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Zusammenfassung

Diese Arbeit behandelt die Konstruktion und Analyse von skalierbaren Vorkondi-
tionierungsstrategien fiir das lineare Schrédinger-Eigenwertproblem mit periodischen
Potenzialen in anisotropen Strukturen. Da nur einige Dimensionen des Berechnungs-
gebiets gegen unendlich streben, wird die Eigenwertliicke zwischen dem ersten und
zweiten Eigenwert verschwindend gering, was eine signifikante Herausforderung fiir
iterative Loser darstellt.

Fiir diese iterativen Eigenwertloser stellen wir daher eine quasi-optimale Strate-
gie des Vorkonditionierens vor, die auf dem Prinzip der Spektralverschiebung-und-
Invertierung beruht, sodass die iterativen EigenwertlOser in einer konstanten Anzahl an
Iterationen konvergieren. In der Analyse leiten wir eine analytische Faktorisierung der
Eigenpaare her und nutzen die direktionale Homogenisierung, um das asymptotische
Verhalten zu analysieren. Das resultierende, leicht zu berechnende, Einheitszellenprob-
lem kann innerhalb des Spektralverschiebungs-Vorkonditionierers verwendet werden.
Dieser Ansatz fithrt zu einer gleichméflig beschrankten Anzahl an Eigenwertloser-
Iterationen. Numerische Beispiele veranschaulichen die Effektivitdt dieser quasi-
optimalen Vorkonditionierungsstrategie, sofern direkte Loser verwendet werden, da
die Verschiebestrategie, definitionsgeméf, zu einem kleineren Eigenwert fiir den resul-
tierenden verschobenen Operator fiihrt, was wiederum zu einer hohen Konditionszahl
fiihrt.

Weiterhin stellen wir einen zweistufigen Gebietszerlegungs-Vorkonditionierer fiir
iterative lineare Loser vor, um genau dieses Problem zu losen. Da die Berechnung der
quasi-optimalen Verschiebung bereits die Losung eines spektralen Zellenproblems als
Grenz-Eigenfunktion bereitstellt, ist es naheliegend, diese als Generator zu verwenden,
um einen Grobraum zu konstruieren. Tatséchlich ist es der Fall, dass der resultierende
zweistufige additive Schwarz-Vorkonditionierer unabhéngig von der Anisotropie des
Gebiets ist, da wir eine Konditionszahl-Schranke unter Verwendung der Theorie der
spektralen Grobraume erhalten, obwohl nur eine einzige Basisfunktion pro Teilgebiet
bendtigt wird. Wir stellen mehrere numerische Beispiele vor, die die Effektivitdt
beider Methoden getrennt veranschaulichen, und kombinieren sie am Ende, um ihre
kombinierte Skalierbarkeit zu zeigen.

Schlagworter: periodische Schrodingergleichung, iterative Eigenwertloser, Vorkondi-
tionierer, asymptotische Eigenwertanalyse, Faktorisierungsprinzip, direktionale Ho-
mogenisierung, Gebietszerlegung, Grobraume, Finite-Elemente-Methode
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Abstract

This thesis presents the construction and analysis of scalable preconditioning strategies
for the linear Schrodinger eigenvalue problem with periodic potentials in anisotropic
structures. As only some dimensions of the computational domain expand to infinity,
the resulting eigenvalue gap between the first and second eigenvalue vanishes, posing
a significant challenge for iterative solvers.

For these iterative eigenvalue solvers, we provide a quasi-optimal shift-and-invert
preconditioning strategy such that the iterative eigenvalue algorithms converge in
constant iterations for different domain sizes. In its analysis, we derive an analytic
factorization of the eigenpairs and use directional homogenization to analyze the
asymptotic behavior. The resulting easy-to-calculated unit cell problem can be
used within a shift-and-invert preconditioning strategy. This approach leads to a
uniformly bounded number of eigensolver iterations. Numerical examples illustrate
the effectiveness of this quasi-optimal preconditioning strategy if direct solvers are
used since the shifting strategy, by definition, leads to a smaller eigenvalue for the
resulting shifted operator, which, in turn, results in a high condition number.

We also provide a two-level domain decomposition preconditioner for iterative linear
solvers to overcome this issue. As the calculation of the quasi-optimal shift already
offered the solution to a spectral cell problem as limiting eigenfunction, it is logical
to use it as a generator to construct a coarse space. Indeed, it is the case that the
resulting two-level additive Schwarz preconditioner is independent of the domain’s
anisotropy since we obtain a condition number bound using the theory of spectral
coarse spaces despite the need for only one basis function per subdomain for the
coarse solver. We provide several numerical examples illustrating the effectiveness
of both methods separately and combine them in the end to show their combined
scalability.

Keywords: periodic Schrodinger equation, iterative eigenvalue solvers, preconditioner,
asymptotic eigenvalue analysis, factorization principle, directional homogenization,
domain decomposition, coarse spaces, finite element method
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Introduction

Let us start with an observation from our daily lives. Assume that a person writes
one page per day, then writing a short book with ten pages takes ten days. If ten
persons want to write another book with a hundred pages, it should still take only
ten days — in theory. In reality, however, it depends on the circumstances and the
scalability of the task: Is the book a collection of ten separate chapters with ten pages
each? Then, ten days seem reasonable. Is the book, however, meant to be the script
for the next blockbuster movie? Then, it will take much longer since the separate
writers depend on each other’s work and must communicate.

Sometimes, making a clever decision before starting the task can make a massive
difference. For example, painting a wall in white color together with a friend is
scalable. However, we may want to paint the wall with two sections in two different
colors, with 50 percent of the area in each color. Splitting the painting sections, i.e.,
the workload in that case, based on the desired color distribution, will speed up the
task since everyone can work independently without switching the brushes. Thus,
analyzing, if necessary, adapting problems is crucial to make them scalable.

1.1 Motivation and Context

In science and engineering, we often want to solve problems of size bigger than possible
on a single computer or core. Thus, we must split the problem into smaller pieces
and solve them independently. In the context of numerical simulation of a partial
differential equation, this process is called domain decomposition (DD), where the
domain 2 C R"” is the region on which the equation, the model, is defined — just like
the painting wall in the example above. The initial idea' for the DD method goes
back to Schwarz [231] in 1870. The technique was initially formulated as a sequential
algorithm with the paradigm “solve left, then use the data to solve right”. A parallel
version with the adapted paradigm “solve all domains simultaneously using the old
data” was proposed by Lions [192] when computers and large-scale computing clusters
became more and more available. Having recognized the potential of such methods
with the availability of hundreds, thousands, or even millions? of cores (nowadays), it

LAlthough, of course, with no initial intention for parallel computing.
2Compare with the 62nd, November 2023, edition of the TOP500 list (www.top500.o0rg) that lists
over eight million cores for the Frontier (rank 1 in the list) system.
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was, however, noticed [152] that the parallel efficiency will decrease if the number of
subdomains is increased and the scalability is lost.

In some cases, however, there are no issues when increasing the system size, and
the number of iterations for the solution algorithm remains constant. For elliptic
operators with Dirichlet boundaries, this phenomenon was observed for chain-like
structures [65] in computational chemistry, analyzed in [86, 87, 88] with extensions
in [90, 91, 136], and extends to the plane-like case [224]. In these cases, there is no
need to use a coarse correction within a two-level framework. Analyzing this weak
scalability for anisotropic structures, where each point within 2 has a fixed distance
to the boundary when the domain size is expanded, is one of the main topics of this
thesis. However, instead of PDE-based linear source problems, we want to consider the
corresponding eigenvalue problem in these domains. Even if we choose the same kind
of operators, i.e., second-order elliptic differential operators, the situation changes
drastically for the eigenvalue problem. It requires different solution strategies to retain
scalability.

Considering eigenvalue problems is not just based on mathematical curiosity. In
computational chemistry, eigenvalue problems play a significant role in describing the
electronic structure of molecules. We restrict ourselves to a related class of model
problems, namely, the search for the first, i.e., lowest eigenpair, of linear periodic
Schrédinger operators, and ask the question:

e Do we keep the one-level scalability of iterative eigenvalue solvers on expanding
anisotropic structures, or does it change compared to the linear source problem?

We want to answer this question directly with a no since the convergence of the
iterative eigenvalue algorithm fundamentally differs from iterative solvers for linear
systems, to which the DD method belongs®. This difference is because it is no
longer the condition number of the matrix but the ratio of the first to the second
eigenvalue that determines the convergence rate. This ratio is related to the spectral
gap — the difference between the smallest eigenvalues — and vanishes in the limit
of anisotropically expanding domains. Thus, as a result, the convergence rate will
become arbitrarily bad, and the number of iterations needed to solve the problem
will tend to infinity.

As part of this thesis, we provide a strategy for solving this collapsing gap problem
based on a quasi-optimal shifting approach. Although this shifting leads to new
challenges, e.g., ill-conditioning of the resulting shifted operators, it yet allows us to
make a fundamental observation that goes beyond the specific applications within
this thesis: There is an essential connection between the shift-and-invert (SI) pre-
conditioning of eigenvalue solvers and the treatment of the resulting ill-conditioned
systems, e.g., by using spectral coarse in the context of DD methods. It is possible
to incorporate the asymptotic information of the first eigenvalue and the limiting
behavior of the first eigenfunction to construct a coarse space. This observation is
the key to solving the resulting ill-conditioned linear systems. Further contributions
will be outlined in the following.

3This behavior was observed in [46].
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1.2 Goal and Objectives

Recalling the previous section, the general goal of this thesis is to develop and analyze
scalable iterative eigenvalue algorithms for the class of linear periodic Schrédinger
operators on expanding anisotropic domains. To achieve this goal, we will define the
following objectives:

1. Analysis of the behavior of the first eigenpair: For periodic Schrédinger
operators in expanding anisotropic structures, the first eigenvalue converges in
the limit. Analyzing this behavior is the first step to resolving the collapsing
gap problem.

2. Development and analysis of a shift-and-invert preconditioner: For
iterative eigenvalue solvers, we will use the asymptotic first eigenvalue as a shift
to overcome the convergence issue. The next objective will be to analyze the
resulting shifted fundamental ratio and the convergence rate of SI-preconditioned
iterative eigenvalue solvers.

3. Construction and analysis of a scalable two-level DD method: To
achieve numerical scalability when dealing with the resulting ill-conditioned
systems, the DD methods must use a coarse correction, or coarse space, in a
two-level fashion. Thus, the final objective will be to construct a two-level DD
method for the shifted linear systems and combine everything into one scalable
iterative eigenvalue algorithm. The scalability will be quantified by analyzing
the resulting condition number of the preconditioned matrix.

Furthermore, all the above-listed objectives will be complemented by numerical
examples that illustrate the theoretical results and show the performance of the
proposed methods for practical applications. Ensuring reproducibility by publicly
providing all source codes can also be seen as an objective. Since the above-listed
objectives require diverse concepts within different fields, part of this thesis will also
review all necessary techniques and ideas to understand better how they are combined
to achieve the objectives.

1.3 Outline and Contributions

Considering the hierarchical objectives listed in the previous Section 1.2, the overall
thesis structure is linear, and the developed methods and, thus, chapters build on each
other. Nevertheless, we recall the required concepts when necessary and motivate
each chapter independently. The thesis is structured into three parts, which we briefly
outline and synthesize.

In Chapter 2, we introduce and review all models, concepts, and computational
tools needed for the following chapters. Starting with a general introduction to
computational chemistry, we review the essential models used in electronic structure
theory. This overview allows us to introduce the linear Schrédinger eigenvalue problem
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as a simplified model problem while showing the connection to the original application.
Considering the modeling-related big picture, we move on to its numerical treatment
using iterative eigenvalue solvers. We review the basic concepts of such iterative
methods, discuss different variants, and show their challenges for problems with a
collapsing fundamental gap. The transition from iterative eigenvalue to iterative
linear solvers is drawn by introducing the DD method. We review the basic concepts,
historical remarks, and variants. We focus on the additive Schwarz methods for the
latter since they are the most relevant for the following chapters. Finally, we introduce
the concept of coarse spaces focusing on spectral constructions, which will play an
essential role in the thesis.

In Chapter 3, we analyze the behavior of the first eigenpair of the linear Schrodinger
equation in abstract d-dimensional anisotropic structures when the domain size L,
for some p = d — ¢ dimensions, tends to infinity. In the process, an essential result is
extended to the directional case, namely the factorization of the m-th eigenfunction
¢5:m) into an easier-to-calculate unit cell eigenfunction ¢ and a remainder u(™) i.e.%,
qﬁ(Lm) = ¢ - ul™ Although, in our case, it is mainly used as an auxiliary tool in the
analysis, it stands on its own. It allows us to characterize the spectral properties of the
operator. The factorization is then used to transform the problem into an equivalent
problem on the unit cell. This process creates a homogenization problem due to the
rescaling in the domain length L. Once this is recognized, it remains to generalize
the existing analysis to the directional case, which, after some technicalities, allows to
characterize® the behavior of the eigenvalue as /\(Lm) =0+ (1/L*)¥'"™ +O(1/L)) in
which (™) is the eigenvalue of a homogenized limit eigenvalue problem. Also, the
corresponding weak limit for the eigenfunctions can be shown, achieving the first
objective in Section 1.2. The general result can then be used to extract the asymptotic
limit of the first eigenvalue. Using this limit as a shifting parameter for iterative
eigenvalue solvers leads to a quasi-optimal method since the number of iterations is
optimal, up to a multiplicative constant. Technically, this is shown by proving® that
the fundamentally shifted ratio rr(o) := \)\(Ll) - 0]/|)\(L2) — o] is uniformly bounded
above by a constant C' < 1 in the limit. However, although we have found a solution
to the collapsing gap problem, thus having fulfilled the second objective in Section 1.2,
we face new challenges.

These newly created ill-conditioning issues of the shifted linear systems are addressed
in Chapter 4 to achieve the third objective in Section 1.2. We propose a two-level
DD method that uses a coarse space to solve the resulting ill-conditioned systems.
The proposed method becomes numerically scalable if the coarse space contains
the periodic extensions of the unit cell functions ¢ (see above). This remarkable
observation highlights the connection between the Sl-preconditioning of eigenvalue
solvers and preconditioning for linear solvers if the DD method is, e.g., used as a Krylov
acceleration. Also, for the numerical treatment, this has some handy implications,

4See the Theorem 3.1 for a more detailed version that also includes further sub-factorizations.
5A precise statement is given in Theorem 3.2.
5See the Corollary 3.1.



1.3 Outline and Contributions

namely that the coarse space components are already computed and that there is
only one basis function per subdomain, which makes the treatment of the second level
much more accessible. Technically, the periodic factorization strategy belongs to the
category of spectral coarse spaces. Having recognized this relation, and under some
additional symmetry assumptions, a stable decomposition property can be shown?,
which is one of the essential ingredients for the existing abstract theory and ultimately
leads to a condition number bound®, /{(MXSIQAU) < C for some constant C' > 0,
independent of the domain size L. However, numerical results also suggest the same
performance for the general case. We conclude the chapter with an observation,
namely that the fusion of loops within an inner-outer eigensolver is beneficial to
reducing the total number of inner iterations.

In the last Chapter 5, we summarize the results, highlight areas of improvement,
and give perspectives on future work. Since the thesis is based on a mixture of different
concepts and techniques that all contribute to the same goal, we discuss implications
and future directions within the field by going a step back and discussing ideas
for the abstract case of a general eigenvalue problem, depending on some arbitrary
parameter €, whose eigenvalue gap vanishes in the limit of € — 0. Also, some ideas
on connecting the field of eigenvalue preconditioning to the preconditioning of linear
solvers are presented. The thesis then concludes with a list of references.

"See the Theorem 4.1.
8The condition number bound fits into the existing results form the spectral coarse space theory
and is given in Theorem 4.2.






Preliminaries, the Big Picture, and an
Overview of Methods

This chapter reviews the quantum many-body problem, the electronic structure
calculation, and all related aspects to embed our results into the bigger picture. We
then introduce the linear Schrédinger equation and the discretization methods we
use to solve it. Finally, we overview iterative eigenvalue algorithms and domain
decomposition methods.

2.1 Electronic Structure Theory

We start by overviewing the relevant parts of (non-relativistic) quantum mechanics
(QM) required for our context in quantum and computational chemistry. For a more
detailed introduction, we refer, e.g., to the classical books [84, 194, 199, 200, 203, 232,
242] and [56, 95, 133, 181, 195] for the mathematical perspective. We also keep the
presentation compact by ignoring (for this work) unimportant aspects like spin or
relativistic effects.

As a starting point, let us consider the time-dependent Schrodinger equation as

ov
h— = HWY 2.1
in which & = (z1,...,2,) € R" is a vector of spatial coordinates, t € R denotes the

time, W(x,t) is the wave function, ¢ is the imaginary unit, % is the reduced Planck
constant while the operator H is the so-called Hamiltonian operator. The Eq. (2.1)
and an initial condition, ¥(x,0) = ¥y(x), form an initial value problem (IVP) for
the wave function ¥. The Hamiltonian H is a linear operator that describes the
system’s total energy. For example, the Hamiltonian for a single particle of mass m
in a potential V' in d = n = 3 dimensions is given [56] by

h?
Hyp = 5~ Ag +V(x,1), (2.2)
in which A, := 13:1 02/ O:U? is the Laplace operator for all spatial dimensions. Equa-

tions involving operators similar to Eq. (2.2) are all referred to as linear Schrodinger
equations and serve as the main model problems throughout this work. Examples of the
external potential V' in Eq. (2.2), see [133], include, e.g., the free flight or free motion
with V(x,t) =0, a wall with V(x,t) = 0 on one side and V(x,t) = oo on the other
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side, implying ¥ = 0 behind the wall, the harmonic oscillator with V (x,t) = %mwaQ
with the angular frequency w, the hydrogen atom with V(x,t) = —%ﬁ with

the dielectric permittivity €y and the elementary charge e, a particle in a box
with V(x,t) = 0if ¢ € Q and V(z,t) = oo else, and a periodic potential with
V(x,t) = V(x + 1,t) for all, w.l.o.g., ¢ € Z". The case of periodic potentials is of
particular interest to this work, see Chapters 3 and 4, since it can model periodic
lattices and, mathematically, has a well-behaved limit when the size of the domain (2
grows to infinity.

In general, the Eq. (2.1) is challenging to solve since H can be very complex, and
the dimension of x is not limited to three. However, linearity yields the following.

o Superposition principle: If ¥; and ¥y are solutions of Eq. (2.1), so is the
linear combination ¥ = aW¥; + ¥4 for any «, 5 € C a solution to Eq. (2.1).

For a time-independent Hamiltonian, i.e., H = H(x), knowing the eigenfunctions of
H allows us to calculate the time dynamics of the system [56, 132]. Assuming g to
be a normalized eigenfunction of H, i.e.,

H(z)Wo(z) = E¥o(z), |[[Yol =1, (2.3)

with the eigenvalue (or energy) E € R, then the time evolution of ¥ is given [203, p23]
by ‘

U(w,t) = Uo(x)e EH, (2.4)
If, on the other hand, ¥y(x) is a linear combination of multiple eigenfunctions
{tn(x) }nen with corresponding eigenvalues E,, i.e.,

Uo(x) = Z anPn(T), (2.5)

neN
then, using the superposition principle, the time evolution of V¥ is given by
Uz, t) = D antn(z)e Ent/m, (2.6)
neN

In general, solutions of the form
U(a, t) = p(a)e " F0, (2.7)

are called stationary states' and lead to a time-independent probability density
U (z,t)|? = |¢(x)|? [92]. Plugging Eq. (2.7) into Eq. (2.1) and using a separation
into an x- and t-dependent part yields the time-independent Schridinger equation [56,
200] as

Hipp = Enthn, Y]l = 1, (2.8)
which is fundamental to understanding the properties of the considered system. Thus,
finding the eigenpairs of H is a crucial problem in quantum mechanics and the
description of molecular systems, as shown in the following.

!Sometimes, the term standing waves is also used in this context [68, 194], which allows us to
imagine the analogy to two vibrating strings with a phase shift of 7/2, representing the real and
the imaginary part of ¥, when applying, e.g., the “particle in a box” potential.
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2.1.1 The Many-Body Description of Molecular Systems

Moving on to the many-body description in electronic structure calculations, we
now consider a system of N interacting electrons with positions®  := (z1,...,Zx),
x; € R? mass me and charges —e together with M nuclei with positions & :=
(Z1,...,Zn), T; € R?, masses Mn,1,- .., M m and electric charges zie, ..., zpe > 0.
The non-relativistic many-body (molecular) Hamiltonian for this system is again the
sum of the kinetic energies of the electrons and nuclei. At the same time, the potential
is the sum of Coulomb interactions between each pair of particles [195]. Thus, we

have
H=T+YV, whereT =T,+ 1T, and V = Ve + Vie + Vin. (2.9)

The kinetic energy terms are now given by the sum of all particles with their respective
coordinates, i.e.,

N hQ M h2
Te = — Ay, T,=-— Az, 2.10
=Ygt =Yg, ha, (2.10)

while the potential energy terms are provided by the sum over all pairs of particles
(electron-electron, electron-nucleus, nucleus-nucleus), i.e.,

1 N M e 1
Z Z n 2247%0”93,—3:]”

i=1j=i+1 47‘-60 Hml T H i=1j=1

and Vi, = Z Z azel 1 (2.12)

i1 j=it1 47T60 sz—a:jHQ

(2.11)

No matter which system we look at (e.g., the water molecule (HoO) with M = 3
nuclei, the caffeine molecule (CgH19N4O2) with M = 24, ...), we can always use
the Hamiltonian (2.9) without the need for system-specific, empirical parameters or
heuristics. Therefore, the model is based on first principles [56].

To get more convenient numerical values?, it is widespread to consider the equation
(2.9) in atomic units [195], meaning that

h=1, me=1 e=1, € =1/(4m). (2.13)

Technically, this results from rescaling the length unit, i.e., & — ao&, T — agx with
the Bohr radius ag = (4meph?)/(mee?) (see [84]). The resulting rescaled Hamiltonian
in atomic units, after dropping the (*)-notation immediately for the rescaled quantities,

2An alternative notation uses r = (r1,...,7n) and R = (Ry,..., Rar) for & and Z, see [56].

3The term ab initio (from the Latin from the beginning) is also used to describe the modeling using
first principles, c.f., [95].

4According to [84], another reason is the more straightforward comparison of different calculations
since in atomic units, they do not depend anymore on the current best values for the constants in
Eq. (2.9).
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is then given by

1 Mo N M ;
H:_ZiAwl_Z Ai’b_zz ]_
=2 i=1 2Mn,i i e — 2
vox N (2.14)
ZiZj
+ + S -
22wk = 2 T

where M, ; denotes the ratio of the i-th nuclei mass to the electron mass, i.e.,
M, ; = myi/me. For the Hamiltonian (2.14), we observe the following difficulties:

e The Hamiltonian acts on a function of very high dimensionality n = 3N + 3M,
which is extremely hard to solve, even for small molecules. For the water
molecule (H20), e.g., we would have N = 10 and M = 3 leading to n = 39.
Naively storing the wave function ¥ in a regular grid with 100 points per
dimension would require 100%? = 107® points — a number having almost as many
digits than the number of estimated particles in the universe [260].

o The factors 1/M, ; of the kinetic energy terms of the nuclei are tiny since the
ratios My ; of nuclei masses to electron masses is enormous. This mass difference
leads to very different scales between the electrons and nuclei.

These observations motivate the so-called Born—Oppenheimer approximation [47],
which — for our case, simplified — treats the nuclei as point-like, classical particles
such that their positions & are fixed parameters for the movement of the electrons®.
This separation implies that the nuclei are classically modeled by Newton’s second
law of motion, assuming that the electrons adapt instantaneously to any new nuclei
arrangement. This assumption can be seen as a model reduction step since the
dimension is reduced from 3(N + M) to 3N. Thus, in the Eq. (2.14), the kinetic
energy terms in 7}, are neglected, and the potential energy terms in V4, are treated as
constants — only affecting the eigenvalues of the Hamiltonian but not the eigenfunctions.
These considerations lead to the electronic Hamiltonian [242], given by

N
1
He:H_Tn_Vnn:_gisz ZZHx _m]HZ_’_Z Z |ml_mj”2

i=1j5=1 i=1j=1+1
(2.15)
With these approximations, only the electrons are considered quantum particles that
are described by the electronic wave function [105] te (1, ..., xN) with
N
be € R LA(R?,C), (2.16)
i=1

5Actually, the nuclei and electron coordinates are separated and the wave function factorized, leading
to a nested optimization problem involving a geometry optimization of the nuclei coordinates &,
such that they lead to the lowest total energy when also considering the electronic solution with
T as parameters, see, e.g.,[59, Eq. (6.7)] or [181] and further discussions in, e.g., [56, 195].

10
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where ® denotes the tensor product, and L?(R?, C) is the Lebesgue space of square-

integrable functions on R? with values in C. Sometimes, the notation 1, € L%(R3Y,C)

is also used [56] since functions in € L?(R3Y,C) can be approximated by functions in
N | L*(R3,C) [105]. The space is a Hilbert space with the inner product

N
(1, @) := R3¢(w1...xN)*¢(x1...xN) dzy -+ dzy Vi, ¢ € @ L*(R?,C), (2.17)
=1

where 9* denotes the complex conjugate of 1. The norm of ¢ is then given by ||[¢| =
(1, ¢>1/2. From a physical standpoint [59], the squared modulus |¢e(x1,...,zN)|> =
Ye(x1,. .., &N) " Ye(x1,...,xN) of the wave function 1. is the probability density
of finding the N indistinguishable electrons at positions (x1,...,xx). Thus, the
electronic wave function 1), is normalized since the total probability of finding the

electrons is one, i.e.,

e = /RSN We(@1,. .. 2zN)|? day - day = 1. (2.18)

Furthermore, since electrons are fermions, the wave function 1, is anti-symmetric
concerning the exchange of any two electrons, i.e., meaning that

gbe(...,:ci,...,mj,...):—we(...,mj,...,:ci,...), Vi,jG{l,...,N}. (219)

The property (2.19) is a mathematical consequence® of the indistinguishability [59] of
identical particles, i.e., no change in [1|?> when switching positions of two particles,
and allows for deducing the Pauli exclusion principle

Ye(x1,...,xN) =0 if x; = x; for some i # j. (2.20)

Thus, the electronic state space H, is given by

He = }V\ L*(R3,C), (2.21)

i=1

meaning that we only keep anti-symmetrized tensor products [59] from ®Z~]\L1 L?(R3,C).

Remark 2.1 (The spin variable). In the complete picture, electrons have another
variable, o; € {—%, %} This variable is called spin and would typically change the
electronic wave function to become e(x1,01,...,xN,0n) [59] leading, e.g., to a
modified space Ho = AN, L*(R? x {-1,1},C) in Eq. (2.21). Although spin has
important practical implications [181], we omit it in this work for simplicity and
clarity since it is irrelevant to our presentation.

5Symmetric functions would be the other possible case, which defines bosons [56, 59].

11
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2.1.2 The Electronic Ground State Problem

In electronic structure calculations, the main focus is typically the computation of
the smallest eigenpair of H,. The underlying physical interpretation uses the energy,
E() = (¢, Hetp), and that the lowest energy state is the most stable state of the
system. The problem of calculating this electronic ground state is thus the energy
minimization problem [56, 59] given by

Ey = inf{<weaHe¢e>a e € He, HweH = 1}' (2'22)

Note that the electronic Hamiltonian (2.15) is a real-valued operator and thus does
not mix real and imaginary parts [105]. Therefore, the real and the imaginary parts
of the ground state wave function are themselves minimizers of Eq. (2.15) (up to
normalization and provided to be non-trivial). Thus, it is sufficient to consider the
real-valued case [59]. Also, to only consider states of finite energy [59], we additionally
can restrict the space He only to allow functions with L?-integrable first derivative to
give a proper meaning to the kinetic terms, i.e., replacing H. by /\iJL H'(R?), which
we assume in the following, on which H, is self-adjoint [59], and where the Sobolev
space H!(R3) contains real-valued functions with L2-integrable first derivative.

Defining the Lagrangian £ : H. x R — R of the variational problem (2.22) as
L (e, A) := (e, Hote) + A(1 — |[1be]|?) and calculating critical points by setting the
first variation of £ w.r.t. ¥, and the derivative of £ w.r.t. A to zero, i.e., the first-
order optimality conditions, we obtain the variational Fuler—Lagrange equation of
Eq. (2.22) [238]: Find (¢, \) € He X R, such that

Vo € He: <He¢ea ¢> = >‘<¢ev ¢> (2'23)

The Eq. (2.23) is the weak form of the time-independent Schrodinger eigenvalue
problem for the electronic wave function, while the Lagrange multiplier A is the
energy. The corresponding strong form is — again — the time-independent Schrodinger
equation Eq. (2.8), now for the electronic Hamiltonian He, given by

Heq;z)e = edjea H@be” =1 (224)

Solving the weak form (2.23) or directly minimizing the Eq. (2.22) is still challenging
due to the problem’s high dimensionality and the combinatoric structure. Therefore,
we need to introduce further approximations and solution methods, which we discuss
in the following.

2.1.3 Approximation Methods for the Ground State Problem

Like in every other discipline, finding accurate but cheaper-to-compute models,
simplifications, or approximations is a crucial aspect of electronic structure calculations.
Although we can not give a complete overview of all approximation methods, we want
to briefly overview the most common approaches to show the relation to the methods
we present in this work. For a more detailed overview, we refer to the techniques
listed in, e.g., [56, 59, 142, 181] and references therein.

12
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The following families of approximations can characterize the most common [181]
approximation methods:

e Wave function methods directly operate on the wave function 1, and the
variational problem (2.22) by replacing the optimization space H. with a space
with reduced dimension. However, the operator and, thus, the energy are kept
in their original form. One example is the Hartree—Fock method (HF) that
restricts H, to so-called Slater determinants to transform the N-body problem
to N one-body problems coupled nonlinearly. Other approaches can then be
used to improve the HF solution, e.g., the configuration interaction method
(CI), the coupled cluster method (CC), or approaches based on perturbation
theory.

o Density functional methods that reformulate the problem (2.22) in terms
of the electronic density py.(z) = N Jgsv-1) [Ye(T, 2, ..., 2N)[* dz2- -+ doy,
which is a function in R? and thus has a much lower dimension than .. For
a region w C R3, [ py (x)/N dzx is the probability finding any electron in w.
Using the electronic density is very intuitive since, in the end, we are interested
in the distribution of all electrons rather than specific ones. This approach is
also mathematically sound since the density functional theory (DFT) states
that the ground state energy can be obtained by minimizing some density-
functional. The Kohn—Sham method (KS) is the most common method in this
family, which we will briefly discuss in the following sections. However, the
modification of the problem comes with a price, namely the nonlinearization
of the problem [163] and, even more challenging, the search for the unknown
functional since, although the theory states the existence of such a functional,
its exact form is unknown [104].

In [59], a fascinating alternative perspective for the above list is presented: Methods
of the first family tackle the variational problem by finite-dimensional approximations
of the infinite-dimensional set of test functions (such as the finite element method,
see Section 2.1.4.2); methods of the second kind, on the other hand, approximate the
operator or the unknown energy functional itself (like the finite difference method).
When reconsidering the Eq. (2.22), the only remaining aspect of further approximation
(besides function space and operator) could be the evaluation of the energy integrals
(1, Hehe), which, if done stochastically, leads to variational Monte Carlo methods [59].

2.1.3.1 The Hartree—Fock Method

Following Hartree’s motivation in [135, Sec. 1.8], if we assume no interaction between
the electrons, i.e., Voe = 0 in Eq. (2.15), the electronic Hamiltonian H, is separable.
Ignoring, for now, the any-symmetry requirement, the separation of variables for the
ground state problem (2.24) would lead to a solution that is a product wave function”

"Sometimes also called Hartree product [195].
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2 Preliminaries, the Big Picture, and an Overview of Methods

of single-particle functions

U@, xn) = [[vi(@) = va(@1) - v (@) (2.25)

Another perspective is to use the product wave function form as an Ansatz for
the space® ®Z]\L1 H'(R?), resulting in the finite-dimensional subspace consisting of
functions in the product wave function form (2.25). However, since we consider
electronic wave functions, the anti-symmetry holds for electrons. Respecting this
constraint can be done by using the Slater determinants [233] of the single-particle
functions ¢;, i.e., following the notation® from [59, 181],

o1(z1)  i(x2) -+ di(xN)
1 1 [P2(x1)  ga(w2) -+ ga(zN)
L TN) = ﬁdet (¢i(x;)) = Nl : ot
on(x1) on(x2) -+ dn(TN)
(2.26)
where the functions ¢; € H*(R?) are called molecular orbitals [181], are chosen to be
L?*(R?)-orthonormal such that the factor 1/v/N! in Eq. (2.26) ensures normalization
of 1. We define the set'” containing all functions of the form (2.26) as

we(acl, Ce.

_ {% _ \/;T!det (i(@,)) | 65 € H'RP), (6, 6;) = 613, i € {1,... ,N(}}. |
2.27

Rewriting [199] the expression (e, Het)e) while using that 1), is in Vi leads to the
Hartree-Fock energy minimization problem [56, 95] as

= inf{<¢ea Hewe>7 Ve € VHF}

2.28
where the Hartree-Fock energy functional EMF () is given [59] by
N
HF _1 A 2
B () =53 [ IV@) do+ [ pola)Vine(a) da .

1 /
+ = 7p¢(m)p¢,(m) de dz’ — f/ / e (@, ar;/ de do’,
2 Jrs Jr3 [l — @'z R Jrs [l — 2|2
with the electronic density pg(x) := SN, |¢i(x)]? = py.(x) for ¢ € VIF the
(one-electron) density matriz v4(x, @) := SN | di(x)pi(x') and the nuclear Coulomb

potential Viue(z) :== — M, 2i/||x — &2 [59].

8Recall that in the most general case, an arbitrary element of the tensor product space is a converging
infinite series of such Hartree products, as discussed in [181]. We also refer to, e.g., [137] for more
details on the subspace of anti-symmetrized products.

9Sometimes, the notation e = |¢1,...,¢n) is also used to indicate a Slater determinant [242].

0The set of Slater determinant wave functions VY is not a vector space, as, e.g., the sum of two
Slater determinants in not necessarily a Slater determinant.
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2.1 Electronic Structure Theory

Since VHF ., we have that the Hartree-Fock ground state energy is an upper
bound for the exact ground state energy, i.e., Fy < E}Y. Under the assumption
N < Z := M, 2 (meaning a neutral or positively charged system), there exists
a ground state ¢ = (4,...,9%) € (H'(R))"N, see the works by Lieb [188] and
Lions [189], that satisfy the Hartree—Fock equations [181]

Fodi(x) = cidi(x)
{<¢i(m), oi(@) =6 (2.30)

which are the Euler-Lagrange equations to Eq. (2.28), followed by a unitary trans-
formation of ¢ to diagonalize the Lagrange-multipliers [181]. The Fock operator in
Eq. (2.30), following the notation'! of [104, 105], is given by

ol@) = Fypl) = — 1 Auip(@) + Vie(@)pler) + z / 3 H'j_ O dap(a)
(2.31)
Je(a')
_Z RS ||33 IHQ dx @Z)z( )

In Eq. (2.31), there is still some correlation between the electrons present, in contrast
to the initial discussion of the chapter in Eq. (2.25). The underlying reason is
the anti-symmetry requirement [59] we imposed on the wave function . The
HF equations (2.30) are challenging since they are nonlinear eigenvalue problems
and contain non-local operators. However, as discussed in Section 2.1.4, the HF
method is still very successful in practice since the dimension is reduced to N three-
dimensional problems, allowing for more standard discretization. The nonlinear nature
also required iterative (self-consistent) solution strategies, which we will discuss in
Section 2.1.5.

The HF equations can also be used as a starting point for more accurate calculations,
and such methods are called post—-Hartree—Fock methods (see [59] for an overview). In
the Configuration interaction method [59], e.g., when discretizing the operator Fy
with NV}, > N basis functions (see Section 2.1.4) and fully-diagonalizing the resulting
matrix, we also obtain Ny, — N additional, virtual orbitals, that can be used to build up
other Slater determinants. The wave function is then written as a linear combination,
with Z C {1,..., Ny}, |Z| = N, to construct

Vo@r,..my) = > erdet(il@s)ier e ny)- (2:32)

all or some Z

The ansatz (2.32) is then again used within a variational principle to minimize the
energy of H,. Due to its combinatorial nature, this approach quickly becomes very
expensive, so the additional orbitals to include and their combination are chosen
carefully.

HAn alternatlve notatlon see e.g., [59, 181], writes the operator Fy using the convolution, defined by
(FHg)(@) = [.4 f( — ') da’, which is especially useful for the last two terms in Eq. (2.31).
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2.1.3.2 The Kohn—Sham Density Functional Theory

Considering a fluid flow around a cylinder, we might ask ourselves the question'?:

Why should we care about the exact positions and individual movement of all particles
rather than describing the flow using simpler, still meaningful, quantities like density,
velocity, and energy? The same question can be asked for the electronic structure
problem and the individual electrons. And we already have a descriptive quantity at
hand, the electronic density

2

py(x) =N S [h(x, @2, ..., xN)|" deg - - - da,. (2.33)
Density functional theory now tries to formulate the electronic structure problem in
terms of py. Indeed, since every 1), has a corresponding density py,, we can optimize
overall densities that result from a wave function. The idea of representing the ground
state in terms of the density goes back!'® to Thomas [252] and Fermi [111], while the
development* of the density functional theory is attributed to the works of Hohenberg
and Kohn [153], Levy [187], and Lieb [188]. Indeed, the ground state minimization
problem (2.22) can be reformulated to

Ey = inf {E(p) - /R , Vane(@)p() daz, p € IN} : (2.34)

with Viuc(x) from Page 14 defined through the nuclei coordinates &. The convex set
of N-representable densities [59] Z is characterized by

Iy = {,0(33) > 0| V5 e H'(RY), /R p(@) da = N} . (2.35)

The functional E(p) in Eq. (2.34) is called universal'® since it is independent of the
system under consideration since only the nuclei coordinates, &, are used to define
the potential Viue(x) in Eq. (2.34). It reads

E(p) = inf {{¢e, (He — Vauc)Ve), Yo € He, py. = p}, (2.36)

which shows the connection to the initial ground state minimization in %, when
plugging the Eq. (2.36) back into Eq. (2.34) [59]. From a computational point of view,
the set Zy (2.35) looks very tractable: it contains functions of the spatial coordinates
in R3, and we might treat u := ,/p with the constraints u? = p > 0, [|u/|? = N and
start discretizing the problem. If then, by some miracle'®, E(u) happens to be given
by [s |Vu|? dz, this would not even be that difficult, see, e.g., Brezzi and Fortin [53].

12This is a reference to the method of moments used within, e.g., the kinetic theory of gases [246).

13See [188] and note that the reference [111] is the original publication but, by the time of writing,
only a translated version entitled Statistical method to determine some properties of atoms seems
to be publicly available.

Y Also, see the prologue “Early Days of Modern DFT (1964-1979)” in [60].

15Tt is also called the Levy-Lieb density functional, c.f., [59].

16This notion is not even entirely implausible; see the first term of the Thomas—Fermi-Weizsdcker
model in [59], which is an example of an orbital-free DFT model [181].
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2.1 Electronic Structure Theory

However, the exact form of E(p) in Eq. (2.36) is unknown. Thus, we end with an
equation with only some explicitly known terms. In contrast, the unknown terms
are subject to further approximation or modeling — a situation that, in some other
contexts'’, might be called a closure problem. A typical approach in such situations is
to examine a reference state to extract physical intuition or quantitative information
to model the remaining terms.

In the Kohn—Sham model, the system of N non-interacting electrons acts as the
reference state, similar to our heuristic motivation at the beginning of Section 2.1.3.1.
Under convenient [181] assumptions, the kinetic energy of this reference system reads

1T )
Tks(p) _mf{ziz_:l/ﬂ@ |ps|” dx

N
1=1

(2.37)
Defining also the Coulomb energy [59] as

L @)
p) = 2/R/R o e da, (2.38)

allows the collection of all modeling errors, so far, in the exchange-correlation functional
(or energy), which is the difference to the true E(p) from Eq. (2.36) and is thus defined
as

Exc(p) = E(p) — Tks(p) — J(p). (2.39)
The abstract problem (2.34) can then be reformulated [59] as

2 (:Bl) /
mf{ Z/ 6 dat [ Vinela d"”'*z/Rg/Rs Hw_m'nQd v dw

+Blp) | 6: € HYE), /R | 6i@)oy(@) da = by .

(2.40)
using p(x) = YN |¢(2)|? while assuming'® that Eq. (2.37) holds for some minimizer
of Eq. (2.34).

Abstractly speaking, the lack of knowledge of F(p) is now transferred to the
exchange-correlation functional Ey.(p), and approximation methods are needed to
model it. Typical approximations [59] include the local density approzimation (LDA)
with ELPA(p) = [os exc(p) dz using, e.g., exc(p) = —Cpp*/? with the Dirac term
Cp = (3/4)(3/7)/3, see, e.g., [181], or more sophisticated approximations like the
generalized gradient approzimation (GGA) with ESSA(p) = [gs f(p, Vp) dz for
some function f. Note that these approximations can also incorporate empirical
information or information from more accurate reference calculations. Given the
assumption of differentiability for Fy., the Kohn—Sham equations, as described in [181],
correspond to the unitary-transformed Euler-Lagrange equations of the minimization

17See Footnote 12.
18This assumption is not always valid, thus also being part of the Kohn-Sham approximation [59].
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2 Preliminaries, the Big Picture, and an Overview of Methods

problem in (2.40). These equations search for an N-tuple of Kohn—Sham orbitals
(,b = (¢17 SRRE) d)N)a ¢l S Hl(R3), such that

{ Kp,¢i(x) = €ipi(x) 7 (2.41)
(¢i(), ¢j(x)) = s
with the Kohn—Sham operator [59] given by

pl@) = Kpp(®) = —3 Daip(®) + Vesry(@)o(). (242

where, with the exchange-correlation potential Vic(x) = (dEx.(p)/dp)(x), the effective
potential reads

/
Vist(®) = Vie(@) + [ m da’ + Vie(). (2.43)
Let us formally compare the Kohn-Sham equations (2.41) to the Hartree-Fock
equations (2.30). We see that they are very similar formally, and both act on the
N-tuple of orbitals ¢. The kinetic term, the treatment of the nuclear potential, and
the Coulomb energy term have the same form, although both models have a different
theoretical derivation. However, in contrast to the molecular orbitals in the HF case,
whose Slater determinant approximates the trues wave function, the Kohn—Sham
orbitals are not necessarily of a physical nature since only their density is, with proper
exchange-correlation treatment, close to the exact electronic density. Due to their
similarities, both equations have mostly identical algorithmic treatment, as we will
see later in Section 2.1.5.

2.1.3.3 The Gross—Pitaevskii Equation

Let us finish this section on models by considering a mathematical simplification
of the KS model (2.42). Choosing N = 1, Vi.(x) = 0 and replacing the Coulomb
interaction V(x —x’) = 1/||x — «’||2 by an extremely short-range model, i.e., V(z —a')
replaced by 86(x — 2’) with some 8 € R in Eq. (2.43), we would obtain the simplified
effective potential Veg ,(x) = Vext(z) + p(z) (with a reinterpretation of Vi as a
general external potential). Expanding the density p(z) = |11 (z)|? and inserting into
Eq. (2.41) leads to the single nonlinear eigenvalue problem

5 At () + Vet (@)1 (@) + Blin (@) P (@) = exn (@), (2:44)

with [|¢h1]|z2(rs)y = 1. The Eq. (2.44) is the Gross—Pitaevskii equation (GPE), used in
studying superfluidity and Bose-Einstein condensates (BECs) [133]. Although these
above considerations have no physical significance and are purely mathematical, they
show some mathematical connection to the KS model. Thus, one also often encounters
the GPE as a simpler model to test algorithms’ performance for the nonlinear EVP
(2.41). In the proper physical picture of BECs, we deal with bosons. At a very low
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2.1 Electronic Structure Theory

temperature, all particles are in the same quantum state 1{ggc, i.e., are described by
the Hartree product wave function

N
1/)(:131,...,581\7) = H¢BEC<$Z) (245)
=1

The Eq. (2.45) is then used as an ansatz for the electronic ground state problem in
Eq. (2.22). After further modeling approximations, one obtains the GPE, see [32, 33,
133, 225].

2.1.4 Discretization Methods

Regarding the numerical solution of the electronic structure problem, we first need to
discretize the infinite-dimensional problem into a finite-dimensional problem that is
computationally tractable. Just like for any other partial differential equation, we
have a variety of different techniques available. We can group the most common
approximation methods within the computational chemistry context into grid-based
approrimations and variational space approrimations.

2.1.4.1 Grid-Based Approximations

The grid-based approximation methods are derived by discretizing the differential
operators in the electronic structure problem. Reconsider, for example, the integral
Jrs(p(x') /]| — x'||2) da’ from Eq. (2.43). The calculation of that integral to obtain
the so-called Hartree potential [38] Vi amounts to solving a Poisson equation

—AVi(z) = 4mp(x). (2.46)

Restricting to a large domain, © = (z1,29,73) € Q C R3, with zero boundary
conditions'”, discretized by a uniform cartesian grid, with N points per spacial
direction, as Qp, = {;;x} with the grid coordinates x; ;i := (ih,jh,kh), h =
1/(N + 1) allows to replace the function Vg : @ — R by a grid function [29] Vi,
Qp — R. Then, the partial derivatives can be approximated by using truncated Taylor
series [134], e.g., by the second-order central finite difference of the grid function

P Vyl(x _
81;1'2() ~ h Q(VHﬁ(JTl —h,l’z,l’g) —QVHﬁ(l‘l,l‘Q,IL‘g) +VH7h(IL‘1 —|—h, IL‘Q,Z‘g)). (2.47)
1

Repeating this process and collecting the function values of Vi 5, in a vector vy, € RV
allows us to write the Poisson equation as a linear system Awvy, = pp, with the grid point
evaluations of p(x) collected into the vector py. The system has a very structured
compact representation with A = INQINQ L, +Iny QR Ly Iny+ Ly Q@ In® Iy where
L;, represents the second derivative in one spacial direction and Iy the N-identity
matrix, see, e.g., [29]. The linear system can then be solved using standard linear

19 Although real applications require more advanced treatment of boundary conditions, c.f. [181].

19



2 Preliminaries, the Big Picture, and an Overview of Methods

algebra techniques. Such a finite difference approach is used for electronic structure
calculations (see [20, 37, 38, 108, 109]). Evaluation of integrals by summation rules
and further model approximation, such as smooth pseudopotentials, often complements
these approaches. Based on the nature of the approach, the FD method is also often
referred to as a real-space method [107].

2.1.4.2 Variational Approaches

In contrast, the variational space approximation methods are based on discretizing
the test space of the orbitals ¢;. Writing each orbital as a linear combination of
basis functions ¢; = E;y:bl cijX; with Ny, basis functions x;, and we can discretize
the problem by choosing a finite-dimensional subspace V4, C H'(R3) spanned by the
basis functions ;.

In contrast to the periodic setting within solid-state physics, the basis functions
are often centered around the nuclei for the molecular case with a single molecule or
structure having N electrons (e.g., in biological applications). This basis of atomic
orbitals (AO) is then used to construct the linear combination of atomic orbitals
(LCAO) [59]. For M nuclei with coordinates & = (&1, ..., &), for a single orbital,

this ansatz reads
M Ny

qf)l(%) = Z Z Ci,j,kgj,k(x — ij). (248)
j=1k=1

For the atom-centered basis functions &; j,, common choices [59, 105] are the Slater-type
orbitals (STOs), Gaussian-type orbitals (GTOs), or general numerical atomic orbitals
(NAOs). STOs are motivated by the eigenfunctions of the hydrogen atom, i.e., eigen-
functions of linear Schrédinger operators like Eq. (2.2), simplified, up to normalization,
and in spherical coordinates, given by &sto(r, 0, @) = rle 7Y™ (0, ¢) [59] for some
varying parameter a. The idea to use GTOs led to significant improvement in evalu-
ating integrals [181], since Gaussian functions allow for a coordinate splitting and di-
mension reduction when integrated, and are given by £gTo(r, 0, ¢) = rle*szlm(ﬁ, ©).
Since GTOs cannot represent nuclear cusps, an essential feature in electronic struc-
ture calculations, combining some STOs and GTOs is also common [59]. Also, the
parameters « and 8 might be optimized, and in general, there is much flexibility for
the basis choice since even the complete orbitals can be optimized in the context of
NAOs, where the basis is only given numerically [59]. The choice of the correct basis
sets seems to be a very active research field, and there are even databases to store
and exchange them, e.g., [222]. In the non-molecular setting, popular approaches are
based on plane waves for the periodic case within, e.g., crystals. Further strategies
include, e.g., other spectral- [179], wavelet- [125] or tensor methods [29].

Another discretization method is the finite element method (FEM), which usually
allows for a much more systematic improvement of the basis. Reconsidering the
Poisson problem (2.46) (dropping the 47-constant and labeling the solution u instead
of V41), we can first write it as a variational problem: Find u € V := H} () such that

Yo e HY Q) :  a(u,v) = F(v), (2.49)
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Figure 2.1: Visualization of Lagrangian shape functions for (a-c) first-order P; and
(d-i) second-order Py elements. Parts of the figure have been used in [246],
while the generation script for arbitrary order visualizations can be found
in [245].

with the continuous, coercive, bilinear form a(u,v) = [gs Vu - Vo dx, a continuous
linear functional F' € V/ and H}(f2) denoting the Sobolev space of first order having
a zero trace. The variational nature can be easily seen since the problem (2.49)
characterizes [53] the solution of the minimization problem given by

1
inf f/VQd—/ d}. 2.50
veglg(ﬂ){Q Q‘ of de va ¥ (2:50)

Furthermore, the Lax—Milgram theorem [51] guarantees the existence and uniqueness
of Eq. (2.49). The main idea is now to replace V with a finite-dimensional subspace
Vi, C V, spanned by the basis functions {x; ;V:bl’ and to solve the finite-dimensional
problem: Find uj € V}, such that

Yoy, € Vi a(up,vp) = F(up). (2.51)

The energy error made by this approximation is quasi-optimal since up to a multi-
plicative constant, it is optimal, i.e., ||u — up||y < (C/a) min,ey, ||u — v||y with the
continuity constant C' and the coercivity constant «. This result is known as Céa’s
lemma [51].

Writing the solution as a linear combination of basis functions, i.e., up = Zj-\f:bl CiXjs
inserting it into Eq. (2.51), and using the linearity of the bilinear form a and the
linear functional F' allows us to write the problem as a linear system Ax = b. The
basis coefficients are collected in a vector & € RM while the entries of the symmetric
stiffness matriz A € RM>*No are given by A;; = a(xi,x;) and the right-hand side
vector b € R™ is constructed through the entries b; = F/(x;).

The numerical values within the linear system are determined by fixing the basis,
usually done with a geometrical triangulation of the domain Q. Let 7}, be a conforming
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2 Preliminaries, the Big Picture, and an Overview of Methods

and shape-regular partition of the domain € into finite elements 7 € 7Tj, where
h := max,¢7, diam 7. We can then define the finite element subspace V;,(2) C H}(Q)
as the set of piecewise polynomials with total degree r from the space of polynomials
P, that satisfy u|, € P, for all 7 € Tj, such that |V},(22)| = Ny,. The transformation
rule allows the integrals to be evaluated using numerical quadrature rules performed
on a reference element. For the case of Lagrangian elements in the two-dimensional
setting, Fig. 2.1 presents the shape functions, i.e., restriction of the basis functions to
one reference element, the 2-simplex for the given case.

Various finite element libraries exist in multiple programming languages, e.g.,
FEniCS [12], deal.II [26], FreeFEM++ [138], DUNE [35], Gridap.jl [30], to list at
least some of them. Usually, most libraries have a generic API, allowing for quick
prototyping and easy model adaptation. Changing, e.g., the weak Laplace operator
of —A in Eq. (2.49) to —A + Ve (), for some regular enough Viyt, and considering
the corresponding eigenvalue problem, is thus straightforward and would lead to

(A+ B)x = \Mz, (2.52)

with the additional symmetric potential matrix B € RM*No and mass matrix M €
RNoXMo with entries B j = [o Xi(@)Vext(®)x;(z) de and M; ; = [, xi(z)x;(z) dz.
Systems of the form (2.52) are essential throughout this thesis since they are the
discretized version of the main model problem, the linear Schrodinger equation, see
Section 2.1.6.

Coming back to the electronic structure problem, we have to note that the FEM is
not a very popular choice within the electronic structure community. A reason is the
special meshing requirement, i.e., to resolve certain phenomena near the nuclei [60,
181]. These requirements might be a common drawback of real-space methods but are
a general requirement of such grid-based methods [244]. However, works within this
category exist, e.g., for the KS equations using adaptivity in [72], using an FE basis
only for the radial parts [183, 184], using a DG method for the KS equations [156],
and other methods (see, e.g., the reviews [182, 218]). Although inefficient and not
widely used in practice, these methods have rigorous mathematical foundations. This
fact allows studying phenomena observed within a broader class of numerical methods
because they are, e.g., caused by the equations, not their discretization.

2.1.5 Solution Algorithms

Besides discretization, another difficulty in the HF or KS model is the nonlinearity
within the set of eigenvalue problems or the energy functionals to minimize. It is
possible to directly minimize the functional or iteratively solve the Euler-Lagrange
equations, often called self-consistent field (SCF) iterations [57]. Although the SCF
approach was, some years ago, described as “the only tractable one” [181], there is
still an active research community dealing with direct minimization methods.

2.1.5.1 Self-Consistent Iterations

For the HF, KS (or GPE model with N = 1) from Section 2.1.3.1, after discretization
of the orbitals ¢; = Z;V:bl ci;X; within a basis, we obtain a set of coupled, nonlinear
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EVPs. All orbitals are treated at once with the coefficient matrix C € R¥o*N leading
to a prototypical problem, usually written, c.f., [59, 181] in the form

F(D)C = SCE
ctsc=1y (2.53)
D=cc”

where § € RM*M is the overlap matriz (similar to the mass matrix in the FEM
case), E = diag(e1,...,en) is the diagonal matrix of lowest eigenvalues of F(D)
(discretization matrix of either the HF, KS (or GPE) operator), and D € RM*M ig
the density matrix.

The idea is to start with an initial guess for C, build up D, and use it to construct
an updated F(D) such that the linear eigenvalue problem yields an updated C, i.e.,

iterating for kK = 0,1, ..., the set of equations [59] as
FCyi1 = SCyi1Eg+y
Cl,SCyy1 = Iy : (2.54)

T
Dy = Cyi1Ciyy

IfF=F (Dy), it is the classical SCF approach, called the Roothaan algorithm [226]
or pure SCF [58]. However, convergence and oscillation issues [95] require damping
in practice. Choosing F ~ F(D}) — bDy, in Eq. (2.54) yields the level shifting
algorithm for a shift b. There exists a value by > 0 such that the sequence converges
to a stationary point with some energy minimization property [58]. When inserted
into Eq. (2.54), this strategy effectively changes the energies and thus modifies the
local geometry of the energy landscape. We can also use a relaxation and only
slightly update the density matrix per step with the mixing rule aDy11 + (1 — «) Dy,.
Mixing the operators, e.g., by a linear combination of F(Dy), F(D1), ..., under some
optimized conditions for the coefficients within this linear combination, is also an
option. Such a strategy is often [59] called direct inversion of the iterative subspace
(DIIS), Pulay mizing, Anderson acceleration, or nonlinear GMRES (see, e.g., [254]
for a discussion). Only some of the last steps can be used for the mixing to improve
performance.

2.1.5.2 Direct Minimization

The alternative to the SCF approach is to minimize the energy directly. After
discretization, this yields a manifold optimization problem since we must incorporate
the constraints. Formulations are either based on minimizing E(C') on the Stiefel
manifold or E(D) on the Grassmann manifold (see, e.g., [106] for a review about
minimization on manifolds).

Respecting the constraints in combination with the nonlinearity is challenging. The
approaches typically use or combine techniques from the optimization community
and use, e.g., gradient descent [19, 186], gradient flows [13, 139, 146], Newton [15, 55],
and trust-region [113, 154], to name a few.
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2.1.6 A Model Problem: The Linear Schrodinger Equation

After reviewing the bigger picture within the electronic structure problem, we now
focus on a particular aspect, namely the linear Schrodinger eigenvalue problem: Find
(A, u) such that

(2.55)

—Au+Vu=d A in
u=0 on o’

where V is an external or effective potential. Problems of this kind arise in various
applications. If we recall the bigger context and all modeling assumptions from the
previous sections, the problem Eq. (2.55) might be placed at the end of the path:

time-dependent Schrodinger equation (2.1) — time-independent Schrodinger
equation (2.8) — electronic Hamiltonian with Born—-Oppenheimer approximation in
atomic units (2.15) — electronic ground state problem (2.22) — HF/KS/GPE
equations (2.30), (2.41) and (2.44) — linear EVPs in one SCF cycle (2.54).

For the Eq. (2.55), we mainly have two options to modify the model: the potential V'
or the domain 2. We will discuss both options in the following.

For the operator and, thus, the potential V', we assume periodicity to make the
problem interesting and challenging but still mathematically tractable, as we will see
in Chapters 3 and 4. Note that we also focus on the case of a single eigenfunction,
thus N = 1, and given the previous sections, the potential can also be seen as an
effective potential Vog similar to (2.43) within the KS operator. Therefore, the model
problem could also be interpreted as modeling a single electron within the mean-field
potential generated by the other particles in the system. Alternatively, another view
is the linearization of more complex models around some state of interest, i.e., the
ground state. Furthermore, the potential will be usually complemented with an
L*°-assumption, corresponding to, e.g., the use of pseudopotentials. Note that V =0
reduces to the Laplace eigenvalue problem, which we will frequently use to motivate
and highlight difficulties since it has a known set of eigenvalues.

For the domain €2, we focus on anisotropy. In the general case within chemical
applications [219], this is differentiated into chemical anisotropy based on, e.g., the
alignment of atoms, anisotropy in properties when specific directions are preferred, e.g.,
for magnetic properties, and the domain anisotropy for domains with very different
length scales for the spatial dimensions. We focus on the latter, anisotropic domains
with some dimensions expanding, possibly, uniformly while the rest of the dimensions
remain fixed. Mathematically, this is described by an abstract d-dimensional box

2€ QL =(0,L)" x (0,0)?=:Qp x Qy CR?Y  with L,/ € R, (2.56)

where ¢ = const and L — oo. Such a domain with a periodic potential V' is
sketched in Fig. 2.2. These domains were initially motivated by applying the domain
decomposition method (see the Section 2.3). However, they are also physically
significant, especially for nanomaterials [229]. Think about the Nobel-prize-winning
works on graphene [126, 213, 214], which belongs to the class of 2d material since it
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(a) Geometrical setup of Q7 (Chapter 4).  (b) Carbon allotropes [263]. (c) Graphit [264].

Figure 2.2: Visualizations of (a) our geometrical model domain Qf, for p = 2 ex-
panding dimensions with L — oo from Chapter 4, (b) the allotropes
of carbon [263], including the anisotropic cases of graphene and nan-
otubes, and (c) a representation of the Nobel-prize-winning experiment
of graphene extraction with a tape dispenser and graphite, located in the
Nobel museum in Stockholm [264].

is composed of the regular alignment of carbon atoms in a hexagonal lattice, with
the thickness of only one atom. The material is, thus, anisotropic. Initially extracted
with only a tape dispenser (Fig. 2.2¢) from the three-dimensional structure graphite,
its unique geometry implies various exciting material properties. Further applications
include 1d structures like carbon nanotubes, carbon nanowires, or 2.5d structures
created by stacking two twisted plane materials; see Fig. 2.2b for the visualization of
carbon allotropes (also see Section 4.1.3 for a further discussion).

The boundary conditions are again motivated by the DD inspiration for the case
of linear systems, but for L — oo, a periodic V allows a unique perspective on our
model with exciting observations: the model is located in between the theory of fully
periodic systems and the fully static case. This fact makes the eigenvalue equation,
combined with the domain assumptions, a rather nonstandard problem with some
unique features?. In fact, for L — oo, the difference between the first and second
eigenvalue can become arbitrarily small, which poses significant challenges for the
solution to the discretized Eq. (2.52).

2.2 lterative Eigenvalue Algorithms

We will now move to the iterative algorithms to solve the discretized eigenvalue
problems of the type (2.52), i.e

Ax = \Buzx, (2.57)

20For example, the finite-dimensional factorization of Theorem 3.1 could, e.g., be related to the
infinite-dimensional periodic case (Bloch theorem).
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2 Preliminaries, the Big Picture, and an Overview of Methods

with the symmetric, positive-definite matrices A, B € R™"*", the eigenvector & € R",
and the eigenvalue A € R. Depending on the discretization, B is not necessarily the
identity matrix, and the Eq. (2.57) is thus called a generalized eigenvalue problem
(GEVP). For simplicity of the presentation, we set B = I,,. Note that this can
easily be archived by transforming the problem to a standard EVP, i.e., Ax =
ABx < B! Ax = Mz. For actual numerical implementation, we will not use this
transformation since it is beneficial to work in the changed B-metric, using || - | B as
the B-norm, i.e., ||z||p = V& Bz when normalization is applied and using A — cB
when shifting of the spectrum is required. We will also assume that the eigenvalues
are ordered, ie., 0 < A < A2 < - < A with corresponding eigenvectors
@) (M.

Since we deal with the discretization of PDE operators on a localized basis, we
only consider the iterative approach. The algebraic methods are usually infeasible
due to memory limitations since the resulting matrices are large and sparse. Due to
the previously presented application cases, we are only interested in the extremal
eigenvalues (the smallest eigenvalues for the ground state calculations). However, the
method generalizes the interior eigenpairs when properly shifting the matrix (since
interior eigenvalues can become extremal ones). For a more detailed overview, we
refer, e.g., to the classical books [217, 266], the more numerical works [31, 227, 256],
the review article [128] and references therein, or the corresponding sections within
the books [71, 96, 129, 155, 255, 267].

gee ey

2.2.1 Power Method

We start with the power method (PM), attributed®! to Miintz [204, 205] and von
Mises?? [259], that repeatedly applies the matrix A to a vector &g and normalizes the
result subsequently, i.e.,

o)) A:I:o A2a:0
zoll2” [[Azoll2” [[A%xol2”

(2.58)

The sequence (2.58) converges to the eigenvector corresponding to the largest eigen-
value of A if the initial vector xq is chosen appropriately and the largest eigenvalue
is simple. The Algorithm 1 (with a = 1,01 = 0) presents the idea in a structured
way. For a given approximation to the eigenvector, we can use the Rayleigh quotient,
Ra(x) := (2T Az)/(x"x), to get a corresponding eigenvalue approximation with
Ak = Ra(zp).

To understand the convergence of the algorithm, we expand the initial vector in the
eigenvectors of A, ie., g = ;" cieD | with the eigenvalues AV < ... < A\ and
the corresponding eigenvectors @ . 2™ With the constants dj, corresponding

21See [128].
22Thus also known as the von Mises iteration in some contexts.
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k
) @ 1 cnm(")) .

(2.59)

to normalization, the sequence (2.58) becomes [255]

T = dk(A xo) = di (iq ) = di( )\(” (Zc (
=1

In Eq. (2.59), we observe the contraction of components in all but one direction due
to (A /X(M)-terms. More precisely, we have the following.

Theorem 2.1 (Convergence of the power method [255]). Suppose |AD| < .. <
IANP=D| < X)) and 2Fx™ £ 0 (ie., xo has some component in ™ -direction).
Then, the iterates of the Algorithm 1 satzsfy

|z, — (£2M)] € O(p(A)°),  |M = AV] € O(p(A)*), (2.60)

as k — oo, with p(A) = [NV /X")| denoting the convergence rate. The + sign
means that one or the other choice of sign is to be taken at each step k.

Thus, the distribution of eigenvalue and especially the ratio between the desired
and the first closest neighboring eigenvalue determines the convergence speed. In
practice, typical convergence criteria in Algorithm 1 are based on the spectral residual
r(xg) := Az, — Ra(xk)xy, e.g., when ||7g|2 < TOL is reached. The spectral residual
will play an essential role for gradient-based methods in Section 2.2.5 (since it points
in the direction of the Rayleigh quotient gradient), and it can be easily seen that
r(y) = 0 corresponds to y being an eigenvector. The algorithm’s advantage is
its simplicity since only matrix-vector multiplications are performed. If the lowest
eigenvalue, see the Section 2.1, is of interest, the algorithm must be modified.

Algorithm 1 Generic single vector iteration: power method (o = 1,04 = 0), inverse
power method (v = —1, 0 = 0), shifted inverse power method (« = —1, 0% = o), and
Rayleigh quotient iteration (o = —1, 04 = A\g)

Require: a matrix A € R"*" an initial vector g € R"
1. Normalize xg := xo/||xo]|2
2: Initialize k := 0
3: while not converged do
4 Calculate @y 11 := (A — o I,) g,
5: Normalize @11 := Tit1/||Tr41]2
6 Calculate A\gy1 := Ra(®r11)
7 Increment k :=k + 1
8: end while
9: return eigenpair approximation (\g, )
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2.2.2 Inverse Power Method

In our applications, we are typically interested in the lowest eigenpair. Thus, we use the
inverse power method, which replaces the matrix A by A~! in the line 4 of Algorithm 1.
The resulting method converges to the smallest eigenpair with appropriate o since
the eigenvalues essentially change their ordering with A (A=) = 1/A()(A) (in our
positive definite case).

The convergence factor in Theorem 2.1, p(A~') = |AM /A®?)]|, is called the funda-
mental ratio r(A). It depends on the fundamental gap, g(A) := X2 — X by the
relation 7(A) = AN /(A 4 g(A)). If a matrix A, depends on a parameter € (e.g.,
the mesh size, domain length, the strength of the external potential), the gap might
depend on € and vanish in the limit, i.e., g.(A¢) — 0 for e — 0. This vanishing gap
would then result in r.(A) — 1 leading to an arbitrary bad convergence rate. This
situation happens, e.g., for the model problem from Section 2.1.6 if L — oco. For such
cases, or any other cases with a small gap, a shift 0 € R can be applied since shifting
affects only the spectrum but not the eigenfunctions.

Replacing A by (A — oI,)~! in line 4 of Algorithm 1 leads to the shifted inverse
power method. The shift-and-invert (SI) strategy shifts the spectrum uniformly by
the value o. The convergence factor then reads p,(A) = (A —¢)/(A?) — o) (again
provided that 0 < o < A <« \@) < -++). We observe that the closer the o is to
AD) | the smaller the ratio. In the extreme case of ¢ = A, we end up with the
singular matrix A — A(VT,,. The pseudo-inverse of that matrix, (A — AN IL,)T, is
an orthogonal projector onto the space spanned by all except the first eigenvector
projector and we could use it to remove all unwanted directions of a starting vector xg
to solve the system immediately; this is also the reason, why it is seen as the perfect
preconditioner [170]. An analogy might be using the preconditioner M = A~! when
dealing with linear systems, which is as hard to apply as solving the system. For the
eigenvalue case, A s of course, unknown and part of the solution.

The inverse power method is more expensive than the power method since it now
involves the solution to a linear system per step (or an expensive factorization a-priori).
This direct solution strategy is later used in Chapter 3. Alternatively, and since we
deal with PDE-based problems, it is thus often beneficial to use iterative solvers for
the linear system, which we will discuss in Chapter 4 after constructing a suitable
preconditioner. We refer to that strategy as inner-outer iterative eigensolvers since it
leads to another loop to solve each linear system per step, see [114, 115]. Further, note
that the shift-and-invert techniques are not the only possible spectral transformations
that can be used. We refer to, e.g., [31] that also discusses the Cayley transformation
(A —oI,) (A 4+ uI,) by prescribing a root p and a pole o. Generally, any rational
function in A can be used (see the related filtering [27, 268] techniques and the
FEAST algorithm [221]). Using the current eigenvalue estimate A as a shift, i.e., an
adaptive shift, is the essential idea of the following method.

2.2.3 Rayleigh Quotient Iteration

The Rayleigh quotient iteration (RQI) updates the shift o in each iteration and uses
the current eigenvalue estimate, i.e. by using the matrix (A — )\k.In)fl. The idea,
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usually attributed?® to Wieland [262], is excellent since we know that the standard
inverse iteration has A, — A\(!) and that the perfect preconditioner matrix is precisely
built with (A — AN I,) (see the discussion in the last section). The method has a
cubic convergence but may not converge to the smallest eigenpair [31]. It also comes
with the increased computational cost for factorization since the matrix changes in
each iteration step. Constructing more reliable convergence is active research (see,
e.g. [116]). Furthermore, we want to mention the inherent connection of the RQI and
Newton’s method; see [31] for a detailed review.

2.2.4 Block Iterations

Generalizing all the presented single vector iterations to block iterations searching for
multiple, say, p orthonormal eigenvectors simultaneously is straightforward. Instead of
a single x € R™, a tall matrix X € R"*P is used within the framework of Algorithm 1.
For instance, the iteration of the power method would then read as

X = AXy, (2.61)

followed by an orthogonalization [255] using the QR factorization, as Xy, =
Xi11Ry11, or the (modified) Gram—Schmidt procedure. Although not the focus
for use within our model problem Eq. (2.55), block iterations are essential for applica-
tions in electronic structure calculations (see Section 2.1) since the multiple vectors
correspond to the system’s orbitals.

2.2.5 Gradient-Based Methods

In Section 2.1, an energy minimization problem led to eigenvalue problems, the HF
or KS equation. Using the Rayleigh quotient, we can also use an energy minimization
approach in the discrete case. The idea is to minimize the Rayleigh quotient, i.e., the
energy, concerning the eigenvector & since we know from the min-maz theorem [227]
that A = mingcpn Ra(x). Thus, using a gradient descent method is natural to
minimize the Rayleigh quotient. Using matrix calculus, we obtain the gradient of the
Rayleigh quotient as

VRa(z) = %(Azc ~ Ra(z)). (2.62)

Having access to that gradient, we can apply all the standard techniques from
optimization theory. Furthermore, the gradient Eq. (2.62) points in the same direction
as the spectral residual r := Az, — Ra(xy)xy, which is already available in the
algorithm since it acts as a convergence measure. Thus, using it also as a descent
direction is handy.

2.2.5.1 Steepest Descent Methods

Starting from an initial guess xg € R", the steepest descent method, per iteration,
goes a step towards the negative gradient (see, e.g., the optimization literature for

#3Gee [243] for an excellent discussion about its history; thus also called Wieland iteration.
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more details [174, 212]). The iteration is then performed using the abstract rule given
by
Tpy1 = T + T, Prdy, (2.63)

where we set the direction dy, = —rj € R™ (which is proportional to VR4 (xx)) and
the preconditioner, P = I,, € R"*"™. If P # I,,, we call it the preconditioned steepest
descent method. The step size 7, € R could be a constant, adaptively modified in each
iteration by some rule, or can be chosen based on the usual line search algorithms,
e.g., the Armijo or Wolfe conditions [212].

For the present case of eigenvalue problems, using the locally optimal steepest
descent method, which uses the optimal step size 7 in each iteration, is beneficial.
The optimal step size is the minimizer of the Rayleigh quotient along the direction
dy, i.e., defined as

T, = argmin Ra(xy, + 7dy;). (2.64)

TER
Choosing the preconditioner matrix P, = A~! is sometimes called preconditioned
inverse interation (PINVIT) [207]. In fact, with 7, = 1, we obtain for Eq. (2.63) that

xp11 =z, — A" (A — Ra(zi)zy) = Ra(zp) A 2y, (2.65)

which is, after normalization, one step of the inverse power method. For more results
about this class of methods, we refer, e.g., to [25, 48, 168, 169, 170, 172, 173, 208,
209, 210, 273]. The choice of P, = A~! is not uncommon as a preconditioner.
Usage of this preconditioner seems very expensive from the perspective of iterative
linear solvers since we will have to solve the system in each iteration (or perform
an expensive factorization). However, for typical PDE-based problems, the methods
perform poorly without preconditioning, and the cost of the preconditioner is usually
negligible compared to the cost of the eigenvalue problem. However, usually, the strict
equality for Py can be replaced by a spectral equivalence requirement [25], i.e.,

(1-yz'Ple <z’ Az < (1 +7)z" P, 'z, Va € R" and some 7 € [0,1). (2.66)

The solution to the optimization problem (2.64) remains to be discussed. For the
present case of the eigenvalue problem, this can be quickly done using the Rayleigh—Ritz
(RR) procedure, a standard tool for iterative eigenvalue solvers in general, see [31].

2.2.5.2 Rayleigh—Ritz Procedure

We motivate the RR procedure by considering the minimization problem (2.64) and
follow the presentation of [31]. Let us assume that we have a subspace K C R" with
dimension m, and we want to find approximate eigenpairs of A% = A\& where & € K
and X € R. Of course, if K does not contain eigenvectors of A, then we can not solve
the eigenvalue problem within . However, we can find the best approximation in
K by imposing the Galerkin condition, i.e., the best approrimation in the Euclidian
norm, as

AE— i LK. (2.67)
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To transfer this orthogonality condition into a matrix problem, we define the matrix of
basis vectors V = (v, ..., vn) € R where {vy,..., vy} is an orthonormal basis
of IC. After writing the unknown & in that basis as & = Vy with y € R™, we obtain
the matrix problem as

Vi=1,...,m: vl (AVy—AVy) =0, (2.68)
which translates to the m-dimensional eigenvalue
ViAVy =AvTvy. (2.69)

In practice, we use this method to compute the optimal stepwidth 7 in Eq. (2.64).
Following [24], we can do the calculation and expand min,cg Ra(x; + 7dy) as

1 g w%Awk w%Adk 1
. (x + 7dp)T Ay, + Tdy) . A\T df Aw; di Ady) \7
min FRYY A mlﬂrg 7
TER (mk —+ 7 k) (a:k + 7 k) TE <1> (ib%mk $£dk> <1>

T d;{mk d{dk T

. (2.70)

where the last expression attains its minimum if the vector (1,7)7 points in the same
direction as the smallest eigenvector, y(!) € R2, of the generalized, two-dimensional
eigenvalue problem Ay = ABy, where A = VTAV, B = VTV with the matrix
V = (xg,di). So if yM has no trivial first component, i.e., yg) # 0, then taking
T = ygl) / ygl) yields the optimal step size in the Eq. (2.64) by the scaling invariance
of the Rayleigh quotient. This non-triviality condition is irrelevant for practical
calculations®*, but we can also directly minimize in the space spanned by x; and dj,
with

T = arg min Ra(y), (2.71)

y€span{wy,d, }\{0}

since we need to solve a two-dimensional eigenvalue problem in any case. Geometrically,
we replaced the (affine) line search with a (linear) subspace search.

After presenting the Rayleigh—Ritz procedure, we also want to highlight the class of
subspace iterations where the search dimension increases. Recall that we calculated
the sequence g, Axg, A’x, ... for the power method but only used the previous
iterate in the next iteration. The mentioned sequence, however, constructs a Krylov
space defined by KC;(A, xg) = span{xg, Axo, ..., Alzg}. We can use the Rayleigh—
Ritz procedure to approximate the eigenpairs within the current Ky (A, xp). Popular
Krylov space algorithms are the Arnoldi method for general and the Lanczos method
for Hermitian matrices [227]. At the same time, other related methods like the
Jacobi-Davidson method also consider subspaces with increasing dimensions, see [24,
227].

24Thus, it is usually not discussed.
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2.2.5.3 Locally Optimal Preconditioned Conjugated Gradients Method

Based on the optimal choice within a two-dimensional space (Eq. (2.71)), we can
also optimize in the space spanned by the current iterate xj, the previous iterate
xj;_1, and the preconditioned residual Pyrg. This choice then leads to a three-term

recurrence and defines the so-called locally optimal preconditioned conjugated gradient
(LOPCG) method [167]

Sk = span{xy, xp—1, Ppri}, Zpqr = argmin Ro(y), Xp1 = Tpa1 /|| Tpall2-
yeSE\{0}
(2.72)

The terminology of the method was inspired [167, 171] by the conjugated gradient
(CG) method for linear systems (which also uses a three-term recurrence and minimizes
the energy error per iteration [98]) and is then combined with the local optimality
obtained by using the Rayleigh-Ritz method within the subspace Sj. However®, note
that the results from the linear case can not be directly transferred to the eigenvalue
case since the Rayleigh quotient is not quadratic (see the discussion in [24, 110] and
references therein). This method performs very well (see the results in Chapter 3)
with slightly increased memory requirements and costs due to the three-dimensional
optimization search compared to the locally optimal steepest descent variant.

The method also needs a suitable preconditioner, usually taken as A~! or some
approximation. We link to the discussion in Chapter 4 when constructing a suitable
preconditioner based on the domain decomposition method and apply it in an inner-
outer scheme.

2.3 Domain Decomposition Methods

This section introduces the related concept of the domain decomposition (DD) method.
Although the initial idea of the method is quite old, the method has been developed
and improved over the last decades and is still an active field of research. Since our
main focus will be overlapping Schwarz methods to use as preconditioners for the
discrete cases, we can only discuss some of the different flavors, tweaks, and application
cases. We thus refer the interested reader to the books by Smith [234], Quarteroni and
Valli [223], Toselli and Widlund [253], Mathew [198], Dolean, Jolivet, and Nataf [98],
and the corresponding chapter in the book of Ciaramella and Gander [89].

2.3.1 Continuous Domain Decomposition Methods

In the original paper [231] from 1870, Schwarz was interested in the solution to the
Laplace equation Au = 0 in a domain 2 C R™ with boundary 992 and boundary
condition u = g on 0. Due to the lack of theoretical tools [98], see also [122] for a

25In [171], it was shown that the method behaves similarly to the classical CG method applied to
the singular system A — AV, see also [215] for a discussion. Using the CG algorithm for the
eigenvalue problem recovers some known properties only in the asymptotic limit, as discussed
in [110]. However, this can depend on the specific implementation.
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Figure 2.3: The original DD sketch by Schwarz in [231] with two subdomains, 77 and
T5, that overlap in the region T* = T7 N T5.

very detailed discussion, he proposed to decompose the domain into problems within
simpler domains for which existing tools can be used (see the Fig. 2.3 for the original
sketch of this decomposition). He chose two overlapping subdomains, €; and Qg,
where Q = Q7 U Qs and 1 NQy # (. Then, the solution to the problem on the whole

domain is the limit of kK = 1,2,... to the following sequence
Auk =01in Auf =0 in Q,
uf =gon 0QNQ —  ub=gondNNQ, . (2.73)
ub =ub~lon Ty uk = ul on 'y

The sequence (2.73) considers each subdomain separately and uses the outer boundary
condition g where possible. The value of the function within the other subdomain is
taken for the boundary parts that do not belong to the global outer boundary 9.
Using the maximum principle, the convergence of that sequence can be proven [122].
Since the equations still need to be discretized, we refer to this strategy as a continuous
domain decomposition method. The method is also called the Schwarz alternating
method.

Many years later, at a time when parallel computers became more and more
available [122], Lions studied the method in a series of papers [190, 191, 192] and
proposed in [192, p18] a parallel version of the method (in adapted notation) as

Au’szian Aulgz()in Qo
U’f =gondQN — ug =gon 00NN, ) (2.74)
uf =ub~lon Ty ub = w1 on Iy

This minor change had a significant impact on parallel computing. The problems on
each subdomain are now independent since they only depend on the boundary values
from the (k—1)-th step. While the former, Eq. (2.73), operates in a Gaufi—Seidel style,
the latter operates in a Jacobi style when using the terminology of iterative solvers.
The convergence of both methods typically depends on the overlap [98] since more
overlap allows for more information exchange between the subdomains intuitively.
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aipaiz 0 --- 0 T b1
az1 az2 a3 --- 0 4 by
0 as2as33 -+ 0 T3 = bs
0 0 0 - ann In b,

Figure 2.4: A minimal algebraic non-overlapping decomposition of Ax = b.

The non-overlapping Schwarz method is the extreme case when the subdomains do
not overlap. The Dirichlet boundary condition will never change for such cases,
leading to no information exchange between the subdomains. Thus, the boundary
conditions are changed to Robin-type transmission conditions [98], e.g., of the form
(On + a)ul = (8, + a)ui™ on I'; where the parameter a can be optimized to get
the fastest convergence. These are a separate class of methods, thus called optimized
Schwarz methods. More general transmission operators are possible and needed (see,
e.g. [94, 98, 121]). The boundary conditions (w.r.t. the subdomain problems) can also
be mixed in a Dirichlet-Neumann fashion. For this thesis, we mainly focus on the
classical overlapping case.

2.3.2 The Discrete Case

The discrete case is especially relevant since we are mainly interested in using the DD
method as a linear solver or as a preconditioner within a Krylov method. Consider the
discretized equation Ax = b in the usual notation with the symmetric and positive
definite A € R"™, the right-hand side b € R™, and the solution & € R”. In the discrete
case, the degrees of freedom (DOFs) act like the volume in the continuous case. So,
grouping the DOFs into subdomains is a natural choice, corresponding to a physical
domain decomposition in the continuous picture. Following the notation from [98],
we denote with A, |[N| = n, the set of degrees of freedom, i.e., usually the values
on the nodes of a finite element mesh, for example. We can then split these DOFs
into N < n subsets {N;}, such that UY,N; = N. Another strategy is to first
split all DOFs into disjunct sets such that N/ NN} = 0, for i # j, and then to
use the connectivity graph later to enlarge these non-overlapping domains layer by
layer iteratively to create the overlapping decompositions {N;}Y ;. This strategy is a
common practice, and software like, e.g., METIS [161] or Scotch [75] can be used. As
sketched in Fig. 2.4, such a disjunct decomposition labels the DOFs within the linear
system and assigns them to a subdomain.

With a decomposition at hand, we want to formulate an iteration procedure to
mimic the parallel Schwarz method (2.74). The solution within one subdomain,
i.e., solving a subset of equations within the system, can then be formulated using
restriction matrices R; € {0, 1}Wi|XW |, such that R;x restricts  to the subdomain
N; (ie., ;). Extending a small local vector back to the global vector is then done
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using the transpose RZ-T € {0, 1}W ‘XW”, which is called the extension matrix. Since
we want to operate on the global vector &, whose entries (DOFs) belong to multiple
subdomains, we need to define also the diagonal partition of unity (PU) matrices
D, € R'M|X|Ni|, such that x = fil R;priRiw for all & holds. In the following, we
illustrate how these matrices could be constructed.

Example 2.1. Let /' = {1,2,3} be split into two subdomains with A7 = {1,2} and
Ny = {2,3}. Then, the restriction matrices and a possible choice of PU matrices are

(100 (o1 0 (1 0 (12 0
Rl_(o 1 0)’ R2_<0 0 1)’ Dl_(o 1/2)’ D2_<0 1)'

(2.75)

Let @ = (x1, 2, xg)T € R3, then the restriction to the first subdomain is given by
Rix = ($1,x2)T. The extension back to the global vector is given by R{Rlaz =
(ml,xQ,O)T. The PU matrices are used to apply a weighting to the DOFs in the
overlapping region, i.e., RI DiRix = (x1,22/2,0)". The global vector can then
be recovered by summing up the contributions from the subdomains, i.e., x =
R{Dlle + RgD2R2$.

After writing out the Jacobi-style iteration (2.74) with the additional weighting
from the partition of unity matrices [98], we obtain the fixed-point iteration

N -1
Tpi1 = T + (Z R!'D,(R.AR]) RZ) (b— Axy) . (2.76)
=1

Defining the subdomain matrices A; := R,;ARZ-T, the residual in the k-th step
ri := b — Axy, and collecting the sum in

N
-1 T -1
Mg,g, = Y R/ DiAT'R;, (2.77)
i=1
we can write the iteration in a more compact form as
Tp41 = T + Mﬁzis,ﬂ“k- (2.78)

This iteration is called the restricted additive Schwarz method (RAS) [98] and resembles
a preconditioned fixed-point iteration with the one-level preconditioner My is 1- There
is also a serial version of the original iteration (2.73) called the multiplicatz'vé Schwarz
method [89] that reads for the simple case of two subdomains case, as

Tyy1/0 = i, + RT AT Ry, (2.79)
Tp1 = Tpy1/2 + Ry AT Romyi o, (2.80)

and generalizes to the case of N > 2. Elimination of the equations to write them in
terms of the global vector x yields a more complicated form (see [89]). Due to the
serial application, however, there is no need to use the partition of unity matrices.
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2 Preliminaries, the Big Picture, and an Overview of Methods

Dropping the cross-coupling in the resulting equations to allow for parallelism yields
the additive Schwarz preconditioner as

N
Mys, =) R/A/'R, (2.81)
=1

for which the fixed-point iteration only converges for a minimal overlap of the sub-
domains [98]. However, this preconditioner is, in contrast to MRgag 1, symmetric
and can, thus, be used in combination with the CG method, while the unsymmetric
RAS preconditioner needs the GMRES method to be applied [228]. These methods
are rarely used in practice as stationary iterations and are almost always used as
preconditioners in Krylov solvers as Krylov acceleration. The corresponding precondi-
tioned Krylov solvers always perform better or equal to the corresponding fixed-point
iteration [89, Thm. 4.1]. In practice, the sums in the preconditioners can be distributed
across computers, such that the big problem is split into a set of N problems of
reduced size that are, per iteration step, independent. However, for the usual case of
a fixed domain €2 and the Poisson problem —Awu = f with zero boundary conditions,
increasing the number of subdomains N leads to a convergence deterioration [98].
This problem can be overcome with the help of coarse spaces.

2.3.3 Two-Level Methods and Coarse Spaces

Adding a coarse space, i.e., performing a coarse correction, adds another level to the do-
main decomposition method. This correction is done by modifying the preconditioner
so that for the RAS2 method, we obtain

Mg, = RjAG Ry + My g ;- (2.82)

The analog can also be done for the AS preconditioner. In Eq. (2.82), the matrix
Rg € R™"*"™ contains as columns the basis vectors of the ng-dimensional coarse space,
and the coarse space matrix is given by A9 = RyAR!. Inverting Ay is typically
cheap since ng < N < n. There is also a deflated coarse correction for direct use
within the stationary iteration (see [3]).

For the Poisson problem, the typical coarse space is based on constant functions.
This Nicolaides [211] coarse space has the basis vectors v; = RI D; R;1 (1 denoting
the vector of ones), for the subdomains i = 1,..., N, which are used to construct
Rl = (v1,...,vy) [98]. This coarse space takes care of the low-energy eigenfunctions.
For the heterogeneous diffusion problem of the form —V - (A(z)Vu(z)) = f(z), this
coarse space is not suitable anymore. One can use the GenEQO [235] coarse space that
uses generalized eigenfunctions “in the overlap”. Following the original paper [235] for

the finite element case, we denote the local “Neumann” matrices with AN, obtained
(k)

only by assembling over elements within the domain €2;. Then, the eigenvectors p;

are computed as solutions to the generalized eigenvalue problem as

ANp!Y = 2" D, A?D,pl", (2.83)

[ )
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2.3 Domain Decomposition Methods

where A7 corresponds to the local matrix obtained by assembling the elements in the
overlap. Note that AN can also replace A? [36] in a slightly different formulation. For
a threshold 7 > 0, the coarse space then collects from each domain §2; all eigenvectors
with corresponding eigenvalues )\Ek) < 77! and then uses all RiTDipEk) as a basis of
the coarse space, i.e., as columns of R". Such a spectral coarse space approach was also
applied in different contexts [237] and extended to the fully algebraic case [2, 3, 130].
A multi-level version was proposed in [36], also presenting alternative formulations
for the local eigenvalue problems. An abstract theoretical framework is also given in
the original article [235]. If enough eigenfunctions are included, one gets a condition
number bound of the form “(MX81,2A) < C(1 4 H/)) where H depends on the
subdomain size and § measures the overlap thickness (see [235] for a more precise
statement). We discuss the abstract framework in Chapter 4 when analyzing a unique
coarse space needed for the Schrédinger eigenvalue problem.

We note that the GenEO space is not the only possible way to construct a coarse
space. There are approaches based on Dirichlet-to-Neumann (DtN) maps [206],
harmonic enrichment [123], other multiscale approaches [140, 141], and many more.
We note here that a very close connection exists to the approaches in the context of
multiscale finite element methods.
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QOSI: A Quasi-Optimal Factorization
Preconditioner for Periodic Schrodinger
Eigenstates in Anisotropically Expanding
Domains

This chapter provides a provably quasi-optimal preconditioning strategy of the linear
Schrodinger eigenvalue problem with periodic potentials for a possibly non-uniform
spatial expansion of the domain. The quasi-optimality is achieved by having the
iterative eigenvalue algorithms converge in a constant number of iterations for different
domain sizes. In the analysis, we derive an analytic factorization of the spectrum
and asymptotically describe it using concepts from the homogenization theory. This
decomposition allows us to express the eigenpair as an easy-to-calculate cell problem
solution combined with an asymptotically vanishing remainder. We then prove that
the easy-to-calculate limit eigenvalue can be used in a shift-and-invert preconditioning
strategy to bound the number of eigensolver iterations uniformly. Several numerical
examples illustrate the effectiveness of this quasi-optimal preconditioning strategy.

This chapter has been published in the article [239]:

e B. Stamm and L. Theisen. “A Quasi-Optimal Factorization Preconditioner for
Periodic Schrodinger Eigenstates in Anisotropically Expanding Domains”. In:
SIAM J. Numer. Anal. 60.5 (2022), pp. 2508-2537. DOI: 10.1137/21M1456005

3.1 Introduction

This chapter considers the spectral problem for linear time-independent Schrédinger-
type operators. Let us consider a parametrized family of d-dimensional boxes {2,
given by

ze Q= (0,L) x (0,0)? = Qy x Q, C RY, (3.1)

with coordinates z := (x,y) = (z1,...,2p,y1,...,Yy,) and dimensions L,/ € R. Note
that we provide an extension to arbitrary domains in Section 3.4.3 and only keep the
box shape for the early sections of the analysis. We denote by H{(€) the standard
Sobolev space of index 1 with zero Dirichlet trace on €.
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

Then we consider the eigenvalue problem: Find (¢, Ar) € (Hg(Q) \ {0}) x R,
such that

—A¢L + V¢L = )\L¢L in QL. (3.2)

Here, ¢, and A, are the eigenfunctions and -values, respectively, while the function
V encodes an external potential applied to the system. Typically, we are interested
in computing some of the smallest eigenpairs of Eq. (3.2).

For the analysis, we make the following assumptions about the potential:

(A1) The potential V is directional-periodic with a period of 1 in each expanding
direction: V(z,y) =V (x +1,y) V(x,y) € Qr,i € ZP;

(A2) The potential V' is essentially bounded: V' € L>(€1);
(A3) The potential V' is non-negative: V > 0 a.e. in Q.

Note that under the assumption (A2), we can always apply a constant spectral
shift to the potential without affecting the eigenfunctions to fulfill (A3). Of course,
(A1) is only chosen for simplicity and arbitrary periods are possible. Furthermore,
we could extend the theory to general elliptic operators satisfying the properties of
Section 3.2.1. Fig. 3.1a presents the geometrical framework.

We focus on the case of ¢ fixed dimensions of length /. In contrast, the other p
dimensions expand with L — oo. This geometric setup allows us to study chain-like
(d=2,p=1) or plane-like (d = 3,p = 2) domains with L — oco. These are the most
common application cases. However, the setup is not limited to d < 3, and all results
also hold in the general case.

Suppose one aims to solve for the ground-state eigenpair (smallest eigenvalue). In
that case, the convergence rate of typical numerical algorithms [31, p53] depends on

the fundamental ratio between the first and the second ()\(Ll) < )\(Lz)) eigenvalue

1 2
rr = AW <1 (3.3)
Our geometrical setup of Qp,, with (0, L)? — (0,00)” and (0, ¢)? being fixed, can lead
to a collapsing fundamental gap )\(Ll) — )\(Lz) — 0 and thus r;, -+ 1 as L — oco. This

will deteriorate the convergence rate in the limit. Therefore, the eigensolver routine
needs more and more iterations to converge to a fixed tolerance as L increases. To
overcome this problem, we theoretically study the operator’s spectrum in Eq. (3.2)
to construct a suitable shift-and-invert preconditioner [227, p193], such that the
preconditioned fundamental gap rr (o) := |)\(Ll) —ol/ |)\(LZ) — 0| is uniformly bounded
above by a constant C' < 1, for all L > L*. For this strategy to work, we need to
choose a shift o based on the asymptotic behavior of the problem. As it turns out later,
the quasi-optimal shift ¢ has to be the asymptotic eigenvalue Ay := limy_ .o )\(Ll).
Throughout this chapter, we understand quasi-optimality in terms of eigensolver
iterations, which belong to O(1) for all L. This complexity is optimal except for an
L-independent multiplicative constant. Also, note that we follow [227, p193] and
understand preconditioning in the eigenvalue context as a mechanism to speed up the
convergence of an iterative solver by applying a spectral transformation [31, p43].
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3.1 Introduction
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(a) Geometric setup of Qr. (b) Eigenvalue lattice for Qr C R,V =0

Figure 3.1: Fig. 3.1a: Geometric setup with p = 2 expanding directions with length
L = 5.5 and g = 1 fixed dimensions with length £ = 2. Fig. 3.1b: The
Dirichlet Laplacian spectrum on a rectangle domain 7, = (0, L) x (0,1)
mapped to an eigenvalue lattice.

3.1.1 Motivation: Collapsing Fundamental Gap for the Laplace EVP

Even for the simplest potential satisfying the assumptions (A1)—(A3), namely V(z) =
0, the fundamental gap ry decreases if only a subset of directions in €y, is increased.
The simplicity of the Laplace eigenvalue problem allows us to highlight the main
challenges by considering the explicitly known eigenvalues. For p = 1 and ¢ = 1,

the pure Laplace eigenvalue problem has eigenvalues )\g) = 7m2/L? + w2 /{2, )\532) =

An2/L2 + 72 /2. Tt is then evident that limy .o ALV /AP =1 for L — co. Thus,
this leads to a decreasing convergence rate ry. The collapsing fundamental gap is
visible in the eigenvalue lattice illustrated in Fig. 3.1b. In such a representation, each

point represents an eigenvalue )\(Lm), and its distance to the origin corresponds to

sqrt()\(Lm) /7). All eigenvalues will form continuous z-parallel lines for the asymptotic
case of L — oo. For this Laplace eigenvalue problem, a shift of 0 = Ao, = 72/I? would
lead to limy oo rp(0) = 1/4 < 1.

This simple example serves as a motivation. However, to give a systematic approach
to choosing the asymptotic correct shift o in the general case, we develop a framework
for characterizing the asymptotic behavior of the spectral properties for Schréodinger
operators with periodic potentials satisfying (A1)—(A3). Knowing the asymptotic
behavior will allow solving the algebraic eigenvalue problem within only a constant
number of eigensolver iterations.

3.1.2 State-of-the-Art and Context

We can embed our results into existing research for three different aspects — the
considered model equation, the geometrical setup with the present periodic potential,
and other mathematical analyses for related equations.
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

First, the Schrodinger equation Eq. (3.2) describes the stationary states of the wave
function ¢y, for a quantum-mechanical system influenced by an external potential V.
Therefore, example applications naturally arise in computational chemistry and
quantum mechanics. Since the present model is one of the simpler models, it is
only suitable for the direct simulation of basic quantum systems. In more elaborate
electronic structure calculations, a nonlinear version of the Schrédinger equation
is used. However, there is always a need to solve systems similar to Eq. (3.2) in
self-consistent field (SCF) iterations [64, 139, 148] or other iteration schemes to solve
these nonlinear Schréodinger-type equations [21, 22, 23]. One of such examples is the
Bose-Einstein condensate, either modeled with random or disorder potentials [14, 17]
or modeled with the Gross—Pitaevskii eigenvalue problem [16, 17, 18, 146]. Other
applications for the same equation Eq. (3.2) arise in studying the power distribution
in a nuclear reactor core [8, 10, 114].

Second, when it comes to the geometric setup of only a subset of dimensions
expanding, applications arise, for example, in material science to study the electronic
properties of plane-like, layered [69, 70] or chain-like structures, such as carbon
nanotubes [1] or polymers chains [261].

Third, from a mathematical point of view, the study of elliptic operators in the
context of source [76, 77, 80, 83, 100, 101, 241] or eigenvalue problems [61, 270] with
homogenization is closely related since V' is periodic (at least directional in our setup).
Also, for eigenvalue problems with periodic coefficients, results in [79, 81, 82] show
the presence of an asymptotic limit when the domain expands in some directions to
infinity. Finally, from a technical point of view, our analysis in Section 3.2 extends
aspects of the work by Allaire et al. in [6, 7, 8, 9, 10, 11]. Especially the concept
of factorization will be one of the main techniques in our analysis. It allows us to
analytically describe the spectrum of the system in terms of easier cell problems. This
idea traces back to [164, 165, 257].

3.1.3 Contribution and Main Results

This chapter aims to provide a numerical framework to solve the eigenvalue problem
Eq. (3.2) in a fixed number of eigensolver iterations for all domain sizes L — co. We,
therefore, propose a shift-and-invert strategy with a quasi-optimally chosen shift. The
theoretical derivation of this particular shift is based on the following factorization of
the eigenfunctions (see Theorem 3.1 for a more precise statement)

)‘Szm) = Ay + Ay, T+ )\SLT)Q =Apy T )‘1(;;)2 =Apy T (’)(1/L2). (35)

The above characterization highlights that we can simply use A, as the quasi-optimal
shift since we will show that the remaining term )\&T)Q tends to zero as L — oo for
all m. The O(1/L?) contribution in Eq. (3.5) is not uniform in m since it depends on
the m-th eigenvalue of a homogenized equation, as shown later in Theorem 3.2. In

contrast to existing literature, this statement considers the case where only a subset
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3.2 Factorization and Homogenization of the Model Problem

of dimensions expands, and the periodicity is directional, which is essential given the
potential practical applications. The eigenpair (¢, A,,) can be obtained in a constant
time since it does not depend on L — oo as it is a solution to a fixed-size spectral cell
problem. We then show that this eigenpair is the asymptotic limit as

NGO
ngrolo AL = Ag,- (3.6)

These results, then, directly imply that the preconditioned fundamental ratio r, is
uniformly bounded from above by a constant for all L > L*, which is smaller than
one (see Theorem 3.3 for a more precise statement). Since the convergence speed of
the iterative eigensolvers depends on precisely this ratio, they converge in a constant
number of iterations, and our goal is achieved.

The main challenges arise in the analysis and the quasi-optimality proof of the
preconditioner. Using factorization results to construct a quasi-optimal preconditioner
for an anisotropic domain size increase, which can be computed in O(1), is not
covered, up to our knowledge, in the existing literature. Moreover, although the idea
of factorization is not new (see the references in Section 3.1.2), it was not yet applied
in the context of weighted and thus potentially degenerate Sobolev spaces. However,
precisely this setup of degenerate weights is necessary for our quasi-optimality analysis
since the zero Dirichlet boundary conditions on the y-boundary significantly contribute
to the asymptotic behavior of the spectrum. In addition, proving quasi-optimality
also requires uniform bounds of the preconditioned system’s fundamental ratio. Thus,
another challenge is interpreting the expanding problem as a homogenization problem
in a degenerate situation. This observation allows us to explicitly determine the
asymptotic behavior of the m-dependent contribution in Egs. (3.4) and (3.5). However,
unlike the classical homogenization theory, our homogenized limit is purely determined
by an p- rather than an (p + ¢)-dimensional problem, which seems to be a unique
specialty of anisotropic expansion problems.

3.1.4 Outline of the Chapter

In Section 3.2, we present the theoretical framework for the factorization approach in
Section 3.2.2, which allows us to consider the remaining simplified problems using the
theory of homogenization in Section 3.2.3 to derive quasi-optimality statements. We
then discretize and solve the eigensystem in Section 3.3 and show that the theoretical
results also hold when specific subspace properties are met in the discrete setting.
Next, Section 3.4 presents various numerical examples and shows the relevance of the
method for solving practical problems. Finally, we conclude with some remarks and
point out future work in Section 3.5.

3.2 Factorization and Homogenization of the Model Problem

This section will use factorization and homogenization to derive the asymptotic

spectrum, which allows us to specify the limit eigenvalue A\, = limp )\(Lm)
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

3.2.1 Existence and Regularity Results

The second-order partial differential operator in Eq. (3.2) is self-adjoint (by the
symmetry of the diffusion matrix d;;), is positive-definite (by ellipticity/coercivity
of the Laplacian plus a non-negative potential), and has bounded coefficients (since
V e L>*(Qr)). We can therefore recall the classical existence results from [127, 146,
257] to establish the well-posedness of our problem, that there exists a sequence (m =

1,...,00) of eigenvalues with finite multiplicity )\(Lm) and a sequence of eigenfunctions

qﬁ(Lm) (orthogonal basis of H{(£21)) such that 0 < )\(Ll) < )\(Lz) < )\(l?) < -+ — oo and
QZ)(Ll) >0 a.e. in Qf.

3.2.2 Factorization of the Eigenfunctions and Eigenvalues

Our next step is to establish factorizations to solve the eigenvalue problem Eq. (3.2).
Thus, we describe splitting an eigenfunction into a product of two or more functions
and splitting an eigenvalue into the sum of two or more eigenvalues. This splitting
can be seen as a generalization to the separation of variables for the pure Laplacian
case.

Let D(Qr) = C°(€21) be the space of compactly supported test functions on €2,
and p a weight function (measurable and positive a.e. in Q7). We then use the
weighted Sobolev [178, 257] spaces as

H'(Q;p) = {U € D'() ‘ [l g1 2 50) < 00}7 (3.7)

{Bm(u) =0 on 9(0, L)” x (Uag)q} (3.8)

Hj Qr;p) = e HY(Qp;
5..5, (42 0) {” L2 1\ By () = 0 on (0, )7 x (0, £)7

for some general boundary operators B, By, which are equipped with the weighted
norm

2 2
I Vs = VIV - o + 1 ooy (3.9)
using || - H%Q(QL;p) =P Hig(m) in the classical L%-sense. The corresponding

scalar product is (-, '>L2(QL;p) = {(p, '>L2(QL)' For the boundary operators, we use
By, By € {Bd,Bn,B#} with

Dirichlet: Bgi(u)(z) = u(z), (3.10)
Neumann: B, (u)(z) = p(z)Vu(z) - n(z), (3.11)
Periodic: By (u)(2) = u(z) — u (2 — ni(2) L)y, (2 = ()00 ) » - (3.12)

where the unit normal-vector is denoted by n(z) for z € 9Qy.
In the following, we use multiple eigenvalue problems and their solutions. Therefore,
we unify the notation and introduce the abstract notation:

Definition 3.1 (Prototype of a Schrodinger eigenvalue problem). For Qy = (0, L)? x
(0,0)7 C R4, 0< p, Ve L®(), and 1/p € LL (), we define

(w5, v (1), A5, o (Q0)) (3.13)
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3.2 Factorization and Homogenization of the Model Problem

to be the m-th eigenpair (including multiplicities) of the generalized Schrodinger-type
eigenvalue problem: Find (u, \) € (Hzlgz,gy(QL;P) \ {0}) x R, such that

-V - (pVu) + Vu = Apu in Q.. (3.14)

Remark 3.1. If the weight p is zero only at the boundary of Qj, then we have
1/p € LL (1), which implies that Hllsm,By (Qr; p) is a Banach space [178, p235]. On
the other hand, in the case of p being bounded from above and uniformly positive,
ie, 0 < c < p < Cae. in Qf, the p-weighted Sobolev space from Eq. (3.7) is
equivalent to the classical Sobolev space H. llsm,By (Qr;p) =H lls’m,By(Q 1), and we omit p
in the notation.

Remark 3.2 (Weak form). The corresponding weak formulation of Eq. (3.14) reads:
Find (u,\) € (HllngBy(QLQ p) \ {0}) x R such that

Yo € Hy g (Qip) : / pVu - Vv dz + Vuwdz=X[| puvdz. (3.15)
wrY Qr Qr Qr

Remark 3.3 (Min-max characterization). Since the weight p is a scalar function,

Eq. (3.14) is self-adjoint for the presented boundary conditions, and we can express
the eigenpair through the min-max characterization (c.f. [93, 164]):

A — min max R,y (u), 3.16
dimW,,=m u#0

with the Rayleigh quotient, defined by
Ja, () Vu(z) - Vu(z) dz + fo, V(2)u*(z) dz
Jo, P(z)u*(z) dz ’

which is identical for all the considered boundary conditions By, By € {Bg, By, By} of
Definition 3.1.

We define E H}ﬁ#’By(Ql; p) — Hlls#ﬁy (Qr; p) as the periodic extension operator

Rpv(u) (3.17)

in the z-direction for an x-periodic weight p and By € {Bg, Bn, By}. We are now
prepared to state our first main theoretical result:

Theorem 3.1 (Factorzation of eigenfunctions and summation of eigenvalues). The
m-th eigenfunction of the Schrodinger eigenvalue problem Eq. (3.2) can be factorized
into

uﬁ?ﬁ;,)Bd,LV = ul™ =4 up - ugz): 0 - u%) (3.18)

while the m-th eigenvalue can be summed correspondingly as

A1y = Aw A = A+ Ay + A= A, + AT 3.20)
= Ay + Auyy AL = A, + AT (3.21)
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

Figure 3.2: Visualization of the factorization for the ground state solution of —A¢ +
Vo = Ao, ¢ =0on dQy with V(z,y) = 102(sinz)*(sin y)*.

where
Y= Ef“g;,s#,Lv(Ql)a ul™ = uggﬁ)gd,w2’0(QL)7 (3.22)
Ug,1 = ugjyg#, peo(@), ul =ug o (Q0), er =l g,y (Q0), (3.23)
w1 = Bfug) g o o(@0), uyy) = ug:,)Bm(p%’O(QL), oy = Efu) g1 v(Q). (324)

A graphical representation of Theorem 3.1 is presented in Fig. 3.2 for m = 1,
where the scale separation of, e.g., goél) into a short and u?(;% into a large scale is

visible. Moreover, the first excited eigenfunctions with m € {2,3,4} are visualized
(m)

y,2 function for the

in Fig. 3.3. Herein, the m-dependence entirely goes into the u

excited eigenfunctions since goél) is fixed.
To prove Theorem 3.1, we need to show that the factorizations are valid changes of
variables. The application of the first factorization principle in Eq. (3.18), i.e.,

u(m) = ug;t,)Bd,’l[ﬂ,O = UE;Z,)Bd,LV/w7 (325)

removes the potential V from the eigenvalue problem while still encoding the corre-
sponding information through 2. The inducing function ¢ = E¥ ug; 73#’17‘/(91) is
the solution to a spectral cell problem, and it was shown in [8] that this factorization
is indeed a diffeomorphism in H{(21). Such factorization operators will apply a
change of variables in the min-max characterization of the eigenvalue.
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=) (D)
Z

/

Figure 3.3: Visualization of the factorization for some excited states of —Ap(™) +
Vo) = Xmp(m) with V(x,y) = 10%(sinz)?(siny)*: By construction,
the m-dependence entirely goes into the u, o contribution.

In contrast to Eq. (3.25) where 12 is bounded from below a.e. by a positive constant,
we will also need factorization operators induced by functions tending to zero at
boundary parts due to homogeneous Dirichlet boundary conditions. In such cases, we
need to adapt the factorization principle as the boundedness of the division operator
is not directly visible, which makes the analysis much more subtle. Thus, we need:

Lemma 3.1 (Factorization operator with degeneracy and singularity). Let the in-
. . 1 .

ducing function uy 1 = Ei&ugi’gd’,(bz’()(gl) € Hllg#ﬁd(QL) with 0 < ¢ < 1% < C a.e. be

given. Then, the linear factorization operator defined by

T: Hg,p,(Q) — Hg, 5, (Qusuy,)

, (3.26)
u—= T (u) ==z = u(z)/uy1(z) ae inQp

1s bi-continuous and thus a diffeomorphism.

Proof. Noting that T is a division operator, the corresponding multiplication operator
T~ is the (left and right) inverse operator. For a simpler notation, we use Hg(Qr) =
Hj. 5,(Q1). So we study

T:HN QL) =W T7'W — H} ()

~ U - 3.27
u— Uy i=T(u)=—— uyo—u:=T 1(Uy’2) = Uy, 1Uy2 ( )

Uy,1
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

with the abstract set W := Im(T) = Dom(7!) as
W = {uy, € D'(Qp) \ Ju € HY(Qu) s uyo = T(w)} - (3.28)

We show that the image of T is the uy 1-induced space Hj B8, (L3 uy 2 ). We have
W C D'(Qyp) since 1/uy,1 € LIOC(QL) as uy,1 = 0 only at the y-boundary, and therefore
Vo € D(QL) = C&(QL), T(¢) = Jq, ullqﬁ < @ lloo Jsupp(e) Ull < o0 is a linear
bounded functional since supp(¢) is compact. Then we have W C H Llid 5. (Q L 31)
since uy 2 € W implies that there exists an u € H (1), such that Uy = , which

yields Bg(uy2) = 0 on 0§, and trivially fulfilled By, (uy2) = 0 on 99, and allows us
to take

_ u
T 1(“1/72) = Uy,1Uy,2 = uyi =u€ Hy(Qp) = Uy2 € HBd B, (5 uy, 21 (3:29)
y?

We also have Hy 5 (Qr;ug ) C W since uy g € Hllidﬁn(ﬂﬁ u? 1) implies T (uy2) =
Uy iUy = U E H{(921) such that
Ju € HYQL)  uyo = —— = T(u) = uys € W, (3.30)
Uy,1
Thus W = H}ﬁ’d,Bn (Qr; u;l), so T defined by from Eq. (3.27) coincides with T from
Eq. (3.26). Moreover, the weighted Sobolev space Hllsd,Bn(QL? uzl) is a Banach space
since u, 1 only degenerates on the boundary (c.f. Remark 3.1).
Since T and T~! are both surjective, T is bijective. We now show the continuity
of T1 as this is the more straightforward direction being a multiplication operator.
Since all “gj)@d 2,0 form a basis of H} (L) (c.f. Section 3.2.1), it suffices to show

(m)
Bd,Bdﬂ/’Q@

operator T!. Thus, let m be fixed, u :=

and to conclude by the linearity of the

and uy o =T (uE3 )Bd 02, o)- Then

continuity for all basis functions u

m
qu7Bd7w27O7
it follows for u = Tfl(uy,g) = Uy, 1Uy,2 that

o V*Vu - Vu dz = /QL ? (u;quy,g -Vuy o+ Vuy 1 - V(u§72uy71)) dz, (3.31)

which is well defined by the assumption that u is the corresponding eigenfunction for
the first expression in Eq. (3.31). We further have for the last term in Eq. (3.31) that

w Vg1 - V(ul sy 1) dz = —/Q (wQVuy 1) y2Uy1 dz
L

(3.32)
2 2
— A&y)l /QL (17[} uy,l) <uy’2uy’1) dZ,
by the definition of u, 1 = EF ué) By, 0(21) according to Eq. (3.14) multiplied with
u§7QUy71. Together with 0 < ¢ < 1/}2 < C, it then follows from Eq. (3.31) that
o Vu-Vudz < C/ ui 1 Vg2 - Vuy 2 dz + C)\qgl)l / uz 1u§ 5 dz
QL Q7 YL T (3.33)

< Cmax {1, /\1(11?/)’1}”“%2

2
’Hl(QL;uil)'
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3.2 Factorization and Homogenization of the Model Problem

Adding HUH%Q(QL) = HuvaHiQ(QL'uQ yon both sides of Eq. (3.33) yields
"y,

Cmax {1, )\(uly)l}
C

2 2 2
IVullz2(q,) + lullz20,) < L2@p2 )

(3.34)

2
H“y,2HH1(QL;u§71) + [luy,2

which finally, with u, 2 = T'(u), provides us that ||u||§{1(QL) < D||T(u)||§11(QL;u;1) for
some D > 0. This is equivalent to

_ 2 2
1T 1(“972)|’H1(QL) < DH“yQHHl(QL;uiI)- (3.35)

As T7! is a linear, bijective, and continuous (by Eq. (3.35)) operator between
two Banach spaces, the inverse (T*I)f1 = T is also continuous [52, p35] with
| (w)]| 32 Q2 ) < D||u|]§1,1(Q )- Bi-continuity of T" implies that T and T-1

continuously Fréchet-differentiable since they are both linear. Thus, T is a diffeomor-
phism [118]. O

In order to apply the above-defined factorization operator in the min-max setting,
we have the following:

Lemma 3.2 (Rayleigh Quotients after Factorization). Let ¢("™) = “g;,)Bd,l,v(Q L) and

u™ 1) be given as in Theorem 3.1. Then, after the factorization of (™ = u(™) .4,
the corresponding Rayleigh quotient reads

Riv(@™) = Rya (u™) + 2y, (3.36)
Proof. We first note that the factorization allows for the splitting
Vo™ . Vel = v (u(m)w) V4 (u(mwj)
9 (3.37)
= wZVu(m) V™ Vi) - V ((u(m)) w) )

Using the splitting Eq. (3.37), we obtain that Ry (™) is equal to

Jo, VUV dz Jo, (W v ((“(m)) 1/1) +Ve ((W >2¢>> 4
Jo, 2 (u(m)? dz Jo ¥ ((um)*¢) dz
Jop (V- (V) + V) (u™) p dz
Jo, ¥ ((m)*) dz

Jo, Aot ((u™)0) @z

Jo, ¥ ((utm)*e) dz

= Rw2’0 (u(m)> +

= sz’o (u(m)) +

(3.38)
by the definition of the eigenfunction ) = EY ug; Byl V(Q ). O]
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

We can now combine all the above to prove Theorem 3.1:

Proof of Theorem 3.1. For a simpler notation, let ¢ = “gdn)Bd 1v(Qr). We apply the
factorization principle twice with

¢=up=(Ty) ' (u) and u=uyiuys=(Tu,,)" (uy2). (3.39)

The operations are defined in Eq. (3.25) and Lemma 3.1, and the latter ensures that
these are valid changes of variables in the min-max characterization. With Lemma 3.2
and the first change of variables, we then obtain for /\g:,)Bd,I,V(Q ) that

1)

min max Riv min max R, 2 + )\( 04

WinCHy g, () $€Wm (@)= WinCHS 15, (1) uEWm v20(w) + Ap, g, 1 v ()
dimW,,=m ¢#0 dimW,,=m uF0

m) 1
B )‘Egd,Bd,wQ,O(QL) + /\E’si,zs#,l,v(ﬁl)

(3.40)
The potential V is now encoded in the diffusion coefficient 1/2. We now continue in
the same fashion with the second factorization and obtain

(m) : (1)
ABaBa? 0 WmcHBHZn(Qhu D uﬁga(vm Rw%;l,o(uy,z) + Ag#ﬁd’w%o(gl)
dlme—m uy,270 (341)

(m) (1)
)\Bd’BnﬂZ)Z (QL) + )‘B#’Bd’dﬁ O(Ql)'

Here, we used (T, 1)71(uy,2) being a diffeomorphism by Lemma 3.1 and, therefore, a
well-defined change of variables. The corresponding eigenfunction multiplication in
Eq. (3.19) is a direct result of the factorizations of Eq. (3.39). If we then also apply the
y-factorization to ¢, we obtain ¢, = 1u, 1 and Ay, = Ay + Ay, ,, which concludes the
proof of Eq. (3.21). The other relations, i.e. Egs. (3.18) and (3.20), follow analogously
with applying their respective factorizations (T(-))"* in Eq. (3.39). O

3.2.3 Homogenization in the Expanding Directions

In order to entirely characterize the asymptotic behavior of the spectrum as L — oo,
we will now consider the contribution >‘§3 )B Wl (Q 1) in Eq. (3.21) as the only
one that depends on m after the factorization of Theorem 3.1. Then, we can make a

precise statement about the asymptotic behavior of this remainder.

Theorem 3.2 (Asymptotic behavior of expanding direction). Let ¢, u, 1 be given as

in Theorem 3.1 and define p := (lpuy,l)Q. The asymptotic behavior of the eigenpair

UE@ZL,)BH%U(QL% A%T,)Bn,p,o(QL) for L — oo is

o 1 m 1
Ay B0 = T (y< ) +0 (L>> , (3.42)

Lp/2ugd7) Bopol@/Ly) — u(() )(:B) weakly up to a subseq. in Hllsd,Bn (1), (3.43)
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3.2 Factorization and Homogenization of the Model Problem

where (u((]m),y(m)) € (H((0,1)P) \ {0}) x R is the solution to the p-dimensional
homogenized eigenvalue problem

{—V : (DVugm)) = V<m)C_'u(()m) in (0,1)7

, (3.44)
uém) =0 on 0(0,1)?

with the constant homogenized coefficients, D € RP*P, C' € R, given by

U—/ / ((5”4- e)dydx C= / / p dy dx, (3.45)
0,1)? J(0,0)7 (0,1)? J(0,0)%

fori,j5=1,...,p. The corrector functions {Gi(m,y)}KKp are defined as cell problem
solutions on the periodic unit cell, as

{—V (p(2, y) (e: + VO:i(@,y))) = 0 in & = (0, 1?p . (0,0)° (3.46)
T — 0;(2,y) &-periodic

Furthermore, it holds that vV < v

Proof. The proof is divided into five steps. We first apply a spatial transformation
to identify the directional homogenization problem. In the second step, we show the
existence of a weakly converging subsequence for the linear source problem. Then, the
oscillating test function method provides the homogenized operators whose dimensions
can be further reduced by considering the directional framework in the fourth step.
The last step transfers the results to the eigenvalue problem.

Step 1: Identification of a directional homogenization problem by transformation.

To operate on fixed spatial domains, we map the problem from €);, to the reference
domain €7 = (0,1)” x (0,¢)? by @ — x/L =: ex and observe for the transformed
weight function p.(z,y) := p(z/e,y) that 1/p. € L (1) and p. > 0 a.e. in Q.
Thus, the correct framework is the weighted space H'(1; p.). We now encode the
Dirichlet boundary conditions on the x-boundary (as in [216, p6]) in the sense of
traces with I'p := {0,1}¥ x (0,£)? C 994 in the subspace

V,. ={¢p€ H'(Q;p:) | ¢ =0o0onT'p} C H (Q;pe). (3.47)

Here, V,_ is a Banach space since p. = 0 occurs only on the boundary ©; (c.f. Re-

mark 3.1). The weak form of the eigenvalue problem reads: Find (ugm), /\gm)) €

(V,.\ {0}) x R, such that
Yo eV, : ac(u; (m) y) = m)/ pe(x, y)ul™v dz dy, (3.48)

with the bilinear form

oul™ ov 1 9u™ 0
ae(ugm),v) :/Q Ps(may) <U5’U + — ue Y dx dy, (3.49)
1

89@ 61‘1 62 8yz 8y2
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

using index notation. In Eq. (3.48), we moved the £2-scaling to )\gm) as

Ay o0 = €A, (3.50)

which follows from the min-max principle. This operation will be justified later when
the existence of this e?-transformed eigenvalue problem is shown for € — 0.

Step 2: Extraction of a weakly converging subsequence for the linear equation.

From [164, 165], we know that the homogenization of eigenvalue problems uses
the same homogenized operators as for the corresponding source problem. Hence,
we consider the bilinear form of the corresponding source problem to derive the
homogenized operators. Therefore, given a family f.(x,y) € V;,S with f.(x,y) —
fo(z) in V), we study the variational formulation

YoeV, 1 ac(us,v) = (fg,v)v;)ngpg. (3.51)

The restriction of the family f. to y-constant functions in the limit will be justified
later when we show that the homogenized limit ug will have exactly this form. Thus,
since we want to derive the eigenvalue problem from the source problem, f. has to
mimic the properties of the sequence u.. The bilinear form a.(uc,v) is V,_-elliptic
(for e < 1), since for all u. € V,_, we have

Cr

e<1 ) F.-in. ) )
e (e, te) 2 | Viellzzo,p) 2 5I1VUellzayp) + 5 luelzz i)

1
-2
1

. 2 2
> 5mln{LCF}HuEHHl(Ql;pE) = CHUEHHl(Ql;pE)7

Q1;pe
e (3.52)

after using the weighted Friedrichs inequality [185, p199] (for homogeneous Dirichlet
boundary condition on parts of the boundary). Continuity also holds for all ¢ > 0
with a continuity constant proportional to 1/¢2. Thus, the problem is well-posed
and admits a unique solution for all € > 0 in V,_ (Lax-Milgram, c.f. [78, p126]).
We, however, are interested in precisely the limit ¢ — 0, which, at first, seems to be
problematic since the continuity constant would tend to infinity if we do not further
specify the dy-behavior in Eq. (3.49). However, we take (as in [216, p24]) u. in the
bilinear form and use the coercivity to obtain

2
Cllue g 5. < aelue,uc) = <fsv“e>wfp€xw,,5 < el uspolluell gy p) (3-53)

with the operator norm || f<|l ;7-1(q, p.) = ”fEHV/p — HfOHV; < D by our assumption

Q1506
on the family f. € V;e. Therefore, u. is uniformly bounded in H!(Qy;p.) since
el g1 ype) < %HngH—l(Ql;pa) < 00. Now recall that p. = p(x/e,y) is z-periodic
and thus weakly converges to its x-average po(y) [4, Lem. 1.8.]. From the boundedness
of u. in H1(; p.), we can follow with [272, Prop. 2.1.] that there exists a ug €
H'(Q1; po), such that there exists a converging subsequence of u., still denoted by
u. by abuse of notation, that weakly convergences in H'(Qy;po). This ensures the
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3.2 Factorization and Homogenization of the Model Problem

existence of the desired homogenized limit ug of us as € — 0. We can also directly
infer ,/p: %1;5 — 0 in L?(Qy) by taking the limit in

7!
e? Ja, pe

2

Oue de dy < a-(ue, u.)

oy

Loe 2
< Wellm-r@upn el i (uipe < celm-1(01;.) < o0

(3.54)
since the norm of u. is bounded by the norm of f., which implies that
Ooue
li — -0 =0 3.55
sgrtl) \/PT; 8y Lz(Ql) ’ ( )

since éH ng?{—l(Ql; p.) 18 bounded for all €, including & = 0. Therefore, |/p: %1;5 -0

in L?(£;), which will be important later to reduce the dimension of the homogenized
equation from p + ¢ dimensions to just p. Since pg is nonzero a.e. on {2y (recall that
pe = 0 only happens on the y-boundary), we have 85;6 — 0 in L%(Qy). Thus, a
homogenized limit uy with dug/dy = 0 exists for the sequence ..
Step 3: Derivation of the homogenized operators using oscillating test functions.
Since we know that there exists a homogenized limit ug, we aim to derive the
corresponding homogenized equation for ug. Therefore, consider

E(x,y) =/ pe(x,y)Vu(x,y). (3.56)

Following the usual arguments [216, p24], from the uniform boundedness of wu., it
follows that

1
1€l 22021y = el < uelliieuip.) = Gl fellr-(0up.) < oo (3.57)

Therefore, we can again extract subsequences &, still denoted by &, such that & — &
in L?(£21) weakly. This convergence implies that the equation of interest

(&, Vv)LQ(Ql) = <fsa“>v,,€ Yo evV,, (3.58)

has a limit for € — 0 as

<£0, VU>L2(Q1) = <f0, U>Vp0 \V/’U S VPO' (359)

To explicitly state this limit equation, we need to calculate . We employ the oscilla-
tory test function method [4, p10] to overcome the problem of & = /p(x/e,y)Vu.
being a product of two weakly converging functions and thus not simply being the
product of both limits for € — 0. We need to adapt the method to account for the
directional periodicity and the additional e~2-scaling of the (du./dy;)-term in the
bilinear form Eq. (3.49). Thus, let ¢ € D((0,1)?) be a smooth, only x-dependent,
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

and compactly supported test function (i.e., p € C2°((0,1)?)). Then, inspired by the
first two terms in the asymptotic expansion for u., we define the test function (. as

ve(x,y) )+e Z Dol O:(x/e,y) (3.60)

where, with & := /¢, 0,(Z,y) is the solution to the corrector problem Eq. (3.46),
which admits for all i = 1,..., p a unique solution §; € H*(Qy; p1) /R (due to periodic
boundary conditions). Since 0;(&,y) is &-periodic, it converges weakly to its average
in HY(Q1;po) as € — 0. Thus, the expression £6;(&,y) in Eq. (3.60) converges to zero
since € — 0. This implies that . has a well-defined limit p. — ¢y = () for € — 0.

In the following, we group the gradients into (p, g)-blocks by using the notation
V() = (Vz(), Vy(-))T. As the derivative of ¢, is required in the variational formu-
lation, we derive from Eq. (3.60), using the chain and product rule, that

vo. = 2o ( : (fv ) )) +ez( ( @’) ei@,y)) - (3.61)

i=1
We then insert the test function . into the bilinear form Eq. (3.49) to obtain
dp(x) 0i(z,y)
e\Ue, Pe) = e\L) Vug - i _ ~ dx d
az(uz, @:) /le(wy)u <; ol G 1V0(m " z dy

P (0 (Susle) (3.62)
zp(T N
+ 6/91 pe(x, y)Vu, - (;_l (axi ( 0 ) 9¢(w,y)>> de dy.

The last term in Eq. (3.62) vanishes in the limit since it can be bounded by a constant
times e by the Cauchy—Schwarz inequality as the (¢, 6;)-term is uniformly bounded
in L?(£21; pe) by uniformly boundedness of the data in Eq. (3.46) and (-smoothness.
The other term, Vu,, is uniformly bounded in L?(Q1; p.) by Eq. (3.57). Integration
by parts (with Dirichlet in @- and trivially fulfilled Neumann data in y-direction) in
the other term of Eq. (3.62) yields

NGIED) Vzbi(z,y)
e (E52 (08, o

=1

_ - z , Vz0i(Z,y) -
~ o (ren B2 (o (SR))) =

The divergence term in Eq. (3.63) can be further simplified to

v (a2 250 (o (TEY )

> (“ﬁ‘j“”) el y) ( ¥ (V"g”)>> (3.6
=1 v

EE ) fom o EJren)

(3.63)

9
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3.2 Factorization and Homogenization of the Model Problem

From Eq. (3.64), we extract

which is zero (even for ¢ — 0) due to the particular definition of the correctors 6; in
Eq. (3.46). Here, we notice that the e~ 2-scaling in the y-term of the initial expression
precisely aligns with the extruding additional e~! that appeared in Eq. (3.65) by the
chain rule. Thus, the only remaining term of Eq. (3.64) is

P 0.(&
; aii (Vwﬁg(‘”)> - pe(, ) (ei n (V"’e’é ’y)>> : (3.66)

which is bounded in L?(£2;) and, thus, weakly converges as ¢ — 0 to its average in
the @-direction [4, Lem. 1.8.].

In Eq. (3.63), now recall that u. converges strongly to ug in L?(21;p0) (by the
Rellich theorem, c.f. [5, Thm. 4.3.21]). Thus, we can take the limit of the right-hand
side in Eq. (3.63). So in total, we can take the limit of Eq. (3.62), which is the product
of the limit of u. — wug (strongly) with the weak limit Eq. (3.66) of the divergence
term. Thus the weak form Eq. (3.51) reduces for € — 0 to

. " 9p(x) Vzbi(Z,y) .
_/Ql uo(x)V - (/(0’1)1) p(w,y)z “on. (ei + ( 0 )) dm) dx dy

i=1

=lim | p-(x,y)Vue(x,y) - Vo(z,y) dz dy
e=0Ja, (3.67)

= lim ) pe(x,y) fe(T, y) e (z,y) dz dy
1

e—0
= /Q @) fol)e(a) da dy.

We can rewrite the left-hand side of Eq. (3.67) using a compact notation as

- d aQO(:B) ) Vﬂ%(i,y) ~
oo 52 (o (F1577)) o]

=1

_iagp(m)/ (Z,v) 6~+% dx —'iagp(m)b"(y)

= Oxi Jor P Yoz H O e
where we identify the last expression as [D” (y)Ve(x))] ;- As the last step, we reverse
the integration by parts and obtain the variational formulation of the homogenized
equation for ug, which is still posed on the (p+ ¢)-dimensional domain Q, but with ug

only x-dependent according to Eq. (3.55). The problem then reads: Find ug(x) € V,,,
such that

| Dw)Vuo(e) - Ve(@) de dy = | Cu)io(@e(@) de dy e € CZ((0,17),
(3.69)

(3.68)
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with the y-dependent operators

~ - 00, N - -
Dzj(y> = /(O 1P p(wvy) (51] + 82%1) dZII, C(y) = /(0 1y P(w7y> d{l?, (370)

for i,7 =1,...,p. In Eq. (3.70), we remark that these operators look very similar to
the usual homogenized operators, e.g., in [8], with the difference that the integration
only takes place in the p expanding directions over (0,1)".

Step 4: Dimension reduction of the homogenized linear equation.

In our setup, we can, however, further reduce the homogenized limit equation
Eq. (3.69) since, by definition, V() = (Vee(x),0)”. This allows us to concretize
further that uo(x) € Hj((0,1)) since ug(x) € V() implies ug(z) = 0 on 9(0,1)? and
l[uo(@) || g1 ((0,1)p) < o0 since for any u(x) € HY(21; po) with po(y) > 0 a.e. in (0,£),
it holds that

||u(w)||%{l(91m0) - </(0 1y po(y) dy) Hu(w)‘ﬁll((o,l)f’) = myHU(w)”?ql((o,l)P) < 0,

(3.71)
since pg? € R is a strictly positive constant. Thus, the homogenized equation reduces
from the (p + q)- to the p-dimensional variational problem: Find ug € Hg((0,1)P),
such that

/(0 e DVug(z) - Vip(x) dx = /(0 e Cfolx)po(x) de Yo € C((0,1)7), (3.72)
with the constant homogenized coefficients, defined by Eq. (3.45) as the integral of
C(y) and D(y) from Eq. (3.70) over (0,1)%.

The homogenized equation Eq. (3.72) is formulated on H}((0,1)”). Recall that
the test function ¢ € C((0,1)?) was chosen arbitrarily. Since C°((0,1)?) is
dense in H}((0,1)?) by the definition of H} as the closure of C° under the H!-
norm [5, Def. 4.3.8.], Eq. (3.69) holds V¢ € H}((0,1)?). As the homogenized operator
satisfies coercivity (c.f. [216, Rem. 2.6.]), the theorem of Lax-Milgram ensures the
uniqueness of the homogenized limit ug. This, on the other hand, implies that any
subsequence of u. converges to ug in the limit. Thus, the entire sequence u. converges
to the same limit ug following the standard arguments from, e.g., [4].

Step 5: Derivation of the homogenized eigenvalue equation.

Since we now have derived the homogenized equation for the source problem, we can
directly deduce from [164, Thm. 2.1.] that the eigenvalues and -functions converge to
the homogenized eigenvalue equation, posed with the same operator as in Eq. (3.72),
resulting in

(A m)y (I/(m),uém)) in R x (Hol((O, 1)?) weakly up to subseq.) ,  (3.73)

where the homogenized eigenpair is defined through Eq. (3.44). We furthermore

have A" = p(m) 4 O(e) [165, p201] [230, p1638] [10, p942]. The convergence of the
eigenfunctions holds up to a subsequence because of the eigenvalue multiplicity of
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the homogenized limit. To account for the normalization constraint after the initial
transformation of  — ez, we note that [[uo(-,-)l|r2(0,) = Lp/2HU0<'/L,‘)||L2(Ql)
by the transformation rule and recall the (1/L?)-scaling from Eq. (3.50) for the
eigenvalues, which implies Eq. (3.42).

The limit eigenvalue (™ is simple and vV < 1@ < B < ... & o0 by the
Sturm-Liouville theory for the particular case of p = 1 with Dy1,C > 0. Furthermore,
we have v(1) < p(2) < v(3) < --- = oo for the general case of p > 2 since the eigenvalue
problem is elliptic. However, multiplicities could exceed one for higher eigenvalues. [

We are now ready to prove the quasi-optimality of the spectral shift o = A, :

Theorem 3.3. For the quasi-optimal shift o = A\, = /\gi,l?d,LV(Ql)’ the asymptotic
shifted fundamental eigenvalue ratio of the linear periodic Schrédinger eigenvalue
problem Eq. (3.2) converges to a positive constant C < 1 as L — oo, that is

1 1 1)
0 < Ag;,sd,l,v(QL) - )‘(B;,Bd,l,v(gl) B )‘Bd,Bn,gog,o(QL)

= (2 1 (2
Moo a0 () = M5 5,1 () Mg 6(20)

—C<1. (3.74)

Proof. The proof follows from Theorem 3.2 since LQ)‘gZ)B o2 o(Q2r) = vm 4o (%)
2 mny y7

and v < (), O

We will see later that pre-asymptotic effects lead to a non-monotonic convergence
of Eq. (3.74). However, since the convergence holds in the limit, we can make a
statement for uniform boundedness if L is sufficiently large.

Corollary 3.1. There ezists a constant D € [0,1) and a length L* € RT, such that
the quasi-optimally shifted ratio from Theorem 3.3 is uniformly bounded from above
by D for all L > L*. That is

1 1
’\ES’d),Bd,l,v(QL) - /\Es;i,gd,l,v(ﬁl)

0< o) ) <D<1 VL>L" (3.75)
)\Bd734717V(QL) - )\3#7de17‘/( 1)
Proof. The proof follows directly from the convergence result of Theorem 3.3. O

Remark 3.4. The quasi-optimal shift o = )‘(Bld) Byl v (1) does not affect the absolute

eigenvalue ordering in the sense that 0 < |)\(Ll) —o| < |)\(L2) —o| < \)\f’) o] <-v >
since all )\(LZ) are positive and o < )\(Ll). This property ensures, for example, that the
unshifted and the o-shifted inverse power method (see Definition 3.2) always converge

to the same eigenpair.

Theorem 3.2 gives an abstract description of the homogenized equation. However,
for our present setup, we can even solve the equation analytically (which will be
important later in Section 3.4.1):
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Remark 3.5. The homogenization problem in Theorem 3.2 is posed with an isotropic
operator pl, and p is either periodic or zero on the unit cell boundaries 0€2;. Thus,
every column of pl is a solenoidal vector field in €; in the integral sense by the
divergence theorem. Hence, we can conclude with [158, p17] that the homogenized op-
erator is diagonal. Then, the diagonality allows us to explicitly state the homogenized
eigenpairs as the Laplacian eigenfunctions on the hyper rectangle with scaled Lapla-
cian eigenvalues as v(") = 72 (Zle Dumf) /C and u™ (x) = N T sin(m;ma;),
where the set M = {m;,...,m,} € N?,|M| = m, is chosen to minimize v(™). The

_ 2
N(™) factors are defined by the normalization condition f(o’l)p C (u(m)) =1.

We now return to the convergence properties of the eigenvalue solvers. Theorem 3.3
implies a constant number of iterations for all eigensolvers that are shift-and-invert
preconditioned with o = )‘gsl;,Bd,l,v(Ql) and depend on the fundamental ratio. With
this strategy, the eigensolver can reach a given residual norm with a constant number

of iterations for all L — oo.

3.3 Spatial Discretization and lterative Eigensolvers

To solve the eigenvalue problem Eq. (3.2) numerically, we will discretize the continuous
equation on a finite-dimensional space. Then, we solve the resulting system with a
preconditioned algebraic eigensolver.

3.3.1 Galerkin Finite Element Approach

Consider a conforming and shape-regular partition 7; of the domain €y, into finite
elements 7 € Ty, which have a polygonal shape. We write 7, for partitions where
every element has a diameter of at most 2h [240, p36]. Define the finite element
subspace Hy(Qr) € H}(Qy1), consisting of polynomial functions with total degree 7
from the polynomial space P;, to be H (1) = {u € H}(Q) | ul, € Pp(7) V7 € T}
We then search for a discrete solution qb,(lm) € (Hp(22) \ {0}), such that

Vop, € Hp () : Vo™ - Vo, dz + / V™o, dz =A™ / "™y, dz.
QL QL

Qr
(3.76)
Let now a:%m) be the coefficient vector that represents cb;lm) in a given basis of
Hp (). We then obtain the equivalent generalized algebraic eigenvalue problem:
Find :cgzm) € R™\ {0}, such that

Azl™ =\ Bz(™ (3.77)

where A € R™ "™ consists of the usual stiffness matrix plus the contribution from
the potential, and B € R™*™ denotes the mass matrix. Both A and B as finite
representations of the continuous operators in Eq. (3.2) are symmetric positive definite.
Since the discrete problem is formulated on a subspace Hj,(Qr) € H}(2), we have by
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3.3 Spatial Discretization and Iterative Eigensolvers

the min-max characterization that A\(™ < )\,(lm). Furthermore, we have /\Sn) — A\m)

for h — 0 [28, 240].
For the calculation of the quasi-optimal shift A, , we solve

@ ) 1) 1) _ @ 1)
Vo, € Hp Y () /Ql Vi Von dz + /ﬂl Ve, pon dz = )\(py’h /91 ©y nUh dz,
(3.78)
where HY (Q;) := {u € Hé#ﬁd(Ql) ’ uly € Pr(1) V7T € (Th N Ql)} with the same Ty,
and r as for Hp(21) (assuming €;-aligned elements).

3.3.2 Quasi-Optimally Preconditioned Eigenvalue Algorithms

To solve the resulting discrete eigenvalue problem Eq. (3.77), we use the analytic
results from Section 3.2 to obtain the quasi-optimal shift as

0= oo = lim AP = A, = AT

im ok (3.79)

by combining the results of Theorems 3.1 and 3.2. Using o, we construct the
preconditioner P = (A — 0 B)~*. With the generalized Rayleigh quotient R AB(x) =
(T Azx)/(x” Bx), we define:

Definition 3.2 (Shifted Inverse Power Method, abbreviated by IP,). Let A, B €
R™"™ and a start vector &y € R™ be given, repeat

:i”,k = PB.’kal, L — .’i?k/\/iﬁZBiﬁk, )\k = RA7B(CC]€), (3.80)
until ||Ax, — A\gBxg|, < TOL or k > kpax.

Definition 3.3 (Locally Optimal Preconditioned Conjugate Gradient Method, abbre-
viated by LOPCG,). Let A, B € R™*" and the start vectors &_1,xo € R" be given,
repeat

wy = P(Axy_1 — RaB(xx—1)Bxp_1), Sk =span({Tr_1,wy, Tr_2})
2 _ : e TR _
T = arg min RaB(Y), = =%/\/%, BT, M = Rap(xi),

until HAiL'k - )\kakHQ < TOL or k > kmax-

(3.81)

In Eq. (3.81), the locally optimal step is calculated by minimizing in a 3-dimensional
subspace with the standard Rayleigh-Ritz method [31] as &y = aqxk—1 + cowy +
a3T_o, where the coefficients o € R? are derived from the smallest eigenpair
solution of the 3-dimensional eigenvalue problem V'AVa = \OVTBVa with
V = [mk:—l wy, mk_2:| € Rx3,

The above two methods represent the class of gap-dependent iterative eigenvalue
algorithms. Optimization-inspired Riemannian gradient algorithms also depend on
the fundamental ratio [146, Thm. 3.2]. Alternative approaches, such as the Rayleigh
quotient iteration or block algorithms, are not considered in our setup since the
former has no guaranteed convergence to the ground state [31, p53]. At the same
time, the latter requires an L-proportional block size to retain a quasi-optimal
convergence [31, p54].
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3 QOSI: Quasi-Optimal Periodic Schrédinger Preconditioner

3.4 Numerical Experiments

This section concerns the numerical evaluation of the proposed eigensolver precondi-
tioner. We implemented our method using the Gridap [30] framework in the Julia
programming language [44]. Gridap turned out to be a very well-suited framework for
our tests since it allowed us to quickly implement weak formulations in a high-level
fashion, similar to the FEniCS [12, 250] framework in Python. For reproducibility, we
provide all examples publicly in [248].

3.4.1 Homogenization of a Degenerate Eigenvalue Problem With Two
Expanding Directions in Three Dimensions

Before we employ the constructed preconditioner for the linear Schrédinger eigen-
value problem Eq. (3.2), we first investigate the homogenization results of The-
orem 3.2 since these results can be applied and studied independently. Thus,
the theoretical predictions about the convergence of the m-dependent contribu-
tion UgZ,)Bn,p,o(QL)v)‘gz,)l?n,p,o(QL) in three dimensions (p = 2,q = 1) are studied
numerically. We prescribe the weight function by

2
plx,y) = (%y%(l — Y1) (10 cos (mx1)? 4 10 cos (mz2)* + H —sin (7ry1)2)) . (3.82)

Note that we do not set p = (¢uy,1) as in Theorem 3.2 since we want to demonstrate
the results for the more general case of p not being induced by eigenfunctions but only
satisfying the periodicity- and zero-condition on the - and y-boundary respectively.
The weight function p in Eq. (3.82) is positive a.e. and vanishes only on the y-boundary.
By construction, p is x-periodic, thus fulfilling all requirements of Theorem 3.2. We
intentionally use the x-symmetry also to confirm the convergence of degenerate
eigenpairs. For a better evaluation, we do not solve for {2; but solve an equivalent
problem on the reference domain Q, where we factorized the (1/L?)-scaling (see
Theorem 3.2) of the eigenvalue without affecting the eigenfunctions. To be precise,
we check if the solution to

{—V . (p(L:c, y) diag (1, 1, %)VUWL)) = )\g%zp(La:, y)ugr/nL) in (0,1)*

) (3.83)

uY/nL) =0 on 0(0, 1)2 x (0,1)
converge to (u(()m), v(™)) from Eq. (3.44) in the limit for L — co. The calculation of
this homogenized limit first needs the corrector functions to define the homogenized
operators. Thus, we solve the corrector equation Eq. (3.46) using Q2 finite elements
on a structured mesh with 300 intervals per direction. These corrector solutions allow
the construction of the homogenized coefficients (according to Egs. (3.44) and (3.45))
with D ~ diag(38.75893,38.75893) and C ~ 57.86864. We observe that D1; = Day
as the result of choosing an (1, z2)-symmetric weight function p. The homogenized
diffusion matrix is diagonal since we have le V - (pI) = 0 by the divergence theorem
as p defined by Eq. (3.82) is either periodic or zero on the boundary of the unit cube,

60
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which resembles the case of Remark 3.5. Therefore, we can solve the homogenized
equation analytically (with the expressions from Remark 3.5) to obtain

2 (127 27 = D D
T (1 Dy +1 Dn) 2D o) _ ) _ 57 Du gy _ 87Dy
c c c ¢
uél) = N sin(rz1) sin(mas), “0 = N sin(2mz) sin(mzs),
)

u(()s) = N sin(mz1) sin(27ze), uo = N sin(2mz1) sin(27xs)
(3.84)

with the normalization constant N' = 2/ VC ~ 0.26291 since

1 1
(/ sin® (my7ry) dx1) (/ sin® (m,mr,) d:xp> = 2772 ym e NP, (3.85)
0 0

We then solve the eigenvalue problem Eq. (3.83) using the Galerkin method with Qg
elements and a structured partition of both expanding directions into 12L intervals.
According to Theorem 3.2, the non-relevant third direction is only discretized with
six partitions since it is not relevant in the limit. Finally, we solve the corresponding
algebraic eigenvalue problem using a block LOPCG method up to a tolerance of 1076

For the error comparison, we project the analytical solutions Eq. (3.84) into
the corresponding subspace Hj. Since v = v by our construction of p, the
corresponding eigenspace is two-dimensional, and the eigensolver returns some basis
of this space. To resolve these spatial rotations and allow for an error comparison, we
align the second and third eigenfunction by modifying their discrete eigenvectors with

2 = @ 2P)a) + @) 2P ) = @ 22 + @ 2f)2?,

(3.86)
where a:(()m) denotes the m-th homogenized eigenvector. The resulting discrete eigen-
functions ugn/lL)h for m = 1,2,3,4 are visualized in Fig. 3.4 for L € {29,...,2%}

together with the corresponding homogenized solutions uém). We can observe that

for larger domain lengths L, the eigenfunctions converge to their corresponding lim-
its if we would neglect the oscillatory isolines that indicate strong gradients. This
observation corresponds to our theoretical results that the convergence is only weak
when considering the H!(;)-norm. To quantify the convergence, we evaluate the
relative L2(Q)-error of the eigenfunctions and the relative eigenvalue error in Fig. 3.5
for L € R with a sampling rate of AL = 0.1. We measure a first-order converge for
the L2-error and at least first-order convergence for the eigenvalues. This observation
matches the theoretical results from Section 3.2.3 since we proved strong convergence
in L? of the eigenfunctions and convergence of the eigenvalues to v(™). We also exam-
ine the eigenvalues and their ratios )\1 / L W/ )\ITLJF }IL) in Fig. 3.5, where the degeneracy
of m = 2, pre-asymptotic effects, and a non-monotonic convergence is visible. This
observation confirms the prediction of Corollary 3.1 that the fundamental ratio can
only be uniformly bounded for all L > L* when pre-asymptotic effects have vanished.
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Figure 3.4: The first four calculated eigenfunctions of the eigenvalue homogenization
problem (3.83) converge weakly for L — oo to the solutions of the homog-
enized equation. The figure presents two-dimensional cut-planes through
the middle of the domain at y; = 1/2.
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Figure 3.5: Errors between the solution of Eq. (3.83) and the corresponding homoge-
nized limit: We can observe the first-order convergence for all eigenfunc-
tions in the L?-norm and at least first-order convergence for the eigenvalues.
The ratios between two adjacent eigenvalues reveal a degenerate state and

a non-monotonic convergence for the fundamental ratio )\gl/)L W /\S)L B
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Figure 3.6: A comparison of the IP, and LOPCG, for the cases of 0 = 0, 0 = 0.99)\,
and 0 = Ay for different domain lengths L.

3.4.2 The Quasi-Optimal Shift-And-Invert Preconditioner

To show the practical advantage of using the quasi-optimal preconditioning technique
of Section 3.3.2, we compare the convergence histories of the IP and LOPCG method
for the cases of no shift (o = 0), a good shift (¢ = 0.99\), and the quasi-optimal
shift (0 = As). We then aim to solve Eq. (3.2) on €2y, for £ = 1 and an increasing
L. The quasi-optimal shift A\, = )\g;’del’V(Ql) is obtained in constant time for all
L since it only depends on the fixed unit cell 2;. The calculations use Qi finite
elements on a regular mesh with mesh size h = 1/100 and the z-periodic potential
V(x,y) = 10%sin (72)%y2. We chose the start vectors 2o = 1,2_1 = e;. The solvers
aim to reduce the spectral residual r, = Az, — R () Bx) below the tolerance
TOL = 107'Y and stop after 100 iterations. Both algorithms converged to the lowest
eigenpair since the shifting strategy is order-preserving (c.f. Remark 3.4), and the
start vector oy can not be orthogonal to the non-sign-changing ground state.

The results in Fig. 3.6 indicate the drastic reduction in convergence speed for the
unshifted algorithms. For the case of quasi-optimal preconditioning, both eigensolvers
only need a couple of iterations to converge, as predicted by Theorem 3.3. When
applying a good but not quasi-optimal shift of 0.99\., fast convergence rates for
lower values of L can be observed. However, the convergence also deteriorates in the
asymptotic limit of L. — oco. This fact underlines the requirement for ¢ to be the
exact asymptotic limit if the method shall provide convergence in a fixed number of
iterations for all possible L. Furthermore, all three cases show a faster convergence of
the LOPCG compared to the IP method.
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Figure 3.7: A union of three disks (R = 1) domain with defects in the z-direction
and overlap of d~: 0.1: Q) comprises three identical unit cells ©; and two
domain defects e, Qright-

3.4.3 Extension to Complex Domains: Barrier Principle and Defects in
x-Direction

The initial box setup of Qr, = (0, L)? x (0, ¢)? from Section 3.1 is very suitable for the
mathematical analysis performed in Section 3.2. However, we need to generalize the
theory to more realistic domains for practical applications. Luckily, this can be quite
intuitively done with some simple considerations.

Consider, for example, the setup of Fig. 3.7, in which one aims to simulate a union
of three disks ) = U;”:l Br((R+2(i — 1)r, O)T) = et U (U§:1 QZ> U Qright where
Br(p) denotes a disk with radius R centered at p and r = R — d with the overlap
d. These disks are all aligned along the z-axis and have a fixed overlap. We define
the rectangular unit cell as the box with side lengths {2r, 2R}, where one disk is
contained entirely. Inside this unit cell, we assume the potential as directional periodic.
Furthermore, we have domain defects Q]eft and Qright that are not part of any unit
cell on the left and the right side. In this setup, two problems arise — the simulation
of non-box-shaped domains and the handling of domain defects.

3.4.3.1 Barrier Principle for an Optical Lattice Potential

We could simulate the whole domain Q7 _g, 424 to overcome the first issue. However,
we are only interested in the union-of-disks domain €, and a prescription of Dirichlet
values on 9 might be problematic since it is inside the domain. It is well known that
we can simply modify the potential V' to achieve this setting. To avoid nontrivial
values of ¢, in certain regions, we can apply a significant penalty term to V. We call
this strategy the barrier principle, which extends a given potential V' to the barrier
potential V(z;V,a) = V(z) + axg.(2) where a > 0 is a penalty term. xg. is the
indicator function for the complement of Q. For an increasing value of a — oo, we
can still apply our theory for any finite value of a. In the limit case, the eigenvalue
problem on the box-shaped domain {2,124 is equivalent to an eigenvalue problem,
purely posed on the subdomain Qc Q6r12d-

To demonstrate the barrier effect of V(2;V,a), we inspect the union of three disks
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Figure 3.8: Effect of the barrier potential V(z; 0, a) for varying penalty parameters
a in the union-of-disks domain Q of Fig. 3.7. With increasing a, the
resulting problem statement reduces to the eigenproblem formulated in
Q). When comparing the change between a = 21 and a = 220 in Fig. 3.8f,
the solution’s overall change is small and focused on the connection
points. Also, we see an interpolation error at the disk boundary since the
underlying mesh is not boundary-aligned.

case from Fig. 3.7 in combination with the optical lattice potential [146]

V(z,y) = 100 (1 — sin 477 sin <7 ULd)) (3.87)

where w =9, R = 1,d = 0.1 for various penalty terms a € {2°,25, ... 220}, Fig. 3.8
shows the first eigenfunction, which is calculated with the LOPCG,—¢ method for
TOL = 10710 on a structured Q;-mesh with A = 1/100. It can be observed that with
a increasing, the eigenfunction outside of Q approaches zero. However, these above
considerations are purely theoretical. In practice, we directly exclude the regions
Qgra2d \ Q and purely solve and mesh on Q as displayed in Fig. 3.7b.

3.4.3.2 Principle of Defect Invariance

When it comes to simulating the domain of Section 3.4.3 with the quasi-optimally
preconditioned eigensolver, we also need to calculate the shift ¢ = A\. For domains
without any domain defect that perfectly match the potential’s period, this is done by
simulating one unit cell ; with Dirichlet zero in y- and periodic boundary conditions
in x-direction as theoretically derived in Theorems 3.1 and 3.2.

For the case of defects located at the extremities of the expanding a-direction as a
subset of an imaginary unit cell €, we can do the same (if the potential acts as usual
in the defect regions). The limit eigenvalue does not change since we can prove:

Theorem 3.4 (Principle of Defect Invariance). Let Q195 with L denoting the x-

period of the potential V and § < L be given. For the linear Schrédinger eigenvalue

)

problem Eq. (3.2) posed on Qp 195, it still holds that limp_, )\(Lm = Ay, -

66



3.4 Numerical Experiments

Proof. Consider Qf, C Q195 C Qr492. Then, by the inclusion principle [147, p13] for
elliptic operators with Dirichlet boundary conditions, we have

Nomgaon () < Az(st,)Bd,o,v(QLJrzé) < )\g,)zgd,o,v(ﬂuz) (3.88)

Using the factorizations of Theorem 3.1, this is equivalent to

A

W) + A0, () < )\z(sT,)Bd,o,v(QLHS) <A (Qp2) + A0 (Qr10).  (3:89)

Uy,2 y Uy,2

Since AS) (1) = AQ)(Q12) = Ab) (1) and AL (1), A0 (Q42) € O(L/L?) by
Theorem 3.2, we conclude with the Sandwich Lemma. O

We are now prepared to solve the union-of-disks geometry in the next Section 3.4.4.

3.4.4 Chain Model With Truncated Coulomb Potential in Two Dimensions

Consider the domain Qy = Y, Br ((R +2(i — 1)r, O)T) with the parameters R =
1,7 = 0.9. Chain-like molecules in the context of molecular simulations inspire this
model. For real applications, the potential is a Coulomb potential. Since a singularity
of V violates the assumption (A2), we use a truncated Coulomb potential as

_||ZZH for [[z]l, = b
VC,lim(z; b) = A 2
b

, (3.90)
for ||z|, < b

to mimic, e.g., the electrostatic potential with charge Z > 0. We also have to neglect
long-range interaction to fulfill the periodicity assumption on V. Consider the N
centers {ci}ij\il with ¢; = (R + (i — 1)2r,0). We prescribe the compound periodic
potential V(2) = 3 ;criz—,<r) VClim(2 — &;b) where & € {e}Y, U{er - (2r,0)} U
{en + (2r,0)} include ghost centers to fulfill the periodicity assumption (Al) also in
the defect regions. We also note that the semi-positivity assumption (A3) is violated.
However, it turned out that the resulting spectrum is still positive, the operator,
thus, elliptic, and our theory is applicable. Nevertheless, it would also be possible to
fulfill the assumption (A3) by adding a positive constant to the L>°-potential without
changing the resulting eigenfunctions.

A series of computations for N = 1,2,4,...,32 is performed using the LOPCG,,
method for the potential parameters Z = 1,b = 10~* and the tolerance TOL = 10710,
As shown in Fig. 3.7b, the spatial discretization uses unstructured but symmetrically
meshed P; elements. The quasi-optimal shift calculation uses the unit cell Qy =
Q1 N[R — 7, R+ 7] x [~R, R] with periodic boundary conditions in z-direction and
zero boundary conditions on the rest. Thus, o = Ay, (Qo) ~ 1.08784 can be computed
a priori in O(1) since the unit cell is independent of N.

In Fig. 3.9, the resulting ground state eigenfunctions gbg) are presented with the
solution to the base problem in Fig. 3.9a. We can observe for increasing N that
the solution inside a single disk approaches the shape of the solution to the unit
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Figure 3.9: Contours of the first eigenfunction for the union of N disks using the trun-
cated Coulomb potential without long-range interactions: Fig. 3.9a shows
the asymptotic limit eigenfunction with periodic boundary conditions in
the z-direction.

cell problem. This convergence is the expected behavior, as shown theoretically in
Section 3.2. In Table 3.1, we observe that, due to the quasi-optimal preconditioning,
the number of iterations needed to meet the required residual tolerance is of order
O(1). Furthermore, the method shows a linearly scaling behavior since the ratio of
calculation time to the disk amount tey/N seems to be independent of N.

3.4.5 Plane Model With Kronig—Penney Potential in Three Dimensions

Finally, we also show the preconditioner’s quasi-optimality for a three-dimensional
case with two expanding directions (p = 2, ¢ = 1). We use a three-dimensional
Kronig-Penney potential [258], defined by V(z) = 0 for ||z mod 1 —1/2||; < 1/4 and
V(z) = 100 otherwise, where 1 denotes the vector of ones in d dimensions. This
potential represents cubic wells with sidelength 0.5 centered in the unit cubes, which
form the plane-like expanding domain Qf, = (0, L)? x (0,1) with L € N. We again
calculate the quasi-optimal shift o = A(Bli,Bd,l,V(Ql) on the unit cube and use it to
precondition the 2y -problem. Finally, both problems are discretized using a uniform
mesh size of h = 1/10 and Q; elements resulting in o ~ 57.60485. We use the
LOPCG, method with TOL = 10~!° and solve for the ground state solution. The
simulations are performed on a series of domains 7, with L € {1,2,4,...,32}. In
Table 3.2, we observe that the number of eigensolver iterations ki, does not increase
for L — oo, confirming our theory. However, in contrast to Table 3.1, a slight increase
in solution time per number of unit cells (tsg/L?) can be observed. This increase
is the expected behavior of using a direct solver for sparse matrices with increased
bandwidth for L — oo for our case of p = 2 expanding directions.
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Table 3.1: The summary of computations for the union of N disks with the truncated
Coulomb potential. Due to the same discretization density, the number of
nodes Npodes for each mesh is approximately proportional to the number of
disks N (up to the defects). The wall times are measured on an Intel X7542
CPU using one core.

NoL it MY maxol) ki jmslmoBl g s S0

1 89,869  1.96222 1.44 5 4.83-10° 1.83 1.83
2 1.69-10° 1.46912 0.96 1.25 - 108 3.95 1.97
4 3.27-10° 1.20013 0.85 4.25-106 7.7 1.92
8 6.44-10° 1.11768 0.64 1.14 - 107 17.03 2.13
6 1.28 -10%  1.0955 0.46 2.55 - 107 33.06 2.07
2 2.54-10% 1.08978 0.33 5.33-107 64.96 2.03

(W2 B2 B B, W

Table 3.2: The summary of computations for the plane-like expanding domain in three
directions with the Kronig—Penney potential. The number of unit cells N
now scales quadratically with L.

L Mnodes )\21) max ¢§Ll) kit teig [S] tzizg [3]

1 1,331 58.99915 4.71 5 0.16 0.16

2 4,851 58.30881 2.31 6 0.52 0.13
4 18,491 57.81186 1.95 6 3.01 0.19
8 72,171 57.6587 1.09 7 15.28 0.24
16 2.85-10° 57.61845 0.56 7 73.33 0.29
32 1.13-10° 57.60826 0.28 6 32064 031

3.5 Conclusion

This chapter presented a quasi-optimal shift-and-invert preconditioner to solve the
linear periodic Schrodinger eigenvalue problem in a constant number of eigensolver
iterations for domains expanding periodically in a subset of directions. First, we
analyzed and proved the quasi-optimality of the method using factorization and
homogenization techniques. The analysis revealed powerful insights into the behavior
of the eigenfunctions and eigenvalues. Significantly, the representation of the searched
eigenfunction as the product of easy-to-calculate functions leads to a decisive result
— the corresponding eigenvalues can be expressed as the sum of other eigenvalues,
which can be much easier computed in practice than solving the whole system. This
realization makes the proposed method very practical since calculating the quasi-
optimal shift can be done in O(1). We then extended the results to complex and
defect domain shapes to allow for a broader range of geometrical applications. Finally,
in our experiments, we showed the practical usability of the method for chain-like
and plane-like expanding domains.

Limitations of our method include the assumptions on the potential V' to be
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essentially bounded and periodic. Also, we observed that using the perfect shift in the
eigensolver algorithms leads naturally to an ill-conditioned system matrix (A — o B).
Thus, future work could weaken the periodicity assumptions on V by, e.g., allowing
for a perturbation of §V that vanishes in the limit L — oco. Also, efficient solvers
for the linear system involving (A — 0 B) must be constructed when the system size
requires iterative linear solvers.

70



PerFact: A Scalable Two-Level Domain
Decomposition Eigensolver for Periodic
Schrodinger Eigenstates in Anisotropically
Expanding Domains

Accelerating iterative eigenvalue algorithms is often achieved by employing a spec-
tral shifting strategy. Unfortunately, improved shifting typically leads to a smaller
eigenvalue for the resulting shifted operator, which in turn results in a high condition
number of the underlying solution matrix, posing a major challenge for iterative linear
solvers. This chapter introduces a two-level domain decomposition preconditioner
that addresses this issue for the linear Schréodinger eigenvalue problem, even in the
presence of a vanishing eigenvalue gap in non-uniform, expanding domains. Since
the quasi-optimal shift, which is already available as the solution to a spectral cell
problem, is required for the eigenvalue solver, it is logical to also use its associated
eigenfunction as a generator to construct a coarse space. We analyze the resulting
two-level additive Schwarz preconditioner and obtain a condition number bound that
is independent of the domain’s anisotropy, despite the need for only one basis function
per subdomain for the coarse solver. Several numerical examples are presented to
illustrate its flexibility and efficiency.

This chapter has been submitted and published as a preprint [247]:

e L. Theisen and B. Stamm. A Scalable Two-Level Domain Decomposition
FEigensolver for Periodic Schridinger Figenstates in Anisotropically Expanding
Domains. Submitted. 2023. DOI: 10.48550/arXiv.2311.08757. arXiv:
2311.08757 [cs, mathl]

4.1 Introduction

In this chapter, we present a robust and efficient method to solve parametrized linear
Schrodinger eigenvalue problems (EVPs) on open bounded domains €7, C R of the
form: Find (é7,Ar) € (H} (1) \ {0}) x R, such that

—A¢L+Veor=ALgr  inQy, (4.1)
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where H}(€21,) denotes the standard Sobolev space of index 1 with zero Dirichlet trace
on 0);. The main focus will be on anisotropically expanding domains 27, which are
modeled by d-dimensional boxes given by

z2€QL=(0,L)" x (0,0)=:Qp x Qy CR?  with L,£ € R, (4.2)

where the spatial variables are collected as z = (x,y) = (21,...,2p,Y1,---,Yq)s
highlighting the fact that some directions expand with L — oo while the other
directions are fixed with ¢ = const. Note that the box setup is only chosen for
simplicity of the analysis, and we provide an elegant extension in Section 4.5 to the
general case. For the external potential V' in Eq. (4.1), we assume the following:

(B1) The potential V is directional-periodic with a period of 1 in each expanding
direction: V(x,y) =V (x +1,y) for all (x,y) € Qr,1 € ZP;

(B2) The potential V' is essentially bounded: V' € L*°(Qp).

The period of 1 in (B1) is only chosen for simplicity and (B2) allows us to assume
V >0 a.e. in §2f, since a constant spectral shift to V' does not affect the eigenfunctions
of Eq. (4.1). Fig. 4.1a presents the geometrical framework and indicates the properties
of V. After discretization, the problem (4.1) leads to a large, sparse, generalized
algebraic EVP of the form

Az = Bz, (4.3)

that is then solved with classical iterative algorithms like, for example, the inverse
power method (IPM) [243] or the Locally Optimal Preconditioned Conjugate Gradient
(LOPCG) [167] method. However, the convergence speed of these algorithms depends
on the fundamental ratio ry = )\(Ll)/)\(f). And for L — oo, the fundamental gap
collapses (i.e., )\g) — )\(LQ) — 0), leading to r, — 1 as we extensively illustrate in the
motivational Section 4.1.2. As a result, the convergence speed of iterative eigensolvers,
equal to the fundamental ratio, deteriorates drastically and becomes arbitrarily bad.

This problem was overcome in Chapter 3 by the quasi-optimal shift-and-invert
(QOSI) preconditioner that replaces the original matrix from Eq. (4.3) by a shifted
A, := A — 0B. The shifting parameter o € R is set to be the L-asymptotic limit of
the first eigenvalue, i.e. o := limp_, )\(Ll), which can be easily computed by solving the
same operator on a unit cell domain €21 where periodic conditions replace all Dirichlet
boundary conditions in the expanding @-direction as it was shown in Chapter 3. More
precisely, (1, 0) is the first eigenpair to the problem

—AY +Vip =01 in Q = (0,1)P x (0,6)4,
1 =0 on Qg x {0,0}, (4.4)
¢ and 0,7 are z;-periodic.

The QOSI preconditioner A ! then leads to a uniformly bounded shifted fundamental
ratio as, for some L* € R, rp(0) := ()\(Ll) - 0)/()\(L2) —0)<C<1forall L > L*such
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that the eigensolver converges in ki, € O(1) iterations (i.e., up to a multiplicative
constant optimal).

However, in each eigensolver iteration, c.f. inverse iteration xj 1 = A, 'Bxy, the
application of A1 amounts to solving shifted linear systems of the form

(A—oB)x =b. (4.5)

The catch here is that in the critical limit, L — oo, with fixed discretization h = const,

/\(Ll) — o by construction and thus the condition number k(A — cB) = ()\(Ln) -

o)/ ()\S:l) — o) — oo as observed in Chapter 3. The issue of an exploding condition
number is dramatic when we employ iterative linear solvers like the conjugate gradient
(CG) [151] method to solve Eq. (4.5) since their convergence rate has now become
arbitrarily bad.

4.1.1 Our Contribution

This chapter fixes these problems by introducing and analyzing a new preconditioner
Mt now for the shifted linear systems of Eq. (4.5). As it is very natural for the
present geometry ), and potentials V', the preconditioner uses classical, overlapping
Schwarz domain decomposition (DD) [98]. However, a coarse space must be prescribed
for robustness and numerical scalability. Surprisingly, it is even directly available
since it is based on the spectral asymptotics of the problem. Since the coarse space
components are inherently related to the function ¢ of Eq. (4.4) used in the so-called
factorization principle (c.f. [8] and Section 3.2.2) to derive o, we call M, ! the periodic
factorization (PerFact) preconditioner. The PerFact-preconditioned shifted linear
systems can then also be solved in quasi-optimal iterations since k(M 'A,) < C for
all L. As a result, only the unique combination of the QOSI eigen-preconditioner and
the PerFact linear-preconditioner, in the end, yields an efficient iterative algorithm
that is robust for all domain sizes L.

For the provided analysis, we embed the preconditioner partly in the theory of
spectral coarse spaces while still focussing on the unusual case of anisotropically
expanding domains. This setup, and the challenging fact that we asymptotically shift
with the lowest eigenvalue, required a new SPSD splitting and the introduction of an
auxiliary periodic neighborhood decomposition.

4.1.2 Motivation: The Shifting Dilemma in the Laplace EVP

When it comes down to highlighting the critical difficulty and motivating the present
work, the Laplace eigenvalue problem with V(z) = 0 in Eq. (4.1) is the perfect
academic example fulfilling the assumptions (B1) and (B2). For a standard second-
order five-point finite difference stencil of a two-dimensional 27, with p,q = 1 while
£ =1, the eigenvalues of the resulting discretization matrix A are all known. Let n
denote the number of grid points per unit length and introduce the uniform mesh
size h :=1/(n+ 1). Then all eigenvalues are given (c.f. the formula in [89, p40, p63]
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using 2sin?(x/2) =1 — cosz) by
Mg € { (sim?(5) +sin® ()| i € {1, L(n+1) = 1}, € {1,...,n}} . (4.6)

If we now employ the o-shifted inverse power method (xy 11 := R(A, 1z;) with some
retraction R : R™ — S"~! onto the unit sphere) for A;! = (A — oI)~! as the outer
iteration, the convergence rate is given by the fundamental ratio [129, p366] of the
first two eigenvalues ppy = 71.(0) = ﬁ;:g where (for L > ¢ =1)

A=A = % (sinQ(”—L) + 51n2(”—2h)) ;A= Agq = % (sinz(%) + sin2(7r—2h)) .
(4.7)
On the other hand, in each outer iteration, a large, sparse, linear system with A,
needs to be solved. Using the CG method, the convergence rate of that inner solver

is given by pca = (VE(As) — 1)/ (V/k(As) + 1) with

K(A5) = e — 0)/ (M = 0), and Amax = Ani1)—10 = 12 (00s?(35) + cos? (7))

(4.8)
Now, the error for the first eigenvector in the IPM reduces [129, Thm. 8.2.1] as
|sin x| < phoytan by with 6, € [0, 5] being the angle of the current iterate x; to
the real eigenvector (1) defined by cos(fy) = |[(x1),x;)|. So, in order to decrease
the ratio |sinfg|/tanfy by a factor of 1/R € R, we need nipp = —In R/ In prpy
iterations where In(-) denotes the natural logarithm. Each application of A, is then
executed using the CG algorithm until the residual reduction ||7g||,/[|7Tolly < 1/Q € R
is archived, where 7 is the residual in step k. Using the residual-to-error-energy
bound [162, p4] and [253, Lem. C.10], we obtain the relation

rlls /- 7Hek”A
||TOH < H(Ad)pléGv (49)
2

||60||A

in which ey, is the error between the current inner iterate and the linear system’s
solution. Thus, each inner CG algorithm needs ncg = —In(2v/k(A5)Q)/In pcg
iterations. Assuming no prior information and equally good initial guesses, the inner-
outer algorithm, then, in total, needs not = nipmncg CG iterations, which is a good
measure of the computational cost.

For an algorithm to be efficient, it must be scalable w.r.t. L. Thus, doubling
the system size (i.e., L — 2L) while doubling computational resources (i.e., ranks
or processes) leads ideally to the same wall clock time needed for the algorithm.
Assuming perfect parallelizability of all operations and because the system matrix
is twice as large in that case, the wall clock time can only be kept constant if the
total number of operations does not increase when doubling L. However, even in
this simple example, we observe the shifting dilemma for increasing domain lengths
L — oo and constant h since we obtain the following for the different possible shifts:

e No shift (¢ = 0): The application of no shift results in the fundamental
ratio converging to 1 since limy_, A1/A2 = 1 using the values from Eq. (4.7).
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shift o

(a) Geometric setup of 2y, and V. (b) Iteration numbers for different shifts o.

Figure 4.1: (a) Geometric setup of 7, with p = 2 expanding and ¢ = 1 fixed directions
with dimensions L = 5.5, = 2. (b) Iteration number estimates for an
inner-outer eigenvalue algorithm using IPM/CG for the Laplacian EVP on
(0, L) % (0,1) using finite differences (h = 1/10) and different shifts o. Note
that the arbitrary scaling of ntq is only applied for better visualization.

The condition number k(A), on the other hand, converges to a finite value as
Mz 00 Amax/A1 = (1 4 cos?(Z))/sin?(%) using Egs. (4.7) and (4.8). Thus,
for L — oo, we obtain nipyt — 0o and ngg — C > 0, and the algorithm can
not be scalable as ni,; — 00.

« QOSI shift from Chapter 3 (0 = Ao = 75 sin?(Z)): Using the quasi-optimal
shift leads to a uniform bounded ratio % = sin?(Z2)/sin?(L) — 1/4 for
L — oo using I’Hopital’s rule and thus bounded outer itations with npy < C.
However, the condition number k(A,) of the shifted matrix now explodes when
L — o0 as limy oo (Amax — 0) /(A1 — 0) > limL_mo(COSQ(%)/SiDQ(%)) = 00
by the minorant argument. This behavior is natural since we shifted by the
asymptotic limit of the first eigenvalue A;. Thus, for L — oo, ncg — oo, and

Ntot — OO.

o Adaptive hybrid shift (o — o € (0,A\)): If both extreme cases do not
provide a scalable method, one might ask if there is a chance that a (possible
L-dependent) shift in the whole interval (0, A) results in ny to be bounded
w.r.t. L. In Fig. 4.1b, we evaluated the formulas for nipy and neg using an
exemplary setup of h = 1/10, R = e”, Q = e* to obtain values for n depending
on the shift o for different L € {4,5,6,7}. We observe that for all o, the total
CG iterations nyo grow as L — oo. Thus, there is also no sweet spot in between
both extremal cases, which suggest that also no adaptive shift can produce a
scaling algorithm since all possible shifts still result in ny,, — oo.

Thus, the shifting dilemma prevents us from using the QOSI strategy with standard
inner solvers without special treatment, and we need to provide something better —
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another preconditioner for the inner CG solver. In our discussion, we intentionally
omitted the consideration of the case where h — 0. Including this scenario would ob-
scure the primary insight that shifting is why we require an alternative preconditioner
in this context, in contrast to the classical case of a fixed domain and finer meshes.

4.1.3 State-of-the-art and Context

We can integrate our results into the existing corpus of related research in four
aspects — the anisotropic geometry, the studied model equation, the usage of domain
decomposition algorithms, and the construction of spectral coarse spaces.

The Schrodinger equation Eq. (4.1) describes the stationary states of the wave
function ¢ within a quantum mechanical system under the influence of the external
potential V. Although this linear equation is only suitable for solving simple systems,
it is also essential for, e.g., more complex simulations in computational chemistry. In
fact, for nonlinear eigenvalue problems, the celebrated method of self-consistent field
(SCF) iterations [60, 226], e.g., relies on linear eigenvalue solvers for equations of the
present type — even in each step of the nonlinear iteration loop. One applicable example
is the Gross-Pitaevski equation (GPE) for modeling Bose-Einstein condensates, where
one is typically interested in the ground state with minimal energy. In contrast to
SCF-like schemes, direct minimization aims to minimize the associated energy to
obtain the ground-state solution of the system directly. Methods of this category
are, e.g., based on gradient flow [102, 139, 146], manifold optimization [15, 19, 64],
preconditioned CG [117], or other variations [18, 143], and all have one thing in
common: they repeatedly need to solve systems similar to Eq. (4.5) — either for the
update step directly or implicitly when applying a preconditioner.

Second, although the considered anisotropic and periodic geometrical setup seems
somewhat artificial initially, it is precisely this geometry where very exceptional phe-
nomena happen. One example is the carbon allotope hierarchy, where the dimensions
successively increased from the 0d fullerene [177] to 1d carbon nanowires [271] or
-tubes [34, 157], resulting in the Nobel Prize-winning works on 2d graphene [126,
213, 214]. More recent developments now consider 2.5d materials by combining two
or more periodic but twisted material sheets to create Moiré superlattices [62] such
as twisted bilayer graphene [66, 67] or increasing the dimension above d > 3 in the
framework of time crystals [175, 265] (p = 3,¢ = 1 in Eq. (4.2)). Understanding the
properties of crystalline structures with periodic operators [63, 150] and the efficient
search for promising structures, e.g., based on high-throughput simulations [149, 201],
are therefore enormously relevant.

Third, the considered geometries of Eq. (4.2) naturally harmonize very well with
the DD method. In fact, for elliptic source problems, the classical Schwarz method is
weakly scalable and does not require coarse correction [65] on anisotropic domains
with Dirichlet boundaries. This remarkable fact was studied in [86, 87, 88] and further
extended in [90, 91, 136, 224], directly inspiring this work with the simple question:
What happens to the DD algorithms when we replace the linear problem with an
eigenvalue problem for the same operator? It changes a lot — is the short answer,
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which we elaborate on in this chapter. Compared to multigrid methods, the DD
approach benefits our setup since very efficient local solvers are available (c.f. [193]).
Using DD for eigenvalue computations has been introduced previously. There are
approaches based on local energy minimization with a global coupling strategy, such
as the Multilevel Domain Decomposition (MDD) [39, 40], the Automated Multilevel
Substructuring (AMLS) method [42], Divide-and-Conquer (DAC) approaches [74],
Schwarz-type sequential optimization methods [196, 197, 198], or other related work [97,
159, 269]. We, however, follow the inner-outer paradigm since we already have access
to a quasi-optimal eigensolver from Chapter 3 and use the DD strategy to solve
the arising shifted linear systems. This strategy allows us to show off an inherent
connection between the preconditioning of eigenvalue solvers and the construction of
coarse spaces for linear solvers, which, to our knowledge, has yet to be discussed in
the literature so far.

Coarse spaces for overlapping Schwarz methods are, thus, the last to be mentioned.
Spectral coarse spaces, in particular, usually deal with high-contrast diffusion problems
by using local cell problems in the volume [36, 119, 120], in the overlap [235, 236], or
based on DtN maps [99] to construct efficient coarse basis functions based on spectral
problems. Recent developments try to extend these approaches to the algebraic case [2,
3, 130] and establish the connection to multiscale methods in general [85, 140, 141].
Thus, multiscale methods are naturally related and have been used successively for
the GPE [144, 145, 220].

4.1.4 Outline of the Chapter

In the following Section 4.2, we present our two-level algorithm after introducing
inner-outer eigenvalue algorithms in Section 4.2.1, their usage with two-level domain
decomposition methods in Section 4.2.2, and the definition of the new coarse space in
Section 4.2.3. After illustrating the connection to spectral coarse spaces, we analyze the
coarse space and provide a condition number bound in Section 4.3. Finally, Section 4.5
presents various numerical examples to test the method with full generality.

4.2 Domain Decomposition for Eigenvalue Algorithms

For the numerical solution of the Schrodinger equation (4.1), we first apply a classical
Galerkin finite element scheme. Let 7T be a conforming and shape-regular partition
of the domain 2, into finite elements 7 € Ty, where h := max,c7, diam 7 [50, p150].
We then define the finite element subspace V,(Q1) € HY (1), [Va(Q21)| = n, that
consists of piecewise polynomials with total degree r from the space of polynomials P,
as Vi () := {u € H}(L) | u|, € PV € Tp,}. The resulting discrete problem then
searches for the function ¢, € V;,(Qr) \ {0} and the value A\, € R such that

Yoy, € Vh(QL) : o Vop - Vo, dz +/Q Vopu, dz = )\h/Q opvyp dz. (4.10)
L L L
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For the finite element basis of V;,(21,), denoted by {N;}._,, we have ¢y, = > ir; x;N;
where we collect all coefficients in the vector @, € R™. Thus, Eq. (4.10) is equivalent
to the algebraic generalized eigenvalue problem

Awh — )\hBZBh, (4.11)

in which A € R™ "™ is the sum of the usual Laplacian stiffness matrix and the
contribution from the potential V', while B € R™*" is the usual L?-mass matrix. In
order to solve the GEVP (4.11) for the lowest eigenpair (ccg), )\g)), we can employ
an inverse power method. This algorithm, starting from an initial guess of &y € R,
successively applies the inverse of the operator as @1 = A~!Bx) and B-normalizes
the result. As motivated in Section 4.1.2 for the Laplcian EVP and proved in
Chapter 3 for the Schrodinger EVP with the assumptions (B1) and (B2), we need to
apply shifting to obtain robustness for the domain size L. This preconditioning is
archived by calculating the quasi-optimal shift ¢ as the first eigenvalue of the limit
cell problem (4.4) posed on the unit cell Q; C Qp: Find (¢p,0) € (Vi 4(1) \ {0}) xR
such that

Yoy, € Vh7#(Ql) : /Q Vop, - Vuy, dz +/Q Vo dz = O‘/Q Yo dz, (4.12)
1 1 1

in which Vj, 4 (1) C H*(Qy) is the finite element subspace with periodic boundary
conditions in the expanding x-directions and zero Dirichlet conditions in the y-
direction using the same polynomial order as V;,(Qr) on 7. Let 1) be the vector of
coefficients of ¥, and @ € R" its periodic extension to €2y. Then, using the shifted
operator A, = A — 0B in the IPM results in convergence rates independently of L,
as shown in Chapter 3.

Another class of eigensolvers interprets the EVP as an energy minimization problem
that tries to minimize the Rayleigh quotient R4 p(z) := (2! Az)/(x” Bz) since

(M _
N = Juin, I;leagRA,B(iv). (4.13)
|S|=1 =70

Taking the gradient, VR4 p(x) = ﬁ(A:c — Ra (x)Bx), allows us to formulate
the steepest descent method as

Tpy1 = xp — TV RA B(TL), (4.14)

where the (adaptive) stepsize 7, € R needs to be determined. Moving the scalar factor
2/ (:cTB:c) from VR4 p into 73, one can observe that the descent direction in the
k-th step is proportional to the spectral residual ry(x) := Axy — Ra g(xy)Bxy. To
improve the convergence rate [31], we can also apply a preconditioner P € R™*™ and
use wi = Pry as the preconditioned search direction. Using the common choice of
P = A ! and 7, = 1, the iteration T4l = Tk — 1, A~ ry, reduces, up to normalization,
back to the IPM. One might apply line search methods to find the optimal 7 in each
step. However, a common strategy is to use the Rayleigh—Ritz procedure [31, p39]
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Algorithm 2 Inexact SI-Preconditioned LOPCG
Require: A, B € R"*"™; TOL;, TOL, > 0; kmax € N; vectors xg, €1 € R™; shift 0 € R
1: function SI-LOPCG

2 Initialize k := 1, ro := Axy — Ra B(xy)Bxy, As := A — 0B

3 while ||7, ;||, < TOL, and k < kpax do > outer loop
4 Solve A,wy = 7, inexactly s.t. ||Agwy — 7o k||, < TOL; > inner loop
5 Sy, := span{wy, T, Tx_1}

6: Tyt 1= argmingeg,\ (o) 24,8(Y) > via orthogonalized Rayleigh—Ritz
7 Normalize xp,q := :i:kﬂ/(i:%HB:EkH)l/Q, set k:=k + 1, update r,

8 end while

9 A = RA,B(ack)

10: return eigenpair approximation (\g, )

11: end function

within the space S, := span{wy, xj } by solving a two-dimensional eigenvalue problem.
The LOPCG [167] method adds another previous iterate x;_; into the search space
Sy = span{wy, i, Tr—1} and finds the element with minimal R4 g per iteration
within the whole subspace Sj. As for the IPM, we also use the quasi-optimal shift-
and-invert (SI) preconditioner P := A;! = (A — 0 B)~'. This SI-preconditioner will
also work for other gradient-based eigenvalue solvers.

However, applying the eigen-preconditioner P in practice amounts to solving a
large and sparse linear system, which requires using iterative, inexact methods when
n is large.

4.2.1 Inexact Inner-Outer Eigenvalue Algorithms

Since we deal with PDE-based problems on meshes, applying the eigenvalue pre-
conditioner for wy = A, lr uses an iterative method. This strategy leads to an
inner-outer [114, 115] eigenvalue solver since inner iterations are needed to solve
the linear systems for each outer eigenvalue iteration inexactly. As A, is symmetric
positive-definite, the CG method is the preferred method. Defining an outer and an
inner tolerance 0 < TOL,, TOL; € R, the inexact SI-LOPCG (Algorithm 2) results. As
the algorithm is a generalization of the plain inexact IPM, choosing TOL; sufficiently
small ensures convergence [114, Cor. 3.2] with the usual assumptions.

The algorithm is similar to Newton—Krylov-type methods [166] for nonlinear equa-
tions, which fall back to the Rayleigh quotient iteration (RQI) for the EVP case.
Although they have faster convergence rates, converging to the first eigenpair is not
generally guaranteed [31, p53], so we stick with first-order methods.

4.2.2 Two-Level Domain Decomposition

In the inner linear system loop (line 4 of Algorithm 2), a system of the form Ax = b
with a sparse matrix A € R™" and a given vector b € R" (A — Ag,b — 7oy
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in our specific case) must be solved. Let A be the set of degrees of freedom, i.e.,
IN| = n, and define an (overlapping) decomposition into N < n subsets, {N;}Y,,
such that N = UZ']LM- This algebraic decomposition represents the geometric domain
decomposition of €, into subdomains. For all N, there are associated restriction
matrices R; € {0, 1}Wi|XW|, such that R;x restricts  to the subdomain A;. The
transpose R} € {0, 1}W IXINil is called the extension matrix. For the overlapping case
with A NN # () for some i, j, we can also define the diagonal partition of unity (PU)
matrices D; € ]R'M|X|Ni|, such that x = f\il RiTDiRi:L' for all & holds. An easy
choice [98, p12] is to set (D;),, == 1/|My| where My, := {1 <i < N|k € N;} is the
set of subdomains that contain the degree of freedom k.

Then, we can define the one-level Additive Schwarz [103] (AS) and the restricted
Additive Schwarz [54] (RAS) preconditioners as

N N
Mg, => RA'R;, Mg,s,=> R/D,A'R, (4.15)
i=1 =1
where A; := R;AR! € RWVilxINil are the subdomain coefficient matrices. We can for-
mulate the stationary RAS method (i.e., a preconditioned fixed point iteration [98, p13])
to solve the linear system directly using

Tpy1 = T + MQ&SJT]C, rL:=b— Axy. (4.16)

The RAS algorithm Eq. (4.16) moves away from the classical “solve left, then use
the data to solve right”-paradigm (i.e., called multiplicative) but enables the parallel
solution of each smaller subproblem, which is the deciding advantage of these additive
methods concerning parallel computing.

Using Eq. (4.16) directly to solve QOSI-preconditioned inner systems would not
result in a scalable method since the condition number of My iSJA(, will explode
for L — oo. Thus, we will propose now a two-level modification to the AS/RAS-
preconditioners that allows for full L-robustness. In general, the second level is
usually incorporated via a coarse subspace Sy < R™ with dimension 0 < nyg < n that
has an associated matrix R € R"*" (which we will specify in Section 4.2.3) such
that the columns of R} are linearly independent and span Sp. We can then define
Ajy = ROARg in the usual notation and include this coarse correction into both
preconditioners from Eq. (4.15) in an additive fashion as

2 =R{A;'Ry+ M, (4.17)

where x stands for either AS or RAS. The coarse level can also be included in the
stationary RAS iteration in a multiplicative fashion [124, p302] as
—1
Tpy1/2 = Tk + M, Tk

o RAS TR (4.18)

Tp+1 = Tpy1/2 + By Ag RoTir12-
However, using the preconditioners directly in Krylov solvers is beneficial [89, p125],
i.e., using the symmetric MX§,2 for the CG and the unsymmetric My /is,z for the
GMRES method. With that description, the coarse space Sy or its basis as columns
of R} remains to be specified.
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4.2.3 PerFact: A Periodic Spectral Coarse Space Based on Asymptotic
Factorization

For the classical Poisson problem, the usual motivation for coarse spaces is the lack
of global information exchange [98, p103]. Decomposing a domain 27, into several
subdomains necessarily leads to the emergence of tiny inner subdomains that are very
far from the boundary in the subdomain connectivity graph. These inner subdomains
then need a lot of DD iterations until the boundary data is propagated.

Although the initial problem (4.1) with positive V' is spectrally equivalent to
Poisson’s problem, the situation is different in our setup. The focus is on the
geometrical expansion of 7, with fixed subdomain and discretization size. So, choosing
N ~ L would not increase the distance of subdomains to the boundary and would
suggest no need for a coarse space using the classical argument. However, the shifting
strategy changes the spectrum of B~1 A, by shifting it closer to the origin. Thus, the
asymptotic loss of coercivity is the mechanism behind the need for a coarse space in
our setup.

However, the usual rule to include slow modes in Vj still applies, although low-
energy modes are the more precise terminology. Moreover, surprisingly, these modes
are already at hand. Reconsider the factorization of the ground-state solution ¢y, of
Eq. (4.1) into the unit cell solution ¢ of Eq. (4.4) plus a remainder u as

¢r =1 -u, AL =0+ A\, where \, € O(1/L?), (4.19)

that was shown in Eq. (4.19) and Theorem 3.2. In Eq. (4.19), o is the asymptotic limit
of the desired first eigenvalue. Equivalently spoken, the function ¢ corresponding to
o approaches more and more an eigenfunction of the shifted A, operator with zero
eigenvalue — a zero energy mode. This observation motivates us to include exactly
this function in the coarse space. We define the following with the coefficient vector
1 € R™ from the periodic unit cell problem (4.12).

Definition 4.1. The matrix

DRy 0 0
Rl = 9 DaRyyp e RN, (4.20)
: . 0
0 0 DyRyv

defines the components of the periodic factorization (PerFact) coarse space.

Remark 4.1. The structure of Eq. (4.20) resembles the shape of the classical Nicolaides
coarse space where the local Laplacian kernels, i.e., the constant vectors 1, are replaced
by their corresponding local kernels 1) of the shifted Schrodinger operator. While
the constant vectors 1 might be able to capture global information exchange, we
will show that the high-frequency features of 1 must also be present for the coarse
space to work. Also note that Eq. (4.20) technically contains more basis functions
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(a) Visualization of the factorization principle. (b) Components of the PerFact coarse space.

Figure 4.2: Finite element representation of the (a) factorization principle from
Eq. (4.19) and the (b) coarse space basis functions from Eq. (4.20) for
the equal-weights partition of unity and an overlap region of two elements
between subdomains.

than needed, as we will show in Section 4.3, since it also includes boundary-touching
domains. However, we keep this structure for simplicity and consistency with the
literature [98, p108].

In Fig. 4.2, we display the factorization principle Eq. (4.19) and the coarse space
components Eq. (4.20) for an exemplary decomposition into four subdomains. Therein,
the main advantages become visible — the vector 1 is already available from the
computation of the QOSI shift (i.e., problem Eq. (4.4)) and the small dimension
ng = N since every subdomain only needs one basis function in the coarse space in
contrast to other adaptive coarse space strategies. The PerFact coarse space is mainly
used in the two-level additive Schwarz preconditioner within the CG method, but an
application of the stationary two-level RAS algorithm also works, as we will see in
Section 4.5.

4.3 Analysis of the Two-Level Additive Schwarz
Preconditioner

In general, using a s.p.d. preconditioner M within the CG method to solve the shifted
linear systems A,x = b leads to the convergence estimate (see, e.g., [253, Lem. C.10])

of
e — @y, <2(Y RIM™ A,) — 1 & — @0, - (4.21)
A JRM-1A,) +1 A

For increasing domain sizes L, applying the quasi-optimal shift-and-invert technique
from Chapter 3 results in Apin(A,) — 0 as L — oo. However, since the domain
expands anisotropically with constant ¢, we have Apax(Ay) > C > 0 for all L — oo
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4.3 Analysis of the Two-Level Additive Schwarz Preconditioner

by using the Laplacian EVP as a lower bound and following the argumentation of
Section 4.1.2.

The behavior of the spectrum thus results in x(A,) — oo for L — oo. Therefore,
without a preconditioner, i.e., M = I, the number of iterations to decrease the relative
error below a given tolerance will drastically increase for L. — oo in the linear solution
step of Algorithm 2 (line 4). However, the two-level AS preconditioner Mgslz from

Eq. (4.17) is L-robust, i.e., k(Mg ,Ay) < C for all L, since we can control the lower
part of the spectrum with the PerFact coarse space, as shown in the following.

4.3.1 Abstract Theory

After the conforming finite element discretization with 7, = Urer;, 7 from Section 4.2,
we operate in the finite-dimensional setting with V},(2;) C H{ (1), where we now use
the abbreviation V3, := V3(£1) for simplicity. In each step of the eigenvalue algorithm,
we have to apply the preconditioner, which amounts to solving a source problem:
Given fp € V}/, find uy, € V3, such that

ag(uh,vh) = <fh, Uh>, Yoy, € Vy,. (4.22)

The bilinear form a, : Vj, x V3, — R in Eq. (4.22) corresponds to the shift-and-invert
eigenvalue preconditioner matrix A, and is given by

ao(u,v) = (Vu, Vu) 2,y + (VU,0) 120, ) = 0(w,v) 121, )- (4.23)

In order to apply a two-level additive Schwarz method, we decompose the domain
Q;, into a non-overlapping set of subdomains {Q2.}X¥, either by using the natural
decomposition into N = LP repeating unit cells or with the help of an automatic
graph partitioning software, e.g., METIS [161] or Scotch [75]. Then, let {€;}£ ; with
QL C Q; be an overlapping domain decomposition by adding 6 > 1 layers of elements
T € Tp, based on the element connectivity graph. Following the abstract theory, c.f.,
e.g., [98], we can define for ¢ = 1,..., N the space of restrictions of functions v € V}, to
a subdomain ; as V,(Q;) := {v|q, | v € V4} and the space of {;-supported functions
as Vi 0(Q) = {v|q, | v € V4, supp(v) C Q;}. Then we have the restriction operators
ri © Vi, = Vi(9;),mv = v|q, and their adjoints, the extension-by-zero operators,
7,;[ : Vio(Qi) — Vj,, which extends functions by zero outside of ;. For simplicity, we
will sometimes interpret V}, o(£2;) as a subspace of V}, leaving out the extension-by-zero
operators.

For the two-level approach, we also define a coarse space Vi C V}, with corresponding
natural embedding (i.e., the inclusion map that is the linear interpolation [180] in
the present setup) vl : Vo — V}, and its adjoint 79 : V;, — Vp. The matrix form of the
two-level additive Schwarz preconditioner for A, then reads

N
M§,=R{A(Ry+> R/ A_ IR, with A,; = R;A,R] and A,, = RyA,R{,
=1
(4.24)
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with {Rl}fi , and Ry denoting the matrix representations of {riY and rq for
the given finite element basis. The local matrices A,; are invertible since the
corresponding restricted bilinear forms aq 0, @ V4,0(€2) x Vi, 0(£;) are positive definite
as 4y, (u,v) = ag(rfu,rv) > 0 for all u,v € V},0(;) and finite L.

Following [98, 235], we now recall the main ingredients of the abstract additive
Schwarz theory. First, we have the following geometric definition.

Definition 4.2 (finite coloring [36, Def. 3.1]). The partition {Q;}}¥, admits a finite
coloring with N, € N colors, N, < N, if there exists a map ¢ : {1,...,N} —
{1,..., N.} such that

i #jAcli) =c(f) = ao(r]vi,r]v;) =0, Vo; € Vibo(),v5 € Vao().  (4.25)

In practice, a low N is naturally given when aligning the decomposition with the
period of V. The following notion is the critical ingredient to show the effectiveness
of a coarse space by lower bounding the smallest eigenvalues of the preconditioned
system.

Definition 4.3 (stable decomposition [235, Def. 2.7] [36, Def. 3.3]). Given a coarse
space Vo C Vj, local subspaces {V5,,0(€2:)}, ;< of V4, and a constant Cy > 0, a stable
decomposition of v € V}, is a family of functions {v; },,; 5 that satisfy v = mﬁ—Zﬁl v;,
v; € Vi0(8%), vo € Vo, such that -

N

ay(vo,v0) + Z ax(vi,v;) < Cpag(v,v). (4.26)
i=1

Thus, according to [98, Cor. 5.12], we aim to find a stable decomposition for all
v € Vp, since it directly yields a condition number bound of MXS{QAU. To apply this
abstract theory, we need further notation.

Definition 4.4 (partition of unity [98, Lem. 5.7]). For the overlapping decomposition
{2}, of Oy, there exists a family of partition of unity functions {x;}&; in W (Qp),
such that 0 < x;(z) < 1for z € Qp, supp(xi) C @, and Zfil xi(z) = 1 for all
FAS QL.

Proof. See, e.g., 253, Lem. 3.4] with {Q;}Y, satisfying the overlap and finite coloring
assumptions. O

Remark 4.2. For the construction of the partition of unity, we use the finite element
basis representation v = Y p_; v Ny, for any v € V3. With dof(§2;) denoting the set of
all internal degrees of freedoms for subdomain €2;, the most straightforward choice
is the equal-weights partition of unity [235] where x;(v) := > jcdor(a;) ;lekak with
pr = {j |1 <j <N,k edof(Q;)} | denoting the number of subdomains for which
k is an internal degree of freedom. Other choices are based on distance functions,
e.g. [253, Lem. 3.4], and have the additional property that ||Vx;||,, < C/6;, where ¢;
is the minimal overlap thickness of the i-th subdomain. This distance-based partition
of unity is favorable when the overlap varies.
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4.3 Analysis of the Two-Level Additive Schwarz Preconditioner

In calculating the quasi-optimal shift o, we already solved the eigenvalue problem
on the unit cell Q; with x-periodic and y-zero boundary conditions in Eq. (4.12),
where we abbreviate its solution 1, form now on as v for simplicity. We also define
EY Vi, 4(21) — V), as the periodic extension operator in the a-direction. E¥ acts
only on the degrees of freedom, such that the result is only periodic up to the boundary
nodes of €7, which are set to zero for the result to be in V}. Although we do not
solve local eigenvalue problems in practice since ¥ is already computed, we can still
analyze the method in the context of spectral coarse spaces when we take care of the
periodicity by modifying the decomposition.

4.3.2 Aligning the Decomposition

Recall from Eq. (4.2) that the domain €, is an abstract box. Naturally, Q, is split
into LP cells, so every cell can be identified with an integer vector ¢ € {1,..., L}’
when considering the distance to the unit cell. We map this vector translation to
a one-dimensional index via the bijective map n : {1,...,L}Y — {1,..., LP} where
n(i) =1+ Z§:1 L771(i; — 1). The corresponding inverse map n~': {1,...,LP} —
{1,..., L}’ can then be used to define the periodic decomposition {Qf}f:pl, where
each periodic cell is given by

p

of == X (In7'(6)]; - 1, [ G)];) x (0,0, (4.27)

j=1
Every subdomain €2; belongs to a periodic neighborhood, defined by the following.

Definition 4.5 (periodic neighborhood). Let §; € {Q;}¥| be any subdomain. Then,
the corresponding periodic neighborhood §2; of €2; is defined by

Q= J OF where "= {je (1,.... 17} | inQf £ 0} (4.28)
ez’

The Fig. 4.3 visualizes the relation between €;, 2, and Q. A collection of periodic
neighborhoods {Qz}fil is itself again an overlapping decomposition of 27, where the
decomposition reflects the periodicity of the potential V. This fact will be helpful
later on and allows us to define the subspaces Vj, 4(Q;) C V3 () with functions that
are periodic on the x-boundary of Q;. The periodic neighborhood decomposition also
induces their corresponding restrictions #; : Vj, — Vh(Qi) and partitions of unity ¥,
defined by the zero-extension of y; from €2; to Q;. The set {Qi}ij\il gives rise to a

multiplicity constant in the following.

Definition 4.6 (periodic neighborhood intersection multiplicity). Let kg be the
maximum number of periodic neighborhoods to which one periodic cell from {QZéﬁ E
can belong, i.e., ko := max;eqr . ny {7 €{1,...,LP} | QN Qf # 0}

Similar to the classical Nicolaides coarse space for the Laplace problem [99], we
only include subdomains away from the boundary in the coarse space due to technical
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(a) 6 = 1. (b) 6 = 2.

Figure 4.3: Sketch of the non-overlapping {Q}3_; (black border), overlapping {Q;}5_;
(white border), and periodic neighborhood decomposition {€;}5_; (cross-
hatch) of €4 := (0,4) x (0, 2) for an overlap (dark shades) of (a) 0 = 1 and
(b) 0 = 2 layers of elements. An increase of the periodic neighborhood
from Q; = (0,2) x (0,2) for 6 = 1 to Q1 = (0,3) x (0,2) for § = 2 can be
observed.

reasons, such as non-matching boundary conditions. In the present setup, only the
boundaries in the expanding x-direction need particular focus. Thus, let us define the
set of all z-boundary domains as Z° := {i € 1,..., N | 9; N ({0, L} x (0,0)%) # 0}.
This induces the set of all interior domains as Z' := {1,..., N} \ ZP. Let us also
define a set of domains ZP := {i € 1,...,N | 9Q; N ({0, L} x (0,£)7) # @}, whose
periodic neighborhoods touch the x-boundary. The other periodic neighborhoods are
grouped into 7' := {1,..., N} \ Z". Based on this period-aligned splitting, we define
the periodic coarse space.

Definition 4.7 (PerFact coarse space). With ¢ from Eq. (4.12), the space Vp :=

span ({XZE;,#;’E T/’}ieii) is called the periodic factorization (PerFact) coarse space.

Remark 4.3. Note that the Definition 4.7 and the Definition 4.1 only differ for -
boundary touching subdomains, which are L-asymptotically irrelevant.

For the analysis, we also need the notion of cell symmetry.

Definition 4.8 (z-cell-symmetric mesh). Let 7;, be a triangulation, Z; the i-th
component of its center of mass &, and Rz, the reflection across the plane Pz, =

{z € R4 ’ (€;,z) = 921} We call Ty, to be x-symmetric if for all expanding directions
withi € {1,...,p}, 7€ T = Rz, 7 € Ty,

Definition 4.9 (z-cell-symmetric potential). A potential V is said to be x-cell-
symmetric for an €; if for all x;-dimensions with i € {1,...,p}

V(fL‘l, ey Ly n ,:L‘p,y) = V(.’El, ey 2T — T,y - ,."L‘p,y) for a.e. (:I:,y) S Ql (429)

4.3.3 A Condition Number Bound for Cell-Symmetric Potentials

We are now prepared to analyze the condition number of the preconditioned system.
As we operate near the edge of coercivity, meaning that we shifted the operator by
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o, which is only a little less than the smallest eigenvalue, we must be cautious with
the analysis. In particular, we must ensure that local Neumann problems remain
positive semidefinite for the theory of spectral coarse spaces to hold. Thus, we base
the analysis on the following assumptions.

(B3) The triangulation of all periodic neighborhoods €; is z-cell-symmetric.
(B4) The potential V is z-cell-symmetric for all ;.

Although these assumptions seem restricted, the method still works in the general
case, as shown numerically in Section 4.5. To apply the theory of spectral coarse
spaces, we show that E¥ Y, defined by Eq. (4.12), is a solution to a generalized
eigenvalue problem (GEVP) of a particular structure. In the usual setting, the
GEVPs are formulated on overlapping subdomains §2; or inside the overlapping zone.
In our setting, however, the components EF 1 from Definition 4.7 are periodic. This
property can be used if we formulate the GEVPs on the periodic neighborhood ;.

Definition 4.10 (GEVPs). For all interior periodic neighborhoods Q; with i € 7%,

we define the following generalized eigenvalue problems on W;: Find (ﬁgk), S\Z(k)) €
(W; \ {0}) x R, such that

&nyli <ﬁ1(k)’ U) = S\l(k)l;flz <ﬁz('k)7v)7 Vv € Wi7 (430)

where we set l;ﬁi (u,v) 1= Gy g, (Xiu, Xiv). The default case of W; = Vi () is called

the Neumann GEVP (NGEVP), and the case of W; =V}, 4(§;) is called the periodic

GEVP (PGEVP), whose eigenpair is then denoted by (ﬁgk;i, /N\Ek;;)

Remark 4.4. In general, there is some flexibility in choosing the bilinear form BQi
in Eq. (4.30), as discussed in [36, 45]. Although the resulting eigenfunctions would
be changed for different BQi’ we are only interested in the kernel of a or which is
unaffected by the specific choice of l;fli as long as the GEVPs are non-defective. This
provides some freedom in carrying out the analysis.

Remark 4.5. In contrast to the classical approaches in coarse spaces, we do not use
the same generating bilinear form to define the left- and the right-hand side of the
GEVP. In particular, only the left side of Eq. (4.30) has a negative shift term in
Ay 6y, while the right-hand side is generated without shift by a6, - This ensures that
I;T(u\T, ulr) > 0Vu € Vh(Qi), which guarantees the positive semidefiniteness of INJQZ,,
which is a crucial requirement for the theory. A similar idea finds application in the
context of non-self-adjoint or indefinite problems, e.g., in the H-GenEO approach
of [45].

We will now show one of the crucial observations: the PGEVP and the NGEVP
have the same first eigenpair under the assumptions (B3) and (B4). To formalize that
result, we need the following notion of reflection.
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Definition 4.11 (reflection operator). Let €; be an @-symmetric triangulation. For

any function v € V() with m = [Vj,(Q;)| DOFs, we define the reflection Rz, :

Vi(€4) — Vi(9;) across the Py -plane using the finite element basis representation
v = Z?:l ’Uka as

v Rz = Z (Z ka> Ng, (4.31)

k=1 \l=1

where the permutation matrix R := (Rki);<y <, (after reordering) has the form

] , with the pairwise swap matrix S = l(l) (1)] , (4.32)

(1,98 o
R_l 0 I,

where all m nodes are split into ms on the reflection plane and 2m; remaining nodes.

Lemma 4.1. Assume (B3) and (B4), then the unique lowest eigenpair of the NGEVPs
and PGEVPs from Definition /.10 is given by (15(1), 5\(-1)) = (fiEfv,Z),O).

i %
Proof. Let i € 7. Assume that pM is the first eigenfunction of the homogeneous
EVP with the standard L?(V},(€;))-inner product, meaning

p) € argmin %Qi—w. (4.33)
uev (@) (& U>L2(Vh(ﬁi))
By [127, Thm. 8.38], p!) is simple and strictly positive (by fixing the sign). Now fix an
arbitrary x;-dimension with j € {1,...,p} and consider the reflection ¢ = R, pM
of p(M) across the plane Pz,. Regarding the basis coefficient vector p of p) this
means ¢ = Rp in the sense of Definition 4.11. Now, two things can happen.
Case 1: g € span p In this case, there exists an a € R such that p is an eigenvector
with g := Rp = ap. Since the reflection matrix R is a permutation matrix and thus
an orthogonal matrix, it only has eigenvalues o € {—1, 1}, such that there are again
two cases. For a = 1, we have that p!) is symmetric w.r.t. the plane Py, since it
is invariant under the reflection. The other case of &« = —1 is impossible since all
coefficients in p are strictly positive, and a permutation matrix R can not change
this property for the equality p = —Rp to hold.
Case 2: g ¢ spanp In that case, we observe that ¢ and p(M) have the same Rayleigh
quotient since

a’o‘fli (q(l), q(l)) . &g’f)i (Rijp(l)a Rijp(l)) . a’o-,fzi (p(l)vp(l)) (4 34)
(@, aD) 2@y (Bap™, RepM) oy (PP v,

in which we used ||R50].p(1) Hiz )= [p) HiQ(QZ_) by the orthogonality of the reflection

(€ -
Rz, and a, Qi(Rijp(l),Rijp(l)) = a,q, (p™M, p(M) by the symmetry of the mesh €;
and the potential V' w.r.t. to the P; -plane, (B3) and (B4). However, Eq. (4.34)
would imply that the first eigenspace is two-dimensional since q is not in the span p,

although it has a minimal Rayleigh quotient, which is a contradiction.
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Thus, all in all, p) must be symmetric w.r.t. the P;,-plane. Since the arguments ap-
ply for all expanding directions, the first eigenfunction p(!) is z-symmetric, i.e., pt) =
Rg—cjp(l) for all j € {1,...,p}, implying that BQZ_(R@p(l),R@p(l)) = EQi(p(l),p(l)).
Symmetry also yields periodicity on the a-boundaries resulting in p) e Vh,#(ﬁi).
Using the min-max principle for the GEVPs, we thus have

ao‘,ﬂi ’U;, u) do’yﬂi (p(1)7p(1)) . CNLJQ<’U,,U)
(u7u B Bﬁl(p(l)ap(l)) o UGV]—h#(Qi) BQ

=0, (4.35)

where the last equality holds by definition of the shift . However, due to the subset
property, Vi, 4(€) C V4 (Q;), we also have
4,0, u,u) _ ay ¢, (u,u)

< min = —"=0. (4.36)
uEVh’#(Qi) bQZ(U,U)

Thus, the NGEVPs and PGEVPs have the same first eigenpair (fZEZﬁ'é ¥, 0). O

Corollary 4.1. Assume (B3) and (B}), then the bilinear form a, g Vi () x Vi (%)
1s positive semidefinite since its lowest eigenvalue is 0.

We verify the usual ingredients to show the Co-stability in the following. Since a, ¢
is positive semidefinite on V4, (€;) by Corollary 4.1 while lN)Qi is positive semidefinite as
the sum of elementwise non-negative integrals (see Definition 4;10), we define the two
induced seminorms ’v|‘~lmfl¢ = (G, q, (v,v))"/? and ‘U’EQi = (bQi(v,v))l/Q. We then
have the following result.

Lemma 4.2 (SPSD splitting [36, Def. 3.7]). Assume (B3) and (B4), then

N
d_lrwly < kollvlls,. Yo € Vi (4.37)
Proof. Let v € V;,. We use ; := Uiez#,n Qfg from Definition 4.5 to obtain
N
~ 2 ~ ~
Z |7"iv|a = Z Z U,Q#( ’9#7”’9# Z Z a4y 0 (V] vlg#)-
— J J i J
=1 =1 {]‘Q#CQ } 7j=1 {Z|Q#CQ }

(4.38)
Using that each Qf is contained in at most kg periodic neighborhoods €2; and the

positive semidefiniteness of a_,# on Vh(Q}#) (see the proof of Lemma 4.1) yields
»Y

Lp Lp
Y B naploptlag) <o Y ngp tlogtlgg) =Rl (439)

7= o,
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The following result is also essential but requires no change in the proof since it
relies on the coercivity of a, on V4, which is given in our case.

Lemma 4.3 (strengthened triangle inequality under the square, c.f. [36, Def. 3.6]
(98, Lem. 7.9]). For any collection of {v;}., with v; € Vi, 0(%), it holds that

2

N
< NS [l (4.40)
=1

42:4

Proof. We follow the strategy from [98, Lem. 7.9] and expand the sum of Eq. (4.40)
to remove all zero terms for domains with the same color according to the coloring
map c from Eq. (4.25). Thus, let the set

Ci={(i,j) € {L,..., N} | e(i) # cls) Vi = j}. (4.41)
Since a, is an inner product that induces a norm on V}j, we then apply the Cauchy—

Schwarz inequality to obtain

2

= > ao(vi,v) < Y il llujll,, - (4.42)

ac  (i.5)€C (i.5)eC

N
> v
i=1

Defining the symmetric neighborhood matrix C € {0, 1}NXN using the indicator

function as Cj; = xc(i, ) and the vector u € RY with u; = |vill o, We can thus refine
the relation Eq. (4.42) as

N
< U Cu < A (O)[ull3 < [CllJull2 = [Clle 3 il (4.43)
=1

(€2

using Gershgorin’s theorem. Then, the claim follows with ||C||, = Ne. O

The remaining part is the stability of the local contributions, for which we need
the following result.

Lemma 4.4 (trivial kernel intersection). Assume (B3) and (B4), then for the NGEVPs
from Definition .10, kera, g Nkerby = {0} for all i € T'.

Proof. Leti € 7t By Lemma 4.1, we know that, on Vh(Q ), kera = span{7; By w}
Since Y; is never a constant due to the overlapplng decomposition, we have XiTi Eg w ¢
span{rzEx ¥}, which implies that ker a 0.0, N ker bQ = {0}. m

The stable splitting for the coarse space from Definition 4.7 is achieved with the
following projection.
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Lemma 4.5 (local stability). Let i € Z' be given and assume (B3) and (B4), then

the local projection operator I1y ; : V() — Vi (€4) with

bey, (Fi B .7 EX

v Ty o = )fiEfzp, (4.44)

satisfies

‘ﬁl,iv|adﬁi < |U|aaﬁ_v |U - ﬁl’iv|‘~la,ﬂi < ‘U|aaﬁ Yv € Vh(Qi),

™o e

(4.45)

”U — Hl,i“’gﬁ_ < ”U — H17iv|<~lag. Yo € Vh(Qi),

1
@

with 5\,52) > 0 from the Definition 4.10.

Proof. The proof follows by applying [36, Lem. 3.15], where we have the trivial
kernel intersection satisfied by Lemma 4.4, the first unique eigenfunction given by
132(-1) = fiEf 1) corresponding to a zero eigenvalue, and the positive semidefiniteness of

a,q, and BQi on Vj,(). O

Note that the periodic coarse space only contains components for subdomains
Q;, whose periodic neighborhood €2; does not touch the x-boundary. No projection
must be applied for the remaining subdomains since we have the following stability
estimate.

Lemma 4.6. Let i € IP, then the stability estimate |v|b2~Q < o5 |v|2 o holds for all

>

v € Vi (%) with 5\2(-1) > 0 from the Definition 4.10.

Proof. Let i € ZP be arbitrary. We apply [36, Lem. 3.15] using the projection on
zero and ;\1(1) > 0 since V;,(;) contains functions with zero boundary conditions in

x-direction, which can not be in kera, o, = fiEﬁ 1 with fiEf 1 > 0 on &cfli. O
The local stability of the projections Eq. (4.44) allows for a stable decomposition.
Theorem 4.1. Assume (B3) and (B}), let v € V},, then the splitting defined by

Xi(l — ﬂl,i)?ﬁﬂj 1€ ZN'i

vy = Z Xz‘fh,ifw Vo, wv= { b € Vio(S%), (4.46)

ieTi XiT4v 1 E
is Co-stable with Co = 2 + C1ko(2N, + 1), C; := (min {min,_z; 5\1(-2), min, 7, 5\51)})_1.
Proof. First, the splitting is consistent since, for all v € V},, we have vy + Zi]\il v =

- - N - N . -
Zieii XiTiv + Zieib XiTiv = > ;o1 XiTiv = > ;=1 XiTiv = v using that 7; = r; on
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supp(x;i)- YVe have, using the strategy of [36, p13], that the splitting~ is locally stable
since Vi € 7', the local stability (Lemma 4.5), and the definition of b, yields

2 1TALAE v T, )70
H"Ui”ag = |xi(1— Hlvi)mv|%yﬂi =|xi(1— H1,¢)riv‘am@i

8 N _ N _ =2
= [l = M)rvl; = olx(l = )7l g,y < [X(1 = h)rol;
1

~ -2 1 ~ ~ 2 - 2
= ‘(1 — Hl,i)rw\gﬂi < W‘(l — Hl’i)riv’&o,ﬁi < 5\(2) ’riv’&o,ﬁ'
(] K2
. (4.47)
For all boundary domains with i € Z", Lemma 4.6 applies, and we get
2 S o2 < 2 < o2 < .2
||UiHaa = |X7"riv‘aa,ﬂi - |Xiriv‘da,f_2i - |Xiriv|a‘0,f_li N O-HXZTZ,U”LQ(QZ)
<rl2 = [l < s lrl? (448)
< |xiTiv G0, = T30 by, = 30 T30 G,

7

Similar to~[235, Lemma 2.9], using Egs. (4.47) and (4.48), the SPSD splitting Eq. (4.37),
and Z' N Z" = () yields

N
1 1
2 2 2 ~ 12 ~ 12
> villa, = > llvilla, + > llvilla, < :75\(2) Fivla o, + 22 @ Fivly o
i=1 ’ o

iel! i€Ib i€l N ieZb N
1 1 N -
< ——5 2. |m|§m_ +—q D |@-v|§m < Clzmﬁm_ < Cikollv||2,,
min A ez ComnA e bEl l
(4.49)
with C1 := (min {min,_z; 5\2(2), min, 7, 5\51)})_1. Then, we continue with
N |2 N |2 N
loolly, = o= D_wif| < 2llolly, +2D vl < 2llolly, +2Ne Y lluilly,
i=1 i=1 i=1 (4.50)
Ao Ao

< 2(1+ NeCiko)lloll2,,
using the relation Eq. (4.49) and the strengthened triangle inequality (Lemma 4.3).
Combining the relations Eqgs. (4.49) and (4.50) yields the Cp-stability as

N
S lwill2, 4 llwoll, < (2+ Ciko(2Ne + 1)) v]|2 . (4.51)
i=1

d

With the Cy-stable decomposition, we finally obtain the following.

Theorem 4.2. Assume (B3) and (B4), let Vi be given by Definition 4.7, MKSIJ by
Eq. (4.24), N as in Definition 4.2, and Cy as in Theorem j.1. Then, the two-level
additive Schwarz method satisfies the condition number bound

K(Myd,As) < CF(Ne +1). (4.52)
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Proof. The proof follows from [98, Cor. 5.12] and the Theorem 4.1. O

Remark 4.6. The condition number bound Eq. (4.52) becomes L-uniform for the
natural decomposition using the L? shifted unit-cells {QZéﬁ MY, from Eq. (4.27), since
N, ko, and C7 are L-invariant in that case.

4.4 Discussion About General Periodic Potentials

If the conditions (B3) and (B4) for the potential and the discretization are not fulfilled,
some aspects of the analysis will change. For example, we can no longer use the
fact that the first Neumann and the first periodic eigenfunction coincide. Moreover,
the local Neumann problems may have negative eigenvalues. This has the following
implications for the main ingredients of the theory.

o The proof of the SPSD splitting Eq. (4.37) for the periodic neighborhood uses
the positive semidefiniteness on V},(€2;). This might make it possible to locally
reverse the factorization principle, leading to boundary terms that could cancel
when using a proper alignment of the domain decomposition, similar to the
periodic alignment in Definition 4.5.

o The strengthened triangle inequality Eq. (4.40) would still hold since the func-
tions v; are in V}, 0(£2;), on which the local bilinear forms are still positive definite
since the global problem remains positive definite on V},.

e The local stability of the projections in Lemma 4.5 would also need adaptation
since its proof also requires positive definiteness. However, numerical results
suggest that there might be only one negative Neumann eigenfunction of the
shifted Schrédinger operator, whose eigenvalue is closer to zero than the second
Neumann eigenvalue. Projecting on the zero-energy function ¢ then would still
yield local stability since the bilinear form would be elliptic on the orthogonal
complement of the negative eigenspace.

Quantifying and exploring this behavior needs more investigation and remains future
work. We note, however, that having global definiteness in combination with local
indefiniteness is not a standard case to tackle. Other ideas to generalize the theory to
the local indefinite case might be to use folding techniques, i.e., spectral coarse space
approaches based on squaring the matrix, which represents fourth-order operators, to
obtain a non-negative spectrum, which is inspired by, e.g. [41].

4.5 Numerical Experiments

In this section, we evaluate the performance of the proposed PerFact preconditioner
from Definition 4.1 and provide numerical evidence for the theoretical results from
Section 4.3. We choose the Gridap finite element framework [30] within the Julia [44]
language due to its high-level interface to directly specify weak forms — similar to the
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FEniCS framework [12, 250] in Python. In all the following tests, we use the CG and
GMRES implementations of the IterativeSolvers.j1! package. For reproducibility,
the source code and all metadata are available at [249].

4.5.1 Source Problem With the Two-Level Preconditioner

We first evaluate the performance of the coarse space for the solution of a shifted
Schrodinger-type source problem on a two-dimensional rectangle Q;, = (0, L) x (0,1)
with a constant source term f(z,y) = 1: Find uj, € V}, C HZ (1) such that

ao(un,vn) = (f,vn) 1200,y Yon € Vi, (4.53)

where a, is given by Eq. (4.23). The potential is V (z,y) = 10%(sin? (7x))?(sin? (7y))?
fulfilling (B1) to (B4). The calculations use Q; finite elements on a regular cartesian
grid with mesh size h = 1/10. The shift 0 ~ 19.32644 and the periodic solution
are obtained on the unit cell of the same mesh with periodic boundary conditions in
the z-direction, according to Eq. (4.12).

Thus, this isolated setup of Eq. (4.53) simulates one application of the QOSI
preconditioner A ! applied to the right-hand-side vector f generated by f(x,y) and
only tests the linear system solution rather than the complete eigenvalue algorithm.
For each domain size L, we choose a non-overlapping, structured decomposition
into N = L subdomains, {Q/}%, by using Q) = (i — 1,i) x (0,1). Extending
each domain by one layer of elements yields the overlapping {Qi}iL:p thus covering
(i—1—h,i+h)x(0,1)fori=2,...,L—1 and the z-boundary domains accordingly.
The two-level preconditioner M,Ksl,g is then used within the CG method, which
uses an initial guess of one and the relative residual condition rTOL = 10~%, where
|rxll; < rTOL||rgl|, to determine the convergence.

4.5.1.1 Convergence Rate Comparison

The Fig. 4.4 compares the resulting relative residuals within the convergence history
between the one-level and two-level PerFact preconditioner. For Mgsl 1> the drastic
increase in iteration numbers for L — oo is visible, while the coarse7space within
M;SlQ leads to a bounded convergence rate, which is independent of L, confirming
our theory from Section 4.3.

4.5.1.2 Parameter Study

We also use this test case to investigate the dependency of the methods for changing
mesh sizes h € {1/10,1/20,1/30} and overlap layer thickness ¢ € {1,2,3} in units of
elements. Again, we compare the CG method iteration numbers for the one-level and
the PerFact two-level DD preconditioner using the same tolerance, starting vector,
and problem setup. With the Vj-interpolation operator, Ij, we use the distance-based

"https://github.com/JulialinearAlgebra/IterativeSolvers.jl, version v0.9.3.
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4.5 Numerical Experiments
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Figure 4.4: CG residual norms for varying domain length L using the AS precondi-
tioner with no (left) and the PerFact coarse space (right).

(see, e.g., [98, Lem. 5.7]) partition of unity x;(z) = Iy o (di(z)/ 2N, di(z)) with
di(z) := dist(z, 08 \ 002)1q,(z). In our case, the partition of unity resembles linear
blending between two neighboring subdomains and allows keeping the gradients Vy;
constant and thus minimal.

In Table 4.1, the theoretical results are confirmed for all § and h since the Per-
Fact coarse space is robust w.r.t. L. For moderate L. < 32, both methods have
comparable performance with the one-level preconditioner, even having some iter-
ations less. This behavior is expected since the coarse space is applied additively
and not multiplicatively (deflated) to resemble the case of the analysis. With the
distance-based PU, increasing the overlap thickness § is beneficial. Interestingly,
keeping the ratio between subdomain size and overlap thickness H/(dh) constant, i.e.,
(h,0) € {(1/10,1),(1/20,2),(1/30,3)}, does not change the convergence rate for a
fixed L. Although this is a classical observation for, e.g., the Poisson problem, it is
not directly clear for the quasi-optimally shifted Schrédinger operator since the shift
o also varies when h varies — which, in other words, means that we compare different
operators in that case.

4.5.2 Linear Chain Model With Coulomb Potential

The initial hyperbox setup of Qy, from Eq. (4.2) can be generalized to more complex
domains Q, which are generated by translated copies of a unit cell. Then, there exists
an enclosing box such that Q) c Qp, for some L. Thus, it is possible to consider a
hypothetical penalty potential V(z; V,a) := V(z) + alg.(2) and take the limit of
a — 00. Since the penalty is only applied in the complement Qc.=Qp \ Q) when the
indicator function 1g. is nonzero, the resulting eigenfunctions of Eq. (4.1) converge
to the eigenfunctions of the problem only solved in Q) with zero Dirichlet conditions
on 5 (see the barrier principle in Section 3.4.3.1).
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Table 4.1: CG iterations for relative residuals to converge to rTOL = 10~® using no
coarse space (first number) and the PerFact coarse space (second number).

h=1/10 h=1/20 h=1/30
L 6=1 6=2 §6=3 46=1 =2 6=3 6=1 46=2 46=3
2 5/6 4/5 4/5 6,7 6/6 5/6 8/8 6/7 6/7
4 7/9 6/8 6/8 9/11  8/9 7/9 11/12  9/11  9/10

8 11/14 10/13  10/12  14/17 12/15 11/15 16/19  14/17  13/15
16 19/22  17/19  15/17  23/26  20/23  19/21  26/30  23/25  21/23
32 32/28 28/23  25/21  40/36  35/31  32/27  44/42  40/35  37/30
64 56/31  48/25  43/21  70/40  61/33  56/27  80/45  70/38  63/31

128 100/33 88/25  79/22  129/42 111/34 100/28 149/48 129/38 115/32
256 188/33 164/25 149/22 241/42 208/34 187/28 285/48 241/38 217/34

4.5.2.1 Model Description

With that, we consider a linear chain of N particles, a toy model inspired by the
cumulene configuration of the ideal carbyne [271]. Let {c;}Y; be a set of center
positions with ¢; := (R + 2(i — 1)r,0)T for some R > r > 0, to construct a union
of disks domain Qy := Y, Br(e;) with Bg(c) being a disk of radius R and center
c € R?. The domain can naturally be split into DD-suitable overlapping disks,
following the spirit of [65]. Each particle generates a radial potential, modeled by a
truncated Coulomb potential Vi, around its center fulfilling (B2). We find the unit
cell to be Qp = (R —r, R+ r) x (=R, R) and note that it is not a full circle, leading
to defect regions in the mesh at both z-ends. However, the factorization theory
(see the principle of defect invariance in Section 3.4.3.2) and the DD analysis from
Section 4.3 still apply. The neighboring interactions between two particles are neglected
for simplicity, but we must add the two boundary ghost centers to the collection
C = {c;}N Uu{(R-2r,0)T, (R+2Nr,0)T} to fulfill the assumption (B1). The resulting
potential then reads V(z) = V¢ (mineee ||z — ¢l|,) with Vo(r) = —Z/ max{r, b} for
some parameters Z,b > 0. A visualization of the potential and an exemplary IP; finite
element mesh is given in Fig. 4.5a.

4.5.2.2 Flexibility Test of the Coarse Space Within Eigensolvers

With the union of disks setup, we now test the coarse space within the SI-LOPCG
solver from Algorithm 2. To demonstrate the flexibility of the PerFact coarse space,
we not only test the ASM2 method but also consider the stationary RAS2 iteration
(multiplicative coarse correction) from Eq. (4.18) as well as the RAS2 preconditioner
from Egs. (4.15) and (4.17) with the PerFact coarse space from Eq. (4.20) to use
within the GMRES method (restart not reached). For the parameters Z = 1,b = 1074,
a series of computations is then performed for N € {1,2,4,...,128} on meshes with
a-length proportional to N while the coarse space dimension is |[Vy| = N. The
discretization results in 1353 nodes for the unit cell Qo, and the resulting solution
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(a) Potential function and union of disks mesh. (b) First eigenfunction ¢ for N = 4.

Figure 4.5: A union of disks domain Qy for N = 4 with (a) the applied symmetric
potential V' and an exemplary P; mesh and (b) the resulting first eigen-
function ¢. Both color scales divided the listed interval into 14 colors.

is focused in the center of the domain. A visualization of the first eigenfunction for
N =4 is given in Fig. 4.5b.

The resulting iteration numbers are reported in Table 4.2. First, we observe that the
one-level RASI is, as expected, not robust for increasing L, such that the computations
are skipped for L > 8. The stationary RAS2 method performs reasonably well and
can be used as an inner solver. However, the Krylov accelerated CG+ASM2 and
GMRES+RAS2 variants work better, having much fewer inner iterations per outer
step. They are also robust with respect to L since the maximum number of inner
iterations, denoted by max;, is bounded from above. Combined with bounded outer
iterations obtained by the QOSI strategy, this yields a bounded number of inner
iterations, denoted by );, which measures computational cost. We also observe
that the unsymmetric GMRES4+RAS2 case has fewer iterations than the symmetric
CG+ASM2 case — which is the expected behavior. Furthermore, the outer iterations
are not influenced by the inner solver. Another interesting observation relates to cases
when the maximum number of inner iterations kmax = 1000 is reached for the RAS1
(N = 8) or the RAS2 (L = 128) method. Here, we observe that even in these cases,
convergence of the eigenvalue solver can still be achieved. This opens questions about
the interplay between inner and outer tolerances, which we discuss in the following.

4.5.3 Fusing the Loops

The inner tolerance can be made adaptive to further decrease the total number of
inner iterations. Instead of the fixed tolerance of rTOL; = 10~ we choose it to
be proportional to the outer residual norm as rTOL; = min{0.1, |7, ||, }, inspired
by [114]. We compare these two cases with a third approach, which skips the inner
Krylov solver and directly uses My iS 5 as a preconditioner in the LOPCG method,
i.e., solving MRag 2wy = T, in line 4 of Algorithm 2 (instead of Aywy, = 7o ). This
strategy still has the shift-and-invert effect and does not suffer from a high condition
number.

To render the case more complex, a three-dimensional plane-like box Qf, = (0, L)2 X
(0,1) is considered with a potential V' that is periodic in the z- and y-directions and
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Table 4.2: Inner and outer iteration numbers of the SI-LOPCG method using the
stationary RAS1, stationary RAS2, CG+ASM2, and GMRES+RAS2 as
inner solvers. Skipped simulations are indicated with {. We apply a relative
tolerance of rTOL; = 10719 for the inner residuals and an absolute tolerance
(since the eigenvector is normalized after each iteration) of TOL, = 10~%
for the outer spectral residuals. For the inner solver, k. = 1000 applies,
and 1000* is displayed when kp.x is reached. We abbreviate with it, the
outer iterations, with max; the maximal number of inner iterations as a
measure for the worst case, and with ) ; the sum of all inner iterations
(approximately computational costs).

RAS1 RAS2 CG+ASM2 GMRES+RAS2
N~ L ity max; Zi ito  max; Ei ite  max; Zi ite  max; Zi
1 5 38 174 5 21 96 5 17 82 5 14 68
2 5 195 865 5 117 519 5 20 98 5 17 83
4 4 650 2278 4 157 557 4 27 103 4 22 85
8 5 1000* 5000 5 180 765 5 39 186 5 33 155
16 T T T 5 192 818 5 51 251 5 46 213
32 T t 4 200 732 4 65 260 4 59 229
64 bt t 4 206 766 4 89 342 4 70 272
128 Pt i 4 1000* 1585 4 90 351 4 70 267

has a linear gradient in the z-direction. On purpose, we now choose an unsymmetric
potential (not fulfilling (B4)), which is given by

V(z,y,z) = 10(4 + sin 27z + sin 4wz + 2sin 27y + 2sindny + 2). (4.54)

For the domain decomposition, we also apply the most general case by using an
unstructured METIS partition. The Fig. 4.6 presents the partition, V, and an
exemplary first eigenfunction for the case of L = 2. With a structured Q-discretization
using h = 1/10,8 = 1,TOL, = 10~!° and inner initial guess of zero, we perform a
series of computations for L € {4, 8,16,32} and keep track of all inner iterations. As
we observe in Fig. 4.7, the method is still robust w.r.t. to L, even for the unsymmetric
potential case. Although the adaptive strategy can significantly reduce the number of
iterations, the fused approach leads to the fastest convergence. The idea of fusing
the inner and the outer loop could even be carried further to the case of nonlinear
eigenvalue problems, which have an additional third loop to handle the nonlinearity.

4.6 Conclusion and Future Work

In this chapter, we presented a new domain decomposition preconditioner for the quasi-
optimally shifted Schrédinger operator, which is robust with respect to anisotropic
domain expansion. This setup is motivated by 1d structures (e.g., carbon nanotubes) or
2d materials (e.g., graphene) in material science. Initially, we academically motivated
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/

(a) METIS partition of Q3.  (b) Potential V' (unsymmetric). (c) First eigenfunction (L = 2).

Figure 4.6: (a) An unstructured METIS element partition of {2 into {Q2}1 ;, (b) a
periodic but unsymmetric potential V', and (c) the first eigenfunction for
the case of L =2 with h = 1/40.
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Figure 4.7: Comparison of the total number of inner iterations for a fixed inner
tolerance, an adaptive inner tolerance, and direct usage of the RAS2-
preconditioner within the LOPCG method.

the fundamental dilemma of effective shifting for eigenvalue problems in contrast
to the fast convergence of iterative eigenvalue solvers. With the new factorization
preconditioner, we successfully combined both aspects to simultaneously achieve fast
convergence of both the eigenvalue and linear solvers. For our analysis, we utilized
tools from the theory of spectral coarse spaces to prove a condition number bound
for the preconditioned system. Operating in a setup where coercivity asymptotically
vanishes, we took special care in adapting the geometrical setup and the theory
accordingly, for instance, by considering a hypothetical alignment of the domain
decomposition. The theoretical results are confirmed by numerical experiments, which
also demonstrate the flexibility of the coarse space within eigensolvers.

Limitations of the method include the assumptions on the potentials required to
apply the theory and the periodicity assumption. Consequently, future work can focus
on extending the theory to more general potentials and applying it to more realistic
nonlinear eigenvalue problems, such as tight-binding models. Furthermore, rather
than solving only one problem on a unit cell to obtain a shift and coarse space, we
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could consider general parameter-dependent eigenvalue problems. In such a scenario,
known coarse spaces from the solution of linear systems might serve as an efficient
basis to extract a suitable shift for use within the eigenvalue solver. In other words,
future efforts could strengthen the connection between solver theory from iterative
linear systems to eigenvalue solvers.
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Conclusion, Outlook, and Future Work

In this thesis, we presented strategies to solve the linear Schrédinger eigenvalue
problem for anisotropic structures with a vanishing fundamental gap. Due to the very
diverse use and combination of techniques, let us recall the main contributions of this
thesis and discuss weaknesses, future research directions, and open questions that
arise when considering the specific problems within this thesis and go beyond them
when stepping back and looking at the general picture.

5.1 Summary

In Chapter 1, we motivated the general need to construct scalable algorithms and
provided a broad context of what motivated this work. We also highlighted the main
contributions of this thesis and provided an overview of how these built up on each
other.

In Chapter 2, we first provided the physical background of the linear Schrédinger
equation model. We started with the comprehensive picture of the quantum system
description and then moved on to modeling many-body molecular systems. Due to
their complexity, we reviewed and explained the relevant model assumptions and
approximations to obtain the electronic ground state problem. Particular focus was
then given to the presentation of the Hartree-Fock and the Kohn—Sham models,
leading to a system of nonlinear eigenvalue problems. This presentation allowed us
to embed the mathematical model problem of the linear Schrédinger equation, used
within the later chapters, into the broader context. The role of anisotropic domains
was discussed from a practical viewpoint, and difficulties were shown. We then moved
on to the discretization of the equations with the subsequent presentation of iterative
algorithms to solve the resulting discrete eigenvalue problems. We mainly focussed
on single vector iterations and gradient-based algorithms. Finally, preconditioning
was discussed, and the domain decomposition method was introduced.

Having all these tools at hand, we started in Chapter 3 with the first main con-
tribution of this thesis. We presented a quasi-optimal shift-invert preconditioner
for the linear Schrédinger equation with a periodic potential. We stated all model
assumptions and used the simple Laplace eigenvalue problem as an illustrative example
to highlight the significant difficulties. After outlining the chapter-specific context,
we defined a prototype problem and derived a factorization result for the eigenpairs,
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which is especially useful for extracting information about their asymptotic behavior.
The factorization was also illustrated graphically to provide a better understanding.
Afterward, this result was used to factorize the problem in a size-independent part
and another eigenvalue problem. For the remaining eigenvalue problem, we ana-
lyzed its asymptotic behavior after applying a rescaling. This analysis required the
framework of directional homogenization theory since the rescaling leads to highly
oscillating coefficients. Based on that analysis, we could show that the eigenvalue
goes to zero, which implies that the first eigenvalue of our model problem has a
limit, given by the solution to a cell problem. For the numerics, we constructed a
quasi-optimal shift-and-invert (QOSI) preconditioner. As extensive numerical tests
showed, this preconditioner yielded robustness in iteration numbers for the inverse
power and the LOCG method. We also discussed the method’s limitations, especially
the ill-conditioning issue of the resulting shifted linear systems.

The work in the Chapter 4 is a direct continuation of the previous chapter in that
it tackles the remaining problems to allow the use of iterative linear solvers. We again
presented the model and all assumptions and used the Laplace eigenvalue problem to
motivate and show the difficulties that arise. However, this time, we focussed on using
inner-outer type eigenvalue solvers and measured the complexity in terms of the total
number of inner iterations. We showed a fundamental shifting dilemma: although
shifting speeds up the iterative eigenvalue solvers, it also increases the condition number
of the resulting matrices. This behavior is not an artifact, but it is by definition.
We then presented the chapter-specific context and moved on to the introduction
to domain decomposition and how we use it in combination with an eigenvalue
solver. Specifically, we treat the DD method as an inner solver or preconditioner
for Krylov solvers. Since the one-level DD approach can not be used directly, we
introduced a particular coarse space (PerFact) that used the same asymptotic analysis
from the Chapter 3 using the limit eigenfunctions as generators. These coarse space
components are already available and intuitively treat the lower, problematic part of
the shifted spectrum. We then presented an analysis of the resulting two-level domain
decomposition preconditioner under some symmetry assumptions. We observed that
our coarse space is closely related to spectral coarse spaces and that we had to adapt
our problem to the general framework. After all, we obtained a condition number
bound independent of the domain size. Having this at hand, we implemented and
tested the resulting method and confirmed the theory. The numerical tests showed
that the method works for the general case with fewer assumptions. Finally, we
presented a fusing strategy that replaces the two loops in the inner-outer strategy
with a single loop. We tested the proposed preconditioner and obtained a significant
reduction in the total number of inner iterations.

5.2 QOutlook and Future Research Directions

Regarding future research directions, we can think of several things. Some of them are
obvious and specifically related to the methods within this thesis. However, some are
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also more general and ask more fundamental questions, especially about the role of
preconditioning for eigenvalue algorithms. Let us start with the first set of questions.

5.2.1 Analysis of the Methods for More General Problems

We start with the most obvious question: How do the methods perform for more
general problems? In this thesis, we have focused on the linear Schrédinger equation
with periodic potentials. We can think of the following generalizations:

e Beyond periodicity: Since the potential V' in Chapters 3 and 4 was assumed
to be directional-periodic and thus neglects the interaction beyond the unit cells,
we could formulate the problem with a more general potential as the sum of
local potentials, each located at the lattice sites. This formulation would lead
to a more general problem in a non-periodic setting. A potential of the form
Vi(x,y) = L, Ve(z—¢;, y) for some cell potential V, and cell centers ¢; would
be a natural choice. First tests suggest that if the cell potential V¢ is regular
enough, e.g., by using a regularized Yukawa-type potential Vc(r) = e=*"/(r + )
for some «, 8 > 0 (in cell-centered radial coordinates) allows to take the limit of
Vi, for L — oo. The splitting of Vi, = Vo +V}, would then allow the factorization
approach from Section 3.2 to be applied to the periodic part V. At the same
time, the non-periodic part V7, would be treated as a perturbation that converges
to zero almost everywhere.

e Algebraic factorization: The factorization approach from Section 3.2 was
done in the infinite-dimensional case. A discrete analog of the factorization
approach must also exist and could be analyzed. For these discrete cases, there
might be further applications beyond the PDE setting, where specific periodicity
effects play a role and need to be factorized to create a reduced model, e.g.,
when modeling large graphs or networks with a proper notation of periodicity.
Considering the discrete matrix case might be closely related to tight-binding
models, see [73, 160], where usually only nearest-neighbor interactions are
considered, and the discretized Hamiltonian matrix is thus very structured.

o Initial guess optimization: In this thesis, we have optimized only the conver-
gence rate of algorithms to make them robust for any starting value. However,
we should also optimize the initial guesses since worse convergence rates can
be compensated somewhat by better initial guesses. For the Laplace problem,
we know the first eigenfunction for the abstract box geometry and can use it
as a starting guess; by definition, the method is immediately converged. By
accident, we found cases where using the first eigenfunction of the Laplace
eigenvalue problem also for periodic Schrodinger operators was an excellent
initial guess with orthogonality to the actual first excited Schrodinger eigenfunc-
tions up to, at least, the index L (if L € N, for the two-dimensional case), i.e.,
(u(_l)A, u@AH) =0 fori=2,...,L. Since this only holds for specific symmetric
V', an analysis could be based on the theory of nodal lines [131], i.e. the places
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where an eigenfunction is zero, and how they divide the domain into equally
sized parts, for instance. This analysis would be an exciting direction to explore
and might lead, in combination with the DD approach, to a scalable method
that would not require a coarse space.

Nonlinear problems: The extension to the nonlinear case is a natural question.
The primary problem is that the factorization approach only applies to linear
problems. However, we could still use the external potential or extract a periodic
part from it and then use the factorization approach from Section 3.2 on the
linearized problem. Suppose the remaining contribution of the potential is
positive. In that case, the resulting analysis will yield a lower bound on the
first eigenvalue (at least for the GPE), which might be used as a shift in SCF
iterations. However, asymptotically sharp bounds for the shifted fundamental
ratio seem out of reach. Still, this would be an exciting approach to try out.

5.2.2 General Questions About Iterative Eigenvalue Solvers

Moving a step back and looking abstractly at the work of this thesis, we designed a
method for quasi-optimal preconditioning of an eigenvalue problem with a vanishing
fundamental gap. We found an interesting connection between the shifting parameter
and the required coarse space components. So, we can ask more fundamental questions:

e Connecting linear and eigensolver preconditioning: For linear solvers,
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the performance of a preconditioner is measured in terms of spectral closeness
to the inverse of the matrix to get bounds of the type k(M ~tA) < C. Such
a preconditioner is insufficient for gradient-based eigenvalue solvers since the
spectral gap might vanish. Typical convergence results, see, e.g. [25], thus still
include the spectral gap or the fundamental ratio between the first eigenval-
ues. Since the perfect preconditioner is (A — AN I)T (see Section 2.2.2), one
could start the analysis from, e.g., the spectral equivalence (1 — )z’ P~la <
T (A- AV Dz < (1+7)z" P~z for all x € R™\ span(x™M) or the requirement
k(M YA - A(l)I))|E(m(1))l) < C, with E(x() denoting the orthogonal com-
plement of the first eigenspace, in connection with the case of linear systems.
Then, one could consider eigenvalue problems that depend on a general parame-
ter p. This parameter could be related to, e.g., the domain size L, the mesh
size h, the strength of the nonlinearity 8 (for GPE), the overlap parameter 0,
the number of subdomains Ngq, a (random) diffusion coefficient A(x). Then, a
correspnding eigenvalue problem with p-dependency, A,x, = \,x,, could be

considered. Asymptotic analysis for the lowest eigenvalue )\pl as p — 0 can
then be used to derive an asymptotic limit for such a general eigenvalue problem
— similar to what we did in this thesis for p = 1/L by deriving the asymptotic

limit of /\g) as L — oo.

Using an approximate shift from the coarse space: In Chapters 3 and 4,
we derived a quasi-optimal shift and later used related coarse spaces to fix the



5.2 Outlook and Future Research Directions

ill-conditioning issues for the shifted systems. However, the other way around is
also possible. Various methods exist to construct coarse space, multiscale basis
functions, or reduced models that all try to capture the extremal ends of the
operator spectrum. In a Rayleigh—Ritz procedure, one could use these reduced
models to extract an approximate shift, &, as, e.g., the lowest eigenvalue in the
coarse basis and then use it as a shift for the refined model. However, special
care needs to be taken since, by the min-max theorem, A1 < G as the coarse
space is a subspace of the refined space. An analysis to provide guaranteed
distance bounds to the real eigenvalue of interest might be another interesting
direction to explore.

Convergence analysis of the fused iteration loop: Lastly, we found out
in the Section 4.5.3 that fusing the inner-outer loops within the eigensolver
benefited the total number of inner linear system iterations. Analyzing this
behavior might be another interesting direction to explore. It is closely related
to the first question since the fused preconditioning strategy might represent an
approximate preconditioner to the A()-shifted system.
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