforcement Learning controller for building energy system automation -

overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Formulation of the Markov Decision Process . . . . . . . . . . . . . . . . . . . . 33

3.3 Algorithm selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Interaction design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Bayesian hyper-parameter optimization . . . . . . . . . . . . . . . . . . . . . . 42

V



3.8 Performance comparison and discussion of Reinforcement Learning against

other novel building energy system operation optimization methods . . . . . . . 44

4 Application 47

4.1 Case study one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 The environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Results of case study one . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 Discussion and lessons learned from case study one . . . . . . . . . . . . 61

4.2 Case study two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Data-driven training and evaluation environment . . . . . . . . . . . . . 64

4.2.2 Markov Decision Process formulation . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Overview of the investigated pre-training strategies . . . . . . . . . . . . 72

4.2.4 Results of case study two . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.5 Discussion and lessons learned from case study two . . . . . . . . . . . . 79

4.3 Case study three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 A generic problem formulation for AHU valve control . . . . . . . . . . 82

4.3.2 Deep Q-Network training . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 IT infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.4 Results of case study three . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.5 Discussion and lessons learned from case study three . . . . . . . . . . . 92

5 Discussion 94

5.1 Reinforcement Learning control performance for energy management tasks . . . 94

5.2 Reinforcement Learning for feedback control automation tasks . . . . . . . . . 97

5.3 Importance of Markov Decision Process formulation . . . . . . . . . . . . . . . 98

5.4 Importance of state-of-the-art algorithms, design principles, and hyper-parameter

optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Frameworks and implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Critical discussion of the engineering effort compared to other methods . . . . . 102

5.7 Challenges and opportunities in research . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Challenges and opportunities in practical application . . . . . . . . . . . . . . . 104

5.9 Possible products in the coming years . . . . . . . . . . . . . . . . . . . . . . . 106

6 Summary and outlook 108

Bibliography 111

A List of publications in the course of this dissertation 129

A.1 Journal articles integrated into this dissertation . . . . . . . . . . . . . . . . . . 129

A.2 Conference articles integrated into this dissertation . . . . . . . . . . . . . . . . 129

A.3 Journal articles that were contributed to in the course of this dissertation . . . 130



A.4 Conference articles that were contributed to in the course of this dissertation . 130



Nomenclature

Formula symbols and units

Symbol Meaning Unit

a Action -

A Action-space -

B Batch size -

C Operation costs e

cp Specific heat capacity at constant pressure J/kg K

d Diameter m

D Replay buffer size -

EER Energy Efficiency Ratio -

J Online-savings (control performance) e

kel Electricity price e/kWh

k3W V Total valve position (three-way-valves) %

Kel Electricity costs e

L Loss -
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1 Introduction

In this chapter, the presented dissertation is motivated. For this purpose, the need for research

is discussed first. This is followed by a discussion of one of the most promising methods

in the field of optimal control for building energy systems, along with its advantages and

disadvantages. It is described how data-driven methods are changing the research field, and

finally an introduction is given regarding the algorithms that are investigated, discussed, and

validated via experiments in the course of this work.

1.1 Motivation and background

We are living in times of great transitions. Climate change is putting pressure on governments

around the globe to set ambitious targets for reducing greenhouse gas emissions [IPCC, 2018]

and current geopolitical instabilities make the necessitate reducing the share of fossil gas

from leading energy sources. The optimization of building energy systems (BES) is one key

challenge as buildings account for 36 % of the energy use and almost 40 % of the CO2 emissions

globally [IEA - International energy Agency, 2018] and for around 40 % of the energy use and

around 33 % of the CO2 emissions in Germany [Deutsche Energie-Agentur, 2018]. In order

to meet the political targets regarding the reduction of greenhouse gases, ambitious measures

are necessary [IEA - International energy Agency, 2013].

Besides the modernization of the building envelope, the modernization of the technical equip-

ment, and the influence of the user behavior, a high potential lies in an optimized energy

system operation. Optimized operation strategies aim to optimally use the local BES un-

der dynamic boundary conditions, such as weather forecasts, internal thermal loads of the

buildings, and dynamic energy prices. Also, contemporary challenges can only be addressed

by increased interconnection of the energy sectors electricity, heating, and cooling [Wietschel

et al., 2018]. Demand response management is a key concept here that has been present in the

literature for decades [Kilkis, 1999]. The reason is that it enables reduction of CO2 emissions,

while reducing operation costs and increasing electrical grid stability [Leibowicz et al., 2018;

Palensky and Dietrich, 2011]. In particular, the optimal use of energy storage systems with

respect to dynamic boundary conditions can increase the flexibility of local energy systems

[Santos et al., 2017]. Driven by this prospect, the requirements for automation infrastruc-

ture are increasing [Han and Lim, 2010] due to the more complex processing of internal and

external influencing signals for energy management applications - a trend that will continue
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1 Introduction

in the coming years [Shah et al., 2019]. Therefore, the implementation of robust, predictive,

and self-adapting BES control algorithms that increase optimization capabilities, based on

the available infrastructure, is one of the long-term goals of scientific work in this field.

Through operation optimization of BES, savings between 20 % and 50 % are usually published

in the scientific literature [Afram and Janabi-Sharifi, 2014; Álvarez et al., 2013; Baranski et al.,

2018; Deng et al., 2015; Gruber et al., 2014; Kolokotsa et al., 2009; Oldewurtel et al., 2012;

Wang and Ma, 2008]. As a benchmark, a rule-based control (RBC) mode is usually used,

which corresponds to the state-of-the-art in BES [Fütterer et al., 2017]. Here, a set of hard-

coded rules is used to react to current sensor signals such as the outside temperature or the

heating and/or cooling demands of the building [Bode et al., 2018]. RBC as the current

state-of-the-art even in modern BES is generally neither predictive nor adaptive due to its

limitation to pre-defined thresholds and static integration only of current sensor signals. RBC

is therefore unsuitable for dealing with the increasing complexity in BES. The promising

results from the literature are achieved via optimized and predictive operation, based on

forecasts of the influencing boundary conditions and from automatic adaptation of the control

logic to changing conditions.

Despite the high potential, outside of the scientific research, operation optimization of BES

does not play a major role in the BES industry. However, a few companies have already

entered this market segment in Germany and also promise energy saving potentials between

20 % and 44 % to their customers [Kieback&Peter, 2020; MeteoViva GmbH, 2020; Recogizer

Group GmbH, 2020]. To determine the reasons for the low dissemination of structured oper-

ation optimization and the use of optimization methods in practice, the Institute for Energy

Efficient Buildings and Indoor Climate in Aachen, Germany conducted a survey among BES

planners, operators, and system integrators [Schild et al., 2019]. The survey showed that

while respondents see great potential in operation optimization, there are many barriers to

its widespread application in practice. One of the reasons for this is that the constructor of

the building is seldom the operator, and the energetic efficiency of the later operation plays a

subordinate role during the planning and construction process. While the goal during these

early phases is to save investment costs, the later operator would benefit from higher invest-

ments in BES and the implementation of optimal control algorithms, through lower operation

costs. This makes optimization methods particularly interesting, which can be implemented

after completion of the construction phase, without high engineering efforts. Subsequently,

these optimization methods adapt to and improve existing BES autonomously. However, the

most significant reasons are lack of knowledge, unwillingness to invest (due to relative low

energy prices compared to engineering services), and also low available computing power in

local automation systems. Especially the latter is a particular obstacle for optimization-based

methods.

In the following, Model Predictive Control (MPC), which is an optimization-based control
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approach widely used in scientific research, is presented and discussed, focusing on how data-

driven methods have changed the methodology in the literature in recent years. According to

the literature, a particularly high potential lies especially in the combination of data-driven

and optimization-based approaches to overcome the obstacles from practice [Afram et al.,

2017].

1.2 Model Predictive Control and data-driven methods

After introducing the motivation for BES operation optimization and the difficulties in apply-

ing the methods in practice in the last section, this section presents one of the most promising

methods from the literature. It also discusses how data-driven methods have shaped and

changed the research field in recent years.

Some of the most promising results in operation optimization of BES are achieved by applying

MPC to the control problems [Lee et al., 2009; Lu et al., 2015; Ooka and Ikeda, 2015; Sanaye

and Shirazi, 2013]. As illustrated in figure 1.1, MPC is based on a model of the system to be

controlled, which is combined with actual sensor measurements to represent the current state

of the system. Based on the current state and the forecasts of the influencing environment

conditions, the model is used to calculate the optimal sequence of control signals for a defined

number of time-steps in the future. Algorithms to convert state and forecasts into optimal

actions usually come from the field of mathematical optimization and aim to obtain the

optimal sequence of actions for the forecast horizon with as few iterations as possible. In

most optimization studies, the aim is to achieve a balance between energy consumption and

user comfort, but there is also a number of studies where different optimization objectives,

like demand response control, are investigated. A comprehensive summary of MPC for BES,

including implementation guidelines, is provided to the literature in [Drgoňa et al., 2020].

In [Deng et al., 2015], the authors formulated a MPC problem for the optimal control of a

cooling supply system with a chiller bank and a thermal storage, supplying a large campus

site at the University of California. Aside from the uncertainties in the predictions, they

achieved nearly optimal operation. In [Kolokotsa et al., 2009], a real-world application of MPC

integrated into a BES was demonstrated. The controller obtained near-optimal setpoints by

balancing energy consumption and indoor air quality. In addition to the formulation of the

optimization problem, the handling strategy of uncertainties in the model and forecasts is

of decisive importance. The authors of [Oldewurtel et al., 2012] integrated weather forecasts

successfully into their MPC controller by integrating probabilistic constraints into the problem

formulation. Reviews of further applications of MPC for BES can be found in [Afram and

Janabi-Sharifi, 2014; Afram et al., 2017] and in [Wang and Ma, 2008].

One obstacle of MPC that has not yet been sufficiently solved in the literature arises from

the optimization loop that must be continuously executed during operation, resulting in high
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computational power requirements to solve the MPC problem in real-time. This follows

especially from the optimization procedure which must execute the model until the optimum

control actions (with respect to the objective function and the forecasts) are found. The

required computing power thus depends in particular on the complexity of the model, the

efficiency of the optimization procedure, and the number of time-steps considered in the

future. In [Álvarez et al., 2013] and [Gruber et al., 2014] the authors addressed this problem

by introducing parallelisation in computation for their MPC and a handling strategy for

simplified models. Another promising approach is to divide the optimization problem into

many smaller problems that can be solved more quickly and easily. The authors of [Baranski

et al., 2018] presented an approach for distributed exergy-aware MPC and yielded promising

results for a typical BES.

Figure 1.1: The conventional MPC framework for BES [Oldewurtel et al., 2012]. The red
rectangles mark where data-driven methods have been already proposed in the
literature. The optimization problem is shown, consisting of the performance cri-
teria, the dynamic system model, and the disturbance (weather and internal gains)
prediction. Based on the prediction of the disturbance variables and the current
system state (sensor measurements in combination with the system model), the
optimal sequence of actions is generated via an optimization problem. The first
action is written to the BES actuators and the loop starts again.

Besides forecasting the boundary conditions reliably, the accuracy of the used model is a

decisive factor for the control quality with MPC. Three modeling approaches are distinguished
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in the literature, differing mainly in whether they are based on expert knowledge about the

system to be controlled, monitoring data from the system, or a combination of both. One

major challenge with MPC for BES is the lack of resources (monetary and domain experts)

and detailed system information that would be required to create a detailed physical model

(white-box model). The approach to increase model accuracy and at the same time reduce

the labor intensive physical modeling is to create grey-box models of the system. Here,

comparatively simple physical or statistical equations are calibrated with monitoring data

[Wang and Ma, 2008]. The purely data-driven method is referred to as black-box modeling

[Afram et al., 2017].

The high effort in the model creation especially for white- and grey-box models is considered

an obstacle, as the modeling can only be economically realized for systems with high energy

demands and where the operator is motivated to improve the efficiency. Another issue is that

the modeling is error-prone and time-consuming, even for domain experts. Furthermore, the

models do not automatically adapt to changes in the systems, which leads to repetitions of

the time-consuming procedure [Ahmad et al., 2017]. While for a long time these obstacles in

the implementation of BES models could only be overcome in the context of research projects,

some of the difficulties could be overcome in the future by applying data-driven methods also

in the context of practical applications.

We are living in the age of data and data-driven methods are penetrating more and more areas

of industry and research. Driven by the ever-improving availability of data infrastructure

and low-cost wireless sensors, the availability of algorithms to learn functional relationships

from data is also increasing [Minoli et al., 2017]. This applies to traditional statistics, but

increasingly also to algorithms from the field of machine-learning [Alfred, 2016]. As shown in

figure 1.1, there are also potential applications for data-driven methods for MPC, both in the

forecast of boundary conditions as well as in the modeling of the dynamics of the system to

be controlled.

In recent years, numerous studies have repeatedly proven that machine-learning and deep-

learning techniques allow to learn highly non-linear relationships and therefore are promising

tools for forecasting boundary conditions [Ahmad et al., 2017; Hassan et al., 2019; Mocanu

et al., 2018]. In [Ahmad et al., 2017], the authors compared two promising architectures,

namely artificial neural networks (ANN) and random forests (RF) for the prediction of the

hourly HVAC energy consumption of a hotel in Madrid, Spain. Although the neural networks

showed slightly better results, both algorithms were well suited for this application. The

authors of [Hassan et al., 2019] applied support vector machines for the purpose of predicting

the energy consumption of an office building in the Mediterranean region. After parameter

tuning, they reached very low deviations from actual measurements and recommended their

approach for further application. An application of deep-learning techniques, in particular

recurrent neural networks for occupancy prediction in a smart home application can be found

5



1 Introduction

in [Javed et al., 2017]. The interested reader is also referred to the following successful

applications [Piotr Żymełka, 2019; Ryu et al., 2017] and to these comprehensive review papers

[Mocanu et al., 2018; Sun et al., 2020; Wang and Srinivasan, 2015].

From the different studies, is also is evident that the optimal algorithm, as well as its pa-

rameters, are highly dependent on the application scenario and the data. Therefore, efforts

are also being made to completely automate this process. For the purpose of energy system

modeling, the authors of [Rätz et al., 2019] developed a tool which finds the best combina-

tion of algorithms, parameters, and time windows with respect to validation data. A similar

approach but with a focus on linear piecewise regression models was presented in [Kämper

et al., 2021]

Data-driven models are also successfully used for system identification (thus for the modeling

of the technical equipment of the BES) in the following studies [Stepancic et al., 2015; Yang

et al., 2020]. In one published approach, often referred to as data-predictive control, the

authors successfully combined the advantages of MPC and a machine-learning algorithm called

random trees and demonstrated how peak power consumption can be reduced by following

their method [Jain et al., 2017, 2016; Smarra et al., 2018]. They also emphasize that black-box

modeling of the system dynamics is always an alternative if the costs of creating white- or

grey-box models are high. Comprehensive reviews on the application of data-driven models

for BES control applications can be found in [Kathirgamanathan et al., 2021; Maddalena

et al., 2020].

In this section, successful MPC applications for BES were presented. Furthermore, the trend

to integrate data-driven methods for the environment condition forecasts and for the BES

models itself has been introduced. Both applications show a high potential to reduce the

necessary engineering efforts during the implementation of optimal BES control. The next

section focuses on the unsolved obstacles and how another family of artificial intelligence

algorithms called Reinforcement Learning could also be a promising tool in the future of BES

control.

1.3 Problems with Model Predictive Control and Reinforcement Learning as a

possible alternative

As promising as the results achieved and published using MPC for BES control are, as briefly

discussed in the last section, there are still some obstacles in the way of widespread practical

application. This is mainly because MPC still requires much greater engineering effort com-

pared to standardd RBC, which is often uneconomical. The effort results mainly from the

fact that the modeling of the system to be controlled is not trivial, often time-consuming,

and error-prone even for experts [Haji Hosseinloo et al., 2020]. Further, the choice of the

appropriate cost function and forecast horizon is also crucial, since it directly influences the
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behavior of the controller and thus of the system to be controlled. In addition, the modeling

process must be repeated after each change of the system [Dowling and Haridi, 2008]. If a

component is replaced, parts of the building are refurbished or the type of usage changes, the

models must be adapted to the new system behavior manually.

While there is great potential here in automated modeling through data-driven methods, some

obstacles remain even with continuously re-calibrated black-box models. A major challenge

in these approaches is the poor ability of non-linear data-driven models to extrapolate beyond

the limits of training data [McCartney et al., 2020; Rätz et al., 2019; Zhao et al., 2019]. This

means that the model integrated into the MPC algorithm can reliably represent the system

behavior only within operating states that have already been approached. In addition, the

appropriate time windows for re-calibrating the models still have to be set manually, which

again leads to a high engineering effort. Another issue arises from the design feature that with

MPC, the results of already executed computing operations are not stored. This results in

high computational costs during the entire operation and thus high demands on the hardware

of the building automation system [Marantos et al., 2020].

Therefore, driven by these obstacles, another promising control approach has gained more

attention in the scientific literature in recent years called Reinforcement Learning (RL). RL

algorithms are inherently adaptive to their environment and some are also referred to as model-

free. Therefore, there is the potential to avoid (or at least reduce) the labor-intensive and error-

prone modeling of the system and at the same time ensure adaption to changing environments.

A more detailed differentiation between the methods, as well as a discussion of the term

model and what functionalities it fulfills in the different algorithms, is provided in chapter

2. Generally, with RL, a software agent learns a tailored control policy from the interaction

with an environment. For the agent, it is mandatory to collect data trough exploration of the

environment dynamics. When it comes to BES, this exploration can potentially be carried

out in time windows when there are no occupants in the building or within boundaries where

no efficiency and comfort related constraints are violated. Trained RL algorithms encode the

optimal action in certain system states and therefore map states directly to actions, a feature

that leads to significant lower computational costs compared to MPC [Görges, 2017].

In contrast to MPC, the exploration with RL is inherent and the degree of exploration can

be determined by a single parameter. As outlined, the computational costs of trained RL

algorithms are comparatively low, as the results of operations already executed are stored

and encoded in the algorithm. In the field of RL, promising results have been published

regarding the control of complex environments like Atari games or the Chinese board game

Go in recent years [Li, 2017; Mnih et al., 2015; Silver et al., 2017].

In summary, according to the literature, RL has three main advantageous areas over classic

control approaches:

• Effort: For systems where the creation of a model is too complicated or costly, a policy
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can be learned with comparatively little effort.

• Computation: Even high-resolution state-spaces can be processed with relatively little

computational costs.

• Adaptiveness: The controller can easily adapt to changing environmental conditions,

like aging BES or changing user behavior.

However, these advantages are also contrasted by some challenges. The exploration of large

state-spaces cannot be performed in real-time interaction and requires pre-training with moni-

toring data or simulations. Further, since RL as a subgroup of machine-learning is a statistical

method, inefficient or even system-damaging actions cannot be completely excluded, which

makes a rule-based security layer necessary.

Therefore, in this dissertation, the aim is to investigate the potential of RL for BES by

reviewing the scientific literature, proposing a promising design workflow, and performing

several experiments, to address some of the most urgent current research questions. The

experiments are performed considering real-world energy systems, taken from finished and

ongoing research projects that are kindly supported by the German Federal Ministry for

Economic Affairs and Climate Action. Inspired by these real-world application scenarios, the

conducted experiments make use of data-driven models of the real systems, simulation models

written in the modeling language Modelica [Müller et al., 2016], and a control application in

a real-world BES. For the implementation of the used RL algorithms, the Python library

Tensorflow [Agarwal et al., 2015] is used.

After elaborating on the open challenges in the use of MPC for BES and introducing RL

as an alternative with potential, the next section focuses on the goals and structure of this

dissertation. A structure is developed, which contains a workflow for the implementation of

RL-supported BES control systems, based on the motivation and the state-of-the-art review.

The presented procedure is then applied to the three application examples, which have been

inspired from the scientific work in research projects with real BES. The structure concludes

with a concluding discussion of the results and additional aspects addressing the experiences

made during the investigations, a conclusion, and an outlook for future research pathways

and possible products.

1.4 Goal and structure of the presented work

The structure of the presented work is visualized in figure 1.2. The objective of the work is

to investigate the applicability of novel RL algorithms for optimal control applications in the

context of BES control. For this purpose, the scientific literature is reviewed, a promising

RL control design workflow is proposed, several questions currently discussed in the scientific

literature are addressed, and associated experiments are conducted. The objectives of the

application case studies are:
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• to investigate the plug-and-play capabilities of RL algorithms,

• to investigate novel methods of monitoring data-driven pre-training of the algorithms,

• and finally to investigate the transferability of pre-trained algorithms from a simulation

into a real system.

The previous two sections motivate the presented work by introducing the challenges regarding

the optimal control of BES, the difficulties that come with the promising MPC approach, and

the potential of data-driven methods and RL.

First, in the next chapter, the fundamentals of RL are introduced and a detailed literature

review is conducted covering the fundamental research as well as the application of the al-

gorithms for BES. Based on this, the following chapter elaborates on the necessary steps

when developing a RL-supported BES automation and proposes a promising workflow. The

experiment framework developed in the course of this work as well as the tools and implemen-

tations used are presented in the following. Furthermore, an efficient method for the optimal

hyper-parameter identification of a RL controller is introduced. The chapter concludes with a

summary section of a comparison paper that has been published collaboratively with colleges

from the institute, in which a RL algorithm has been compared, evaluated, and discussed

against other novel BES control approaches. This is followed by an application chapter in

which three different application scenarios with different control objectives are presented. The

three application case studies are inspired by real-world energy systems investigated in the

course of finished and ongoing research projects. From case study to case study, lessons learned

are extracted, which are particularly relevant and therefore discussed for future work. Each

case study contains its own results and discussion section. The subsequent chapter provides

a consolidated discussion of the case studies covering also the lessons learned between the

case studies, and relevant aspects in future research and practical application. In the final

chapter, general conclusions are drawn and possible future research and product development

pathways are presented.
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Figure 1.2: The structure of the presented work.
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The last chapter introduced the general motivation to investigate optimal control methods

and data-driven methods in the field of BES. The promising MPC method with its advantages

and disadvantages has been described, and it has been elaborated how novel RL algorithms

can be a promising alternative. In this chapter, the key concepts of RL are introduced and

the potential for applying this promising approach to BES control applications is elaborated.

First, an introduction to the basic principles is presented, followed by a review of the funda-

mental research, and a classification of available algorithms in the field. The classification of

the algorithms includes a discussion of their characterizing design principles and their poten-

tial for the application in BES. After the presentation of the state-of-the-art of RL, a literature

review and discussion of the successful applications of the algorithms in BES control applica-

tions follows. The available application and review papers considered as particularly relevant

in the current scientific discussion are presented and discussed in more detail in a designated

section.

2.1 Fundamentals of Reinforcement Learning

As a subfamily of machine-learning algorithms, RL algorithms can be distinguished from the

other subfamilies by the type of feedback the algorithm receives during training. With unsu-

pervised learning algorithms, similarities are learned and the algorithm receives no feedback

at all. Contrarily, supervised learning algorithms receive immediate performance feedback for

the generated output. In RL, the algorithm receives delayed feedback and adjusts its actions

in order to maximize the numerical performance feedback (reward) from its environment over

time. Therefore, RL algorithms are particularly promising for optimal control applications,

where actions are performed to maximize a reward signal over time and sometimes actions

are rewarded with delay. Unless otherwise indicated, the introduced definitions refer to the

corresponding handbooks [Francois-Lavet et al., 2018; Sutton and Barto, 2018].

Figure 2.1 shows the basic framework of any RL process on the one hand and the loop

between pre-training and online interaction on the other hand. The algorithm receives state

observations and rewards from an environment, in our case a BES, and executes actions based

on these observations. In RL terminology (or, as introduced in the next section, Markov

Decision Process terminology), the state describes the current condition of the environment

and the state-space describes the space of all possible states an environment can have. The
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RL algorithm and
definition of hyper-

parameter

Action atReward rt

rt+1

st+1

State st

Training
environment

Pre-training 

RL algorithm

Action atReward rt

rt+1

st+1

State st

Deployment

Pre-training
performance criteria is

fulfilled

Online performance criteria is
not fulfilled

Figure 2.1: The basic concept: A RL algorithm interacts with an environment. It performs
actions, based on state observations, rewards, and resulting next states. In addi-
tion, the pre-training and deployment loop is illustrated, which should be added
for technical systems.

same applies to the executed action, where the space of all possible actions is referred to as

the action-space. The reward is a numerical signal from the environment, which evaluates

a state usually via a mathematical function. When it comes to policy learning, for example

in the case of the RL subcategory Q-Learning, the experience of the algorithm is stored in

a learned state-action-value relationship (called Q-values) that maps state-action pairs to

action-values. The Q-values, i.e. the value of performing a certain action in a certain state,

result from a designed reward function in combination with the historical actions selected.

In its simplest and original form, Q-values are stored in a lookup table as exemplarily shown

in figure 2.2. Here, each possible action in a given state is assigned a value based on the

immediate and future possible reward. More on Q-Learning and its further developments

in recent years in section 2.4. The characteristics of the algorithm is influenced by several

parameters (called hyper-parameters). Fundamental hyper-parameters are the learning rate,

the exploration rate, and the discount factor. By manipulating these numerical values, it is

possible to determine multiple aspects: how quickly the algorithm adapts to new observations,

whether the algorithm performs the action that appears to be the optimal one in a given state,

or whether it takes new paths through the environment to enhance the system experience, and

how strongly the algorithm weights large rewards in the future against small rewards from the

current state. If the information from the environment is complete and the hyper-parameters

and reward signal are well chosen, the algorithm improves its policy in order to maximize the

reward from the environment over time.
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Figure 2.2: Exemplary representation of a Q-value lookup table. Each possible action, of each
possible system state receives a value, which indicates the preferable action deci-
sion. A Q-value is composed of the immediate expected reward and the maximum
Q-value of the resulting next state.

For technical systems where training of the RL algorithm on the real system is not possible, e.g.

because the training time until optimal actions are learned is impractical, a pre-training phase

is necessary. In this pre-training phase, the algorithm is trained either offline, by means of

monitoring data, by an appropriate simulation, or on a test bench. If the defined performance

criterion is fulfilled, the algorithm can be used on the real system. If, on the other hand,

performance criteria are violated during application on the real system, for example because

temperature limits are exceeded or not reached, the algorithm must return to pre-training

after the problem has been evaluated by an expert. Possible reasons that an algorithm shows

a different policy when applied to a real system after pre-training are, for example, data

quality obtained via sensors or inaccuracies of used forecasts. These aspects will be further

addressed in chapter 3.

2.2 History of fundamental Reinforcement Learning research

After giving an overview over the basic concepts of RL in the last section, a summary of the

fundamental research in the field is presented in this section.

Like MPC, RL has its roots in optimal control theory for dynamic systems, which was further

developed in 1957 through Richard E. Bellman’s dynamic programming and is based on earlier

work (early 19th century) done in the context of the Hamilton-Jacobi theory [Bryson, 1996].

The idea behind any optimal control approach is always to compute the optimal control actions

for a controlled system. This requires some kind of description of the system dynamics and a
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cost function that assigns a certain value to certain system states. On this basis, the optimal

combination of actions for a system can be calculated, for example, by means of dynamic

programming.

Traditionally, and as still done today in white-box MPC, the system description is given

through a mathematical description of the system to be controlled, which can be used for

mathematical optimization. The mathematical description fulfills the functionality of a system

model, which returns for different actions correspondingly different resulting system states.

These are then evaluated with respect to the cost (or objective) functions. The term model is

particularly important here, since it represents the essential distinguishing criterion between

the different optimal control families and thus also the different MPC and RL families. It is

not clearly described what exactly fulfills the properties of a model and the definitions differ

in different areas of science. Generally speaking, scientific models always have the purpose

to describe a certain part of the world in a simplified way and to generate useful outputs for

defined inputs [Frigg and Hartmann, 2020]. The question of which part of the discussed MPC

and RL algorithms fulfills this property will be discussed again in the following. In most RL

families, stochastic models are used, which approximate certain equations from the optimal

control theory. However, this is also the case for black-box MPC, which already shows the

difficulty of a sharp separation of these two control approaches.

As illustrated in figure 2.3, there has been a strong increase in the number of publications

in the last decade. One reason is that some fundamental stability problems in the training

of neural networks as function approximators were solved and published in 2013. This led

to a significant increase in generalizability of the algorithms and the potential to process

high-dimensional inputs.

Figure 2.3: Research in the field of RL: Number of publications, accessible via Scopus
(https://www.scopus.com (Accessed: 24.11.2023)).

14



2 Reinforcement Learning

As visualized in figure 2.4, the basic concept of a value function, which not just includes the

immediate reward of an action but provides a numerical signal of how valuable an action

in a certain state is, goes back to the early years of optimal control theory [Bellman, 1954].

In addition to the basics from this field, the Markov Decision Process (MDP) represents

another key concept for RL; It was proposed in 1957 by the Russian mathematician Andrei

Andreyevich Markov and represents a form of his state chains, extended by actions and reward

signals, and has become the standardized framework for the description of sequential decision

problems.

The promising results published since 2013 in this research field, however, have been achieved

by using neural networks [Rosenblatt, 1958] as function approximators. The research group

DeepMind demonstrated how RL algorithms with neural networks-based state-space approx-

imation can be trained to play Atari games on a super human performance level [Mnih et al.,

2015], not only in discrete action-spaces (finite number of actions) but also in continuous

action-spaces (actions in the form of a float number within defined bounds) [Lillicrap et al.,

2015]. These RL algorithms showed promising results by learning the value function not only

by performing actions but also by learning through passive observation of an applied control

policy [Hester et al., 2018]. The last publication is particularly interesting because model-free

RL shows its full potential to reduce manual engineering if the modeling of a training environ-

ment can be avoided. In 2017, a publication led to learning an optimal policy for the Asian

board game Go using a RL algorithm. [Silver et al., 2017]. The algorithm beat the current

champions of the game in a competition. The game was previously considered impossible

to solve by machines because of its almost infinite state- and action-space and its stochastic

nature. Annually, numerous publications appear, in which the presented RL algorithms are

trained to be more data-efficient and to interact more and more robustly with highly dynamic

and hard-to-predict environments.

Figure 2.4: Time-line of selected research in the field of RL.
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2.3 Classification of Reinforcement Learning algorithms

In this section, a classification of published/available RL algorithms is given. As shown in

figure 2.5, RL algorithms are initially divided into two families: algorithms in which the control

actions are performed on the basis of a model of the controlled environment and algorithms

where the control actions are performed without a model. "Without model" in this context

refers to the absence of a black-box or white-box model representing the physical dynamics of

the system only in combination with a planner (optimizer), which executes the model to plan

the optimal action pathway. Nevertheless, in the course of learning, (in the light of different

definitions of the term model) model building takes place in the form of learning to forecast

the expected future rewards that result from a certain action in a certain state.

While model-based algorithms typically use data from interactions to learn a model of the en-

vironment, which is then used for stochastic or deterministic planning, model-free algorithms

use the data to learn other functional relationships from optimal control theory, to evaluate

and select the control actions. In the case of model-based approaches, the distinction from

data-driven MPC is not fully determined in the literature. An attempt of a clear classification

was made in [Nagy et al., 2018]. The authors elaborate that only the exploration strategy,

i.e. the structured increase of system experience (in the form of interaction data) as well as

the adaptivity of the policy itself, are unique for RL. While in MPC typically a strict math-

ematical optimization is performed based on the model of the environment, model-based RL

learns the best practice for the controlled environment using a combination of an adaptive

model and an adaptive policy.

However, algorithms referred to as model-free have some highly promising advantages for the

use in BES control applications. With comparable good control performance, the resulting

computational costs (after training) are significantly lower, which is particularly relevant for

the use in existing buildings, where the computing power is often a limiting factor for the

implementation of energy management and contol logics. Further, the adaptation to changes

in the controlled environment is much faster, as long as the overall relationship between

states, actions, and rewards of the control task does not change. This is supported by the

results also published in [Nagy et al., 2018], where the authors compared white-box MPC,

black-box MPC, model-based RL, and model-free RL for space heating control of a simulated

building model [Ruelens, 2016]. They elaborate that with comparable performances, the

computational costs of model-based RL are more than 20 times higher than those of the

model-free RL algorithm. They also underline the stability of the model-free RL approach

against sudden changes in the environment. At the same time, they emphasize the higher

sample efficiency and overall performance of the model-based approach. However, the sample

efficiency in particular has been significantly increased for model-free algorithms since then

[Haarnoja et al., 2018; Hessel et al., 2017]. Even though model-based algorithms can achieve a

higher maximum control performance in theory, the model-free algorithms are evaluated being
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more promising for real-world BES control applications due to their lower required computing

power and higher robustness against changes in the system (which with the model-based family

lead to instant model errors and thus critical losses in control performance). The model-free

family of algorithms is therefore considered in the course of this work.

The model-free family is further divided into algorithms where the control policy is directly

learned, for example using gradient descent methods with neural networks, and those where a

state-action-value function is learned. The latter, referred to as Q-Learning, in turn have some

inherent advantages for use in BES control applications. Here the state-action-value function is

learned from environment transitions (in form of: [state, action, next state, reward] samples),

thus the experience can be extracted from data fragments from the system. Monitoring data

can be used for training, and the algorithms can therefore be trained by passive observation

of other control policies.

In the other group (called policy optimization) the policy is learned directly on the basis

of the reward history during fixed episodes of interaction. A new policy must always be

applied for a fixed episode (period of time, for example weeks) before the algorithm computes

the series of rewards received during that episode and updates the policy according to the

gradients. In contrast to Q-Learning, the algorithm evaluates not only the benefits of the

immediately following states, but also the reward history of the entire episode. Every update

to the policy must be tested by interacting with the system, under the constraint that the

policy is not updated during the episodes. Until the optimal policy is reached, many test

weeks with suboptimal policies may have to be carried out. The data-efficiency of the policy

optimization-based family is therefore lower. This significantly limits the potential for use

in real systems. Emphasizing this, the authors of [Biemann et al., 2021] found that, with

a state-of-the-art Q-Learning-based algorithm for continuous control (the SAC algorithm), a

typical data center cooling control problem was solved with ten times less data compared to

a state-of-the-art policy optimization-based algorithm.

Therefore, taking the comparable final control performance, the data-efficiency, and the offline

training ability into account, the focus of most publications in the field and of the investigations

carried out in the course of this work consider Q-Learning and hybrid algorithms (combining

Q-Learning and policy optimization techniques). Algorithms for continuous as well as discrete

control actions are available, and stability and performance improvements for the algorithm

architectures are published almost monthly. This is also clearly reflected in the representation

of these algorithms in the discussed papers in section 2.7.
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Figure 2.5: Families of RL algorithms according to the popular Deep RL OpenAI repository
Spinning Up [OpenAI Spinning Up, 2020]. The algorithms relevant for this work
are marked in red. PPO: Proximal Policy Optimization, DDPG: Deep Determin-
istic Policy Gradient, SAC: Soft-Actor-Critic, and DQN: Deep Q-Network.

2.4 Markov Decision Processes and Q-Learning

The established framework for the description of RL problems is the Markov Decision Process

(MDP), which represents a formalized description for sequential decision problems [Sutton

and Barto, 2018]. A MDP is characterized by its state-space S, action-space A, transition

probabilities (from one state to a next state S′) Pr : S×A×S′, a reward function R : S×A,

and a discount factor γ. If the MDP is well formulated, the interacting RL algorithm learns the

optimal actions in the possible MDP states, encoded in the optimal policy (π∗) and maximizes

the expected total reward over time.

If the transition probabilities are known, the MDP is considered as a planning problem [Sam-

mut and Webb, 2017]. In this case, the MDP can be solved via dynamic programming: since

the transition probabilities encode the dynamic behavior of the environment to be controlled,

an optimizer can test its control actions on this model and calculate the optimal set of actions

with respect to the reward function. The white- or black-box models used for traditional and

data-driven MPC, as well as the model in model-based RL, therefore encode the transition

probabilities of the environment in MDP terminology.

However, since in most real-world applications a detailed model of the controlled environment

is not available (or only with high engineering effort), methods have been developed to solve

the MDP without prior knowledge of the system dynamics [Wooldridge, 2001]. The optimal

18



2 Reinforcement Learning

policy (π∗ : S 7→ A) is the functional relationship which maps states to actions and represents

the relationship to be learned in those approaches. Among this family of algorithms referred to

as model-free, a further distinction is made between policy optimization-based approaches and

value-based approaches. As outlined in section 2.3, value-based approaches are particularly

interesting for BES as the algorithms can learn from incomplete episodes, can be trained

with historical data, and are more robust against changes in the controlled environment while

reaching a similar control performance as the policy-based algorithms.

A well researched family of algorithms encoding the optimal policy in form of the Q-values

(state-action-values) is called Q-Learning. With Q-Learning, the optimal policy is learned

implicitly in the form of the values of states and the actions in states. Those combinations are

called Q-values, and therefore the learning process is referred to as Q-Learning. In the basic

form, the Q-values (which encode the direct and future rewards from an action in a state)

are stored in a lookup table, as illustrated in figure 2.2. During learning, the updates of the

Q-values (Q(s, a)) are then propagated back through the table using the Bellmann equation

[Bellman, 1956]:

Q(s, a)
︸ ︷︷ ︸

new value

← (1− α) ·Q(s, a)
︸ ︷︷ ︸

old value

+ α
︸︷︷︸

learning rate

·(r(s, a)
︸ ︷︷ ︸

reward

+ γ
︸︷︷︸

discount factor

· max
a′

Q(s′, a′)
︸ ︷︷ ︸

expected reward

) (2.1)

According to equation 2.1, Q(s, a) is an estimation of the future discounted (γ) rewards, ex-

pected when selecting a certain action (a) in a given state (s). The learning rate α represents

the sensitivity against new experiences over past experiences, and the discount factor γ deter-

mines the weighting between immediate and future rewards. Therefore, the maximum (max)

Q-value of the next state (which is expected to result from the current action) encodes how

beneficial the action will be for future rewards. The discount factor determines (γ) how much

the algorithm should plan, which means how much future possible rewards (encoded in the

maximum Q-value of the next state) are weighed against immediate rewards.

During training, random actions are chosen with a decreasing probability. The ε-greedy

exploration strategy is one approach to balance exploration and exploitation throughout the

training process: ε specifies the probability for the controller to select a random action against

exploiting the learned policy. During training, ε is progressively decreased in each training

episode (n): ε→ 0 for n→ nmax.

After training, the action is selected from the table via:

a = arg max Q(s, a) (2.2)
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Therefore, this approach does not require a separate optimizer which tests control actions on

a model of the system dynamics, hence the classification as model-free. Nevertheless, a kind of

model building takes place by learning to predict the expected immediate and future rewards

that result from a particular action in a particular state. The Q-values therefore encode the

result of an optimization leading to the optimal actions in certain states.

2.5 State-of-the-art for discrete control applications

Discrete control applications are characterized by the actions only being selected from a

given and countable set of possibilities. For large and/or stochastic state-spaces, tabular Q-

Learning is not suitable due to the "curse of dimensionality", which referrers to the issue that

with each added state-space feature, the dimension of the space and therefore the complexity

of the MDP increases over-proportionally. Therefore, for complex applications (as most real-

world applications are) function approximation of the state-action-values (Qπ(s, a)) has been

established in the literature [Buchanan, 2005].

While early implementations were characterized by poor generalizability and performance, the

promising results published in recent years have been achieved by using neural networks as

approximators. A solution for the stable training of neural networks as function approximators

was first published in 2013 [Mnih et al., 2013]. With the proposed design principles, much

more complex and highly non-linear problems have become solvable, as it was demonstrated

on 49 Atari 2600 games [Mnih et al., 2015]. Since then, deep neural networks have become

an established method for the approximation of the Q-function.

The schematic structure of a Deep Q-Network (DQN) for state-action-value approximation

is shown in figure 2.7. The input layer is the state-vector s with n entries. After a certain

number of hidden layers, the output layer with m possible actions contains a value-entry for

each action (a1−m). This design is necessary for the integration of the neural network into

the Q-Learning architecture. While after training a single output neuron would be sufficient,

which outputs the selected action, the update function (Bellmann equation 2.1) processes

the evaluation of all possible action values. Hence, the architecture of assigning a value to

each action and then, after training, choosing the action according to the highest value. The

tunable parameters of a DQN are iteratively updated via stochastic gradient descent and back-

propagated through the network. After training, the DQN represents a data-driven model

that does not only represent the dynamics of the environment but also a predictive model of

future states and the resulting future expected reward value.

The authors of [Mnih et al., 2015] introduced a novel DQN architecture, as visualized in

figure 2.6. The two effective improvements are: To reduce the correlations in the sequence of

training samples resulting from direct training with data from online interaction, experience

replay in the form of a data replay memory is used. Transitions (s, a, r, s′) are stored, and for
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each network update, a certain number is randomly selected for training the DQN parameters

(θ). Further, to improve the stability of learning, a target-network (with own parameters θ−)

is introduced, whose trainable parameters remain constant for a fixed number of steps. The

target-network is used to calculate the target-Q-values for the Q-network updates according to

the Bellman equation (2.1). Thus, the modified loss function resulting from a set of randomly

selected transitions from the experience memory is:

Li(θi) = E
(s,a,r,s′)

[(r(s, a) + γ max
a′

Q(s′, a′|θ−)
︸ ︷︷ ︸

T arget Q

− Q(s, a|θ)
︸ ︷︷ ︸

P redicted Q

)2] (2.3)

(s, a)

Q-network

Replay Memory

Calculation loss for the DQN training 

Gradient loss Predicted Q Target Q

Environment

(s, a, r, s´)

Update

Target-network

(s´)

(r)

(a)

(s)

Figure 2.6: The DQN architecture proposed by the authors of [Mnih et al., 2015]. The target-
network predicts the value of the next state for training the Q-network. The
Q-network interacts with the environment. The loss function gives the gradient
for training the Q-network. Training is not performed with correlated data from
the immediate interaction but with random data from the replay memory. The
target-network is updated from the Q-network regularly but not in every training
cycle, which stabilizes the training.

A well-tested implementation of the algorithm is provided within the Python package Stable-

Baseline [Hill et al., 2018]. The implementation includes the state-of-the-art improvements to

the DQN training process: A replay memory serves as an internal sample storage and breaks

correlations within the training samples and further increases sample efficiency by selecting

and reusing random training samples from the storage [Schaul et al., 2015]. Prioritized replay

accelerates the training speed by selecting training samples from the replay memory, which

lead to a higher loss and therefore to faster training of the neural network [Schaul et al.,
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2015]. Double Q-Learning improves numerical stability by alternatingly using one network

(i.e. the current network) to predict the current Q-values while the other one is updated

with the training samples (i.e. the target-network) [Hasselt et al., 2016]. The "dueling" DQN

architecture divides the Q-value estimation in two separate sequences of fully-connected layers

after the entry layer [Wang et al., 2016]. The streams estimate a state-value and an action

advantage, which are combined at the end for the Q-value estimation of the state-action pair.

This extension restricts the action-space to actions that are more promising in the state, thus

speeding up the training. In the default settings, two hidden layers with 64 neurons, using

rectified linear units (ReLU) activation functions, are implemented.

Input state-vector
Hidden layer

Q-Value
action m

Q-Value
action 1

1

2

n-1

n

w(1,1) b(1,1)
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Figure 2.7: State-action-value approximation with a neural network. The network receives
the state and returns the Q-values for m discrete actions possible in that state.
While after training a single output neuron would be sufficient (which outputs
the selected action) the update function (Bellmann equation 2.1) processes the
evaluation of all possible action-values.

2.6 State-of-the-art for continuous control applications

Unlike discrete control tasks, continuous tasks do not limit the number of possible actions.

Rather, a floating number within defined limits is calculated. The corresponding family of

algorithms is therefore more suitable when the action-space is limited but the optimal outputs

cannot be defined in advance by countable actions. A possible action-space would be, for

example, a valve position, which can only be between 0 % and 100 %, and can have any value

in between. For discrete algorithms, 100 possible actions would have to be given, which would

be completely independent of each other for the algorithm and would all have to be tested for

each state of the MDP.

The state-of-the-art for continuous control tasks in continuous action-spaces follows the actor-
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critic architecture, a hybrid between policy-based algorithms and value-based algorithms.

In the actor-critic approach, the actor-network learns a control policy πθ(s, a) (stochastic

or deterministic) by updating the policy parameters θ via gradient ascent [Sutton et al.,

2000]. The critic-network represents the approximation of the state-action-value function

Q(s, a|at = πθ(s)), as described in section 2.5. Q(s, a|at = πθ(s)) is used to calculate the

gradients for the actor-network updates and thereby iteratively optimizes the policy πθ. The

schematic structure of the architecture is shown in figure 2.8. For each interaction with the

environment, the reward from the environment is used together with the current state and

the action performed by the actor-network to train the critic-network. This way it is possible

to learn the value of an action in a state even without pre-defining the number of actions.

The continuous output of the actor-network serves as input for the critic-network along with

the observation (current state) from the environment. The Q-value output from the critic-

network, on the other hand, is used to evaluate the action performed by the actor-network and

is used to determine the gradients for the gradient ascent-based update of the critic-network.

A closed loop of improving the policy (through an updated actor-network) and improving

the action evaluation (through an updated critic-network) results. After training, the critic-

network is not needed anymore and the trained actor-network can be deployed independently.

Environment

(a)

Critic-network

(s)

(a)

(r)

Calculation loss for
training actor- and critic-

network

Q(s,a)

Actor-network
Update critic

Update actor

Figure 2.8: Schematic structure of the actor-critic approach: The critic-network is used to
calculate the value (Q) of state-action pairs (s,a). Q is used to calculate the
gradient for the training of the actor-network, which is via states (s) and actions
(a) in direct interaction with the environment. The reward is used to evaluate
the action of the actor-network by the critic-network on the one hand and on the
other to calculate the gradient for the update of the critic-network. A closed loop
of improving the policy (through an updated actor-network) and improving the
action evaluation (through an updated critic-network) results.

For DDPG (Deep Deterministic Policy Gradient), a well-tested implementation of the ap-

proach is also provided within the Python package Stable-Baseline [Hill et al., 2018]. Both

networks are updated with target-networks and the critic has a replay memory (like the DQN
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introduced in section 2.5). The DDPG can therefore be understood as an extension of the

DQN for continuous action-spaces. For a comprehensive description of the underlying mathe-

matics, the following literature is recommended: [Silver et al., 2014; Sutton and Barto, 2018].

The best results in terms of convergence speed, stability, and final performance in literature

are achieved by the so-called Soft-Actor-Critic (SAC) algorithm. SAC is a slightly modified

version of the DDPG algorithm [Lillicrap et al., 2015] that uses entropy1 regularization for the

exploration-exploitation trade-off and optimizes a stochastic policy that allows to incorporate

uncertainties in the environment better [Haarnoja et al., 2018]. With entropy regularization,

the policy is optimized by maximizing a trade-off between expected reward and entropy (reg-

ulating the exploration-exploitation process). Within the context of entropy-regularized RL,

entropy is an indicator for the information density of samples from a stochastic source (the

environment). The idea is to incorporate the predictability of the effects that actions (se-

lected by an algorithm) have on the environment. Entropy-regularized RL therefore changes

the standard objective function by adding an entropy term. This way, the algorithm receives

a bonus reward at each time-step that is proportional to the entropy of the policy in the given

state.

2.7 Review of applications in the field of building energy systems

In this section, a general overview of the current literature in the field of RL for BES is

presented first. This is followed by a more detailed discussion of selected publications. Based

on this, in the next section, open research questions are elaborated, which are addressed in

this work.

2.7.1 Literature overview

RL has been studied in recent years for many different optimal control problems in energy

systems in general and also for BES. In the literature, the investigated systems can be divided

into four categories: Optimal HVAC and BES system operation [Wan et al., 2018; Wang et al.,

2017; Yang et al., 2015], smart grids and energy systems [Bahrami et al., 2018; Biemann et al.,

2021; Rayati et al., 2015], distributed energy systems [Kofinas et al., 2018; Pinto, Piscitelli,

Vázquez-Canteli, Nagy and Capozzoli, 2021; Touzani et al., 2021], and optimal electric vehicle

operation [Dorokhova et al., 2021; Vandael et al., 2015]. The recurring control objectives are:

Energy efficiency and occupant comfort in buildings [Nagy et al., 2018; Zhang et al., 2018],

reduction of temperature deviations from setpoints in energy systems [Al-jabery et al., 2017]

1Entropy originates from thermodynamics and describes the increasing stochastic disorder of the particles of

a closed system in the context of the second law, when heat or matter is added. In contrast to this, entropy

in computer science is also a measure of disorder, but it refers to interference signals that occur with the

actual signal and to the computational effort required to expose the actual signal.
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or adaptivity to external signals in demand response applications [Vázquez-Canteli, Ulyanin,

Kämpf and Nagy, 2019; Zhong et al., 2021]. As with other optimal control methods for BES,

the use of thermal energy storages under dynamic boundary conditions has been investigated

in many studies. The applicability of RL for the optimal use of thermal storage systems

was already investigated with a simulated laboratory environment in 2006. The authors

demonstrated that although RL does not reach the performance of MPC, RBC was clearly

outperformed [Liu and Henze, 2006]. Three years later, the authors of a comparative study

between MPC and RL in a BES control application concluded that the control performance

of RL can reach the control performance of MPC, even in cases where a deterministic system

model is available [Ernst et al., 2009].

Since then, RL has been studied for the control of low exergy BES [Yang et al., 2015], energy

management in microgrids [Kofinas et al., 2018], process energy control [Dong et al., 2020;

Filipe et al., 2019], for optimal control of HVAC systems [Brandi et al., 2020; Chen et al.,

2018; Jia et al., 2019], battery storages [Shang et al., 2020], and the coordination of thermostat

controllable loads [Kazmi et al., 2019]. In [Yang et al., 2015] the authors demonstrated how

RL can find a control policy for a low-exergy building equipped with PV and geothermal

heat pumps for which MPC would have been unnecessarily complex. They also demonstrated

how to overcome the potentially data-inefficient controller training by linking training data

generation to a simple guiding RBC. In [Vázquez-Canteli et al., 2017], the authors used Q-

Learning to optimize the heating and cooling of a heat pump and storage equipped building. In

[Chen et al., 2018], the authors used tabular Q-Learning to control a HVAC system combined

with controllable windows for natural ventilation. Compared to a classical RBC strategy,

up to 23 % energy savings were achieved with significant increase in occupant comfort. A

drawback is that with tabular Q-Learning, the learning process can be unstable with large

time gaps between actions and associated rewards.

Driven by the reasons introduced in section 2.3, in the literature on RL for energy systems,

there is a strong trend towards model-free, value-based approaches, such as Q-Learning. Deep

Q-Learning is the most widely used RL technique [Han et al., 2019] and energy savings of

10-20 % (compared to RBC) are typically published [Mason and Grijalva, 2019]. However,

although offline training with monitoring data is a promising option for such algorithms,

comparatively few studies have focused on the possibility of training the RL controller in

this way [Vázquez-Canteli, Ulyanin, Kämpf and Nagy, 2019; Yang et al., 2015], and even

fewer studies have investigated the potential of using monitoring data to learn a data-driven

training environment for the algorithm. [Di Natale et al., 2021; Lork et al., 2020; Schubnel

et al., 2018].

Some studies also investigated control applications with continuous action-spaces. In [Li,

2017], an actor-critic algorithm was used to control the HVAC system of a data-center. With

data-calibrated EnergyPlus models, the authors saved 15 % energy costs. The authors of
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[Biemann et al., 2021] investigated a similar use case and highlighted the robustness, per-

formance, and training data efficiency of the used SAC algorithm. A real-world system was

controlled in [Ruelens et al., 2018]. The authors used Fitted Q-Iteration (an earlier version

of machine-learning based Q-Learning) for electric water heater control in a laboratory and

reduced energy consumption over 40 days by 15 % compared to classic thermostatic control.

In [Kofinas et al., 2018], the authors proposed a cooperative multi-agent RL technique with

fuzzy state-space approximation in a continuous action-space. The controlled microgrid in-

cluded PV, a fuel cell, and a diesel generator as well as a battery bank and was efficiently

controlled by the coordinated agents.

Rather few studies provide critical views on RL algorithms. One is provided in [Khayatian

et al., 2021]. The authors investigated the robustness of RL algorithms against uncertainties.

For this purpose, artificial load profiles of buildings were generated and used as a basis for

decision making for both a RBC algorithm and a trained RL algorithm. They found that

the RL algorithm, as long as it is trained with little data, is very sensitive to uncertainties

and unseen system states. They conclude that the control performance of RL algorithms for

real-world applications might be over-estimated.

In recent years, some comprehensive review articles have been published on the topic. A

comprehensive review, with the focus on RL in demand response applications, can be found

in [Vázquez-Canteli and Nagy, 2019]. More recently, another comprehensive review about the

current state of research has been published in [Wang and Hong, 2020]. Based on 77 eval-

uated studies, a wide variety of BES, algorithms, and control objectives are discussed. The

authors conclude that, due to the inherent trial-and-error process, RL online training can be

very data- and time-demanding. They also address the question of how to avoid undesirable

actions during training and conclude that pre-training with monitoring data and with a simu-

lation environment as well as the use of expert knowledge are particularly promising. Further

published reviews for BES control RL application with a focus on autonomous BES control

and controlling occupant comfort can be found in [Mason and Grijalva, 2019] and in [Han

et al., 2019]. As well as one review with a broader focus on the application of RL to different

energy systems, not only BES [Perera and Kamalaruban, 2021]. This study also highlights

how the popularity of the method continues to grow, whereas the popularity of MPC has

plateaued at a high level.

2.7.2 Discussion of selected publications

After providing an overview of the literature on RL for BES in the last subsection, this

subsection now discusses selected publications in more detail.

Important groundwork for the use of RL for demand response with residential buildings was

carried out in the course of a dissertation at the KU Leuven [Ruelens, 2016]. As well as
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in the course of the from this dissertation extracted and through it inspired publications

[Nagy et al., 2018; Ruelens et al., 2018]. The authors investigated the limits of buffer storage

sensor encoding with an innovative neural network architecture (autoencoder) and tested their

algorithm in a real-world application with the objective to exploit the storage capacities of

electric water heaters for demand response. Besides this interesting case study, an essential

contribution lies in the scientific comparison of data-driven MPC, model-based RL, and model-

free RL. On the one hand, a distinction between data-driven MPC was elaborated, which has

been discussed in section 2.3. On the other hand, a performance comparison between model-

free and model-based RL for a typical demand response use case for a single family building

was published here. While model-based RL can almost reach the performance of MPC and is

slightly more data-efficient, the strengths of model-free RL are the much lower computational

costs and the robustness of the algorithms against changes in the controlled system. This is

especially relevant considering BES where computing power is a limiting factor and system

changes (due to changes in occupant behavior or aging energy systems) are unavoidable.

Another effort to compare the performance of different RL algorithms against MPC was made

in [Dorokhova et al., 2021]. The authors compared the continuous control DDPG, the discrete

control DQN, stochastic MPC, deterministic MPC, and a RBC for the control task of maxi-

mizing the PV self-consumption for electric vehicle charging. The competing control objective

has been defined as the state of charge of the battery of the vehicle when the vehicle is started.

In their mathematically formulated experimental setup, the RL algorithms achieved slightly

lower but comparable performance compared to the MPC algorithms, but with significantly

shorter computation times. The MPC algorithms clearly achieved the highest control perfor-

mance but were critically evaluated, in particular because of the complex model formulation

and the long computation times. It is noteworthy that the RBC algorithm also performed

very well. However, the authors argue that the potential is limited when systems become

more complex, especially if vehicle-to-grid would become relevant for power grid stabilization

in the future, the control rules would be too complex for such applications.

One of the most comprehensive reviews of RL for BES control was published in [Wang and

Hong, 2020]. The authors discussed 77 studies with a special focus on the correct application

of RL-specific design principles. Namely the consideration of the Markov Property, which

declares that the future of a MDP must be predictable from its current state only [Sutton and

Barto, 2018]. They found that this was hardly fulfilled in most of the investigated problem

formulations, because:

• 91 % did not include historical data, which is problematic, considering the slow building

thermal dynamics, and

• 83 % did not include predicted states, such as weather forecasts.

Both aspects are critical with respect to the achievable performance of the algorithms. The

first because the current dynamics of the system are hardly assessable purely on the basis
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of current sensor values and the second because the algorithm is not provided with impor-

tant information for forward-planning actions and thus tends to operate the system overly

cautiously. Further, the authors stated that even most of the very recent publications use

comparatively simple algorithms and do not make use of recent RL innovations in terms of

stability and convergence speed. They also found that very few studies make it into practical

application, just 11 % of the controllers were implemented in actual buildings.

The authors concluded with three main challenges that need to be addressed to exploit the

full potential of RL for BES:

• To increase the applicability in real buildings, the training speed and robustness must

be improved.

• To establish comparability between RL controllers, standardized open-source testbeds

and datasets are required.

• To use trained RL controllers for different tasks, the generalization capabilities need to

be improved.

One of the most visible projects in RL for demand response for BES is the CityLean challenge

[Nagy et al., 2021]. The challenge was originally started to address the problem of lack-

ing comparability of different RL algorithms and methods by publishing a documented and

standardized training and testing environment on GitHub. The task of the RL application

consists in the coordinated electricity supply of 10 buildings (residential and non-residential)

with the aim to avoid peaks in demand and to keep the total energy demand as low as pos-

sible. For this purpose, the thermal demands of the buildings in four different climate zones

were simulated upfront and added to the environment. The electricity demand results from

the operation of air-to-water heat pumps and chillers which can be controlled together with

the temperature setpoints for thermal storages in the buildings. The buildings are equipped

with different systems, for example, some have PV panels on the roof. This leads to dif-

ferent state-spaces for the individual buildings. Unpublished test demand time-series were

used to evaluate the solutions proposed by the participants, and the submitted RL algorithms

and problem formulations were compared in terms of their performance. The challenge en-

tered its second phase in 2021 and several creative solutions were published for the problem

[Pinto, Deltetto and Capozzoli, 2021; Pinto, Piscitelli, Vázquez-Canteli, Nagy and Capoz-

zoli, 2021; Vázquez-Canteli, Detjeen, Henze, Kämpf and Nagy, 2019; Vázquez-Canteli et al.,

2020]. One of the most promising spproaches comes from one of the challenge developers

himself [Vázquez-Canteli et al., 2020]. It involves controlling each building with a SAC algo-

rithm that calculates the actions. At the same time, each building has a simple prediction

algorithm of the future energy demand of the building. The RL algorithm receives the current

state of its building, along with this prediction and the demands of its direct neighbors. By

formulating the problem in this way and rewarding coordinated actions, coordinated agent
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actions are generated; this approach theoretically works for a very large number of buildings,

as in the case of a large city.

Two studies addressing the problems of applying RL in practice were published in [Touzani

et al., 2021] and in [Zhang et al., 2021]. In [Zhang et al., 2021], the authors implemented

a testbed for RL-based energy management for demand response. The authors describe the

necessary hard- and software to translate signals from a cloud-based RL energy management

system into real actuator signals. The developed testbed, including monitoring of the technical

equipment, is presented and the interaction with a Q-Learning algorithm is described. Al-

though the published energy savings after training the algorithm are very promising, the main

contribution is the description of the interaction between the RL algorithm and the real sen-

sors and actuators. An application of RL for a real BES was also published in [Touzani et al.,

2021]. The authors use a DDPG algorithm to control the BES of the so-called FLEXLAB,

a well-equipped experimental test facility at the Lawrence Berkeley National Laboratory in

Berkeley, California, United States. The HVAC systems of the building are controlled in

combination with a battery storage and a PV system. The DDPG was previously trained

with a simulation and was subsequently evaluated against a state-of-the-art RBC algorithm.

Under dynamic price signals, load shifting saved up to 39 % costs while maintaining thermal

comfort.

In [Brandi et al., 2020], the authors demonstrated Deep Q-Learning for the optimization of

indoor temperature control and heating energy consumption in a simulated office building.

The control objective was to optimize the energy consumption of the environment, designed

to meet the dynamic behavior of an office building case study located in Torino, Italy. The

authors emphasize that activated learning (learning rate > 0) can lead to instable interaction,

if the problem is not well formulated. After a sensitivity analysis of the hyper-parameters,

they published energy savings between 5 % and 12 %. Although the analysis was carried out

carefully, the authors did not aim for an optimal hyper-parameter selection for this problem. A

question raised by this work is whether the process of optimal hyper-parameter determination

can be automated and improved by available stochastic methods such as Bayesian hyper-

parameter search.

The authors of [Kotevska et al., 2020] identified the interpretability and the trust of operators

in the quality of the actions performed by RL algorithms as a core challenge of RL research

in the BES domain. To address this challenge, methods are presented to compute correla-

tions between the input features from the state-space and the probability that the algorithm

performs a certain action. For demonstration purposes, data from a real building is used

and coupled with a simulation environment. The algorithm used (DQN) is trained to control

a heat pump and temperature setpoints from two rooms under dynamic outdoor tempera-

tures and price signals. After training, the action probabilities of the algorithm, the feature

importance for certain actions, and other metrics are calculated for each system state. The
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presented approach by means of visualization and the interpretation of the actions via expert

knowledge enables an interpretation of the RL actions. Thus, confidence in the reliability and

performance of the systems can be generated by the proposed procedure.

2.8 Open research questions

The literature review conducted shows that despite the large number of successful demon-

strations, there is still a significant need for research before RL can be widely used for BES

control application. In many still not investigated application scenarios, the challenge will

be to exploit the adaptivity and control performance of RL algorithms for widespread use,

without having to repeatedly undertake the same high degree of training and engineering

effort for each individual energy system. Since, after training, RL algorithms map system

states directly to optimal actions without much computing power requirements, there is great

potential for the implementation directly with the building automation infrastructure. How-

ever, the plug-and-play capabilities of the algorithms to solve BES control problems (when

used as published and just connected to sensors) are not yet sufficient to actually reduce the

engineering effort. Also, the issue of selecting the optimal hyper-parameters, which have a

significant impact on the final controller performance and the necessary training times, is not

considered at all in most studies, or only through sensitivity analyzes. In addition, there is a

need for further research on the transferability of trained algorithms to other control problems

(transfer learning) and on the question of how monitoring data can be used appropriately for

training the algorithms. To support the scientific work on these challenges, this dissertation

defines a workflow for the development of RL-based BES control systems and presents three

application examples in which various current issues in the scientific literature are addressed

using RL-based BES control for applications inspired by current BES related research projects.

Discrete and continuous algorithms for load shifting tasks are compared, different monitoring

data-based RL controller training strategies are evaluated, innovative state-space descriptions

are investigated and the transferability of trained controllers to new systems is explored. The

question of the selection of the optimal hyper-parameters is considered in all case studies,

which is addressed by a method introduced within the workflow chapter (chapter 3).
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automation design

After deriving the general motivation and the potential of RL for BES from the available

scientific literature as well as introducing the state-of-the-art of the most promising RL al-

gorithms, in the last chapter; this chapter presents the methods and tools used in this work.

This includes the implementations, design principles, frameworks, and experiment workflows.

Furthermore, an efficient method for the design and parameterization of the algorithms is in-

troduced. The chapter concludes with a summary section of a comparison paper that has been

published collaboratively with colleges from the institute, in which a RL algorithm (designed

following the proposed workflow) has been compared, evaluated, and discussed against other

novel BES control approaches. Thus, a complete workflow is presented (and benchmarked)

with which RL-supported control of BES can be developed.

First, section 3.1 gives a high-level overview of the general workflow and the training and

interaction variations for RL-supported control design. All aspects are briefly introduced

before providing a more in-depth discussion in the fallowing sections. Section 3.2 introduces

the most important considerations to be taken into account when formulating the control

task (or in RL terminology: the MDP). This is followed by a discussion of the criteria that

should be considered when selecting a suitable algorithm and a training strategy for the

MDP, in sections 3.3 and 3.4 respectively. Section 3.5 subsequently focuses on the design

of safe interaction between the RL algorithm and real BES. Sections 3.6 and 3.7 deal with

the concrete implementation of the RL-supported BES control and the optimization of the

algorithm-specific hyper-parameters in the programming language Python. Finally, in section

3.8 the workflow is benchmarked against other novel BES control approaches. The presented

workflow is based on RL-specific handbooks [Francois-Lavet et al., 2018; Sutton and Barto,

2018], best practices from RL-related publications (with a focus on BES application and

a broader focus on RL), and the authors own experiences through working with BES and

RL algorithms. A more detailed discussion, addressing the experiences made through the

application described in chapter 4, is provided in chapter 5.
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Figure 3.1: Basic workflow of RL-supported BES automation development.

3.1 Reinforcement Learning controller for building energy system automation -

overview

Figure 3.1 shows the steps necessary for the design of a tailored, RL-supported BES au-

tomation system. As with all machine-learning algorithms, the problem formulation and the

training of the algorithm are the most critical elements. The behavior of the algorithm, after

training, is significantly influenced by the type of training and the input data used.

When formulating the control problem (MDP formulation), it is important to ensure that

the state-space contains all the features needed to predict the future behavior of the MDP

and the associated reward function. Otherwise, they are considered partly observable MDPs,

and the control problem becomes much more complicated, which also limits the applicable

algorithms drastically. For continuous control actions, the choice of algorithms is again limited.

Traditionally, the algorithms for continuous actions also tended to demand more training data

until they learn an optimal policy. This changed with the SAC algorithm, which (compared to

the DQN with all its published extensions) generated similarly high, and in some cases even

higher, convergence rates in the associated literature. At the same time, the convergence speed

is especially dependent on the dimension of the problem, therefore the state-space should be

as compact as possible (while including all necessary information). The action-space should

also be compact, but at the same time it has to provide the necessary interactions to control

the system. In other words, action- and state-space must satisfy the two most important RL

design criteria: the future of the MDP must depend exclusively on its current state and the

evolution of the reward function must be well predictable by the current state in combination

with the performed action. This should be fulfilled, while the action- and state-space should
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contain as little unnecessary or redundant information as possible, because this must be

filtered by the algorithm through additional computational operations to identify the features

that are essential for the control problem.

The training strategy depends crucially on the available information about the BES to be

controlled. The effort to build a customized, simulation-based training environment based on

plans and technical documentation is not economical for most individual BES. Moreover, this

overhead limits the advantage of RL over white-box MPC, since such a model could also be

used directly in a MPC application. On the other hand, training by means of an extensive

simulation or even a real system in a test bench can be a promising option for a component

manufacturer. For products which are sold many times, it is worth the effort, since the trained

algorithm can represent an optimal and adaptive control for the individual system. If a RL

algorithm should be trained for an existing system, the training with monitoring data can be

beneficial; either by direct offline training of the algorithm, in which case the problem of over-

adaptation to the observed policy must be taken into account; or via the intermediate step of

learning a data-driven training environment based on the monitoring data. In this approach,

the algorithm can then use the available exploration strategies to learn the policy during

interactions with the data-driven model representing the system dynamics. If the training is

performed via a simulation or a data-driven training environment, the hyper-prameter (e.g.

learning rate, exploration rate, or the discount factor) can be optimized for the MDP. Since

the training of RL algorithms is very time-consuming, efficient methods are needed to find

the optimum. In section 3.7, the selection process of the proposed Bayesian hyper-parameter

search is presented.

RL algorithms are statistical methods that lead to optimized system control after a large

number of interactions. In order to integrate them into robust and secure BES automation,

a concept for the actual operation is required in addition to the pure design and training of

the algorithm. The concept must include safety barriers in the form of threshold monitoring,

above which the actions of the algorithm are overwritten by a conventional, robust system

control. In order to adapt the algorithm to changing systems, exploration phases can be

defined in which random actions in a defined range increase the size of the system training

dataset, for example, while there are no occupants in a building. An advanced concept could

also include a targeted manipulation of exploration and learning rates during operation; for

example, after a change in system dynamics, both could be adjusted to adapt to the new

dynamics faster.

3.2 Formulation of the Markov Decision Process

The MDP represents the problem formulation to be solved by the RL algorithm. Even the

most novel and best-performing algorithm from literature cannot solve a poorly formulated
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problem. In this context, poorly refers to: that the algorithm does not have all the information

that determine the future of the MDP, its actions do not or only slightly affect the course of

the rewards, or the reward function is not formulated in such a way that the desired policy is

rewarded. Finally, also the step-size (how often the algorithm interacts with the environment)

and the prediction horizon (how many steps in the future the algorithm takes into account)

are crucial. The algorithm must be able to interact with the MDP sufficiently often to control

it stable. At the same time, the training is stabilized by the observability of the effect of an

action in the state before the next action is executed. Predictions of the boundary conditions

(whose horizon match the flexible elements in the system and the possible actions) complete

the state-space and make it possible not only to learn a statistical best practice, but actually

to plan ahead.

The state thus defines what numerical inputs the algorithm receives in each time-step from

the environment, or the technical system with which it interacts. In BES applications, these

can be, for example, storage states, temperature setpoints, actual temperatures, outdoor

temperatures, solar radiation, electricity prices, and other internal variables from the technical

systems such as volume flows, pressures, or rotation speeds. At the same time, a particular

strength of RL is that not all internal quantities from the technical systems have to appear

in the state-space, but just exactly those that make the future of the reward function and the

dynamic next states of the MDP predictable with respect to the selected actions. A simple

example: If a RL algorithm is used to control the air handling unit (AHU) of a building,

the AHU itself is a component of the technical system, which (assuming no malfunction)

always shows the same dynamics. However, the boundary conditions from the environment

(temperatures and solar radiation), the presence of occupants, and the use of appliances

resulting in internal loads are different. Since the dynamic of the AHU remains the same, the

information from the air setpoint temperatures, actual air temperature, presence sensors (or

time signals such as day of the week or hour of the day), the status of mechanical shading,

and the boundary conditions from the environment are sufficient to predict the effects of an

action on the evolution of the reward function (for example, maintaining a temperature band

around the setpoint), while many internal measurements from the AHU do not represent

additional information for the RL algorithm. Internal measurements from the AHU are thus

no longer required for the control of the AHU alone, while the sensors in the target system

(temperature in the heated rooms) become more important. If, in addition to the target

temperature, the energy consumption is also to be optimized, the required energy of the AHU

in certain operation states is needed as a data point, although here as well, no sensors from the

internal control of the AHU are required; the energy consumption of the AHU as a function

of its influencing ambient conditions is sufficient, as long as no malfunction strongly alters its

dynamic behavior. This is one feature of RL that is particularly suitable for saving sensors in

BES. At the same time, as already pointed out in the discussion of the literature in subsection

2.7.2, the consideration of historical sensor values is of high importance for the RL algorithm
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to learn the dynamics of the system to be controlled. This is also addressed again in the

demonstration chapter 4. Since heating and cooling effects on the system can be learned not

only from the current sensor value but from the history of the sensor values over time, at

least one historical value (or the gradient of the measurement) must be added for short-term

effects, or a series of historical values for long-term effects. Also the historical actions of

the algorithm should be taken into account. Since RL algorithms do not necessarily have

a memory, to process actions from the last time-steps within the training, this is important

for technical systems. The algorithm can learn from this information, in the state-space the

difference of the influence from its own actions to the influence of the boundary conditions on

the environment. Without this information, the training can be unstable and, in particular,

drastic changes in the actions can hardly be avoided.

In addition to the definition of the state-vector (what the algorithm receives from the MDP in

each time-step), it is important to define the temporal component. This involves the time-step

width (how much time passes between two actions) as well as the prediction horizon (how

far in the future does the algorithm plan). Both aspects must match the possible actions

that the algorithm can execute. For example, if the algorithm can load a storage with a

defined or limited thermal power, the step-size and prediction horizons should be chosen

in such a way that the algorithm can load and unload sufficiently often (in the sense of a

planning sequence of actions) in the prediction horizon to take advantage of the flexibility

and at the same time react to drastic changes at the end of the prediction horizon. The

first aspect, the time-step width, is furthermore influenced by a RL specific feature. Namely,

that the training and the interaction with the MDP can be significantly stabilized if the

effect of an action is already observable in the next time-step. While RL algorithms can also

solve MDPs where rewards are rarely returned, the MDP is more straightforward to solve

by the algorithm if the next state already represents the effect of the last action. As a basis

here, the time constants (especially the delay between an action and the observable effect of

the action in the state-vector ) of the system to be controlled must be considered. Time-step

widths from the literature for BES control applications are: 1 minute for actuator level control

tasks, 5 to 15 minutes for BES-level energy management, and 15 minutes to hours, or even

days, for district-level energy management. An additional aspect concerns the resolution of

available data APIs for the boundary conditions such as weather services or electricity price

predictions, which are mostly provided in a resolution of 15 minutes. Another important

aspect is that the prediction horizon must essentially fit the control task. If a prediction of

one day is made available to the algorithm in an hourly resolution, the state-vector already

increases by 24 entries. Considering that in most BES applications this already exceeds the

number of available sensors in the system, it is clear how each additional day increases the

problem complexity and thus the training time required. Twenty-four hours have therefore

become widely used in BES applications. However, if the flexible elements in the system have

sufficient capacities to allow for load shifting over several days, longer prediction periods can
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be efficiently included in the form of coarser resolutions or statistical features of the prediction

time-series.

In addition to the interaction rate and the state-space, the action-space has to be defined.

The action-space can be continuous or discrete, as described in the sections 2.5 and 2.6.

Continuous action-spaces are particularly suitable for control tasks where the algorithm has

to reach a setpoint through its actions. Discrete action-space algorithms, on the other hand,

are well suited for energy management tasks or tasks where the algorithm has to select from a

pre-defined number of system states. As with the state-space, the goal should be to keep the

action-space as compact as possible. Five possible actions in a discrete control task already

imply that the algorithm has to approach all possible states of the MDP five times during

training in order to learn all following system responses from the MDP. The same is applicable

to the dimension of a continuously operating algorithm. For example, a pump speed and a

valve position to be combined and continuously controlled by an algorithm corresponds to

an action-space dimension of two. A key advantage here, especially for actuator level control

tasks is that continuous control algorithms can learn the relation between the gradient of

the reward function and the gradient of the action-space and, unlike discrete algorithms,

interpolate not only between states but also between actions. For energy management with

a limited number of decisions in each time-step, discrete algorithms should nevertheless be

chosen, since continuous interventions are usually not provided by the BES automation (except

setpoint optimization which can be designed as a continuous energy management task).

The last element of the MDP to be defined is the reward function. In policy-based algorithms,

unlike value-based algorithms, rewards are only evaluated at the end of training epochs, which

leads to more training intervals with suboptimal actions and is mostly impractical in the BES

domain. Value-based algorithms, on the other hand, calculate the reward for the current and

subsequent time-steps. Historization and the calculation of cumulative rewards are processed

internally in the algorithm and therefore do not need to be specified in the reward function.

The reward function should encode the desired policy that the algorithm should show after

training, with respect to state-space and action-space. For example, if there is a trade-off

between energy consumption and user comfort, both aspects must be provided in the reward

function, for instance in the form of the room temperature and the current energy demand.

Appropriate weighting factors have to be used to balance the two elements of the reward

function. In order to smooth the actions, additional quantities can be implemented, which

slightly penalize action changes or take temperature gradients into account. For training, it

is advantageous if there are not infrequent large rewards but rather if the gradient of the

reward function increases over many small rewards up to the highest rewards, which is easier

to learn. The trade-off between temporarily lower rewards for loading a storage at a favorable

time against unloading it later to avoid even lower rewards is then the task that the algorithm

learns.
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3.3 Algorithm selection

As outlined in section 2.3, there is a wide range of available RL algorithms that can be classified

into different families. This work focuses on the model-free RL algorithms, as discussed in

chapter 2. While the model-based algorithms come with the strengths and weaknesses of

data-driven MPC, in the model-free algorithms lies a particular potential for optimal BES

control with low demands on the available computing power. The most important constraints

for selecting the model-free RL algorithm for the BES to be controlled are the following:

• Is the control problem discrete or continuous according to the definitions provided in

the sections 2.5 and 2.6?

• Does efficient handling of training data matter? Should the algorithm be trained offline

or is a simulation available as a training environment?

• Can the control quality of the algorithm be determined for each time-step or can it only

be evaluated at the end of episodes when complete control trajectories are available?

Overall, for any RL application, care should be taken to select the most current algorithm

for which stable implementations are available according to the respective selection criteria.

RL research is a very active field and, as it has been elaborated in [Wang and Hong, 2020],

many publications in the field use older algorithms for their studies and therefore do not take

advantage of recent RL research.

For discrete control tasks via Q-Learning, the most common algorithm is the DQN with the

extensions published in recent years. Through various design paradigms such as the use of a

replay buffer, a target network, or prioritized training sample selection, the stability, perfor-

mance, and sample efficiency has been improved and the latest implementations outperform

the original implementations in all categories by several orders of magnitude.

For continuous control tasks where a stochastic policy is explicable, the SAC algorithm should

be chosen, which (like its predecessor, the DDPG) is a hybrid of Q-Learning and policy

optimization. However, while with the DDPG (due to its comparatively simple exploration

strategy) good policies are found only after very intensive training times and long phases with

suboptimal policies, this subfamily of algorithms was significantly improved by extending the

value function by an entropy term that determines the exploration, which led to the proposed

SAC algorithm becoming the state-of-the-art in this subfamily.

Another algorithm that can be considered for selected problems is the Proximal Policy Op-

timization (PPO) algorithm. This is a purely policy optimization-based algorithm, which

means that it cannot be trained with historical data, unlike SAC and DQN. Another disad-

vantage is the comparatively inefficient data usage, since each new policy has to be tried on

the real system or a simulation. Thus, the PPO (as discussed in chapter 2 on policy-based

algorithms) is only of interest if a high quality training environment in the form of a simulator
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is available and the system to be controlled is not subject to large changes. Advantages of the

PPO are its comparatively stable convergence towards the optimal policy, its parallelization

capability during training in newer implementations, and its usability for discrete as well as

for continuous control problems.

3.4 Training strategies

As with all machine-learning methods, the training of the algorithms is one of the major

factors influencing the functional relationship which is later represented by it. However,

unlike supervised learning, the training dataset in RL is not static, but is generated with a

dynamic training environment during the interaction with the algorithm. An exception is

offline training of value-based RL algorithms. Here, algorithms such as SAC or DQN are

trained with static datasets, for example using monitoring data of a system.

All other training methods require a dynamic training environment. There are two options

for creating such a training environment. On the one hand, a physics-based simulation envi-

ronment of the system to be controlled can be created. Here, it should be considered that the

effort has to be weighed against MPC. If a simulation model of a high quality is available, it

can be used directly within a MPC application. The advantage of RL is then reduced to the

lower computing power required during operation, the inherent adaptivity to changing system

behavior, and the performant computing of large, stochastic states. However, the latter can

still be of interest when a model is available but the algorithm is to be used under highly

varying boundary conditions in practice.

The second way to generate a training environment is to learn a data-driven training envi-

ronment from operational data. This method like offline training, is also based on monitoring

data, but it increases the training potential significantly, since different policies can be tested

by the algorithm on the learned models. Like in a simulation environment, not only is an

observed policy learned, but the policy is also optimized in interaction with the dynamic en-

vironment. However, there are also some critical aspects that have to be considered. On the

one hand, the dataset must cover as large a range of operating states as possible, which the

algorithm will also reach in later operation. Furthermore, the data-driven training environ-

ment must be tested. If it shows physically implausible behavior in some operating states,

a policy can be learned that, for example, exploits sensor noise or other model properties to

maximize the reward function rather than solving the physical control problem. Nevertheless,

this training option holds promise when local computing power does not meet the require-

ments for MPC, sufficient monitoring data is available, and later adaptation in operation is

desired.

The aforementioned training through monitoring data (offline learning) is a promising method

if a large amount of monitoring data for a certain system is available, at best controlled with
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different policies. From such a dataset, a good policy can be learned by offline training with a

RL algorithm, which can serve as a starting point for later use with the real system. However,

if only monitoring data for a certain system controlled with a certain policy are available,

there is the risk of over-fitting to a suboptimal policy; this effect can only be compensated by

extensive exploration on the real system and thus reduces the potential for offline training.

The last variant is the training on the real system. If the MDP formulation is compact and

the relationships in the system are simple, training on the real system can be considered.

Here, it is important to have a comprehensive interaction strategy, including a backup RBC,

since random actions are chosen during the exploration and this may cause comfort losses

and inefficient operation. In contrast, if a policy is learned for a specific component, training

in a testbench can also be considered. In the process, different boundary conditions can be

learned in a targeted manner, thus ensuring free exploration of the algorithm. After training,

an algorithm trained in this way is a lightweight software component that can be delivered

together with the BES; furthermore, this algorithm has learned the optimal system behavior,

and quickly adapts to deviating environmental conditions.

3.5 Interaction design

Another important issue to be addressed when using RL in interaction with real BES is

the one of safe interaction. A concept is needed with which the promising properties of RL

algorithms, such as their tendency towards the optimal control policy, their adaptivity, and

their low hardware requirements, can be exploited without their stochastic action selection

during training negatively affecting BES operation. As described in the last section, pre-

trained algorithms are recommended for most applications, but even if the algorithm has

been pre-trained extensively, suboptimal actions cannot be completely excluded.

In principle, there are two possible variants to address this aspect in a RL-based BES au-

tomation. The first variant is to allow the algorithm to select only from pre-defined operation

states (for example during the course of energy management application) in which the supply

security of the consumer systems is not affected by the actions but only the BES mode is

affected. The second variant, if the algorithm also imposes actions that affect the quality

of supply, such as comfort (for example, measured via the deviation of a room temperature

from a setpoint), is to implement a state-of-the-art rule-based automation as backup control.

As illustrated in figure 2.1, after training, the algorithm can interact with the real system

until a defined performance criterion is violated. In this case, the state-of-the-art automation

implemented using RBC and conventional feedback control takes over. Using room control

as an example, a temperature limit could be implemented before the actual comfort violating

temperature limit is reached, which is learned via high penalty signals as a barrier for the

algorithm and activates the takeover by a conventional PID controller. If the BES is then
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again in a stable and safe operation, the RL automation can be reactivated. The data gener-

ated during the control by the backup automation can be used again for the offline training

if value-based algorithms (such as DQN or SAC) are used. However, to avoid the risk of

over-fitting to the conventional automation, the takeover by the backup automation should

also be accompanied by high penalties, which over time will lead to the avoidance of these

operation states. Over the duration of BES operation, the conventional backup automation

will then be activated less and less frequently and eventually become redundant.

In addition to implementing safety mechanisms, there are further aspects to consider if RL

algorithms are connected to data from real-world BES. Sensor raw data can contain noise

on the one hand and sensors can fail on the other hand. There are two ways to cope with

sensor failures. On the one hand, sensors have to be monitored extensively to detect a failure

early, to replace faulty sensors early, and to avoid an adaptation of the RL algorithm to the

no-longer-deterministic system behavior. At the same time, regular backups of the algorithm

must be stored frequently in order to avoid that the algorithm has to be trained again from

scratch after an operation phase with faulty sensors. Rather, it should always be possible to

backtrack and revert the training status of the algorithm to a certain (stable) algorithm state

in the application history.

If a safe interaction with the real system and a strategy for the failure of sensors are given,

the adaptation of the hyper-parameters of the algorithm can be considered during operation.

While RL algorithms have an inherent adaptivity that continuously learns slowly changing

system dynamics (such as valve characteristics) or changing building usage, this process can be

positively influenced by choosing appropriate hyper-parameters during operation. For major

changes in the BES, the learning rate and exploration factor parameters can be adjusted to

accelerate the adaptation of RL-based building automation to the new system behavior.

3.6 Implementation

There are numerous frameworks that provide implemented RL algorithms. Python is by far

the most widely used programming language in this field and the neural networks used in the

context of Deep RL are typically implemented using the highly specialized libraries, Tensorflow

(Google) [Agarwal et al., 2015] or PyTorch (Facebook) [Paszke et al., 2019]. While it is indeed

possible to implement RL algorithms directly from the respective publications, frameworks

are available here that make the published algorithms available via implemented and tested

APIs. Some of the most popular are: Tensorflow Agents, Google Dopamine, Keras-RL, and

OpenAI (Baselines and Spinning Up). Which framework should be used depends mainly on

how active the community is, how well the algorithms are tested, and finally, how intuitive

the usability is. OpenAI Baseline sets a standard here with its community. Since the OpenAI

company also provides the OpenAI Gym collection of training environments and the GitHub
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projects made available constantly incorporate the latest innovations from the field into the

respective algorithms, they set a standard also in the industry. However, the implementations

are often not intuitive and can only be used by specialized developers with a high level of

effort. This is where Stable-Baselines can be useful. As a fork of OpenAI Baselines, Stable-

Baselines provides further developed, improved, and tested RL algorithms based on OpenAI

Baselines. With an API inspired by the comparatively user-friendly Scikit-Learn Python

machine-learning library, the usability of the algorithms are high and RL experiments can

be implemented in a user-friendly and comprehensible way. Stable-Baselines also provides

methods that make the training concepts described in section 3.4, such as hyper-parameter

adaptation, and offline training available in a comparatively user-friendly way. Therefore, in

the course of this work, implementations from this framework are used.

For the modeling of thermal systems, the open-source Modelica library AixLib [Müller et al.,

2016] is used. The models are integrated and simulated as functional mock-up units (FMU)

[Blockwitz et al., 2012]. Interfaces (action-, state-space, and rewards) are implemented ac-

cording to the standards defined by the OpenAI Gym [Brockman et al., 2016]. Figure 3.2

shows the schematic structure of the RL algorithm when interacting with a FMU. In each

iteration, a FMU is simulated for one time-step and a state-vector is generated. Both the

state-vector and the reward signal are processed by the algorithm, then the control signal is

forwarded to the FMU. Subsequently, a new state-vector is generated then a new iteration

begins. Additionally, external state variables, like monitoring data, are passed to the FMU.

To obtain standardized and RL-processable interfaces, all control actions and state-vectors

are normalized to the range from -1 to 1.

Figure 3.2: Exemplary illustration of a FMU-based training framework with an interface for
continuous and discrete controlling RL algorithms.
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For data-driven modeling and the implementation of data-driven training environments, Scikit-

Learn is used. As the most successful library for data-driven models, Scikit-Learn provides

classic machine-learning algorithms from the areas of supervised learning, unsupervised learn-

ing, and regression with comprehensible implementations and supported by an active commu-

nity. Using Scikit-Learn, machine-learning algorithms can be applied to individual problems,

tested, and graphically evaluated with a few lines of code. The Scikit-Learn library also

provides training routines and evaluation metrics. Therefore, in the course of this work,

implementations from this library are used.

3.7 Bayesian hyper-parameter optimization

The configuration of the hyper-parameters significantly influences the convergence speed, as

well as the final policy [Liessner et al., 2019]. Finding the optimal set of hyper-parameters is

not trivial. Setting the hyper-parameters manually is time-consuming and error-prone even

for domain experts [Chollet, 2018]. On the other hand, unlike with simple supervised learning

tasks, such as classification or regression with lower complexity, it is not feasible to try all

combinations of hyper-parameters. This is not practical for RL because of the comparatively

long training times. Moreover, the convergence of Deep RL is not guaranteed even for well-

formulated MDPs and depends largely on the choice of hyper-parameters [Liessner et al.,

2019]. A well-chosen set of hyper-parameters should quickly lead to a policy that results in

high rewards for a given MDP.

In many publications, different methods to determine the optimal hyper-parameters have

been proposed and compared. The authors of [Putatunda and Rama, 2018] compare Bayesian

hyper-parameter search with random search, and grid search for XGBoost classification tasks

on six real-world datasets. They find that Bayesian hyper-parameter search yields the best

results when speed and accuracy are considered equally. In a comparable study the authors

of [Shekhar et al., 2021] highlight the performance of Bayesian search for the optimization

of hyper-parameters of neural networks. In a comprehensive study, the authors of [Bischl

et al., 2023] compare a variety of different hyper-parameter search methods for different use

cases. In the analysis of accuracy, efficiency, and other practical aspects of applicability, a

recommendation for the use of model-based search methods such as Bayesian search is given

for deep-learning and RL. In particular, the computationally expensive training (compared to

simpler machine-learning applications) is given here as the mayor reason.

In the following, the most common methods for hyper-parameter search from the literature are

analyzed and discussed for their applicability to RL. Figure 3.3 shows a qualitative evaluation

of the procedures according to multiple aspects: usability, computational cost, data efficiency,

robustness against local optima, and the expert knowledge required for the application.
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Figure 3.3: Strengths and weaknesses of different methods for hyper-parameter optimization.

Manual setting of the hyper-parameters does not lead to an optimal selection in most cases,

since it is error-prone and time-consuming even for experts. The iterative procedure here

is not practical for the long training times of RL and is also not well-suited to address the

interdependencies of hyper-parameters. Nevertheless, this method is still one of the most

widespread in all areas of machine-learning [Chollet, 2018; Liessner et al., 2019], which is due

to the very individual and therefore diverse procedure also problematic from a reproducibility

perspective [Bergstra and Bengio, 2012]. The procedure to automate the manual setting of

hyper-parameters, referred to as "one by one", comes with similar difficulties. Although the

required expert knowledge can be reduced slightly, the hyper-parameters are still optimized

without considering their interdependencies.

These methods are contrasted by the grid search method, a brute-force procedure in which the

optimal combination of hyper-parameters is determined by trying all possible combinations

[Liessner et al., 2019; Pedregosa et al., 2011]. Although this method is the only one that guar-

antees finding the global optimum, it is highly inefficient. It iterates through a high number of

combinations without major improvements to the performance [Bergstra and Bengio, 2012].

Thus, grid search is not suitable even for many supervised learning tasks and is not applicable

for performing RL experiments in an adequate time.
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The random search method, in which the hyper-parameters are selected randomly, is often

much more efficient. Although the method is based on luck, it has been shown that comparably

good combinations as with the grid search method can be found usually with significantly fewer

iterations. [Bergstra and Bengio, 2012].

According to recent literature, the method considered as the most promising for RL control

problems is the model-based method called Bayesian hyper-parameter search. Here, the idea

is to create a simple statistical model (Tree Parzen Estimator for example) of the hyper-

parameter space and to select the next combination to be tested based on this model [Barsce

et al., 2017; Bergstra et al., 2015; Liessner et al., 2019]. In other words, during the Bayesian

hyper-parameter search process, a statistical surrogate model is trained to predict the per-

formance of a hyper-parameter combination. This model is much less expensive to compute

compared to the objective function (the performance of the trained RL algorithm) and serves

as a basis for the selection of the next hyper-parameter combination to be tested. This is a

very important feature when it comes to the applicability of hyper-parameter optimization

methods to RL experiments. The method represents the best trade-off between applicability

and reliability and is therefore recommended and used in this work.

3.8 Performance comparison and discussion of Reinforcement Learning against

other novel building energy system operation optimization methods

This section summarizes a collaborative paper, which has been published in the course of this

work, in which RL (represented by a SAC algorithm) has been compared against other novel

control approaches [Stoffel et al., 2023]. The previously described workflow for the design

of RL-supported BES automation was applied here as well. The approaches against which

the SAC algorithm has been compared were: White-box MPC, Adaptive Grey-box MPC,

Adaptive Black-box MPC, and Approximate MPC. With these methods, more and more re-

lationships of the system are learned by the algorithms for the control. The SAC algorithm

is in parallel with Approximate MPC in this sense, because in both cases, state observations

are directly mapped to actions. As a benchmark problem, the air conditioning of a thermal

zone was chosen, which includes thermal inertia, internal thermal loads (stochastically present

people and appliances), and other disturbance variables in the form of outdoor temperature

and solar radiation. A carefully implemented rule-based strategy was selected as the base-

line for comparison. The possible continuous actions were the setpoint temperature of the

water circuit of a HVAC system and the thermal power to be supplied to a concrete core

activation system. Thus, the algorithms had to find a trade-off between a highly sluggish but

persistent heating system and a highly responsive but more energy-intensive heating system.

For this purpose, weather forecasts and time programs of the setpoint indoor temperatures

were provided. The performance indicators chosen were the Kelvin hours of discomfort over
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one year and the total heating energy required. In addition, softer criteria, such as the com-

puting power required to calculate the setpoints, were also taken into account, as well as

an assessment of the approaches in the following categories: pre-operation data need, data

quality requirements, model developing effort, MIMO (Multiple Input Multiple Output) han-

dling, adaptability, IT requirements, know-how dependence, interpretability, transferability,

and scalability.

As can be seen in figure 3.4, all methods can achieve significant energy savings compared to

the rule-based (RB) approach with improved thermal comfort. The SAC algorithm achieved

nearly the same energy savings as the MPC variants, but the thermal comfort achieved does

not quite reach the level of the MPC controllers.

Figure 3.4: The performance of different novel control approaches for a benchmark problem.
On the x-axis, the percentage energy savings compared to a rule-based (RB) con-
trol are plotted. On the y-axis, the annual Kelvin hours of discomfort. The
methods studied are: White-box MPC (WBMPC), Grey-box MPC (GBMPC),
Black-box MPC (BBMPC), Black-box MPC with online learning (BBMPC-OL),
Approximate MPC (AMPC), and Reinforcement Learning (RL).

On the other hand, AMPC and RL require significantly less computation time for calculating

the next setpoint, which is achieved by direct mapping of states to actions, whereas in the

MPC approaches the optimizer iterates through several solution alternatives. For the other

soft evaluation criteria, all methods have strengths and weaknesses and specific application

scenarios for each method are conceivable. The SAC algorithm has been evaluated positively

in the criteria: Transferability, MIMO handling, and adaptability. Transferability in this

context refers to the transferability of trained algorithms to related problems, MIMO handling

describes the ability to handle higher-dimensional state- and action-spaces, and adaptability

refers to the ability of the approaches to adapt to changes in the system to be controlled or in
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the boundary conditions. A slightly positive rating was given for the criteria scalability and

model developing effort. Scalability, in contrast to transferability, describes the increase in the

size (state-vector) of the problem with the same general system interdependencies, and model

developing effort describes the effort required to design the control strategy by an expert.

A neutral rating was given in the categories IT requirements and know-how dependence,

which address the need to execute higher programming languages common to all methods as

well as the need for expert knowledge in the respective methodology. A negative evaluation

was given to the SAC algorithm in the categories: Pre-operation data need, data quality

requirements, and interpretability. This results especially from the fact that the algorithm has

to learn by random actions, which requires pre-training on a simulation or at least supported

by monitoring data. Furthermore, erroneous data influence the algorithm more than other

methods, since it requires filtering the disturbances in addition to learning the action-reaction

relationships of the system. Finally, the interpretability of the trained algorithm is difficult,

as it can only be achieved by additional stochastic analyses as described in [Kotevska et al.,

2020].

In summary, the SAC algorithm and RL in general, like the other methods considered, have

strengths and weaknesses that have advantages and disadvantages for the respective appli-

cation scenarios. Its performance for the benchmark problem can compete with the other

methods investigated.
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After the previous chapters introduced the motivation for the application of RL for BES

(through relevant literature), and presented a workflow for the design of RL-supported BES

automation systems, this chapter presents a selection of three case studies. The control

problems are selected from systems which are the subject of German research projects funded

by the Federal Ministry for Economic Affairs and Climate Action. The introduced algorithms

and concepts are applied in the three case studies to different application scenarios, targeting

different current research questions.

In the first case study, two different algorithms for load shifting in a simulated cooling supply

system are applied. Here the focus is on three different aspects. Firstly, the out-of-the-box use

of two state-of-the-art algorithms is evaluated; secondly, an algorithm which allows discrete

control only (DQN) is compared with an algorithm that allows continuous control (DDPG);

and thirdly, the applicability of RL algorithms to the problem of load shifting in a cooling

network is investigated.

In the second case study, a further investigation is carried out based on a specific supply site

of the same cooling network. The aspects that are considered here are DQN as an expert

system for energy management of an ice storage system under dynamic constraints, Bayesian

hyper-parameter search as a method for optimal selection of training hyper-parameters, and

monitoring data-driven training of RL algorithms.

Finally, in the third case study, RL is used to control a real valve of an AHU. Here, the trans-

ferability of algorithms, pre-trained through a simulation, to a real system is investigated.

Furthermore, aspects of the necessary data infrastructure and an innovative state-space de-

scription are addressed.

In addition to the problem formulation, all case studies have a detailed presentation and

discussion of the results. Lessons learned for future work are derived. In addition, all insights

from the application and the observed results are finally incorporated into a summarizing

discussion of all results in the next chapter.

4.1 Case study one

In the first case study, two RL algorithms (DQN [Mnih et al., 2015] and DDPG [Lillicrap

et al., 2015]) are investigated, with the aim to learn an improved operation policy for load
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shifting in a simulated cooling network. Improvements have been proposed for both algorithms

since their first publication, but the DDPG, in its applied form, can be understood as an

extension of the DQN for continuous action-spaces. This allows, comparing the advantage of

continuous control actions with discretized actions for the use case. In a subsequent section, it

is also demonstrated how training and performance are improved by choosing optimal hyper-

parameters and using state-of-the-art algorithms for the use case problem.

The investigated cooling supply system is part of a hydronic cooling network of a business and

research facility located in Berlin, Germany. The campus comprises seven buildings, divided

into three sites. The cooling demand results from process cooling, equipment cooling, and

cooling energy for HVAC systems. The total amount of energy, purchased for one year, is

about 1800 MWh.

In the considered operation mode, illustrated in figure 4.1, all locations are supplied by one

central compression chiller (Q̇max = 600 kW), which is operated with power from the electric

grid. The chiller feeds into a glycol-circuit, which transfers the cooling energy to the network

via a heat exchanger. While the chiller receives the setpoint value for the temperature in the

glycol-circuit as control input, the mass-flow can be controlled by a separate pump. Due to

the relatively constant operation, the heat exchanger is modeled with an efficiency of η = 0.9.

The supply of the consumers is carried out via a pipe network, which is operated with water

as the medium. The dynamic pipe model from the AixLib [Müller et al., 2016] is used and

parameterized as a steel pipe of d = 200 mm. The total length of the pipes (flow and return)

is 644 m [Bschorer et al., 2019]. For the efficiency of the chiller (EER), the following ambient

temperature (Tamb) dependency is derived from the monitoring data:

EER = 6 −
Tamb + 2 ◦C
32 ◦C + 2 ◦C

· 3 ·
Q̇chiller

Q̇chiller max

(4.1)

This equation results, together with the cooling load (Q̇chiller), in the current electricity

consumption of the chiller:

Pel =
Q̇chiller

EER
(4.2)

The loads of the buildings are aggregated to the three consumer sites. The potential, which

the algorithms can use for load shifting, results from the thermal mass of the concrete of the

supplied buildings, as well as from the temperature tolerance of the linked manufacturing

processes within the buildings. From monitoring data, the capacity for all three locations is

estimated with a capacity of 500 kWh each, with m ·cp = 77 kW h
K

, in the range from 5.5 ◦C to

12 ◦C. This range corresponds to the minimum and maximum temperature for the connected

cooling appliances in the real system.
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The dynamic price signal is determined by the historical data of the day-ahead electricity

prices that are traded on the European Energy Exchange spot market, for the market area

in Germany Luxembourg (DELU). The data is downloaded via the API of the European

Network of Transmission System Operators for Electricity (short: ENTSO-E [Hirth et al.,

2018]). It is assumed that a dynamic electricity price contract, which would be offered to an

industrial customer, would have an offset, but would generally follow the dynamics observed

on the spot market.

Figure 4.1: Schematic structure of the simulated energy system and data interfaces. Monitor-
ing data of the cooling loads at the consumer sites are included together with the
electricity price and the ambient temperature as exogenous inputs to the system.

4.1.1 The environment

The interaction between the algorithm and the environment for one week of operation is

visualized in figure 4.2. The dotted line marks the current time-step. The interaction with

the environment as well as the simulation of the cooling network is carried out with a 15-

minute resolution. This reflects the available resolution of the price signal and weather data

on the one hand and represents a feasible trade-off between the granularity of control and

observability of the effects of an action in the next state. The state-vector is composed of 75

entries. The observation contains electricity prices (kel) and weather data (Tamb) for the next

12 hours in a hourly resolution (first and second graph).
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Figure 4.2: Visualization of the state-space, the action-space, and the reward signal. The al-
gorithm receives at a given time-step (dotted line) current and historical consumer
loads and temperatures, as well as price and ambient temperature forecasts.

According to the Markov Property, the future of a MDP must depend on its current state

only. In this case, this is fulfilled by including the consumer loads (Q̇Site-i i ∈ [1, 2, 3]) and

temperatures (TSite-i i ∈ [1, 2, 3]) for the last 4 hours (third graph and fourth graph), also in

a hourly resolution . Thus, the algorithm is able to learn, based on the gradients, whether

the consumption or the temperature of the thermal mass is rising or falling and how fast. In

addition, for the algorithm to learn relationships such as working hours and weekdays, the

state-vector includes information about the weekday and the quarter of the day (one-hot-

50



4 Application

encoded) as well as the last 4 control actions. The latter serves as an indication about own

influence of the algorithm on the system dynamics.

The baseline for the system is the currently in the real system applied purely demand-oriented

policy: current cooling loads are provided by the chiller, regardless of the electricity price and

without the use of flexibility at the consumption sites. The reward (equation 4.3), includes

one term for the energy costs (compared to baseline) and one penalty for temperature range

violations. The cost term (∆Wel · kel) is calculated from the difference between the current

consumer load (Q̇load) and the current supply load (Q̇supplied), divided by the current ambient

temperature-related EER of the chiller, multiplied by the electricity price (kel). This reflects

the difference in electricity purchases compared to the direct load coverage and rewards the

shift to periods with lower electricity prices. The penalty term (∆Tpenalty) for deviations from

the temperature limit at the consumer sites (11.5 ◦C) is designed to balance it with the cost

term. The exponential function is used to allow small temperature deviations as a trade-off

to high cost savings, whereas larger deviations are penalized over-proportionally.

reward = ∆Wel · kel + ∆Tpenalty

∆Wel =
Q̇supply − Q̇load

EER

∆Tpenalty = −
1

3
·
∑

i

exp(max(0, (11.5 ◦C − TSite.-i)))

(4.3)

Monitoring data of the cooling loads at the consumer sites and the ambient temperature are

available for 87 weeks of operation. The data is split according to figure 4.3; after four weeks,

one week is removed from the dataset for testing.

Training weeks

Test weeks

1 2 3 4 5 6 85 86 877 8 9 10 11 12 13 14 15 16

Figure 4.3: Division of the available weeks into training- and test-weeks.

Since the DQN is limited to discrete actions, the operation parameters of the chiller (tem-

perature setpoint (Tsupply,chiller) and mass-flow (ṁw,tot)) are devised in 6 operation modes,

leading to 6 equidistant flow temperature levels in the cooling network:

Tnet ∈ [3.5, 4.5, 5.5, 6.5, 7.5, 8.5]◦C. Since the action-space is limited in size by this discretiza-

tion, the valves at the consumer locations (figure 4.1) are controlled independently of the

algorithm; the cooling energy is distributed to the consumers in proportion to their demand.

The DDPG on the other hand returns an action vector of 4 float numbers. The entries are

summarized in table 4.1. The vector includes the parameters of the chiller (Tsupply,chiller and

51



4 Application

ṁw,tot) as well as the position of the two valves (k3W V -1 and k3W V -2). The valves distribute the

cooling water to the consumer sites and can be considered, due to the continuous action-space

of the DDPG. Tsupply,chiller is controllable in the range from 2 ◦C to 7 ◦C, the water mass-flow

(ṁw,tot) is calculated within the environment and results from the controllable target network

temperature Tnet in the range from 3.5 ◦C to 8.5 ◦C, and the two valves within the network

can be opened between 0 % and 100 %. All control signals (a1 − a4) are scaled between

between -1 and 1.

Table 4.1: List of the control signal ranges for the DDPG algorithm.

Action Min Max

ai meaning value scaled value scaled

a1 Tsupply,chiller 2 ◦C -1 7 ◦C 1

a2 ṁw,tot → Tnet 3.5 ◦C -1 8.5 ◦C 1

a3 k3W V -1 0 -1 1 1

a4 k3W V -2 0 -1 1 1

4.1.2 Results of case study one

This section presents the results of the first case study. The learning process is presented,

the resulting control policies are compared, and finally the possible improvements through

hyper-parameter optimization and the use of state-of-the art algorithms are shown.

Learning progress

Figure 4.4 shows the two averaged terms (∆Kel and ∆Tpenalty) of the reward function for the

70 training episodes. Both algorithms were trained on a regular desktop computer (CPU:

Intel Core i5- 8265U 1.60 GHz; RAM: 16 GB). The training of the DQN required ∼ 7 hours,

and that of the DDPG ∼ 14 hours. Both algorithms show almost identical convergence

behavior over 70 training episodes and the training processes for both are robust against the

initialization of the neural networks. One episode is defined as one cycle through the training

dataset. The exploration factor ε continuously decreases and asymptotically approaches 0.

Both elements of the reward function increase and finally converge towards a threshold. At

the end of the training, the flexibility use saves on average ∼ 40 e per week, which is about 14

% of the total operating costs. The average penalty received per week is −5 < ∆Tpenalty < 0,

which corresponds to a deviation of the temperature of the three thermal masses of about

0.5 ◦C over a period of 3 hours.
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Figure 4.4: The average reward and penalty during the training of the DQN. The top plot
shows the absolute averaged reward for the algorithm over 70 training cycles, the
middle plot the evolution of the two parts of the reward function, the monetary cost
term and the penalty term for temperature deviations from the set temperature,
and the bottom plot, the asymptotically decreasing exploration factor.

Policy of the DQN

In figure 4.5, the learned operation policy for the investigated system, with boundary condi-

tions of one week from the test dataset, is presented. The consumer loads and the cooling

energy provided by the chiller are shown. With Ts,glykol (Tsupply,chiller) and ṁw,tot, the control

actions of the algorithm are visualized. Below that, the time-series of the temperatures of the

three thermal masses are added. The electricity price and the ambient temperature are also

included. The accumulated operating costs over the operating time is shown below. The green

line represents the costs resulting from the learned operation policy. The grey line represents

the costs that would result from the baseline. By load shifting to times of low electricity prices

and low ambient temperatures, the algorithm saves about 20 % of the operation costs for this

week. It is also ensured that the temperature limit of 11.5 ◦C of the thermal masses is rarely

violated and that all deviations are significantly below 1 ◦C (∆T ≤ 0.7 ◦C), occuring only for

a short period of a few hours. Large savings are achieved by maximum cooling of the thermal

masses during a period with electricity prices kel ∼ 0 e/kWh.
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Figure 4.5: DQN operation of the cooling supply system with the learned policy for an exem-
plary week. The top plot shows the total cooling load at the consumer sites and
the supplied cooling power. Plots two and three show the temperatures in the
cooling circuit of the chiller and the temperatures of the thermal masses at the
consumer sites. Plot four shows the mass flow in the cooling network with and
without DQN control. The two plots below show the boundary conditions elec-
tricity price and outside temperature and the bottom plot shows the accumulated
operation costs with and without DQN control.
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Additionally, figure 4.6 shows the reward value that the algorithm receives during interaction

with the system. The plot shows that the algorithm accepts small and negative rewards in

the short- to mid-term in order to maximize long-term rewards. If the algorithm supplies

more cooling energy than the current accumulated consumer loads, the rewards are negative,

because the operation costs for this time-step are higher as they would be when following the

baseline policy. In the long-term, the cooling energy is then used to supply correspondingly

less energy when the electricity costs and/or outside temperatures are high.

Figure 4.6: The algorithm receives temporarily small or negative rewards to achieve larger
ones later.

Comparison of the algorithms

In figure 4.7, the performance of the two algorithms is compared. The results for training-

weeks (left) and test-weeks (right) are very similar in all cases, which suggests that despite the

many training cycles on the training-weeks, no over-adaptation to these boundary conditions

has taken place.

A minimum of 4.7 % of the energy costs are saved during the 16 test-weeks. The average

cost savings of 12.7 % for the test-weeks are slightly higher than for the train-weeks. The

maximum value of the operation cost savings is 30.3 %. A similar trend can be observed in

the evaluation of temperature limits. A deviation of 0.5 ◦C for the duration of one hour leads

to a penalty of ∆Tpenalty = −1.65. The average penalty of ∆Tpenalty = −3.5 for the test-weeks

is therefore considered very low. On average, the savings are close but the maximum value is

slightly lower for the DDPG. The DDPG algorithm achieves 15 % higher savings compared

to the DQN algorithm in the test-weeks with the lowest savings.

According to the observations, the temperature limit of the thermal masses is better-maintained

by the DDPG. The penalty received with the DDPG algorithm is reduced by 70 - 80 % for

test-weeks and training-weeks, compared to the DQN. The maximum penalty received in one

week is 60 - 70 % lower for the DDPG. Because of the slight superiority of the DDPG, the

following two evaluations regarding the adaptability and the influence of the thermal masses

are carried out with this algorithm.
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Figure 4.7: Comparison of the two investigated RL algorithms. Shown are the two terms of the
reward function for the two algorithms compared for the three cases: Week with
the smallest rewards (left), the rewards mean over all weeks (middle), and the week
with the maximum rewards (right). Additionally in each case the performance on
the training and the testing data is shown. The difference between the algorithms
in each case is also given as percentages.

Flexibility potential

The size of the thermal masses at the consumer sites determines the available flexibility in the

system, which the algorithm can exploit. To investigate their influence on the learned oper-

ation policy, three different capacities are studied here. Starting from the reference (storage

capacity of 500 kWh over the temperature range from 5.5 ◦C to 12 ◦C), the size of the thermal

mass is doubled or halved respectively. The results of the three modifications are presented

in figure 4.8.

The operation cost savings can be increased by increasing the thermal mass of the consumers.

An almost linear increase, when considering the minimum savings (left), is observed. In other

words, a doubling of the thermal mass also leads to a doubling of the saved operating costs.

This is not the case for average (middle) and maximum (right) savings. If the thermal mass

is doubled from the lowest to the reference value, the operating cost savings for the test weeks

are increased by 74 %. A further doubling of the thermal mass results in additional savings

of 33 % for the test-weeks. In the first step, the maximum value increases by 53 %. In the

second doubling of the capacity, the increase is only by 38 %. The reason for this is related to
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the limited maximum cooling load that can be supplied to the cooling network by the chiller.

This is therefore an environment-related limitation. The penalty received due to violations

of the specified temperature limit increases over-proportionally for minimum, maximum, and

average values. But even with the largest thermal mass, the average penalty received per week

is just -3.2 for the test-weeks. This corresponds to a violation of the temperature limit of the

3 thermal masses of 0.5 ◦C over a period of less than 2 hours. However, the increased inertia

due to the larger masses actually seems to result in a more difficult system to control. The

temperature limits are still well-maintained, but violations become disproportionately longer

and/or higher with the increase in mass at the consumer sites.

Figure 4.8: Investigation of the influence of the thermal masses on the learned policy. Shown
are the two terms of the reward function for three different sizes of the thermal
masses at the consumer sites and three cases: Week with the smallest rewards
(left), the rewards mean over all weeks (middle), and the week with the maximum
rewards (right). Additionally in each case the performance on the training and
the testing data is shown. The difference from the change of the mass is given as
percentages.

Adaptability

In this subsection the capability of the DDPG algorithm to adapt to changes in the controlled

environment is investigated. The exploration is switched off with ϵ = 0. For the experiment,

it is assumed that the two three-way-valves have an offset value of - 15 %, which could occur

after a faulty calibration process or through clogging over time, for example. The two valves

can therefore only open to a maximum of 85 %, and valve positions between 0 % and 15
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Figure 4.9: Investigation of the influence of a change in the system behavior. Like in figure
4.4 the top plot shows the absolute averaged reward for the algorithm, the middle
plot the evolution of the two parts of the reward function, the monetary cost term
and the penalty term for temperature deviations from the set temperature, and
the bottom plot the exploration factor (set to zero). Here, a sudden change in
the dynamic of the three-way-valves is implemented after the fifth episode which
leads to a visible decrease of performance in episode six and an adaption of the
policy (visible in the recovered performance of the algorithm) in episode seven.

% have no effect because they are already completely closed with the offset at 15 %. The

algorithm must therefore learn to open the valves wider for the same mass flow and at the

same time learn to handle the new limits.

The time-series of the reward values obtained for the described investigation are shown in

figure 4.9. The red dotted line marks the time from which the offset value koffset is subtracted

in the simulation. In the following episode, the penalty increases significantly and is more

than four times higher compared to the reference (∆Tpenalty drops from -6 to -24). The saved

operation costs decrease, but remain on a similar level (less than 4 %). The average reward

received decreases by about 40 %. It should be noted that the reward received for the next

episode rises again to almost the level before the system change. Thus, the DDPG already

reaches the old level of performance one training cycle after the occurrence of the change.
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Improvements through state-of-the-art methods

In this section, it is investigated how the training process is influenced by the use of state-of-

the-art modifications of the applied algorithms as well as by an optimized selection of the used

hyper-parameters. As stated before, the DDPG in its used form can be viewed as an extension

of the DQN for continuous action-spaces. However, both algorithms have been continuously

improved in recent years.

Instead of the DDPG, the SAC algorithm is now used for continuous control. SAC adds an

entropy term to the value function that returns what value an action has in a given state

with respect to system exploration. Areas of the state-space in which the algorithm has little

data on the system dynamics have high entropy and are thus more likely to be approached.

The exploration and training becomes inherent in the calculation of the action values and the

ϵ-greedy procedure, with which the exploration is controlled in the DDPG, is replaced. Two

additional improvements are also added for the DQN. The first, called prioritized experience

replay [Schaul et al., 2015], affects the selection of training samples from the replay buffer.

While this was implemented purely randomly in the classic architecture, this implementation

adds a prioritization of the samples. The priority is added to the state-action-next state-

reward pairs already during storage and results from the deviation from the expected course

of the value function to the actual course of the value function. A high deviation indicates

a region where the algorithm needs more training. Therefore, such samples are selected with

higher priority. The second extension is called dueling networks. Here, the state-action-value

approximator is divided into two separate estimators: one for the state-value function and

one for a state-dependent action advantage function. The advantage of this factorization is

that state-action combinations are excluded from the possible actions in a state that would

immediately have a strong negative effect on the rewards. The smaller dimension of the

action-space thus speeds up the training. While in the classical approach the current state is

processed together with all possible actions directly, the state-value as well as the advantage

of a certain action is processed separately and combined afterward [Wang et al., 2016]. This

architecture has proven effective for numerous applications and was therefore also included in

the implementation used.

To find good hyper-parameters for both algorithms, 25 iterations of a Bayesian hyper-parameter

optimization (section 3.7) are performed. The search-space and the considered hyper-parameters

are shown for the DQN in table 4.2 and for the SAC algorithm in table 4.3. The distribution

of the search-space is plausibly chosen based on the literature and the search distributions are

divided into uniform and logarithmic uniform value ranges. The resulting hyper-parameters

for the DQN algorithm are: α = 8.00e − 5, γ = 0.9807, D = 34263, B = 99, ϵfin = 0.0673,

expl.frac. = 0.4062, and targ.update = 2377;

the ones for the SAC algorithm are: α = 7.49e − 4, γ = 0.9926, D = 64476, B = 118, and

ρ = 3.11e − 3.
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Table 4.2: Hyper-parameter search space for the DQN algorithm

Hyper-parameter Search Distribution
learning rate α loguniform(1e-5, 1e-3)
discount factor γ loguniform(0.9, 0.995)
replay buffer size D loguniform(10e3, 10e4)
batch size B uniform(64, 256)
final exploration rate ϵfin uniform(0.02, 0.075)
exploration fraction uniform(0.3, 0.7)
target network update interval uniform(500, 5000)

Table 4.3: Hyper-parameter search space for the SAC algorithm

Hyper-parameter Search Distribution
learning rate α loguniform(1e-5, 1e-3)
discount factor γ loguniform(0.9, 0.995)
replay buffer size D loguniform(10e3, 10e4)
batch size B uniform(64, 256)
Polyak update ρ loguniform(1e-4, 0.1)

The discount factor (γ) is chosen in a similar range for both algorithms, which means that the

abilities of both algorithms to plan for the future appear similar to the optimization. It should

also be noted that the reduction of the exploration factor selected for the DQN (expl.frac.=

0.4062) is much larger than the value used in the original DQN and DDPG implementations

(0.001). This indicates that the training process can be accelerated significantly by a faster

reduction of the exploration factor.

Figure 4.10 shows the training processes of both algorithms after hyper-parameter optimiza-

tion. It can be seen that the training processes have been accelerated by several orders of

magnitude. With the original setup, 70 training epochs with all available training weeks were

necessary, but now both algorithms show a positive performance already after 50 weeks and

stabilize already after 200 weeks. For the DQN, the decisive factor here is in particular the

faster lowering of the exploration factor, which leads to a clear acceleration of the training.

Interestingly, the entropy-based exploration mechanism of the SAC algorithm still shows ac-

celerated training even compared to the accelerated exploration of the DQN. After 250 weeks

of training, however, the effect is over and both algorithms stabilize at an almost constant

performance.
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Figure 4.10: Training process of the DQN and the SAC algorithm after hyper-parameter op-
timization.

4.1.3 Discussion and lessons learned from case study one

This subsection summarizes the key results of the case study, discusses them, and also derives

lessons learned for future work. This is based on the result plots presented in the previous

subsection and the experience gained in the implementation process of the case study.

The application of the model-free algorithms for load shifting in a simulated cooling network

was evaluated. The results show that the implemented algorithms are capable of learning

an operation policy for the simulated cooling supply system that leads to a more economical

operation for all training- and test-weeks. In this combined approach, 70 weeks of boundary

condition data are enough to learn a superior policy, and although extensive training cycles

were applied on the training data, no over-fitting (lower performance on the test-data) has

been observed. The learned policies of both algorithms do not lead to large or long-lasting

violations of the temperature limits.

The DDPG shows a slight superiority, but since the deviations from the temperature limits are

already low with the DQN, the superiority of the DDPG is marginal. The ability of the DDPG

of adjusting the policy to rapidly changing environment dynamics (offset in the controlled

valves) was demonstrated. Exploration was disabled here and the networks control inputs

were therefore adjusted based on the previously learned policy. Other hyper-parameters were

not considered in the first five result subsections in order to evaluate the out-of-the-box use

of the applied algorithms. It was also shown how the convergence behavior of the algorithms

can be accelerated if state-of-the-art design principles are taken into account and optimized

hyper-parameters are selected. For the DQN, the largest effect was observed by lowering the

exploration factor faster. Using an entropy-based exploration strategy, the SAC algorithm
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found the optimal policy significantly faster, compared to the DDPG and even to the DQN

with optimized hyper-parameters.

The influence of the thermal masses in the system was also analyzed. The learned policies

are able to comply with the given temperature limit almost at all times. The tendency that

the received penalty increases with the increase of the thermal mass can be explained by the

increasing cost saving potential: with larger capacity, the operation cost savings potential

dominates the reward signals and the algorithm allows longer violations of the temperature

limit.

Based on the study, the following lessons learned can be derived for future work:

• RL is generally well-suited for energy management tasks with high-dimensional state-

spaces. However, the effort for generating the training environment should be critically

weighed against the effort for a MPC application.

• If the problem is well-formulated, a discrete control algorithm can achieve similarly good

performance as a continuous controlling algorithm. The dimension of the action-space

is crucial here. Discrete control should only be used if there are a limited number of pre-

defined system interactions to choose from. The DQN processes each action separately

and cannot learn a relationship between neighboring actions.

• The selection of algorithms should take into account the latest design principles from

RL research. The ability to find the optimal policy for reference problems has improved

by a factor of 10 in the recent literature. This was also evident here, through the high

convergence speed of the SAC algorithm, which (with its entropy-based exploration

mechanism) also outperformed the convergence speed of the DQN with optimized hyper-

parameters. Also, the selection of optimal hyper-parameters is important. In this study,

in particular, the adjusted lowering of the exploration factor led to a significant speed-up

of the training process. If hyper-parameter optimization is not possible for the problem,

it is recommended to use literature values for problems with a comparable complexity.

4.2 Case study two

In the previous case study section, the applicability of RL for load shifting in a cooling supply

system has been demonstrated. The two investigated algorithms (DQN and DDPG) are

generally both applicable for this purpose. However, it has been found that the out-of-box

use of these two algorithms does not lead to sufficient convergence speeds. Therefore, in this

case study, the focus is on strategies to reduce the necessary interactions with the real system

by applying different pre-training strategies (PS). In most existing studies, the training of RL

controllers has been mostly performed with physical simulations of the investigated systems
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[Han et al., 2019; Mason and Grijalva, 2019]. This approach, however, makes the time-

consuming and error-prone modeling of the system dynamics necessary, which reduces an

advantage of RL over MPC. In this case study, therefore, a fully data-driven RL training

approach is demonstrated, using data of a real-world cooling supply system. State-of-the-

art methods from the fields of data-driven modeling, offline training, Deep Q-Learning, and

Bayesian hyper-parameter optimization are used for this purpose. Five promising PS are

investigated with the aim of evaluating the final control performance and convergence speed

of the trained algorithm (DQN).

The rest of this section is organized as follows. In the next subsection, the experiment design

is presented. All steps from the raw monitoring data through a data-driven training and

evaluation environment to the trained and evaluated RL controller are described. In subsection

4.2.4, the results are presented, which are then discussed in subsection 4.2.5. First, the

description of the data-driven training and evaluation environment is presented. Based on

this environment, the control problem (MDP) to be solved by the RL controller is introduced.

In order to learn the optimal control policy for the system, five different PS are considered,

about which an overview is given in the following. Finally, additional concepts from offline

training and expert guidance used in this case study are introduced. As introduced in section

3.6, all implementations are built upon freely available Python packages, namely Scikit-Learn

[Pedregosa et al., 2011], Keras [Chollet and et al., 2015], Stable-Baselines [Hill et al., 2018],

and HyperOpt [Bergstra et al., 2015].

As in the last case study section, the investigated energy system is part of the same business

and research facility in Berlin, Germany. At the considered supply site, the cooling energy de-

mand also results from indoor air-conditioning, process cooling, and device cooling. In total,

the thermal cooling demand fluctuates between 50 kW and 650 kW. Figure 4.11 shows a pho-

tograph of the considered cooling energy supply system, and figure 4.15 shows the schematic

system structure together with the representative operation modes of the subsystems.

The supply system consists of two compression chillers with approximately 500 kW cooling

power each and an ice storage with a maximum cooling power of 900 kW and a total capacity

of 8.040 kWh. The cooling network is operated with a supply temperature level of 6 ◦C. While

both chillers are technically designed for this, only chiller 1 can be operated at a temperature

level that is also sufficiently low to load the ice storage. The cooling energy demand, the

ambient temperature, and the historical day-ahead spot market electricity prices (DE-LU),

from the ENTSO-E platform [Hirth et al., 2018], are considered as dynamic constrains.

The entire system is equipped with sensors, which continuously monitor all relevant volume

flows, flow temperatures, cooling powers, and electric powers. All data is recorded in an event-

based way, submitted using the IoT MQTT protocol, and stored in a time-series database; the

access is realized via a REST API. Monitoring data of the system is available from the time

period July 13, 2017 to January 01, 2020. After pre-processing (NaN- and outlier-handling)
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a dataset of 40 weeks with a high data quality is generated.

The dataset with 26,880 samples in a 15-minute resolution is split into a training and a testing

dataset. This is done by dividing the dataset into six equally long segments with a training

episode length of 40 days and a test episode length of 7 days, each. The training samples are

used for offline training, online training, and hyper-parameter tuning, while the testing weeks

are used for the final RL controller evaluation.

Figure 4.11: A photograph of the cooling supply system investigated in case study two. The
two compression chillers and the ice storage tanks are visible [EnBA-M, 2018].

4.2.1 Data-driven training and evaluation environment

For this experiment a data-driven model of the aggregated energy system is developed. In

order to learn data-driven models from monitoring data, a semi-automated, data-driven mod-

eling workflow is applied, similar to the one published in [Rätz et al., 2019]. The workflow

includes data pre-processing, model training, and hyper-parameter tuning, model selection as

well as the initial system decomposition and the final system aggregation. Different machine-

learning algorithms are trained and tuned, according to the workflow illustrated in figure

4.12, to represent the dynamics of all subsystems in their representative operation modes.

Considered algorithms are linear regression (LR) [Hüttermann et al., 2019], support vector

regression (SVR) [Jain et al., 2014; Zhang et al., 2016], random forests (RF) [Ahmad et al.,
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2017; Jain et al., 2017, 2016], and ANN [Ahmad et al., 2017; Mocanu et al., 2018; Ryu et al.,

2017].

In order to capture the thermal dynamics of the system, the data-driven models are designed

with a resolution of 5 minutes, which represents a trade-off between system inertia, sensor

accuracy, and capturing the system dynamics. In contrast, the control actions and dynamic

constrains are implemented in a 15-minute resolution, which on the one hand addresses the

available resolution of the constraints and on the other hand favors the observability of action

effects in the next state. The model tuning is performed via Bayesian hyper-parameter op-

timization and all models are evaluated based on their root-mean-square-error (RMSE) and

coefficient of determination (R2-score).

Period selection and
outlier handling Feature selection Model selection

Hyper-parameter
tuning Model evaluation Final evaluation

Figure 4.12: The data-driven modeling workflow. Starting with the selection of training data
and the choice of suitable features; models and hyper-parameters are optimized
with respect to validation data.

Modeling of the compression chillers

The models of the compression chillers are designed to approximate the electric power con-

sumption Pel. Both the cooling power setpoint Q̇set and the ambient temperature Tamb,

influence the compression chiller’s energy efficiency ratio (EER). The functional relationship

to be learned is provided in equation 4.4.

EER =
Q̇set

Pel

= f (Tamb, Treturn) → Pel ≈ f (Tamb, Q̇set) (4.4)

It is derived from the monitoring data that chiller 1 operates on two different temperature

levels, which results in two different operation modes. Therefore, two independent data-driven

models are used here for the two operation modes; one for ice storage charging and one for

direct supply of the cooling demand from the cooling network.

Figure 4.13 illustrates how data pre-processing reduces the feature values to those relevant for

identifying the physical relationships. The input data for the data-driven model of chiller 2
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are visualized in the form of the feature pair plot and the feature histogram before and after

data pre-processing. The histograms show how pre-processing the data effectively increases

the density of samples with physically plausible feature values. At the same time, irrelevant

monitoring data, for example from inactive periods, are excluded.

Figure 4.13: Data pre-processing of chiller 2. The top three plots show the correlations of
the features cooling power, electrical power, and ambient temperature with each
other (feature pair plots). The three lower plots show the uniform relative fre-
quency of the features in the dataset before and after pre-processing (histogram).

By applying outlier- and NaN-handling, erroneous values, for example from sensor malfunc-

tion, are excluded. Values outside physically plausible limits, such as negative cooling loads,

are eliminated as well. For example, a period in the dataset is identified and deleted from the

training data where the outdoor temperature sensor recorded constant Tamb = −9.1◦C over

four weeks in the spring of 2018.

Modeling of the ice storage

The ice storage system is designed with three operation modes, namely loading, unloading,

and idle. During the idle mode, the ice storage does not interact with any other subsystem

model. Nevertheless, a decrease in the state of charge (SOC in percentage of ice) results from

heating from the environment, correlating with the ambient temperature (Tamb). The feature

space includes one feature to provide the machine-learning model with information about the

state of charge of the previous time-step SOCt−1:

SOCidle ≈ f( Tamb, SOCt−1) (4.5)
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SOCi ≈ f
(

Q̇i, Tamb, SOCt−1
)

iϵ[loading, unloading] (4.6)

Figure 4.14: Data pre-processing of the ice storage in loading mode. The top three plots show
the correlations of the features cooling power, ambient temperature, and state
of charge with the state of charge and the state of charge in the last time-step
(feature pair plots). The three lower plots show the uniform relative frequency
of the features in the dataset before and after pre-processing (histogram).

For the operation modes loading and unloading, it is assumed that the state of the ice storage

is only sufficiently characterized, if historical information is included in the form of a series

of past state of charge values. In contrast to these consideration, the addition of more than

one historical value did not show further model improvements. Therefore, only the state of

charge of the last time-step is used as a feature for the data-driven model.

In figure 4.14, the input data for the loading model of the ice storage is visualized in the

form of the feature pair plots and the feature histograms before and after data pre-processing.

As the figure illustrates, pre-processing the data significantly reduces the number of outliers.

In contrast to the data visualization of the input data of the compression chiller 2 in figure

4.13, the functional relationships between the features Q̇, Tamb, and the resulting SOC are

not directly visible by means of a linear one-to-one correlation. Naturally, a linear correlation

between the SOC and its prior value SOCt−1 can be observed.

Modeling of the interconnected energy system

The data-driven models of each operation mode of each subsystem are aggregated to represent

the dynamics of the whole cooling energy supply system. Therefore, the trained models are

67



4 Application

interconnected to enable energy exchange between compression chiller 1 and the ice storage.

The cooling energy supply system, consisting of the two compression chillers, the ice storage

tanks, and a heat exchanger (between the glycol circuit and water circuit) is aggregated

as shown in figure 4.15. The generation units are designed to meet a given cooling demand

Q̇load, which is extracted at the heat exchanger. The cooling load Q̇load along with the ambient

temperature Tamb are exogenous boundary conditions for the aggregated model. Inspired by

the operation modes implemented in the automation of the real system, three operation modes

OM-0, OM-1, and OM-2 are implemented, as listed in table 4.4.

Model Chiller 2

Model Chiller 1

System 'Site 1'

Chiller 2

Chiller 1

Model Ice Storage

idle 

 
 
 

unload 

 
 
 

load 

Ice Storage

Load 
 

Heat Exchanger

Figure 4.15: The schematic structure of the aggregated case study two cooling system, consist-
ing of the six interconnected machine-learning models: three models to predict
the SOC of the ice storage (loading, unloading, and idle); two to predict the
electric power consumption of chiller 1 (Pel, chiller1: one for ice storage loading
and one for direct network supply); and one to predict the electric power con-
sumption of chiller 2 (Pel, chiller2).
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Results of the data-driven modeling

In this section, the results of the data-driven modeling approach are presented and discussed.

Figure 4.17 shows the RMSE and the R2-scores, of all the applied algorithms for all 6 individual

subsystem operation mode models, after hyper-parameter tuning. The LR baseline models

generally provide less accurate scores compared to the other models. It is outperformed by

RF, ANN, and SVR in all cases. RF reduces the RMSE down to 79.2 % in relation to the

LR baseline. The same is observed for the R2-score, which shows highly similar trends in all

cases. Therefore, the algorithm for the corresponding subsystem model is selected based on

the RMSE score on the test dataset, after hyper-parameter tuning.

RF and SVR provide the most accurate subsystem models. SVR outperforms RF and ANN

for the chiller 1 subsystem models, for which fewer training data samples are available, and

slightly outperforms RF and ANN for the ice storage charging model. The prediction of the

electric power demand of the compression chillers is learned with R2-scores between 0.94 and

0.99 and RMSE values between 2.02 kW and 3.51 kW . Also, the prediction of the percentage

of ice formation within the ice storage is learned accurately with a R2-score of near 1 and

RMSE values between 0.08 % and 0.72 %. These results show that the dynamic behavior of

the subsystems is successfully learned.

A few interesting observations were made in the course of the hyper-parameter tuning:

• The hyper-parameter tuning of the ANN models shows that small batch sizes (in this

case, 5-15 samples per batch) lead to the best results. Naturally, the RMSE improves

with more training epochs until it reaches a threshold value. If training continues after

the threshold is reached, over-fitting occurs and the prediction accuracy on the test data

decreases again. The maximum value is generally lower for models that converge after

a relatively small number (5-10) of training epochs. Further, the score of most models

does not significantly improve beyond 5 neurons within the hidden layers.

• Throughout all experiments conducted with SVR, the RMSE score declines with higher

values of the regularization parameter C and the kernel parameter gamma. While the

accuracy improvements become small with C ≥ 10, variations of gamma have notable

effects on the RMSE over the entire range of the search space. Apparently, the choice

of a high regularization parameter C (C > 1, 000), can compensate for a poor choice of

gamma.

• The experiments confirm that RF is insensitive to changes in its hyper-parameters. Since

the number of nodes (Decision Trees) has the biggest influence, an optimal number for

each model is identified; improvements were insignificant beyond a certain threshold

(once the number of nodes is higher than 7).

The experiments also confirm the poor extrapolation capabilities of non-linear data-driven

models. This is observed especially for ambient temperatures (Tamb), beyond the bounds
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in the training dataset. Nevertheless, it was possible to learn the relevant characteristics

of all subsystems and operation modes based on the available data. Figure 4.16 shows the

characteristic of chiller 1 in ice storage loading mode, learned with a SVR model. Although

the model appears to be rather accurate, with a RMSE of 2.02 kW, the predictions become

inaccurate in areas of the feature space where no monitoring data is available: electrical power

Pel increases with decreasing cooling load Q̇ at high Tamb.

Figure 4.16: The dynamics of chiller 1, learned via a SVR model in the three dimensions:
Cooling power, electrical power, and ambient temperature. The diagram shows
the expected trend towards more electrical power at higher ambient temperatures
and higher required cooling power. However, it also shows the limits of the
model in regions which were not represented in the dataset (low cooling load at
high outdoor temperatures: physically implausible drop in the required electrical
power at the top left corner of the plot).

As indicated by the RMSE and R2 scores in figure 4.17, all subsystem models show highly

accurate operation characteristics. The ice storage model is the most accurate and coincides

with the time-series from the monitoring data for almost all time periods. In general, it is

shown that the interaction characteristics of the data-driven models represent the character-

istics of all components in the supply site with high accuracy. The aggregated model is thus

suitable for the use as a data-driven training and evaluation environment.

4.2.2 Markov Decision Process formulation

The formulation of the MDP, with its action-space, state-space, and reward function r(at, st)

is presented in this section. The possible actions of the MDP are the three energy management
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operation modes from table 4.4. The possible actions are: OM-0, where the cooling demand of

the network is provided by chiller 2, while chiller 1 loads the storage. In the operation modes

OM-1 and OM-2, the cooling demand of the network is supplied by unloading the storage

or by direct supply through chiller 2, respectively. The control action is performed every 15

minutes (every third simulated time-step). The state-vector consists of 15 variables, as listed

in table 4.5.

Figure 4.17: Comparison of the best data-driven models for the six operation modes of the
thee components after hyper-parameter tuning, based on the RMSE and R2-
scores.

The authors of [Wang and Hong, 2020], highlighted that the control performance of a RL

controller can benefit significantly from the inclusion of forecasts of the control problems

constraints. In order to find a trade-off between including forecasts and the size of the state-

vector, statistical features (minimum, maximum, and mean) are used here, instead of the

complete time-series, with a rolling 16 h horizon. A perfect forecast is used based on historical

data of the ambient temperature and the electricity price. Due to the rolling horizon, it can

be assumed that the influence of the inaccuracy in real forecasts, as with MPC, is relatively

small. Further, meta information regarding the hour of the day th, the day of the week td,

and the month of the year tM are included as sinusoidal signals. The electricity costs Cel,t

compared to the costs Cb
el,t, resulting from a baseline policy πb (in e), represent the reward

signal:

rt (at, st) =
(

Cb
el,t − Cel,t

)

− 0.1(if : at ̸= at−1) − 0.5∆SOC (4.7)
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The baseline policy πb used to evaluate the savings, (realized with a RL controller, trained

under one of the applied PS) reflects the case of direct load coverage. In this case, OM-2

is constantly active, chiller 2 supplies the network, and neither the electricity price nor the

forecast of it are taken into account. In addition, two small terms are added in order to

facilitate reasonable control behavior from an engineering perspective. Since an increasing

number of chiller starts and shutdowns are undesirable from an engineering point of view,

a small term (0.1) penalizes action changes. Further, penalizing the difference of the SOC

between the first and current time-step of an episode leads to another term (0.5∆SOC). This

guides the RL controller to learn policies that do not empty the ice storage at the end of

each episode. Therefore, the policy of the RL controller is influenced towards a more system-

friendly operation, from an engineering point of view. All RL controllers are evaluated based

on their mean episode savings.

Table 4.4: The three possible operation modes of the aggregated energy system.

Action
Chiller 1

(510kW )

Chiller 2

(500kW )

Ice Storage

(900kW ; 8, 040kWh)

OM-0 load ice storage supply network loading

OM-1 inactive inactive supply network

OM-2 inactive supply network inactive

Table 4.5: The state-space variables presented to the RL controller at each time-step an action
is performed.

State-space variables

Pel, chiller1: electrical power chiller 1 Pel, chiller2: electrical power chiller 2

SOC: ice storage SOC Q̇dem: cooling energy demand

Tamb: amb. temperature T 16

amb,max, T 16

amb,min, T̄ 16

amb: forecast

kel: electricity price k16

el,max, k16

el,min, k̄16

el : forecast

th: hour of day tM : month of year

td: day of week

4.2.3 Overview of the investigated pre-training strategies

The different PS, evaluated in this case study, are visualized in figure 4.18 and summarized

in table 4.6. These PS represent three different approaches: PS-A refers to online RL in

interaction with the data-driven model of the energy system; in PS-B, an online training

phase is combined with offline training, based on artificially generated expert trajectories;

and with PS-C, training is realized, with monitoring data only. It is further differentiated
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Table 4.6: The evaluated PS combinations, leading to five implemented workflows.
Concept PS-A PS-B PS-C
Offline training ✗ ✓ ✓

Expert trajectories ✗ ✓ ✗

Monitoring data ✗ ✗ ✓

Guiding RBC A1:✓ A2:✗ B1:✓ B2:✗ ✓

between variation 1 and variation 2, in which a guiding RBC controller is either implemented

or not, respectively.

MDP formulation

monitoring data
evaluation

expert trajectory
generation

data-driven modelling

data pre-processing

model parameter tuning &
training

model selection

system aggregation

sys. disaggregation

system evaluation

RL controller training

hyper-parameter
optimization

online training 
1: guided 

2: unguided

controller
evaluation

offline training

Pre-training Strategies 
A: simulator online training 
B: simulator trajectory generation  
and offline training 
C: direct training from monitoring  
data trajectories

C

A

B

Figure 4.18: The evaluated PS, where different workflows are compared: direct online train-
ing with the data-driven model (PS-A) and offline training either with expert
trajectories (PS-B) or with monitoring data (PS-C). For PS-A and PS-B, the
performance is additionally compared with and without a guiding RBC con-
troller (1: guided; 2: unguided).

The data-driven model is used in combination with the training dataset, first for expert trajec-

tory generation, secondly for online controller training, and thirdly for controller evaluation,

using the test dataset. The expert trajectories used for PS-B are generated by running simula-

tions of the model using a computationally cheap RBC. Alternatively, the expert trajectories

used for PS-C are directly extracted from monitoring data. The difference is, therefore, that in

PS-B, expert trajectories are generated using the simulation, and for PS-C, only the realized

control actions observed in the monitoring dataset from the real system are used.

Since an efficiency-based RBC is implemented for the real system, in which the ice storage is

always loaded overnight, PS-C represents this case. Between 10 and 12 o’clock at night, the ice
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storage is fully loaded, which is usually completed in the early morning hours. The strategy

aims to exploit the lower outdoor temperatures at night for loading in order to increase the

efficiency of chiller 1 during operation. All PS are evaluated in terms of their mean episodic

savings over the baseline policy. Further, all PS are studied with their representative optimal

hyper-parameter combinations.

Offline training and RBC guidance

In offline RL training, the RL algorithm goes through supervised training, to approximate

the state-action-value function prior to online RL training. The aim is to reduce the number

of necessary interactions with the real system till the optimal policy is learned. In analogy

to online training, during offline training, batches of stored environment transition samples

are backpropagated through the network of the DQN via stochastic gradient-descent. The

number of training epochs is considered as a tunable hyper-parameter.

An expert trajectory, used for DQN training, contains a temporal sequence of (state, action,

reward, next state) pairs. The corresponding trajectories are generated differently for PS-B

and PS-C. While the expert trajectory for PS-C is extracted directly from the monitoring data

(and thus encodes the currently applied RBC), the trajectory for PS-B is generated artificially

by applying an electricity price-based RBC in the data-driven training environment.

In the case of PS-C (where expert trajectories for the offline training are generated directly

from monitoring data) the historic control actions are detected and marked within the moni-

toring dataset by using a simple conditional action classifier. The trajectories therefore result

from the "load at night" RBC, introduced along with the PS overview in the last section. As

introduced, this RBC does not take the price signal into consideration but exploits the lower

ambient temperatures at night to operate the chillers with higher EER values.

For the offline training with PS-B, a more economic, price-based RBC is implemented. This

RBC takes the forecast of the electricity price for the next 16 hours into account when making

the control action. It exploits fluctuations of the electricity price by loading the ice storage

(OM-0) whenever the SOC is below 50 % and the current electricity price is lower as the mean

value of the forecast (kel ≤ k̄16

el ). Unloading of the ice storage (OM-1) is chosen if the price is

higher (kel > k̄16

el ).

In addition to pre-training of the RL controller with different expert trajectories, the chal-

lenging transition from offline to online training is addressed by stabilizing the initial phase

with a guiding RBC. The respective RBC follows the expert trajectory with which the RL

controller is pre-trained offline and interferes with the action of the online RL controller un-

der a decreasing probability β. β is initialized with β0 = 1 (RBC) and is linearly reduced to

βi → 0 (RL) over time. The number of training steps the RBC intervenes in the RL controller

action is considered as a tuneable hyper-parameter. The PS are distinguished by the numbers
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1 and 2; PS-A1, PS-B1, and PS-C are the variants with implemented RBC guidance, while

PS-A2 and PS-B2 do not include RBC guidance.

4.2.4 Results of case study two

In this section, the results of case study two are presented. All experiments are conducted

with an ordinary PC (CPU: Intel Core i5- 8265U 1.60 GHz; RAM: 16 GB). The training of

one DQN under a certain PS took 1,093 seconds on average.

Hyper-parameter optimization

The hyper-parameters found via HyperOpt [Bergstra et al., 2015] are shown in table 4.7. The

search-space is reasonably selected on the basis of the literature and each PS is optimized for

40 iterations. In the conducted experiments, hyper-parameters are the ones of the training

process itself. For the DQN structure, on the other hand, the default settings from the

Stable-Baseline implementation [Hill et al., 2018] are used. Throughout all PS, RL controller

performance improvements between 105 % and 184 % are observed in relation to the average

savings over the baseline policy (before hyper-parameter optimization). At the same time,

the necessary interactions until convergence are reduced from ∼800,000 to ∼125,000. All

following results are based on the best hyper-parameter sets for the respective PS.

Comparison of the PS

The learning curves of the RL controllers, trained with all introduced PS are shown in figure

4.19. The plot shows the mean episodic savings (J̄ train
eps ) and the deviation (shaded area) over

a period of 30,000 simulated hours with the training dataset. In table 4.8, five performance

indicators are additionally presented.

The standard deviations are constantly high for all PS because the training environment is

randomly initialized repeatedly over the course of the simulated 30,000 hours. The reason

is that only 6 * 40 days (5,760 hours) of data are available for the training. Therefore,

it is necessary to extend the possible training epochs with the available data, by random

initialization of the environment: In order to generate more data for the training and at the

same time avoid over-fitting to known data, the training process repeatedly starts at a new,

randomly selected time-step. Even a perfect policy could thus only act within the limits of

its suboptimal starting conditions. However, the convergence of the RL controllers can be

clearly observed in the time-series of the mean episodic savings.

The offline pre-trained DQN, with implemented RBC guidance (PS-B1) consistently yields

positive savings and the performance is also slightly higher than the one of the "price based"
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RBC, with which it is pre-trained. The guided DQN without offline pre-training (PS-A1)

achieves the highest monetary savings after the 30,000 simulated hours. The other PS also

yield consistently positive but lower savings at the end of the evaluation period. The first-year

savings are used to compare the PS based on their costs of training caused by system exploring

control actions during the initial phase of online interaction. Due to its rapid convergence,

the unguided DQN (PS-A2) yields the highest savings within the first year (8,785.7 EUR).

Figure 4.19: Convergence behavior of online training of all five differently designed RL con-
trollers over 30,000 simulated hours on the training dataset. The baseline policies
are highlighted with dashed lines. The solid lines represent the mean episodic
rewards and the shaded area represents the spectrum between best performing
episode and worst performing episode.

With PS-A1, where the RBC guidance is implemented with no prior offline pre-training, the

training process is finished with the highest savings. In comparison, the DQN trained under

PS-A2, where the interaction is unguided, converges more rapidly (break-even time and first-

year savings).

Regarding those PS, where the DQN is initialized with offline pre-training (PS-B1, PS-B2,
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and PS-C), it is shown that high exploration values in the initial phase of the interaction lead

to a significant negative controller performance, as it can be seen in the learning curves of

PS-B2 and PS-C. Once online training is initialized, both respective controllers underperform

the control performance of the expert policies they are offline pre-trained with. In summary:

In the initial phase of online interaction (at best), the pre-trained RL controllers reflect the

trivial baseline RBC encoded in the expert trajectories they are trained with.

Table 4.7: Results of hyper-parameter optimization after 40 search iterations.

Hyper-parameter PS-A1 PS-A2 PS-B1 PS-B2 PS-C

offline learning rate n/a n/a 9.9e-3 9.9e-3 9.9e-3

offline epochs n/a n/a 40 40 40

discount factor (γ) 0.93 0.97 0.91 0.93 0.95

learning rate (α) 5.01e-5 6.37e-5 4.61e-6 1.48e-5 5.43e-5

buffer size 94900 3400 3600 33400 36600

batch size 56 84 60 116 44

init. exploration rate (ε) 0.65 0.75 1.0 1.0 0.75

fin. exploration rate 0.04 0.01 0.02 0.01 0.03

init. RBC interference 0.7 n/a 0.75 n/a 0.9

time-steps with RBC 21000 n/a 34000 n/a 32000

RL controller performance on test data

In figure 4.20, the performance of all RL controllers trained with their respective PS for a

three-week period of the test dataset is shown. The central subplot shows the electricity cost

savings compared to the baseline policy, the lower subplot the electricity price for this time

period, and the top subplot the storage loading and unloading cycles resulting from PS-A1 and

PS-B1. The used colors for the time-series of the top and the central subplots are listed in the

legend. All PS outperform the heuristic "price based" RBC, based on the dynamic electricity

price forecast. The visualization of the ice storage SOC (top subplot) is used to compare the

time-series of PS-A1, PS-B1, and the "price based" RBC. Therefore, the differences between

two variations, one with and one without offline pre-training and both with guiding RBC, are

compared. For these two policies, an additional analysis is conducted. The selected actions

are analyzed, by extracting the action probabilities (the normalized Q-values), at each time-

step. This determines the probability of the RL controller to select one of the possible actions

(OM-0, OM-1, and OM-2).
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Figure 4.20: Time-series plots of the trained RL controllers throughout a three-week test pe-
riod. In the legend, the time-series of the storage SOC (top subplot) as well as
the time-series of the savings, compared to the baseline policy (central subplot),
are assigned to the respective PS. PS-B1 results in a policy that resembles the
"price based" RBC policy, while PS-A1 is characterized by a higher frequency of
storage loading cycles. The savings are highest with PS-A1 & 2.

Table 4.8: Performance metrics of the investigated PS. The PS are evaluated in terms of the
final mean episode savings, using the training dataset (J̄ train

eps ) and by using the test
dataset (J̄ test

eps ), as well as by the first-year savings and the break-even time.

savings PS-A1 PS-A2 PS-B1 PS-B2 PS-C

mean (train) [e] 429.1 315.9 156.9 185.3 267.5

first-year (train) [e] 4,336.5 8,785.7 2,397.2 -525.3 -10,649.6

break-even (train) [days] 89.9 67.4 0 164.6 862.6

mean (test) [e] 102.9 107.7 35.6 75.0 112.9

10-day (test) [%] 11.4 11.9 3.94 8.3 12.5

On this basis, the coefficient of determination (R2-score) is calculated to evaluate the cor-

relation between the action probabilities and the constraints (electricity price kel, ambient

temperature Tamb, and cooling demand Q̇dem). Among the three features analyzed, PS-B1
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indicates being predominantly influenced by fluctuations of the electricity price (R2
xel

= 0.39,

R2

Tamb
= 0.03, R2

Q̇dem

= 0.07). In comparison, when following PS-A1, no state-space fea-

ture appears to be statistically more significant than the others (R2
xel

= 0.17, R2

Tamb
= 0.21,

R2

Q̇dem

= 0.15). PS-A1 therefore leads to a more complex policy in which the other constraints,

in addition to the electricity price, have a significant influence on the control action.

4.2.5 Discussion and lessons learned from case study two

This subsection summarizes the key results of the case study, discusses them, and also derives

lessons learned for future work. This is based on the result plots presented in the previous

subsection and the experience gained in the implementation process of the case study.

The results show that with a guiding RBC, it is possible to implement a RL controller that

outperforms this guiding RBC. Offline training of the RL controllers (PS-B and PS-C) leads

to policies similar to those expert policies the RL controllers are offline pre-trained with.

However, especially in the initial phase, the RL controllers show significant lower control

performances. This observation underlines the findings published in [Ross and Bagnell, 2010],

regarding a growth of deviations from the offline trained policy caused by the lacking ability of

the RL controller to extrapolate to unseen states. The performance of the already sub-optimal

policy is further decreased by random exploration [Hester et al., 2018]. Maintaining an online

training process that outperforms the RBC is only possible when following PS-B1, in which

the RL controller shows higher electricity cost savings compared to the "price based" RBC.

Generally, RBC guidance stabilizes the learning process in exchange for slower convergence.

The use of monitoring data for offline training (PS-C) does not lead to a promising controller

performance, especially directly after the offline pre-training. The trained RL controller seems

to over-fit to the sub-optimal policy in the historic trajectories. This calls for an early stopping

strategy for offline RL controller training, in order to exploit the information about the system

dynamics encoded in the data but at the same time avoid over-fitting to the observed policy.

Another possibility is the use of more diverse training trajectories, for example if different

control trajectories in different monitoring datasets for a similar system are available. Fur-

thermore, PS-C was the most costly during the online training process. In spite of the results

on the test period (figure 4.20), PS-C performs best on the test dataset on average (table

4.6: mean (test)). It is concluded that due to the costly training process, a more diverse set

of trajectories has been processed leading to the ability to exploit more diverse combinations

of constraints. A temporarily negative cost savings term may be tolerable, in cases where

user comfort and safety requirements remain unaffected by the selection of RL controller ac-

tions. As the results show, the initial financial burden of the trial-and-error learning process is

quickly compensated when following both variations of PS-A and leads to higher accumulated

savings throughout the entire training process.
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In the SOC time-series subplot of figure 4.20, there is a visible discrepancy between the poli-

cies learned trough PS-A1 and trough PS-B1. PS-B1 closely resembles the expert trajectories

of the implemented guiding RBC. This suggests that the combined influence of offline pre-

training and RBC guidance influences the policy (learned via PS-B1) throughout the entire

training process and afterwards. Based on the significant differences in the correlations be-

tween the state-space features and the Q-values, it is concluded that the policy resulting from

PS-B1 strongly adapted and only slightly improved the "price based" RBC policy. By com-

parison, the RL controller trained under PS-A1 has also learned to exploit fluctuations in the

ambient temperature (Tamb) and in the cooling energy demand (Q̇dem).

One controller (trained under PS-A2) outperformed the RBC based on price signal forecasts,

after 67 days of online training. The controller was not pre-trained offline before the first

interaction with the environment. This demonstrates (for this case study) that training under

real-time conditions is possible if the state-space is compact and the set of hyper-parameters is

well chosen. This is a promising result, as the approach of creating a data-driven pre-training

environment for a system appears only reasonable if both the quality of the monitoring data

and the potential savings justify the effort.

The intuitive approach of offline pre-training of the RL controller with historical data did

not yield promising results. Future research should focus on how historical data can be used

for offline pre-training and how this step affects the performance of the RL controller during

exploration and online training.

An essential prerequisite for the approach and the use of RL in BES (in general) is the

availability of the necessary IT infrastructure. Data-points, sensors, and actuators, as well as

interfaces to external data sources must be available for the algorithm. In this study it was

possible to show that if these prerequisites are met RL controllers can make promising control

actions few weeks after deployment. Nevertheless, increasing digitalisation and the spread of

building automation and control systems (BACS) are key when it comes to bringing advanced

methods from the field of adaptive and predictive control from science into practice.

The problem of the error-prone and time-consuming physical modeling, which was carried out

in most previous studies was addressed, by applying state-of-the-art machine-learning algo-

rithms, using monitoring data of the investigated system. The learned models were designed

to represent the dynamics of two compression chillers and an ice storage in an interconnected

cooling energy system. The modeling process is automated to a large extent and can (under

the premise that high quality monitoring data are available) be applied to diverse systems.

Bayesian hyper-parameter optimization led to control performance improvements of up to 184

% and reduced the necessary interactions with the training environment from ∼ 800,000 to

∼ 125,000. Future studies should investigate how transferable hyper-parameter selections for

RL controllers are. Since some of the hyper-parameters are of similar magnitude for all PS,

it seems plausible that they are transferable for similar applications. The main influencing
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factors here are the completeness and size of the state-space, the size of the action-space,

and the delay as well as the design of the reward signal. In future work, the issue of hyper-

parameter selection should always be considered. In this case, Bayesian hyper-parameter

optimization proved to be a good choice. However, a sensitivity analysis can also be used as

a first estimation.

Based on the study, the following lessons learned can be derived for future work:

• If the quality of the monitoring data is ensured by a modern IT infrastructure, a complete

workflow of data-driven system modeling and RL algorithm training can be applied.

• Training with monitoring data without the intermediate step of building a data-driven

training environment comes with several problems. If only data for a certain training

policy is available, a strong tendency to over-fit to this policy can be observed. The

performance of the algorithm then (especially through additional exploration) does not

reach the performance of the observed policy in the training data. This problem could

be overcome if more diverse policies were available for offline training.

• If RL algorithms are used for energy management and the quality of supply is not

influenced by the actions performed by the algorithm, training on the real system is

feasible. With a compact state- and action-space, a RL algorithm can learn a superior

policy in a few weeks and thus represent an expert system for energy management.

4.3 Case study three

After the previous two case studies focused on the training and performance of RL algorithms

using dynamic simulations and data-driven models, the third case study now examines an

application on a real system. While case study one dealt with the application of RL for load

shifting in a cooling network and case study two with an energy management application

for an ice storage under dynamic boundary conditions, now a feedback control application is

investigated. Special focus is given to a generalizable problem formulation for the selected

task as well as to the transferability of simulation-trained algorithms to real systems. It is

demonstrated how a DQN algorithm can be used for self-improving valve control.

Valve control is a recurring problem in BES control. Often, poorly tuned PID controllers lead

to poor control performance and aging components resulting in (for example) changing valve

characteristics, further reduce the control performance over time. Due to its adaptive charac-

teristics and low computational requirements (after training), RL has a particular potential to

extend BES automation by self-learning and self-improving software components. Therefore,

an adaptive valve control for HVAC systems by means of RL is investigated. One of the

biggest energy consumers in buildings are HVAC system [Yuan et al., 2019]. Thus, optimal

control strategies for those systems and the associated subsystems are becoming increasingly
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important for sustainable building operation [Zhang et al., 2018]. Conventional HVAC control

is based on On/Off rules and PID controllers, which are comparatively easy to implement and

have low initial costs [Mirinejad et al., 2008]. However, in practice, the parameters of PID

controllers are often not set optimally, which significantly reduces their control performance

and results in inefficient operation [Wemhoff, 2012]. Also for HVAC systems, MPC promises

a nearly optimal operation but demands computing power and an accurate system model

[Afram and Janabi-Sharifi, 2014]. Especially the creation of the model is uneconomic in many

cases and must be repeated after every change in the system. Due to its model-free nature

and recent developments in deep-learning, optimal HVAC control with (model-free) RL is also

considered within this context as a promising alternative [Wang and Hong, 2020]. The low

computational costs (after training) and inherent adaptiveness promise significant advantages

over other methods [Görges, 2017].

The investigated task is to control the outgoing air temperature of a cooler by adjusting the

valve of the water/air heat exchanger with respect to the incoming air temperature and the

setpoint temperature. Solving this problem via RL requires the definition of a MDP which

should be as generic as possible, to allow the transfer from a simulation to different real-world

heat exchangers.

Besides the application to different real-world scenarios with different hydraulic character-

istics, transferability is also important because the simulation model generally reflects the

reality only to a limited extent, therefore an adaption to the actual system dynamics is nec-

essary. The hydraulic system determines the effect of a change of the valve position on the

outgoing air temperature [Recknagel, 2017]. The underlying hydraulic system of the cooler

is a throttle circuit [Recknagel, 2017]. The RL algorithm training as well as the final con-

trol script are implemented on an ordinary PC. The communication between the PC and the

HVAC automation is realized via a REST API, a database, and a MQTT broker.

Figure 4.21 shows the hydraulic scheme of the considered AHU and figure 4.22 the available

data points of the investigated subsystem. The AHU provides temperature-controlled fresh

air to a workshop and a laboratory. In addition to the heat exchangers shown, the components

(a to d) show flaps, fans, and filters along the air inflow and outflow. In the next section, the

considered subsystem and the control task are discussed in more detail.

4.3.1 A generic problem formulation for AHU valve control

As shown in figure 4.21, the incoming air with temperature T3 streams through the cooler

before it enters the reheater. Both heat exchangers are connected to different supply water

circuits. The task is to learn to control the cooling heat exchanger outgoing air temperature

T4 (like a PID controller) with respect to a setpoint signal under the dynamic environment

conditions (incoming air temperature and cooling water temperature). A further influencing
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factor is the humidity, but since this is not measured directly after the cooler, the combination

of incoming air temperature and valve position leading to a certain outgoing air temperature

must be somehow differently be encoded in the state-vector. In the cooling case, the setpoint

temperature which can be set in the laboratory and the workshop directly corresponds to

the setpoint temperature behind the cooler. In figure 4.22, the temperature with the highest

influence are the temperature of the incoming air (T3) and the temperature of the cooling

water (cooler (Tw1)). The reward signal is designed to solely depend on the deviation of the

outgoing temperature from the setpoint: r = f(|T set
t − T out

t |).

dExhaust air

Fresh air

Heat recovery
system

Preheater Cooler Reheater

Steam
humidifier

Workshop Laboratory

Liquid water
humidifier

a

a

b

b

b
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subsystem

Figure 4.21: The hydraulic scheme of the considered AHU. The AHU supplies a laboratory
and a workshop with conditioned fresh air and has a heat recovery system, a
preheater as well as a cooler and a reheater. For this case study, the throttle
valve at the cooler is controlled.

Figure 4.23 shows the reward function. Maintaining the temperature in a range of 1 °C

around the setpoint leads to the highest rewards. All sections of the reward function have a

slope higher than 0 to steer the algorithm in the direction of the smallest deviations. If the

discount factor is higher than 0, the Q-values represent not only the immediate reward but

also the estimated future rewards resulting from an action. Therefore, it is assumed that the

DQN will learn a policy that also avoids overshooting. The algorithm can take three possible

actions; it can open, hold, or close the valve: at = [+X, ±0, −X]. This has two advantages

over the specification of fixed valve positions. Firstly, the online interaction with the real

system is safer since the algorithm is not able to select extremely different valve positions

from one time step to the next. Secondly, the MDP is of a much lower dimension, due to the

smaller action-space, and therefore the training is less data-demanding. On the other hand,

the selection of X requires a trade-off between strong intervention in extreme situations and

a granular control.
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Figure 4.22: The hydraulic scheme of the cooler and the reheater subsystem with shown sen-
sors and actuators.

The definition of the state-vector is a key challenge, since not only must it include all informa-

tion necessary to solve the control problem, but it should also be as compact as possible (to

reduce training times), and should be generic enough to transfer the applicability of the al-

gorithm from the simulation to different heat exchangers. Including all available data-points,

together with historical values (to learn the dynamic of the thermal inertia) would result

in a very large and over-specified state-vector. Taking these requirements into account, the

state-vector is defined as follows:

st = [T set
t − T out

t , T set
t−1 − T out

t−1, T set
t−2 − T out

t−2, T set
t−3 − T out

t−3, T set
t−4 − T out

t−4, at−1, at−2, at−3, at−4, at−5]

This state-vector incorporates the deviation from the setpoint in the current and the four

steps before as well as the last actions, selected by the algorithm. This makes the state-

vector generic because the deviation is not dependent on the temperature levels of the heat

exchanger. The past selected actions provide the algorithm with information about the effect

of its actions on the outgoing air temperature under unknown boundary conditions in a generic

way.

Figure 4.24 visualizes the state-vector. The dotted line plots a setpoint of 21 °C and the black

line plots an exemplary course of an outgoing air temperature. The red lines and the blue

lines mark the deviations from the setpoint.

4.3.2 Deep Q-Network training

For the pre-training, a simple Modelica simulation model of a water/air heat exchanger with

an admixing water circuit is used. The used model is freely available in the AixLib GitHub
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repository [Müller et al., 2016] and provides the physical relationships sufficiently for this

purpose. The simulation model is exported as a FMU [Blockwitz et al., 2012] and is connected

to the algorithm following the standardized OpenAI Gym interfaces [Brockman et al., 2016].

The incoming air temperature is designed as a sinus function, which is initialized with random

parameters, each training episode. The incoming air temperature varies between 1 and 10 °C

below the setpoint with different frequencies. The setpoint is constantly set to 21 °C. One

episode consists of 50 simulated minutes with one interaction every other minute. X in the

action-space is set to 10.

Figure 4.23: The reward function in this case study is designed to lead the algorithm with
linear rewards in the direction of 4 °C deviation from the setpoint and leads the
algorithm here with higher gradients in the area of minimal deviations.

For this setup, HyperOpt [Bergstra et al., 2015] is used to identify the optimal hyper-

parameters for the used DQN via a Bayesian hyper-parameter search. The resulting hyper-

parameters are:

• batch size (64),

• replay buffer size (10,000: approximately 167 hours of interaction),

• minimum replay buffer size (480: training starts after 8 hours),

• target-network update frequency (30),

• number of neurons (30),

• and discount factor γ (0.36).
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The exploration versus exploitation trade-off is handled via ϵ-greedy: The probability to select

a random action after every interaction is reduced by 0.001.

Figure 4.24: Visualization of the state-vector, consisting of the temperature deviations from
the setpoint. Here exemplarily represented by the positive deviations from the
setpoint (21 °C) for the time-steps t-7 to t-3 and the negative deviation from the
setpoint for the time-steps t-1 to t.

Figure 4.25 shows a positive trend in the rewards in the course of 10.000 training episodes.

Considering the limiting influence of the randomly initialized input air temperature, the al-

gorithm significantly improves in exploiting the rewards from the training environment from

the beginning. The training is stopped at this point to avoid over-adaption to the simulation

and to keep a sufficient degree of adaptability in the online interaction phase. It is also visible

how the optimal selection of the DQN hyper-parameters not only accelerates the algorithm’s

search for the optimal policy, but also stabilizes the training significantly. While the DQN

with optimized hyper-parameters follows a stable policy after 2,000 training episodes, the

default hyper-parameters lead to a significant performance drop after 2,000 episodes and the

maximum performance is also reduced. Generally, the positive trend also indicates that the

MDP, consisting of a reward signal, a state-space and an action-space, generally provides the

appropriate information for the algorithm to improve its policy over the course of the training

episodes.

4.3.3 IT infrastructure

The IT infrastructure is shown in figure 4.26, which illustrates the communication between the

optimization script and the AHU. The central tool for the interaction is a cloud-based data
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infrastructure [Bode et al., 2019], whose main components are a time-series database, a REST

API, and a MQTT broker. The time-series database contains all actual measurements and

setpoint values of the AHU automation. For communication with the database via HTTPS,

the REST API provides standardized interfaces. The MQTT broker is used for the secure

and high-performance communication between the AHU automation and the platform via

the MQTT protocol. The MDP and the DQN are implemented as a script on an ordinary

PC. For the interaction via MQTT, an industrial PC (data logger) is integrated into the

local automation system which exchanges actual measurements and setpoint values with the

AHU automation and acts as a translator between the local BACnet protocol and the MQTT

protocol. With this setup, it is possible to control the system remotely via the internet and

to perform the experiments without being physically close to the system.

Figure 4.25: Visualization of the DQN learning curve with optimized hyper-parameters. The
influence of hyper-parameter optimization on the training of the algorithm is
clearly visible. While the algorithm with default parameters shows several partly
heavy performance drops, the DQN with optimized hyper-parameters shows a
rapid performance increase and stabilizes at a higher level after 3000 episodes.
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4.3.4 Results of case study three

Online valve control

Figure 4.27 shows the development of the average reward of the DQN in interaction with the

real cooler valve (top subplot) and of the associated exploration (bottom subplot). A positive

trend in the average rewards is observed. Due to the selected minimum replay memory size,

the DQN controls the valve based on the initial policy from the simulation pre-training in

the first eight hours. During this period, the standard deviation (shaded area) is relatively

high compared to a later interaction where the policy is updated using data from the online

interaction.

Personal	Computer

Python
script

Cloud	infrastructure

REST	API Time	series
database

MQTT
broker

HTTPS

Automation	network

Data	logger

AHU

MQTT

BACnet

Figure 4.26: The required IT infrastructure. The state variables from the AHU are translated
from the BACnet protocol into the MQTT protocol via an industrial PC (data
logger) in the automation network and sent to a MQTT broker. This broker
writes the data to a time-series database where it is then available to a personal
computer running a Python script and accessing it via HTTPS, using a REST
API. The setpoints from the script are written back to the AHU automation
network via the same path.

After ten more hours of interaction, the rewards drop, increase again in the following 30

hours, and after 60 hours, the rewards rise to 5 with a significant lower standard deviation.

A high standard deviation indicates a high fluctuation of the outgoing air temperature, a

decreasing standard deviation can therefore be interpreted as a reduced oscillation around

the setpoint. The real heat exchanger reacts more sensitively to valve opening changes than

the simulated heat exchanger. Therefore, acooler = [+3, ±0, −3] is chosen. Further, using the

DQN for the cooler requires to negate the deviations from the setpoint in the cooler’s DQN

state-vector, because unlike with the simulated heating water/air heat exchanger, opening

leads to a temperature reduction and closing to a temperature increase. The DQN shows the

expected behavior: if the temperature is too high, the algorithm increases the valve opening,

whereas the valve opening is decreased when the temperature is too low. On the other hand,

the DQN starts with strong oscillations around the setpoint.

Figure 4.28 shows the learned Q-values with respect to the current deviation from the setpoint.

The current deviation from the setpoint is displayed on the x-axis while the y-axis shows the
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available actions. The surface illustrates the Q-value of each state-action pair. The red line

shows the greedy action. In spite of the initial policy, where the algorithm does not change

the valve position if the deviations are smaller than 1 °C, the control behavior improved.

There is no deviation from the setpoint where the DQN does not change the valve position.

Naturally, the Q-value and thus the action in a given state depends on more factors than the

current deviation (namely the history of deviations and actions), but the visualization in the

form of such a 3D Q-value plot is a good option to show the relationship between values in

the state-vector and their influence on the Q-values. The red line shows the highest Q-values

in each state, and thus the action that would be selected by a greedy policy.

Figure 4.27: Rewards and exploration during online interaction. The upper plot shows the
progression of the reward, averaged over one hour of interaction. The lower plot
shows the exploration value, decreasing to 0.2 during the first 5 hours.

Additionally, figure 4.29 shows the plot of the temperatures and valve positions on the last

day of online training. The outgoing air temperature no longer oscillates around the setpoint.

At the beginning (07:00 - 09:00), the temperature is slightly below the setpoint. However, the

DQN correctly recalibrates the temperature firstly by gradually reducing the valve position

(09:00 - 10:00), then gradually increasing the valve position again as the water temperature

rises from 14 °C to 15.5 °C (10:00 - 11:00). From that point on, the DQN selects to alternately

increase and decrease the valve position. After 70 hours, the algorithm has already adapted to

the real valve and learned to keep the temperature within a good range around the setpoint

temperature. It is worth mentioning that, in contrast to its initial policy, the DQN now
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only very rarely chooses the action of not changing the valve position, which leads to good

temperature maintenance on the one hand, but also to a high number of valve position changes

on the other, which is not optimal in terms of maintenance-free operation.

Figure 4.28: Three dimensional representation of the Q-values of the three possible actions
for different deviations from the set temperature. The greedy action (the action
that is selected without exploration based on the highest Q-values) is plotted in
red. It can be seen that the algorithm has learned to open or close the valve
according to the deviation.

Setpoint jump

In order to compare the control behavior of the DQN after 70 hours of online interaction

against an established control using a PID, a setpoint jump from 18 °C to 16 °C is performed

with both variants under similar boundary conditions. The results of this setpoint jump

experiment are shown in figure 4.30. The PID parameters are set manually, achieving a

significantly better control performance than the setting according to the established method

of Ziegler and Nichols [Abel, 2018]. Nevertheless, it can be observed that the PID leads to an

oscillation around the setpoint. A similar situation, but with higher frequency and amplitude,

can be observed with the DQN: Although the algorithm that performed well after 70 hours is

used here, the set temperature is now barely maintained. It should be noted that the supply
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temperature is now cooler than in the period shown in figure 4.29. This indicates that the

behavior of the real valve is not yet sufficiently well-learned in all areas of the state-space and

further training would be necessary to obtain a better control performance even under more

varying boundary conditions.

It is noticeable that both the PID and the DQN stop oscillating after the setpoint jump and

strive towards a good maintenance of the setpoint temperature. Since the difference between

the cooling circuit and the setpoint temperature is smaller after the setpoint jump, changes

in the valve position show a smaller change in the output temperature, so the system is less

sensitive in this state, easier to control, and the differences in the state-vector are closer to

those from the period in figure 4.29. For the DQN and the PID, the summed deviation

from the setpoint, and thus the control performance for this setpoint jump, is calculated

(Jabs =
∫

|Tset − T4| dt):

• JDQN
abs = 126.17

• JP ID
abs = 81.28.

Figure 4.29: Undisturbed policy after 70 hours of online training. Plotted are the outgoing
air temperature of the AHU and the incoming air temperature before the cooler,
as well as the set temperature (dashed). In the middle plot, the cooling water
temperature is shown as a significant influencing variable. The lowest plot shows
the valve position set by the algorithm. It is noticeable that the algorithm al-
most never maintains the valve position, but achieves the stable temperature by
alternately opening and closing the valve.
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The results show that the DQN does not yet reach the control performance of a manually

calibrated PID after 70 hours of online interaction. In particular, the strong oscillation before

the setpoint jump and a larger (although generally small) constant deviation from the setpoint

after the jump degrades the result.

Therefore, it has been shown that by pre-training with a simulation, a DQN significantly

improves its control behavior after 70 hours of operation on a real valve. However, the real

behavior with its thermal inertia under varying boundary conditions is not yet sufficiently

well-adapted in the policy of the DQN to outperform a manually calibrated PID in its control

performance.

Figure 4.30: Setpoint jump comparison between DQN and PID control. In both cases, the
system starts oscillating around the setpoint. Both the PID controller and the
DQN algorithm can control the system to reach the setpoint after the setpoint
jump. However, the alternating valve position is visible again in the valve position
plot of the DQN.

4.3.5 Discussion and lessons learned from case study three

The presented results show that with the introduced MDP formulation, a pre-trained DQN

can significantly improve the learned policy within 70 hours of online interaction. In con-

trast to the beginning, there is no oscillation around the setpoint on the last day of online

training. Against this observation, changes in the boundary conditions led to significantly

lower control performance, therefore it is expected that there is still a high potential for im-

provement. During the pre-training, the DQN was trained with 75,000 interactions, while

70 hours of online training are equivalent to 4,200 interactions. The fact that the learned
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DQN valve control policy improved visibly in such a short time highlights the benefits of the

compact formulation of state- and action-space. Interestingly, without its own past actions,

the algorithm is not able to control the valve correctly. It is concluded that this is important

for the DQN to distinguish between its own influence and the influence of changing boundary

conditions. In order to realize a more precise control, it could also be of interest to extend

the action-space with more control options (A = [+Y, +X, ±0, −X, −Y ]) or directly use a

continuously controlling algorithm, like the SAC algorithm (with the risk of extreme action

during online training).

This case study contributes to the development of self-calibrating building automation sys-

tems. It has been demonstrated that with a generic MDP formulation, a fast adaption of

a pre-trained DQN algorithm to a real hydraulic system is possible. The results show that

the time required for online training can be significantly reduced by pre-training. In the case

of the real cooler valve, the simulated heat exchanger has both an opposite dynamic and a

different hydraulic system. After oscillating around the setpoint at the beginning of the online

training, the outgoing air temperature was maintained at the setpoint at the end, without

oscillating. At the same time, the setpoint jump experiment showed, that there is still a high

potential for improvements. The application of Long Short-Term Memory (LSTM) function

approximators could be investigated to move historical data from the state-space to the in-

ternal memory of the neural networks. Additionally, the pre-training process could be further

refined by running specific scenarios such as setpoint jumps.

Based on the study, the following lessons learned can be derived for future work:

• Through a generic formulation of recurring control tasks and pre-training with simula-

tions, it is possible to train RL algorithms that adapt to the behavior of real systems

within feasible training times.

• Besides the history of state-values from the environment, it is important to include the

history of the selected actions in the state-vector. This is important for the algorithm to

learn the relationship between its own actions and the state change in the environment.

• With a suitable automation infrastructure, extended by a cloud platform, it is possible to

establish a direct communication between state-of-the-art RL Python implementations

and a BES control. Besides implementing the trained algorithms directly on the BES

automation hardware, this is a way to detach the operation logic from the BES location

and make use of higher programming languages during implementation.
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In this chapter, the application of novel RL algorithms for different BES application areas is

discussed. Based on the results of the conducted case studies and the derivation of the poten-

tial based on the literature, different aspects are addressed. These include the performance

of the methods and typical RL design principles, as well as aspects of practical applicability,

future challenges in science and practice, and possible future products.

5.1 Reinforcement Learning control performance for energy management tasks

In general, the investigations carried out in case study one and case study two confirm the

promising results that have also been published for other application examples. In both cases,

state-of-the-art algorithms were used to exploit flexible elements in the BES for energy man-

agement with respect to dynamic boundary conditions. Using the design principles presented

in chapter 3, in both case studies RL algorithms were selected, parameterized, and trained to

solve the given optimal control problem. The two case studies, which were published in dif-

ferent scientific journals and conference articles, addressed some of the more pressing research

questions currently being discussed in the scientific community.

For case study one, the simulation model, modeled based on a real cooling network, was used

as a training and evaluation environment for state-of-the-art RL algorithms. While the pipe

network itself was physically modeled, real monitoring data was used for consumer load data,

electricity prices, and weather data. The state-space can be considered comparatively large,

since all data points (environmental values, historical values, and forecast data) were initially

passed to the algorithms unprocessed in each state of the environment. The two compared

algorithms, widely used in the literature (DQN and DDPG), are typical representatives for

discrete and continuous action-spaces. Only a slight superiority of the DDPG was observed.

This suggests that dicretized action-spaces can also obtain good results if the control prob-

lem is well-formulated. The learned policies are able to exploit the dynamics of the thermal

masses in the considered cooling network under time-variable boundary conditions. Depend-

ing on the capacity, flexibility can be exploited, saving 14 % operation costs on average. The

learned policies are based on generalized relationships and lead to meaningful control actions

under unknown test boundary conditions. However, only the adaptation of the exploration

in the course of a hyper-parameter optimization in the discrete case (DQN) and the use of

an adjusted algorithm in the continuous case (SAC) led to training times that would have
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been practicable in interaction with the real system. Thus, state-of-the-art RL algorithms are

indeed suitable to map high-dimensional state-vectors to optimal actions, but in order to keep

the training times within practical time frames, it is necessary to use the latest algorithms

with well-chosen hyper-parameters. Although the results of the simulation study in case study

one are very promising, further investigations are needed regarding the interpretability and

transferability of RL algorithms in BES. For interpretability, correlations between the features

in the state-space and the Q-values that determine the control action should be investigated

in future studies. Thus, it can be visualized what kind of correlation is encoded in the state-

action-value function. Regarding the transferability of RL algorithms to similar control tasks,

two promising approaches are proposed: Firstly, state-space definitions with relative and thus

generic features can be chosen, which favors to adapt the pre-trained state-action-value func-

tion to similar problems. The second alternative was elaborated in a comprehensive literature

review [Wang and Hong, 2020]. The authors have elaborated that on-policy algorithms are

particularly suitable for transfer learning, which deals with the transferability of trained neu-

ral networks to other application areas. This feature should be used in future work to apply

trained algorithms to similar problems. When it comes to interactions with real systems, one

promising approach is also the targeted manipulation of hyper-parameters during the inter-

action. For example, exploration and learning rate can be increased in a systematic way after

the reward signal drops under known conditions. The adaptivity of the algorithm can thus

be purposefully controlled during operation.

In case study two, the creation of the training and evaluation environment itself was data-

driven. By modeling the energy supply system, consisting of two compression chillers and

an ice storage, a complete workflow from monitoring data to the trained RL algorithm was

demonstrated. The task for the RL algorithm was to use the ice storage optimally under

dynamic electricity prices and outdoor temperatures. To get from the monitoring data to

the trained algorithm, five different pre-training strategies were compared and evaluated.

The training procedures include offline and online training as well as variations with and

without guiding RBC. The case study contributed to the objective of enhancing the real-

world applicability of RL by demonstrating a fast learning approach on the one hand and an

approach that outperforms a guiding RBC from the first moments of online interaction on

the other hand. The latter represents a safe option for cases where failing to meet a baseline

is intolerable. Against the initial assumptions, with pure try and error online training, the

highest cost savings and the fastest convergence was achieved with the used DQN with well

selected hyper-parameters. By a compact formulation of the forecast data in the form of

statistical features of the time-series, the dimension of the state-vector was kept comparatively

small. Therefore, a try and error online learning on the real system would lead after a few

months to a policy that outperforms a well-designed RBC policy. The goal of adaptive BES

management systems, which are both robust on the one hand and able to cope with changing

environment conditions on the other hand, is therefore achievable when using compact MDP
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formulations. The intuitive approach of using monitoring data for training did not produce

promising results. The algorithm quickly adapted to the suboptimal policy in the training

data, an effect that had to be compensated by extensive exploration during the online training.

Although the use of monitoring data for the training of algorithms seems to be promising,

there is a crucial challenge. When value-based algorithms are trained offline with monitoring

data, there is a tendency for the algorithms to over-adapt to the observed policy [Hester

et al., 2018]. This should then be addressed with an early stopping strategy within the offline

training process, which should be based on the measurement of the adaption of the neural

networks, internal weights or the tracking of the course of the reward signal. Seventy weeks

(case study one) might be too little data in this case, thus it would take more data, especially

with different observable policies, to extract a superior policy.

When applying the trained algorithms in real systems, some additional difficulties are ex-

pected. The required system data must go through extensive pre-processing to reduce the

data to the physical relationships, to reach a similar quality as observed from the simulation.

The used sensors have to be monitored carefully to replace faulty sensors as soon as possible.

In such situations, the training of the algorithms must be stopped in order to avoid adapta-

tion to physically implausible system behavior. The data for the prediction of the boundary

conditions must be available to the algorithm. For this purpose, an interface to the respec-

tive database operators must be available. The uncertainty in the forecasts of the boundary

conditions is not considered to be very critical, because the control decision is continuously

corrected, similar to MPC.

An important limitation to the practical application of RL for energy management applica-

tions is the availability of dynamic electricity price tariffs for end customers. Although the

algorithms can also be used to improve the efficiency of BES under dynamically changing

usage and outdoor temperatures, the full potential is realized (as with MPC) when energy

can be purchased at certain times at particularly good conditions. This was assumed in both

case studies. Another limitation may arise from the fact that higher programming languages

often cannot be executed on state-of-the-art building automation hardware. The automation

hardware should ideally be able to execute higher programming languages or (if not) should

have an internet connection to calculate the optimized actions independent from the loca-

tion on a different hardware. The potential of RL algorithms for BES energy management

applications has been shown in the literature as well as in the conducted investigations. By

identifying recurring tasks, pre-trained algorithms could be provided in the future that can

adapt to the individual conditions in specific application scenarios in a manageable time. If

monitoring data from different application scenarios with different operation policies are avail-

able in large quantities for a BES, offline training procedures can become of interest again,

since over-fitting to a single specific, suboptimal policy can then be avoided. In addition

to pre-trianing, compact problem formulation has shown to be effective for rapid training.

To enable the coordination of multiple BESs in an area in the future (for example, for co-
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ordinated power purchase), the exploration of RL algorithms with multiple agents is also

proposed. Such a system could reward coordination and thus avoid all RL-controlled BESs

drawing power at the same time [Vázquez-Canteli et al., 2020]. Following these proposals,

a self-calibrating, self-optimizing energy management system becomes possible, which could

reduce manual engineering in the future.

5.2 Reinforcement Learning for feedback control automation tasks

The experiment which was conducted in the course of case study three shows a less clear

picture compared to the application for the case studies focusing on energy management

tasks. Also in the literature, while RL for BES energy management has been investigated

with increasing interest in recent years, the application for automation and feedback control

on the actuator level remains behind in the scientific literature. While RL is used for these

purposes in the fields of robotics or autonomous driving, applications in the building sector

mostly remain on the level of energy management.

Case study three has shown that the workflow of pre-training on a generic simulation model in

combination with a generic MDP formulation leads to promising online adaption times, where

the trained algorithm can be adapted to a real valve within a few days. On the other hand,

the trained DQN algorithm could not yet outperform a manually calibrated PID controller in

its control performance in a setpoint jump experiment. Further investigations are necessary

to find the optimal combination of algorithm, hyper-parameter set, and MDP formulation,

which by training on the simulation, not only improves for the special model, but also leaves

potential for fast adaptation to real systems. If this is achieved, there is a high potential

for product manufacturers and automation companies, which could provide a self-calibrating,

self-optimizing valve controller after a one-time engineering effort.

In contrast to energy management applications, however, the potential is rather ambiguous.

While optimal control methods are clearly recommended with dynamic electricity prices or

for optimal operation of BES storage capacity under fluctuating outdoor temperatures, good

BES automation at the actuator level can also be achieved with well-adapted PID controllers.

However, in practice, the controllers are often set under time pressure on construction sites,

following standard procedures, therefore there is great potential for the use of automated

calibration methods. Here RL can be a promising alternative, but other methods are also

feasible, such as automated Bayesian calibration of the PID parameters in the initial phase of

the BES. As for energy management applications, modern IT and automation infrastructure

is crucial. This can be achieved by a local hardware which can execute higher programming

languages or by outsourcing the automation to the cloud in the context of an IoT-based BES

automation.
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5.3 Importance of Markov Decision Process formulation

In the course of the case studies, it was found that the formulation of the optimal control

problem is of major importance in order to be able to use state-of-the-art RL algorithms for

BES control applications. The assumption that RL algorithms are simply connected to sensor

data and actuators and only improve in the selection of their actions unfortunately does not

hold. Crucial is program code, which is executed between the sensors and the algorithm and

translates the sensor data from the BES to be controlled into a MDP, which can be processed

by RL algorithms, and translates the actions of the algorithm into corresponding actuator

signals.

For an efficient and error-free processing of the MDP, it is important that it represents all

influencing factors of the targeted control problem. To satisfy the Markov Property [Sutton

and Barto, 2018], the future of a MDP, i.e. the further development of its states and its reward

signals, should only depend on the current state and the policy of the RL algorithm. However,

since BES depend on a large number of influencing factors that are difficult to predict and,

in some cases, unobservable, the MDP is usually only partially observable. Another aspect

is the inertia in thermal systems, which leads to the property that actions (like increasing

the heating power) become observable in the sensor data (i.e. in the state-vector) only after

some time. A pragmatic solution that appears repeatedly in the literature, which was also

successfully implemented in case study one and three, is the integration of historical state and

action values from past time-steps in the current state-vector. This makes not only the current

state but also the current dynamics of the MDP observable for the RL algorithm. External

influencing factors that are not directly observable in the sensor data are also encoded in the

history and can be taken into account as indicators by the algorithm for its actions. Other

options to consider the history of the MDP in the current state is to include gradients of

the sensor values time-series into the state-vector or in the use of recurrent neural networks,

which themselves have an internal memory for past input data.

A simple linear reward function has also shown to be important for guiding the algorithm.

Although RL algorithms can also be trained with MDPs in which there are only infrequent

rewards, the search of the RL algorithm for the optimal policy is much more difficult and many

policies have to be tried until it can be learned which action in which state leads to a later

reward. Therefore, the reward function should be guiding, in the sense that small rewards

lead to larger ones in optimal operation states. For example, minimizing the deviation from a

target temperature value can be rewarded in an inversely-proportional way to the temperature

deviation. Long chains of quadratic elements of the reward function seem problematic. While

quadratic reward functions are suitable for many MPC approaches, the RL algorithm’s lack of

observability about the function can lead to divergence when signals fluctuate widely. Since

the reward function is part of the MDP black-box, unlike in MPC, large changes in the

quadratic function terms here can lead to unstable training and eventually poor policies. It is
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recommended, similar to case studies one and two, that simple concatenations of the target

variables with simple weights should be used. Forecast data, used in both case studies, also

proved to be promising. While RL methods also promise some forecasting capability, all the

data needed for an informed forecast (e.g., outdoor temperature) would be too complex to

process for the problem, so integrating available forecast data is more appropriate.

In summary, the MDP should be designed such that the information contained in the state

data is sufficient to predict well the evolution of the reward signal over the optimization

horizon. Then, RL aLgorithms can learn and compute an optimal policy (encoded in a

sequence of actions) for the respective MDP.

5.4 Importance of state-of-the-art algorithms, design principles, and

hyper-parameter optimization

In all case studies conducted, state-of-the-art RL algorithms from the family of value-based

algorithms (Q-Learning) were used for discrete control tasks and hybrid algorithms between

value-based and policy-based algorithms for continuous control tasks.

In case study one, the comparison of the continuous controlling DDPG and the discrete

controlling DQN showed that a discretized action-space can also lead to comparably promising

results. By using the DDPG, which can be seen as an extension of the DQN for continuous

control tasks, two similar algorithms were tested for the same problem. While significant

savings could be achieved with both algorithms, only the optimization of the exploration

led to training times that would be feasible in practice on real systems. This confirms the

statement that it is problematic that many recent studies on RL for BES do not use the

latest algorithms and design principles [Wang and Hong, 2020]. Subsequent to the direct

comparison of the two basic algorithms, significant improvements in training times have been

achieved through improved algorithms and optimized hyper-parameters. The used DQN is

continuously developed further and the extensions which are available in the form of robust

implementations should be used. Currently, this concerns the use of a replay buffer, the use

of target-networks, prioritized replay, and dueling networks. In the case of case study one,

however, the most significant improvement was achieved by optimizing the decrease of the

exploration, which was significantly too slow in the base implementation. For the continuous

case, the use of SAC instead of DDPG led to a similar improvement. SAC can be seen as an

extension of DDPG with a stochastic policy and an entropy-based exploration mechanism.

These extensions resulted in similar fast convergence for the case study one system as it was

achieved using the optimized DQN, but without any adjustment of the exploration. Thus,

for the specific application, consideration should always be given to the MDP (discrete or

continuous action-space), and based on this, the latest algorithms should be used for the case

under consideration. No algorithms from the area of model-based RL algorithms or from the
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area of direct policy optimization were used in the course of the investigations carried out.

Model-based algorithms were intentionally excluded because the transition to data-driven

MPC is fuzzy and the algorithms share the same strengths and weaknesses. Nevertheless,

future work can carry out valuable investigations at these interfaces and address the question

for which applications in the BES area it makes sense to provide the required higher computing

power in order to achieve even better optimization results by model-based methods. As

discussed in section 3.3, algorithms from the area of direct policy optimization can be useful

for certain use cases. The PPO is the most popular algorithm from this family and achieved

comparable results to the DQN in many studies. However, the limitations that no offline

training is possible and that the policy must always be applied for a complete episode before

it is updated are disadvantages compared to the DQN, which in turn has no disadvantageous

compared to the PPO in terms of convergence speed and performance. The selection of

algorithms in the course of this work thus follows the trends that can be observed in current

studies in the field of RL.

In all three case studies, hyper-parameter optimizations were performed and training times

over 10 times faster were observed with the same, or better, final performance. This obser-

vation underlines the importance of optimized hyper-parameters, which is discussed in the

current RL literature. In particular, the hyper-parameters learning rate, exploration factor,

and discount factor should be well chosen for the considered control problem, since they signif-

icantly influence the stability of the training, the number of random actions, and the weighting

of direct versus future rewards. Bayesian hyper-parameter optimization has proven to be a

suitable method, which quickly leads to good hyper-parameters via informed experiments and

also takes into account the interdependencies between the hyper-parameters. Based on the

observations, it is recommended to use this method and to replace the common practice of

using the default parameters or performing a sensitivity analysis on it.

5.5 Frameworks and implementations

In the course of this work, existing open source frameworks were built upon. Particularly

worth mentioning and recommended here are:

• Stable-Baselines [Hill et al., 2018] with a Tensorflow [Agarwal et al., 2015] backend for

RL algorithms, training, and evaluation routines;

• Open AI Gym [Brockman et al., 2016] for standardized interfaces between RL algorithms

and the environment;

• the AixLib [Müller et al., 2016] library for physical system models in Modelica;

• FMPy [Sommer et al., 2017] for running Modelica FMUs in Python environments;

• Scikit-Learn [Pedregosa et al., 2011] for data-driven machine-learning models in Python;
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• HyperOpt [Bergstra et al., 2015] for Bayesian optimization in Python;

• as well as standard Python libraries for the implementation of wrappers for the respective

environments and evaluation and visualization routines.

For engineers working with artificial intelligence, the Python programming language is clearly

recommended. This is mainly due to the intuitive and comparatively user-friendly syntax, the

wide distribution and thus very active community, and the availability of further supporting

libraries. In addition to Python, deep-learning frameworks exist in the programming languages

JavaScript and R, as well as C++ (which can be interesting for projects targeting applications

on edge devices).

The investigations have shown that a great deal of programming work, and thus time-

consuming debugging, takes place in the wrapper implementation, where the signals from

the environment and the actions from the algorithm are formulated in a MDP. Therefore,

it is important to perform a careful and structured approach in this step. Well-documented

Python code is well-suited for this purpose. Well-documented frameworks such as Stable-

Baselines, Tensorflow, or Scikit-Learn help with code examples and their active community to

make the latest innovations from the fields of machine-learning, deep-learning, and RL usable

for engineers.

Engineers should generally avoid programming complex neural networks themselves. Publica-

tions in which RL algorithms are described are strongly influenced by the scientific language

in the research field and can only be interpreted and implemented by engineers with a high

degree of time effort and required specialization. It should be rather developed upon well

maintained, documented, and tested libraries. The libraries used in this work do have alter-

natives. There are numerous comparably good libraries such as Google Dopamine, Keras-RL,

or Tensorflow Agents. When making the selection, especially with GitHub projects, attention

should be paid to how many developers actively maintain the repositories (contributors), how

recent the last commit is (last commit), how many users have favorited the project (stars),

how many problems have been solved (closed issues), how actively people contribute (commit

activity), and finally whether the syntax and the available documentation are well-suited and

fit the individual way of working and programming.

According to these criteria, the used libraries were selected and in the course of this work

successfully used to produce the results. Since the formulation of the MDP requires the

most engineering effort and the debugging must be performed efficiently, a setup should be

established in which the RL BES developer is able to design structured and (if possible)

automated experiments.
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5.6 Critical discussion of the engineering effort compared to other methods

In this section, a critical discussion of the engineering effort of RL compared to other BES

control methods is conducted. A distinction has to be made between the effort for the selection

of the algorithm and the appropriate hyper-parameters, the formulation of the MDP, and the

training process. The methods with which a critical comparison can be made are the state-

of-the-art BES automation, consisting of RBC logics and conventional feedback controllers as

the lower benchmark and MPC (physics-driven and data-driven) as the upper benchmark.

In case studies one and two, the algorithms were trained and tested on the same environment.

In both cases, modeling was performed (physics-driven in case study one and data-driven in

case study two) to represent the behavior of the real systems and to test RL applications

on them. In both cases, considerable effort was invested in formulating the MDP and in

optimizing the hyper-parameters. In principle, the resulting models would have been suitable

for direct use in a MPC application to optimize the real systems. In these cases, the advan-

tage of RL over MPC (physics-driven and data-driven) is reduced to the significantly lower

computing power required after training and the inherent adaptivity. However, in both cases,

MDP formulations and hyper-parameter combinations have been found, which (assuming a

robust data infrastructure) would have allowed training on the real system in feasible times.

The technical effort has thus been worthwhile in the sense that results have been produced

that support future work addressing the development of RL BES controllers (which can be

adapted to real systems in a reasonable time). Thus, assuming a state-of-the-art algorithm, a

compact and complete MDP, and a good hyper-parameter selection, the effort for optimiza-

tion can be significantly reduced compared to MPC. At the same time, the implementation

of a monitoring, is even more necessary, which detects security of supply effecting actions of

the algorithm and activates a conventional automation in such cases. This increases the effort

compared to physics-driven MPC, but not compared to data-driven MPC, where a similar

mechanism is required. Furthermore, in the course of case study two, it was demonstrated

that a RBC approach for predictive storage management was outperformed by the RL-based

approach in operational performance optimization after a few months of operation.

In case study three, the training was also realized by means of a physical simulation model.

However, it was shown that with a generic MDP formulation, a transfer to different, real sys-

tems with similar dynamics is possible. Although the algorithm trained on the simulation of

a mixing valve did not yet perform better than a manually calibrated PID, within the context

of a setpoint jump experiment on a throttle circuit of a real heat exchanger, a significant

adaptation to the real system already took place after 70 hours of online interaction. The

results show that a generic problem formulation makes it possible to provide self-optimizing,

self-calibrating BES energy management and automation systems for recurring use cases. The

engineering effort for algorithm selection, MDP formulation, and hyper-parameter optimiza-

tion thus becomes a one-time operation and the actual application can be implemented with
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little effort after that. This represents an advantage over MPC in terms of effort and required

computing power. It remains an open question for which use cases RL achieves the control

performance required to represent a feasible alternative to MPC. The self-calibration potential

is a promising feature compared to established methods where plant automation engineers are

often engaged for several years with the calibration of complex BES. A critical point is that

even with the application of RL at the automation level, a backup control must be provided

in order to exclude actions that are harmful to operation.

In summary, RL has the potential to reduce the engineering effort for optimized BES energy

management and automation. Compared to physics-driven MPC, it has the potential to

avoid manual modeling of systems. Compared to data-driven MPC, the advantage is reduced

to the lower required computational power and the inherent system exploration, which has

to be implemented manually in data-driven MPC. When using RL, the required know-how

shifts slightly from physics to computer science compared to MPC. Since only the necessary

inputs, outputs, and rewards for actions to solve a MDP need to be defined, less know-how

about physical processes in BES and disturbance modeling is required. At the same time, the

application of RL requires a solid basic understanding of the algorithms, the MDP typical

design principles, and the influence of hyper-parameters. Therefore, a similar amount of

know-how is needed for RL, only from other technology fields. With both RL and data-driven

MPC, BES system providers have the opportunity to offer products that are self-calibrating

and self-optimizing for individual environmental conditions, and continuously improving in

operation after a one-time engineering effort.

5.7 Challenges and opportunities in research

Research in the field of RL for BES faces several challenges and opportunities, some of which

are specific to RL and others of which apply to all approaches to optimal control for BES.

One of the most important challenges, which applies to all methods, is the identification of op-

timal application scenarios for the methods. While there are numerous successful application

studies for RL algorithms, MPC algorithms, and other methods, there is no structured anal-

ysis of which use cases have which inherent properties (flexibility potential, speed of system

dynamics, relevance of user comfort, or available computing power in the automation). Such

a structured discussion, e.g. in the form of a combined review and method/problem classifi-

cation, could identify the optimal application areas for the respective methods and show the

need for further comparative studies if no clear statement can be made.

A similar issue is the reproducibility of results. Especially studies performed on real systems

are often difficult to reproduce and a high degree of trust in the carefulness of the publishing

researchers is necessary. Therefore, publications in the field of BES optimal control should

increase their potential for comparability by standardized description of their experimental
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setup. This should include not only the textual description of the problem, but also formulas

and tables of system properties, models, or hyper-parameters. To develop a standardized

template for this would be a great help for the research area. In the field of RL research,

there are also efforts to provide standardized training and test environments for BES appli-

cations in the standardized Open AI Gym format. This is a promising opportunity, since

different methods can be tested in these standardized open source environments and thus be

made comparable. Unfortunately, the available environments so far cover only very isolated

application scenarios, which leaves a great potential for the development of such environments

open.

Another aspect concerns experiments on real systems. As in this work, a large part of the

studies is performed on simulated environments. When applied to real systems, a number of

challenges arise especially concerning the aspects of safe operation, data quality, and debug-

ging of the optimization algorithm. These challenges are similar for all optimization methods

and require further research in the area of robust integration of novel methods into state-of-

the-art automation systems and robust BES and sensor monitoring.

In terms of available algorithms, there is also still a high need for research. One of the most

promising research paths is the one of transfer learning. Transfer learning approaches address

the question of how trained algorithms can be made applicable to similar problems or which

components of algorithms can be transferred and adapted to other individual problems in order

to speed up the otherwise long online training process. For this purpose, the identification

of corresponding recurring automation tasks is needed. When using neural networks in RL

algorithms, classical ANNs are usually employed. However, by using CNNs or LSTMs, it is

also possible to design algorithms that use image data to determine their actions and ones

that have a memory for past system states via an internal data storage. Finally, the research

field of online hyper-parameter adaptation after training is still hardly addressed. In principle,

the hyper-parameters learning rate and exploration rate could be (triggered by certain events

during interaction) adjusted selectively, and thus a faster adaptation to changing system

behavior could be achieved.

5.8 Challenges and opportunities in practical application

The challenges in the practical application of RL for BES products and services are partly

different from those in research. In order to bring RL algorithms into practical application,

several questions need to be addressed. For economic and safety reasons, the complete explo-

ration of the real system environment cannot be carried out in all cases starting from zero.

On the other hand, performing expensive, time-consuming, and error-prone model creation

should be avoided for applications where the effort does not lead to substantial performance

improvements.
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All libraries and algorithms used in the course of this work are freely available and can be used

for real-world application projects. BES component manufacturers, automation companies,

and energy providers only have to make the strategic decision to build up know-how in the

area of artificial intelligence and RL. For this, corresponding methods should also be covered

in engineering studies, in application-oriented lectures. In the long term, artificial intelligence

will be established alongside simulation, experimentation, surveys, and optimization as a

method for BES engineers and the necessary know-how should therefore already be covered

in the course of the respective studies.

Especially in case study three, some of the challenges that have to be addressed in the practical

application of RL have been addressed. In addition to a robust data infrastructure and data

pre-processing, which ensures comparable data quality as in a simulation, regular backups of

the RL algorithms should be created at different points in the interaction history. Thus, after

an adaptation to non-physical behavior, for example, due to the failure of a sensor, an earlier

version of the algorithm, before the failure, can be accessed. The technical requirements

for the operation optimization thus shift from computational power to data storage. Since

(after training) RL algorithms map system states directly to actions, the computational power

required is minimal compared to MPC (where the optimization must be performed at each

time-step). At the same time, MPC does not necessarily require backups or a training data

storage.

Product developers face several challenges when applying RL. In particular, a suitable algo-

rithm has to be selected and a training strategy has to be developed. Training by means

of data-driven models from monitoring data can be reasonable for highly cost-intensive, ex-

isting BES. For products that are sold in large quantities (such as heat pumps or boilers),

where the physical behavior should not differ but which are used in changing environmental

conditions, a more complex training procedure may be considered. Here, an algorithm for

performance maximization could be pre-trained on a simulation model and set with optimal

hyper-parameters. To ensure that the initialization of the ANN parameters does not have

an overly large influence on the final policy, the optimization should be tested several times

for each setup, or alternatively always with the same initialization of the ANN. After the

pre-training phase, the algorithm can be tested on a test bench, further trained, and the

hyper-parameters tuned for a quick adaptation to the real system. Care should be taken that

the algorithm is not trained too long with a flat performance gradient on the simulation, as

there is a risk of over-fitting to the simulation model. For components with sufficient moni-

toring data from real operation, the data can be used for additional offline training. However,

if the components are operated with the same operation policy over the entire dataset, the

danger of over-fitting to a suboptimal policy (as observed in case study two) must be taken

into account. Using the described workflow, a component manufacturer can offer an adaptive,

self-optimizing control for its product, which continuously improves during operation.
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A major challenge in the practical application of RL for BES is the guarantee that no actions

harmful to the operation are performed. In particular, this is crucial during the exploration

of the BES dynamics but also afterwards. Therefore, as with other methods, a comprehensive

monitoring of the system behavior is necessary. Fault detection and threshold monitoring are

crucial requirements and should be implemented as pre-defined software components for each

RL-supported BES. If the RL control is deactivated, a robust state-of-the-art backup control

can take over. At the same time, the RL algorithm should be trained by a large negative

reward signal not to return to a known failing system state in the future.

An important prerequisite for the implementation of the described methods is a building

automation able to process optimization results. As buildings become more complex in the

coming years due to greater pressure to decarbonize their operation and the associated increase

in electrification, the automation and IT infrastructure must provide a suitable environment

for executing modern methods and higher programming languages. This can be done by

outsourcing the energy management level, or even the automation level (in the course of IoT

automation), to the cloud. A key advantage is also that the operation logic can be tested

and maintained independently of the location. However, a decisive obstacle (especially in

Germany) is data protection, which places high demands on data collection and processing. It

is hoped that in the future, a political decision will be made in the field of energy systems that

defines sensitive data and facilitates the collection of data needed to increase the efficiency of

energy systems. A second option is the implementation of RL automation on a local industrial

PC. Here the lower required computing power is a clear advantage compared to MPC, which

makes RL also interesting for legacy BES with recurring structures.

5.9 Possible products in the coming years

It can be assumed that RL algorithms will be incorporated into product development around

BES software in the future. The challenges and opportunities were discussed in the last two

sections. In particular, the property of RL algorithms to encode optimization results from a

large number of system states into state-action relations in a performant way, and at the same

time to keep open a high potential for further adaptation to new environmental conditions,

makes RL algorithms promising here.

In the field of home energy management systems (HEMS), system providers could offer differ-

ent RL-based expert systems. For recurring configurations (e.g. the combination E-vehicle,

heat pump, PV system, and thermal storage), an algorithm pre-trained on a generic simula-

tion covering the basic dynamics could be used to make optimal energy management decisions

based on the individual user behavior. Furthermore, if a variable electricity price is made avail-

able by the energy provider, such a system could also be used to operate a cluster of buildings

in a grid-stabilizing manner via the RL algorithms implemented in the HEMS.
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In the field of building energy management systems (BEMS), complex non-residential build-

ings could be automated using pre-trained RL algorithms. While currently the building

automation is implemented and calibrated under great time pressure during the construction

of a building, RL algorithms can support automating this process. Since the builder of a

building is usually not the later operator, efficient and well-adjusted automation and energy

management layers are often not prioritized enough and building technicians are occupied

with setting up the BES correctly for several years. Using specific software components,

where RL algorithms as well as training and safety backup rules are included, this process

could be automated and a product family of self-calibrating, self-optimizing BEMS could be

developed.

Room control also offers great potential for RL applications due to the recurring sensor and

actuator structure. Since the target variables air quality (in the form of CO2 and V OC)

and room temperature are often the same and the available actions (valve position cooling,

valve position heating, and fresh air flow rate) are also recurring, RL algorithms could be

pre-trained here on the basic interrelationships with generic MDPs and adapt to individual

rooms (different due to room size, building age, and use). An automation of the room shading

would also be worthy of consideration. Due to the property of RL algorithms to map even

high-dimensional state-vectors to actions in a performant way, image-processing CNNs could

be used, which include radiation intensity and sun position in the optimized room control.

Further application scenarios are possible. For example, research is currently being conducted

in the area of optimized de-icing control of outdoor air heat pumps. Also, a heating curve

adapted to individual BES and user needs could be realized via RL algorithms. In addition

to the products listed here, many other products are possible, in application scenarios where

generic pre-training and policy fine tuning in an online training phase is technically and

economically feasible. The prerequisites for a successful application are only the available

know-how and the potential to invest in the RL specific workflow. Then adaptive, self-

optimizing energy management and automation systems can be realized for various use cases.
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In this dissertation, the applicability and potential of novel artificial intelligence algorithms

from the field of RL for the optimization of BES was investigated. For this purpose, the

necessity of using novel optimization methods for BES was first described and a differenti-

ation of artificial intelligence-based methods from more established methods was presented.

Subsequently, the research area of RL, as a subfamily of artificial intelligence research, was

introduced with its different algorithm families; advantages and disadvantages were described

and the most promising methods for the building sector were identified. The fundamental

assessment was concluded by a review of the literature in the area of RL for BES, where

selected publications were discussed in detail and open research questions were identified.

Based on the introduced fundamentals, a workflow was defined and presented according to

which engineers can develop a RL-supported building automation. For this purpose, all rele-

vant aspects from the problem formulation, the selection of suitable algorithms, and training

strategies to the optimization of hyper-parameters were described based on different initial

settings. In addition, application-oriented aspects such as the procedure for implementation

and interaction strategies between algorithms and real systems were discussed in separate

sections.

Based on the literature and the definition of a suitable workflow, three specific case study

systems were investigated in the application chapter, thus demonstrating the applicability and

potential of RL for BES. All case studies were inspired from real optimization tasks, which

are part of current work packages in public research projects in Germany, kindly funded by

the Federal Ministry for Economic Affairs and Climate Action. The results were published

in international conference proceedings as well as in scientific journals and discussed in the

scientific community. The current state of research is thus extended by studies addressing in

particular algorithm comparisons, training and problem formulation strategies, and algorithm

parameterization. Among the insights gained, Bayesian hyper-parameter optimization has

been identified as an efficient tool that should be preferred over manual parameterization of

algorithms in future studies. In addition, the application of RL for energy management, load

shifting, and control applications has been investigated during the studies. In the course of

the case studies, energy management applications and control applications were investigated

on the basis of physical simulations, on the basis of data-driven models, and in interaction

with a real system. The research has shown that RL is well suited to automate optimization

tasks for BES, considering the design principles defined in the workflow. At the same time,
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however, the problem formulation, the choice of algorithms, and the use of optimized hyper-

parameters have a major impact on the final performance and speed of training. However, if

these aspects are carefully considered, algorithms can learn superior control policies within a

few month, even without pre-training.

Finally, based on the previous chapters, an extensive discussion of the case studies, the lessons

learned, and best practices resulting from the work, was conducted. Based on the experience

gained in the course of this work, the applicability of RL for energy management and control

tasks was discussed. The relevance of the different design aspects as well as concrete sugges-

tions for the implementation were presented. In addition, a critical evaluation of the methods

compared to other methods was performed. The chapter was concluded with a discussion of

the challenges and opportunities in research as well as in practice, including possible products

that could arise in the future from the knowledge gained.

However, a number of research questions remain open. On the one hand, in the area of

algorithms, further studies can help to select the best ones for families of application scenarios

and to distinguish the optimal use cases from the ones for other methods such as MPC. In

the area of energy management tasks, it should be investigated how the property of RL

algorithms to process even high-dimensional state-vectors in a performant way can be used

to realize coordination tasks of many technical systems or even whole districts. In the area of

closed loop control applications, problem classes should be identified that can be described and

learned as generically as possible. In this way, algorithms can be pre-trained and transferred

to different but similar application scenarios. For both areas, safe interaction and operation

strategies have to be developed. Since RL, like all artificial intelligence methods, is a stochastic

technique, robust backup and security mechanisms need to be implemented. Studies on the

robust use of RL on real systems are still rare and successful applications should be published

in a comprehensible way.

With the increasing availability of low-cost sensors and data infrastructures, artificial intel-

ligence is expected to become another permanent group of tools in the toolbox of energy

system engineers. Wherever substantial sensor and data infrastructure is envisioned, artificial

intelligence algorithms can provide significant benefits by processing data in a performant

manner, identifying structures in the data that are invisible to humans, pre-processing data

for expert decision-making, or as in the case of RL, even making optimal operation decisions

autonomously. As the algorithms continue to improve on corresponding benchmark problems,

the challenge in the coming years will be for technicians and engineers to develop a broad

understanding of the possibilities and problems in order to recognize the problems that can

be addressed by artificial intelligence in their respective fields of work. Then, these algorithms

can make a decisive contribution to the efficient achievement of climate policy goals.

In view of the current climate and geopolitical events in the world, it can be assumed that

there will be an increasing demand for decarbonization measures in the major energy sectors.
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As one of the largest consumers of gas, and thus emitters of climate emissions, the building

sector is an important area of work here. With rising commodity prices, energy management

and optimal control applications are becoming increasingly important for the building sector

as well. At the same time, it cannot be assumed that these challenges can be addressed

individually for each building, due to the high engineering efforts. It is therefore expected

that RL algorithms together with other optimization techniques will be integrated in many

products in the next decades. Wherever the same arrangement of systems and sensors is

required and an adaptation to individual user and environmental conditions is desired, the

design and pre-training of RL-supported energy management and control systems can be

beneficial. In this way, current research in the field of RL can make a decisive contribution to

making the vision of a self-calibrating, self-optimizing building control system a reality.
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