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Abstract

This thesis is mostly concerned with phase transitions in classical systems, with a focus
on the anisotropic Ising model in two dimensions and on parallelogram lattices. After first
discussing the history of phase transitions and specifically how anisotropies were treated
in the renormalization group approach, an introduction to multi-parameter universality
is given. This is followed by a derivation, using anti-commuting Grassmann variables,
of the exact solution of the fully anisotropic 2d Ising model on a finite parallelogram
lattice for all temperatures and couplings; from there, the scaling function near the critical
point in the ferromagnetic regime is recovered. Additionally, some predictions made by
multi-parameter universality regarding non-universal prefactors, modular invariance and
behavior at criticality are confirmed. Finally, the strip limit of the model is discussed and
connections to previous results of more restricted cases are made.
In the next chapter, the investigation of anisotropic systems in 2d is continued, now by

discussing the q-state Potts model and attempting to measure its angle dependent corre-
lation lengths, a characterizing quantity according to multi-parameter universality, via an
tensor network approach. More specifically, the Corner Transfer Matrix Renormalization
Group (CTMRG) algorithm is used to numerically extract the quantities of interest. A
range of checks and comparisons to the few exactly known results are made to ensure a
continued high accuracy of the simulation method.

Finally, the discrete to continuous crossover behavior in a modified 3d clock model,
a relative of the Potts model, is investigated. This model exhibits a first order phase
transition between an ordered and disordered phase and, based on prior work, predictions
can be made for how much the phases contribute at the transition point when the clock
has either three different states or, on the other extreme, infinitely many. This behavior is
simulated at and between these extremes using the Wang-Landau Monte Carlo algorithm,
which is very well suited for systems that exhibit complicated energy distributions, as
present near and at first order phase transitions. A wide range of system sizes are simulated
and care is taken to carefully determine the bulk transition temperature on which the
accuracy of the final results depends very crucially.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Phasenübergängen in klassischen Systemen mit Schwer-
punkt auf dem anisotropen Ising-Modell in zwei Dimensionen auf Parallelogramm-Gittern.
Nach einer ersten Diskussion der Forschungshistorie von Phasenübergänge und spezi-
ell wie Anisotropien in der Renormierungsgruppentheorie behandelt wurden, wird eine
Einführung in die Mehrparameter-Universalität (multi-parameter universality) gegeben.
Es folgt die Ableitung der exakten Lösung des vollständig anisotropen 2d-Ising-Modells
auf einem endlichen Parallelogramm-Gitter bei allen Temperaturen und Kopplungen mit
Hilfe von nicht-kommutierenden Grassmann-Variablen. Von dort wird die Skalierungs-
funktion in der Nähe des kritischen Punktes im ferromagnetischen Bereich hergeleitet.
Zusätzlich werden einige Vorhersagen der Mehrparameter-Universalität in Bezug auf nicht-
universelle Vorfaktoren, modulare Invarianz und Verhalten direkt am kritischen Punkt
bestätigt. Schließlich wird der Streifenlimes des Modells diskutiert und Verbindungen zu
vorherigen Ergebnissen von Spezialfällen hergestellt.
Im nächsten Kapitel wird die Untersuchung von anisotropen Systemen in 2d durch die

Diskussion des Potts-Modells mit q Zuständen fortgesetzt und der Versuch seine win-
kelabhängigen Korrelationslängen, eine charakterisierende Größe gemäß der Mehrpara-
meter-Universalität, über einen Tensor-Netzwerk-Ansatz zu bestimmen, präsentiert. Ge-
nauer gesagt, wird der Corner Transfer Matrix Renormalization Group (CTMRG) Al-
gorithmus verwendet, um die relevanten Größen numerisch zu extrahieren. Eine Reihe
von Überprüfungen und Vergleichen mit den wenigen, exakten Ergebnissen werden durch-
geführt, um die fortlaufend hohe Genauigkeit der Simulationsmethode zu gewährleisten.

Schließlich wird das Übergangsverhalten von diskreten zu kontinuierlichen Freiheitsgera-
den in einem modifizierten 3d-Uhren-Modell (Clock model), einem Verwandten des Potts-
Modells, untersucht. Dieses Modell zeigt einen Phasenübergang erster Ordnung zwischen
einer geordneten und einer ungeordneten Phase und, basierend auf vorherigen Arbeiten,
können Vorhersagen gemacht werden, in welchem Umfang die Phasen am Übergangspunkt
beitragen, wenn die Uhr entweder drei verschiedene Zustände hat oder, am anderen Ex-
trem, unendlich viele. Dieses Verhalten wird an und zwischen diesen Extremen mit dem
Wang-Landau-Monte-Carlo-Algorithmus simuliert, der sehr gut für Systeme geeignet ist,
welche komplizierte Energieverteilungen aufweisen, wie sie in der Nähe und bei Übergängen
erster Ordnung auftreten. Eine breite Palette von Systemgrößen wird simuliert und beson-
dere Sorgfalt wird darauf verwendet, den Übergangspunkt im thermodynamischen Limes
sorgfältig zu bestimmen, da von diesem die Genauigkeit der Endresultate stark abhängt.
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Chapter 1

Universality in critical systems

One of this thesis’s focal point are continuous phase transitions in anisotropic, finite sys-
tems in the scaling limit. To this end, in this first chapter the history of universal behavior
and scaling in critical thermodynamic systems is given a brief review. First, the well known
theory of two-scale-factor universality is discussed, in which the general form of the free
energy at and near the critical temperature in terms of the scaling function is explained,
followed by an introduction to multi-parameter universality where differences that arise
in weakly anisotropic systems are elaborated on.

1.1 Two-scale-factor universality

The phenomenon of phase transitions has been studied, from a theoretical perspective,
extensively since the description of real fluids by van der Waals [4], which aided in, for
example, explaining liquid-gas coexistence at first order transitions of fluids. Later Lan-
dau’s theory of phase transitions [5] gave insight into the phenomenon of universality by
explaining how two seemingly different systems can exhibit the same behavior near the
critical point. These comparisons are usually done by looking at the critical exponents of
certain observables, such as the liquid-gas density difference

|ρ+ − ρ−| ∝ |T − Tc|β (1.1)

and compressibility

κ ∝ |T − Tc|−γ (1.2)

in fluids or magnetization

M ∝ |T − Tc|β (1.3)

and susceptibility

χ ∝ |T − Tc|−γ (1.4)

in magnetic systems near the critical temperature Tc. For example, one finds experimen-
tally for the liquid-gas density difference of sulfur hexafluoride β = 0.350 ± 0.001 and
γ = 1.24 ± 0.02 [6] and for the magnetization of CrBr3 a value of β = 0.365 ± 0.015 and
γ = 1.20 ± 0.08 [7]. It is surprising how these very different materials and phases result
in experimentally compatible critical exponents – and this is not an accident. Over the
last decades a wide range of materials have been examined and many classes of shared
critical exponents were found. However, even though the aforementioned theories by van
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2 Universality in critical systems

der Waals and Landau predict that these exponents should be equal, they predict values
of β = 1/2 and γ = 1 [8]. This is because they are both mean field theories, i.e., they
ignore thermal fluctuations, which turn out to be critical for the full explanation of phase
transitions and the correct prediction of critical exponents.

One of the biggest discoveries that followed was that of phenomenological scaling laws
by Widom and others [9, 10], which demonstrates that the function (equation of state)

H = f(M, t) (1.5)

that relates the external magnetic field H to the magnetization M and reduced tempera-
ture t = (T−Tc)/Tc, which depends on two parameters, can actually be expressed through
a function Φ of a single parameter in conjunction with the critical exponents:

H = M δ Φ

( |t|
M1/δ

)
(1.6)

It was discovered that not only is Φ valid for a range of materials with the appropriate Tc

and critical exponents, but also that, as a consequence of the above functional dependence,
not all critical exponents are independent; one finds the relations

α = 2− ν d (1.7)

γ = β(δ − 1) = ν(2− η) (1.8)

where d is the dimensionality of the system, α is the critical exponent of the specific heat
(C ∝ |t|−α), δ for the equation of state (H ∝ M δ), η for the correlation function, ν
for the correlation length (ξ ∝ |t|−ν). Finally β and γ are the critical exponents of the
order parameter and susceptibility, as above. It also possible to define the scaling function
for the free energy density1. More specifically, the singular part of the bulk free energy
behaves as

fb,s(t, h) = |t|2−αF±

(
h

|t|2−α−β

)
(1.9)

where h = H/(kbT ) with the Boltzmann constant kb and ± indicates t > 0 (+) or t < 0
(–). Here the notation and naming of the physical observables were chosen based on a
typical magnetic systems, since this is what this work is focused on; but, as mentioned
above, the results are of course more general.

It was Kadanoff [11, 12] however, who proposed a theoretical approach that thought
to explain the origins of scaling laws. His idea was initially limited to spin models with
constraints on the type of interactions, but was able to explain scaling by combining
neighboring spins successively into large and large block spins and thus, step by step,
integrating out the microscopic details that are distinct for a specific model. Implied in the
procedure, also called coarse graining, is the concept of scale invariance – since in every step
more spins are combined but the functional form of the resulting Hamiltonian remains, the
system seems to be the same on all length scales and the resulting functional dependence
is exactly that of (1.6). One consequence of this procedure is that the couplings, external
fields and temperature now depend on the current scale of the system.

This was the basis for Wilson [13] who generalized this approach and made it applicable
to a wide range of models with short range interactions; he also formalized the procedure
into what is called the renormalization group (RG). A lot of the details are quite technical,

1The bulk free energy density fb is to be understood as free energy F per system volume V as V → ∞;
singular in this context refers to the part that exhibits singular behavior at the critical point.



Two-scale-factor universality 3

but suffice to say, that one of the generalization steps he achieved was to go from discrete
increments in system size when integrating out the microscopic details to a continuous
length scale ℓ, where ℓ = 1 represents the original microscopic system. It is then possible
to define the RG transformation Rℓ, the explicit form of which may be very complicated,
that takes the initial, microscopic parameters Ki to their coarse grained form at scale ℓ
with

{K ′
i} = Rℓ[{Ki}]. (1.10)

Here Ki can consist for example out of the nearest and next-nearest neighbor couplings,
temperature, external magnetic field, etc. Of special interest are certain parameter sets
that are invariant under the RG transform

{K∗
i } = Rℓ[{K∗

i }] (1.11)

called fixed points. Since ℓ rescales all length scales one finds that the correlation length
ξ, which would usually transform like

ξ[{K ′
i}] = ξ[{Ki}]/ℓ (1.12)

has to be either zero or infinity at a fixed point. Fixed points with ξ = ∞ are called
critical, those with ξ = 0 trivial. One usually proceeds by linearizing the RG transform
around a fixed point – there are then eigenvalues and eigenvectors associated with the
linear RG transform which influence the RG flow near the fixed point. More precisely, if
λn are these eigenvalues and an the eigenvectors, then if

(1) |λn| > 1: an represents a relevant direction

(2) |λn| < 1: an represents a irrelevant direction

(3) |λn| = 1: an represents a marginal direction

because as ℓ increases, only the directions of case (1) will remain important. From here,
one can then derive exactly both the correct critical exponents and the scaling laws that
were discussed earlier [8]. Furthermore, it is possible to show that all universal quantities
(scaling functions, critical exponents and amplitude ratios) can be divided into universality
classes (d, n) based on the dimensionality d of the system and the number n of order
parameters components [14]. These results will become significant below, when the impact
of anisotropy on critical behavior is discussed.
But first, it is instructive to briefly discuss the effects of the finite system size on scaling

[15–17]. In a strict sense, there are no phase transitions in finite systems, since it is
the thermodynamic limit that allows the appearance of the characteristic singularities.
However, it can be shown that the inverse of the linear system size 1/L is a relevant
perturbation in the RG sense and thus has to be tuned, similar to for example the reduced
temperature t or external magnetic field h, to zero at a critical fixed point. As a result,
the scaling function of the singular free energy density, in a finite system, can be shown
to be of the form

fs(t, L) = |t|2−αF̃±

(
ξ(t)

L

)
(1.13)

where ξ(t) ∝ |t|−ν . It is clear, that the true critical regime is only reached in case of
L → ∞ or correspondingly, x → 0 in F̃±(x); implying that L ≫ ξ(t) or, in other words,
that the correlation length should not be influenced by the boundaries of the system. In
the opposite case, where the correlation length dominates, instead of the usual singularities
close to |t| = 0, one observes a rounding off of these features and a shift of the peak away
from the singularity, as can be seen in fig. 1.1 for the heat capacity [8].
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Tc(L) Tc

T

C L≫ ξ(t)

L≪ ξ(t)

Figure 1.1: The heat capacity C is sketched as a function of the temperature; both in a
finite system as well as in the thermodynamic limit.

In contrast to finite system size, anisotropy was considered relatively unimportant for
the nature of phase transitions [18–20]; for example it was shown in [18] that the anisotropy
parameter

f0 = (J1 − J2)/J1 (1.14)

of a d-dimensional continuous spin model, with couplings J1 within a (d− 1)-dimensional
plane and J2 perpendicular to that plane, is either only a marginal variable in the renor-
malization group flow or, depending on the exact parameters of the model, would tend to
a stable fixed point with f∗ = 0, i.e., the isotropic case, and that there is no other stable
fixed point with f∗ < 1. Similarly in [21] the pure and diluted, anisotropic transverse
Ising model were studied via a real space renormalisation group scheme and no change in
the critical behavior due to anisotropy was found until dimensional crossover effects were
detected. Dimensional crossover here refers to an reduction in a system’s dimensionality
when one or more couplings between (hyper)-planes dominate over the other such that
these become effectively decoupled.

1.2 Multi-parameter universality

However, further investigations of anisotropy in systems far way from dimensional crossover
effects, via the O(n) symmetric φ4 theory showed [22], that universality was absent in a
range of physical observables. More specifically, it was found that the Hamiltonian

Hφ4 =

∫
V
ddx

r0
2
φ2 +

d∑
α,β

Aα,β

2

∂φ

∂xα

∂φ

∂xβ
+ u0(φ

2)2

 (1.15)
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with n component fields φ ≡ φ(x) and anisotropy matrix Aα,β = (A)α,β, after going to
the continuum limit, results in the bulk correlation function near the critical point

G(x,A, u0) ≡ ⟨φ(x)φ(0)⟩ (1.16)

=
AG(detA)−1/2

|λ−1/2Ux|d+η−1
Φ(|λ−1/2Ux|/ξ′) (1.17)

where ξ′ is the mean correlation length, AG is a non-universal amplitude, λ the diagonal
matrix of eigenvalues and U the unitary matrix associated with the eigenvalue problem of
A. This form is quite interesting, since the transform x′ ≡ λ−1/2Ux of the lattice vectors
can be interpreted as transforming the system to an isotropic one with A = 1, since

∂φ

∂xα
=

∂x′α
∂xα

∂φ

∂x′α
= (λ−1/2U)α

∂φ

∂x′α
(1.18)

where xα is a component of x with α = 1, 2, . . . , d and thus

d∑
α,β

Aα,β

2

∂φ

∂xα

∂φ

∂xβ
=

d∑
α,β

(λ−1/2U)αAα,β(U
Tλ−1/2)β

2

∂φ

∂x′α

∂φ

∂x′β
(1.19)

=

d∑
α,β

1

2

∂φ

∂x′α

∂φ

∂x′β
(1.20)

while simultaneously deforming the lattice. From there it can be seen that even though
the scaling function Φ itself remains universal and independent of A, its argument does
not, since it explicitly depends on the d(d − 1)/2 parameters of the anisotropy matrix
and thus the microscopic details of the model. Additionally, two-scale factor universality
cannot be restored by a scale transform in confined systems if A has off-diagonal elements,
since the principles axis of A and the boundaries of the system are generally not aligned.
Similar behavior was found in the finite size scaling functions of the free energy, Binder
cumulant and Casimir amplitude [22].

In a follow up work[23] it was discussed how exactly the previously derived transform
deforms the original lattice, by investigating an anisotropic rectangular lattice φ4 theory
with the Hamiltonian

HLattice = v

 N∑
i=1

(r0
2
φ2
i + u0(φ

2
i )

2 − hφi

)
+

N∑
i,j=1

Ki,j

2
(φi − φj)

2

 (1.21)

with φi again being an n-component field on N lattice points xi in d dimensions. Here
v = V/N is the volume per lattice site and Ki,j are the anisotropic couplings. In Fourier
space, the interactions as a function of the wave vector k have the form

K̂(k) = N−1
N∑
i,j

Ki,je
−ik·(xi−xj) (1.22)

with the long wavelength contribution δK̂(k) ≡ 2[K̂(0)− K̂(k)] given by

δK̂(k) =
d∑

α,β=1

Aα,β kαkβ +
d∑

α,β,γ,δ

Bα,β,γ,δ kαkβkγkδ +O(k6), (1.23)
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e1

e2

x̃i = Uxi

ẽ1

ẽ2

x′
i = λ−1/2Uxi

e′1

e′2

Figure 1.2: Visualization of the lattice transform in d = 2 going from an anisotropic to an
isotropic system.

where ki are the components of the wave vector and Ai,j is once again the anisotropy
matrix that was introduced above. In real space the explicit formula

Aα,β =
1

N

N∑
i,j=1

(xi,α − xj,α)(xi,β − xj,β)Ki,j (1.24)

is obtained. From here, the lattice transform x′ ≡ λ−1/2Ux, that transforms the correla-
tion function to an anisotropic one, can be recovered, or alternatively in reciprocal space,
k′ ≡ λ1/2Uk. Geometrically this shear transform is depicted in fig. 1.2, where the two
steps of first applying the rotation via U of the anisotropic system on a rectangular lattice,
followed by a rescaling via λ−1/2 along the principles axis, defined by the eigenvectors of
A, into an isotropic, parallelepiped lattice, are shown. These results reveal, that a lattice
Hamiltonian in the long wavelength limit, i.e., near the critical point, can be brought into
an approximately isotropic form, where the same isotropic scaling function remains. The
universality class, however, is augmented by an additional d(d − 1)/2 parameters, that
require knowledge of the microscopic details. A RG approach to this problem, with focus
on the thermodynamic Casimir force, can be found in [24–26].

Furthermore, the physical interpretation of the anisotropy matrix was elaborated on in
[27–29] for 2d systems. In this special case, as the anisotropic correlation function gets
transformed into an isotropic one, the lattice turns into a 2d parallelepiped, also known
as a parallelogram, with internal angles α and π − α as well as aspect ratio ρp. The
eigenvalues of the reduced anisotropy matrix Ā = A/

√
detA, λ1 and λ2, can be identified

as being proportional to the square of the correlation length amplitude

ξ
(1)
0± ∝

√
λ1, ξ

(2)
0± ∝

√
λ2 (1.25)

in the principle directions given by the two eigenvectors e(i) of Ā above (+) and below
(–) the critical point; the geometric mean of both then yields the mean correlation length
amplitude

ξ̄0± ≡
[
ξ
(1)
0±ξ

(2)
0±

]1/2
. (1.26)

This allows the correlation function to be written, similar to (1.17), with the susceptibility
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amplitude Γ+, as:

G±(x, t) =
Γ+(ξ̄0+)

−7/4

[x · Ā−1x]1/8
Ψ±

(
[x · Ā−1x]1/2

ξ̄±(t)

)
(1.27)

More specifically, the contours with a fixed value of the correlation function are given by
the ellipsis equation x · Ā−1x = const. The ellipsis parameters are chosen as

q = ξ
(1)
0±/ξ

(2)
0± , (1.28)

which is related to the eccentricity, and the rotation angle Ω, which can be extracted from
the eigenvectors

e(1) =

(
cosΩ
sinΩ

)
, e(2) =

(
− sinΩ
cosΩ

)
. (1.29)

of Ā. In turn, this means that the reduced anisotropy matrix can be expressed through
these ellipsis parameters, as

Ā =

(
qc2Ω + q−1s2Ω (q − q−1)cΩsΩ
(q − q−1)cΩsΩ qs2Ω + q−1c2Ω

)
, (1.30)

with cΩ = cosΩ and sΩ = sinΩ. Even though these relations were derived in the context
of a φ4 model, it was conjectured that this form would hold more generally [28], which
was proven recently in [30, 31].

e1

e2

e(1)

e(2)

Ω

Figure 1.3: Correlation ellipsis at constant G±(x, t) with the principle axis e(i) in red.

These quantities were then specifically studied in the context of the 2d Ising model [28,
29], with the Hamiltonian (σ = ±1)

βHtrIs = −β
∑
m,n

E1σm,nσm+1,n + E2σm+1,nσm+1,n+1 + E3σm,nσm+1,n+1, (1.31)

and its correlation function on the square (E3 = 0) and triangular lattice with arbitrary
diagonal next-nearest neighbor couplings [32]. It was found that for the triangular Ising
model

q(E1, E2, E3) =
2 + Ŝ2

1 + Ŝ2
2 + [(Ŝ2

1 + Ŝ2
2)

2 + 4(1− 2Ŝ1Ŝ2)]
1/2

2(Ŝ1 + Ŝ2)
(1.32)

(1.33)



8 Universality in critical systems

and

tan 2Ω =
2Ŝ3

Ŝ1 − Ŝ2

for E1 ̸= E2 (1.34)

Ω = π/4 for E1 = E2 (1.35)

with Ŝi = sinh(2βcEi) or, alternatively, the reduced anisotropy matrix can directly be
expressed through the couplings as

Ā =

(
Ŝ1 + Ŝ3 Ŝ3

Ŝ3 Ŝ2 + Ŝ3

)
. (1.36)

Furthermore, it was shown in [29–31], that the resulting isotropic parallelogram that
emerges after the shear transform, can be characterized through the correlation ellipsis
parameters by its internal angle α and aspect ratio ρp, which take the explicit form:

cotα(q,Ω) = −Ā(q,Ω)12 = (q−1 − q) cosΩ sinΩ (1.37)

[ρp(ρ, q,Ω)]
2 = ρ2

Ā(q,Ω)11
Ā(q,Ω)22

= ρ2
tan2Ω+ q2

1 + q2 tan2Ω
. (1.38)

Here ρ is the aspect ratio of the original rectangular lattice and q, Ω the ellipsis parameters
as discussed above. It was then found [29–31], that this can be used in conjunction with
the conformal field theory (CFT) solution for the critical 2d Ising model partition function

ZCFT(τ) =
1

22/3
|θ2(τ)|+ |θ3(τ)|+ |θ4(τ)|
|θ2(τ)θ3(τ)θ4(τ)|1/3

(1.39)

by expressing the modular parameter τ = ρp exp(iα) through these quantities. Here θi(τ)
are the Jacobi theta functions [33]. This approach is quiet elegant, since the application of
conformal field theory requires the system under consideration to be conformal invariant,
which implies, among others, isotropy and thus multi-parameter universality is a gateway
to apply the rich body of work in CFT to anisotropic systems. Additionally, the critical
Ising partition function above exhibits something called modular invariance, which means
it does not change under certain transformations of the modular parameter (τ → τ + 1,
τ → −1/τ), details of which will be discussed later on.

In the following chapter, the results obtained by Dohm, Chen, Wessel et al. that were
discussed above, will be expanded upon to include the Ising model in finite systems and in
the scaling limit, i.e, in the region near the critical point where universal behavior is to be
expected. This extension aims to explore the presence of multi-parameter universality and
modular invariance within such systems by specifically investigating the free energy scaling
function and later on, the heat capacity and strip limit. Furthermore, the connection to
previously known more restricted cases is made to validate the results.
Similarly, Chapter 3 introduces a numerical analysis of the 2d Potts model, with the

objective of identifying any departures from two-scale factor universality. This is of interest
since for one, the q = 2 state Potts model is equivalent to the Ising model and thus makes it
easy to cross-check results. Additionally, the q = 3, 4 Potts model both exhibit continuous
phase transitions and are of a different universality class, making them good subjects to
further study multi-parameter universality.
The final chapter delves into the investigation of first-order transitions in 3d systems by

utilizing Monte Carlo simulations. This approach seeks to observe crossover phenomena
during the transition from discrete to continuous degrees of freedom and aims to shed light
on how different coexisting phases contribute to the behavior at the first order transition
point.



Chapter 2

The Ising model

The Ising model, a cornerstone in statistical mechanics and condensed matter theory, has
undergone significant theoretical developments since its inception. The two-dimensional
(2d) Ising model, in particular, has been a rich area of study. Onsager’s seminal work in
1944 [34] on the 2d ferromagnetic Ising model marked a milestone by rigorously computing
the partition function for the case of a vanishing field, which unveiled the model’s order-
disorder transition. This work established the mathematical framework crucial for further
advancements in understanding critical phenomena in statistical mechanics. Further sig-
nificant contributions were made by Kaufman [35], who, alongside Onsager, developed a
simpler derivation and extended the solution to include finite systems.

In this chapter, the anisotropic Ising model on a finite, parallelogram lattice is examined
by expanding on Plechkos approach [36–38], which is centered around the use of integrals
over anticommuting Grassmann variables and the mirror-ordered factorization concepts
for the 2d Ising partition function. This non-combinatorial fermionic approach offers
a distinct perspective on the model, particularly in handling anisotropic bond coupling
parameters across various lattices.

Furthermore, the free energy scaling function near the critical point is derived, and the
well-known conformal field theory (CFT) results [39] for the critical 2d Ising model are
recovered, while placing these results in the context of multi-parameter universality [28,
29]. It is demonstrated that there is a dependency on microscopical quantities at and near
criticality.

2.1 Definition of the model

A 2d parallelogram lattice with periodic boundary conditions, spanned by two vectors
Li = Niai (i = 1, 2), is considered, where Ni represents the number of unit cells in the
i-th direction and the two vectors ai span a unit cell. The lattice constants are denoted
as ai = |ai|. The total area of the system is given by V = N1N2v, where v = a1a2 sinϑ
is the area of a primitive cell, with the angle ϑ being spanned by L1 and L2; additionally
the aspect ratio of the parallelogram is defined as ρp = |L2|/|L1|. It is specified that
each lattice site contains a spin σm,n = ±1 at the location xm,n = ma1 + na2, with the
Hamiltonian being

βHIs = −β
∑

(i,j),(m,n)

E(i,j),(m,n)σi,jσm,n (2.1)

9
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and the inverse temperature β = 1/(kbT ). The partition function thus follows as

ZIs =
∑
{σ}

exp
(
−βHIs

)
(2.2)

with the total free energy given by

F Is
tot = − lnZIs (2.3)

which is split into a singular F Is
s and non-singular F Is

ns part. The associated densities are
defined as

f Is = F Is
tot/V = f Is

s + f Is
ns. (2.4)

The bulk contribution to the free energy density fb is also considered, which is the value
of the free energy in the thermodynamic limit

f Is
b = lim

V→∞
f Is = f Is

b,s + f Is
b,ns, (2.5)

as well as its complement, the excess free energy density

f Is
ex = f Is − f Is

b . (2.6)

It can be assumed [17, 24, 40, 41] that for periodic boundary conditions f Is
ns = f Is

b,ns.
Additionally, the reciprocal lattice vectors bi (i = 1, 2), that obey the relation ai ·bj = δij ,
are introduced, as well as general reciprocal lattice vector kp,q = 2πp/N1b1 + 2πq/N2b2,
which will become important after the move to Fourier space later on.

2.2 Exact solution

To exactly solve the 2d Ising model, the focus is narrowed to the case of triangular couplings
(trIs), where E(i,j),(i+1,j) = E1, E(i,j),(i,j+1) = E2 and E(i,j),(i+1,j+1) = E3 and make use
of the approach proposed by Plechko [36–38], who employs anticommuting Grassmann
variables and refines the approach initially conceptualized by Berezin [42], to periodic
boundary conditions of finite systems. This is an extension and generalization of the work
presented in [43]. It is first noted that the system exhibits a phase transition at the critical
temperature βc, which is determined by the equation

Ŝc
1Ŝ

c
2 + Ŝc

1Ŝ
c
3 + Ŝc

2Ŝ
c
3 − 1 = 0 (2.7)

where Ŝj = sinh 2βEj and the superscript c indicates β = βc. It is worth mentioning that,
in the aforementioned description, the two couplings with the largest absolute values are
assumed to be positive. Should this not be the case, mappings need to be applied. For
more details, refer to [44]. The Hamiltonian now simplifies to

βHtrIs = −β
∑
m,n

E1σm,nσm+1,n + E2σm+1,nσm+1,n+1

+ E3σm,nσm+1,n+1 (2.8)
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and can be rewritten as the product over the Boltzmann weights of the N1×N2 unit cells
of the system:

ZtrIs =
∑
{σ}

N1,N2∏
m,n=1

exp
(
βE1σm,nσm+1,n (2.9)

+ βE2σm+1,nσm+1,n+1 + βE3σm,nσm+1,n+1

)
=
∑
{σ}

N1,N2∏
m,n=1

R wm,n (2.10)

Here wm,n represents the Boltzmann weight of a unit cell and the constant R is introduced,
which will be determined in a subsequent step. This unit cell contains spins designated as
σm,n = σa, σm+1,n = σb, σm+1,n+1 = σc, and σm,n+1 = σd, as inferred from the preceding
equation. Note that the labeling of spins with letters a, b, c, d is to be interpreted within
the context of a unit cell located at position (m,n), signifying relative positions within
that cell as specified. By using the property e±x = coshx ± sinhx = coshx (1 ± tanhx)
and noting that σiσj = ±1 the Boltzmann weight per unit cell can be expressed as

exp (βE1σaσb + βE2σbσc + βE3σaσc) (2.11)

= cosh(βE1) cosh(βE2) cosh(βE3)(1 + Ẑ1σaσb)(1 + Ẑ2σbσc)(1 + Ẑ3σaσc) (2.12)

= R
[
(1 + Ẑ1Ẑ2Ẑ3) + (Ẑ1 + Ẑ2Ẑ3)σaσb + (Ẑ2 + Ẑ1Ẑ3)σbσc + (Ẑ3 + Ẑ1Ẑ2)σaσc

]
(2.13)

= R (α0 + α1σaσb + α2σbσc + α3σaσc) (2.14)

= R wm,n (2.15)

where R = cosh(βE1) cosh(βE2) cosh(βE3), Ẑα := tanh(βEα) and the constants αi have
been introduced; they take the explicit form:

α0 = 1 + Ẑ1Ẑ2Ẑ3, α1 = Ẑ1 + Ẑ2Ẑ3 (2.16)

α2 = Ẑ2 + Ẑ1Ẑ3, α3 = Ẑ3 + Ẑ1Ẑ2. (2.17)

Additionally the trace symbol is defined

Tr
{σ}

( ◦ ) =
N1,N2∏
m,n=1

1
2

∑
σm,n=±1

( ◦ )

 (2.18)

from which it is straight forward to see

Tr
{σ}

(1) = 1, Tr
{σ}

(σm,n) = 0 (2.19)

and allows for the partition function to be expressed as

ZtrIs = (2R)N1N2Q (2.20)

with

Q = Tr
{σ}

N1,N2∏
m,n=1

(α0 + α1σaσb + α2σbσc + α3σaσc)m,n

 (2.21)

here the factor 2N1N2 was added to balance the factor 1/2 in the definition of the trace.
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2.2.1 Grassmann variables

Let c and c∗ be a pair of Grassmann variables, they obey the anticommutation relation

{c, c∗} = cc∗ + c∗c = 0, c2 = c∗2 = 0 (2.22)

which implies that all functions of this pair have the expansion:

f(c, c∗) = α+ βc+ γc∗ + δcc∗, α, β, γ, δ ∈ C (2.23)

It is also possible to define integration over functions of Grassmann variables as a linear
functional onto the complex numbers [42], with the general rules:∫

dc 1 = 0

∫
dc c = 1 (2.24)∫

dc∗ 1 = 0

∫
dc∗ c∗ = 1 (2.25)

where in the case of higher dimensional integrals, the integration measures dc, dc∗ anti-
commute with each other and the c, c∗. For N pairs of Grassmann variables ci, c

∗
j , the

anti-commutation relations

cicj = −cjci, c∗i c
∗
j = −c∗jc∗i , cic

∗
j = −c∗jci (i ̸= j) (2.26)

hold. Another important result, that will be used later, is the evaluation of Gaussian
integrals over Grassmann variables, which have been solved in [42] for the cases of complex
fermionic fields ∫ L∏

j=1

dc∗jdcj exp

 L∑
i=1

L∑
j=1

ciAi,jc
∗
j

 = detA, (2.27)

with A an arbitrary matrix, and for real fermionic fields

∫ L∏
j=1

dcj exp

1

2

L∑
i=1

L∑
j=1

ciAi,jcj

 = pf A (2.28)

where pf denotes the Pfaffian. In case of a skew-symmetric matrix (Ai,j = −Aj,i) the

relation (detA)
1
2 = pf A applies.

2.2.2 Mixed representation of the spin polynomial

Up until now, only new notation and a slight reformulation of the original problem was
presented; in the following anticommuting Grassmann variables will be introduced and
the partition function will be brought into a mixed form that contains both spin and
Grassmann variables, reordering the factors and finally tracing out the spins will lead to
Gaussian integrals over these anticommuting variables that can be solved easily.
Combining the above results, it is convenient to define the Gaussian average as

Tr
{c}

( ◦ ) =
∫

dc∗dc eλcc
∗
( ◦ ) (2.29)

Tr
{c}

(1) = λ, Tr
{c}

(c) = Tr
{c}

(c∗) = 0, Tr
{c}

(cc∗) = 1 (2.30)



Exact solution 13

where the identities can be checked easily by noting that exp(λcc∗) = 1+λcc∗. This makes
it possible to rewrite the Boltzmann weight of a triangular unit cell as a spin polynomial
[37] using η = α1α2/α3

wm,n = α0 + α1σaσb + α2σbσc +
α1α2

η
σaσc (2.31)

= (α0 − η) + η

(
α1

η
σa + σb

)(
σb +

α2

η
σc

)
(2.32)

=

∫
dc∗dc eα0cc∗

(
1 + c

α1√
η
σa

)(
1 +
√
η(c+ c∗)σb

)(
1 + c∗

α2√
η
σc

)
(2.33)

Now N1 ×N2 pairs of Grassmann variables, cm,n, c
∗
m,n, are introduced, which allows one

to bring the above expression in a more convenient form

wm,n =

∫
dc∗m,ndcm,n eα0cm,nc∗m,n Am,nBm+1,nCm+1,n+1 (2.34)

= Tr
{c}

[Am,nBm+1,nCm+1,n+1] (2.35)

Note that from now on λ = α0 in the definition of the trace (2.29); additionally the
symbols, which contain both spin and Grassmann variables, are defined as

A±
m,n = 1± α1√

η
cm,nσm,n (2.36)

B±
m+1,n = 1±√η(cm,n + c∗m,n)σm+1,n (2.37)

C±
m+1,n+1 = 1± α2√

η
c∗m,nσm+1,n+1. (2.38)

Here the indices of the factors have been chosen to be identical to the spin indices, however,
all Grassmann variables on the same unit cell share the same index; additionally, for the
above factors, the simplified notation Xm,n ≡ X+

m,n will be used to make the equations
more readable. The partition function can now be expressed as product of the factors
Am,nBm+1,nCm+1,n+1 containing the mixed representation

Q = Tr
{σ}

Tr
{c}

[∏
m,n

Am,nBm+1,nCm+1,n+1

]
(2.39)

which commute with each other under the trace, since (2.33) can be applied anytime to
return to pure spin representation of any unit cell, as long as the factors A, B and C
remain next to each other.

Before finally solving the Ising model, some identities for non-commuting elements ηi, θi
that repeatedly occur in the proof, originally presented in [37], are replicated:

N∏
i=1

i−−−→
ηiθi+1 = (η1θ2)(η2θ3) ... (ηNθN+1) (2.40)

= η1(θ2η2)(θ3η3) ... (θNηN )θN+1 (2.41)

= η1

(
N∏
i=2

i−−→
θiηi

)
θN+1 (2.42)
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Here the arrow indicates in which direction the index increases, since the order is im-
portant. Now assume in addition, that the pairs ηiθi are totally commuting and mirror
ordering can be used to rearrange the factors

N∏
i=1

i−−→
ηiθi = (η1θ1)(η2θ2) ... (ηN−1θN−1)(ηNθN ) (2.43)

= (η1(η2 ... (ηN−1(ηNθN )θN−1) ... θ2)θ1) (2.44)

=
N∏
i=1

i−→ηi
N∏
i=1

i←−
θi (2.45)

and similarly for the reversed direction:

N∏
i=1

i−−→
ηiθi = (ηN (ηN−1 ... (η2(η1θ1)θ2) ... θN−1)θN ) (2.46)

=

N∏
i=1

i←−ηi
N∏
i=1

i−→
θi (2.47)

These identities will be used to rearrange the factors in (2.39) such that terms with the
same spin variables are next to each other, which allows easy evaluation of the trace over
the spins.

For this proof, the commutation relation of two functions of Grassmann variables f± =
f({±ai}) and g± = g({±ai}) is needed, where the ± indicates the sign of all arguments of
the respective function. This relation has been shown in the appendix of [36] and states:

f+g+ =
1

2
(g+f+ + g+f− + g−f+ − g−f−)

∗
= gδ1f δ2 (2.48)

In the last line, the symbol
∗
= was introduced, which indicates that the real structure of

term on the right is as presented in the first line, but only one term is written explicitly
and the δi = ± denote the different signs applied to the Grassmann variables. In the
following all operations are assumed to be under the Tr operator, the symbol is omitted
to improve readability. In a first step, the boundary weights on the top of the system are
reordered

N1−1∏
m=1

Am,N2 Bm+1,N2 Cm+1,N2+1 (2.49)

=

N1−1∏
m=1

C−
m+1,N2+1Am,N2 Bm+1,N2 (2.50)

=

N1−1∏
m=1

C−
m+1,1Am,N2 Bm+1,N2 (2.51)
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as well as at the right edge of the system

N2−1∏
n=1

AN1,nBN1+1,nCN1+1,n+1 (2.52)

=

N2−1∏
n=1

BN1+1,nCN1+1,n+1A
−
N1,n

(2.53)

=

N2−1∏
n=1

B1,nC1,n+1A
−
N1,n

, (2.54)

where in the last step periodic boundary conditions N1 + 1 → 1 and N2 + 1 → 1 were
applied to the spins. Note that the cell at (N1, N2) was left out; this is because it has a
special role when combining all the weights, more specifically, it is reordered and, again,
the boundary conditions are applied:

AN1,N2 BN1+1,N2 CN1+1,N2+1 = C−
1,1AN1,N2 B1,N2 (2.55)

Next the mirror ordering (2.45) is used on the top (t) boundary weights to split (CtAtBt)
into (Ct)(AtBt) and the right (r) boundary weights (BrCrAr) into (BrCr)(Ar). Here the
(. . . ) indicate a common product. Taking this together with the corner (c) weights (2.55),

(Ct)Cc(BrCr)(Ar)AcBc(AtBt) (2.56)

this combined structure is created. The identity (2.48) is then used to swap (Ar)Ac with
Bc(AtBt) to get

(Ct)Cc(BrCr)Bc(AtBt)(Ar)Ac (2.57)

In full notation this looks like

N1∏
m=2

m←−−
C−
m,1 C−

1,1

(
N2−1∏
n=1

n−−−−−−−→
B1,nC1,n+1

N2−1∏
n=1

n←−−−
A−

N1,n

)
AN1,N2B1,N2

N1−1∏
m=1

m−−−−−−−−−−→
Am,N2Bm+1,N2 (2.58)

∗
=

N1∏
m=2

m←−−
C−
m,1 C−

1,1

N2−1∏
n=1

n−−−−−−−→
B1,nC1,n+1B

δ1
1,N2

N1−1∏
m=1

m−−−−−−−−−−→
Aδ1

m,N2
Bδ1

m+1,N2

N2−1∏
n=1

n←−−−
A−δ2

N1,n
Aδ2

N1,N2
(2.59)

∗
=

N1∏
m=2

m←−−
C−
m,1

{
C−
1,1

N2−1∏
n=1

n−−−−−−−→
B1,nC1,n+1B

δ1
1,N2

Aδ1
1,N2

}

×
N1−1∏
m=2

m−−−−−−−−→
Bδ1

m,N2
Aδ1

m,N2
Bδ1

N1,N2
Aδ2δ3

N1,N2

N2−1∏
n=1

n←−−−−
A−δ2δ4

N1,n
(2.60)

Here the
∗
= notation introduced in (2.48) was made use of. In the last step, the identity

(2.42) was applied to the product over Aδ1
m,N2

Bδ1
m+1,N2

and Aδ2
N1,N2

was moved to the left of

the product overA−δ2
N1,n

by applying (2.48) once again. Even though this seems complicated,
the fact that the expression only depends on δ1 and the products δ2δ3 as well as δ2δ4 allows
the reduction from 16 terms down to only 4. If the label P (δ1, δ2δ3, δ2δ4) is temporarily
assigned to (2.60), the only terms that will remain are:

1

2

(
P (1, 1,−1) + P (1,−1, 1) + P (−1, 1, 1)− P (−1,−1,−1)

)
(2.61)
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δ1 δ2δ3 δ2δ4 x y

1 1 -1 p a
1 -1 1 a a
-1 1 1 a p
-1 -1 -1 p p

Table 2.1: This tables shows how the different values of δi relate to periodic (p) or anti-
periodic (a) boundary conditions of the fermionic fields in the x and y-direction.

The process now begins with the iterative addition of non-boundary weights at the right
edge of the expression within the curly braces. Subsequently, the content within the
curly braces will represent the columns (y-direction) of the system, where the products to
the left and right supply the appropriate boundary terms for the top and bottom of the
columns; the final product over A will close the iterations once all internal weights have
been utilized. By focusing solely on the contents of the curly braces, the internal weights
of the first column are added:

C−
1,1

N2−1∏
n=1

n−−−−−−−→
B1,nC1,n+1B

δ1
1,N2

Aδ1
1,N2

N2−1∏
n=1

n←−−
A1,n

N2−1∏
n=1

n−−−−−−−→
B2,nC2,n+1 (2.62)

Now the C−
1,1 can be absorb into the product to the right, momentarily suppressing the

minus sign.

N2−1∏
n=1

n−−−−−→
C1,nB1,nC1,N2B

δ1
1,N2

Aδ1
1,N2

N2−1∏
n=1

n←−−
A1,n

N2−1∏
n=1

n−−−−−−−→
B2,nC2,n+1 (2.63)

Now it is obvious that all the weights with the same index of the first column are next to
each other, making it possible to trace them out using (2.18) and leaving only the product
over B2,nC2,n+1 behind. Products of the type Cm,nBm,nAm,n commute with the rest of the
expression, since the trace over σm,n only leaves terms with even powers of the Grassmann
numbers. This procedure results in the same starting point as in (2.60), albeit with one
column traced out; in the subsequent step C−

2,1 from the left product and Bδ1
2,N2

Aδ1
2,N2

from
the right product can be included and the internal weights of the next column can be
added until all weights have been used.

2.2.3 Boundary conditions

The boundary condition of the fermionic fields, given in table 2.1, are obtained by inspect-
ing when the boundary terms to the left and right (top and bottom) in (2.60) have the
same (opposite) signs. Together with the permissible combinations of δi found in (2.61),
the four terms can be associated with different combinations of periodic and anti-periodic
boundary conditions in x and y direction.

2.2.4 Fermionic representation

From (2.63), it is observed that the order in which the weights with the same index
appear is CBA. Given the known boundary conditions for the fermionic fields, these can
be temporarily disregarded and later reintroduced upon transitioning to Fourier space.
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The relevant part of the partition function is as follows:

Q = Tr
{c}

N1∏
m=1

N2∏
n=1

Tr
{σm,n}

[Cm,nBm,nAm,n] (2.64)

=

∫ N1∏
i=1

N2∏
j=1

dc∗i,jdci,j exp

(
N1∑
m=1

N2∑
n=1

α0cm,nc
∗
m,n+

(cm−1,n + c∗m−1,n)(α1cm,n − α2c
∗
m−1,n−1) + α3c

∗
m−1,n−1cm,n

 (2.65)

where in the second step the spins were traced out. Shifting the indices separately in each
term accordingly [37], one obtains

Q =

∫ N1−1∏
i=0

N2−1∏
j=0

dc∗i,jdci,j exp

(
N1−1∑
m=0

N2−1∑
n=0

α0cm,nc
∗
m,n − α1cm+1,nc

∗
m,n − α2cm,n+1c

∗
m,n

−α3cm+1,n+1c
∗
m,n + α1cm,ncm+1,n + α2c

∗
m,nc

∗
m,n+1

 .

(2.66)

The Fourier transforms for the Grassmann variables take the form

cm,n =
1√

N1N2

N1−1∑
p=0

N2−1∑
q=0

c̃p,q eixm,n·(kp,q+u) (2.67)

c∗m,n =
1√

N1N2

N1−1∑
p=0

N2−1∑
q=0

c̃∗p,q e−ixm,n·(kp,q+u) (2.68)

where u = 2π∆x/N1 b1 + 2π∆y/N2 b2 and ∆x,∆y ∈ {0, 12}. For ∆ = 0 normal periodic
boundary conditions are enforced e.g. cm+L,n = cm,n for ∆ = 1

2 , on the other hand, anti-
periodic boundary conditions are enforced e.g. cm+L,n = −cm,n, which can be checked
easily. Plugging in the transformations intoQ and making use of Kronecker delta definition
in Fourier space, one finds

Q∆x,∆y =

∫ N1−1∏
i=0

N2−1∏
j=0

dc̃∗i,jdc̃i,j exp

(
N1−1∑
p=0

N2−1∑
q=0

c̃p,q c̃
∗
p,q

[
α0 − α1e

i 2π
N1

(p+∆x) − α2e
i 2π
N2

(q+∆y)

− α3e
2πi

(
p+∆x
N1

+
q+∆y
N2

)]
− α1c̃p,q c̃N1−p,N2−qe

i 2π
N1

(p+∆x) − α2c̃
∗
p,q c̃

∗
N1−p,N2−qe

i 2π
N2

(q+∆y)

)
(2.69)

which is a block diagonal form that factorizes into low dimensional integrals; here the
boundary conditions were made explicit by introducing Q = Q∆x,∆y . From here on, the
approach is again very similar to Plechko [37] in defining

E±f =α0 − α1e
±i 2π

N1
(p+∆x) − α2e

±i 2π
N2

(q+∆y) − α3e
±2πi

(
p+∆x
N1

+
q+∆y
N2

)
(2.70)

Ωf =α1(e
i 2π
N1

(p+∆x) − e
−i 2π

N1
(p+∆x)) (2.71)

Ω′
f =α2(e

i 2π
N2

(q+∆y) − e
−i 2π

N2
(q+∆y)) (2.72)
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where f = (p, q) and −f = (N1− p,N2− q) are points in frequency space. It is convenient
to define the auxiliary integral

(Q̃
(p,q)
∆x,∆y

)2 =

∫
dc∗fdcfdc

∗
−fdc−f exp

(
Efcfc

∗
f + E−fc−fc

∗
−f

− Ωfcfc−f − Ω′fc∗−fc
∗
f

)
(2.73)

that relates to the original integral via

Q2
∆x,∆y

=

M−1∏
p=0

N−1∏
q=0

(Q̃
(p,q)
∆x,∆y

)2 (2.74)

where the square arises because the integral (Q̃
(p,q)
∆x,∆y

)2 is over f = (p, q) and −f =

(N1 − p,N2 − q), but since q, p = 0, 1 ... Ni − 1 one passes over all points twice, from

opposite directions. (Q̃
(p,q)
∆x,∆y

)2 can be solved easily using (2.27), the result is

(Q̃
(p,q)
∆x,∆y

)2 = EfE−f +ΩfΩ
′
f (2.75)

= (α2
0 + α2

1 + α2
2 + α2

3)

− 2(α0α1 − α2α3) cos

(
2π(p+∆x)

N1

)
− 2(α0α2 − α1α3) cos

(
2π(q +∆y)

N2

)
− 2(α0α3 − α1α2) cos

(
2π(p+∆x)

N1
+

2π(q +∆y)

N2

)
(2.76)

With the above, the total partition function takes the form:

ZtrIs = (2R)N1N2
1

2

[
Q0, 1

2
+Q 1

2
, 1
2
+Q 1

2
,0 − sgn

(
T − Tc

Tc

)
Q0,0

]
(2.77)

The sign term in front of Q0,0 follows from the integration over the zero-mode p = q = 0
in case of ferromagnetic couplings1. To understand this, consider the integral (2.69) with
∆x = ∆y = 0 only for the mode p = q = 0

Q̃
(0,0)
0,0 =

∫
dc̃∗0,0dc̃0,0 ec̃0,0c̃

∗
0,0[α0−α1−α2−α3] (2.78)

= α0 − α1 − α2 − α3, (2.79)

where in the first step c̃0,0c̃N1,N2 = c̃20,0 = 0 was used and similarly for the term containing
only conjugate variables; additionally, in the second step (2.27) was employed. As will be
shown later in (2.99), the above expression is equal to −2ᾱ0, which can be shown to change
sign, when crossing the critical point. However, this property is lost when introducing the
squared auxiliary integral in (2.73), even though the final expression calls for the non-
squared, original expression Q∆x,∆y ; to correct this, the sign factor in front of the last
term is introduced [35, 45].
The free energy density is thus given by

f trIs = − 1

V
lnZtrIs

= − ln(2R)− 1

V
ln

1

2

[
Q0, 1

2
+Q 1

2
, 1
2
+Q 1

2
,0 − sgn

(
T − Tc

Tc

)
Q0,0

]
(2.80)

1In the other phases, different modes with combinations of p = 0, N1 and q = 0, N2 may be responsible
for the sign change, however, the same reasoning applies just with different critical conditions.
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Figure 2.1: The ferromagnetic (FM) region as a function of the couplings Ei is the gray
shaded part in this figure.

which converges in the limit of V →∞ to [37, 38]

vf trIs
b = − ln(2R)− 1

2

∫ 2π

0

dp

2π

∫ 2π

0

dq

2π
ln[(α2

0 + α2
1 + α2

2 + α2
3)− 2(α0α1 − α2α3) cos (p)−

2(α0α2 − α1α3) cos (q)− 2(α0α3 − α1α2) cos (p+ q)] (2.81)

2.3 The ferromagnetic regime

Up until now, the results presented here have been applicable to all couplings Ei. However,
from this point forward, attention will be restricted to the ferromagnetic region, which is
defined by the simultaneous conditions [44]

E1 + E2 > 0, E1 + E3 > 0, E2 + E3 > 0, (2.82)

illustrated in fig. 2.1. After the left side of (2.7) is expanded into exponential form,

1

4
e−2βc(E1+E2)

(
e2βc(E1+E2) + e2βc(E1+E3) + e2βc(E2+E3) − 1

)
×
(
e2βc(E1+E2) − e2βc(E1−E3) − e2βc(E2−E3) − 1

)
, (2.83)

it is apparent that the expression between the first parentheses can never lead to the total
expression being zero, since it is always greater or equal to two. The term in the second
parentheses, on the other hand, may be zero and thus the expression

e2βc(E1+E2) − e2βc(E1−E3) − e2βc(E2−E3) − 1 = 0 (2.84)

can be used as a simplified critical condition in the ferromagnetic regime.

2.4 Correlation function at criticality

As discussed in the introduction, the correlation function of the ferromagnetic, triangular
Ising model on a square lattice with orthonormal lattice vectors (a1 = a2 = 1, ϑ = π/2)
was obtained in [32] and was later put into the context of multi-parameter universality for
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the case E1 = E2, E3 = 0 and E1 unequal E2, E3 = 0 as well as for E1 = E2 = E3 in [28],
furthermore the mean correlation length was discussed in [30] for general Ei as a function
of the couplings on a square lattice. The general case of arbitrary Ei and a parallelogram
lattice is discussed in [1]. There it was shown, that the asymptotic correlation function
CtrIs(xi − xj) = ⟨σiσj⟩ −M2 is given by

CtrIs(x) =
CtrIs
0+ (ξ̄trIs0+ )−7/4

[x · (ĀtrIs)−1x]1/8
Ψ±

(
[x · (ĀtrIs)−1x]1/2

ξ̄trIs± (t)

)
, (2.85)

whereM is the spontaneous magnetization, and Ψ± the universal scaling function above
(+) and below (–) the critical point. The mean correlation length on the triangular lattice
ξ̄trIs± (t) = ξ̄trIs0± |t|−1 is given in terms of its amplitude

ξ̄trIs0± =

√
v

2βc(E1[Ŝc
2 + Ŝc

3]
1
2 + E2[Ŝc

1 + Ŝc
3]

1
2 + E3[Ŝc

1 + Ŝc
2]

1
2 )

(2.86)

and the reduced temperature t = (T − Tc)/Tc. The structure of (2.85) agrees with the
general proof for weakly ansiotropic Ising models on Bravais lattices (including parallel-
ogram lattices) and with short-range pair interactions presented in [30]. The reduced
anisotropy matrix ĀtrIs describes the angular dependency of the correlation function on
an anisotropic parallelogram lattice, which can be decomposed into contributions from
lattice anisotropy through a shear transform

S =

(
a1 a2 cosϑ
0 a2 sinϑ

)
, (2.87)

that maps the rectangular lattice onto a parallelogram lattice with angle ϑ, spanned by
the two lattice vectors

a1 = a1

(
1
0

)
, a2 = a2

(
cos(ϑ)
sin(ϑ)

)
, (2.88)

and a contribution from the different coupling strengths in the various lattice directions,
through the reduced anisotropy matrix on a rectangular geometry with orthonormal lattice
vectors [28],

ĀtrIs,rec =

(
Ŝc
1 + Ŝc

3 Ŝc
3

Ŝc
3 Ŝc

2 + Ŝc
3

)
. (2.89)

Combining both contributions yields the anisotropy matrix on a parallelogram geometry
through

AtrIs = SĀtrIs,recST . (2.90)

Note, that this is not a reduced anisotropy matrix, since it has not been normalized.
However, since Ā = A/

√
detA, one finds that

ĀtrIs =
1

|detS| A
trIs, (2.91)

where detS = a1a2 sinϑ is the area of a parallelogram lattice unit cell v. Additionally,
as will be shown in the next section, the correlation length amplitudes are also related
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through v, namely ξ̄trIs0± =
√
v ξ̄trIs,rec0± . This implies for the correlation function (2.85), that

CtrIs(x) ∼ Ψ±

(
[x · (ĀtrIs)−1x]1/2

ξ̄trIs± (t)

)
(2.92)

= Ψ±

(
[(S−1x)T (ĀtrIs,rec)−1(S−1x)]1/2

ξ̄trIs,rec± (t)

)
(2.93)

∼ CtrIs,rec(S−1x), (2.94)

it is related to the one on the rectangular lattice CtrIs,rec with the same coupling parameters
through the shear transform S. The amplitude of CtrIs(x) can also be related to the one
on the rectangular lattice by using the above relations together with the fact that the
susceptibility amplitude transforms as follows CtrIs

0+ = v CtrIs,rec
0+ , since the sum rule for the

susceptibility yields:

χtrIs,rec
± =

∫
dx CtrIs,rec(x) (2.95)

=
1

v

∫
dx CtrIs,rec(S−1x) (2.96)

To illustrate these relations, in figure 2.2 a few examples with lattices, couplings and
their associated correlations ellipsis are shown. Furthermore, in figure 2.3 the transforma-
tion relations between isotropic and anisotropic lattices are visualized; this flow chart also
highlights the two different parallelograms that show up in multi-parameter universality
– one isotropic and one anisotropic.
In the next sections, both the mean correlation length, through the amplitude of the

singular free energy, as well as the reduced anisotropy matrix from the free energy scaling
function, will be recovered. The correlation function is only mentioned here briefly, since
it is not the main subject of this work, but it is still important to interpret the different
quantities that will arise in the following sections.
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Lattice Couplings Correlation ellipsis
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Figure 2.2: A range of different lattices and couplings with their associated correlation
ellipsis. (a) showing the typical isotropic case, while (b) demonstrates rect-
angular anisotropy; i.e. the principle axis of the correlation ellipsis and the
lattice vectors are aligned. (c) shows a square lattice with next nearest neigh-
bor couplings while (d) shows the related triangular lattice; which visualizes
how lattice deformation influences the correlation function.
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Anisotropic square lattice

x1

x2

·

e1

e2

Anisotropy Matrix: A

Isotropic parallelogram lattice

x′
1

x′
2

α′

e1

e2

Anisotropy Matrix: A′ ∝ 1

Anisotropic parallelogram lattice

x̃1

x̃2

α

e1

e2

Anisotropy Matrix: Ã

λ̃ = ŨT ÃŨ

x′
i = λ̃−1/2Ũ x̃i

or by proxy:

λ̃ = (SU)TA(SU)

λ = UTAU

x′
i = λ−1/2Uxi

x̃i = Sxi

Ã = STAS

Figure 2.3: Flow chart of how different lattice geometries and the angular dependence of
correlation functions are related. The shown formulas are explicitly given for
a ϕ4 model, while for more general models generalized shear transformations
as presented in Ref. [30] apply.
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2.5 Singular bulk free energy

To extract the singular contribution f Is
b,s from the bulk free energy f Is

b , it is first shown
that the integrand of (2.81) diverges at the critical point for (p, q) = (0, 0). To this end,
cos(x) is approximated as 1− x2/2 in (2.81):

−1

2

∫ 2π

0

dp1
2π

∫ 2π

0

dp2
2π

ln[R2(α1 + α2 + α3 − α0)
2

+ R2(α0α1 − α2α3)p
2
1

+ R2(α0α2 − α1α3)p
2
2

+ R2(α0α3 − α1α2)(p1 + p2)
2]. (2.97)

Here R was moved into the integral, the logarithms combined and used that

(α2
0 + α2

1 + α2
2 + α2

3)− 2(α0α1 − α2α3)− 2(α0α2 − α1α3)− 2(α0α3 − α1α2)

= (α1 + α2 + α3 − α0)
2 (2.98)

≡ (2ᾱ0)
2 , (2.99)

where ᾱ0 was defined. After many laborious steps or with the help of computer algebra
software, one can show that

2ᾱ0 =
eβ(E3−E1−E2)

(
e2β(E1+E2) − e2β(E1−E3) − e2β(E2−E3) − 1

)
2R

, (2.100)

where for β = βc the left side of the critical condition (2.84) can be identified and thus
one can see that at the critical point the integrand of (2.97) diverges at (p, q) = (0, 0).
Additionally one finds, that

R2(α2α3 − α0α1) = R2 − tanh(βE1)

cosh2(βE2) cosh
2(βE3)

= −1

2
sinh 2βE1, (2.101)

and similarly for the other coefficients. Limiting the integration domain to a small circle
section S(ϵ) of radius ϵ around the origin to only calculate the singular part, the bulk free
energy density can be approximated as:

vf trIs
b ≃− ln 2− 1

2

∫
p∈S(ϵ)

dp

(2π)2
ln

[
(2Rᾱ0)

2 + Ŝ1
p21
2

+ Ŝ2
p22
2

+ Ŝ3
(p1 + p2)

2

2

]
. (2.102)

2.5.1 Identifying the reduced anisotropy matrix

In equation (2.102), a quadratic form can be identified

vf Is
b ≃− ln 2− 1

(2π)2

∫
p∈S(ϵ)

d2p ln

[
(2Rᾱ0)

2 +
1

2
pT

(
Ŝ1 + Ŝ3 Ŝ3

Ŝ3 Ŝ2 + Ŝ3

)
p

]
, (2.103)

where p = (p1, p2)
T was introduced. In anticipation of recovering the reduced anisotropy

matrix (2.89), the matrix

AtrIs,rec =

(
Ŝ1 + Ŝ3 Ŝ3

Ŝ3 Ŝ2 + Ŝ3

)
(2.104)
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is defined. However, note that here the Ŝi are not at βc. The eigenvalue problem associated
with AtrIs,rec is given by

UTAtrIs,recU = λ (2.105)

where U is a unitary transformation matrix and λ the diagonal eigenvalue matrix. By
defining p = Uλ−1/2p′, the integral simplifies to

vf Is
b ≃ − ln 2− 1

(2π)2
1√

detAtrIs,rec

∫
p′∈S(ϵ)

d2p′ ln

[
(2Rᾱ0)

2 +
|p′|2
2

]
(2.106)

where it was assumed, that the above transformation has no influence of the infinitesimal
integration domain S(ϵ).

2.5.2 Solving the integral

After introducing polar coordinates p′1 = r cosϕ, p′2 = r sinϕ, the integral is transformed
to

vf trIs
b ≃ − ln 2− 1

4π

1√
detAtrIs,rec

∫ ϵ

0
r dr ln

[
(2Rᾱ0)

2 +
r2

2

]
, (2.107)

where the integral over ϕ has already been evaluated. The integral over r can be done as
well, and reads

vf trIs
b ≃− ln 2− 1

8π

1√
detAtrIs,rec

[
ϵ2 ln

(
(2Rᾱ0)

2 +
ϵ2

2

)
− ϵ2

− (2Rᾱ0)
2 ln 4 + 2(2Rᾱ0)

2 ln
1

(2Rᾱ0)2

− 2(2Rᾱ0)
2 ln

1

2(2Rᾱ0)2 + ϵ2

]
. (2.108)

As discussed above, for T → Tc it was found that ᾱ0 → 0, and thus for an ϵ > 0 the
singular part of fb is found to be

vf trIs
b,s = − 1

4π

(2Rᾱ0)
2

√
detAtrIs,rec

ln
1

(2Rᾱ0)2
, (2.109)

since all other terms are either regularized by ϵ or vanish when one takes the second
derivative with respect to t.

2.5.3 Scaling behavior near Tc

To find the scaling near Tc, f
trIs
b,s is expanded into a Taylor series around Tc; to this end

g(T ) := 2Rᾱ0 and h(T ) := detAtrIs,rec is defined for clarity, such that the amplitude of
fb,s is given by g(T )2/

√
h(T ), with the expansion

g(T )2√
h(T )

=
g(Tc)

2√
h(Tc)

− g(Tc)
2h′(Tc)− 4g(Tc)g

′(Tc)h(Tc)

2h(Tc)3/2
(T − Tc)

+
1

8

(
8h(Tc)

2(g(Tc)g
′′(Tc) + g′(Tc)

2) + 3g(Tc)
2h′(Tc)

2

h(Tc)5/2

− 2g(Tc)h(Tc)(4g
′(Tc)h

′(Tc) + g(Tc)h
′′(Tc))

h(Tc)5/2

)
(T − Tc)

2 +O (T − Tc)
3 ,

(2.110)
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but since g(Tc) = 0, only

g(T )2√
h(T )

=
g′(Tc)

2√
h(Tc)

(T − Tc)
2 +O (T − Tc)

3 (2.111)

=
1√

detAtrIs,rec(T = Tc)

[
∂

∂T
(2Rᾱ0)

∣∣∣
T=Tc

]2
(T − Tc)

2 +O (T − Tc)
3 (2.112)

=
1

T 4
c

[
∂

∂β
(2Rᾱ0)

∣∣∣
β=βc

]2
(T − Tc)

2 +O (T − Tc)
3 (2.113)

=β2
c

[
∂

∂β
(2Rᾱ0)

∣∣∣
β=βc

]2
t2 +O

(
t3
)

(2.114)

remains, and in the second step it was used that AtrIs,rec(T = Tc) can be identified as the
reduced anisotropy matrix ĀtrIs,rec, which fulfills det ĀtrIs,rec = 1, as introduced in (2.89).
Now only a first derivative has to be evaluated, which can be done by using (2.100), taking
the derivative with respect to β,

∂

∂β
(2Rᾱ0)

=− 1

2
(E1 + E2 + E3)e

−β(E1+E2+E3)
(
e2βE1 + e2βE2 + e2βE3 − e2β(E1+E2+E3)

)
+ e−β(E1+E2+E3)

(
E1e

2βE1 + E2e
2βE2 + E3e

2βE3 − (E1 + E2 + E3)e
2β(E1+E2+E3)

)
,

(2.115)

and using the critical condition (2.84), one finds that

∂

∂β
(2Rᾱ0)

∣∣∣
β=βc

(2.116)

=e−βc(E1+E2+E3)
(
E1e

2βcE1 + E2e
2βcE2 + E3e

2βcE3 − (E1 + E2 + E3)e
2βc(E1+E2+E3)

)
.

Furthermore, E3 can be replaced while defining ζ through rearranging (2.84),

E3 =
1

2βc
ln

[
e2βcE1 + e2βcE2

e2βc(E1+E2) − 1

]
≡ 1

2βc
ln ζ2 (2.117)

which leads to

∂

∂β
(2Rᾱ0)

∣∣∣
β=βc

(2.118)

=E1(ζ
−1 eβc(E1−E2) − ζ eβc(E1+E2))

+E2(ζ
−1 eβc(E2−E1) − ζ eβc(E1+E2))

+
1√
2βc

√
sinh 2βcE1 + sinh 2βcE2 ln

[
e2βcE1 + e2βcE2

e2βc(E1+E2) − 1

]
. (2.119)

Once again plugging in the critical condition with the property

Ŝc
3 = sinh ln ζ2 =

1

2
(ζ2 − ζ−2), (2.120)

one can show that for the first term√
Ŝc
2 + Ŝc

3 =
1√
2
(ζ−1 eβc(E1−E2) − ζ eβc(E1+E2)) (2.121)
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holds and similarly for the second term. In the third term, the critical condition for E3

(2.117) can be used. This leads to

∂

∂β
(2Rᾱ0)

∣∣∣
β=βc

=
1√
2

[
E1

√
Ŝc
2 + Ŝc

3 + E2

√
Ŝc
1 + Ŝc

3 + E3

√
Ŝc
1 + Ŝc

2

]
=

1√
2βcξ̄

sqIs
0+

, (2.122)

upon comparing this to the inverse mean correlation length amplitude of the square lattice
with ϑ = π/2 and a1 = a2 = 1 [1]

(ξ̄sqIs0+ )−1 = 2βcE1

√
Ŝc
2 + Ŝc

3 + 2βcE2

√
Ŝc
1 + Ŝc

3 + 2βcE3

√
Ŝc
1 + Ŝc

2. (2.123)

Plugging the final result into the expansion (2.114), one gets

g(T )2√
h(T )

=
1

2

1

(ξ̄sqIs0+ )2
t2 +O

(
t3
)
, (2.124)

and thus for |t| ≪ 1,

f trIs
b,s = − 1

8π

t2

v(ξ̄sqIs0+ )2
ln

2(ξ̄sqIs0+ )2

t2
(2.125)

=
1

4π

t2

(ξ̄trIs0+ )2
ln |t|+ regular contributions. (2.126)

In the last line, the mean correlation length amplitude on the parallelogram lattice ξ̄trIs0+ =

v1/2ξ̄sqIs0+ was identified. This scaling form had been predicted in [28] for general, anisotropic
ϕ4-theories and was previously conjectured [46] to hold for the anisotropic Ising model on
the triangular lattice as well; a proposition that has now been proven. A general proof of
(2.126) was given in [30] for arbitrary weakly anisotropic two-dimensional Ising models.
For the case of the Ising model with rectangular anisotropy a similar result was shown in
[47, see footnote 19].

2.6 Scaling function of the excess free energy

In the critical regime, it is understood that the free energy can be expressed, based on
scaling theory, in terms of a universal function. This function, aside from non-universal
prefactors, is independent of the microscopic details of the model and characteristic of
the underlying universality class. The scaling function for the Ising model is derived in

this chapter, starting from (2.80). More precisely, the expression for (Q̃
(p,q)
∆x,∆y

)2, as given

in (2.76), is rewritten in terms of ᾱ0 and Ŝi, following the steps outlined up to (2.102).
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Initially, the reduced partition function for the sector (∆x,∆y) is written as:

(2R)2N1N2 Q2
∆x,∆y

=

N1−1∏
p=0

N2−1∏
q=0

(2R)2(Q̃
(p,q)
∆x,∆y

)2

=exp

N1−1∑
p=0

N2−1∑
q=0

ln[(2R)2(Q̃
(p,q)
∆x,∆y

)2]

 (2.127)

= exp

(∑
k

lnQ2
∆x,∆y

(k)

)
, (2.128)

where

Q2
∆x,∆y

(k) = [(2R)2(Q̃
(p,q)
∆x,∆y

)2], (2.129)

was defined with
∑

kp,q
=
∑N1−1

p=0

∑N2−1
q=0 . The total partition function then takes the form

ZtrIs =
1

2

[
e

1
2

∑
k lnQ2

0,1/2
(k)

+ e
1
2

∑
k lnQ2

1/2,0
(k)

+ e
1
2

∑
k lnQ2

1/2,1/2
(k) − sgn(t) e

1
2

∑
k lnQ2

0,0(k)
]
. (2.130)

Now using the same approach as in the previous chapter to approximate cosx ≃ 1− x2/2
and simplifying the constants yields

Q2
∆x,∆y

(k) ≃ (2Rᾱ0)
2 + Ŝ1

[ 2πN1
(p+∆x)]

2

2

+ Ŝ2

[ 2πN2
(q +∆y)]

2

2
+ Ŝ3

[ 2πN1
(p+∆x) +

2π
N2

(q +∆y)]
2

2
, (2.131)

with Ŝi = sinh 2βEi. Again, one can express the above in terms of a quadratic form

Q2
∆x,∆y

(k) ≃ (2Rᾱ0)
2 +

1

2
(k + u)TSAtrIs,recST (k + u), (2.132)

where u = 2π∆x/N1b1 + 2π∆y/N2b2. Here, S is again the shear transformation that
maps the lattice vectors ai from a rectangular lattice with orthonormal basis vectors, and

AtrIs,rec =

(
Ŝ1 + Ŝ3 Ŝ3

Ŝ3 Ŝ2 + Ŝ3

)
. (2.133)

The shear matrix itself is given by

S =

(
a1 a2 cosϑ
0 a2 sinϑ

)
(2.134)

with detS = a1a2 sinϑ = v. Note that at criticality AtrIs,rec equals the reduced anisotropy
matrix ĀtrIs,rec, equivalent to what was presented in (2.87) and (2.89). Furthermore, the
partition function of the near critical Ising model is expressed through a sum of four
Gaussian models with different values of u.
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2.6.1 Derivation of the scaling function

Further progress can be made by considering the sector specific quantities

Ω∆x,∆y =
1

N1N2
ln[(2R)2N1N2Q2

∆x,∆y
]− lim

V→∞

1

N1N2
ln[(2R)2N1N2Q2

∆x,∆y
] (2.135)

=
1

V

∑
k

lnQ2
∆x,∆y

(k)−
∫

dk lnQ2
∆x,∆y

(k) (2.136)

∫
dk =

∫
BZ dV/(2π)

2 is the integral over the Brillouin zone. The limit V →∞ is to be
taken with fixed L2/L1. Eq. (2.136) is similar in structure to the excess free energy
of the anisotropic Gaussian model on a parallelogram lattice with periodic/antiperiodic
boundary conditions. For the case of a square lattice with periodic boundary conditions
the exact Gaussian excess free energy has been derived in [24, 27, 41] for orthogonal
geometries for general d including d = 2, in particular for cubic and rectangular geometry
in the anisotropic [24, 27] and isotropic [41] cases. The following proof is an extension of
the work in [24, 27, 41]. The derivation begins by utilizing the identity

lnw =

∫ ∞

0
dy y−1 [exp(−y)− exp(−wy)] (2.137)

to rewrite the above equation and the fact that (V )−1
∑

k 1 =
∫
dk 1 = 1 to

Ω∆x,∆y =

∫ ∞

0
dy y−1

[∫
dk exp(−Q2

∆x,∆y
(k) y)− 1

V

∑
k

exp(−Q2
∆x,∆y

(k) y)

]
(2.138)

Using the Poisson sum formula [16, 48]

1

L

L−1∑
p=0

G(2πp/L) =
∞∑

n=−∞

∫
dq

2π
G(q)eiqnL, (2.139)

where G(q) = G(q + 2π) is the a periodic function, the term containing the sum can be
brought into a more convenient form

1

V

∑
k

exp(−Q2
∆x,∆y

(k) y)

=
∑

m,n∈Z

∫
dk exp

[
−Q2

∆x,∆y
(k) y + ik · (mL1 + nL2)

]
(2.140)

Taking the above equations together yields

Ω∆x,∆y =−
∫ ∞

0
dy y−1

∑
m,n∈Z\0

∫
dk exp

[
−Q2

∆x,∆y
(k) y + ik · (mL1 + nL2)

]
(2.141)

In the scaling limit, one can replace Q2
∆x,∆y

(k) with the expression (2.132) yielding

Ω∆x,∆y = −
∫ ∞

0
dy y−1e−(2Rᾱ0)2y

∑
m,n∈Z\0

∫
dk

exp
[
−(k + u)TSAtrIs,recST (k + u)y + ik · (mL1 + nL2)

]
(2.142)
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This is a 2d Gaussian integral with respect to k, which can be evaluated to∫
dk exp

[
−(k + u)T (SAtrIs,recST )(k + u) y + ik · (mL1 + nL2)

]
=

1

(2π)2yv

π√
detAtrIs,rec

exp

[
− 1

4y
(mL1 + nL2)

T (SAtrIs,recST )−1(mL1 + nL2)− iu · (mL1 + nL2)

]
(2.143)

Combining the above results gives

Ω∆x,∆y =
1

4π2v

π√
detAtrIs,rec

∫ ∞

0
dy y−2e−(2Rᾱ0)2y

·
{
1−

∑
m,n∈Z

exp

[
−(mL1 + nL2)

T (SAtrIs,recST )−1(mL1 + nL2)

4y
− iu · (mL1 + nL2)

]}
(2.144)

here the sum was extended to include the zero modes and thus a term was subtracted
accordingly.
To proceed further, a set of orthogonal unit vectors ãi, with ãi · ãj = δij , is again con-

sidered, from which the lattice vectors ai = Sãi are obtained via the shear transformation
S. The reciprocal lattice vectors bi transform as bi = S−T b̃i, since ai · bj = aT

i bj = δij ,
and the b̃i are orthogonal as well, b̃i · b̃j = δij . With the above it follows that Li = NiSãi

and thus

− (mL1 + nL2)
T (SAtrIs,recST )−1(mL1 + nL2)

4y
− iu · (mL1 + nL2)

=− (mN1ã1 + nN2ã2)
T (AtrIs,rec)−1(mN1ã1 + nN2ã2)

4y
− 2πi(m∆x + n∆y) (2.145)

=− N2
2

4y
mT (AtrIs,rec)−1m− 2πi(m∆x + n∆y) (2.146)

Where in the last line m = (m/ρ, n)T with ρ = N2/N1 was defined; plugging the above
in yields

Ω∆x,∆y =
1

4π2v

π√
detAtrIs,rec

∫ ∞

0
dy y−2e−(2Rᾱ0)2y1−

∑
m,n∈Z

exp

[
−N2

2

4y
mT (AtrIs,rec)−1m− 2πi(m∆x + n∆y)

] (2.147)

In the following, AtrIs,rec needs to be expressed through a different matrix Crec introduced
in [27], which will remove the explicit dependence of m on ρ; it is defined via (see eq.
(6.9) of [27])

Crecα,β = ραρβAtrIs,rec
α,β (2.148)

with ρ1 = ρ = N2/N1 and ρ2 = 1. For its inverse one finds

(Crec)−1
α,β =

1

ραρβ
(AtrIs,rec)−1

α,β (2.149)
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Now the quadratic form reads:

mT (AtrIs, rec)−1m = nT (Crec)−1n (2.150)

where n = (m,n)T . Next z = 4π2y/N2
2 is substituted, which yields

Ω∆x,∆y =
π

N2
2 v

∫ ∞

0
dz z−2e−(2Rᾱ0)2zN2

2 /(4π
2)1−

∑
m,n∈Z

exp

[
−π2

z
nT (Crec)−1n− 2πi(m∆x + n∆y)

] (2.151)

Now AtrIs, rec is also approximated by its value at the critical point, which corresponds to
replacing it with the reduced anisotropy matrix ĀtrIs, rec and thus also Crec with Ĉrec

α,β =

ραρβĀ
trIs,rec
α,β . Furthermore, equations (7)-(8) of [29] are used to express ĀtrIs,rec in terms

of the modular parameter τ = τ0 + iτ1 with τ1 > 0,

ĀtrIs,rec = ρ


1

ρ2
|τ |2
τ1

−1

ρ

τ0
τ1

−1

ρ

τ0
τ1

1

τ1

 , (2.152)

In turn, τ can be expressed as

τ = ρ

[
−ĀtrIs,rec

21

ĀtrIs,rec
22

+ i
1

ĀtrIs,rec
22

]
, (2.153)

or, in terms of the couplings,

τ =
N2

N1

[
Ŝc
3

Ŝc
2 + Ŝc

3

+ i
1

Ŝc
2 + Ŝc

3

]
. (2.154)

This yields

Ĉrec = ρ


|τ |2
τ1

−τ0
τ1

−τ0
τ1

1

τ1

 ≡ ρ D̂rec, (2.155)

where the matrix

(D̂rec)−1 =


1

τ1

τ0
τ1

τ0
τ1

|τ |2
τ1

 . (2.156)

was defined; thus finally, the initial expression in the exponential of (2.151) simplifies to

nT (Crec)−1n = ρ nT (D̂rec)−1n =
1

τ1
|m+ nτ |2. (2.157)
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More over, the modular parameter τ can be expressed through its complex exponential
form τ = ρp exp(iα) with

cotα = Ŝc
3 (2.158)

(ρp)
2 =

(
N2

N1

)2 1 + (Ŝc
1)

2

1 + (Ŝc
2)

2
(2.159)

where α and ρp are the angle and aspect ratio describing the isotropic parallelogram as
given in (1.37) and (1.38).
Furthermore, as shown in the previous section, the constants in the first exponential

in (2.144) are related to the mean correlation length ξ̄sq+ (t) on the square lattice with
orthonormal lattice vectors. More precisely, it was found, that

(2Rᾱ0)
2 =

1

2

1

[ξ̄sq+ (t)]2
+O(t3) (2.160)

=
1

2

|t|2
[ξ̄sq0+]

2
+O(t3). (2.161)

However, it was also shown that one can express the mean correlation length on a square
lattice through the one on a general parallelogram lattice with unit cell area v = a1a2 sinϑ
and total system area V = N1N2v, which results in

x2 ≡ N1N2

[ξ̄sq+ (t)]2
=

V

ξ̄2+(t)
(2.162)

with the mean correlation length ξ̄+(t) on the parallelogram lattice. For later convenience,
the scaling parameter x is chosen to be linear in t

x =
V 1/2

ξ̄0+
t. (2.163)

Additionally, identity [49, Eq. 10.32.10] is used

Kν(t) =
1

2

(
t

2

)ν ∫ ∞

0

dz

zν+1
exp

(
−z − t2

4z

)
(2.164)

to express the integral through the modified Bessel function of the second kind Kν(x) and
find

Ω∆x,∆y = − 1

V
G0, (2.165)

where

G0
(
x2
∣∣ τ,∆x,∆y

)
=

(
x2τ1
2π2

)1/2 ∑
(m,n)

∈Z2\(0,0)

e−2πi (m∆x+n∆y)

K1

([
x2

2τ1

]1/2
|m+ nτ |

)
|m+ nτ | .

(2.166)

With this expression at hand, attention is returned to the partition function of the Ising
model. Recall from (2.135) that∑

k

lnQ2
∆x,∆y

(k) = N1N2Ω∆x,∆y +N1N2

∫
dk lnQ2

∆x,∆y
(k) (2.167)

= −G0
(
x2
∣∣ τ,∆x,∆y

)
+N1N2

∫
dk lnQ2

∆x,∆y
(k), (2.168)
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where the results from (2.165) were used and note that the second term on the right hand
side is related to the bulk free energy density (2.81) and is independent of ∆x,∆y. So for
the total free energy density one finds:

f = − lnZ

A
= f trIs

b − 1

A
ln

1

2

[
e
−1
2G0

(
x2

∣∣∣τ,12 ,12) + e
−1
2G0

(
x2

∣∣∣τ,0,12)

+ e
−1
2G0

(
x2

∣∣∣τ,12 ,0) − sgn (x) e−
1
2G0(x2|τ,0,0)

]
(2.169)

From which the finite size scaling function of the excess free energy

F trIs
ex (x|τ) = − ln

1

2

[
e
−1
2G0

(
x2

∣∣∣τ,12 ,12) + e
−1
2G0

(
x2

∣∣∣τ,0,12)

+ e
−1
2G0

(
x2

∣∣∣τ,12 ,0) − sgn (x) e−
1
2G0(x2|τ,0,0)

]
, (2.170)

can be extracted; here, as mentioned above, the square of the scaling parameter x2 =
V/ξ̄2+(t) is related to the mean correlation length and the total system volume with
G0(x2|τ,∆x,∆y) given in (2.166). Now it is also clear why x was chosen to be linear
in t; this allows x to change sign, when the reduced temperature changes sign and instead
of sgn (t), sgn (x) can be used in the above expression. In section 2.8 the relation to the
results found in [50] are discussed .

2.6.2 Modular invariance of F trIs
ex

In general, a modular form is a bounded holomorphic function f from the upper half plane
onto the complex numbers, which satisfies the modular condition

f

(
aτ + b

cτ + d

)
= (cτ + d)−kf(τ) (2.171)

with k the weight of the modular form and the matrix(
a b
c d

)
∈ SL2(Z) and det

(
a b
c d

)
= +1 (2.172)

where SL2 is the special linear group in 2d. In case of k = 0, f is called a modular
function [51]. Intuitively, this can be thought of as a unit cell of a lattice spanned by the
two linearly independent complex numbers ω1 and ω2. However, there are infinitely many
lattice vector pairs that generate the same geometry, since taking any linear combination
of ω1 and ω2 with integer factors yields the same lattice, where the new lattice vectors
ω′
1 and ω′

2 point to different points of the original lattice. These constraints are exactly
represented as the action of SL2 on the ωi, with(

a b
c d

)(
ω1

ω2

)
=

(
ω′
1

ω′
2

)
. (2.173)

Additionally, it is enough to only consider the ratio τ ≡ ω1/ω2, which just corresponds
to a rotation and rescaling of the original lattice such that ω2 = 1. Moreover, the special
linear group is generated by the matrices

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
(2.174)
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and their respective inverses. They correspond to translation T and inversion S, since
they act on the modular parameter τ like

T : τ → τ + 1 (translation), (2.175)

S : τ → −1/τ (inversion). (2.176)

Function that are unchanged under theses transformations are called modular invariant
[33, 51]. With regards to G0

(
x2
∣∣τ,∆x,∆y

)
, one finds that under translation

G0
(
x2
∣∣ τ + 1,∆x,∆y

)
=

(
x2τ1
2π2

)1/2 ∑
(m,n)

∈Z2\(0,0)

e−2πi (m∆x+n∆y)

K1

([
x2

2τ1

]1/2
|(m+ n) + nτ |

)
|(m+ n) + nτ |

=

(
x2τ1
2π2

)1/2 ∑
(m′,n)

∈Z2\(0,0)

e−2πi (m′∆x+n(∆y−∆x))

K1

([
x2

2τ1

]1/2
|m′ + nτ |

)
|m′ + nτ |

= G0
(
x2
∣∣ τ,∆x,∆y −∆x

)
, (2.177)

where m′ = m+ n was used. For behavior under inversion, it is first noted that

Re(−1/τ) = − τ0
|τ |2 , and Im(−1/τ) = τ1

|τ |2 , (2.178)

from which follows for G0:

G0
(
x2
∣∣−1/τ,∆x,∆y

)
=

(
x2τ1
2π2

)1/2
1

|τ |
∑
(m,n)

∈Z2\(0,0)

e−2πi (m∆x+n∆y)

K1

([
x2

2τ1

]1/2
|τ ||m− n/τ |

)
|m− n/τ |

=

(
x2τ1
2π2

)1/2 ∑
(m,n)

∈Z2\(0,0)

e−2πi (−m∆y+n∆x)

K1

([
x2

2τ1

]1/2
|m+ nτ |

)
|m+ nτ |

= G0
(
x2
∣∣ τ,−∆y,∆x

)
, (2.179)

where in the second stepm→ n and n→ −m were substituted. From the above discussion
one concludes that G0 itself is in general not modular invariant. Before we continue, two
further properties of the function in question are stated: First, since ∆x,∆y ∈ {0, 12}, G0
is real-valued, such that G0

(
x2|τ,∆x,∆y

)
= G∗0

(
x2|τ,∆x,∆y

)
= G0

(
x2|τ,−∆x,−∆y

)
and

secondly G0
(
x2|τ,∆x + r,∆y + s

)
= G0

(
x2|τ,∆x,∆y

)
for r, s ∈ Z. From these properties,

it follows that on the one hand, G0 itself is only modular invariant if both ∆x = ∆y = 0,
and on the other hand under translation

G0
(
x2|τ + 1, 12 ,

1
2

)
= G0

(
x2|τ, 12 , 0

)
G0
(
x2|τ + 1, 0, 12

)
= G0

(
x2|τ, 0, 12

)
G0
(
x2|τ + 1, 12 , 0

)
= G0

(
x2|τ, 12 ,−1

2

)
= G0

(
x2|τ, 12 , 12

)
,
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and under inversion

G0
(
x2| − 1/τ, 12 ,

1
2

)
= G0

(
x2|τ,−1

2 ,
1
2

)
= G0

(
x2|τ, 12 , 12

)
G0
(
x2| − 1/τ, 0, 12

)
= G0

(
x2|τ,−1

2 , 0
)
= G0

(
x2|τ, 12 , 0

)
G0
(
x2| − 1/τ, 12 , 0

)
= G0

(
x2|τ, 0, 12

)
.

Thus, the other permissible combinations of ∆i that comprise F trIs
ex are just shuffled around

when a modular transform is applied to the full expression.

−1 1

1

−1
2

1
2

Re(τ)

Im(τ)

Figure 2.4: The fundamental domain shaded in gray in the complex upper half-plane. It
extends between |Re(τ)| < 1/2 and |τ | > 1.

The implications of modular invariance of the near critical scaling function are far
reaching. Since τ is related to the couplings of the system through (2.154) and modular
invariance constrains all unique values of the excess free energy to the set of τ within the
fundamental domain (cf. Fig. 2.4),

{τ ∈ C : Im(τ) > 0 ∧ |Re(τ)| > 1/2 ∧ |τ | > 1} , (2.180)

this implies that the set of all possible couplings Ei is highly symmetric and all possible
(near) critical Ising models on this lattice are represented by a limited set in the space of
all couplings.

2.6.3 Behavior at criticality

Finally, the previously derived expression for the excess free energy (2.170) is considered
at the critical point, where the correlation length diverges and thus x → 0. In this limit,
the property [49]

Kν(z) ∼
Γ(ν)

2

(
2

z

)ν

(2.181)

for z → 0 and ν > 0 and where Γ is the Gamma function, is used. This results in

G0,c (τ,∆x,∆y) =
1

π

∑
(m,n)∈Z2\(0,0)

e2πi (m∆x+n∆y) τ1
|mτ + n|2 , (2.182)
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where the m = 0 term is split off, which leads to

G0,c (τ,∆x,∆y) =
2

π

∞∑
n=1

τ1
n2

cos(2πn∆x) +
1

π

∑
(m,n)∈Z2,m ̸=0

e2πi (m∆x+n∆y) τ1
|mτ + n|2 .

(2.183)

Comparing this to Eq. (4.2) and Theorem 4.1 of [52] one finds that

G0,c (τ,∆x,∆y) = − ln

∣∣∣∣eiπ∆2
xτ

θ1(∆y − τ∆x|τ)
η(τ)

∣∣∣∣2 . (2.184)

Here, θ1(z|τ) is the first Jacobi theta function and η(τ) the Dedekind eta function. Inserted
into the free energy density, at the critical point this simplifies to

f = f trIs
b − 1

N1N2
ln

1

2

[∣∣∣∣θ2(0|τ)η(τ)

∣∣∣∣+∣∣∣∣θ3(0|τ)η(τ)

∣∣∣∣+∣∣∣∣θ4(0|τ)η(τ)

∣∣∣∣] (2.185)

where the following properties of the Jacobi theta function [33] were used:

ln

∣∣∣∣∣θ1(12 |τ)η(τ)

∣∣∣∣∣
2

= ln

∣∣∣∣∣θ2(0|τ)η(τ)

∣∣∣∣∣
2

, (2.186)

since θ1(z +
1
2 |τ) = θ2(z|τ), (2.187)

ln

∣∣∣∣∣eiπτ/4 θ1(−1
2τ |τ)

η(τ)

∣∣∣∣∣
2

= ln

∣∣∣∣∣θ4(0|τ)η(τ)

∣∣∣∣∣
2

, (2.188)

since θ1(−1
2τ |τ) = −i e−iπτ/4θ4(0|τ), (2.189)

ln

∣∣∣∣∣eiπτ/4 θ1(12 − 1
2τ |τ)

η(τ)

∣∣∣∣∣
2

= ln

∣∣∣∣∣θ3(0|τ)η(τ)

∣∣∣∣∣
2

, (2.190)

since θ1(
1
2 − 1

2τ |τ) = −i eiπτ/4θ4(12 |τ)
= θ3(1|τ) = θ3(0|τ),

(2.191)

as well as θ1(0|τ) = 0. Correspondingly, one obtains

lim
x→0
F trIs
ex (x|τ) = − ln

1

2

[∣∣∣∣θ2(0|τ)η(τ)

∣∣∣∣+∣∣∣∣θ3(0|τ)η(τ)

∣∣∣∣+∣∣∣∣θ4(0|τ)η(τ)

∣∣∣∣] , (2.192)

which in agreement with the results obtained in [33] through the methods of conformal
field theory and are discussed for the anisotropic Ising model in [29].

2.7 Visualizations

In this section some visualizations of the excess free energy F trIs
ex (x|τ) and the associated

excess heat capacity

Cex(x|τ) = −T
∂2F trIs

ex

∂T 2
(x|τ) = − 2V

ξ20+

T

T 2
c

[
∂F trIs

ex

∂x
(x|τ) + 2x

∂2F trIs
ex

∂x2
(x|τ)

]
(2.193)

are shown. However, there are a range of possible representations that could be chosen.
F trIs
ex (x|τ) has two parameters, the scaling parameter x and modular parameter τ ; x itself



Visualizations 37

indicates the distance from the critical point, with x = 0 being at the critical point and
the sign communicates whether the system is currently in the ordered or disordered phase.
This may not be very intuitive and one could chose the reduced temperature t and use
x2(t) = V/ξ̄20+|t|2 as the first parameter, but now the ratio of system volume V and
correlation volume ξ̄20+ needs to be specified. On the other hand, if one is interested in
the excess free energy as a function of temperature T or β, now in addition the critical
temperature is needed – all of which a non universal quantities. Similarly, from looking at
(2.166) one is easily convinced, that τ is the natural choice as the parameter describing the
anisotropy and indeed, if one is interested in modular invariance and related properties,
this might be the correct choice. However, if one comes from a microscopic perspective,
expressing τ through the couplings Ei as in (2.154) might be preferred; on the other hand,
from the perspective of universality and theory of phase transitions, expressing τ through
the parameters of the correlation ellipsis q and Ω like in (1.30) may be advantageous, since
it retains the physical interpretation of the quantities, while abstracting away the model
dependence into determining the correlation ellipsis and thus emphasizing the universal
character.
All that said, since the main concern of this work is universality and to limit the number

of plots, a range of different visualizations for the anisotropy will be shown, however, for
the first variable, only the scaling parameter x will be used. To this end, the excess heat
capacity will not be plotted directly, but rather

ζex(x|τ) ≡
ξ20+
2V

T 2
c

T
Cex(x|τ) = −

[
∂F trIs

ex

∂x
(x|τ) + 2x

∂2F trIs
ex

∂x2
(x|τ)

]
(2.194)

to again emphasis the universal behavior.
One key takeaway from these visualizations is that, for both the excess free energy

density and heat capacity, the modular invariant structure is preserved both above, at
and below the critical temperature.
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Figure 2.5: Excess free energy (top) and heat capacity (bottom) as a function of the mi-
croscopic couplings and for a range of scaling parameters both in the ordered
and disordered phase.
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Figure 2.6: Again, on the upper plot shows the excess free energy and lower one the heat
capacity, this time as a function of the correlation ellipsis parameters q and Ω;
both for different scaling parameters x in the para- and ferrormagnetic phase.
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Figure 2.7: The Ising excess free energy (top) and heat capacity (bottom) as a function of
the modular parameter τ .
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2.8 Comparison with [50]

In this section, it is shown that the free energy scaling function derived here is equivalent
to the one found by Nash and O’Connor [50] for the isotropic system. The identity in
question is

−
√

xτ1
π2

∑
(m,n)∈Z2\(0,0)

e−2πi (m∆x+n∆y)
K1

(√
x
τ1
|m+ nτ |

)
|m+ nτ |

= τ1

∫ ∞

−∞

dp

2π
ln
∣∣∣1− e−

√
p2+x/τ1+2πi∆x

∣∣∣2
+

∞∑
m=−∞

ln
∣∣∣1− e−2πτ1

√
(m+∆x)2+x/(4π2τ1)−2πi[∆y−τ0(m+∆x)]

∣∣∣2 (2.195)

where Kν(x) is again the modified Bessel function of the second kind, τ = τ0 + iτ1 and
x > 0. Note that here x is not the scaling variable as defined before, but actually its
square; however, since the manipulations in this section are purely mathematical and do
not reveal any new physics, this should not be of any concern.

As a first step, the sum on the left hand side of (2.195) is split into two parts, with
n = 0 and n ̸= 0, respectively. In the following, it will be shown that for the contribution
with n = 0 one finds

−
√

xτ1
π2

∞∑
m=−∞
m̸=0

e−2πim∆x

K1

(√
x
τ1
|m|
)

|m| = τ1

∫ ∞

−∞

dp

2π
ln
∣∣∣1− e−

√
p2+x/τ1+2πi∆x

∣∣∣2
(2.196)

and for n ̸= 0

−
√

xτ1
π2

∑
(m,n)∈Z2

n ̸=0

e−2πi (m∆x+n∆y)
K1

(√
x
τ1
|m+ nτ |

)
|m+ nτ |

=
∞∑

m=−∞
ln
∣∣∣1− e−2πτ1

√
(m+∆x)2+x/(4π2τ1)−2πi[∆y−τ0(m+∆x)]

∣∣∣2 (2.197)

2.8.1 Proof for n = 0

First, the Fourier transform of the modified Bessel function [53, 4.2:29] is used

K1(x) =
1

2i
lim
ϵ→0

∫ ∞

−∞
eitx

te−ϵ|t|
√
t2 + 1

dt, (2.198)
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which can also be seen from the fact that, after exchanging the limit with the integration
in the second step,

1

2i
lim
ϵ→0

∫ ∞

−∞
eitx

te−ϵ|t|
√
t2 + 1

dt =− 1

2
lim
ϵ→0

∂

∂x

∫ ∞

−∞
eitx

e−ϵ|t|
√
t2 + 1

dt (2.199)

=− 1

2

∂

∂x

∫ ∞

−∞

eitx√
t2 + 1

dt (2.200)

=− ∂

∂x

∫ ∞

0

cos(tx)√
t2 + 1

dt (2.201)

=− ∂

∂x
K0(x) = K1(x). (2.202)

the same identity for the modified Bessel function can be recovered. Inserting this into
(2.196) one arrives at

−
√

xτ1
π2

∞∑
m=−∞
m̸=0

e−2πim∆x

K1

(√
x
τ1
|m|
)

|m|

=− 1

2i

√
xτ1
π2

∞∑
m=−∞
m̸=0

lim
ϵ→0

∫ ∞

−∞
dt

eit
√

x/τ1|m|−2πim∆x

|m|
te−ϵ|t|
√
t2 + 1

(2.203)

Now the sum over m can be evaluated by considering that

ln(1− x) = −
∞∑
n=1

xn

n
(2.204)

and noting that the sum is of the following structure

∞∑
m=−∞
n̸=0

am =
∞∑

m=1

am +
−∞∑

m=−1

am =
∞∑

m=1

(am + a∗m) (2.205)

where a−m = a∗m was used. With the property ln z+ln z∗ = ln |z|2 it remains to be shown,
that

√
xτ1
2iπ

lim
ϵ→0

∫ ∞

−∞
dt ln

∣∣∣1− eit
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∣∣∣2 (2.206)

To this end, the above equations can be rewritten using a =
√
x/τ1

a

i
lim
ϵ→0

∫ ∞

−∞
dt ln

∣∣1− eita+2πi∆x
∣∣ t e−ϵ|t|
√
t2 + 1

=

∫ ∞

−∞
dp ln

∣∣∣1− e−
√

p2+a2+2πi∆x

∣∣∣ (2.207)

and an analytic continuation with z ∈ C of the integrand on the left hand side is made:

f(z) = ln
∣∣1− eiza+2πi∆x

∣∣ z e−ϵ|z|
√
z2 + 1

(2.208)
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Now it is convenient to introduce a complex contour integral of the above expression∮
Γ
f(z)dz = 0 (2.209)

with

Γ = L[−R,R] ∪ γR(δ) ∪ L[iR+δ,i+δ] ∪ γδ(i) ∪ L[i−δ,iR−δ] ∪ γR(δ) (2.210)

where L[a,b] is a line connecting the two points a, b and γr(p) is a circle segment centered
at p with radius r. Γ is also shown in figure 2.8. In the limit R→∞ the contribution from
the segment L[−R,R] is equal to the original integral; in the same limit, the contributions
from the γR(δ) vanish exponentially for an ϵ > 0. The contribution from the semicircle
centered around i is

i

∫ π

2π
dϕ ln

∣∣∣1− exp
(
ia(i+ δeiϕ) + 2πi∆x

)∣∣∣ (i+ δeiϕ)e−ϵ|(i+δeiϕ)|√
(i+ δeiϕ)2 + 1

δeiϕ (2.211)

≃ i

∫ π

2π
dϕ ln

∣∣∣1− exp
(
ia(i+ δeiϕ) + 2πi∆x

)∣∣∣ 1√
2i
(iδ1/2 + δ3/4eiϕ) e−ϵ+iϕ/2 (2.212)

which vanishes as δ → 0. Note that the logarithm does not contribute to the convergence
behavior since the semicircle contour always has a positive imaginary part. The final
contribution is from the contours along the imaginary axis; where for the right section one
finds ∮

L[i∞+δ,i+δ]

f(z) dz

= i

∫ 1

∞
dt ln

∣∣∣1− e−ta+iδa+2πi∆x

∣∣∣ (it+ δ)√
(it+ δ)2 + 1

(2.213)

≃ i

∫ 1

∞
dt ln

∣∣∣1− e−ta+iδa+2πi∆x

∣∣∣ (it+ δ)√
−t2 + 2itδ + 1

(2.214)

where ϵ was set to zero already, since it is not needed for convergence. Next ta→
√
t2 + a2

is substituted, which yields

i

a

∫ 0

∞
dt ln

∣∣∣1− e−
√
t2+a2+iδa+2πi∆x

∣∣∣ · (i
√
t2 + a2 + aδ)√

−t2 + 2i
√
t2 + a2δa

t√
t2 + a2

(2.215)

i

Re(z)

Im(z)

Figure 2.8: The contour shown in the upper half plane is used to rewrite the integral; the
red line indicates the branch cut. The contour along the real axis is equal to
the original integral, whereas the contours to the left and right of the branch
cut are the only remaining, non vanishing contributions.
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For δ → 0 one finds that 1/
√
−t2 + 2i

√
t2 + a2δa ≃ −i/t, which results in

lim
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∣∣∣ (2.216)

Similarly one finds for the left contour along the imaginary axis

lim
δ→0

∮
L[i−δ,i∞−δ]

f(z) dz = − i

a
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dt ln
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where the main difference is that 1/
√
−t2 − 2i

√
t2 + a2δa ≃ i/t which is a different sign

than previously. With the above, one arrives at
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and so finally
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∣∣∣ (2.219)

which completes the proof.

2.8.2 Proof for n ̸= 0

First, the integral representation of the modified Bessel function of the second kind [49,
Eq. 10.32.10] is used √

a

b
K1(
√
ab) =

∫ ∞

0

dt

t2
e−at/4−b/t (2.220)

with a = x and b = |m+ nτ |2/τ1. It then follows from (2.197) that
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4
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)
(2.222)

expanding the absolute value on the right hand side yields

− 1

π

∑
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dt
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exp

(
− xt

4
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+
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t
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)
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Now the Poisson summation is made use of, which states

∞∑
n=−∞

f(n) =

∞∑
n=−∞

f̂(n) (2.224)
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for a function f with its Fourier transform f̂ . In the above case the sum over m is
considered with

f(m) = exp

(
−(m+ nτ0)

2

tτ1
− 2πim∆x

)
(2.225)

which is a Gaussian. It follows that

f̂(m) =
√
πτ1t exp

(
2πinτ0(−m+∆x)− π2(−m+∆x)

2τ1t
)
, (2.226)

with the usual rules for the Fourier transform of a Gaussian; this can be plugged in above

−
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[
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Here m → −m was substituted since the sum runs over all m. This integral can be
evaluated; more specifically one has∫ ∞

0

dt

t3/2
e−ut−v/t =

√
π

v
e−2

√
uv (2.228)

with

u =
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4
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which results in the expression
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= −
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x
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)
(2.231)

Here again the sum over n was evaluated using (2.204) which yields the final result

−
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and thus completes the proof.
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2.9 Strip limit

To evaluate the strip limit as the aspect ratio ρp goes to either zero or infinity, consider

F trIs
ex (x|τ) = − ln

1

2

[
e
−1
2G0

(
x2

∣∣∣τ,12 ,12) + e
−1
2G0

(
x2

∣∣∣τ,0,12)

+ e
−1
2G0

(
x2

∣∣∣τ,12 ,0) − sgn (x) e−
1
2G0(x2|τ,0,0)

]
, (2.234)

with now the alternative expression for G0

G0
(
x2
∣∣τ,∆x,∆y

)
= −τ1

∫ ∞

−∞

dp

2π
ln
∣∣∣1− e−

√
p2+x2/τ1+2πi∆x

∣∣∣2
−

∞∑
m=−∞

ln
∣∣∣1− e−2πτ1

√
(m+∆x)2+x2/(4π2τ1)−2πi[∆y−τ0(m+∆x)]

∣∣∣2 (2.235)

where x = t
√
V /ξ̄0+ is the scaling variable with the system volume V = L1L2 sin(ϑ) and

mean correlation length amplitude ξ̄0+ ; τ = ρp exp(i α) = τ0 + i τ1 = ρp cosα+ i ρp sinα
is the modular parameter, see (2.159).

2.9.1 Limit ρp →∞

Note that the ratio x2/τ1 in the above expressions becomes independent of ρp, when using
that L2 = ρpL1, namely

x2

τ1
=

L2
1 sinϑ

ξ̄20+ sinα
t2. (2.236)

To further simplify the calculations, the ρp dependence is made explicit by introducing:

c1(∆x) = sin(α)

∫ ∞

−∞

dp

2π
ln
∣∣∣1− e−

√
p2+x2/τ1+2πi∆x

∣∣∣2 (2.237)

c2(m,∆x) = 2π sin(α)
√

(m+∆x)2 + x2/(4π2τ1) (2.238)

c3 = cos(α) (2.239)

With these, the terms can be simplified by using the (complex) exponential representation
of the (hyperbolic) cosine,

e−
1
2
G0(x2|τ,∆1,∆2)

= exp

(
ρpc1(∆x) +

∞∑
m=−∞

ln
∣∣∣1− e−ρpc2(m,∆x)−2πi[∆y+ρpc3(m+∆x)]

∣∣∣2) (2.240)

=


eρpc1(∆x)

∞∏
m=−∞

2e−ρpc2(m,∆x) (cosh[ρpc2(m,∆x)]− cos[2πmρpc3]) , ∆y = 0

eρpc1(∆x)
∞∏

m=−∞
2e−ρpc2(m,∆x)

(
cosh[ρpc2(m,∆x)] + cos[2π(m+ 1

2)ρpc3]
)
, ∆y = 1/2

(2.241)
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In this form it is easier to understand the functions behavior as a lot of the unnecessary
terms for the limiting behavior are hidden away in the ci. Next, note that the factors in
the above product converge to unity as ρp approaches infinity,

lim
ρp→∞

2e−ρpc2(m,∆x) (cosh[ρpc2(m,∆x)]− cos[2πmρpc3]) = 1 (2.242)

lim
ρp→∞

2e−ρpc2(m,∆x) (cosh[ρpc2(m,∆x)] + cos[2π(m+ 1/2)ρpc3]) = 1 (2.243)

The overall limit of the excess free energy density

lim
ρp→∞

1

V
F trIs
ex (x|τ) = − 1

L2
1 sinϑ

lim
ρp→∞

1

ρp
F trIs
ex (x|τ) (2.244)

can then be evaluated exactly:

lim
ρp→∞

1

V
F trIs
ex (x|τ) = − sinα

L2
1 sinϑ

∫ ∞

0

dp

π
ln
∣∣∣1 + e−

√
p2+x2/τ1

∣∣∣ (2.245)

To show the above, equations (2.242) and (2.243) are made use of, which imply that as ρp
approaches infinity the relevant term in G(x2, τ,∆1,∆2) is only ρpc1(∆x), such that the
free energy density can be written as

lim
ρp→∞

1

V
F trIs
ex (x|τ) = − 1

L2
1 sinϑ

lim
ρp→∞

ln

[
eρpc1(1/2) +

1

2

(
1− x

|x|

)
eρpc1(0)

]1/ρp
(2.246)

= − c1(1/2)

L2
1 sinϑ

(2.247)

The above result holds for both x > 0 and x < 0 (the case of x = 0 is commented on
further below). In the first case one has 1− x/|x| = 0, which makes the expression in the
logarithm independent of ρp and the limit trivial. In the second case, the term exp(ρpc1(0))
approaches zero as ρp →∞ since c1(0) < 0 and c1(1/2) > 0, leaving only exp(ρpc1(1/2)),
where again the ρp dependence is canceled with the power of 1/ρp. At x = 0 the sector
represented by exp(G(x2, τ, 0, 0)) vanishes, as can be seen from the discussion in section
2.6.3 on the behavior at criticality, leaving only the expression:

lim
ρp→∞

1

V
F trIs
ex (x|τ) = − 1

L2
1 sinϑ

lim
ρp→∞

ln

[
eρpc1(1/2) +

1

2
eρpc1(0)

]1/ρp
(2.248)

= − c1(1/2)

L2
1 sinϑ

(2.249)

In the second step c1(0) < 0 and c1(1/2) > 0 were used again. For the special case where
both ϑ = α = π/2 in (2.245), one gets

lim
ρp→∞

1

V
F trIs
ex (x|τ) = − 1

L2
1

∫ ∞

0

dp

π
ln
∣∣∣1 + e−

√
p2+x2/τ1

∣∣∣ (2.250)

Furthermore, in this special case,

x2

τ1
=

L2
1 sinϑ

ξ̄20+ sinα
t2

ϑ=α=π/2
=

L2
1

ξ̄20+
t2. (2.251)
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In this form, one can directly compare to the results in Ref. [54], where the result for
the scaling function of the excess free energy density in case ϑ = α = π/2 is given by (see
eq. (23), (57) and (59) of Ref. [54]):

fex =
1

L2
∥
Θ∥(x∥, ρ =∞) (2.252)

with

Θ∥(x∥, ρ =∞) = − 1

π

∫ ∞

0
dω ln

(
1 + e

−
√

x2
∥+ω2

)
, (2.253)

where x2∥ = t2(L2
∥/ξ

2
+), with the reduced temperature t and the correlation length ampli-

tude ξ+. Note that L∥ in Ref. [54] corresponds to L1 as defined in this work, such that
both results agree.

2.9.2 Limit ρp → 0

As discussed previously, the Ising partition function near the scaling limit is modular
invariant, the inversion of the modular parameter τ → τ ′ = −1/τ can thus be used
to treat this limit. Specifically, this means that τ0 → τ ′0 = −τ0/ρ2p = − cosα/ρp and
τ1 → τ ′1 = τ1/ρ

2
p = sinα/ρp. To keep the ratio x2/τ1 independent of ρp in this case,

L1 = L2/ρp is substituted. For the limit of the excess free energy, this means

lim
ρp→0

1

V
F trIs
ex (x|τ) = lim

ρp→0

1

V
F trIs
ex (x| − 1/τ) = − 1

L2
2 sinϑ

lim
ρp→0

ρpF trIs
ex (x| − 1/τ) (2.254)

For the different sectors of the Ising partition function, one thus gets

e−
1
2
G0(x2|−1/τ,∆1,∆2)

=exp

(
c1(∆x)/ρp +

∞∑
m=−∞

ln
∣∣∣1− e−c2(m,∆x)/ρp−2πi[∆y−c3(m+∆x)/ρp]

∣∣∣2) (2.255)

By substituting ρp → 1/ρ′p, the mathematical problem as in the limit of ρp → ∞ is
recovered, since after substitution the limit in (2.254) of ρp → 0 is replaced by ρ′p →∞:

lim
ρp→0

1

V
F trIs
ex (x| − 1/τ) = − 1

L2
2 sinϑ

lim
ρ′p→∞

1

ρ′p
F trIs
ex (x| − 1/τ) (2.256)

and

e−
1
2
G0(x2|−1/τ,∆1,∆2) = exp

(
ρ′pc1(∆x) +

∞∑
m=−∞

ln
∣∣∣1− e−ρ′pc2(m,∆x)−2πi[∆y−ρ′pc3(m+∆x)]

∣∣∣2)
(2.257)

Note the change in sign in front of c3 that appears in the above expression since, as
discussed in section 2.6.2, only the full partition function is modular invariant, but not the
individual sectors themselves. Now proceeding as above, one finally arrive at the result

lim
ρp→0

1

V
F trIs
ex (x|τ) = − sinα

L2
2 sinϑ

∫ ∞

0

dp

π
ln
∣∣∣1 + e−

√
p2+x2/τ ′1

∣∣∣ (2.258)
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with

x2

τ ′1
=

L2
2 sinϑ

ξ̄20+ sinα
t2 (2.259)

For the special case ϑ = α = π/2, one can again compare to Ref. [54] (eq. (10)–(13)
and (57)), where the excess free energy is given by:

fex =
1

L2
⊥
Θ⊥(x⊥, ρ = 0) (2.260)

with

Θ⊥(x⊥, ρ = 0) = − 1

π

∫ ∞

0
dω ln

(
1 + e−

√
x2
⊥+ω2

)
, (2.261)

and the scaling variable x2⊥ = t2(L2
⊥/ξ̄

2
+). Both results were thus shown to be in agreement

in both limits.

2.9.3 Limit x→ 0

Using that
∫∞
0

dp
π ln |1 + e−p| = π/12, one obtains from the above

lim
x→0

lim
ρp→0

1

V
F trIs
ex (x|τ) = − sinα

L2
2 sinϑ

π

12
, (2.262)

which agrees with a direct calculation at criticality, using the results of [55]. In a similar
fashion,

lim
x→0

lim
ρp→∞

1

V
F trIs
ex (x|τ) = − sinα

L2
1 sinϑ

π

12
. (2.263)

can be obtained.

2.10 Comparison to previous results

In the following, quite technical sections, it will be shown that it is possible to recover
some previously known results for the scaling functions, specifically for the case of nearest-
neighbor couplings with equal strength; as well as the case of rectangular anisotropy.

2.10.1 Isotropic couplings

In this chapter the equivalence between the finite size scaling functions Θ(x, ρ) of the
nearest neighbor Ising model as defined in [56] and F trIs

ex (x, τ) for the case E1 = E2,
E3 = 0 on the rectangular lattice is shown. Under these conditions the lattice parameters
are a1 = a2 = a, ϑ = π/2 and thus ρp = aN2/(aN1) ≡ ρ. Here again, the previously
derived expression for the excess free energy (2.170) with the integral expression for G0, is
used:

G0
(
x2
∣∣τ,∆x,∆y

)
= −τ1

∫ ∞

−∞

dp

2π
ln
∣∣∣1− e−

√
p2+x2/τ1+2πi∆x

∣∣∣2
−

∞∑
m=−∞

ln
∣∣∣1− e−2πτ1

√
(m+∆x)2+x2/(4π2τ1)−2πi[∆y−τ0(m+∆x)]

∣∣∣2 (2.264)
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To show the equivalence in the case of a rectangular system, the modular invariance of
the excess free energy is employed to set τ → −1/τ̃ , furthermore the modular parameter
is given as a function of the couplings by (2.154) and simplifies to τ → i/ρ, with which
τ̃0 = 0 and τ̃1 = 1/ρ follows; simplifying the integral in the first term of G0 yields:∫ ∞

−∞

dp

2π
ln
∣∣∣1− e−

√
p2+x2/τ̃1+2πiu0

∣∣∣2
= 2

∫ ∞

−∞
dp ln

∣∣∣1± e−
√

4π2p2+ρ x2
∣∣∣ (2.265)

≡ 2I±(
√
ρ x2) (2.266)

where variable substitution p→ 2πp was made and the function

I±(x) =

∫ ∞

−∞
dp ln

∣∣∣1± e−
√

4π2p2+x2
∣∣∣ (2.267)

defined; here the ± is + if ∆x = 1/2 and − if ∆x = 0. The second term of G0 simplifies to

∞∑
n=−∞

ln
∣∣∣1− e−2πτ̃1

√
(n+∆x)2+(x2/4π2τ̃1)+2πi[∆y−τ̃0(n+∆x)]

∣∣∣2 (2.268)

= 2 ln

[ ∞∏
n=−∞

1− e−2πτ1
√

(n+∆x)2+(x2/4π2τ̃1)+2πi∆y

]
(2.269)

= 2 ln

[ ∞∏
n=−∞

1± e−
√

4π2(n−∆x)2+ρ x2/ρ

]
(2.270)

=: 2 lnP±
∆x

(
√
ρ x2, ρ) (2.271)

in the second to last line the index n was shifted and

P±
∆x

(x, ρ) =
∞∏

n=−∞
1± e−

√
4π2(n−∆x)2+x2/ρ (2.272)

was defined, here the ± is + if ∆y = 1/2 and − if ∆y = 0. So in total one finds the
expression

G0
(
x2
∣∣τ̃ ,∆x,∆y

)
= −2

ρ
I±(
√
ρ x2)− 2 lnP±

u0
(
√

ρ x2, ρ) (2.273)

and thus the scaling function on the rectangular lattice, denoted as Θ, is

F trIs
ex

(
x
∣∣∣− 1

iρ

)
= Θ(

√
ρ x2, ρ)

= − ln
1

2

 P+
0 eI−/ρ︸ ︷︷ ︸

∆x=0,∆y=1/2

+ P−
1/2e

I+/ρ︸ ︷︷ ︸
∆x=1/2,∆y=0

+ P+
1/2e

I+/ρ︸ ︷︷ ︸
∆x=1/2,∆y=1/2

∓ P−
0 eI−/ρ︸ ︷︷ ︸

∆x=0,∆y=0


(2.274)

= − ln

[
P+
1/2 + P−

1/2

2e−I+/ρ
+

P+
0 ∓ P−

0

2e−I−/ρ

]
(2.275)
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which is the same as in equation (49) together with equations (6) and (12) of [56]. As
discussed in section 2.6, the scaling variable is given by

x2 =
V

(ξ̄0+)2
|t|2 (2.276)

where ξ̄0+ is the dimensionless mean correlation length amplitude of the anisotropic on
the parallelogram lattice and V = N1N2a1a2 sinϑ the system volume; from this it follows
that the scaling variable in the rectangular case has the form ρ x2 = (|t|N2/ξ0+)

2, which
is the same as the one defined in the beginning of chapter III in [56]. This holds, since
on the rectangular lattice ρV = N2

2a
2 and ξ̄0+ = aξ0+ with the dimensionless (or a = 1)

correlation length amplitude ξ0+.

2.10.2 Rectangular, anisotropic couplings

Similarly, in equation (3.13) and (4.37) of [57] an expression for the excess free energy
scaling function for rectangular anisotropy with only E3 = 0 on the rectangular lattice
with a1 = a2 = a, ϑ = π/2 was given as

F∞,res = ρ′Θ∥(x∥, ρ
′) (2.277)

with

Θ∥(x∥, ρ
′) = Θb(x∥) + ρ′−1Ψo(x∥, ρ

′)− ρ′−1 ln
[
1 + e−ρ′δΘb(x∥)−δΨ(x∥,ρ′)

]
(2.278)

where

Θb(x) = −
1

2π

∫ ∞

−∞
dΦ ln

[
1 + e−

√
x2+Φ2

]
(2.279)

δΘb(x) = −
1

2π

∫ ∞

−∞
dΦ ln

1− e−
√
x2+Φ2

1 + e−
√
x2+Φ2

(2.280)

Ψe(x, ρ
′) = − ln

P+
e (x, ρ′)− sgn(x)P−

e (x, ρ′)

2
(2.281)

Ψo(x, ρ
′) = − ln

P+
e (x, ρ′) + P−

e (x, ρ′)

2
(2.282)

δΨ(x, ρ′) = Ψe(x, ρ
′)−Ψo(x, ρ

′) (2.283)

P±
e/o(x, ρ

′) =
∞∏

m=−∞
m even/odd

(1± e−ρ′
√
x2+π2m2

) (2.284)

First note the different definition of the aspect ratio in the original paper given in equation
(3.10), where

ρ′ =
L/ξ̂⊥

M/ξ̂∥
= ρ

ξ̂∥

ξ̂⊥
(2.285)

with ρ = L/M the usual definition; the ξ̂ are the correlation length amplitudes in parallel
and perpendicular direction. One can also rewrite the expression

δΘb(x) = −
1

2π

∫ ∞

−∞
dΦ ln

1− e−
√
x2+Φ2

1 + e−
√
x2+Φ2

= Θ−
b (x)−Θ+

b (x) (2.286)
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where a generalization of Θb(x) = Θ+
b (x) was introduced, namely

Θ±
b (x) = −

1

2π

∫ ∞

−∞
dΦ ln

∣∣∣1± e−
√
x2+Φ2

∣∣∣ (2.287)

this makes it possible to write the scaling function as

Θ∥(x∥, ρ
′) = − 1

ρ′
ln e−ρ′Θ∥(x∥,ρ′) (2.288)

= − 1

ρ′
ln

[
P+
o + P−

o

2eρ
′Θ+

b

(
1 + e−ρ′(Θ−

b −Θ+
b ) (P

+
e − sgn(x∥)P

−
e

P+
o + P−

o

)]
(2.289)

= − 1

ρ′
ln

[
P+
o + P−

o

2eρ
′Θ+

b

+
P+
e − sgn(x∥)P

−
e

2eρ
′Θ−

b

]
(2.290)

which is already of a similar form as the scaling function for the system with isotropic
couplings. It is easy to see that Θ±

b (x) = −I±(x), where I±(x) was defined above in
equation (2.266); furthermore, note that

4(n−∆x)
2 =

(2n)2, if ∆x = 0

(2n− 1)2, if ∆x =
1

2

(2.291)

with which the even/odd condition in P±
e/o(x, ρ) can be replaced by introducing a ∆x =

0, 1/2:

P±
e/o(x, ρ

′) =

∞∏
m=−∞

(1± e−ρ′
√

x2+4π2(m−∆x)2) (2.292)

which can be expressed as the function defined in equation (2.271) with the relation
P±
e/o(x, ρ) = P±

∆x
(x, ρ−1). Finally, the scaling variable x is discussed; to this end the two

correlation length amplitudes ξ̂∥ and ξ̂⊥ are computed. The total correlation length are
given in equations (3.23) of [57] as

ξ
(∞)
⊥ = (ln cothK∥ − 2K⊥)−1, ξ

(∞)
∥ = (ln cothK⊥ − 2K∥)−1 (2.293)

the amplitudes can be found by Taylor approximation around the critical point (2.7)
defined by Ŝc

∥Ŝ
c
⊥ = 1, where Ŝc

i = sinh(2Ki) with Ki = βEi. This gives

(ξ̂⊥)
−1 = 2K⊥

1

Ŝc
⊥
+ 2K∥, (ξ̂∥)

−1 = 2K⊥ + 2K∥
1

Ŝc
∥

(2.294)

such that ξ(∞) ≈ ξ̂ |t|−1 for |t| = |(T − Tc)/Tc| ≪ 1. Now the aspect ratio ρ′ can be
expressed as

ρ′ = ρ
ξ̂∥

ξ̂⊥
= ρ Ŝc

∥ (2.295)

furthermore, the square of the scaling variables x∥, given in equation (3.9) of [57], can be
written as

x2∥ =
M2t2

ξ̂2∥
=

MLt2

ρ ξ̂2∥
=

MLt2

(ρŜc
∥) (

1
Ŝc
∥
ξ̂2∥)

(2.296)
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here we have once again ρ′ = ρŜc
∥, as well as

ξ̂2∥

Ŝc
∥
=

2K⊥

√
Ŝc
∥ + 2K∥

1√
Ŝc
∥

−2

(2.297)

Comparing this to the results, as presented in section 2.4 for the Ising model on the
triangular lattice, where it was found, that

ξ̄−1
0+ = 2βcE1

√
Ŝc
2 + Ŝc

3 + 2βcE2

√
Ŝc
1 + Ŝc

3 + 2βcE3

√
Ŝc
1 + Ŝc

2 (2.298)

which simplifies to

ξ̃−1
0+ = 2βcE1

1√
Ŝc
1

+ 2βcE2

√
Ŝc
1 (2.299)

for E3 = 0; implying the relation ξ̂2∥/Ŝ
c
∥ = ξ̃20+. It was also found in (2.159), that the

modular parameter on the triangular lattice can be expressed in its complex exponential
form via τ = ρpe

iα; by

cotα = Ŝc
3 (2.300)

(ρp)
2 = ρ2

1 + (Ŝc
1)

2

1 + (Ŝc
2)

2
(2.301)

which again can be simplified using the critical condition Ŝ1Ŝ2 = 1 for E3 = 0 to

τ̃ = τ̃0 + iτ̃1 = iρŜc
1 (2.302)

with this one finds ρ′ = τ̃1 and

x2∥ =
MLt2

τ̃1ξ̃20+
=

x2

τ̃1
. (2.303)

where x is the usual scaling variable. Comparing Θ±
b (x∥) = −I±(x∥) to the first term of

(2.264) and P±
e/o(x∥, ρ

′) to equation (2.272), it is straight forward to see, that (2.290) and

(2.275) are essentially the same expression. The pre factor 1/ρ′ is canceled when taking
the actual scaling function (2.277) into account. Moreover, one finds

G0(x2|iρŜc
1,∆x,∆y)

= − 2ρ′I±(x∥)− 2 lnP±
u0
(x∥,

1
ρ′ ) (2.304)

= − ρ′
∫ ∞

−∞

dp

2π
ln

∣∣∣∣1± e
−
√

p2+x2
∥

∣∣∣∣2 − ∞∑
n=−∞

ln

∣∣∣∣1± e
−2πρ′

√
(n−∆x)2+(x2

∥/4π
2)
∣∣∣∣2 (2.305)

and see that the scaling function found in [58] is just a special case of (2.170) with E3 = 0
and on a rectangular lattice with square unit cells.
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2.11 Conclusions

In this chapter the partition function of the triangular Ising model in 2d on a finite
parallelogram lattice was calculated, along with the associated singular bulk free energy
and the scaling function near and at Tc in the ferromagnetic regime. The derivation of the
prefactor of the singular part of the free energy enabled the recovery of the mean correlation
length of the system, aligning with results from investigations on the correlation function.
Furthermore, by deriving the scaling function and demonstrating its explicit dependence
on microscopic details of the model through τ in (2.154), a contribution was made to
the body of evidence supporting multi-parameter universality. Furthermore, the proof
of modular invariance of the scaling function established that there exists only a finite
domain of couplings in the near critical Ising model that encompasses all possible values
of the free energy. Additionally, the strip limit for both extreme cases of zero and infinite
aspect ratios was evaluated and connection to previous research was made, by explicitly
deriving an integral expression of the scaling function, which was initially only thought to
be valid in isotropic systems; finally, the Ising scaling function for a few special cases with
more restricted couplings and lattices was recovered.



Chapter 3

Numerical study of non-universal
critical behavior

To confirm the predictions made by multi-parameter universality additional models should
be investigated; there are, however, only very few systems in d ≥ 2 that are exactly
solvable and exhibit non-rectangular anisotropy, i.e. allow for an arbitrary rotation of the
correlation ellipsis. But it is of course possible to make use of numerical simulations to
probe such systems. To this end, the method of corner transfer matrix renormalization
group (CTMRG) [59, 60] is used to investigate the 2d q-state Potts model. The details of
the model are explained later, but it has the advantage that one recovers the Ising model
for q = 2 and thus allows easy comparisons with exactly known results. Furthermore, for
q ≤ 4 the Potts model is known to exhibit a continuous phase transition [61, 62], which
allows testing if and how two-factor universality is violated.

More specifically, the following steps need to be taken to check multi-parameter univer-
sality:

(1) Setup and validate the CTMRG algorithm for the 2d Potts model

(2) Extract the correlation length in x and y direction with the CTMRG method

(3) Obtain theoretical predictions for the correlation ellipsis parameters q̃1 and Ω

(4) Compare the correlations length ratio of the x and y directions with theory. These
ought to only depend on q̃ and Ω.

(5) Alternatively: Calculate a universal property, like the excess free energy, for two sets
of couplings with the same correlation ellipsis parameters and determine if they are
equal or not. (Not part this work.)

At the end of this chapter additional predictions for the corner free energy of the Potts
model are presented, which imply, if confirmed by simulation, that this contribution,
which is usually considered to be universal, does depend on the microscopic couplings of
the Hamiltonian. Chen and Dohm [22] previously predicted the nonuniversality of this
quantity in anisotropic systems.

1In this chapter q̃ instead of q is used to denote the ellipsis parameter, to avoid conflict with the variable
for the number of states in the Potts model.
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3.1 Overview and notation

The CTMRG algorithm is a sophisticated numerical method developed to study 2d sta-
tistical and quantum systems. This technique, emerging from the broader framework of
renormalization group methods, is particularly effective for analyzing systems with strong
correlations where traditional methods have difficulty. The CTMRG method is a pivotal
advancement in computational physics, enabling the accurate calculation of thermody-
namic quantities and the analysis of phase transitions in complex systems.

The concept of the corner transfer matrix (CTM) was initially introduced in the context
of exactly solvable models in statistical mechanics [63, 64]. As discussed in the introduc-
tion, the renormalization group (RG) is a fundamental concept in theoretical physics for
addressing scale-invariant phenomena, which was later combined with the CTM concept
to form the CTMRG method. This hybrid method was primarily developed in [59, 60],
enhancing the ability to analyze 2d lattice models efficiently.

In the CTM approach, a 2d lattice model is divided into four quadrants, each represented
by a corner transfer matrix that encapsulates the statistical sum of configurations within
that quadrant. The total partition function of the system, a key quantity describing its
statistical properties, can be represented as a product of these matrices. The RG aspect
deals with the systematic thinning of degrees of freedom in a system to study its behavior
at different scales. By integrating out short-range details, the RG method focuses on
long-range, scale-invariant properties, crucial for understanding critical phenomena near
phase transitions.

The CTMRG method combines these two approaches by applying the RG idea to the
CTM. Specifically, it iteratively renormalizes the corner matrices and edge tensors to study
the system at progressively larger scales. This process involves generally the following steps
[65]:

(1) Tensor representation: Starting from the partition function expressed through the
Hamiltonian, a transfer tensor/matrix representation for the bulk unit cells needs to
be found and the environment consisting of the corner transfer matrices as well as
the edge tensors setup.

(2) Decomposition and truncation: The CTM is decomposed using techniques such
as the singular value decomposition (SVD), which separates the matrix into compo-
nents ranked by their significance to the systems state. The components associated
with the smallest singular values, which contribute minimally to the system’s prop-
erties, are truncated to reduce the computational complexity and memory require-
ments.

(3) Iteration and renormalization: After truncation, the renormalized matrices are
used to construct a new, effective CTM that represents the system at a larger scale.
This iterative process is repeated, each time increasing the scale and refining the
approximation to the system’s true behavior.

(4) Extraction of physical quantities: Thermodynamic and statistical properties,
such as free energy, correlation lengths, and order parameters, can be calculated
from the renormalized matrices. These quantities provide insight into the system’s
phase behavior and critical phenomena.

This process is sketched in the figure below:
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Figure 3.1: Visualization of the CTMRG method. Starting from an infinite system de-
composed into tileable tensors (left), these get iteratively absorbed into the
environment (right).

The diagrammatic notation used here to visualize the tensors and their contraction
works as follows: A tensor of rank n is indicated by a circle with n legs, here demonstrated
for n = 4:

TTαβγδ = α

β

γ

δ

(3.1)

Every leg corresponds to an index of the tensor; the dimension of each rank depends on
the context. Two tensors can be contracted, as long as they are compatible, by connecting
at least one pair of legs together. The common index is then summed over:

A B C=

∑
β

AβαBγβ = Cαγ

α γ
β

γα

(3.2)

resulting here in a tensor C of rank 2 after the contraction of two other rank 2 tensors A
and B. The advantage of this notation is, that it allows large contractions to be visualized
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efficiently. E.g. the network

T1

T2

T3

T4

T5

T6

T7

T8 T=

α3

α1
α4

α5

α2

α1

α2

α3

α4

α5

(3.3)

would be impossible to interpret if normal index and sum notation had been used. Since
the above definition of tensor contraction is compatible with the commonly used matrix
and vector operations, it is straight forward to identify

cScalar: c = vVector: vi =

MMatrix: Mij = T3-tensor: Tijk =
(3.4)

As in this example, legs may not always be labeled by their respective index, if the naming
is either not important or is implicitly clear.

3.2 Bulk tensor of the q-state Potts model

ex

ey

sa sb

scsd

E2

E1

E3

Figure 3.2: The square lattice with the principle directions x and y (left) and the cou-
plings within a unit cell together with the naming convention for the degrees
of freedom (right).

To apply the CTMRG algorithm, the partition function of the model of interest needs to
be expressed in terms of tensors that are as compact as possible (i.e., contain the smallest
amount of unit cells), to make the computations as efficient as possible. To this end, the
results presented in [66, 67] for the Ising model are expanded upon. The Hamiltonian
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of the 2d q-state Potts model on a square lattice with nearest and next-nearest neighbor
couplings is given by

HPotts = −
∑
i,j

E1δ(si,j − si+1,j) + E2δ(si+1,j − si+1,j+1) + E3δ(si+1,j+1 − si,j) (3.5)

here δ(n) is delta function which is equal one if n = 0 and zero otherwise, the degrees of
freedom can take the values si,j = 0, 1, ..., q−1. Similar to the Ising Hamiltonian presented
previously, the couplings E1 and E2 are nearest neighbor and E3 diagonally next-nearest
neighbor in one direction. The partition function follows as

ZPotts =
∑
{si,j}

exp(−βHp) (3.6)

=
∑
{si,j}

∏
i,j

w(si,j , si+1,j , si+1,j+1, si,j+1), (3.7)

where the Boltzmann weight was extended to a full square unit cell by including the
missing spin. To avoid double counting, its square takes the explicit form:

w2(si,j , si+1,j , si+1,j+1, si,j+1) = exp(βE1δ(si,j − si+1,j) + βE1δ(si,j+1 − si+1,j+1)

+ βE2δ(si,j − si,j+1) + βE2δ(si+1,j − si+1,j+1)

+ 2βE3δ(si,j − si+1,j+1) (3.8)

To make the following expressions more readable, a notation for the variables in the unit
cell at (i, j) is introduced

wi,j(sa, sb, sc, sd) ≡ w(si,j , si+1,j , si+1,j+1, si,j+1), (3.9)

which can also be seen in fig. 3.2. Expressing the total partition function through a tensor
network requires to transition to a bond representation of the Boltzmann weight. To this
end, the bond variables

x1 = sa − sb x2 = sb − sc (3.10)

x3 = sc − sd x4 = sd − sa (3.11)

are introduced. However, these variables are not independent, since some share some of
the original degrees of freedom; to enforce the correct behavior, one should first note that

x1 + x2 + x3 + x4 = 0, (3.12)

which can explicitly be enforced through a delta function. Moreover, there is no bond
variable that specifically represents the diagonal connection given by sa − sc; this can be
fixed by using

x1 + x2 = sa − sc or − (x3 + x4) = sa − sc. (3.13)

The total Boltzmann weight as a function of the bonds is thus given by

Ax1x2x3x4 ≡ δ(x1 + x2 + x3 + x4) exp
(β
2
(E1δ(x1) + E1δ(x3)

+ E2δ(x2) + E2δ(x4)

+ E3δ(x1 + x2) + E3δ(x3 + x4))
)

(3.14)
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where the notation for the bulk tensor Ax1x2x3x4 was introduced. The partition function
can thus be written as

Z = Tr
{x}

∏
i,j

(Ax1x2x3x4)i,j , (3.15)

where the trace goes over all bond variables. In diagrammatic notation, the tensor can be
expressed as follows:

AAx1x2x3x4 = x1

x4

x3

x2

(3.16)

3.3 The CTMRG algorithm

As alluded to in the introduction, the CTMRG method can be used to compute the bulk
properties of classical statistical systems and its associated physical observables. As shown
in fig. 3.1 the algorithms works by continuously building the environment consisting of
the corner tensors Ci and edge tensors T i. In principle, this can be done exactly, since
any part of the lattice can be contracted into one tensor. The problem, however, is that
the bond dimension and with it the computation time would increase rapidly, since all
degrees of freedom would need to be accounted for. The solution to this is to truncate the
environment tensors at some bond dimension χ, which regulates the accuracy to which the
details of the bulk system are retained. The difficulty now is to decide which information
within these tensors is important and which are not. Different schemes have been devised
over time, the details of which will be discussed below, but generally they are presented
in terms of a projector (red triangles in fig. 3.3) which takes the corner or edge tensor
together with additional bulk tensor, determines the important contributions and projects
them down to a bond dimension of χ within the environment. If the bulk tensor has
a bond dimension of (d, d, d, d) (in the case of the Potts model d = q), then the corner
tensors Ci would start with bond dimension (d, d) and the edge tensors T i with (d, d, d).
Under the assumption of no projector or a naive projector that just combines additional
indices from newly absorbed bulk tensors into super indices, the bond dimension in the
environment tensors would increase exponentially after n steps as (dn, dn) and (dn, dn, d)
for Ci and T i, respectively. With a projector however, this will be limited to (χ, χ) and
(χ, χ, d).

3.3.1 The original projector

In the original paper that proposed the CTMRG [59] the projector that is responsible for,
e.g., the top left corner was chosen such that it would take into account the total system
as shown in fig. 3.4. This is achieved by cutting open the system in the direction the
projector is supposed to act in and decomposing the complete system via singular value
decomposition (SVD).
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Figure 3.3: The current system surrounded by the environment tensors gets extend by
adding additional bulk tensors (1), the environment tensors are combined with
the newly added bulk tensors and projectors (red triangles) are formed to
reduced the bond dimension (2); finally, a new system is created with the
projected environment tensors (3). Between step (2) and (3) only the process
for C1 and T 4 is shown, but of course should be applied in a similar fashion
to the other sides and corners as well.
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Figure 3.4: In the first step the system is cut between two column tensors T 4. This new
rank 4 tensor E is the decomposed into the unitary matrix U , the adjoint of a
unitary matrix V † and the diagonal matrix of singular values s via the singular
value decomposition (SVD).

Usually an SVD is only defined for an m × n complex matrix M which can than be
expressed via an m × m unitary matrix U , adjoint of an n × n unitary matrix V † and
the m × n rectangular diagonal matrix s, such that M = U sV †. It is, however, possible
to define a tensor SVD by combining two or more indices of a higher rank tensor into
two multi-indices representing a matrix. The bond dimension of the multi index is than
the product of the dimension of the combined indices. For example in fig. 3.4: m =
dimw× dimx and n = dim y× dim z; from this it is clear that the SVD of a tensor is not
uniquely defined but depends on how one decides to combine the tensors legs.

The projector itself is then created by only considering the largest χ singular values and
their associated directions:

Ũdim = χ

dim = χ

dim = d
≡

(3.17)

where Ũ denotes the truncated U . It is important to note that if both the lattice and
its couplings were isotropic, it would be sufficient to keep only one projector, in the most
general case, however, the steps described above in fig. 3.4 need to be repeated by cutting
between the T 1, T 2 and T 3 as well. Even in the case of the Potts model with all couplings
equal, this step would be required, due to the lattice anisotropy introduced by the diagonal
bond.

As a last remark: It is possible to simplify the above procedure by just taking one corner
of the system, consisting of a corner tensor with two adjacent edge tensors and one bulk
tensor, to calculate the SVD and thus the projector.
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3.3.2 A more advanced projector

Refs [68–72] established an improved projector, the construction of which is shown in fig.
3.5, with better convergence behavior for a given bond dimension χ. It can be useful to
initially use the basic algorithm, which is observed to make faster progress at first but
lacks precision later on, and then switch to the procedure presented in this section. To
construct this projector, the system is first cut in halves, and each is decomposed into
an orthonormal matrix Q and an upper triangular matrix R using the QR factorization
scheme.

3.3.3 Initializing the environment

If one is only interested in bulk behavior, the edge and corner tensors T i and Ci can be
initialized randomly, since the initial state will become irrelevant after sufficient renormal-
ization steps. However, to accelerate convergence or if one is interested in finite systems,
the environment tensors may be initialized by omitting from (3.14) one bond for the edge
tensor or two bonds for the corner tensors. Note that in case of finite systems, the linear
system size starts at one unit cell and is increased by two in every iteration.

3.3.4 Convergence

Unfortunately, there is no guaranteed way to check if the algorithm has converged or if it
is converging towards the correct value. However, one common way to test for convergence
is by evaluating some observable A and check whether the change between two iterations
is below a threshold[73]: ∣∣∣∣∣A− Ã

A

∣∣∣∣∣ < ϵ, (3.18)

where ϵ is, typically around 10−7. Furthermore, it is not clear whether converged local
observables imply a converged CTM. Therefore, one needs to be careful when evaluating,
for example, correlation lengths or free energy derivatives, for which convergence was never
tested. A different method is to check the singular value spectrum of the corner transfer
matrices, such that

1

maxi si

∑
i

|si − s̃i| < ϵ (3.19)

where si are the singular values and the tilde indicates the previous iteration.

3.4 Calculating the correlation length

The asymptotic properties of the system are stored in the environment tensors; more
specifically, the correlations can be extracted from the row and column transfer matrices,
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Figure 3.5: Construction of a different type of projector used in the CTMRG scheme.
Here the system is cut in half and decomposed using the QR decomposition.
Only after that the bond dimension is reduced, through limiting the number
of singular values retained in the SVD.
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which are defined as

T 4 A T 2≡TR

T 1

A

T 3

≡TC

(3.20)

The usual approach to measure correlation lengths, is by taking the, possibly complex,
eigenvalue spectrum of one of the row or column transfer matrices at bond dimension χ,
where

λj = e−(ϵj+iϕj) (3.21)

are the ordered eigenvalues with |λ0| > |λ1| ≥ |λ2| ≥ . . . ; with ϵj ≥ 0 and phases
ϕj ∈ (−π, π]. The correlation length is then given by the ratios of the real exponents
[65, 74]

ξ(χ) =
1

ϵ1 − ϵ0
. (3.22)

However, even away from the critical point, it is generally quite difficult to extract the bulk
correlation length directly without going to prohibitively large bond dimensions. Though,
it is often feasible to extrapolate to infinite bond dimension by a linear fit

1

ξ(χ)
=

1

ξ∞
+

a

χ
. (3.23)

Even though a quite straight forward approach, it has been shown [75], that there is no
real justification to approach this problem by extrapolation of the bond dimension. One
should instead use the difference between the fist and second eigenvalues δ = ϵ2−ϵ1, since,
in the thermodynamic limit, the spectrum of the transfer matrix should be continuous,
up to a gap between the zeroth and first eigenvalue, which is proportional to the inverse
correlation length. In this picture, δ ≡ δ(χ) measures how close to continuous the system
is and again, doing so for a range of bond dimensions χ allows for an extrapolation to
δ = 0. It should be noted, that the row and column transfer matrices are not equal and
thus result in different correlation lengths.
To get more reliable results, it is also possible to not just use the difference ϵ2 − ϵ1 to

estimate the distance from the thermodynamic limit, but more generally ϵm − ϵn with
m > n. This can be used to obtain multiple estimates for the same correlation length and
makes it possible to estimate the error.

3.5 Comparison with exact results

To check the results obtained from CTMRG simulations, it is prudent to compare to
exact results. However, there are no exact predictions for the correlation length in the
anisotropic q state Potts model, but predictions for the critical free energy exist.
First, the critical temperature βc is implicitly given by [61, 76]

√
q x1x2x3 + x1x2 + x2x3 + x3x1 = 1 (3.24)

where

xi =
1√
q

(
eβEi − 1

)
. (3.25)
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Furthermore, the critical bulk free energy density for q ≤ 4 was found to be [61]

−fPotts
b,c =

1

2
ln q +Ψ(α1) + Ψ(α2) + Ψ(α3) (3.26)

where

Ψ(αi) =
1

2

∫ ∞

−∞
dx

sinh([π − ϕ]x) sinh(2[ϕ− ν]x)

x sinh(πx) cosh(ϕx)
(3.27)

with
ϕ = −iλ, ν = −iαi (3.28)

and λ, αi are implicitly defined via

xi =
sinh(λ− αi)

sinhαi
,
√
q = 2 coshλ. (3.29)

Note, that solutions for other q are also available in the above reference, however, since
only second order phase transitions are of interest here, the other solutions are omitted.
A plot with some test results is presented in fig. 3.6, showing good agreement between
theory and simulation for the free energy density for a generic anisotropic case.
Additionally, the critical exponents for the correlation length ν can be extracted, where

ξ0(t) = ξ0+|t|−ν . To this end, the extraction of the bulk correlation length is shown in fig.
3.7, based on the method described in the section above with a maximum bond dimension
of χ = 100. Using the results for a range of temperatures, the correlation length amplitude
and critical exponents can be obtained through a fit; an example of this procedure is shown
in fig. 3.8 and fig. 3.9. The resulting parameters are given in table 3.1; the theoretical
predicted value for the critical exponent is ν = 5/6 = 0.833 . . . [77–79].

dir. E1 E2 E3 ξ0+ ν

x 1 1 1 0.245(7) 0.832(8)
y 0.245(1) 0.832(3)

x 1 2 3 0.210(4) 0.833(3)
y 0.241(6) 0.825(6)

Table 3.1: Results of the power law fit of the q = 3 Potts model with the extracted
correlation lengths and amplitudes.

Note, that the ratios of correlation length amplitudes in the case of E1 = E2 = E3 = 1
is approximately unity as is expected; even though the correlation function is not assumed
to be isotropic, due to symmetry, the correlation lengths in x and y direction are (see (c)
of fig. 2.2 for an illustration).
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Figure 3.6: A comparison between the critical bulk free energy density fPotts
b.c with E1 = 1,

E2 = 1.5 and q = 3 computed using the exact theory and CTMRG calculations.
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Figure 3.7: This plot shows the extrapolation of the correlation length to the thermody-
namic limit with E1 = 1, E2 = 2, E3 = 3, q = 3, at a reduced temperature
of t = 0.01 and using δ = ϵ2 − ϵ1. Every point belongs to a different bond
dimension χ, the lines are linear fits which allow extrapolation to δ = 0 which
indicates a continuous spectrum expected in the bulk.
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Figure 3.8: Fit of the correlation length near the critical temperature of the q = 3 Potts
model with couplings E1 = E2 = E3 = 1 on a log-log plot. Note the small
deviations from scaling for larger temperatures.
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Figure 3.9: Fit of the correlation length near the critical temperature of the q = 3 Potts
model with couplings E1 = 1, E2 = 2, E3 = 3 on a log-log plot. The deviations
for larger temperatures are smaller compared to the above plot, since the
temperature range is closer to |t| = 0.
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Furthermore, in [80, 81] the critical anisotropic 2d Potts model is discussed via corre-
spondence to the random cluster model and results for the effective aspect ratio ρe and
the boundary twist te are presented, with

ρe = sin

(
θ3
2

)
sin

(
θ2
2

)
/ sin

(
θ1
2

)
(3.30)

te = cos

(
θ3
2

)
sin

(
θ2
2

)
/ sin

(
θ1
2

)
(3.31)

and where the angles θi are given via the implicit equations [82]:

eβcEi − 1 =


√
q
sin(r(π − θi))

sin(rθi)
, if q < 4

2(π − θi)

θi
, if q = 4

(3.32)

and

r =
1

π
arccos

(√
q

2

)
(3.33)

For q = 2 these quantities can be identified with the modular parameter of the Ising model
τ = τ0 + iτ1 with τ0 ↔ te and τ1 ↔ ρe, since with q = 2 (3.32) yields

θi = −8 arctan
(
eβcEi ±

√
1 + e2βcEi

)
(3.34)

and thus in turn

ρe =
cosh(βcE1)

cosh(βcE2) cosh(βcE3)
(3.35)

te =
cosh(βcE1) sinh(βcE3)

cosh(βcE2) cosh(βcE3)
. (3.36)

If one now makes the identification as above, the absolute value of the modular parameter
can be expressed as

|τ |2 = t2e + ρ2e =
1 + sinh2(βcE1)

1 + sinh2(βcE2)
(3.37)

and the argument of τ is given by

arg τ = acot(te/ρe) = acot(sinh(βcE3)). (3.38)

Finally, note that the coupling constants between the q = 2 Potts model and the Ising
model are related by a factor 2 and thus one can easily see that the above expressions
agree with (2.159) for the Ising model. By extending this insight to other q ≤ 4, one
can take (1.30) and (2.153) to relate the modular parameter of the Potts model to the
correlation ellipsis parameters q̃ and Ω. More precisely, one finds the system of equations
for ρ = 1

te = −
(q̃ − q̃−1) cosΩ sinΩ

q̃ sin2Ω+ q̃−1 cos2Ω
(3.39)

ρe =
1

q̃ sin2Ω+ q̃−1 cos2Ω
, (3.40)

which has to be solved numerically.
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Under the assumption that multi-parameter universality holds, the asymptotic correla-
tion function at distance x = (r cos θ, r sin θ)T in the scaling limit should be of the form
[1, 28]

CPotts(x) ∼ Ψ±

(
r

ξPotts± (t, θ)

)
(3.41)

= Ψ±

([
x · (ĀPotts)−1x

]1/2
ξ̄Potts± (t)

)
(3.42)

where ξPotts± (t, θ) is the angle dependent correlation length, ĀPotts the reduced anisotropy
matrix and ξ̄Potts± (t) the mean correlation length of the Potts model. No explicit expressions
of ξ̄Potts± (t) as functions of the couplings are known. However, the general form of the
anisotropy matrix as a function of the correlation ellipsis parameters q̃ and Ω given in
(1.30) should hold. Furthermore, the simulation provides the correlation length in x
direction with x = (r, 0)T and y direction with x = (0, r)T ; resulting in the prediction

ξ−1
±,x(t) ≡

√
(ĀPotts)−1

1,1

ξ̄Potts± (t)
=

f(Ω, q̃)

ξ̄Potts± (t)
(3.43)

ξ−1
±,y(t) ≡

√
(ĀPotts)−1

2,2

ξ̄Potts± (t)
=

f(π/2− Ω, q̃)

ξ̄Potts± (t)
(3.44)

where the correlation lengths in x and y directions were defined; the function f is given
by [1, 28]

f(θ − Ω, q̃) = [q̃ sin2(θ − Ω) + q̃−1 cos2(θ − Ω)]1/2. (3.45)

However, the mean correlation length is a non-universal quantity and multi-parameter
universality makes no predictions in this regard. Thus only the temperature independent
ratio

R ≡ ξ±,x(t)

ξ±,y(t)
=

f(π/2− Ω, q̃)

f(Ω, q̃)
(3.46)

can be compared to simulation, where theoretical predictions for q̃ and Ω were obtained
through (3.39) and (3.40).
The results are presented in fig. 3.10 to 3.13 by showing a range of anisotropic couplings

with the predicted value for the correlation length ratio. Two things are of note here:
Firstly, the error bars do not account for the total error, since it is difficult to estimate
the error of the transfer matrix eigenvalues, thus only the correlation length extrapolation
error estimate is shown. And secondly, even though the error gets smaller the closer the
temperature gets to the critical point, the simulation can not accurately take into account
the strong correlation near the critical point with limited bond dimension, resulting in
inaccurate values. In the fits the data for |t| < 0.025, indicated by the gray shaded
region, was excluded. In general, however, the simulations are in good agreement with the
predictions.
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Figure 3.10: Correlation length ratio of the q = 3 Potts model with couplings E1 = E2 =
E3 = 1. The dashed line shows the predicted value.
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Figure 3.11: Correlation length ratio of the q = 3 Potts model with couplings E1 = 1, E2 =
2, E3 = 0. The dashed line shows the predicted value. Note the large temper-
ature range and how the simulation slowly converges towards the expected
value. Additionally, the points with |t| > 0.6 were excluded from the fit, since
they are outside of the scaling region.
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Figure 3.12: Correlation length ratio of the q = 3 Potts model with couplings E1 = 1, E2 =
3, E3 = 1. The dashed line shows the predicted value. Here the temperature
points are clustered closer to the critical point and the ratio converge generally
towards the expected value as Tc is approached.
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Figure 3.13: Correlation length ratio of the q = 3 Potts model with couplings E1 = 1, E2 =
2, E3 = 3. The dashed line shows the predicted value. Note the much smaller
temperature range and how the measurements near the critical points do not
match the predictions well.
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3.6 Predictions for the corner free energy
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Figure 3.14: Predictions for the corner free energy fcorner for the critical q-state Potts
model at E1 = E2.

The total free energy density, of 2d critical systems with open boundary conditions and
linear system size L can be split into the following geometry-associated parts [83, 84]

f = fbulk + fsurface
1

L
+ fcorner

logL

L2
+

∞∑
k=2

fk
Lk

, (3.47)

of which only the contributions from the corners fcorner and the next contribution f2 pro-
portional to L−2 are thought to be universal [85, 86]. Specifically, the corner contribution
has been predicted [85], in the context of conformal field theory (CFT), to be dependent
on the angle α spanned by the boundaries meeting in the corner and the universal, model
dependent central charge c. The contribution of one corner takes the form

f∠ =
c

24

(α
π
− π

α

)
(3.48)

and in case of a parallelogram lattice with two corners of angle α and another two with
π − α yield a total contribution to the corner term of

fcorner = −
c

12

(
1 +

α

π − α
+

π − α

α

)
. (3.49)

However, the limiting factor in CFT is that it requires the system to be conformal invariant
which, among others, requires isotropy. But, as has been discusses in the introduction,
the chapter on the Ising model and in [29], multi-parameter universality maps anisotropic
systems to isotropic parallelograms, where the angle α is given via the modular parameter
τ = ρp exp(iα), or more specifically in case of the Potts model by (3.30) and (3.31). This
results in the identification of α = θ3/2 with which the value of fcorner can be predicted.
Furthermore, the central charge is given in [87] as

c = 1− 6

p(p+ 1)
with q = 4 cos2

π

p+ 1
(3.50)
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which yields c = 1/2, 4/5, 1 for the cases of interest with q = 2, 3, 4, respectively. An
examples for the predicted values are shown in fig. 3.14. Note that the corner contribution
does not depend on the aspect ratio ρp and that the dependence of the angle α on the
microscopic couplings Ei predicts the breakdown of universality. This has been shown
through explicit simulation of the Ising model in [3].

3.7 Conclusions

Through the application of the CTMRG algorithm to the q-state Potts model and eval-
uation of the correlation lengths therein, strong evidence has been collected that the
predictions made by multi-parameter universality for the dependence of the critical bulk
correlation function on microscopic details, in the form of the correlation ellipsis param-
eters q̃ and Ω, hold. Furthermore, predictions were made for the corner free energy in
the Potts model, which should show dependence on the microscopic details through the
parallelogram angle α. This can be confirmed through additional tensor network or Monte
Carlo simulations.



Chapter 4

Crossover in models with discrete
and continuous variables

In this chapter the q-state clock model in 3d with an additional biquadratic term, a relative
of the Potts model, is investigated in the limit of increasing q. More specifically, this model
exhibits a first order phase transition for q ≥ 3. At the transition temperature phase
coexistence between a paramagnetic and dipole long range order (DPLRO) is observed.
It was shown in [88], that the relative contribution to the statistical weight of the phases
in a classical spin XXZ model with continuous degrees of freedom, which also exhibits
a first order phase transition, turns out to be π. On the other hand, it is known that
the Potts model, which is recovered from the model investigated here at q = 3, has,
due to the degeneracy of the ordered phase, a relative weight q of its two phases at the
transition point. Since the model under investigation here is well defined as q → ∞ and
thus approaches continuous degrees of freedom, it can be conjectured that the relative
weight starts out with Potts like behavior (i.e. linear in q), transitions through a crossover
region and, for large q, approaches a constant value of 2π. The general idea is illustrated
in fig. 4.1. More details and the numerical findings of my investigation are presented in
the following sections.

4.1 First order phase transitions

First-order phase transitions represent a fundamental class of collective behavior in many-
body systems, characterized by abrupt changes in physical properties, such as density,
magnetization, or order parameter. Unlike continuous transitions, first-order transitions
do not exhibit critical slowing down or diverging correlation lengths. Instead, they are
marked by a discontinuity in the first derivative of the free energy with respect to an
external parameter, typically temperature or pressure. The canonical description of first-
order phase transitions hinges on the concept of symmetry breaking, where the system
transitions from a more symmetric phase to a less symmetric one. This process is often
associated with the emergence of latent heat, indicative of the energy change associated
with the transition. Mathematically, the Landau theory of phase transitions provides a
framework for understanding these phenomena. The free energy density f can be expressed
as a function of an order parameter ϕ [89], such that:

f(ϕ) = f0 +
r

2
ϕ2 +

u

4
ϕ4 − hϕ4 + · · · , (4.1)

75
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Figure 4.1: Illustration of the expected behavior as q approaches infinity. The gray dashed
line shows the known behavior of the 3d Potts model for the relative weight
RW of the phases present at the first order transition.

where f0 is the free energy at the reference state, and r, u are coefficients that depend on
external parameters like temperature and h is an external field. For first-order transitions,
the terms proportional to odd powers in ϕ become significant, leading to an asymmetric
potential that facilitates the abrupt phase change. Terms proportional to ϕ can always be
eliminated by a shifting the order parameter by a constant to recover the standard form,
for which the first odd power is ϕ3.

ϕ

f(ϕ)

Above T ∗

At T ∗

Below T ∗

Figure 4.2: Free energy landscape of a first order transition above, at and below the transi-
tion temperature T ∗ as a function of the order parameter. The abrupt change
in the global minimum causes the well known discontinuities and explains phe-
nomena like latent heat.

In the thermodynamic limit, the probability distribution p(ϕ) is given by a delta function
at the spontaneous magnetization 0 and ±M (with h = 0), showing phase coexistence as
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the exact transition temperature is reached:

p(ϕ) = δ(ϕ) + δ(ϕ+M) + δ(ϕ−M). (4.2)

In the case of finite systems with linear system size L, however, it has been shown [90, 91]
that the probability distribution is given by

p(ϕ) ∝ exp[−f(ϕ)Ld/(kbT )], (4.3)

and can be approximated near the transition point with two Guassians

p(ϕ) ∝ A+ exp

[
−(ϕ−M − χh)2

2kbTχ
Ld

]
+A− exp

[
−(ϕ+M − χh)2

2kbTχ
Ld

]
(4.4)

where ±M = ±
√
−r/u is again the spontaneous magnetization in absence of an magnetic

field and χ = 1/(r + 3uM) the susceptibility. Not only is it clear that there is now a
broadening of the peaks proportional to L−d, but by investigating the amplitudes

A± = exp

[
±hMLd

kbT

]
(4.5)

more closely, it can be seen that the transition takes place over a range of temperatures and
is no longer instantaneous. Both of these phenomena explain the general smoothing out of
singular behavior observed in finite systems. Theses aspects will become important when
estimating the transition temperature and analyzing the relative weights of the phases for
the specific model in question.
More specifically, as has been alluded to in the introduction of this chapter, in [88] the

antiferromagnetic XXZ model in 3d with the Hamiltonian

HXXZ = J
∑
⟨i,j⟩

[∆(Si,xSj,x + Si,ySj,y) + Si,zSj,z]− h
∑
i

Si,z (4.6)

and classical spins Si = (Si,x, Si,y, Si,z)
T has been studied. It exhibits a rich phase diagram,

but has here been specifically chosen for its first order phase transition between a low field
antiferromagnetic (AFM) phase, where the spins are aligned anti-parallel, and a spin-flop
(SF) phase, in which the spins are tilted with continuous rotational symmetry. The SF
phase is described by the vector Ψ = (Ψx,Ψy)

T with

Ψα =
1

L3

(∑
i∈1

Si,α −
∑
i∈2

Si,α

)
, α = (x, y) (4.7)

where 1 and 2 refer to the two interpenetrating sublattices of the simple cubic main lattice,
from which the relevant order parameter in the thermodynamic limit follows as:

Ψ∞ =
√
⟨Ψ2

x +Ψ2
y⟩T,L→∞ (4.8)

Here the ⟨· · · ⟩ refer to the thermal average. With the above, it was then shown that at
the first order transition point the probability density in the thermodynamic limit is given
by:

p(|Ψ|) = 2δ(|Ψ|) + 2πδ(|Ψ| −Ψ∞) (4.9)

Here the factor 2 in front of the first delta function arises, similarly to (4.2), because the
magnetization, which was not discussed in this summary, can take two values ±M but
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was already integrated out. However, the factor 2π in front of the right terms shows up
because the probability distribution only depends on the absolute value of Ψ, not on its
angular part; and since Ψ is a 2d vector, integrating yields 2π and thus the relative weight
of the two phases is 2π/2 = π.
A similar observation can be made for the q-state Potts model [79, 88] with Hamiltonian

HPotts = −J
∑
⟨i,j⟩

δ(si − sj) (4.10)

where J > 0, si = 0, 1, . . . , q − 1 and the order parameter m = (m0,m1, . . . ,mq−1)
T with

mi =
1

L3

q

1− q

∑
j

δ(sj − i)− 1

q
. (4.11)

Here the probability distribution at the transition temperature consists of one disordered
and q ordered phases with mi = (0, . . . ,mi, . . . , 0)

T ; resulting in

p(m) = δ(m) +

q−1∑
i=0

δ(m−mi) (4.12)

and hence a relative weight of q. In the next chapter, a model will be introduced that has
as one of its limits the 3-state Potts model, but, unlike the Potts model, is well defined
as the number of possible states, q, is increased until truly continuous degrees of freedom
are reached. Additionally, this model has a first order transition for all q and thus makes
it possible to test the hypothesis if and how the crossover from a relative weight of q to
2π happens.

4.2 Clock model with biquadratic term

q

3 10 50 ∞

. . . ?

Figure 4.3: Illustration of the crossover process in the q-state clock model.

In [92] an XY-model in 3d with an additional biquadratic term was studied. The
Hamiltonian is given by

Hclock = −J
∑
⟨i,j⟩

Si · Sj − J ′
∑
⟨i,j⟩

(Si · Sj)
2, (4.13)

where Si = (Si,x, Si,y)
T is a vector at lattice site i with the additional condition |Si| = 1;

⟨i, j⟩ denotes the sum over nearest neighbors and the couplings J, J ′ are non-negative. It
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was found that there is first order phase transition for 0.35 < J/J ′ < 0.55 between a high
temperature paramagnetic (PM) and a low temperature dipole long-range ordered phase
(DLRO), for J/J ′ > 0.55 the paper concludes a continuous phase transition between the
same phases; however, it is possible that this actually is a weakly first order transition. In
the regime J/J ′ < 0.35 the system goes from the DLRO first into a quadrupole long-range
ordered phase (QLRO) before, at high temperatures, ending up in the PM phase. The
order parameters of these phases are

M =

(∑
i

Si,x

)2

+

(∑
i

Si,y

)2
1/2

(4.14)

Q =

(∑
i

(
(Si,x)

2 − (Si,y)
2
))2

+

(∑
i

2Si,xSi,y

)2
1/2

(4.15)

Since in this work only the region of 0.35 < J/J ′ < 0.55 is of interest, the QLRO phase
will not be discussed further. As explained in the introduction, the problem of interest is
the crossover from discrete to continuous variables; to this end, the above Hamiltonian is
modified by changing the degrees of freedom to

Si =

(
cos(2πn/q)
sin(2πn/q)

)
(4.16)

where n = 0, 1, . . . , q − 1 and the original model is recovered at q → ∞. On the other
hand, in the case of q = 3 one finds that

Si · Sj = cos

[
2π

3
(ni − nj)

]
=


1 if |ni − nj | = 0

−1/2 if |ni − nj | = 1

−1/2 if |ni − nj | = 2

(4.17)

Using this, (4.13) can be rewritten, up to an irrelevant additive constant, as

Hclock
q=3 =

− 3(J − J ′)

2

∑
⟨i,j⟩

2

3

(
cos

[
2π

3
(ni − nj)

]
+

1

2

)
− 9J ′

4

∑
⟨i,j⟩

4

9

(
cos

[
2π

3
(ni − nj)

]
+

1

2

)2

= − 3

4

(
2J + J ′)∑

⟨i,j⟩

δ(ni − nj) (4.18)

where δ(n) is the delta function which is equal one if n = 0 and zero otherwise; the
additional J ′ in the left term is necessary to balance out the addition of the +1/2-term in
the right sum under the square. After the above manipulations it is clear, that for q = 3
the 3d, 3-state Potts model can be recovered from the discretized Hamiltonian (4.13),
which has been shown to exhibit a first order transition [79, 93, 94].

What would one predict for the relative weight of the ordered and disordered phases in
this model as q →∞? First, since this is a temperature driven transitions, as opposed to
the field driven transition in the XXZ model, there is only one disordered phase where all
the vectors point in random directions; second, since the order parameter is the absolute
value of the magnetization (4.14), but the state is characterized by the aligned, but freely
rotating 2d vectors, the angular part should, similarly to (4.9) be integrated out, resulting
in a relative weight of 2π.
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4.3 Estimating the transition point

When simulating physical systems, accurately determining the transition temperature,
T ∗, of first-order phase transitions is a crucial first step to gain access to the properties
of interest. Traditional methods for estimating T ∗ from finite-size systems with volume
V and at inverse temperature β = 1/(kbT ) involve analyzing observables like the specific
heat, C, or the Binder cumulant [90, 91, 95]

B(V, β) = 1− ⟨E4⟩
3⟨E2⟩2 , (4.19)

which exhibit significant shifts and scaling behaviors due to finite-size effects. These
methods necessitate extrapolations to infinite volume, leveraging the assumption of power-
law finite-size scaling, a process that introduces potential inaccuracies.
A different approach, as described in [96, 97], circumvents the reliance on power-law

finite-size scaling by introducing new observables that directly target the exponential cor-
rections to finite-size scaling, which are intrinsic to first-order phase transitions. This
method hinges on the analysis of the partition function’s behavior and its derivatives,
offering a more accurate and theoretically robust means of locating T ∗.
The advantage of the above method lies in its foundational principle: instead of ob-

serving traditional metrics that require correctional scaling, it utilizes observables derived
from the general form of partition functions that describe systems with q coexisting or-
dered phases and one disordered phase, which can be shown to be of the form [98, 99]

Z(V, β) =

[
q∑

m=0

exp (−βfm(β)V )

] [
1 +O(V e−L/L0)

]
, (4.20)

where L0 is some finite constant, V = Ld the total system volume and fm(β) the metastable
free energy density of phase m, which can be identified with the bulk free energy density
fb(β) if m is a stable phase; and fm(β) > fb(β) if m is unstable. Additionally, since in the
thermodynamic limit and at the transition point, all free energies fm are equal [100], the
expression

N(β) = lim
V→∞

Z(V, β)eβfb(β)V (4.21)

counts the number of stable phases N(β∗) = q + 1 apart from exponentially small correc-
tions. It is thus a natural choice to select the temperature where the relative weight of the
ordered and disordered phases approaches q as the transition point. As discussed further
above, one observes a two peak structure in the energy or magnetization probability dis-
tributions p(β,E), where each peak belongs to one of the two states. By comparing the
areas, one can define the ratio of weights:

R(V, β) =

∑
E<E0

p(β,E)∑
E≥E0

p(β,E)
≡ Wo

Wd

β→β∗
= q (4.22)

Here E0 is the energy that divides the two regions and is chosen as the minimum between
the peaks, when both are of equal height. See fig. 4.4 for an illustration. However, if the
number of ordered states q is not known a priori, the crossing point of the ratios at two
different system sizes V1 and V2 can be used to estimate the transition point

R(V1, β
∗) = R(V2, β

∗), (4.23)

since the number of phases is independent of system size.
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Figure 4.4: Energy histogram near a first order phase transition. The red and blue shaded
areas indicate the contribution of the ordered (Wo) and disordered (Wd) states
to the total statistical weight. E0 is the energy that divides the two regions at
the minimum between the peaks.

4.4 The Wang-Landau algorithm

The Wang-Landau Monte Carlo algorithm [101–103] is a powerful computational method
designed to efficiently sample the energy landscape of statistical systems. Unlike tradi-
tional Monte Carlo methods that sample states according to their Boltzmann weight, the
Wang-Landau algorithm aims to achieve a flat histogram in energy space, thus ensuring
a uniform sampling of all energy levels. This technique is particularly useful for systems
with rugged energy landscapes, such as near first order transitions, where conventional
methods tend to get trapped in local minima.

In a quite general setup of a classical statistical system, with degrees of freedom ϕ and
energies E(ϕ) at inverse temperature β = 1/(kbT ), the partition function is given by:

Z =
∑
{ϕi}

e−βE(ϕi) =
∑
E

g(E)e−βE (4.24)

Here, the first sum goes over all possible configurations of ϕi, whereas the second sum
considers the energies only; to account for degeneracies, the density of states (DOS) g(E),
which counts the numbers of state associated with energy E, is introduced. The general
idea of the algorithm is now to start from a uniform DOS and keep track of how often
an energy has been visited through a histogram; every time an energy is reached, the
associated DOS is increased by a factor f > 1, however, the probability of choosing a
configuration with a larger DOS than the current one in the next step is lower. This
causes the algorithm to prescribe a random walk through the energy landscape, biased
towards configurations with smaller density of states. Once the histogram is flat enough,
i.e., all energies have been sampled roughly equally well, the histogram is reset, f is
decreased, but importantly, g(E) is kept; this process is repeated until f is close to unity.
More precisely, the Wang-Landau algorithm can be encapsulated in the following steps:
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(1) Initialize the density of states g(E), typically starting with g(E) = 1 for all accessible
energy levels E and the set energy histogram H(E) to zero.

(2) Choose an initial configuration of the system randomly or based on a specific crite-
rion.

(3) Perform a Monte Carlo move (e.g., spin flip in the Ising model) to obtain a new
configuration with energy E′.

(4) Accept the new configuration with probability

p(E → E′) = min

{
1,

g(E)

g(E′)

}
, (4.25)

where g(E) and g(E′) are the DOS at the old and new energies, respectively.

(5) Update the DOS and the histogram: g(E′) → g(E′)f , H(E′) → H(E′) + 1, where
f > 1 is the modification factor.

(6) Check the flatness of the histogram H(E). If it is sufficiently flat, reduce the modi-
fication factor f (e.g., f → √f) and reset the histogram.

(7) Repeat steps (3)-(6) until the modification factor f reaches a predefined threshold,
e.g. f ≈ 1 + exp(10−8), indicating convergence.

The criterion for histogram flatness is typically defined as the condition where the mini-
mum number of entries in H(E) for any energy level is not less than a certain percentage
(e.g. 80%) of the average histogram height. This criterion ensures that all energy levels
are sampled with roughly equal probability. Additionally, it should be noted, that the
Wang-Landau algorithm does not fulfill detailed balance, since the acceptance probability
is updated on the fly; however, once f = 1 is reached, detailed balance is restored. More-
over, to initialize the DOS and histogram, the exact energy states of the system have to
be known a priori or, in the case of continuous variables, can be replaced by energy bins.
If only a subset of the total energy spectrum is of interest, the sampling can be constraint
by rejecting moves to states below or above an energy threshold.
After a successful run, one is left with the final density of states g(E), which can also

bs interpreted as the unnormalized probability density at β = 0, hence

pβ=0(E) =
g(E)∑
E g(E)

. (4.26)

However, through the process of reweighing, the probability density at any temperature
can be recovered by simply multiplying by the desired Boltzmann factor:

pβ(E) =
g(E)e−βE∑
E g(E)e−βE

(4.27)

For the specific problem at hand, the Wang-Landau algorithm is a good choice, because a
normal Monte-Carlo method, that tries to sample mostly configurations with large proba-
bility, would get stuck in one of the peaks near or at a first order transition, since moving
between the two requires it to take multiple low probability steps. Again see e.g. fig. 4.4
for a visualization of the bimodal nature. This problem is exacerbate since (4.4) implies
that as the system gets large, the peaks get narrower and the valley between them deeper,
making sampling with more typical methods very challenging.
Finally, some technical remarks: It can be useful to not work with the density of states

g(E) directly, but rather with its logarithm, since continually multiply by even a small
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number can lead to numerical issues. The algorithm can be parallelized by dividing the
energy spectrum into overlapping regions, where the overlap is used to match the different
parts after completion; alternatively, multiple simultaneous random walkers can work with
the same histogram an DOS, accelerating the process.

4.5 Simulation results

The procedure to obtain the relative weight of the ordered and disordered phases and
observe the crossover is as follows:

(1) Simulate model (4.13) using the Wang-Landau algorithm for a range of lattice sizes
at J/J ′ = 0.4 and fixed q.

(2) Use the method from section 4.3 to estimate the transition temperature T ∗ by finding
all the crossing point R(L3, β∗) = R((L′)3, β∗) with L′ > L and extrapolate to the
thermodynamic limit. The error of β∗(L) can be estimated by taking the mean and
standard deviation of all crossings that had L as a partner.

(3) Compare the areas under the simulated probability density at β∗ belonging to the
different phases to determine their relative weight.

In figure 4.6 the histograms obtained for q = 3 (Potts model) and q = 50000 (close to
continuous limit) are shown at equal height, i.e. where the temperature was tuned until
both peaks are of the same height. Both figures show the expected features, like the peaks
becoming more and more pronounced for larger system sizes and the large weight (area
under the graph) of the low temperature ordered phase.

Using the weight ratio of the ordered to the disordered phases, shown in fig. 4.7, the
transition temperature β∗ can be determined by first finding the crossing points of system
sizes L with L′ (L′ > L) and extrapolating to the thermodynamic limit as shown in fig.
4.8 for q = 3 and fig. 4.9 for q = 3000. Additionally, the criterion of equal heights [104,
105] to estimate the transition temperature is shown, where the temperature at which the
peaks of the ordered and disordered phases have the same height for different system sizes
is extrapolated to the thermodynamic limit. However, it has been shown in [104], that
estimators which take the weight of the phases, instead of the peak height, into account,
are superior. Ultimately, this method allows the transition temperature to be estimated
to high accuracy of typically ∆β∗/β∗ ≈ 10−5; exact values can be seen in table 4.1.
Histograms at the bulk transition temperature are shown in fig. 4.10.

q β∗ ∆β∗

3 0.1631222 0.0000025

6 0.2701395 0.0000018

300 0.3097117 0.0000088

3000 0.3096794 0.0000111

50000 0.3096792 0.0000114

Table 4.1: The extrapolated transition temperatures β∗ and errors ∆β∗ for the q under
consideration.

Fig. 4.11 shows the final relative weight of the phases for a range of q and plotted as
a function of 1/L3; for small L, the errors are well behaved, however, as the systems get
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larger, the error increases rapidly. The reasons for this are two fold: As can be seen from
fig. 4.12, even though the typical error of the estimated β∗ is small, for large system sizes
the distributions are very sensitive to temperature. Furthermore, the crossings in fig. 4.7
get steeper for larger L and, even though the corrections to the estimator are exponentially
small, make it difficult to estimate the transition temperature near the thermodynamic
limit. However, based on the above observations, it is possible to make at least a very
basic estimate for the relative weight of the phases by only examining the smaller system
sizes L ≤ 15 of the nearly continuous system (q = 50000), shown in fig. 4.5, which leads
to

lim
q→∞

lim
L→∞

R(L3, β∗) ≡ R∞ = 6.3383± 0.2289 (4.28)

or alternatively R∞/(2π) = 1.0(1).
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Figure 4.5: Extrapolation of the relative weight of phases for q = 50000 from small system
sizes only. The final error bar at L−3 = 0 shows the fit uncertainty in the
thermodynamic limit.
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Figure 4.6: The energy histograms obtained by simulating the model (4.13) with J/J ′ =
0.4 using the Wang-Landau algorithm. As an examples the Potts model case
with q = 3 (top) and the (nearly) continuous case with q = 50000 (bottom)
are shown. System sizes of L = 10, . . . , 50 are shown in the first case, L =
10, . . . , 30 in the second case; the narrowing of the peak width and deepening
of the valley between them is visible, as predicted by theory.
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Figure 4.7: The crossings of the relative phase weights are shown for q = 3 and different
system sizes. The fact that the number of coexisting phases is independent
of L causes the lines to cross very close to each other; note the scale of the
x-axis. The dashed line shows the result predicted by theory for the Potts
model log q = log 3.
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Figure 4.8: The crossing points extracted from the number of phases criterion for L and
L′ > L (blue) and the equal height estimator (red). The solid lines show the
least square fit of the data with the error bar at L−3 = 0 showing the error
estimate for the thermodynamic limit. Data shown here is for the q = 3 Potts
like model with the dashed line the predictions for β∗ from [96].
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Figure 4.9: Similar to fig. 4.8 the crossing points were extracted from the number of phases
criterion for L and L′ > L (blue) and the equal height estimator (red). The
solid lines show the least square fit of the data with the error bar at L−3 = 0
showing the error estimate for the thermodynamic limit. Data shown here is
for the q = 3000 model with the gray shaded area the prediction range for β∗

from [92].
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Figure 4.10: The energy histograms of the (nearly) continuous model with q = 50000 but
now, instead of equal height, all system sizes are shown tuned to the transition
temperature β∗.
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error on β∗. In the case of the smaller system, the change is visible but not
too extreme, however, in the case of L = 50, the uncertainty of the transition
temperature has a real impact on the measured phase weights.
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4.6 Conclusions

Even though the results seem to be in agreement with the predictions, it was necessary
to limit the system sizes used in the final extrapolation. It would have been preferred if
all data points could have been included, however, the large sensitivity to the transition
temperature would require prohibitively more computation time. In conclusion, a tentative
confirmation of the initial hypothesis was obtained; in the future, a more precise estimation
of the transition temperature could be able to shed more light on the case of q → ∞ as
well as probe the crossover region itself more carefully. Alternatively, it is possible that
there is a different kind of crossover effect present, where the limits L → ∞ and q → ∞
do not commute, as opposed to what is shown in fig. 4.1. More specifically,

lim
L→∞

lim
q→∞

R = 2π or lim
q→∞

lim
L→∞

R =∞, (4.29)

however, this kind of behavior might be difficult to probe using numerical methods. The
general idea is shown in the figure below, where there is a region of intermediate L with ex-
pected weight of R = 2π for continuous degrees of freedom, which is replaced by divergent
behavior as the thermodynamic limit is approached.

0 1

L−3

2π

q

R

Finite size regionCrossoverPotts-like

Figure 4.13: Possible alternative crossover effect that could explain the observed behavior.
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