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“Maybe it’s not too late to learn how to love and forget how to hate.”

- Crazy Train by Ozzy Osbourne





Abstract

In this thesis we study (quantum) phase transitions in fermion and spin systems. In the
first part we consider the Hubbard model on the square lattice at half filling. For a more
realistic description of real materials with partially screened Coulomb interactions, we
include non-local repulsive terms. In detail, we include (i) nearest-neighbor interactions
and (ii) long-range Coulomb (LRC) interactions. Based on DQMC simulations within
sign-problem free coupling regimes we report results for the temperature resolved double
occupancy and entropy, assess a recent study in terms of a first-order metal-to-insulator
transition and discuss various phase transitions in the vicinity of the analyzed parameter
regime. Continuing DQMC simulations, we examine the Hubbard model on an ABCA
stacked tetra-layer graphene structure regarding its magnetic ground state properties over
a wide range of the local Hubbard-U . Motivated by experimental findings, we added an
extended layer-to-layer interaction and analyzed the extended model in the sign-problem
free regime. The second part considers the Heisenberg model regarding different spin
exchange interactions, based on SSE simulations. We examine the most generic case of
three varying couplings along the unequivalent directions on a honeycomb lattice, where
we find anomalous finite-size scaling corrections in the Binder ratio along the quantum
phase transition lines between an AFM order and dimerized unordered states. Finally, we
extend our Heisenberg model studies to the three-dimensional diamond lattice for both
antiferromagnetic as well as ferromagnetic couplings. We determine the finite critical
temperatures and find the value of the Néel temperature to be higher than the value for
the Curie temperature. We discuss the stability of the ordered phases against thermal
fluctuations with respect to the low-temperature entropy gain.

v





Zusammenfassung

In der vorliegenden Arbeit untersuchen wir (Quanten-)Phasenübergänge in Fermionen-
und Spinsystemen. Im ersten Teil betrachten wir das Hubbard-Modell auf einem quadra-
tischen Gitter bei halber Füllung. Um eine realistischere Beschreibung realer Materialien
mit teilweise abgeschirmten Coulomb-Wechselwirkungen zu erhalten, erweitern wir das
Modell um nicht-lokale repulsive Terme. Im Detail beziehen wir (i) Nächste-Nachbar-
Wechselwirkungen und (ii) Langstrecken-Coulomb-Wechselwirkungen (LRC) ein. Auf der
Grundlage von DQMC-Simulationen in vorzeichenfreien Kopplungsregimen geben wir Er-
gebnisse für die temperaturaufgelöste Doppelsetzung und Entropie wieder, bewerten ei-
ne aktuelle Studie im Hinblick auf einen Metall-Isolator-Übergang erster Ordnung und
diskutieren verschiedene Phasenübergänge in der Nähe des analysierten Parameterbe-
reiches. In Fortsetzung der DQMC-Simulationen untersuchen wir das Hubbard-Modell
auf einer ABCA-gestapelten Tetra-Schicht-Graphenstruktur hinsichtlich seiner magne-
tischen Grundzustandseigenschaften über einen weiten Bereich des lokalen Hubbard-U .
Motiviert durch experimentelle Befunde fügten wir eine erweiterte Schicht-zu-Schicht-
Wechselwirkung hinzu und analysierten das erweiterte Modell im vorzeichenfreien Regime.
Im zweiten Teil betrachten wir das Heisenberg-Modell im Hinblick auf verschiedene Spin-
Austausch-Wechselwirkungen, basierend auf SSE-Simulationen. Wir untersuchen den all-
gemeinsten Fall von drei variierenden Kopplungen entlang der ungleichen Richtungen auf
einem Wabengitter, wo wir anomale Skalierungskorrekturen auf endlichen Systemgrößen
im Binder-Verhältnis entlang der Quantenphasenübergangslinien zwischen einer AFM-
Ordnung und dimerisierten ungeordneten Zuständen finden. Schließlich weiten wir unsere
Untersuchungen des Heisenberg-Modells auf das dreidimensionale Diamantgitter aus, so-
wohl für antiferromagnetische als auch für ferromagnetische Kopplungen. Wir bestimmen
die endlichen kritischen Temperaturen und stellen fest, dass der Wert der Néel-Temperatur
höher ist als der Wert für die Curie-Temperatur. Wir diskutieren die Stabilität der geord-
neten Phasen gegenüber thermischen Fluktuationen im Hinblick auf den Entropiegewinn
bei niedrigen Temperaturen.
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Introduction 1
In condensed matter physics, fermionic many-body systems have been successfully stud-
ied by an effective single-particle picture, which is the integral element of simple band
structure calculations. A cornerstone for the description of metals is Landau’s Fermi
liquid theory (see the review in Ref. [3]). It maps the interacting electron system to
non-interacting quasiparticles “dressed” by interactions, so that the degrees of freedom,
such as spin, charge and momentum, remain the same as for non-interacting fermions
(Fermi gas), while dynamical properties, like the mass or magnetic moments, are renor-
malized. In the case of weak interactions (and a spatial dimension larger or equal to two)
the single-particle picture is still applicable, even in ordered states determined by insta-
bilities, e.g. the divergence of the magnetic susceptibility. However, when interactions
become stronger, i.e., competing on the same scale with the kinetic energy, a fermionic
many-body system’s properties cannot be expressed properly by filling up single-particle
energy eigenstates [3]. The study of such strongly correlated many-body systems and the
understanding of mechanisms that induce (quantum) phase transitions is an ongoing quest
in current condensed matter research.
Phase transitions describe the change between different states in which matter may ex-
ist. They can be distinguished into two groups: first and second order transitions, where
the former is characterized by a discontinuity in its observables, while the latter shows a
continuous change of certain quantities in a model’s parameter space. Many such transi-
tions are characterized as critical phenomena, at which degrees of freedom at all scales are
coupled in a non-trivial manner. Even though a microscopic model contains only short-
ranged interactions, a state with macroscopic long-ranged order can emerge. This process
is called “spontaneous symmetry breaking”, where an ordered state exhibits less symme-
try than the model itself. These critical points, where small and large scales are not well
separated, can be classified by the divergence of various quantities, e.g., the correlation
length ξ of a two-point correlation function for the local magnetization or density. Suc-
cessive elimination of short-ranged degrees of freedom through appropriate Hamiltonian
mappings, allows one to generate predictions for long-distance physical features, which
was the fundamental idea in the development of the renormalization group (RG) [4, 5].
This technique may lead to fixed points, at which the system on different length scales
“looks” the same. Essentially, this formalism predicts, as a result of the independence on
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Chapter 1 Introduction

microscopic details, the same critical behavior for different model groups. This allows for
the classification into universality classes.
A prominent example of a thermal phase transition in strongly correlated electron systems,
such as transition-metal compounds, is the metal-to-insulator transition [6]. According to
band structure calculations, a system exhibits metallic behavior, but incorporating interac-
tions, it can exhibit insulating behavior at low temperatures. To describe the competition
of repulsive Coulomb interaction and kinetic energy for itinerant electrons in a theoretical
(lattice) framework the Hubbard model [7–9] has been proposed in the 1960s and remains
intensively studied to this day (see Ref. [10] for a recent review). Indeed, the first part of
this thesis explores extended interaction models based on the Hubbard model

H = −t
∑

⟨i,j⟩,σ

(
c†

iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓ (1.1)

on different lattices regarding thermal, as well as quantum phase transitions, i.e. tran-
sitions induced through quantum fluctuations at T = 0. Here, t denotes the hopping
amplitude between nearest-neighbor sites ⟨i, j⟩, c†

iσ (ciσ) the fermionic creation (annihila-
tion) operator on lattice site i and spin projection σ =↑, ↓, U the on-site repulsion and
niσ = c†

iσciσ the spin resolved, local number counting operator.
In chapter 3, we explore the influence of extended non-local interactions on the thermo-
dynamic properties of the pure Hubbard model on the square lattice at half-filling for
theoretical studies of materials with more realistic partially screened interactions. Addi-
tionally to the on-site U -interaction, we include two cases: (i) nearest-neighbor interac-
tions and (ii) long-range Coulomb (LRC) interactions. We perform determinantal quan-
tum Monte Carlo (DQMC) simulations within sign-problem free coupling regimes at finite
temperatures, assess a recent study regarding a first-order metal-to-insulator transition
and propose a possible scenario how non-local interactions expand the Hubbard model
phase diagram.
In chapter 4, we study ground state properties of the Hubbard model on a honeycomb
tetra-layer lattice at half-filling based on the projective DQMC scheme. The low-energy
band structure of graphene multi-layers shows a sharply peaked density of states (DOS) at
the Fermi level, which enhances correlation effects and allows for interaction-driven mag-
netic order. We explore magnetic correlations over a wide range of interaction strengths
and investigate the scenario of amplified inter-layer hopping strengths and extended layer-
to-layer interactions.
We find strong magnetic correlations emerging at higher interaction strengths compared
to the square lattice case. If we follow this trend of increasing interactions, what physical
behavior and phase transitions can we explore? Upon further increasing the on-site inter-
action strength at half-filling, we may drive a fermion system into a regime where charge
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fluctuations are frozen out, while retaining the spin degree of freedom. The charge density
is localized at the lattice sites with an effective spin exchange interaction, resulting in a
quantum spin model, namely the spin-1/2 Heisenberg model

H =
∑
⟨ij⟩

Jij Si · Sj , (1.2)

with Jij = 4t2ij/U being the coupling strength of neighboring spins described by the vector
spin operator Si. While the Hubbard model describes itinerant magnetic behavior of the
conduction band electrons for arbitrary band fillings, the Heisenberg model is a model of
fully localized strongly interacting spins that arises for an exactly half-filled band, which
is the basis for the second part of this thesis. The derivation of the Heisenberg model as
an effective description of the Hubbard model in the high-U regime is insightfull. The idea
is to decompose the Hubbard Hamiltonian into processes that leave double occupied sites
unchanged and in those that increase (decrease) the double occupancy of a lattice site.
Then, the goal is to find a suitable operator that minimizes or eliminates those processes
changing the double occupancy within a unitary Schrieffer-Wolff transformation [11]. Up
to lowest order in the separated energy scales one ends up with the t-J model at arbitrary
fillings as an effective description of low-energy Hubbard physics and the Heisenberg model
at half-filling [12]. While isolated spins are simply described in a one-particle picture, the
interactions between them may induce collective magnetism in various compounds [13–17].
In a realistic setup, the interaction between spins however is not uniform, but shows dif-
ferent strengths regarding for instance different spatial directions [18, 19], thus giving rise
to quantum phase transitions in the ground state, e.g. between ordered and (dimerized)
unordered states. The ordering is determined by the sign of the coupling, i.e., J > 0 leads
to antiferromagnetic alignment (spins on neighboring sites point in opposite directions)
and J < 0 to ferromagnetism (spins point in the same direction).
In chapter 5, we determine the ground state phase diagram of the spin-1/2 antiferro-
magnetic Heisenberg model on the honeycomb lattice. Within our quantum Monte Carlo
(QMC) simulations based on the stochastic series expansion (SSE) formulation, we con-
sider the most generic case of varying exchange couplings along the three different lattice
directions. We determine continuous quantum phase transition lines that separate an
antiferromagnetic state from three quantum disordered dimer states. In the QMC stud-
ies, we find anomalously large scaling corrections in the finite-size data. In this context,
we include more general comments on the non-universality of critical cumulant ratios in
anisotropic systems.
In chapter 6, we turn to a three-dimensional lattice, thus overcoming the impossibility of
continuous symmetry breaking in two and one spatial dimensions at finite temperatures,
which is known as the Mermin-Wagner theorem [20]. In this regard, we examine the
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Chapter 1 Introduction

spin-1/2 Heisenberg model on the diamond lattice with both antiferromagnetic as well as
ferromagnetic nearest-neighbor exchange couplings, based on SSE simulations. We deter-
mine both critical temperatures from paramagnet to (anti)ferromagnetic order through a
finite-size scaling analysis. We find a significant difference in the values of the critical tem-
peratures, which we discuss with respect to the stability of the antiferromagnetic (AFM)
and ferromagnetic (FM) state against fluctuations based on the respective temperature-
resolved entropy.
Despite their simple formulation, solutions to the above mentioned interacting quantum
models turn out to be a challenging problem and led to the development of highly ad-
vanced numerical methods. The most intuitive approach to investigate thermodynamic
properties is to diagonalize the full Hamiltonian matrix on finite lattices given a proper
basis. Although unbiased, the exact diagonalization (ED) technique [21] has the high-
est computational cost due to the exponential growth of the Hilbert space with system
size. This renders the ED method to be the perfect benchmark trial for more complex
unbiased methods or approximative approaches, at least for small system sizes. Often
interesting behavior can only be observed, or numerically resolved, on much larger sizes
than accessible with ED. Therefore, we employ the powerful machinery of QMC methods.
To be precise, we use DQMC [22] for fermionic systems. Its computational cost scales
linear in inverse temperature and cubic in the system size. For spin systems, we use the
SSE [23–25] that has also a linear scaling in inverse temperature, but scales also linear in
the number of spins. Both methods rely on efficient statistical sampling the significant
part of the configuration space (e.g., in the easiest case the spin projection configura-
tions). Albeit the fact that QMC methods are unbiased, they are often limited to certain
parameter regimes. For sign-problem free simulations, DQMC is restricted to Hubbard
type models at half-filling and non-frustrated lattices. SSE exhibits a sign-problem on
geometrically frustrated lattices, which can be mended to a certain degree [26–29]. Fur-
ther prominent and successful methods in strongly correlated condensed matter physics
involve dynamical mean-field theory (DMFT) [30, 31], the density matrix renormalization
group (DMRG) [32, 33], which in particular is well suited for one dimensional systems, its
two-dimensional extension iPEPS [34] or the manifold descendants of the renormalization
group [4, 5].
Before presenting the results on the fermionic models in Chap. 3, 4 and the spin models
in Chap. 5, 6, we introduce the QMC methods relevant for this thesis in Chap. 2. Finally,
we summarize the individual conclusions and outlooks in Chap. 7
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Monte Carlo Methods 2
In this chapter we introduce the QMC methods used in this thesis. Monte Carlo methods
are a powerful technique for statistically unbiased large-scale simulations of classical as
well as quantum lattice models. Here, we employ two different formulations, namely the
DQMC and the SSE. The former suits the study of strongly correlated fermion lattice
models, e.g., the Hubbard model, the latter is used to investigate spin models, e.g., the
Heisenberg model. These are only two methods from a wide range of quantum Monte
Carlo schemes, tailored to different models and scenarios.
To understand the quantum formulation of any QMC scheme, it is instructive to begin
with classical Monte Carlo.

2.1 Classical Monte Carlo

The outline of this section follows the detailed description in Refs. [35, 36]. In general, the
Monte Carlo (MC) method is a powerful tool to estimate high-dimensional integrals. Thus,
a natural application is the evaluation or rather the estimation of statistical quantities of
many-body systems. The fundamental values to be calculated in any MC simulation
are the estimates of the expectation value and the variance for an in general unknown
distribution. The expectation value of an observable O is given by

⟨O⟩P =
∫

Ω
ddx⃗ O(x⃗)P (x⃗), (2.1)

where the configuration space Ω is a set of elementary random variables, x⃗ ∈ Ω is one such
configuration of the system’s constituents and P (x⃗) is a probability distribution satisfying
positivity and a normalization condition:

P (x⃗) ≥ 0, (2.2)∫
Ω

ddx⃗ P (x⃗) = 1. (2.3)

For a classical statistical mechanics problem we typically consider the probability distribu-
tion to be the Boltzmann distribution P (x⃗) = Z−1 exp−βH(x⃗), where Z =

∫
Ω ddx⃗ e−βH(x⃗)

and x⃗ ∈ RN is a vector denoting the configuration of N particles in the model described
by the Hamilton function H(x⃗). It would be possible to calculate ⟨O⟩P directly by brute
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Chapter 2 Monte Carlo Methods

force integration. However, the phase space of reasonable system sizes becomes very large
and this procedure turns out to be slow or even numerically impossible.
A more elegant and faster way to compute such integrals is the stochastic approximation
of ⟨O⟩P . It is obtained by generating an independent sequence of random configurations
x⃗i ∈ Ω (i = 1, ...,M) drawn from the probability distribution P (x⃗i). Then the estimator
ŌM is calculated by the mean

ŌM = 1
M

M∑
i=1

O(x⃗i), (2.4)

where O(x⃗i) is a snapshot, mathematically speaking the evaluation, of a function O for
a given random configuration x⃗i. We obtain numerically exact, respectively unbiased,
results through the implicit action of the central limit theorem. It states that in the large
M limit the underlying probability (or sampling) distribution of ŌM tends to a Gaussian
distribution

P (ŌM ) = 1√
2πσ2

exp− (ŌM −⟨O⟩P )2

2σ2 (2.5)

with
σ2 = 1

M

(
⟨O2⟩P − ⟨O⟩2

P

)
. (2.6)

In particular, as we increase M , the estimators converge with the rate 1/
√
M , e.g. to

increase the accuracy by a factor of 10, we need to provide 100 more samples.

2.1.1 Importance Sampling

The simplest and most naive approach to sample the configurations x⃗i is by randomly
drawing them uniformly from the configuration space Ω. In our classical example this
means that for the set of all particles in the system we randomly choose a configuration
x⃗i from a finite set of configurations and evaluate the observable O at the given configu-
ration space point. We repeat this procedure until we reach a satisfactory accuracy in the
statistical error. Albeit foolproof, this simple sampling has the major disadvantage that it
samples configurations with vanishing probability weights. Usually only a small amount
of configurations has a significant weight in the calculation of the statistical quantities.
The optimal choice of any x⃗i would be drawing it with a probability proportional to the
underlying probability density P (x⃗). This process is called importance sampling and can
be realized in a Markov Chain [37]. The chain can be illustrated as follows:

x⃗0
W−→ x⃗1

W−→ x⃗2
W−→ ...

W−→ x⃗M

Starting with a (uniformly drawn) initial configuration x⃗0 we update one degree of freedom
in x⃗i to obtain x⃗i+1 with a transition probabilityW (x⃗i → x⃗i+1), i.e. each new configuration
depends on its predecessor. This simple scheme comes with the price that it introduces

6



2.1 Classical Monte Carlo

an autocorrelation, which means that the configurations are not strictly independent of
each other. We elaborate on how to work with this circumstance and how to maintain
unbiased results in Sec. 2.4.
The transition probability obeys following conditions:

(i) Positivity: W (x⃗i → x⃗i+1) ≥ 0, ∀x⃗i, x⃗i+1 ∈ Ω

(ii) Normalization: ∑x⃗i+1 W (x⃗i → x⃗i+1) = 1, ∀x⃗i ∈ Ω

(iii) Stationarity: ∑x⃗i
W (x⃗i → x⃗i+1)P (x⃗i) = P (x⃗i+1), ∀x⃗i+1 ∈ Ω

The distribution of the generated configurations {x⃗i} is guaranteed to converge to the
target distribution P (x⃗i) under two conditions:

• Ergodicity: Each configuration x⃗j can be reached starting from another configura-
tion x⃗i with non-vanishing probability in a finite number of steps.

• Detailed balance: The transition probabilities are related to the target distribution
through the relation

W (x⃗i → x⃗i+1)P (x⃗i) = W (x⃗i+1 → x⃗i)P (x⃗i+1). (2.7)

This automatically fulfills the stationarity condition

∑
x⃗i

W (x⃗i → x⃗i+1)P (x⃗i) = P (x⃗i+1)
∑
x⃗i

W (x⃗i+1 → x⃗i) = P (x⃗i+1)

Given the general rules for the Markov process, there are different possibilities how to
realize the transitions. Reformulating the detailed balance condition (2.7) into

f(R)
1 + f(R) = R, (2.8)

where f(R) is a function of the acceptance ratio R = P (x⃗i+1)/P (x⃗i), we find several
choices of f(R) to satisfy this equation. Note that the normalization constants cancel
each other. Well established solutions are, e.g.

• Metropolis algorithm [38]: W (x⃗i → x⃗i+1) = f(R) = min(1, R)

• Heat-bath algorithm [39]: W (x⃗i → x⃗i+1) = f(R) = R/(1 +R)

Contrary to the sequential update scheme presented above there is a class of update
schemes known as global updates, e.g., the Wolff cluster algorithm [40]. In these schemes
several degrees of freedom are updated at the same time making a significant change to
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Chapter 2 Monte Carlo Methods

the system’s current state. The advantage over sequential schemes is the improved per-
formance in the vicinity of second order phase transitions.
The crucial ingredient for a Monte Carlo simulation is to find a suitable transition prob-
ability for the configuration updates for the sampling procedure. While for a classical
problem the Boltzmann factor e−βH(x⃗i) is always a real number greater zero and thus can
be used as a probability measure, for a quantum system this no longer holds true. In
general, the configuration weight, associated with the operator exponential e−βĤ(x⃗i), is a
complex number, so that we have to find other ways to express a well defined transition
probability for quantum Monte Carlo simulations or find cases, where the weight is posi-
tive.
The next two sections will cover such formulations of the Monte Carlo scheme for par-
ticular quantum lattice models. We will see that the quantum algorithms in essence boil
down to classical Monte Carlo propagated through imaginary time τ from 0 to β.

2.2 Determinantal Quantum Monte Carlo

In this section we introduce the fundamental construction of two forms of DQMC algo-
rithms for fermionic lattice systems with spin and charge degrees of freedom. A pedagogical
introduction to the DQMC technique can be found in Refs. [41, 42].
The so called Blankenbecler, Scalapnio, Sugar (BSS) algorithm [22] is the primary choice
for the unbiased numerical study of a vast range of strongly correlated electron systems.
One is able to simulate thermodynamic properties of Hubbard type models [43, 44], topo-
logical insulators [45–48], superconductivity in spin-orbit split flat bands [46, 49], long-
range Coulomb interacting graphene systems [50–54] and Yukawa SYK models [55], to
name a few. DQMC allows for an unbiased determination of different phase transitions
like the metal-to-insulator transition [56] or nematic [57, 58] and magnetic [59, 60] quan-
tum phase transitions in metals and enables the exploration of rich phase diagrams.
The DQMC methods we use in this work transform the (grand) canonical partition func-
tion (the chemical potential term is included in the kinetic energy) in the form

Z = Tr
(
e−βH

)
=
∑
C

ξ(C) e−S(C), (2.9)

where β is the inverse temperature, ξ(C) is a configuration dependent prefactor to the
exponential of the action S(C) of non-interacting fermions subject to a space-time fluctu-
ating auxiliary field. This field stems from a Hubbard-Stratonovich (HS) transformation
(see App. A.1.2) decoupling the electron-electron interaction into an electron-field interac-
tion. With this we are able to sample the partition function. The algorithms scale linear
in imaginary time β and cubic in the volume N , i.e. the number of lattice sites.
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2.2 Determinantal Quantum Monte Carlo

The DQMC method can be subdivided in a projective QMC scheme for T = 0 properties
in the canonical ensemble and in a finite temperature algorithm in the grand canonical
ensemble. The finite temperature version can be used to probe for ground state properties
as well by going to sufficiently low temperatures, but the projective scheme is compu-
tationally more efficient for this task [42]. In the following, we demonstrate the steps
required to extract a well defined probability measure from the partition function. The
calculations for both versions follow the same steps.

2.2.1 Partition Function

The goal of our QMC computations is to obtain the thermodynamic expectation value in
the (grand) canonical ensemble of an observable O:

⟨O⟩ = 1
Z

Tr
(
Oe−βH

)
, (2.10)

where Z = Tr e−βH . In the following we demonstrate the reformulation of the partition
function on the U -V model (3.1), which is the main subject in Chap. 3. First, we have
to write the interaction terms in quadratic form to allow the application of the Hubbard-
Stratonovich transformation. The Hamiltonian reads

H = Ht + Ū

2
∑

i

(ni − 1)2 + V

2
∑
⟨i,j⟩

(ni + nj − 2)2, (2.11)

where Ht contains the nearest-neighbor hoppings and the chemical potential term, nx =
nx↑ + nx↓ is the sum of the spin resolved number operators and Ū = U − zDV is a
renormalized on-site interaction. zD = 2 ·D is a spacial dimension D dependent prefactor
to the inter-site interaction V . We begin with the Suzuki-Trotter decomposition (see
App. A.1.1) of the operator exponential

e−βH = exp

−β

Ht + Ū

2

N∑
i=1

(ni − 1)2 + V

2

DN∑
⟨ij⟩=1

(ni + nj − 2)2

 (2.12)

=
[
e−∆τHte−∆τ Ū

2
∑N

i=1(ni−1)2
e−∆τ V

2
∑DN

⟨ij⟩=1(ni+nj−2)2
]LT

+ O(∆τ2) (2.13)

=
LT∏

m=1

e−∆τHt

N∏
i=1

e−∆τ Ū
2 (ni−1)2

DN∏
⟨i,j⟩=1

e−∆τ V
2 (ni+nj−2)2

+ O(∆τ2) (2.14)

This allows the decomposition of the exponential of our full Hamiltonian into products of
exponentials of the individual terms. Furthermore, we discretize the imaginary time into
LT = β/∆τ time slices of “thickness” ∆τ , introducing thereby a systematic error in the
order of magnitude of ∆τ2.
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Chapter 2 Monte Carlo Methods

The next step is to apply the Hubbard-Stratonovich decomposition for the interaction
terms:

e−βH =
LT∏

m=1

e−∆τHt

N∏
i=1

∑
ai,m=±1,±2

γ(ai,m)e
√

−∆τ Ū
2 η(ai,m)(ni−1)

×

 DN∏
⟨ij⟩=1

∑
bi,m=±1,±2

γ(bi,m)e
√

−∆τ V
2 η(bi,m)(ni+nj−2)

+ O(∆τ2) . (2.15)

Having decoupled the electron-electron interaction, we can carry out the sums over the
field variables and rearrange the trace over the above expression in the following way:

Tr e−βH =
∑
C

 LT∏
m=1

N∏
i=1

γ(ai,m)γ(bi,m)

×

Tr
LT∏

m=1

e−∆τHt

N∏
i=1

e
√

−∆τ Ū
2 η(ai,m)(ni−1)

DN∏
⟨ij⟩=1

e
√

−∆τ V
2 η(bi,m)(ni+nj−2)

+ O(∆τ2) .

(2.16)

The sum runs over the configuration space C = {ai,m, bi,m|i = 1 . . . L,m = 1 . . . LT },
where each ai,m or bi,m takes the values ±1 or ±2. These configurations are to be sampled
with the Monte Carlo scheme. On every time slice the fields are updated sequentially. We
iterate over the number of lattice sites and proposes an update of the local HS field to one
of the other three possible values with probability 1/3.
The final step to obtain the form of the partition function in Eq. (2.9) is to trace out the
fermions. The trace runs over the fermionic Fock space and for a given configuration we can
express it as a determinant (see App. A.1.3). Notice that the trace is independent of the
spin degree of freedom, which is a consequence of the SU(2) symmetry of the Hamiltonian
and the chosen HS transformation.

Tr
LT∏

m=1

e−∆τHt

N∏
i=1

e
√

−∆τ Ū
2 η(ai,m)(ni↑+ni↓−1) DN∏

⟨ij⟩=1
e
√

−∆τ V
2 η(bi,m)(ni↑+ni↓+nj↑+nj↓−2)


= Tr

∏
m

e−∆τHt
∏

i

e
√

−∆τ Ū
2 η(ai,m)(ni−1/2) ∏

⟨ij⟩
e
√

−∆τ V
2 η(bi,m)(ni+nj−1)

2

(2.17)

=

∏
m

∏
i

e− 1
2

√
−∆τ Ū

2 η(ai,m) ∏
⟨ij⟩

e−
√

−∆τ V
2 η(bi,m)

2

×

Tr

∏
m

e−∆τHt
∏

i

e
√

−∆τ Ū
2 η(ai,m)ni

∏
⟨ij⟩

e
√

−∆τ V
2 η(bi,m)(ni+nj)

2

(2.18)
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2.2 Determinantal Quantum Monte Carlo

=
∏
m

∏
i

e−
√

−∆τ Ū
2 η(ai,m) ∏

⟨ij⟩
e−2
√

−∆τ V
2 η(bi,m) ×

det

I +
∏
m

e−∆τT
∏

i

e
√

−∆τ Ū
2 η(ai,m)A(i) ∏

⟨ij⟩
e
√

−∆τ V
2 η(bi,m)B(⟨ij⟩)

2

. (2.19)

The constant factor is a complex number and can be taken out of the trace. The remaining
is equivalent to the determinant of the given quantity, where I is the unity matrix and T ,
A(i) and B(⟨ij⟩) are matrices that are defined by the following relations:

Ht =
∑

⟨ij⟩,σ
c†

iσTijcjσ , (2.20)

H
(i)
U = Ū

2

(∑
σ

[
c†

iσA
(i)ciσ − 1

2

])2

, (2.21)

H
(⟨ij⟩)
V = V

2

(∑
σ

[(
c†

iσ

c†
jσ

)
·B(⟨ij⟩)

(
ciσ

cjσ

)
− 1

])2

(2.22)

In total the partition function is given by

Z = Tr e−βH

=
∑
C

 LT∏
m=1

N∏
i=1

γ(ai,m)γ(bi,m)

 e−
∑

m

∑
i

√
−∆τ Ū

2 η(ai,m)e−2
∑

m

∑
⟨ij⟩

√
−∆τ V

2 η(bi,m) ×

det

I +
∏
m

e−∆τT
∏

i

e
√

−∆τ Ū
2 η(ai,m)A(i) ∏

⟨ij⟩
e
√

−∆τ V
2 η(bi,m)B(⟨ij⟩)

︸ ︷︷ ︸
=:BC

m





2

+ O(∆τ2)

≡
∑
C

ξ(C)e−S(C) + O(∆τ2) . (2.23)

From this formulation one can see where the name determinant QMC originates. BC
m is a

useful definition that will be used in the following. Summing over the configuration space
yields, under certain conditions, a real and positive number: with the definition of the
values of the HS fields and for vanishing chemical potential µ (as well as non-frustrated
lattices) the individual summands come in complex conjugate pairs, such that the imag-
inary parts cancel, while the real part is greater zero. In the doped case µ ̸= 0, some
configuration weights will become negative. Although a sign problem, which is model
and regime dependent, is present it is possible to quantify its severity and gain physical
information about the system’s state [61].
Being able to sample the partition function, we can measure expectation values of observ-
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Chapter 2 Monte Carlo Methods

ables at finite temperatures as well as in the ground state at T = 0.

2.2.2 Finite Temperature DQMC

The quantity of interest is given by the expression

⟨O⟩ = 1
Z

Tr
(
Oe−βH

)
=
∑
C

PC⟨O⟩C + O(∆τ2) , (2.24)

where PC = ξ(C)e−S(C)∑
C

ξ(C)e−S(C) and ⟨O⟩C is the expectation value of an observable O for a
given HS field configuration C. Note that each field configuration is implicitly associated
with an imaginary time slice.
The fact that we deal with non-interacting electrons allows us to employ Wick’s theorem
(see Sec. 2.2.4) by measuring the single particle Green’s function. With this quantity we
are able to calculate two-body correlation functions or scalar observables.
First, we introduce two imaginary time propagators:

UC(τ2, τ1) =
m2∏

m=m1+1
e−∆τc†T cec†V (Cm)cec†Ṽ (Cm)c (2.25)

BC(τ2, τ1) =
m2∏

m=m1+1
e−∆τT eV (Cm)eṼ (Cm) =

m2∏
m=m1+1

BC
m , (2.26)

with τi = mi∆τ . With these definitions the expectation value in Eq. (2.24) reads

PC = γ(C)e−S(C)det (I +BC(β, 0))∑
C γ(C)e−S(C)det (I +BC(β, 0))

(2.27)

⟨O⟩C = Tr (UC(β, τ)OUC(τ, 0))
TrUC(β, 0) . (2.28)

The expectation value for a given configuration ⟨O⟩C is computed from the discretization
of the same continuous quantity

⟨O⟩C = 1
Z

Tr
(
e−βHeτHO e−τH

)
= 1
Z

Tr
(
e−(β−τ)HO e−(τ−0)H

)
≈ 1
Z

Tr (UC(β, τ)OUC(τ, 0)) . (2.29)

12



2.2 Determinantal Quantum Monte Carlo

With Tr (UC(β, 0)) = det (I +BC(β, 0)) we can evaluate ⟨O⟩C in terms of the matrices
BC(τ2, τ1) for a single-body operator O = c†Xc in the following way:

⟨O⟩C = ∂

∂α
ln Tr

(
UC(β, τ)eαOUC(τ, 0)

) ∣∣∣
α=0

= ∂

∂α
ln det

(
I +BC(β, τ)eαOBC(τ, 0)

) ∣∣∣
α=0

= ∂

∂α
Tr ln

(
I +BC(β, τ)eαOBC(τ, 0)

) ∣∣∣
α=0

= Tr
(
BC(β, τ)OBC(τ, 0)

I +BC(β, τ)BC(τ, 0)

)
= Tr

(
BC(τ, 0)(I +BC(β, 0))−1BC(β, τ)O

)
= Tr

[(
I − (I +BC(τ, 0)BC(β, τ))−1

)
O
]
. (2.30)

In particular, the equal time (Matsubara) Green’s function is computed with above pro-
cedure for O = cxc

†
y = δxy − c†A(yx)c, where the subscript x or y is a super index for a

lattice site and spin (i, σ) and A
(yx)
ab = δayδbx. The Green’s function on a time slice τ is

given by
GC(τ)xy = ⟨cx(τ)c†

y(τ)⟩C = (I +BC(τ, 0)BC(β, τ))−1
xy . (2.31)

Although unequal time observables will not be considered in any project of this thesis,
the calculation of the unequal time Green’s function is mentioned for completeness. The
derivation is analogous to the one above:

GC(τ1, τ2)xy = ⟨Tcx(τ1)c†
y(τ2)⟩C =

⟨cx(τ1)c†
y(τ2)⟩C , if τ1 ≥ τ2

−⟨c†
y(τ2)cx(τ1)⟩C , if τ1 < τ2

, (2.32)

where T denotes the time ordering operator. For τ1 > τ2 the computation results in

⟨cx(τ1)c†
y(τ2)⟩C =

Tr
(
UC(β, τ1) cx UC(τ1, τ2) c†

y UC(τ2, 0)
)

Tr (UC(β, 0)) (2.33)

⇒ GC(τ1, τ2)xy = [BC(τ1, τ2)GC(τ2, τ2)]xy . (2.34)

A similar calculation for τ1 < τ2 yields

GC(τ1, τ2)xy = −
[
(I −GC(τ1, τ1)B−1

C (τ2, τ1))
]

xy
. (2.35)

We find that the computation of the unequal time Green’s functions boils down to the
knowledge of the equal time Green’s function. Unequal time observables can be used
to access experimentally measurable quantities like the DOS by analytically continuating
the Green’s function from imaginary time to real time, e.g., with the maximum entropy
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Chapter 2 Monte Carlo Methods

method [62].

2.2.3 Projective DQMC

For the analysis of ground state properties the projective approach is the method of choice.
The prerequisite for the application is to propose a trial wavefunction |ψT ⟩ that is non-
orthogonal to the unknown, true ground state |ψ0⟩:

⟨ψt|ψ0⟩ ≠ 0 . (2.36)

The ground state expectation value of an observable O is given by the projection of the
trial wavefunction along the imaginary time

⟨ψ0|O|ψ0⟩
⟨ψ0|ψ0⟩

= lim
θ→∞

⟨ψT |e−θHe−(β−τ)HO e−τHe−θH |ψT ⟩
⟨ψT |e−(2θ+β)H |ψT ⟩

, (2.37)

with β defining the range in imaginary time where observables are measured after carrying
out a large number of projections θ to guarantee convergence to the ground state and
τ varies from 0 to β for time-displaced observables, i.e., for equal-time observables the
expectation value is τ -independent.
For an implementation of the algorithm we require the trial wavefunction of Np particles
to be a Slater determinant characterized by a matrix P

|ψT ⟩ =
∏

σ=↑,↓

Np∏
n=1

(
N∑

i=1
c†

i,σPi,n

)
|0⟩ . (2.38)

Since the trial wavefunction is expressed as a Slater determinant we can define a single-
particle trial Hamiltonian, where the latter is the ground state. We consider the trial
Hamiltonian

HT =
∑

σ=↑,↓

N∑
i,j

c†
i,σ hi,j cj,σ (2.39)

and draw the connection to the trial wavefunction through

P †hP = diag(ϵ1, . . . , ϵN ) . (2.40)

This means the trial wavefunction is completely characterized by the set of orthogonal
vectors defining P .
To compute the expectation value we begin analogously to the finite temperature case

⟨ψ0|O|ψ0⟩
⟨ψ0|ψ0⟩

=
∑
C

PC⟨O⟩C + O(∆τ2) . (2.41)
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Here, the weights PC and expectation values ⟨O⟩C are given by

PC = γ(C)e−S(C)det(P †BC(2θ, 0)P )∑
C γ(C)e−S(C)det(P †BC(2θ, 0)P )

,

⟨O⟩C = ⟨ψT |UC(2θ, θ)OUC(θ, 0)|ψT ⟩
⟨ψT |UC(2θ, 0)|ψT ⟩

. (2.42)

Similar to the calculation of the equal time Green’s function in Eq. (2.30) we obtain for
the projective case

GC(θ)xy = ⟨c†
xcy⟩C =

(
I −BC(θ, 0)P (P †BC(2θ, 0)P )−1P †BC(2θ, θ)

)
xy

(2.43)

and for completeness we mention the unequal time Green’s function as well:

GC

(
θ + τ

2 , θ − τ

2

)
xy

=
[
BC

(
θ + τ

2 , θ − τ

2

)
GC

(
θ − τ

2

)]
xy

(2.44)

GC

(
θ − τ

2 , θ + τ

2

)
xy

= −
[(

I −GC

(
θ − τ

2

))
B−1

C

(
θ + τ

2 , θ − τ

2

)]
xy

(2.45)

2.2.4 Wick’s Theorem

In the general case we consider thermodynamic expectation values of the form

⟨T [ζ1(τ1)ζ2(τ2)...ζn(τn)]⟩ , (2.46)

where the ζα(τα) are bosonic or fermionic creation/annihilation operators and T is the
time ordering operator. Since we deal with non-interacting electrons, we may elegantly
break down the above expectation value of the operator sequence into a much simpler
form. To this end we define a contraction of two operators:

ζα(τ)ζα′(τ ′) = ⟨T [ζα(τ)ζα′(τ ′)]⟩ . (2.47)

In particular we find

cx(τ1)c†
y(τ2) = ⟨T [cx(τ1)c†

y(τ2)]⟩ = G(τ1, τ2)xy (2.48)

and the main measurable quantity of the algorithm, the one-particle equal time Green’s
function, is given by

cx(τ)c†
y(τ) = ⟨cx(τ)c†

y(τ)⟩ = G(τ)xy . (2.49)

To evaluate Eq. (2.46) Wick’s theorem allows us to decompose this quantity into a sum
over all possible fully contracted terms:
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⟨T [ζ1(τ1)ζ2(τ2) . . . ζn(τn)]⟩

=
∑

pair combinations
(±1)P ⟨Tζp(1)(τp(1))ζp(2)(τp(2))⟩ . . . ⟨Tζp(n−1)(τp(n−1))ζp(n)(τp(n))⟩

= ζ1(τ1)ζ2(τ2)ζ3(τ3)ζ4(τ4) . . . ζn−1(τn−1)ζn(τn)

+ ζ1(τ1)ζ2(τ2)ζ3(τ3)ζ4(τ4) . . . ζn−1(τn−1)ζn(τn) + . . . , (2.50)

where p(1) . . . p(n) is any permutation of the indices 1 . . . n and P is the parity of these
permutations. The crossing of contractions is defined as

ζ1ζ2ζ3ζ4 = ±ζ1ζ3ζ2ζ4 . (2.51)

For bosonic operators the parity equals always 1, because no sign change occurs for the
exchange of two operators. A negative sign can only emerge for fermionic operators. This
Wick decomposition yields only finite values for (i) an even number of operators n and
(ii) an equal number of creation and annihilation operators.
A convenient way to express this decomposition for DQMC simulations reads

⟨T [c†
x1(τ1)cx′

1
(τx′

1
)...c†

xn
(τn)cx′

n
(τx′

n
)]⟩C =

det


⟨T [c†

x1(τ1)cx′
1
(τx′

1
)]⟩C ⟨T [c†

x1(τ1)cx′
2
(τx′

2
)]⟩C . . . ⟨T [c†

x1(τ1)cx′
n
(τx′

n
)]⟩C

⟨T [c†
x2(τ2)cx′

1
(τx′

1
)]⟩C ⟨T [c†

x2(τ2)cx′
2
(τx′

2
)]⟩C . . . ⟨T [c†

x2(τ2)cx′
n
(τx′

n
)]⟩C

...
... . . . ...

⟨T [c†
xn

(τn)cx′
1
(τx′

1
)]⟩C ⟨T [c†

xn
(τn)cx′

2
(τx′

2
)]⟩C . . . ⟨T [c†

xn
(τn)cx′

n
(τx′

n
)]⟩C

 . (2.52)

As an example we demonstrate the decomposition of the double occupancy Di = ⟨ni↑ni↓⟩:

⟨ni↑ni↓⟩ = ⟨c†
i↑ci↑c

†
i↓ci↓⟩

= c†
i↑ci↑c

†
i↓ci↓ + c†

i↑ci↑c
†
i↓ci↓ + c†

i↑ci↑c
†
i↓ci↓

= c†
i↑ci↑c

†
i↓ci↓ − c†

i↑c
†
i↓ci↑ci↓ + c†

i↑ci↓ci↑c
†
i↓

= ⟨c†
i↑ci↑⟩⟨c†

i↓ci↓⟩ = Ḡ2
ii , (2.53)

where Ḡxy = δxy − Gxy. The last two terms vanish, because the expectation of both
processes is zero. Only contractions with similar spins remain. This manifests the inde-
pendence of the one-particle Green’s function on the spin degree of freedom.
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2.2 Determinantal Quantum Monte Carlo

2.2.5 Monte Carlo Sampling

At this point we obtained all ingredients to carry out a DQMC simulation that proceeds
as follows:

(i) Initiate a random HS field configuration for every site and bond.

(ii) Calculate the Green’s function on time slice zero with

GC(0) = (I +BC(β, 0))−1

=

I +
LT∏

m=1
BC

m

−1

, (2.54)

for the finite-temperature method or correspondingly with Eq. (2.43) for the projec-
tive version.

(iii) To generate a Markov chain we adopt sequential flips of a local field component with
probability 1/3. Accept the proposed configuration with probability W (C → C ′) =
min(1, R), R = P (C ′)/P (C) corresponding to the Metropolis scheme. In practice,
we repeat this step a number of times equal to the number of lattice sites on every
time slice.

(iv) Measure observables employing Wick’s theorem.

(v) Propagate the Green’s function to the next time slice with

GC(τ + ∆τ) = BC(τ + ∆τ, τ)GC(τ)B−1
C (τ + ∆τ, τ) (2.55)

or, at appropriate points in imaginary time, stabilize it, i.e. recalculate the Green’s
function from scratch at the given time step like in step (ii). Instabilities arise from
ill-conditioned matrices, where large scales suppress small scales in repeated matrix-
matrix multiplications in the calculation of the Green’s function. Because of the
limited machine precision exponentially large round-off errors occur. To cure this
problem we employ a QR-decomposition or a singular value decomposition of the
matrices [63, 64]. However, the projective scheme does not suffer stabilization issues
at any point.

(vi) Repeat the steps (ii)-(v) M times.

Additionally, we draw attention to a recent proposal on how to improve the sampling
procedure in order to reduce statistical fluctuations on local quantities [65].
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Chapter 2 Monte Carlo Methods

Reweighting and Sign problem

In general the configuration weight P (C) is a complex number prohibiting a direct sam-
pling of the transition probability W (C → C ′) = min

(
1, P (C′)

P (C)

)
. This leads to the infa-

mous fermionic sign problem. The sign problem is formulation and model dependent.
It has been shown that the sign problem is non-deterministic polynomial (NP) hard, which
implies that a generic solution of the sign problem would solve all problems in the com-
plexity class NP in polynomial time [66]. A hypothetical non-deterministic machine, in
contrast to our current deterministic classical machines, could solve a NP problem in
polynomial time. Finding a P algorithm for a NP decision problem, which would result
in NP=P, seems impossible. In addition, it must be possible to confirm a result to a
NP problem on a classical machine in polynomial time. Despite decades of research it is
believed that NP ̸= P and no deterministic polynomial time algorithm exists, although
the statement NP ̸= P is yet to be proven. This remains one of the unsolved millennium
problems.
The standard way of dealing with complex or negative weights is the following reweight-
ing scheme. We expand the sum and find that the partition function for the considered
Hubbard-type models is real

Z =
∑
C

ξ(C)e−S(C) =
∑
C

[
ξ(C)e−S(C)

]∗
=
∑
C

Re
[
ξ(C)e−S(C)

]
(2.56)

and with the definition of the sign of a configuration

sign(C) =
Re
[
ξ(C)e−S(C)

]
∣∣Re

[
ξ(C)e−S(C)]∣∣ , (2.57)

the expectation value is rewritten into

⟨O⟩ =
∑

C ξ(C)e−S(C)⟨O⟩C∑
C ξ(C)e−S(C)

=

∑
C Re

[
ξ(C)e−S(C)

]
ξ(C)e−S(C)

Re[ξ(C)e−S(C)]⟨O⟩C∑
C Re

[
ξ(C)e−S(C)]

=

(∑
C

∣∣∣Re
[
ξ(C)e−S(C)

]∣∣∣ sign(C) ξ(C)e−S(C)

Re[ξ(C)e−S(C)]⟨O⟩C

)
/
∑

C

∣∣∣Re
[
ξ(C)e−S(C)

]∣∣∣(∑
C

∣∣Re
[
ξ(C)e−S(C)]∣∣ sign(C)

)
/
∑

C

∣∣Re
[
ξ(C)e−S(C)]∣∣

=
⟨sign ξe−S

Re[ξe−S ]⟨O⟩⟩P̄

⟨sign⟩P̄

,

(2.58)
where P̄ = |Re[ξ(C)e−S(C)]|∑

C
Re[ξ(C)e−S(C)] and ⟨sign⟩P̄ ∈ R. This allows to measure observables even

with negative transition weights. However, the configurations with negative and positive
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2.3 Stochastic Series Expansion

sign nearly cancel each other, so that ⟨sign⟩P̄ decays exponentially to zero with increasing
system size N and inverse temperature β. We can see this by considering the average
sign as the ratio of the partition function of the fermionic system Z = ∑

C ξ(C)e−S(C)

and the corresponding bosonic system Z ′ = ∑
C

∣∣∣ξ(C)e−S(C)
∣∣∣. As the partition functions

are exponentials of the corresponding free energies, this ratio is an exponential of the free
energy density difference ∆f

⟨sign⟩ = Z

Z ′ ∝ e−βN∆f . (2.59)

Consequentially, the relative error on the average sign increases exponentially with in-
creasing particle number and inverse temperature:

σ⟨sign⟩
⟨sign⟩

=

√(
⟨sign2⟩ − ⟨sign⟩2) /M

⟨sign⟩

=
√

1 − ⟨sign⟩2
√
M⟨sign⟩

∝ eβN∆f

√
M

,

(2.60)

where M is the number of MC samples and ∆f > 0. If a sign problem is present, for
instance for µ ̸= 0 in the case of the U -V model, the relative error on the average sign and
thus on the measurement increases exponentially with increasing system size and inverse
temperature [66, 67].

2.3 Stochastic Series Expansion

Starting with Hubbard-type models and drastically increasing the local interaction, so
that U ≫ t, we find the Heisenberg model to be an effective description for the residual
spin physics. We could continue simulating the high-U regime with DQMC, however, the
stochastic series expansion (SSE) is perfectly tailored to compute thermodynamic prop-
erties of the spin-1/2 Heisenberg model [23–25]. It is based on a high-temperature series
expansion of the partition function. The sampling of the partition function is enabled
through the Monte Carlo scheme.
This method is not solely limited to spin-1/2 Heisenberg Hamiltonians, but has been
applied to higher spin models as well [68]. The simulations have been successfully per-
formed on a distinct range of lattices including frustrated systems [26–29, 69], models with
long-range interactions [70], hard-core and soft-core boson Hamiltonians [71–73] and gen-
eralized SU(N) symmetric models [74, 75] making a connection to field-theoretic studies
of quantum phase transitions and universality [76, 77], among others.
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Chapter 2 Monte Carlo Methods

We adapt this section from the profound introduction of the SSE in [23, 25] with the
addition of directed loop updates [78, 79].

2.3.1 Series Expansion of the Partition Function

We demonstrate the SSE method on the example of the Heisenberg model without external
magnetic field:

H = J
∑
⟨i,j⟩

(
Sx

i S
x
j + Sy

i S
y
j + Sz

i S
z
j

)
= J

2
∑
⟨i,j⟩

(
S+

i S
−
j + S−

i S
+
j + 2Sz

i S
z
j

)
. (2.61)

The second line is a consequence of the definition of the spin ladder operators S±
i = Sx

i ±iSy
i

and J > 0 describes an antiferromagnet, whereas J < 0 describes a ferromagnet. The sum
runs over nearest neighbor sites or bonds, respectively.
We want to expand the quantum partition function for small inverse temperatures β =
1/T :

Z = Tr
(
e−βH

)
=
∑

{|α⟩}
⟨α|e−βH |α⟩

=
∑

{|α⟩}

∞∑
n=0

(−β)n

n! ⟨α|Hn|α⟩ , (2.62)

where H is the Hamiltonian of our lattice spin system and the set {|α⟩} spans an orthonor-
mal basis of the Hilbert space of H with

|α⟩ = |α1⟩ ⊗ |α2⟩ ⊗ · · · ⊗ |αN ⟩ , (2.63)

where the index denotes the site number. For instance, we take the tensor product of
the eigenstates of the local Sz

i operators |α⟩ = |sz
1, s

z
2, . . . , s

z
N ⟩. To evaluate the occurring

matrix elements we decompose the Hamiltonian into bond operators

H = −
∑
a,b

ha,b , (2.64)

with b = (i, j) labeling the bond consisting of sites i and j and a denoting the operator
type. A bond operator can be of a diagonal Ising type interaction or an off-diagonal
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spin-flip operator type with respect to the Sz-basis

h1,b(i,j) = Sz
i S

z
j − ϵ (2.65)

h2,b(i,j) = S+
i S

−
j + S−

i S
+
j . (2.66)

We add the constant ϵ to ensure that the diagonal matrix elements are positive. Fur-
thermore, on a bipartite lattice, we perform a rotation on one sublattice transforming
S±

i → (−1)iS±
i for positive weights. For a well defined probability weight we have to

introduce a restriction on the chosen basis states. We require the action of the bond
operators ha,b on the states |α⟩ to be non-branching:

ha,b |α⟩ ∝ |α′⟩ , |α⟩ , |α′⟩ ∈ {|α⟩} . (2.67)

This means that the bond operators map each pure state |α⟩ onto another pure state |α′⟩ in
the Hamiltonian’s Hilbert space. With this decomposition the powers of the Hamiltonian
can be written as

(H)n =

−
∑
a,b

ha,b

n

=
∑
{Sn}

(−1)n
n∏
i

hai,bi
, (2.68)

where {Sn} = {[a1, b1], [a2, b2], . . . , [an, bn]} are all product sequences of bond operators
called the “operator string”. Inserting this expression in the partition function’s trace we
obtain

Z =
∞∑

n=0

∑
{Sn}

∑
{|α⟩}

βn

n! ⟨α|
n∏
i

hai,bi
|α⟩ . (2.69)

Analogously, for the expectation value of an operator O we get

⟨O⟩ = 1
Z

∞∑
n=0

βn

n!
∑
{Sn}

∑
{|α⟩}

⟨α|O
n∏
i

hai,bi
|α⟩ . (2.70)

Expansion Cut-Off

For numerical implementations it is impractical to work with variable length or infinite
series expansions. To be able to implement the method we truncate the fluctuating ex-
pansion order by

L ≫ ⟨n⟩ ∝ Nβ , (2.71)

where L is a fixed upper bound, N the system size and β = 1/T the inverse temperature.
We have to ensure that we do not truncate too early so that this systematic error due to a
finite expansion is much smaller than the statistical error in the Monte Carlo scheme. In
practice, large system sizes sharpen the expansion order’s distribution around its average
so that L ≈ 2⟨n⟩ is sufficient. Since we fix the operator string length by the number bigger
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than its average, we have to fill the (L − n) vacancies with identity operators I ≡ h0,0.
There are

(L
n

)
spots to insert these identity operators, which have to be accounted for in

the partition function:

Z =
∑

{SL}

∑
{|α⟩}

βn

n!
(L

n

) ⟨α|
L∏
i

hai,bi
|α⟩ . (2.72)

In the above equation the number of non-identity operators n is implicitly calculated
through the amount of inserted identity operators h0,0 and the truncation order L.
In the evaluation of the partition function the next step is to calculate the action of the
operator string on the basis states. Therefore, we introduce the concept of a propagated
state

|α(p)⟩ ∝
( p∏

i=1
hai,bi

)
|α(0)⟩ , (2.73)

where |α(0)⟩ = |α⟩ is the initial state. With the non-branching property of the bond
operators, |α(p)⟩ is always a pure state. Furthermore, we assume the propagated states
to be normalized. For finite system sizes the series index p does not correspond precisely
to imaginary time, but represents a distribution of the latter, so that it is appropriate to
refer to the p-space as imaginary time-space.
Finally, we obtain a form of the partition function that can be efficiently sampled

Z =
∑

{SL}

∑
{|α⟩}︸ ︷︷ ︸

=
∑

C

βn(L− n)!
L!

L∏
p=1

⟨α(p)|hap,bp |α(p− 1)⟩
︸ ︷︷ ︸

=P (α,SL)=PC

=
∑
C

PC , (2.74)

where due to periodicity of the trace the boundary condition |α(0)⟩ = |α(L)⟩ holds. A
state propagated by the operator string needs to return to its initial composition of local
states. Thus, a configuration in the SSE is given by a combination of a state |α⟩ and an
operator string SL.

2.3.2 Observables

We focus on observables relevant to this thesis, which do not represent a complete list of
measurable quantities in the SSE. For observables diagonal in the computational basis,
such as the magnetization m = ∑

i s
z
i and its higher moments, we calculate the expectation

value straight forward:

⟨O⟩ = 1
Z

TrOe−βH =
∑

{SL}

∑
{|α⟩}

P (α, SL) ⟨α|O|α⟩ =
∑
C

PC⟨O⟩C . (2.75)
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By averaging over all possible insertion position of the operator we can improve the statis-
tics:

⟨O⟩ =
∑

{SL}

∑
{|α⟩}

1
n

n∑
p=1

P (α, SL) ⟨α(p)|O|α(p)⟩ . (2.76)

However, non-diagonal observables can be computed as well.
Considering the expectation value of the system’s energy

⟨H⟩ = E = − ∂

∂β
log(Z) , (2.77)

we see that the partial derivative can be carried out explicitly in Eq. (2.74). The additive
constant to the diagonal bond operators ϵ has to be subtracted again yielding

E = − 1
β

⟨n⟩ −Nbϵ , (2.78)

where Nb denotes the total number of bonds. We find a connection between the energy
and the mean expansion order. Similarly we find for the specific heat

C = ∂E

∂T
= ∂β

∂T

∂E

∂β

= ⟨n2⟩ − ⟨n⟩2 − ⟨n⟩ . (2.79)

With above approach one can compute higher moments of the energy ⟨Hm⟩.
In the same manner we can measure only parts of the Hamiltonian, namely single bond
operators. Extending this to products of these operators allows the measurement of cor-
relations of the form

⟨ha,bha′,b′⟩ = T 2⟨(n− 1)na,b,a′,b′⟩ , (2.80)

where na,b,a′,b′ is the number of adjacent operator pairs in the operator string. An im-
portant application are the bond correlations S⃗i · S⃗j . They are not diagonal in the com-
putational basis, but their correlation ⟨

(
S⃗i · S⃗j

) (
S⃗i′ · S⃗j′

)
⟩ can be referred to the bond

operators h1,b(i,j) and h2,b(i,j).
Furthermore, the system’s response to small perturbations (incorporated via H̃ = H+hB)

χAB = ∂⟨A⟩H̃

∂h
, (2.81)

where A is the observable which response we consider and B the perturbing operator
mediated by the strength h. Employing linear response theory, we evaluate these functions
with the Kubo formula

χAB =
∫ β

0
dτ⟨A(τ)B(0)⟩ − β⟨A⟩⟨B⟩ , (2.82)
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where A(τ) = e−τHAeτH .

Sign-Problem

As any other QMC method the SSE is not spared by the notorious sign problem. We can
do the same reweighting as we did for DQMC (see Sec. 2.2.5)

⟨O⟩ =
∑
C

PC⟨O⟩C = ⟨O sign⟩
⟨sign⟩

, (2.83)

including only positive, real valued configuration weights |PC | ≥ 0 and absorbing the sign
assigned to a configuration into the measured observable. What seems to be a promising
circumvention of the sign problem, comes with an exponential numerical cost in the sys-
tem’s size N and inverse temperature β, cf. Eq. (2.60).
In the SSE the weight PC = P (α, SL) depends on the chosen basis {|α⟩}. For the diagonal
operators we ensure a positive weight by adding a trivial constant and if the lattice can
be decomposed such that it is bipartite, the off-diagonal operators are made positive by a
spin-rotation on one of the sublattices. The problem arises when the lattice is frustrated.
There is an odd number of off-diagonal operators contributing to the operator string SL so
that we obtain a net negative weight PC . However, choosing a proper basis, like a dimer
basis for frustrated spin ladders [80–84], one can eliminate the sign problem or at least
improve it in certain models for a certain parameter range [85, 86].

2.3.3 Diagonal Update

For the Markov chain Monte Carlo process we have to efficiently update the configurations
C = C(|α⟩ , SL) → C ′. These updates have to be ergodic in the configuration space and
fulfill the detailed balance condition as described in Sec. 2.1.1.
We distinguish two alternating update schemes in the SSE described in this and the fol-
lowing sections. The diagonal update changes diagonal operators h1,b in the operator
string SL sequentially leaving the off-diagonal operators untouched. The boundary condi-
tion |α(0)⟩ = |α(L)⟩ is trivially fulfilled since a diagonal operator never changes the state
|α⟩. In particular, with certain probabilities we insert at uniform randomly chosen bonds
P (bp) = 1/Nb a diagonal operator at the position of an identity operator or vice versa.
There is only one unique way to remove a diagonal operator, to be precise to change a
diagonal operator into an identity operator. However, there are Nb possible spots to insert
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a diagonal operator. The respective probabilities are given by

Pinsert = min
(

1,
Nbβ ⟨α(p)|h1,bp |α(p− 1)⟩

L− n

)
(2.84)

Premove = min
(

1, L− n+ 1
Nbβ ⟨α(p)|h1,bp |α(p− 1)⟩

)
. (2.85)

Detailed balance is fulfilled for a whole sweep, i.e. going from p = 1 to p = L. However,
on its own the diagonal update is not ergodic.

2.3.4 Graphical Configuration Representation

For the introduction of the off-diagonal updates it is instructive to represent the op-
erator string in a certain diagram. We encode the product of matrix elements in the
partition function Eq. (2.74) as a bidirectional linked-vertex list. Each vertex, which
mathematically corresponds to the action of a bond operator on the current spin state
|α(p)⟩ = ha,b(i,j) |α(p− 1)⟩, consists of four legs and the operator type. The lower and
upper two legs form the same bond in real space, while we perform one imaginary time
step along the y-axis. The four possible vertices for the isotropic spin-1/2 Heisenberg
model with the leg numbering convention is depicted in Fig. 2.1.

0

2 3 2 3 2 3 2 3

1 0 1 0 1 0 1

Figure 2.1: Allowed vertices for the spin-1/2 Heisenberg model. The solid(open) circles
represent a local one-particle spin up(down) state and the solid(open) bar
stands for a diagonal(off-diagonal) bond operator. Reading each vertex from
bottom to top we pictorially show the action of both operator types on a bond
in the propagated state |α(p)⟩.

An example of an 8 spin-chain SSE configuration is shown in Fig. 2.2. Constant spin
states along the propagation direction are connected by straight lines, which we call bidi-
rectional links (numerically pointers). The propagated states |α(p)⟩ are manipulated by
the bond operators denoted as vertices in the space-time diagram, whereas the absence of
a horizontal bar represents an identity operator. An SSE configuration is only valid if the
propagation sequence is periodic, i.e. |α(0)⟩ = |α(12)⟩ = |α⟩.
This graphical representation will be essential in understanding the global off-diagonal
update scheme introduced in the next section.
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1

1 2 3 4

2

3

4

5

6

7

8

9

10

11

12

p

0
5 6 7 8

Figure 2.2: An 8 spin-chain SSE configuration adopted from [16]. Solid(open) bars in-
dicate diagonal(off-diagonal) bond operators h1,b(h2,b) and solid(open) circles
represent the one-particle spin state |↑⟩(|↓⟩). The tensor product state |α⟩ is
propagated from bottom to top, where no horizontal bar between states cor-
responds to a “fill-in” identity operator h0,0.

2.3.5 Directed Loop-Update

The naive approach to execute an off-diagonal update would be changing an off-diagonal
operator pair into diagonal ones and vice versa. At least two changes are necessary to
maintain periodicity. In practice this can lead to low acceptance rates and other subtle
issues. For better performance global operator-loop updates have been introduced for
the SSE [25]. The major improvement is that the configuration weight only depends on
the number of operators, which remains unchanged when flipping the loop. In general
the performance is enhanced compared to local pair updates, especially in the presence of
external fields. However, the loop update has to be tailored to certain models or parameter
regimes, respectively, to maintain its efficiency. For instance, taking the spin-1/2 XXZ

model
H = J

∑
⟨i,j⟩

(
Sx

i S
x
j + Sy

i S
y
j + ∆Sz

i S
z
j

)
− h

∑
i

Sz
i , (2.86)
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with an uniaxial anisotropy ∆ and external magnetic field h, it is known that the general
formulation performs poorly at the Heisenberg point (∆ = 1, h = 0) or the XY model
point (∆ = 0, h = 0), for which efficient schemes have been designed [78]. The latter are
only applicable in these limiting cases.
Based on the operator-loop update we discuss a generalized formulation known as the
directed loop update. As the name suggests the goal is to construct a closed loop by
directed traversing through the space-time diagram. The global update is a series of
local updates each fulfilling the detailed balance condition making it a “runtime” global
updating scheme. To this end it has to obey certain rules.

Constructing a Closed Loop

To construct the loop we pick a random link in the linked-vertex list and introduce a
discontinuity in the configuration at some imaginary time p and site i. We replace the
local state |αi(p)⟩ by two new, artificial states indicated by a square and an arrow in
Fig. 2.3. In this abstract picture these states reside at intermediate positions of the

p+1

p

p+2

p-1

p-2
i+1i

Figure 2.3: Discontinuity in the configuration space at site i and propagation level p. The
local state |αi(p)⟩ is replaced by two artificially constructed states. We indicate
the static “tail” with a square and the dynamic “head” with an arrow.

discretized p-axis, so that we technically do not associate any physical meaning with them
but a mathematical construction. However, these states are consistent within the space-
time configuration. From the pair we specify the “tail”, indicated by the square, to remain
static and the “head”, indicated by the arrow, to be able to move through the space-time
diagram. On its trajectory, the head is allowed to change the local spin states, even in
the initial state |α(0)⟩, and the operator type such that detailed balance and periodicity
are fulfilled for any vertex update. At some point the head meets the tail and both
annihilate creating a significant change to the configuration. The head moves freely along
links in p-direction until it encounters a vertex through an entrance leg. The head leaves
then the vertex through a randomly chosen exit leg. This scattering process leads to four
scenarios shown in Fig. 2.4: (i) bounce and remain on the same link (which effectively does
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bounce straightturn jump

Figure 2.4: Head scattering on a vertex. The encounter of the head with a vertex leads to
four scenarios labeled by the terms below the respective picture.

not contribute to an update), (ii) turn by jumping on the adjacent site in the bond and
reverse the propagation direction, (iii) continue in a straight line and (iv) jump diagonally
on the adjacent site on the state propagated on a level up or down and continue along the
original direction. To stay consistent the head changes its spin state to the respective state

1
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0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 2.5: An SSE linked-vertex configuration with a directed-loop update. On the left
the head-tail pair is introduced on the state |α2(9)⟩ and is propagated upwards
along the red contour. All the spins touched by the head are flipped and the
operators in each vertex are changed from diagonal to off-diagonal and vice-
versa. On the right the changes of the loop, indicated by the red dashed lines,
are displayed forming a new configuration C ′.

on the exit leg (we call it the exit state) and goes to the next vertex. The probability of a
vertex update is calculated a-priori from a general set of directed-loop equations reviewed
in the next paragraph. Furthermore, the head is allowed to change the local spin state on
the links themselves. One can imagine the head carries in front of it an S+

i or S−
i operator.

In the case of spin-1/2 models the head suffices to be the linear combination S+
i + S−

i .
Technically, for spin-1/2 systems the tail can be understood as the same operator, so that
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the system resides in an “extended space” or “extended ensemble”.
An example of a closed directed loop is shown in Fig. 2.5 on the left side and the new
configuration with a remnant indication of the loop on the right side. The head-tail pair
replaces the state |α2(9)⟩ and is propagated upwards following the red contour. On its
trajectory it flips the spins it touches with the appropriate operator switch, with no net
change if a vertex is visited twice, until it meets the tail again and the loop is closed.
We change the operators in the operator string SL (and may also change the state |α⟩ if
the head touches the periodic boundary) keeping the number of operators constant. The
driving mechanism to change the operator number and with that the expansion order n is
the diagonal update. One diagonal update is followed by a fixed number of loop updates
NL in each Monte Carlo step that is chosen such that on average every vertex is touched
twice by the loops.

Directed-Loop Equation

As mentioned before, we need to calculate the probabilities of the head-vertex encounters
for the different scenarios. To be precise, we mean the probability to choose the exit leg
at each touched vertex. In the following we review equations for these probabilities, based
on Ref. [78], which have been generalized in the derivations in Ref. [79].
Consider the head touching a vertex Vi. The state of the vertex, see Fig. 2.1 for our leg
labeling convention, before the encounter is

|Σb(i,j),p⟩ = |σ(0)⟩ ⊗ |σ(1)⟩ ⊗ |σ(2)⟩ ⊗ |σ(3)⟩ (2.87)

= |αi(p− 1)⟩ ⊗ |αj(p− 1)⟩ ⊗ |αi(p)⟩ ⊗ |αj(p)⟩ ,

where b denotes the bond and p the imaginary time level. With Σ̄b,p we denote the vertex
state after the head-vertex encounter having changed two states and the operator type.
The two ingoing legs of a bond b(i, j) are labeled 0 and 1, the outgoing ones 2 and 3. With
this definition we can associate a weight to each vertex

W (Σb,p) = (⟨σ(2)| ⊗ ⟨σ(3)|)hap,bp (|σ(0)⟩ ⊗ |σ(1)⟩) (2.88)

= ⟨α(p)|hap,bp |α(p− 1)⟩ ,

which is exactly the matrix element in Eq. (2.74). The head enters a vertex Vi from the
leg li and exits it through l′i, where l = 0, 1, 2, 3. Both states are changed and become
Ti−1 |σ(li)⟩ and Ti |σ(l′i)⟩ with Ti−1 being the operator carried by the head before the vertex
encounter and Ti being the the operator after the first leg encounter. In our spin-1/2 case
we can set T = S+ + S− for each leg encounter and may drop the vertex index. However,
we continue with the general notation. We define the conditional probability of exiting on
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leg l′i given the entrance leg li (and the guarantee that the head exits the vertex) as

P (Σb,p, Ti−1 → Ti, li → l′i) ,with (2.89)∑
l′i

P (Σb,p, Ti−1 → Ti, li → l′i) = 1 . (2.90)

Originally it has been shown [25] that a generic solution for any model suffices

P (Σb,p, Ti−1 → Ti, li → l′i) ∝ W (Σ̄b,p) , (2.91)

i.e. setting the exit probability proportional to the weight of the vertex after the head
encounter, which is referred to as the heat bath solution. During the method’s development
it has been found that this choice is not optimal due to the bounce process [74, 78, 87]. It
leads to undesired backtracking of the head’s propagation. Another more efficient solution
was required that minimizes or eliminates the probability of bounces. Now we face a set of
equations for an optimization problem under the constraint to fulfill local detailed balance
for each scattering:

∑
l′i

W (Σb,p)P (Σb,p, Ti−1 → Ti, li → l′i) = W (Σb,p) , (2.92)

W (Σb,p)P (Σb,p, Ti−1 → Ti, li → l′i) = W (Σ̄b,p)P (Σ̄b,p, T
†
i → T †

i−1, l
′
i → li) . (2.93)

Further, one can introduce weights for the head (and tail) for a more general formulation
that reduces bounces [79]. A proof of detailed balance can be found in App. A.2.1.

Loop measurement

The directed loop update adds another measurement technique to the list. In the extended
ensemble we can measure correlation functions between the head and the tail. Equal time
correlation functions are measured by counting the number of times the head on its tra-
jectory crosses the imaginary time p, where the tail remained. This enables us in our
example of an S+ or S− operator carried by the head to calculate correlations of the form
⟨Ss

i S
s′
j ⟩ for s, s′ ∈ {+,−}. We can generalize this concept to arbitrary local off-diagonal

observables [29] and to non-equal time measurements [88].

With this we close the review of the two quantum Monte Carlo methods DQMC and SSE
we use in this thesis and discuss aspects of post-processing numerical data the algorithms
produce.
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2.4 Data Processing

In general the statistical errors are model and observable dependent so that for strongly
fluctuating measurements we require a very high number of MC sweeps. We define one
sweep to be one measurement in configuration space ⟨O⟩C , whenever that happens during
the execution of the different algorithms. For a proper use of (quantum) Monte Carlo we
need the procedure to be parallelized on CPU cores for reliable statistics. That means
every CPU core executes a simulation independently, obtaining a set of measurements of
estimators for the expectation value of observables, which are averaged over the number
of parallel simulations. Typically, we average over the parallel measurements for each MC
sweep to generate one data list for every observable.

Thermalization

Since we start every new simulation with a randomly generated configuration, it is highly
unlikely to hit the high-weight configuration space region matching the current model pa-
rameters. Therefore, we let the algorithm do a certain amount of sweeps during which
nothing is measured so that importance sampling leads the computation into the relevant
region. This period is called thermalization or equilibration. In itself this is a non-trivial
out-of-equilibrium process. The number of sweeps, which we call Monte Carlo time, nec-
essary to be able to make equilibrium measurements is a-priori unknown. Instead of
computing the exact (or an estimated) thermalization time, in practice, we fix it based on
experience of repeated simulations.

Autocorrelation and Binning

For the formulas introduced in Sec. 2.1 to hold, we need the individual measurements
O(x⃗i) ≡ Oi in the data sets to be uncorrelated. However, since one configuration in the
consecutive Markov-chain process depends on its predecessor, a certain correlation during
the measurements is naturally introduced. We call the separation of two configurations,
which are sufficiently uncorrelated, the autocorrelation time. The autocorrelation can be
quantified with the statistical error. Inserting the arithmetic mean ⟨O⟩ = ∑M

i=1Oi in
σ⟨O⟩2 = ⟨O2⟩ − ⟨O⟩2, we get

σ2
⟨O⟩ = 1

M2

M∑
i=1

(
⟨O2

i ⟩ − ⟨O2
i ⟩2
)

+ 1
M2

M∑
i ̸=j

(⟨OiOj⟩ − ⟨Oi⟩⟨Oj⟩) , (2.94)

where M is the total number of measurements. In the above equation we separate the
diagonal part, which accounts for individual variances of uncorrelated data, from the off-
diagonal part. The first term is independent of the measurement time i and yields σ2

Oi
/M .
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The second term contains the correlations between the i-th and j-th measurement. For a
perfectly uncorrelated data set the second term vanishes. In equilibrium we are guaranteed
time-reversal symmetry i ↔ j, so that we can rearrange the terms into

σ2
⟨O⟩ = 1

M

[
σ2

Oi
+ 2

M∑
k=1

(⟨O1O1+k⟩ − ⟨O1⟩⟨O1+k⟩)
(

1 − k

M

)]
. (2.95)

We factor out σ2
Oi

and obtain the closed form

σ2
⟨O⟩ =

σ2
Oi

M
2τ ′

O,int , (2.96)

with the integrated autocorrelation time

2τ ′
O,int = 1 + 2

M∑
k=1

A(k)
(

1 − k

M

)
, (2.97)

where
A(k) = ⟨O1O1+k⟩ − ⟨O1⟩⟨O1+k⟩

σ2
Oi

k→∞−−−→ e−k/τO,exp (2.98)

is the normalized autocorrelation function introducing the exponential autocorrelation
time τO,exp giving an intuitive time scale. In a proper MC simulation M ≫ τO,exp so that
k/τO,exp ≫ k/M . Hence, for simplicity we omit the correction and write the integrated
autocorrelation time as

2τO,int = 1 +
M∑

k=1
A(k) . (2.99)

The goal for a decent data analysis is to reduce the integrated autocorrelation time to 1.
A naive error calculation would result in an underestimated statistical error on the mean
value. The autocorrelation time is model and parameter dependent, e.g., it is higher close
to second order phase transitions, and can be judged for every simulation by evaluating
the autocorrelation function.
A convenient method to circumvent the correlation problem is the binning analysis. The
original data set of M measurements is cast to MB non-overlapping bins of length k, i.e.
every bin is an average of k original measurements. We thus obtain a shortened data set

O
(B)
i = 1

k

k∑
i=1

O(i−1)k+i , (2.100)
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Figure 2.6: Comparison of (a) unbinned and (b) binned data. The simulations have been
carried out with the finite temperature DQMC scheme on a single CPU core
for the U -V model on a 12×12 square lattice for T/t = 0.19, U/t = 1.9 and
V/t = 0.3. The data consists of around 40000 equilibrated measurements of
the double occupancy. The black vertical line indicates the arithmetic mean
of the sample. The unbinned data (a) follows an unknown distribution so that
the standard data analysis yields biased results. The binned data (b) shrinks
the data set to 400 bins each averaged over 100 data points.

with i = 1, . . . ,MB. For k ≫ τO,int the bins are essentially uncorrelated. The standard
estimator for the variance reads

σ2
⟨O⟩ = σ2

B

MB
= 1
MB(MB − 1)

MB∑
i=1

(
O

(B)
i − ⟨O(B)⟩

)2
. (2.101)

The binning procedure can be displayed by the distribution of the distinct measurements,
as shown in Fig. 2.6. The histograms display the consecutive measurements of the double
occupancy D = ∑

i ni↑ni↓ with the DQMC method of the U -V model. In the left panel
we see how the unbinned data follows a non-symmetric distribution so that the arithmetic
mean does not align visually with the expected peak. This originates from correlations
in the Markov-chain. The cure is shown in the right panel, where we merge every 100
measurements into one bin. The resulting distribution is symmetric and our estimator for
the expectation value fits to the Gaussian mean.

Jackknife-Resampling

Even if the bins are (sufficiently) uncorrelated, the problem of error propagation for quan-
tities that are non-linear combinations of the Green’s function (or other directly measured
quantities) arises. To circumvent any bias in this case, we employ the Jackknife resampling
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2

MB

1

k

M

Figure 2.7: The first block shows the whole data set consisting of M measurement values
split into MB = 10 bins of length k. The second block (i = 1) and all consec-
utive ones represent the Jackknife blocks leaving out the blank bin.

scheme [89]. From the original bin set we form MB Jackknife blocks O(J)
i , containing all

data but the i-th bin,

O
(J)
i = M⟨O⟩ − kO

(B)
i

M − k
, (2.102)

where i = 1, . . . ,MB. Each Jackknife block consists of M − k measured values, which
is illustrated in Fig. 2.7. With this scheme we produce a data set of the same length as
the original one. We average each “jackknifed” block, which results in a data set that
scrambles the original set’s information of an error estimate onto the new MB data points
and allows us to use the standard variance formula for any observable. For the estimation
of non-linear combinations of basic quantities the bias is comparable to that of the total
data set, since 1

M−k ≳ 1
M . The Jackknife blocks are trivially correlated, because the same

sample is reused over and over again. This correlation is of a different nature than the
one originating from the temporal dependence of the Markov-chain. Consequently, the
Jackknife variance σ2

J will be smaller than the binning variance. However, this reduction
can be corrected by multiplying (MB − 1)2 with Eq. (2.101) to obtain

σ2
⟨O⟩ = MB − 1

MB

MB∑
j=1

(
O

(J)
j − ⟨O(J)⟩

)2
. (2.103)
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Non-Local Interaction Extensions
to the Hubbard Model 3
The Hubbard model is an intriguingly simple, yet rich model to study itinerant fermions
in systems with narrow energy bands. The interplay between kinetic energy and the local
on-site repulsion yields strong correlation effects. However, for theoretical studies of real
materials with partially screened interactions we extend the pure local U -interaction to two
cases: (i) nearest-neighbor interactions and (ii) long-range Coulomb (LRC) interactions.
We perform large scale DQMC simulations within sign-problem free coupling regimes at
finite temperatures, assess a recent study in terms of a first-order metal-to-insulator tran-
sition and propose a scenario to accommodate our findings.

The results in this chapter have been published in Ref. [1]. My contributions have been
performing the DQMC simulations, carrying out the extrapolations and partially writing
the manuscript. This project has been a continuation of my master’s thesis. However, all
results presented here have been obtained during my PhD time.

3.1 Motivation

Despite its apparent simplicity, to this day the two-dimensional Hubbard model [7–9], re-
mains analytically unsolved in the thermodynamic limit. Nevertheless, it provides a rich
ground for the study of fundamental phenomena in condensed matter physics. From the
theoretical and computational side it is examined for instance with the numerical linked
cluster expansion [90], dynamical cluster approximation [91], variational cluster approxi-
mation [92], diagrammatic determinant Monte Carlo [93] or cellular dynamical mean field
theory [94], to name a few (see Ref. [43] for benchmarks from a wide range of numerical al-
gorithms). During the exploration of its physical properties, its relevance to a wide breath
of fundamental phenomena in condensed matter physics has been demonstrated, includ-
ing the Mott-insulator transition, and the emergence of symmetry broken states, such
as antiferromagnetism (AFM) or superconductivity (see Ref. [10] for a recent review).
Furthermore, experimental realizations of this model have been demonstrated. By cold-
atom optical trapping [95], experimental groups demonstrated fundamental properties like
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a superfluid-insulator transition in the Bose-Hubbard model [96], the Mott-insulator be-
havior of fermionic atoms [97], measurements of energetics and correlations [98, 99] and
recently the AFM phase transition [100].
To account for the effects of the partially screened Coulomb interaction we add a nearest-
neighbor or a long-range Coulomb interaction term, respectively, in addition to the local
Hubbard-U . Non-local interactions are known to affect various quantities, for example the
electronic band width [101, 102] or they can induce charge density wave states [103–107].
A recent study explored the effects of both above mentioned inter-site interaction types
on the metal-to-insulator transition on the half-filled square lattice based on a variational
approach [108, 109]. In detail, employing the Peierls-Feynmann-Bogoliubov variational
principle, the extended Hubbard model was approximated in Ref. [109] by an effective
local Hubbard model in terms of an effective hopping parameter t̃ and an effective local
interaction strength Ũ . Based on the integration of thermodynamic data for the effective
local Hubbard model, obtained using DQMC simulations on a dense parameter grid, ap-
plying a two-dimensional Savitzky-Golay filter and spline interpolation to the grid data
the variational free energy was calculated. Evaluating the results of this variational ap-
proach, several conclusions regarding the effects of non-local interactions were proposed.
In particular, Ref. [109] describes two distinct mechanisms regarding the suppression of
correlation effects by non-local interactions: The effective local repulsion Ũ is reduced
within the Fermi-liquid regime, while the effective hopping amplitude t̃ is increased in the
insulating regime. Furthermore, the competition between both effects was found to be the
driving mechanism for a first-order metal-to-insulator transition in the presence of non-
local interactions. From a comparison of available experimental data on materials with
purely electronic metal-to-insulator transitions with the associated entropy jump across
the transition, the authors conclude that non-local interactions are at least in part respon-
sible for the discontinuous metal-to-insulator transitions observed in correlated electron
materials. For a substantial conclusion, the results from the variational approach have
to be compared to unbiased calculations that take the non-local interactions fully into
account. Indeed, the parameter region in the vicinity of the proposed thermodynamic
discontinuity is accessible to sign-problem free DQMC simulations. This means we are
able to include a full treatment of the non-local interaction terms [50, 110].
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3.2 Extended Hamiltonian

We consider the extended Hubbard model including non-local charge density interactions,
described by the Hamiltonian

H = −t
∑

⟨i,j⟩,σ

(
c†

iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓ + 1
2
∑
i ̸=j

Vijninj . (3.1)

Here, c†
iσ (ciσ) is the fermionic creation (annihilation) operator on site i with spin σ, niσ

the local spin resolved occupation operator and ni = ni↑ + ni↓ the total local occupation.
Furthermore, t is the nearest-neighbor hopping strength, U is the local electron-electron
repulsion and Vij is the inter-site repulsion, which we define for (i) the nearest-neighbor
case and (ii) the long-range Coulomb case as follows

Vij =

V , for i, j nearest − neighbors (U−Vmodel)
VC
dij

, for i ̸= j (LRC − model)
. (3.2)

We examine the model on a square lattice with N = L× L sites with periodic boundary
conditions in both directions and a lattice constant a = 1 at half-filling. For the long-range
Coulomb case dij denotes the minimal distance of lattice sites i and j.
For our studies of the thermodynamic properties of the above introduced model, Eq. (3.1),
we use the finite temperature version of the DQMC method (cf. Sec. 2.2). For the
implementation we use the ALF code [42] as basis. We simulate the model sign-problem
free using appropriate Hubbard-Stratonovich decoupling schemes [50, 110] (cf. App. A.1.2)
for both the on-site and inter-site interactions within the regimes (i) V ≤ U/4 for the U -V
model, so that the renormalized Ū = U − zDV ≥ 0, and (ii) VC ≲ 0.62U , such that
Uδij + Vij is a positive-definite matrix, for the LRC-Hubbard model. Note that an earlier
study of the U -V model used a HS decoupling scheme in the DQMC framework that leads
to a sign-problem for any finite V > 0 [104], which is not mentioned explicitly in that
reference. As usual, we denote the (inverse) temperature by T (β = 1/T ), while we set
Boltzmann’s constant to unity, kB = 1.
In our work we analyze two quantities, namely the entropy S and the double occupancy

D = 1
N

∑
i

⟨ni↑ni↓⟩ . (3.3)

We mainly focus on the double occupancy D, for which we perform a spatial averaging in
order to enhance the statistical accuracy. For our temperature resolved results for D, we
preformed a ∆τ → 0 extrapolation, as detailed below in Sec. 3.5.1. The data for D shown
in the results section 3.3 is always obtained from this extrapolation analysis.
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The entropy S (per site) is obtained from the DQMC values of the internal energy E (per
site) at ∆τ = 0.1/t via thermodynamic integration,

S = βE(β) + ln(4) −
∫ β

0
dβ′E(β′) . (3.4)

This formula stems from the thermodynamic relations for the free energy F = E − TS,
F = −T ln(Z) and the internal energy E = −∂β ln(Z), whereas ln(4) is the value of the
entropy in the T → ∞ limit. We evaluate the integral numerically using the trapezoidal
rule on a dense β-mesh. For the estimation of a statistical error of the integral we employ a
simple bootstrap scheme: We repeatedly let the DQMC data points for E fluctuate within
their respective error bars according to a Gaussian distribution and evaluate the integral
in each iteration to obtain an averaged value with a statistical error. Additionally, we
also measured the structure factors for antiferromagnetic (AF) ordering, stabilized, e.g.
in the ground state of the Hubbard model at half-filling and for the commensurate charge
density wave (CDW) state that is expected to be stabilized for sufficiently strong V in the
U -V model [104]. The structure factors read

SAF = 1
N

N∑
i,j=1

ϵiϵj⟨SiSj⟩ (3.5)

SCDW = 1
N

N∑
i,j=1

ϵiϵj⟨ninj⟩ , (3.6)

where ϵi = ±1, depending on which sublattice of the bipartite square lattice the site i
belongs to.

3.3 Results

In this section, we report the results from our DQMC simulations and compare them
with previously reported findings. First, we present results for the Hubbard model, i.e.
V = VC = 0. Afterwards, we add more complexity to the system by considering nearest-
neighbor non-local interactions and finally consider the long-range interacting case.

3.3.1 Hubbard Model

Highly accurate and detailed DQMC results of numerous thermodynamic quantities for
the Hubbard model have been reported in Ref. [111]. However, these do not include the
thermal behavior of both D and S, which we review below. For a direct comparison of
our results with the numerical results reported from the variational approach in Ref. [109],
we focus on the specific on-site repulsion to hopping ratio U/t = 1.9, which locates the
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electronic system within the Slater regime. In contrast to the Mott regime, where the
insulating behavior emerges from a strong on-site Coulomb repulsion regardless of mag-
netic correlations, the Slater insulating regime is characterized by an antiferromagnetic
ordering instability. We show in the left panel of Fig. 3.1 the DQMC results for D and in
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Figure 3.1: Temperature dependence of (left) the double occupancy D and (right) the
entropy S for the Hubbard model at U/t = 1.9 . The insets focus on the
low-temperature regime containing the local maximum of D. Both figures are
adapted from Ref. [1].

the right panel the results for S as a function of temperature simulated for various system
sizes L. A distinctive feature of D in this regime is the appearance of a maximum at
low temperatures. Furthermore, we include the extrapolation to the thermodynamic limit
(TDL), performed as described below in Sec. 3.5.2.
We quickly review the the non-monotonous behavior of D in the Slater regime exhibiting
both a local minimum and a maximum. In cases where the long-range antiferromagnetic
order in the ground state is quenched , one may also find a local minimum in the double
occupancy, e.g., by geometric frustration [112] or within the non-magnetic dynamical-
mean-field-theory approximation of the Hubbard model [113]. With increasing T the
double occupancy D initially decreases due to an entropic effect analogous to the Pomer-
anchuk effect in Helium 3 or ultra-cold atoms [114]. The system gains entropy due to
the formation of non-ordered local magnetic moments with respect to a state of itiner-
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ant electrons. However, further increasing the temperature, D eventually has to increase
again due to thermal fluctuations to meet the non-interacting value 1/4 in the limit of
infinite T . Combining the tendencies of both effects results in the local minimum of D
visible in Fig. 3.1 at Tmin = 0.83t. As for the local maximum in D at Tmax = 0.085t we
can understand its formation from the proliferation of antiferromagnetic fluctuations for
the Hubbard model on the bipartite square lattice via an energetic effect: In the Slater
regime, the local Hubbard interaction energy U∑i⟨ni↑ni↓⟩ = UD decreases upon lowering
the temperature due to the onset of antiferromagnetic fluctuations [111]. We point out
two mechanism responsible for the maximum in D at low temperatures: Moving away
from the maximum towards lower temperatures, D is lowered to decrease the interaction
energy (Slater effect). Competing to that, D is suppressed towards higher temperature
to increase the spin entropy (Pomeranchuk effect). Note that the DQMC data for D in
Fig. 3.1 shows an evidently faster drop for decreasing temperatures than for increasing T
starting from the position of the maximum at Tmax.
At this point we can draw a direct comparison of the DQMC data to the results re-
ported from the variational approach [109]. We focus on the local maximum in the low-
temperature region in particular. Both approaches agree well regarding the maximum’s
position Tmax. However, both the finite-size DQMC data as well as the TDL extrapolated
values fall below 0.2, whereas the local maximum extends clearly beyond 0.207 within the
variational approach. One might consider this difference rather small, but such a fine scale
is indeed relevant in view of the fact that the jumps in D reported in Ref. [109] for finite
V, VC > 0 are of even smaller magnitude. The detailed discussion follows below.
Before turning to finite extended interactions, we discuss the results for the entropy S for
the same value of U/t = 1.9, cf. Fig 3.1. At intermediate temperatures below T ≈ t, we
observe an essentially linear decrease of S for large systems, down to a temperature of
T ≈ 0.08t. Continuing descending in temperature we observe a more rapid decrease of
the entropy. Overall, this behavior is similar to the aforementioned asymmetric behavior
in D near its local maximum at Tmax. The enhanced reduction of both D and S below
Tmax reflects the Slater effect mentioned above upon entering the regime of proliferating
antiferromagnetic fluctuations. Furthermore, the finite-size data for the entropy indicates
a small temperature window below Tmax, where S exhibits a (mild) increase with system
size L, in contrast to its decrease with increasing L outside of this region. We suspect
this anomalous behavior to originate from the growth of the antiferromagnetic correlation
length on scales comparable to the system sizes for the chosen parameters. Instead, for
lower (higher) temperatures the correlation length is well above (below) the dimension L

of the finite lattice cell.
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3.3.2 U-V Model

Next, we focus on the U -V model. In particular, we perform simulations for the param-
eters V/t = 0.3 and the same U/t = 1.9 as above. The reason for this precise parameter
set is the observation of a noticeable jump in D within the variational approach at a tem-
perature of T ≈ 0.085t, which in Ref. [109] has been taken as an indication of a first-order
metal-to-insulator transition. We perform the same data analysis for both thermodynamic
quantities D and S as in the previous section and obtain the DQMC results presented in
Fig. 3.2. In Fig. 3.3 we display the DQMC data for both D and S for the purpose of a
direct comparison for the different models. Our data agrees with general expectations and
the results from the variational approach regarding the increase of D for the case of finite
V > 0, corresponding to an overall decrease of the local correlations. As for the entropy
we observe a small increase in the low-temperature region for finite V > 0, while the
general behavior of S remains similar to the V = 0 case. Besides the overall enhancement
in D, especially in the temperature region around the local maximum, we do not observe
a significant change in, e.g., the temperature of the maximum.
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Figure 3.2: Temperature dependence of (left) the double occupancy D and (right) the
entropy S for the U -V model at U/t = 1.9, V/t = 0.3 . The insets focus on
the low-temperature regime. Both figures are adapted from Ref. [1].

In the TDL extrapolation we observe a steeper drop of D on the low-temperature side
of the maximum than for V = 0 case. However, compared to the variational approach,
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the finite-size DQMC data does not exhibit any indication for the onset of a discontinuity
in D near the local maximum. Ref. [109] reports that the jump obtained by means of
the variational approach is of order 3 × 10−4 for V/t = 0.3 and therefore rather small.
As discussed in the previous section, we already noted that for the pure Hubbard case
V/t = 0 the DQMC values for D deviate from the values obtained in Ref. [109] by a much
larger difference, namely of order 7 × 10−3. Furthermore, the finite-size systems studied
with the variational approach extend up to L = 12, which is well below the value of up to
L = 20 used in our DQMC simulations. Consequently, these observations suggest that the
difference between the DQMC data and the data obtained with the variational approach
stem from the interpolation and approximation schemes employed in Ref. [109]. While
from our analysis we cannot definitely rule out that an extremely weak discontinuity may
eventually arise (e.g., for values outside the sign-problem free regime V/U > 1/4), the
above direct comparison of the magnitude of the deviations obtained from the variational
approach with the DQMC data for the case V/t = 0 indicates that the small values of
the reported discontinuity actually fall well within the error margins of the variational
approach.
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models with extended interactions with respect to the entropy of the Hubbard
model (here denoted as S0). The figure is adapted from Ref. [1]
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3.3 Results

In addition to the specific value of V/t = 0.3, we performed DQMC simulations at other
values of V up to including the limiting case of V = U/4 = 0.475t for sign-problem free
calculations with U/t = 1.9. The TDL-extrapolated values of the double occupancy D

for the additional nearest-neighbor interaction strengths can be found in the left panel of
Fig. 3.4, whereas the left panel of Fig. 3.5 shows the DQMC values for the entropy S on
the largest considered system size L = 20 for the U -V model. For the various values of
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V , as for the case V/t = 0.3 in detail considered above, both quantities exhibit similar
behavior and trends. A noticeable difference is the presence of a (weak) peak in D at the
largest accessible values of V/t ≳ 0.4. We explain the corresponding enhancement in the
local density fluctuations from considering the ordering tendencies of the U -V model. For
sufficiently strong V , this model is expected to stabilize in a CDW ground state [104].
With the findings of a recent zero-temperature DQMC study [115], which demonstrates
that for V ≤ U/4 the system has an AFM ground state, we propose the stabilization of
a CDW order for V sufficiently larger than U/4 only. We provide DQMC data for both
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structure factors SAF and SCDW for L = 20 and various values of V in the left panels of
Fig. 3.6 and Fig. 3.7 for the U -V model. In agreement with the AFM ground state in the
considered regime we find within the region accessible to DQMC a steady increase of the
AFM structure factor with decreasing T . According to the Mermin-Wagner theorem [20],
AFM order is destroyed by thermal fluctuations at any finite temperatures in the TDL.
Upon lowering the temperature the CDW structure factor initially increases, before it is
suppressed at sufficiently low T , which reflects the findings in Ref. [115] that for V ≤ U/4
the ground state orders antiferromagnetically, while no CDW order persists. Increasing
V , at some point the emerging CDW order stabilizes with respect to (weak) thermal fluc-
tuations contrary to the AFM, i.e., the CDW order melts at a finite critical temperature
across a thermal phase transition. From symmetry considerations, this transition belongs
to the two-dimensional Ising universality class breaking a discrete Z2 symmetry. The crit-
ical local density fluctuations eventually enhance the double occupancy D in the vicinity
of this thermal critical region for values of V ≲ U/4, which apparently is captured by the
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data in Fig. 3.4. As a rough estimate for the critical temperature of the CDW melting
transition in the interaction regime where the CDW ground state emerges, we identify
from the peak position in D a temperature of T/t ≈ 0.06.

3.3.3 LRC-Hubbard Model
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For completeness, we also perform simulations for the case of long-range Coulomb interac-
tions. In particular, we fix again the parameters U/t = 1.9 and set VC/t = 0.3 accordingly
to the nearest neighbor interaction V in the U -V model presented in the previous section.
For this parameter set the variational approach yields a discontinuity in D comparable in
magnitude to the U -V model case. In Fig. 3.8 we present our DQMC data for the LRC
model. In this case, again we observe an overall enhancement of D and S with respect
to the Hubbard model case, VC/t = 0. The addition of interactions beyond the nearest-
neighbor sites leads to a subtly weaker increase of D than for the U -V model, whereas
the low-temperature enhancement of S is larger than for the latter model. Regarding the
discontinuity reported in Ref. [109] for the LRC-Hubbard model, in this case, we also do
not observe any indication for its presence in the DQMC data for D. Similar to the U -V
model we performed DQMC simulations for varying values of VC within the sign-problem
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free regime for U/t = 1.9. We present the DQMC data for the various considered quan-
tities, D, S, SAF and SCDW, in the right panels of Figs. 3.4, 3.5, 3.6 and 3.7. For the
considered values of VC/t > 0.6 the computation did not allow us to reach sufficiently low
temperatures down to the asymptotic low-T regime to see, e.g., the suppression of the
entropy at low enough temperature (cf. Fig. 3.5). Within the relevant temperature range
around T/t ≈ 0.06, throughout the accessible interaction regime, the additional DQMC
data exhibits very similar behavior and trends as for VC/t = 0.3

3.4 Conclusion

In summary, we have examined two thermodynamic quantities of both the U -V model
and the LRC-Hubbard model, which extend the on-site interaction of the Hubbard model.
Focusing on the low-temperature regime, we studied the behavior of the double occupancy
D and the entropy S, for which a recent variational approach proposed the emergence of
a weakly first-order metal-to-insulator transition compared to the smooth crossover in the
local Hubbard model limit [109].
Our DQMC data agrees with the variational calculations on the point of an overall en-
hancement of the double occupancy in the presence of finite extended interactions. We
also identify an associated increase of the entropy within the low-temperature regime.
Contrary to the behavior reported from the variational approach, both our finite-size data
as well as the extrapolated TDL limit values do not provide any evidence for the presence
or the onset of a discontinuity in D or S. Furthermore, we observe significant deviations
of an order of magnitude that is larger than the size of the weak discontinuities reported
in Ref. [109] from the variational calculations already for the Hubbard model case. We
conclude that the non-continuous behavior found in Ref. [109] stems from inherent lim-
itations of the variational approach in combination with the interpolations and filtering
schemes employed in the previous study. Approaching the limiting values of V = U/4
for sign-problem free DQMC simulations for the U -V model, we observe a (weak) peak
emerging in the temperature dependence of the double occupancy D. This could be linked
to the enhancement of local density fluctuations in the vicinity of the thermal critical point
of the CDW order that emerges for sufficiently large values of V , but which lies beyond
the accessible interaction regime for DQMC.
We illustrate the discussed scenario for the U -V model in Sec. 3.3.2 with two sketches
of qualitative phase diagrams in Fig. 3.9. In both scenarios, for sufficiently weak V/U

the system resides in the ground state with an antiferromagnetically ordered spin density
wave (SDW), breaking the continuous SU(2) symmetry, indicated by the green line. At
the right end of the diagrams, i.e. large V/U , the system crosses the mentioned 2D Ising
transition for decreasing temperature and stabilizes in a charge density wave (CDW),
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Figure 3.9: Two sketches of possible phase diagrams of the U -V model, where in both
figures the green line indicates the SDW ground state, the black line a first
order transition and the black dot a critical point, separating two symmetry
broken phases. The shaded region depicts the stabilized CDW regime for
large enough V ≳ U/4. The difference is how the first order transition line
ends. Left: a 2D Ising transition (red line) meets the end of the black line in a
tricritical point (red dot). Right: the black line ends at a critical point, whereas
the red line terminates somewhere on the black line in a critical endpoint.

which is characterized by a broken discrete Z2 symmetry. In the vicinity of V ≈ U/4 the
2D Ising critical line terminates at a tricritical endpoint in the left panel, indicated by
the red dot and in a critical endpoint in the right panel. Notice the alternative ending
of the black line in a critical point in the right panel. In this interaction region at low
temperatures, the first order transition indicated by the black line is mediated by the
competition between the local U and non-local V interaction and is depicted as a critical
point at zero temperature by the black dot, separating both symmetry broken phases.
Furthermore, the maximum in the SCDW data in Fig. 3.7 for V/t = 0.475 can be viewed as
a ”reentrance” scenario: at V = U/4 the system crosses the 2D Ising line upon decreasing
temperature maximizing the value of SCDW, entering the CDW region and leaving it again
for small enough T thus lowering the value of the CDW structure factor. However, we
cannot predict the curvature of both transition lines with certainty.
As an outlook it would certainly be enriching to extend the investigations on the ther-
modynamic properties of extended interactions in correlated electron systems with even
larger values of the extended interactions strengths, beyond the limits of the DQMC simu-
lations due to the sign-problem, based on, e.g., tensor network [34] or minimally entangled
thermal typical state approaches [116, 117].
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3.5 Extrapolations

3.5.1 Trotter Discretization Extrapolation

Discretizing the imaginary time and decomposing an exponential of the sum of operators,
as introduced in Sec. 2.2 for the DQMC scheme, a Trotter-error arises that scales, due
to the hermiticity of physical observables, asymptotically proportional to ∆τ2 (cf. A.1.1).
This property allows us to systematically extrapolate the DQMC data to the ∆τ → 0
limit. The functional behavior of D in ∆τ2 is illustrated for representative data sets for
the Hubbard model at three different temperatures for the linear dimension L = 20 and
U/t = 1.9 in Fig. 3.10. We provide access to all the obtained finite ∆τ DQMC data via
an online repository [118].
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3.5.2 Finite-Size Extrapolation

The finite-size extrapolation to the TDL involves the consideration of the leading finite-size
correction at low-temperatures in terms of a finite (correlation) length scale from thermal
fluctuations. In particular, we obtain the TDL value for the double occupancy DTDL by
fitting the finite-size data D (after performing the ∆τ → 0 extrapolation, cf. Sec. 3.5.1)
to the finite-size form D(L) − DTDL ∝ e−L/ξ, where ξ is a temperature T -dependent
parameter that quantifies the corresponding length scale. We illustrate this procedure for
a selection of representative data sets in Fig. 3.11.
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Hubbard Model on
ABCA Tetra-layer Honeycombs 4
Motivated by the recent experimental realization of an ABCA stacked tetra-layer graphene
structure [119], we study ground state properties of the Hubbard model on a honeycomb
tetra-layer lattice at half-filling, based on DQMC simulations. The free low energy band
structure of multilayer rhombohedral graphene exhibits a flat band leading to a sharply
peaked DOS at the Fermi level, which enhances correlation effects and allows for the
emergence of magnetic order by introducing local Coulomb repulsion. We find a possible
stabilization of antiferromagnetic order at U/t ≈ 5.3. Furthermore, we find the AFM or-
der to be robust with respect to enhanced inter-layer hopping strengths and an extended
interactions.

The results in this chapter depict the QMC analysis of a collaborative work in preparation
with authors of Ref. [119]. My contributions are the presented DQMC simulations. The
SSE values in Fig. 4.5 have been provided by Nils Caci (RWTH Aachen).

4.1 Motivation

The discovery of correlated phases in stacked graphene multi-layers [120–125] and twisted
multi-layer stacks [126–130] has led to great research effort from both the experimental
side, as well as with various theoretical approaches. In particular, multi-layer systems
with twisted graphene sheets, which lead to a moiré pattern with a unit cell that is about
a hundred times larger than the distance between the carbon atoms, have aroused great
interest regarding their correlated low-energy physics [131, 132]. This might suggest that
strongly correlated physics emerges favorably in twisted graphene layer systems. How-
ever, it has been demonstrated that flat bands and strongly correlated many-body phases
also arise in less complex multi-layer graphene arangements, e.g., in rhombohedral ABC-
stacked graphene [133] or tetra-layered ABCA graphene [119]. Indeed, a perturbative
approach [134] shows the effective low-energy band structure of rhombohedral multilayer
graphene to exhibit a behavior E(K) ∼ kN (where N is the number of layers) at the high
symmetry points K, K ′ in the Brillouin zone. This implies the formation of essentially

49



Chapter 4 Hubbard Model on ABCA Tetra-layer Honeycombs

flat bands in these systems, which apparently can be achieved by stacking graphene layers.
In the graphene realm, the experimental realization of stable multi-layered structures re-
mains a challenging task. We explore magnetic ground state properties by taking screened
Coulomb interactions into account, incorporated via a Hubbard model description of the
carbon π-electrons. In particular, based on projective QMC simulations (cf. Sec. 2.2.3),
we explore spin correlations over a wide local interaction strength range. Having identified
the topmost 1-site and the bottommost 8-site (cf. Fig. 4.1) to hold the dominant spectral
weight [119], we add a non-local interaction term between electrons on the respective sites
for a more realistic model.

1 2

3 4

5 6

7 8

a1

a2 A

B

C

A
Figure 4.1: The ABCA stacked rhombohedral graphene lattice with its bipartite structure,

indicated by two differently colored lattice sites. Included is the unit cell
spanned by the lattice vectors a1, a2. Solid black lines indicate the intra-layer
hopping t, while solid green lines indicate the inter-layer hopping t⊥.

We consider the Hamiltonian H = H0 +HU +HU ′ , with H0 denoting the free tight-binding
term containing both the intra-layer t and inter-layer t⊥ hopping, HU = U

∑
i ni↑ni↓

the local repulsion (niσ = c†
iσciσ the density operator at site i for spin σ) and HU ′ =

U ′∑
i,σσ′ ni1σni8σ′ the extended interaction between the 1-sites with the 8-sites, as illus-

trated in Fig. 4.1.
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4.2 Spin Correlations

4.2 Spin Correlations

To probe for magnetic ground state properties based on QMC calculations, we measure
the antiferromagnetic structure factor

SAF = 1
N

N∑
i,j=1

ϵiϵj⟨SiSj⟩ , (4.1)

with alternating ϵi = ±1 dependent on the sublattice in each layer and N the total number
of sites. From this quantity we obtain the mean staggered magnetization per lattice site

ms =
√
SAF/(8L2) . (4.2)

We fix the values t = −0.375 eV and t⊥ = 0.46 eV , which were obtained from density
functional theory (DFT) calculations in Ref. [119] and vary U and U ′. Before turning
on the extended U ′ interaction, we consider the pure Hubbard case on finite lattices of
sizes L = 6, 9, 12. In Fig. 4.2 we report the DQMC data for the staggered magnetiza-
tion over a large U range up to U = 50 eV . From the finite-size data we cannot make
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Figure 4.2: Local interaction U dependence of the staggered magnetization per lattice site
ms for the Hubbard model at t = −0.375 eV and t⊥ = 0.46 eV on lattice sizes
L = 6, 9, 12.

a definitive statement about the low-U magnetization, in particular, how it scales with
increasing U . We would require a finite-size extrapolation in the thermodynamic limit,
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Chapter 4 Hubbard Model on ABCA Tetra-layer Honeycombs

which would be arguably unstable for only three finite sizes. Nevertheless, we find a (scale
invariant) crossing point in the finite-size data at U ≈ 18 eV , with respect to the hopping
at U/t ≈ 5.3, which implies a phase transition from a paramagnetic to an AFM stabilized
phase. Without further studies, we cannot rule out misleading finite-size behavior. Ben-
eficial measurements could involve, e.g., the U -dependence of the single particle gap and
the dynamic magnetic susceptibility, obtained from the imaginary-time resolved Green’s
function within DQMC, to gain more insight in the ground state properties.
Next, we investigate the effect of a varied inter-layer hopping t⊥ reported in Fig. 4.3
representative on the L = 9 system. t⊥ is the parameter that couples the layers, i.e., a
vanishing t⊥ results in decoupled graphene sheets. In this context we observe an enhance-
ment of the staggered magnetization upon increasing t⊥ at high values of U relative to
t. In the high U limit we can describe the spin interactions via an effective coupling of
J = 4t2/U and J⊥ = 4t2⊥/U , respectively (cf. Chap. 1). Within the effective description
it is not surprising that spin correlations increase upon higher effective exchange coupling
strengths. Finally, we turn on the extended U ′ interaction up to the value of U ′/U = 1 for
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Figure 4.3: Local interaction U depen-
dence of the staggered mag-
netization per lattice site ms

for the Hubbard model at t =
−0.375 eV for various t⊥ on the
L = 9 lattice size.
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Figure 4.4: Local interaction U depen-
dence of the staggered mag-
netization per lattice site ms

at t = −0.375 eV and t⊥ =
0.46 eV on lattice sizes L =
6, 9, 12 for the maximal value
of U ′ = U within the sign-
problem free regime.
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sign-problem free simulations in Fig. 4.4. The effect is marginal, but can still be observed
in the vicinity of U = 20 eV . The crossing point is slightly shifted to higher U values and
the slope seems steeper. Having in mind the findings in Chap. 3, in particular, the prolifer-
ation of charge density order for extended interactions V ≳ U/4, one may expect a similar
trend upon increasing U ′/U , albeit on a smaller scale compared to the U -V model. For
U ′ ≳ U mean-field calculations predict the stabilization of an insulating charge transfer
order [119] that meets an AFM phase at a first order transition line. The charge transfer
order is characterized by a broken inversion symmetry between the top and bottom layer,
which we can associate with a charge density wave, as in the U -V model case. The QMC
data suggests that the AFM order might become less robust against quantum fluctuations
upon increasing U ′, so that a higher U is required for the stabilization, while eventually it
is destroyed completely for values U ′ > U driving the system into a charge density ordered
state. Again, this regime is inaccessible to sign-problem free DQMC.

4.3 Technical Remark

Although unbiased, QMC methods are still implemented on finite-precision machines,
which on extreme scales can lead to numerical (round-off) errors. Here, we draw a com-
parison of the high-U values of ms in Fig. 4.2 obtained by DQMC with the same quantity
measured for the Heisenberg model, as an effective high-U limit, with proper J and J⊥

couplings based on SSE simulations, shown in Fig. 4.5. We see a systematic difference
in the DQMC and SSE values, however a qualitatively similar behavior. The DQMC
overestimates in the high-U regime (starting at U ≳ 30 eV or U/t ≳ 9) the staggered
magnetization, which we attribute to numerical precision errors for large values of U and
is supposedly implementation dependent. A systematic Trotter error is unlikely, due to a
relative small ∆τ = 0.1 used in the simulations. However, since the high-U limit is not of
particular interest within this study, we did not dive into the numerical subtleties of the
implementation.
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Figure 4.5: Local interaction U dependence of the staggered magnetization per lattice site
ms for the Hubbard model at t = −0.375 eV and t⊥ = 0.46 eV on lattice sizes
L = 6, 9, 12. The solid horizontal lines are effective values in the high-U limit
obtained from SSE calculations of the Heisenberg model with J = 4t2/U and
J = 4t2⊥/U .

4.4 Conclusion

Based on the projective version of DQMC for ground state calculations, we examined
the magnetic properties of the Hubbard model on an ABCA stacked tetra-layer graphene
structure with realistic hopping strengths obtained by DFT calculations. In detail, we
explored the U -dependence of the mean staggered magnetization on the finite lattice sizes
L = 6, 9, 12 and found an indication of a transition into an AFM ordered phase at a ratio
of U/t ≈ 5.3. Due to the immense computational cost, we cannot access larger lattices, so
that a stable extrapolation in the TDL is not feasible. We did observe an enhanced ms

upon increasing t⊥ for high values of U/t. In this regime we describe the spin interaction
effectively by the exchange couplings J = 4t2/U and J⊥ = 4t2⊥/U , which gives a natural
explanation for stronger spin correlations upon increasing the inter-layer spin coupling.
For a realistic description of the system, we added an extended U ′ interaction between
the topmost 1-sites and the bottommost 8-sites and explore its influence on the magnetic
properties. A finite U ′ apparently shifts the transition point to higher values of U , thus
destabilizing the AFM order. One may expect a similar behavior as for the U -V model
in Chap. 3, where we observed the proliferation of a charge density order for large enough
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extended interactions with respect to the local U . Indeed, the stabilization of a charge
transfer order, which we associate with a charge density wave, has been predicted by
mean-field calculations [119]. Unfortunately, higher U ′/U ratios are not accessible to sign-
problem free DQMC simulations. To study the ground state further, it would be beneficial
to calculate the single-particle gap and the dynamic magnetic susceptibility, which can be
obtained from the imaginary-time resolved Green’s function.
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Anisotropic Quantum
Heisenberg Model 5
Using the SSE scheme for large-scale QMC simulations, we determine the ground state
phase diagram of the spin-1/2 antiferromagnetic Heisenberg model on the honeycomb lat-
tice. We consider the most generic case of interaction strengths, namely, varying exchange
couplings along the three unequivalent lattice directions. We determine continuous quan-
tum phase transition lines separating a long-range ordered antiferromagnetic state from
three quantum-disordered regimes. These regimes exhibit dimer-singlet formations along
the dominant exchange coupling. We find anomalously large scaling corrections to the
finite-size behavior along the transition lines. These corrections can be related to recent,
similar findings in certain dimerized quantum spin systems and to singular one-dimensional
limits in the model parameter space. Furthermore, we include more general comments on
the non-universality of critical cumulant ratios in anisotropic systems, as well as on at-
tempts to restore universality of these ratios by tuning the lattice aspect ratio.

The results in this chapter have been published in Ref. [2]. My contributions have been
performing the SSE simulations, carrying out the extrapolations and partially writing the
manuscript. The data presented in Figs. 5.12, 5.13 has been obtained by Stefan Wessel.

5.1 Motivation

Among the eleven uniform Archimedean tilings, i.e., periodic tessellations of the plane by
regular polygons such that all edge lengths are equal and every vertex looks alike, the
honeycomb lattice has the lowest possible coordination number of three [135]. However,
due to its bipartitness, realized through a Bravais lattice with a two-atom basis, a Néel an-
tiferromagnetic ground state ordering may stabilize. One of the most prominent examples
is the spin-1/2 Heisenberg antiferromagnet with isotropic nearest-neighbor interactions,
which considers the same interaction strength among all two-site bonds on the honey-
comb lattice [136, 137]. Introducing one anisotropic coupling, i.e., a deviating interaction
strength along one of the three unequivalent bond directions with respect to the other
two, the quantum spin system can be driven out of the AFM regime. Explicitly for the
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Chapter 5 Anisotropic Quantum Heisenberg Model

honeycomb lattice a critical ratio of the corresponding couplings has been found. If the
ratio extends beyond a critical value of 1.735, the AFM order is destroyed and the system
resides in a non-magnetic, quantum disordered ground state, namely a dimerized state
characterized by the dominant formation of spin singlets among the bonds with the larger
interaction strength [138].

a1

a2

J3
J1

J2

Figure 5.1: The honeycomb lattice with its bipartite structure, indicated by two differently
colored lattice sites. The gray shaded area indicates the unit cell spanned by
the lattice vectors a1 and a2. The exchange couplings are denoted by J1, J2
and J3 along the three unequivalent bond directions. The shown finite lattice
corresponds to a linear dimension L = 3. The figure is adapted from Ref. [2].

This way of dimerization on the honeycomb lattice exhibits a certain similarity to a dimer-
ized quantum magnet on the square lattice. Different dimerization patterns, e.g., colum-
nar vs. staggered, have been rigorously studied recently [138–145]. At the quantum
phase transition, various studies on two-dimensional quantum Heisenberg magnets with
columnar dimerization patterns have found critical exponents consistent with the classical
three-dimensional O(3) universality [139, 140, 146–148]. Notably, for the specific case of
staggered dimerization patterns, large scaling corrections at the quantum phase transition
between the AFM phase and the disordered quantum state have been reported [141–145].
These scaling corrections have been associated to certain non-topological cubic terms in
the effective low-energy field theory describing the quantum critical point [143].
The effective field theory includes the relevant degrees of freedom at low energy scales to
describe, e.g., the mentioned quantum phase transition, disregarding degrees of freedom
at higher energy scales. Without diving into details, let us illustrate the relevant points,
while we refer to Ref. [149] for a comprehensive introduction into quantum field theories.
Within this framework, the quantum partition function is defined in the path integral
formalism in the following way:

Z = Tr
(
e−βH

)
=
∫

[dϕ(τ,x)] e−S(ϕ) , (5.1)
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5.1 Motivation

where ϕ(τ,x) is an imaginary-time and real-space dependent continuous field and S(ϕ) is
an action (note the formal similarity to the DQMC partition function in Sec. 2.2). On
a finite lattice, given an imaginary time τ ′, we can write the path integral as product of
ordinary integrals of a degree of freedom ϕ(xi) at each lattice site:∫ [

dϕ(τ ′,x)
]

∼
∏
xi

∫ ∞

−∞
dϕ(τ ′,xi) . (5.2)

Identifying the integrand in Eq. (5.1) as a positive measure, the partition function may
act as a moment-generating function, i.e., we are able to compute equal-time n-point
correlation functions:

⟨ϕ(x1) . . . ϕ(xn)⟩ ∼
∫

[dϕ] ϕ(x1) . . . ϕ(xn)e−S(ϕ) . (5.3)

In our case, we may associate the vector field ϕ with a three-component vector order-
parameter field describing magnetic fluctuations. Typically, SU(2) symmetric models,
describing quantum magnets, are formulated with an action of the ϕ4 type, i.e., the ac-
tion only contains terms with even powers of ϕ up to forth order. The critical behavior
of this particular form is known to follow the O(3) universality [143]. However, as men-
tioned above, certain staggered-dimer spin-1/2 Heisenberg models displayed deviations
from the expected O(3) critical behavior, which could be associated with a cubic term
in the effective action, derivated in Ref. [143]. In addition to those corrections expected
for the three-dimensional classical Heisenberg universality class, which generically charac-
terize the quantum phase transition in such bipartite dimerized spin systems [150], they
give rise to a further (in the RG sense) weakly-irrelevant operator [145]. An introductory
overview to the RG is provided in Ref. [151].
In this chapter, we report the appearance of similar anomalously large scaling corrections
on the phase transition line in the anisotropic Heisenberg model on the honeycomb lattice,
upon considering the most generic case, in which all three unequivalent nearest-neighbor
bonds have a different coupling strength. Furthermore, we can link this scaling correction
of the two-dimensional lattice to the special scaling in the one-dimensional limit, which
is realized for a vanishing coupling along one of the three unequivalent bond directions.
For the analysis of the anisotropic Heisenberg model we used large-scale quantum Monte
Carlo simulations, based on the SSE [23–25], which we introduced in Sec. 2.3. Based on
the QMC analysis, especially focusing on the Binder ratio [145, 152], we determine the
quantum phase transition lines and obtain the global ground state phase diagram of the
most generic form of the anisotropic nearest-neighbor spin-1/2 Heisenberg model on the
honeycomb lattice.
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5.2 Anisotropic Hamiltonian

We consider the spin-1/2 Heisenberg model with different interaction strengths J1, J2

and J3 between the nearest-neighbor bonds along the three unequivalent directions on the
honeycomb lattice, described by the Hamiltonian

H = J1
∑

⟨i,j⟩1

Si · Sj + J2
∑

⟨i,j⟩2

Si · Sj + J3
∑

⟨i,j⟩3

Si · Sj , (5.4)

where each of the three summations extends only over the parallel bonds corresponding
to the labeling in Fig. 5.1. Each Si denotes a vector operator containing the three spin
operators Sα

i = ℏ
2σ

α
i with σα

i being the Pauli-matrices for α = x, y, z. As usual we set
ℏ = 1 in the following.
Previous studies in the isotropic case, i.e., J1 = J2 = J3, have shown that the ground state
stabilizes long-range AFM order. In this case, the staggered magnetization miso

s is reduced
by about 54% from its classical value in the perfect Néel state [137]. As a next step it has
been considered to enhance one of the three exchange couplings, e.g. J1 > J2 = J3. This
study has found that the AFM order gets suppressed and for J1/J2 = J1/J3 > 1.735(1) the
ground state is driven into the aforementioned dimerized quantum disordered state with a
dominant singlet formation along the J1 bonds [138], which we denote by D1, correspond-
ing to the lattice direction in the following. Analogously, upon increasing J2 (J3) with
respect to J1 = J3 (J1 = J2), the dimerized states, denoted by D2 (D3), form dominant
singlets along the J2 (J3) bonds. Here, we explore the phase diagram for the most general
case of fully spatially anisotropic interactions, i.e. all three exchange couplings may be
varied independently.
To this end we have performed QMC computations employing the SSE scheme with di-
rected loop updates. We have simulated several finite-size systems of rhombic shape
(integer multiples of the shaded area in Fig. 5.1) built by stringing together copies of L
unit cells in both the a1 and a2 directions resulting in the number of spins N = 2L2. The
simulations have been performed at sufficiently low temperatures to probe ground state
properties and with periodic boundary conditions. Based on the staggered magnetization

ms =
√
SAF/N , (5.5)

where SAF is the staggered structure factor

SAF = 1
N

∑
i,j

ϵiϵj⟨Si · Sj⟩ , (5.6)

with ϵi = ±1, depending on the sublattice on which Si is located, we determine the
system’s state (ordered AFM or disordered dimerization) after an extrapolation to the

60



5.3 Ground State Phase Diagram

thermodynamic limit. Moreover, we extract the phase transition lines by measuring the
Binder ratio [138, 145, 152]

R = ⟨M4
s ⟩

⟨M2
s ⟩2 , (5.7)

where ⟨Mx
s ⟩ = ⟨(∑i ϵiS

z
i )x⟩ denotes the staggered moment of the order parameter distri-

bution. The Binder ratio characterizes how close the order parameter distribution is to
a Gaussian. In the disordered phase, e.g., in the D1 state for J1/J2 = J1/J3 > 1.735(1)
as mentioned above, the linear dimension L is much larger than the correlation length
ξ. Since regions separated on a larger scale than ξ are uncorrelated, it follows from the
central limit theorem that the probability distribution of the order parameter is a Gaus-
sian around Ms = 0. With Wick’s theorem we find ⟨M4

s ⟩ = 3⟨M2
s ⟩2 so that R → 3.

Contrary, deep in an ordered phase, e.g. in the AFM, fluctuations in the order parameter
are suppressed and ⟨M4

s ⟩ = ⟨M2
s ⟩⟨M2

s ⟩ and R → 1 for a one-component order parame-
ter. n-component order parameters, such as n = 3 for the Heisenberg model, introduce
n-dependent factors [16]. The relation between the one-component order parameter to the
three-component order parameter, containing the magnetization with respect to all three
directions, can be found in App. A.3. However, at the critical point, which lies somewhere
in between these two limiting cases, the central limit theorem does not generally hold, due
to long-range spin correlations and a diverging correlation length. Numerical data does
not exactly diverge for finite-size systems, but a peak emerges for increasing system sizes,
mimicking a divergence for singular quantities in the thermodynamic limit. The critical
point can be determined by the specific fixed-point value Rc (in a renormalization-group
sense), which is characteristic for the universality class [152]. The magnetization is known
to scale with ⟨Ms⟩ ∼ L−β/ν [153], so that at criticality, the power laws ⟨M2

s ⟩ ∼ L−2β/ν

and ⟨M4
s ⟩ ∼ L−4β/ν cancel and R becomes (almost) scale independent at Rc. To leading

order the different finite-size systems with a fixed spatial (as well as for quantum phase
transitions fixed space-time) aspect ratio, cross each other at the (quantum) critical point,
up to a small drift. For this subtle drift we observe the aforementioned anomalous scaling
behavior in the presence of anisotropic coupling ratios.
Before we go into details on the scaling corrections, we present the ground state phase
diagram in the following section.

5.3 Ground State Phase Diagram

First we consider the ground state phase diagram shown in Fig. 5.2, which illustrates the
different ground state regimes. The parametrization is given in units of the coupling J3,
so that we tune the ratios J1/J3 and J2/J3 and obtain finite-size analyzed values from the
QMC data. Employing barycentric coordinates, defined as ji = Ji/(J1 + J2 + J3) with
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j1+j2+j3 = 1, we express the phase diagram in an alternative form incorporating its three-
fold rotational symmetry, shown in Fig. 5.3 (a point’s coordinates in the diagram lie on
the intersection of lines parallel to the respective left axis in counter-clockwise direction).
Included in this figure is a heatmap of the staggered magnetization ms normalized to its
maximum value miso

s in the isotropic case located at the center of the triangle. Evaluating
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Figure 5.2: Ground state phase diagram of the anisotropic spin-1/2 Heisenberg model on
the honeycomb lattice, expressed in the two parameter ratios J1/J3 and J2/J3.
Circles indicate results from the QMC simulations, while the solid lines are a
guide to the eye. Illustrated within each disordered regime, is the dominant
dimerization pattern. The figure is adapted from Ref. [2].

the ground state phase diagrams, we find that the three dimerized disordered states D1,
D2, and D3 are separated by the AFM phase. They meet only pairwise at singular points,
which are found on lines where one coupling vanishes. For example, if we fix J1 = 0,
the system decouples into zig-zag chains (cf. Fig 5.1) along the a2 direction and for
J2 = J3 these chains have a gapless, quantum critical ground state, so that an arbitrarily
weak inter-chain coupling J1 > 0 drives the system into the AFM phase [154]. Away
from these quantum critical points, in our example for J2 > J3 (J3 > J2), the isolated
chains have a gapped ground state, namely dimerized bonds along the J2 (J3) direction,
corresponding to the one-dimensional limit of the D2 (D3) phase [154]. Thus, to drive
the system into the AFM phase, a finite inter-chain coupling J1 > Jc

1 > 0 is required to
overcome the excitation gap. These quasi-one-dimensional physics and the corresponding
cases for J2 = 0 and J3 = 0, give rise to the curved triangular shape of the AFM phase in
Fig. 5.3.
The phase boundaries have been obtained by a finite-size analysis of the Binder ratio,
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Figure 5.3: Ground state phase diagram of the anisotropic spin-1/2 Heisenberg model on
the honeycomb lattice, expressed in barycentric coordinates. Circles indicate
results from the QMC simulations, while the solid lines are a guide to the
eye. Also shown inside the AFM regime is the magnitude of the staggered
magnetization ms, normalized to its maximum value miso

s in the isotropic case
(located at the center of the triangle). The figure is adapted from Ref. [2].

which we discuss in detail in the following section. In particular, we find anomalous
scaling corrections in the finite-size data for the Binder ratio, which we link to the singular,
quantum critical points mentioned above.

5.4 Finite-Size Analysis

In order to determine the phase transition lines within the antiferromagnetic order sta-
bilizes, we fixed the value of J2/J3 and varied J1/J3 in the QMC simulations. Along
horizontal cuts in Fig. 5.2 we restricted the computations to the regime J1 ≤ J2 ≤ J3, due
to the system’s symmetry. We obtain the other sections of the boundary by appropriate
relabeling of the couplings.
First, we consider the symmetric line along J1 = J2, i.e., along the diagonal through the
red, solid circle in Fig. 5.2. Fig. 5.4 shows the Binder ratio R dependent on the cou-
pling ratio J1/J3 for L× L lattice sizes and fixed inverse temperature β = 2L in units of
1/J3 [145]. A line crossing in the finite-size QMC data for R can indeed be observed
in Fig. 5.4 near J1/J3 ≈ 0.576. However, on a finer scale, the data exhibits a systematic
drift of the crossing points between the different system sizes. In Fig. 5.5 and Fig. 5.6, we
examine the crossing point values of g = J1/J3 and R between system sizes L and 2L.
A striking feature of both g and R resolved in 1/L is a strongly nonmonotonic behavior.
In Ref. [145] similar finite-size dependent curves have been observed for the staggered
dimer square lattice model, but not for the columnar dimer case. This similarity makes
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Figure 5.4: Binder ratio R as a function of J1 = J2 for different system sizes L. The figure
is adapted from Ref. [2].
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sizes L and 2L. The red line
indicates a fit to the finite-size
scaling form Eq. (5.8) with the
TDL value marked with a red
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between system sizes L and
2L. The red line indicates a
fit to the finite-size scaling form
Eq. (6.4) with the TDL value
marked with a red dot. The fig-
ure is adapted from Ref. [2].

64



5.4 Finite-Size Analysis

sense upon comparing the two lattice structures: on the honeycomb lattice, the stronger
coupled bonds, in this case the J3 bonds, are arranged in a staggered fashion, however,
with an effectively weaker inter-dimer coupling than on the staggered dimer square lattice.
Notable in Ref. [138] is that (for the same coupling regime as here) no such nonmonotonic
behavior has been reported, which can be possibly explained by (i) a lower coupling ratio
resolution near the quantum critical point for the large system sizes than here, and/or (ii)
the different finite-size lattice geometry employed in that study (different choice of a unit
cell for the computations).
A careful finite-size analysis of such nonmonotonic scaling corrections has been performed
in Ref. [145]. The conclusion of this work is that these scaling corrections are best ac-
counted for by considering two subleading correction terms to the leading scaling form,

gc(L) = gc + L−1/ν(a1L
−ω1 + a2L

−ω2) , (5.8)

Rc(L) = Rc + b1L
−ω1 + b2L

−ω2 , (5.9)

where g denotes the tuning parameter driving the quantum phase transition, in our case
g = J1/J3, ν is the scaling exponent of the correlation length and ω1, ω2 are two correction
exponents, whereas the ai, bi are nonuniversal prefactors. The exponents 1/ν = 1.406
and ω1 = 0.78, which have been taken in Ref. [145] from the classical values of the
three-dimensional Heisenberg universality class [155–157], can also be considered for the
quantum phase transition in the present case. Note that besides ν, also the correction
exponent ω1 is universal within a given universality class. For the staggered dimer square-
lattice model a value of ω2 ≈ 1.25 has been estimated in Ref. [145] and it was argued that
the additional correction term stems from the cubic term in the effective action of the field
theory describing the quantum critical point [143, 145].
The anomalous, nonmonotonic behavior observed for the honeycomb lattice here fits well
(cf. Figs. 5.5, 5.6) to the above mentioned ansatz in Eq. (5.8) and Eq. (6.4), which we affirm
with values of χ2/d.o.f. ≈ 1. Unfortunately, we are not able to perform an independent,
robust estimation of the scaling exponents, due to the limited accessible accuracy on the
crossing points. As a result of these fits, we obtain estimates for the critical coupling
Jc

1 = 0.57620(1)J3 (illustrated by the full, red circle in Fig. 5.2 and Fig. 5.3) at a critical
Binder ratio Rc = 2.244(1). The stated uncertainties stem from the fitting procedure and
do not account for the unknown uncertainty in the value of ω2 estimated in Ref. [145]. We
find our values agree with the previous estimates along the diagonal line in the coupling
ratio space [142].
Upon deviating from the symmetric line J2 = J1, we find the anomalous finite-size behavior
to persist. Representative for an intermediate coupling regime, we discuss the case J2 =
0.7J3. Here, based on the fits shown in Fig. 5.7 and 5.8, we estimate the critical values
Jc

1 = 0.44533(1)J3 and Rc = 2.258(1), respectively.
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However, upon increasing J2/J3, we arrive at a distinct and noteworthy coupling ratio
J2 = J3, shown in Fig. 5.9 and 5.10. Here, we observe a rather peculiar finite-size scaling
behavior regarding the scaling forms above. The data does not feature the previously
observed nonmonotonic behavior, instead it fits well to scaling forms with only a single
exponent each, which we denote by p and ω,

gc(L) = gc + a L−p , (5.10)

Rc(L) = Rc + b L−ω . (5.11)

In accord with the quasi-one-dimensional physics mentioned in the previous section, we
find a critical value of Jc

1 = 0.001(1)J3 (consistent with zero). Also the extracted value
of Rc = 2.996(2) is compatible with the value of Rc = 3.05(5) that we obtain from QMC
simulations performed for an isolated spin-1/2 Heisenberg chain (cf. Sec. 5.5). From the
fits we extract the correction exponents ω ≈ 1.40(4) and p ≈ 1.21(5), which we find to
be comparable to the above used estimate for ω2 ≈ 1.25 from Ref. [145]. This suggests a
simple explanation for the necessity of the second subleading scaling correction captured
by the L−ω2 term with a crossover effect: If we consider small system sizes, the finite-size
behavior is still affected by the influence of the specific fixed-point, corresponding to the
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decoupled spin-1/2 Heisenberg chains. Only on sufficiently large system sizes does the
actual asymptotic scaling of the three-dimensional classical Heisenberg universality class
prevail. We estimate a crossover scale of Lc ≈ 20 for this scenario based on the local
extrema in the finite-size crossing points.
Throughout the scans we notice that the critical Binder ratio Rc varies significantly. We
summarize the extrapolated values of Rc as a function of J2 along the considered branch
of the AFM phase boundary line in Fig. 5.11. We observe a clear dependence of the value
of Rc on the coupling ratio with the aforementioned tendency towards 3 for J2 = J3.
Interestingly, the obtained values are all substantially larger than the critical value Riso

c =
2.0437... of the isotropic three-dimensional classical Heisenberg model, without exhibiting
any trend to approach this value for the considered coupling ratios. This observation
supports previous studies on the effects of anisotropies on the Binder ratio, which are
reported to be accompanied by not isotropic correlations in the considered quantum spin
systems [158, 159]. In Sec. 5.6 we elaborate on this circumstance.
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5.5 Binder Ratio of the Spin-1/2 Heisenberg Chain

In order to directly estimate the value of Rc at the singular points of the phase diagram,
we performed QMC simulations for an isolated spin-1/2 Heisenberg chain. The finite-size
resolved data Rc(L) is displayed in Fig. 5.12. The chains contain L spins up to a size of
L = 3200 with periodic boundary conditions. We scale the inverse temperature in units
of the nearest-neighbor exchange coupling J as βJ = L. We find the values of Rc(L) to
be monotonously growing upon increasing the system size. The functional behavior fits
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well to a logarithmic dependence

Rc −Rc(L) ∝ (ln(L))−q . (5.12)

Performing the fit to the QMC data, we obtain the estimates Rc = 3.05(5) and q = 1.1(1),
respectively. The inclusion of a logarithmic finite-size term in the scaling of Rc(L) can
be expected due to the known asymptotic spin-spin correlation function behavior of the
spin-1/2 Heisenberg chain that decays with distance r as

√
ln(r)/r [154]. We are not

aware of any previous analytic prediction for the finite-size scaling form of the Binder
ratio in this system.

5.6 General Remarks on Anisotropic Systems

By now it is well established that certain dimensionless quantities such as the critical
Binder ratio Rc are not universal, but depend on the anisotropy of the correlations [158,
159]. Indeed it is possible to restore the isotropic value Riso

c by considering finite-size
systems with appropriate aspect ratios [144]. However, such a restoration has been argued
to not be crucial for the analysis of, e.g., the universal properties of the critical point [145].
For instance, consider a finite rectangle consisting of Lx × Ly unit cells in the respective
directions for a simple square lattice geometry. By tuning the aspect ratio ρ = Ly/Lx,
the critical Binder ratio Rc(ρ) takes on the isotropic value Rc(ρ∗) = Riso

c , even though in
general Rc(1) ̸= Riso

c . Note that for a quantum critical system, the inverse temperature has
to be adapted as well [144]. Such restorations have indeed been demonstrated for various
classical and quantum models for which the principal axes of the correlation function
align with the axes of the underlying square lattice [144, 159–161]. Based on Ref. [162]
we denote, for a general anisotropic two-dimensional system, the angular dependence of
the correlations by the angle Ω, which specifies the orientation of the two principal axes.
Analogous to the geometric aspect ratio ρ, we introduce the ratio q of the two principal
correlation lengths upon approaching criticality. The mentioned restorations are special
cases that correspond to Ω = 0 or π/2, i.e., the principal axes of the correlations are
parallel or orthogonal. Taking for example the Ω = 0 case, the value of ρ∗ is fixed by the
condition that qρ∗ = 1, realized e.g., for q = 2, such that the correlation length in the x
direction is larger than the correlation length in y direction by a factor 2, which means
ρ = 1/2 ⇔ Lx = 2Ly. Such systems were labeled by the term ”virtual isotropic” [139, 144].
Considering a more generic case, in which Ω is not limited to specific values, i.e., when the
principle axes are not aligned with the lattice directions, two questions arise: (i) is such a
restoration possible, which means finding a ρ∗, so that Rc(ρ∗) = Riso

c , and (ii) what is the
physical interpretation of the value of ρ∗ in that case.
Below, we demonstrate explicitly for an anisotropic, classical model that the restoration

69



Chapter 5 Anisotropic Quantum Heisenberg Model

of the isotropic value is indeed still possible. However, the value of ρ∗ appears in this case
to be unrelated to the orientation of the underlying correlations. To this end, we consider
the triangular-lattice Ising model [162–165]. The Hamiltonian reads

HIs = −
∑

i

(E1σiσi+x̂ + E2σiσi+ŷ + E3σiσi+x̂+ŷ) , (5.13)

where σi = ±1. We examine the system on a square lattice with horizontal, vertical,
and (up-right) diagonal couplings E1, E2, E3 ≥ 0 (see the left inset of Fig. 5.13 for an
illustration of the unitcell). We focus on the symmetric case E1 = E2 = E, for which
Ω = π/4 and q = 1/Ŝ3 with correlations decaying equally in x and y direction [162,
165]. The critical temperature Tc that separates the low-T ferromagnetic phase from the
paramagnetic regime, can be determined through the condition Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ3Ŝ1 = 1,
where Ŝα = sinh(2Eα/Tc) [166]. Employing Wolff-cluster Monte Carlo simulations [40] at
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Figure 5.13: Aspect ratio ρ dependence of the critical Binder cumulant Uc and the critical
amplitude of the singular free energy density Fc in the inset for the anisotropic
Ising model with E3 = 3E. The horizontal lines indicate the isotropic values
and the vertical lines indicate the two values of ρ∗. The left inset illustrates
the unit cell with E1, E2, E3 along horizontal, vertical and diagonal directions,
respectively. The figure is adapted from Ref. [2].

Tc, we report the ρ-dependence of the critical Binder cumulant [152]

Uc = 1 − 1
3Rc, Rc = ⟨M4⟩

⟨M2⟩2 , (5.14)

where M = ∑
i σi, for the specific case of E3 = 3E extracted for the thermodynamic limit

in Fig. 5.13. The value of Uc obtained for ρ = 1 agrees with an earlier study [159]. In
the standard Ising model (E1 = E2, E3 = 0) Uc(ρ) decreases monotonously for ρ > 1
from the isotropic value U(ρ = 1) = U iso

c = 0.61069... [160]. Contrary to the standard
case, we find a nonmonotonous behavior in our specific case. In particular, we restore the
isotropic value U iso

c for two aspect ratios ρ∗ ≈ 1.47 and 1.74. Within numerical precision
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these values agree with the values of ρ for which the critical amplitude of the singular free
energy density Fc(ρ) recovers its isotropic value F iso

c = −0.639912... [167] (cf. the inset
of Fig. 5.13). However, we cannot draw an apparent relation between these ρ values and
the value of q = 2.82843.... Based on expressions for Fc employing exact conformal field
theory, we are able to compute ρ∗ for the latter quantity [164, 165]. For E3 = 3E, we obtain
ρ∗ = 1.4683... and 1.7433.... The above observations have been made also at other ratios
E3/E (see Ref. [161] for the specific case E3 = E), resulting in different values of ρ∗. This
suggests (i) it is feasible to restore the isotropic values of both the critical Binder cumulant
and the critical amplitude of the singular free energy density upon varying the aspect ratio
ρ for the considered anisotropic Ising model, (ii) the corresponding values of ρ∗ for both
quantities are equal within numerical precision and (iii) we do not find an evident relation
of these values with the geometric properties of the anisotropic correlation functions for
Ω ̸= 0, π/2. We argue that once the principal axes are not aligned to the underlying lattice
directions, one cannot expect to be able to relate, as in previous cases [144, 159, 160], the
value of ρ∗ directly to (i) the correlation length ratio along the lattice directions, which
in the above considered Ising model cases equals to 1, since E1 = E2, nor to (ii) the ratio
q of the two principal correlation lengths. Regarding the above studied quantum system,
it is thus not clear, how and if the procedure proposed in Ref. [144] to determine the
location of ρ∗ can be generalized to the fully anisotropic case. Certainly, this leaves room
for further studies of the triangular-lattice Ising model, as well as more general systems.

5.7 Conclusion

Based on large-scale quantum Monte Carlo simulations we determined the ground state
phase diagram of the spin-1/2 Heisenberg model on the honeycomb lattice for the most
generic case of three anisotropic nearest-neighbor exchange interactions. The AFM phase
separates three quantum disordered regimes, each characterized by a dominant dimer sin-
glet formation along the strongest bonds. These dimer phases touch at three singular
points in the limit of one vanishing coupling with equal strength in the remaining two.
Similar to the previously investigated staggered dimer model [145], we find nonmonotonic,
anomalous finite-size corrections at the quantum phase transition along the boundary
line of the AFM regime. Utilizing a scaling ansatz with two irrelevant scaling correction
terms, we were able to capture the scaling behavior well. The additional scaling correction
is subdominant to the leading finite-size correction that relates to the three-dimensional
O(3) universality class. The scaling ansatz changes upon approaching the aforementioned
singular points. The system decouples into parallel spin-1/2 Heisenberg (zig-zag) chains,
for which we used a similar finite-size correction term, but only to leading order. As an
explanation for the nonmonotonic scaling behavior we propose a crossover scenario of spe-
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cific fixed-points of the different finite sizes smaller and larger than L ≈ 20.
In this context it is noteworthy that the cubic interaction term in the effective low-energy
field theory, previously proposed to underlie the anomalous scaling, observed in the stag-
gered dimer model [143], has a formal similarity with the topological θ-term that is char-
acteristic for the gapless state of the spin-1/2 Heisenberg chain [154]. Haldane conjectured
that the ground state of integer-spin AFM Heisenberg chains has a gapped ground state,
whereas half-odd-integer-spin Heisenberg chains exhibit gapless excitations, based on the
mapping of one-dimensional Heisenberg chains onto the (1+1)-dimensional O(3) nonlinear
sigma model field theory [168, 169]. Here, the relevant detail is the addition of a spin-S de-
pendent cubic interaction term to a quadratic term in the effective action. The additional
topological term takes the form

S3 = i2πSθ , (5.15)

where θ contains cubic interactions and returns an integer value [170, 171]. In the case of
half-odd-interger-spin chains, the contribution of any field configuration into the partition
function carries a non-trivial phase factor e−i2πSθ, which ultimately leads to a gapless
spectrum [171]. Thus, the link between the subleading scaling correction and the behavior
at the one-dimensional singular points requires more in-depth investigation in appropriate
generalizations of the staggered dimer model.
Finally, we discussed the previously proposed schemes [144] for the automated restoration
of isotropic values of cumulant ratios and argue that it is not directly applicable to generic
anisotropic systems, even in cases for which such a restoration may be feasible. For
the future it would be interesting to explore proper applications and limitations of the
restoration schemes.
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Quantum Heisenberg Model
on the Diamond Lattice 6
We report quantum Monte Carlo calculations employing the SSE scheme for the spin-1/2
Heisenberg model on the diamond lattice with both antiferromagnetic as well as ferromag-
netic nearest-neighbor exchange coupling. We determine the Néel temperature TN and the
Curie temperature TC from a finite-size analysis of the temperature resolved Binder ratio.
The comparison shows TN > TC , which we discuss with regard to the stability of the FM
and AFM against fluctuations based on the respective temperature resolved entropy.

The results in this chapter constitute the QMC analysis of a collaborative work in prepara-
tion. My contributions are the presented SSE simulations (except Fig. 6.8 - performed by
Stefan Wessel), which are motivated by discussions with Yasir Iqbal (IIT Madras), Yannik
Schaden (FU Berlin), Johannes Reuter (FU Berlin), Andreas Honecker (CY Cergy Paris
Université) and Stefan Wessel.

6.1 Motivation

The quantum Heisenberg model is one of the most important models in condensed mat-
ter physics. A wide variety of physical behavior can be realized, depending on the un-
derlying lattice geometry for both ferromagnetic and antiferromagnetic coupling. On a
one-dimensional spin-1/2 chain the ferromagnetic ground state exhibits long range or-
der [154], whereas the antiferromagnetic ground state exhibits critical fluctuations [168].
The ground states in two dimensions on a square lattice is ordered in both cases [172–174].
These ordered states are destroyed by thermal fluctuations for any T > 0 in one and two
spatial dimensions [20]. In three dimensions, quantum fluctuations are suppressed relative
to thermal fluctuations and a finite critical temperature Tc > 0 is expected with a critical
behavior according to the classical three-dimensional Heisenberg universality class [175].
Critical properties have been successfully obtained by means of a high-temperature expan-
sions for various two- and three-dimensional lattices [176–178] among which the diamond
lattice can be found [179]. Further analytical, approximative calculations have been car-
ried out for three dimensional lattices [180, 181] as well as QMC studies [182–184] on a
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variety of systems. Here, we support the exploration of the diamond lattice magnetism
realized in the material class of A-site spinels [185–189]. Although these systems typically
suffer from frustration due to extended interactions, thus prohibiting a direct access for
the SSE [23–25], a profound analysis of the unfrustrated diamond lattice forms the basis of
further studies. We report detailed QMC calculations aimed at reliably extracting the crit-
ical temperatures for both the ferromagnetic and antiferromagnetic spin-1/2 Heisenberg
model on the diamond lattice as well as providing unbiased results for the temperature
dependence of the respective entropy.

6.2 Quantum Heisenberg Model

We consider the spin-1/2 Heisenberg model with isotropic interaction strength J between
the nearest-neighbor bonds, with J > 0 (J < 0) in the antiferromagnetic (ferromagnetic)
case, described by the Hamiltonian

H = J
∑
⟨i,j⟩

Si · Sj , (6.1)

where Si denotes the spin degree of freedom on a lattice site i. The diamond lattice

a1

a2

a3

Figure 6.1: The diamond lattice with its bipartite structure, indicated by two differently
colored lattice sites. Included is the unit cell spanned by the lattice vectors
a1, a2 and a3.

consists of two intertwined face centered cubic (FCC) lattices with a relative shift of
1/4 along the room diagonal (the lattice constant is set to a = 1). This results in a
bipartite lattice, in which one site resides on the coordinates (0, 0, 0) and the other at
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1/4(1, 1, 1) in the unitcell as shown in Fig. 6.1. From a previous study employing a high-
temperature expansion the Néel and Curie temperature are estimated to TN/J = 0.531(1)
and TC = 0.447(1), respectively [179]. Furthermore, this model has been studied on the
simple cubic lattice [184], which is a perfect starting point to access the effects arising in
more complex structures, such as the bipartite diamond lattices presented here.
We performed large-scale QMC simulations based on the SSE scheme with directed loop
updates. We have simulated several finite-size systems up to a linear dimension of L = 32
with periodic boundary conditions, resulting in a total of N = 2L3 number of spins. The
computations have been performed in a temperature range of T/|J | ≈ 0.43 − 0.53 to
extract the crossing points of the temperature resolved Binder ratio [152]

R =
⟨M4

(s)⟩
⟨M2

(s)⟩2 , (6.2)

where ⟨Mx
s ⟩ = ⟨(∑i ϵiS

z
i )x⟩ (ϵi = ±1 dependent on the sublattice) denotes the staggered

moment of the order parameter distribution in the antiferromagnetic case and ⟨Mx⟩ =
⟨(∑i S

z
i )x⟩ in the ferromagnetic case. Taking a scaling ansatz of the form

Tc(L) = Tc + L−1/ν(a1L
−ω + a2L

−2ω) , (6.3)

Rc(L) = Rc + b1L
−ω + b2L

−2ω , (6.4)

where 1/ν = 1.406 and ω = 0.78 are exponents in the O(3) classical Heisenberg universality
class [155–157], we determine the critical temperatures upon extrapolating to the TDL. In
order to extract the temperature dependence of the entropy, we obtain the internal energy
over a very high temperature range of T/|J | = 0.01 − 1000 and perform a thermodynamic
integration (cf. Sec. 3.2) based on the relations for the free energy F = E − TS, F =
−T ln(Z) and the internal energy E = −∂β ln(Z):

S = βE(β) + ln(2) −
∫ β

0
dβ′E(β′) , (6.5)

where ln(2) is the is the upper bound of the entropy (per site) in the T → ∞ limit. The
statistical error is estimated through a simple bootstrap scheme, where we repeatedly
evaluate the integral by fluctuating the energy values within their respective errorbars
according to a Gaussian distribution.

6.3 Thermal Phase Transitions

In Fig. 6.2 (AFM) and Fig. 6.3 (FM), we present the QMC results for the Binder ratio
for both the antiferromagnetic and the ferromagnetic Heisenberg model for lattice sizes
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up to L = 32. For the AFM case the crossing points of the (L, 2L) finite-size data pairs
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Figure 6.2: Binder ratio R as a function of
T/|J | for different system sizes
L in the AFM case.
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Figure 6.3: Binder ratio R as a function of
T/|J | for different system sizes
L in the FM case.

seem to converge around T/|J | ≈ 0.5275, whereas in the FM case for T/|J | ≈ 0.444.
Both values are already in the vicinity of TN and TC obtained with the high-temperature
expansion approach [179]. In the next step we extrapolate the finite-size crossing points
to the thermodynamic limit according to the scaling laws in Eq. (6.3) and Eq. (6.4) from
the O(3) Heisenberg universality class. The scaling laws are expected to fit well, since
quantum fluctuations are suppressed by classical, thermal fluctuations. From the analysis
shown in Fig. 6.4 and Fig. 6.5 we extract RN

c = 2.028(2) and RC
c = 2.042(1). Finally, we

obtain the Néel temperature TN = 0.52782(5) for the AFM case (see Fig. 6.6) and the
Curie temperature TC = 0.44447(4) for the FM case (see Fig. 6.7), respectively. Com-
pared to the simple cubic case [184], we find both phases, where an order stabilizes, to
be less robust against thermal fluctuations. The Néel (Curie) temperature is reduced by
approximately 44% (47%) with respect to the simple cubic lattice [184]. Furthermore,
we report data in Fig. 6.8 for the staggered (uniform) susceptibility in the AFM (FM)
cases, which is computed by χ = β⟨M2

(s)⟩ within the SSE formulation. Until numerically
not distinguishable, χAFM remains larger than χFM, which indicates the AFM order to be
more robust against thermal fluctuations.
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Figure 6.7: Crossing point values of T for
the Binder ratio R between sys-
tem sizes L and 2L for the
FM. The red line indicates a fit
to the finite-size scaling form
Eq. (6.3) with the TDL value
marked with a red dot.

To understand why upon heating, the ferromagnetic order is destroyed earlier than the
antiferromagnetic one (TC/TN ≈ 0.84), we examine the entropy density at accessible, low
temperatures, i.e. the entropy per lattice site. Finite-size effects are marginal for this
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Figure 6.8: Temperature dependence of the staggered (AFM) and uniform (FM) suscep-
tibility for the spin-1/2 quantum Heisenberg on the diamond lattice. Results
from the QMC simulations are shown for L = 10.

quantity, so that we simulate the system in both cases for a linear dimension of L = 8 as a
representative for the TDL behavior. The data is reported in Fig. 6.9, which also includes
fits to the low-T scaling S ∼ T 3 (S ∼ T 3/2) for the antiferromagnet (ferromagnet). The
respective low temperature behavior is described by the linear (quadratic) dispersion of the
spin-wave excitations in the AFM (FM) case [170]. The significantly enhanced production
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Figure 6.9: Temperature dependence of the entropy for the spin-1/2 quantum Heisenberg
on the diamond lattice. Results from the QMC simulations are shown for
L = 8. Vertical lines indicate the transition temperatures TN and TC for the
antiferromagnet and the ferromagnet, respectively. The green dashed curves
denote fits to the algebraic low-T scaling S ∼ T 3 (S ∼ T 3/2) for the AFM
(FM).

78



6.4 Conclusion

of entropy upon heating up the system, observed in the FM case, gives a natural expla-
nation for the lower transition temperature: a higher entropy increase destroys magnetic
order faster. This circumstance is affirmed by the low-energy dispersion of the spin-wave
theory.

6.4 Conclusion

From QMC simulations based on the SSE formulation with directed loop updates, we
obtained the phase transition temperatures, the temperature dependence of the entropy
and the staggered and uniform susceptibility for both the antiferromagnetic and the fer-
romagnetic spin-1/2 Heisenberg model on the diamond lattice. We find a decrease in
the transition temperatures by 44% (AFM) and 47% (FM), respectively, compared to the
simple cubic case [184], which we can attribute to the lower coordination number of the
diamond lattice. Hence, the ordered states are less robust against thermal fluctuations.
Comparing the individual temperature resolved entropies and susceptibilities on the dia-
mond lattice, we observe that the entropy gain upon heating in the FM case is significantly
larger than in the AFM case, while the uniform susceptibility is smaller than its staggered
counter part. This behavior and the low-energy spin-wave dispersion give a plausible ex-
planation for the lower transition temperature of the ferromagnet.
Extending the interactions to next-nearest neighbor, one can examine qualitatively more
realistic models that are more suitable to study experimentally realized materials, such as
A-site spinels. Unfortunately, SSE suffers from a sign problem in this setup prohibiting a
direct analysis. Therefore, other methods, e.g. PF/PM FRG [190], have to be employed.
However, the current status of the ongoing investigation with a PMFRG approach on the
given model yields similar temperature values, but in opposite order, i.e., PMFRG pre-
dicts TC > TN . To further investigate the robustness and proliferation of magnetic order
(especially either AFM or FM is more stable), an interesting lattice geometry is the hy-
perhoneycomb lattice, i.e. the generalized honeycomb lattice to three spatial dimensions.
It has an even lower coordination number than the diamond lattice, thus it is expected
to have lower transition temperatures, while retaining a similar low-T entropy scaling.
To come back to the discussion in the previous chapter 5, one can examine the spin-1/2
Heisenberg model on the diamond lattice, as a three-dimensional bipartite example, re-
garding the restoration scheme of isotropic moment ratios upon introducing an anisotropic
coupling between the two sites in the diamond unit cell.
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Conclusion and Outlook 7
We already drew conclusions at the end of each individual chapter. Here, we briefly sum-
marize these conclusions and make some additional remarks.
Starting with the exploration of non-local interaction extensions to the Hubbard model
with finite-temperature DQMC in Chap. 3, we find for both the U -V and LRC-Hubbard
model an overall enhancement of the double occupancy in the presence of finite extended
interactions and identify an associated increase of the entropy within the low-temperature
regime. In contrast to Ref. [109], both our finite-size data as well as the extrapolated TDL
limit values do not provide any evidence for the presence or the onset of a discontinuity
in D or S. We observe a (weak) peak emerging in the temperature dependence of the
double occupancy D as we approach the limiting value of V = U/4 for the U -V model.
This might be explained by the enhancement of local density fluctuations in the vicinity
of the thermal critical point of the CDW order that emerges for sufficiently large values
of V . Unfortunately, this regime lies beyond the accessibility of sign-problem free DQMC.
In Fig. 3.9 we propose qualitative phase diagrams of the U -V model, which might be sup-
ported by further studies, e.g., with tensor network approaches, in the high-V/U regime.
Extended interactions in the Hubbard model continue to play a role in Chap. 4, where
we study magnetic properties of ABCA stacked tetra-layer graphene. We explore the U
dependence of the staggered magnetization on the finite lattice and find an indication of
a transition into a AFM phase at U/t ≈ 5.3. Due to the immense computational cost,
we cannot access larger lattices, so that a stable extrapolation to the TDL is not feasible.
For a realistic description of graphene tetra-layers, we added an extended U ′ interaction
between the topmost 1-sites and the bottommost 8-sites. A finite U ′ seems to shift the
transition point to higher values of U and we can expect a similar proliferation of a charge
density order as for the U -V model. Indeed, based on mean-field calculations, the onset
of an insulating charge transfer order, which we associate with a charge density wave, is
predicted at U ′ ≳ U [119]. To examine this idea further, the measurement of the single-
particle gap and the dynamic magnetic susceptibility would be beneficial. Again larger
extended interactions are not accessible. We conclude that, at least for the investigated
systems, a non-local interaction beyond the regime accessible to sign-problem free DQMC
is responsible for a discrete symmetry breaking to a charge ordered state in the extended
models.
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In Chap. 5 we determine the ground state phase diagram of the Heisenberg model on the
honeycomb lattice with three anisotropic nearest-neighbor exchange interactions and find
that an AFM phase separates three quantum disordered dimer regimes. Similar to the
previously investigated staggered dimer model [145], we find nonmonotonic, anomalous
finite-size corrections at the quantum phase transition. We explain this behavior by the
discussed crossover scenario. We find a drastic change in the scaling behavior in the limit
of decoupled one-dimensional zig-zag chains and note that the link between the subleading
scaling correction and the behavior at the one-dimensional singular points requires more
in-depth investigation. Furthermore, we discuss previously proposed schemes [144] for
the automated restoration of isotropic values of cumulant ratios and argue that it is not
directly applicable to generic anisotropic systems.
Finally, we turned to a three-dimensional lattice. We obtained the phase transition tem-
peratures, the temperature resolved entropy and the staggered (uniform) susceptibility for
the antiferromagnetic (ferromagnetic) spin-1/2 Heisenberg model on the diamond lattice.
We find the Néel temperature to be higher than the Curie temperature, which we can
understand based on the entropy gain upon heating, i.e., in the FM case it is significantly
larger than in the AFM case. To study experimentally realized materials, such as A-site
spinels, we need to extend the couplings to next-nearest neighbors, which would lead to
a sign-problem in the SSE. Therefore, different approaches, e.g. PF/PM FRG [190], have
to be considered. With regard to the anisotropies investigated in Chap. 5, the Heisenberg
model on the diamond lattice, as a three-dimensional bipartite representative, can be an
interesting system to study the (anomalous) scaling behavior as well. Furthermore, to
investigate the robustness and the relative temperatures of the ordered states, one can ex-
amine the hyperhoneycomb lattice with its lower coordination number. The expectation
is that the transition temperatures reduce, while a similar low-T entropic gain emerges.
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Appendix A
A.1 DQMC

A.1.1 Suzuki-Trotter Decomposition

This section follows the outline of the appendix 10.A of Ref. [41]. Given a Hamiltonian of
the form

H = H1 +H2 , (A.1)

the Suzuki-Trotter decomposition allows us to split the imaginary time propagator into a
product of infinitesimal small time propagations:

e−βH = lim
∆τ→0

(
e−∆τH1e−∆τH2

)LT
, (A.2)

where we discretize the inverse temperature β = LT ∆τ . In general the commutator
[H1, H2] ̸= 0 and in QMC simulations we fix the time slice “thickness” ∆τ to a small, but
finite value. This introduces a systematic error in ∆τ :

e−∆τ(H1+H2) = e−∆τH1e−∆τH2 − ∆τ2

2 [H1, H2] + O(∆τ3) . (A.3)

This equation stems from the comparison of the Taylor expansions of the exponential
functions in Eq. (A.2) up to third order:

e−∆τ(H1+H2) = 1 − ∆τ(H1 +H2) + ∆τ2

2 (H1 +H2)2 + O(∆τ3)

= 1 − ∆τ(H1 +H2) + ∆τ2

2 (H2
1 +H2

2 + 2H1H2 − [H1, H2]) + O(∆τ3) ,

e−∆τH1e−∆τH2 = (1 − ∆τH1 + ∆τ2

2 H2
1 )(1 − ∆τH2 + ∆τ2

2 H2
2 )

= 1 − ∆τ(H1 +H2) + ∆τ2

2 (H2
1 +H2

2 + 2H1H2) + O(∆τ3) .

Subtracting the commutator initially in the exponent of the left hand side in Eq. (A.3)
and taking both sides to the power of LT we arrive at

e−β(H− ∆τ
2 [H1,H2]) =

[
e−∆τH1e−∆τH2

]LT + O(∆τ2) . (A.4)
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Note that the resulting error is of order ∆τ2, since it is exponentiated too.
To evaluate the left hand side we use time dependent perturbation theory. Given a Hamil-
tonian h = h0 + h1, where h1 is much smaller than h0, the imaginary time propagation in
the interaction picture reads

U(τ) = eτh0e−τh . (A.5)

The time derivative results in

∂

∂τ
U(τ) = eτh0(h0 − h)e−τh = − eτh0h1e−τh0︸ ︷︷ ︸

=h1(τ)

U(τ)

= −h1(τ)U(τ) .

(A.6)

Integrating both sides, with U(0) = I , the above equation transforms into a self consistent
integral equation

U(τ) = I −
∫ τ

0
dτ ′ h1(τ ′)U(τ ′) =

∫ τ

0
dτ ′ h1(τ ′) + O(h2

1) . (A.7)

Coming back to Eq. (A.4), we set h0 = H, h1 = −∆τ
2 [H1, H2] and τ = β to obtain

e−β(H− ∆τ
2 [H1,H2]) + O(∆τ2)

= e−βH + ∆τ
2

∫ β

0
dτ e−(β−τ)H [H1, H2]e−τH︸ ︷︷ ︸

=A

+O(∆τ2)

=
(
e−∆τH1e−∆τH2

)LT + O(∆τ2) .

(A.8)

The ultimate goal is to compute the thermal expectation value of an observable O = O†:

Tr
[(

e−∆τH1e−∆τH2
)LT

O

]
Tr
[(

e−∆τH1e−∆τH2
)LT

] =
Tr
[
e−βHO

]
+ ∆τ

2 Tr[AO]
Tr [e−βH ] + ∆τ

2 Tr[A]
+ O(∆τ2) . (A.9)

It can be shown that A is an anti-Hermitian operator by substituting τ = β − τ ′:

A† = −
∫ β

0
dτ e−βH [H1, H2]e−(β−τ)H

=
∫ 0

β
dτ ′ e−(β−τ ′)H [H1, H2]e−τ ′H = −A .

(A.10)

Due to the anti-hermiticity of A, the following relations hold: [Tr(A)]∗ = Tr(A†) = −Tr(A)
and [Tr(AO)]∗ = −Tr(AO). If O, H1 and H2 are real representable in a given basis, the
trace becomes real and the linear term in ∆τ in Eq. (A.10) vanishes due to the properties
of A. Hence, the leading correction in the systematic Trotter error is in the order of ∆τ2.
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The decomposition can be carried out in other forms, which results in the same or even
smaller corrections. For example another commonly used case is a symmetric decomposi-
tion:

e−∆τ(H1+H2) = e−∆τ/2H1e−∆τH1e−∆τ/2H2 + O(∆τ3) . (A.11)

However, better numerical precession is often accompanied by higher computational costs.

A.1.2 Hubbard-Stratonovich Transformation

To decouple the electron-electron interaction we use a Hubbard-Stratonovich (HS) trans-
formation. This creates an electron-field interaction, where each charge degree of freedom
is locally coupled to a bosonic field. The discrete version used for the U -V model is based
on the evaluation of a Gaussian integral [191]. The interactions are brought in bilinear
form resulting in

eA2/2 = 1√
2π

∫
dϕ e−ϕ2/2−Aϕ , (A.12)

where A is an operator and ϕ = ϕ(r, τ) is a space and imaginary time dependent field.
There are different formulations of the discretization dependent on the problem. It has
been demonstrated that it is sufficient to use two distinct field values enabling the possi-
bility of an Ising-like sampling procedure [192].
In our simulations we use a more general formulation that preserves the SU(2) symmetry
of the U -V model [193]. For a squared operator A describing the charge-charge interaction
the transformation on any time slice reads

e∆τλA2 =
∑

l=±1,±2
γ(l)e

√
−∆τλη(l)A + O(∆τ4) , (A.13)

where the fields γ and η take the values

γ(±1) = 1 +
√

6/3, η(±1) = ±
√

2
(
3 −

√
6
)

(A.14)

γ(±2) = 1 −
√

6/3, η(±2) = ±
√

2
(
3 +

√
6
)
. (A.15)

The advantage of this formulation is that it preserves the generalized SU(N) spin symme-
try for each HS-field configuration explicitly [42]. Overall, the transformation produces an
error in the order of magnitude of O(∆τ3), since it is used LT times before a measurement.
However, this error will be neglected as the Trotter error is already one order of magnitude
bigger.

For the LRC-model we cannot use the discretized version since the addition of further
interacting bonds would results in a renormalized Ũ that is either limited to a very narrow
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value range or leads to the fermionic sign problem. The transformation for long range
interactions Vij , given by

Vij = U

1 , for i = j

α
dij

, for i ̸= j
, (A.16)

follows Ref. [42]. Here, U is the on-site interaction strength, α a real number monitoring
the Coulomb tail and dij the minimal distance between two lattice sites. On a torus, i.e.
with periodic boundary conditions, we have to be careful defining this distance properly.
We use a continuous HS decomposition with a symmetric and positive definite matrix Vij :

e−∆τA ∝
∫ ∏

i

dϕie− ∆τ
2
∑

ij
ϕiV

−1
ij ϕj−

∑
i

i∆τϕi(ni−1)
, (A.17)

where ϕi is a local field component. The partition function can be decomposed into a
“bosonic” part WB containing the field information and a “fermionic” part WF containing
the single-fermion terms in the Hamiltonian:

Z ∝
∫ ∏

i

dϕi,τ e− ∆τ
2
∑

ij
ϕiV

−1
ij ϕj︸ ︷︷ ︸

WB(ϕ)

Tr
[∏

τ

e−∆τHT e−
∑

i
i∆τϕi(ni−1)

]
︸ ︷︷ ︸

WF (ϕ)

. (A.18)

It is convenient to work in basis where V is diagonal

D = diag(λ1, λ2, . . . ) = UTV U , (A.19)

with the unitary matrix U containing the eigenvectors of V . Furthermore, We transform
the fields in the diagonal basis

ηiτ =
∑

j

UT
ijϕjτ . (A.20)

On a given timeslice τm we propose a configuration update C → C ′ = C(η′) with the
probability

P (C → C ′) =


∏

i

[
paPB(η′

iτm
) + (1 − pa)δ(ηiτm − η′

iτm
)
]

, for τ = τm

δ(ηiτ − η′
iτ ) , for τ ̸= τm

, (A.21)

where PB(ηiτ ) = e− ∆τ
2λi

η2
iτ , pa ∈ [0, 1] and δ is the Dirac δ-function. pa is a free parameter

to tune the acceptance in the Metropolis sampling with probability

R = min
(
P (C ′ → C)WB(η′)WF (η′)
P (C → C ′)WB(η)WF (η) , 1

)
= min

(
WF (η′)
WF (η) , 1

)
, (A.22)
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with the adjusted weights

WB(η) = e− ∆τ
2
∑

iτ
η2

iτ /λi , (A.23)

WF (η) = Tr
[∏

τ

e−∆τHT e−
∑

ij
i∆τUijηjτ (ni−1)

]
. (A.24)

A local change on a fixed time slice in η-basis corresponds to a non-local spacial change in
ϕ-basis. Effectively we carry out one global update in the spacial dimension on a distinct
imaginary time slice.

A.1.3 Fermionic Trace

We demonstrate in this section how the fermionic degree of freedom can be “traced out”
in the DQMC partition function. We follow the rigorous proofs and detailed discussions
in Refs. [22, 194].
We want to prove the relation

Tr
(

e−
∑

ij
c†

i Aijcj e−
∑

ij
c†

i Bijcj

)
= det

(
I + e−Ae−B

)
, (A.25)

where A and B are arbitrary matrices and c
(†)
i are fermionic ladder operators. We begin

by showing that the equation

e−
∑

ij
c†

i Aijcj e−
∑

ij
c†

i Bijcj = e−
∑

ν
ανc†

νcν (A.26)

holds with e−αν being the eigenvalues of the matrix e−Ae−B. From this identity the
trace-determinant relation in Eq. (A.25) follows immediately:

Tr e−
∑

ν
ανc†

νcν =
∏
ν

∑
nν=0,1

e−ανnν =
∏
ν

(I + e−αν ) = det
(
I + e−Ae−B

)
. (A.27)

We are left with proving Eq. (A.26). The idea is to show that both sides of this equation
propagate an arbitrary many-particle state in the same way. Consider a single particle
state

|Φ⟩ =
∑

j

ajc
†
j |0⟩ , (A.28)

with aj ∈ C and the vacuum state |0⟩. Let |µ⟩ be a basis in which B is diagonal

B =
∑

µ

bµ |µ⟩ ⟨µ| (A.29)
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and transform the operators accordingly to

cµ =
∑

j

⟨j|µ⟩ cj , c†
µ =

∑
j

⟨µ|j⟩ c†
j . (A.30)

We can write the exponential of B as

e−c†
i Bijcj = e−bµc†

µcµ =
∏
µ

[
1 + (e−bµ − 1)nµ

]
. (A.31)

Applying this to |Φ⟩ we find

e−c†
i Bijcj |Φ⟩ =

∑
j

a′
jc

†
j |0⟩ ,with

a′
i =

∑
j

(
e−B

)
ij
aj .

(A.32)

Similarly we obtain
e−c†

i Aijcj e−c†
i Bijcj |Φ⟩ =

∑
j

a′′
j c

†
j |0⟩ ,with

a′′
j =

∑
j

(e−Ae−B)ijaj .
(A.33)

The above equation is valid in any basis, especially in the basis where the product of the
exponentials is diagonal. If we start with an eigenstate of e−Ae−B

|Ψ⟩ = c†
ν |0⟩ , (A.34)

then
e−
∑

ij
c†

i Aijcj e−
∑

ij
c†

i Bijcj |0⟩ =
(
e−Ae−B

)
νν
c†

ν |0⟩ = e−ανc†
ν |0⟩ , (A.35)

which is the same result as the action of the right hand side of Eq. (A.26) on the same
state.
Now, we can extend this concept to a many particle state and we will see that the propa-
gation splits into independent propagations of the individual one-particle states. Consider
the two-particle state

|Φ⟩ = c†
µ1c

†
µ2 |0⟩ (A.36)

and propagate it with B:

e−c†
i Bijcj |Φ⟩ =

∏
µ

[
1 + (e−bµ − 1)c†

µcµ

]
c†

µ1c
†
µ2 |0⟩

= e−Bµ1 e−Bµ2 c†
µ1c

†
µ2 |0⟩ .

(A.37)
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This equation is true for both µ1 = µ2 and µ1 ̸= µ2. We see that the propagation
of a many-particle state is made of the superposition of individual propagations. This
argument can be used repeatedly for an arbitrary, fixed number of particles.

A.1.4 Particle-Hole Symmetry in the U-V Model

A profound discussion on the particle-hole symmetry in condensed matter physics can be
found in Ref. [195]. According to this reference we define the particle-hole transformation
as a charge reversing map

K : Fpq → Fqp , (A.38)

where Fpq is the combined Fock space of p electron and q hole excitations. We call a
Hamiltonian particle-hole symmetric if KHK−1 = H. Explicitly for the U -V model, we
can show that the Hamiltonian, in the form required for the DQMC scheme,

H = −t
∑

⟨i,j⟩,σ

(
c†

iσcjσ + h.c.
)

+ Ū

2
∑

i

(ni − 1)2 + V

2
∑

<ij>

(ni + nj − 2)2 , (A.39)

with the total local particle number operator ni = ni↑ + ni↓ and the renormalized on-site
interaction Ū = U − zDV , is invariant under the transformation of the field operators

c†
iσ → (−1)idiσ and ciσ → (−1)id†

iσ , (A.40)

where ciσ (c†
iσ) annihilates (creates) an electron and diσ (d†

iσ) annihilates (creates) a hole on
lattice site i with spin σ. The hole operators obey the same anti-commutation relations as
the electronic operators. The corresponding particle number operators have the following
relation:

niσ = c†
iσciσ = (−1)idiσ(−1)id†

iσ = 1 − d†
iσdiσ = 1 − nh

iσ . (A.41)

The electron number niσ = 0, 1 is swapped with the hole number nh
iσ = 1, 0.

The operators in the separate terms of the U -V model’s Hamiltonian (A.39) transform in
the following way:

• The kinetic term:

c†
iσcjσ = (−1)i+jdiσd

†
jσ = (−1)i+j+1d†

jσdiσ = d†
jσdiσ . (A.42)

(−1)i+j = −1 is always true due to the bipartite nature of the nearest-neighbor
hopping, so that i+ j is always odd. The second term c†

jσciσ transforms into d†
iσdjσ

analogously. Note that next-nearest neighbor hopping terms can induce a fermionic
sign problem.
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• On-site U -interaction:

(ni − 1)2 = n2
i − 2ni + 1 = (ni↑ + ni↓)2 − 2(ni↑ + ni↓) + 1

= 2ni↑ni↓ + n2
i↑ + n2

i↓ − 2(ni↑ + ni↓) + 1

= 2ni↑ni↓ − (ni↑ + ni↓) + 1

= 2(1 − nh
i↑)(1 − nh

i↓) − (1 − nh
i↑) − (1 − nh

i↓) + 1

= 2nh
i↑n

h
i↓ − (nh

i↑ + nh
i↓) + 1 = (nh

i − 1)2

(A.43)

• Inter-site V -interaction:

(ni + nj − 2)2 = (ni − 1)2 + (nj − 1)2 + 2(ni − 1)(nj − 1) . (A.44)

Both squared terms are of U -interaction type, so that it is sufficient to show the
transformation of the remaining part. With ni = 2 − nh

i we get

2(ni − 1)(nj − 1) = 2
[
(2 − nh

i )(2 − nh
j ) − (2 − nh

i + 2 − nh
j ) + 1

]
= 2nh

i n
h
j − 2(nh

i + nh
j ) + 2 = 2(nh

i − 1)(nh
j − 1) .

(A.45)

For µ = 0 the Hamiltonian with squared interaction terms is particle-hole symmetric and
half-filling is ensured. Factoring out all terms, we find that half filling corresponds to
µ = −(U

2 + zDV ) in the original form (3.1).

A.2 SSE

A.2.1 Detailed Balance for Directed Loop Updates

One global directed-loop update consists of a series of local off-diagonal vertex updates.
Following Ref. [79] we show that the loop update fulfills detailed balance by satisfying
detailed balance for the individual vertex updates.
We define the probability for nL head-vertex encounters before recombining with the tail
as

Phv = PinitPinsert(T0, |σ(l1)⟩)
nL∏
i=1

P (Σbi,i, Ti−1 → Ti, li → l′i) , (A.46)

where Pinit is the uniform probability to choose the head position in the operator string
(i.e. a point in space-time) and Pinsert(T0, |σ(l1)⟩) denotes the probability to insert the
head with an initial operator T0 on a leg with the initially proposed state |σ(l1)⟩. The
leg index refers to the i-th vertex. Now, we consider the probability for the exact same,
but inverse traversed loop. The inverse-head undoes the action of the original head in
reverse order after the completion of a whole loop. The inverse-head-tail pair is inserted
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at the same point carrying the inverse initial operators. The inverse head-vertex encounter
probability is given by

P̄hv = PinitPinsert(T †
nL
, T †

nL
|σ(l′nL

)⟩)
nL∏
i=1

P (Σ̄bi,i, T
†
i → T †

i−1, l
′
i → li) . (A.47)

Dividing both probabilities yields

Phv

P̄hv

= Pinsert(T0, |σ(l1)⟩)
Pinsert(T †

nL , T
†
nL |σ(l′nL

)⟩)

nL∏
i=1

P (Σbi,i, Ti−1 → Ti, li → l′i)
P (Σ̄bi,i, T

†
i → T †

i−1, l
′
i → li)

(A.48)

and with the local detailed balance condition (2.93) we obtain

Phv

P̄hv

= Pinsert(T0, |σ(l1)⟩)
Pinsert(T †

nL , T
†
nL |σ(l′nL

)⟩)

nL∏
i=1

W (Σbi,i)
W (Σ̄bi,i)

. (A.49)

Detailed balance for a loop holds if the insertion probability of the inverse loop is the same
as the original one:

Pinsert(T0, |σ(l1)⟩) = Pinsert(T †
nL
, T †

nL
|σ(l′nL

)⟩) . (A.50)

A.3 n-Component Moment Ratio

To generalize the Binder ratio to an n-component order parameter (n = 1 for the Ising
model, n = 2 for the XY model, n = 3 for the Heisenberg model) we integrate a Gaussian
distribution of the absolute value of the magnetization |m| over the n-dimensional space
to compute the averages ⟨m4⟩ and ⟨m2⟩ in the Binder ratio. This introduces n-dependent
factors. The consequence is better observed in the more general Binder cumulant U , which
takes the values 0 in the disordered phase and 1 in the ordered phase, respectively, in the
thermodynamic limit, regardless of the number of components n. Therefore, U is defined
by [16]:

U = n+ 2
2

(
1 − n

n+ 2R
)
. (A.51)

In the following we calculate the ratio of the one-component and the three-component
Binder ratios. In the TDL in the disordered phase the magnetization distribution is
centered around 0 for each odd moment, since the integrand is odd over a symmetric
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interval. We begin by calculating the first two non-vanishing one-component moments:

⟨m2⟩ = 1√
2π

∫ ∞

−∞
dmm2e−m2/2

= 1√
2π

∫ ∞

−∞
dmm ·m e−m2/2

= 1√
2π

[(
m · (−1)e−m2/2

)∞

−∞
+
∫ ∞

−∞
dm e−m2/2

]
= 1 . (A.52)

For ⟨m4⟩ we employ Wick’s theorem 2.2.4 resulting in:

⟨m4⟩ = mmmm+mmmm+mmmm

= 3⟨m2⟩ = 3 (A.53)

As for the three-component moments we obtain:

⟨m2⟩ = 1
√

2π3

∫ ∫ ∫
dmxdmydmz

(
m2

x +m2
y +m2

z

)
e−(m2

x+m2
y+m2

z)/2

= 3
√

2π3

∫ ∫ ∫
dmxdmydmz m

2
x e−m2

x/2e−(m2
y+m2

z)/2

= 3
√

2π3

∫
dmxm

2
x e−m2

x/2
∫ ∫

dmydmz e−(m2
y+m2

z)/2

= 3√
2π

∫
dmxm

2
x e−m2

x/2

= 3 . (A.54)

Again for the forth moment we employ Wick’s theorem:

⟨m4⟩ = ⟨
(
m2

x +m2
y +m2

z

)2
⟩

= ⟨m4
x +m4

y +m4
z +m2

xm
2
y +m2

xm
2
z +m2

ym
2
x +m2

ym
2
z +m2

zm
2
x +m2

zm
2
y⟩

= 3⟨m4
x⟩ + 6⟨m2

xm
2
y⟩

= 3⟨m4
x⟩ + 6⟨m2

x⟩⟨m2
y⟩

= 3 · 3 + 6 · 1 = 15 , (A.55)
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where we used

⟨m2
xm

2
y⟩ = ⟨mxmxmymy⟩

= mxmxmymy +mxmxmymy +mxmxmymy

= ⟨m2
x⟩⟨m2

y⟩ , (A.56)

since ⟨mimj⟩ = 0 for i ̸= j. All together we obtain R(1) = 3 for the one-component Binder
ratio and R(3) = 5/3 for the three-component one. As easily calculated both values result
in U = 0 for the respective n. Finally, the relation between both Binder ratios is

R(1) = 9
5R(3) . (A.57)
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generiert wurden.
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