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Kurzfassung

Mikrogele sind funktionelle Polymere mit dem Potenzial fiir vielseitige Anwendungen. Jede Anwen-
dung erfordert maflgeschneiderte Eigenschaften der Mikrogele. Um eine mafigeschneiderte Produktion
zu ermoglichen, sind Einblicke wihrend der Reaktion durch Prozessanalytik sowie mathematische
Modellierung zur computergestiitzten Vorhersage und Optimierung der Mikrogeleigenschaften uner-
lasslich. In dieser Arbeit werden daher Fortschritte bei der Mikrogelsynthese hinsichtlich Analytik,
Modellierung und Optimierung erzielt, um das volle Potenzial dieser vielseitigen Polymere zu erschlie-
Ben.

Zunéchst wird die Konzentrationsbestimmung mittels Raman-Spektroskopie fiir die kontinuierli-
che Mikrogelproduktion eingefiihrt. Die Ubertragung dieser Messtechnik von Batch- auf kontinuier-
liche Durchflussanlagen birgt Herausforderungen, die systematisch angegangen werden. Es wird ein
Qualitatskriterium fir Raman-Spektren abgeleitet, das die Erkennung von Ausreiflern wiahrend der
kontinuierlichen Synthese ermdglicht. Insgesamt wird damit ein Leitfaden fiir die Ubertragung von
Inline-Analytik erstellt.

Zweitens werden die Moglichkeiten der Raman-Spektroskopie erweitert, indem eine Methode zur
Bestimmung der Mikrogelgroie aus Raman-Messungen vorgestellt wird. Dabei werden fortschrittliche
Entwicklungen im Bereich des maschinellen Lernens genutzt, um die Qualitdt der Gréflenvorhersa-
ge zu verbessern. Die daraus resultierende Vorhersagegenauigkeit ist mit den etablierten Offline-
Messtechniken vergleichbar. Die Kombination von Raman-Spektroskopie und maschinellem Lernen
ist somit ein vielversprechender Ansatz fiur die Inline-Partikelgréfienbestimmung.

Drittens ist die Raman-Spektroskopie auch fiir die Uberwachung der geladenen Mikrogelsynthese
geeignet. Modell-basierte Auswertung bewéltigt dabei die Komplexitat, die durch die Multikompo-
nentenlésungen mit dissoziierten und undissoziierten Zustédnden verursacht wird. Dadurch wird ein
detaillierter Einblick in die Reaktionsphénomene wiahrend der Synthese geladener Mikrogele ermdog-
licht.

Viertens wird die Erweiterung eines mechanistischen, dynamischen Modells um die Einbeziehung
von funktionellen Epoxidgruppen in der Synthese von Mikrogelen vorgestellt. Unbekannte Parame-
terwerte werden mittels Parameterschatzung berechnet. Durch die strategische Einbeziehung quan-
tenmechanisch berechneter Parameterwerte kann die Ubereinstimmung zwischen Modellvorhersage
und experimentellen Messungen bei geringem Rechenaufwand prézisiert werden. Das identifizierten
Synthesemodell priadiziert die Verteilung der funktionellen Epoxidgruppen innerhalb des Mikrogels.

Fiinftens wird die Erweiterung eines mechanistischen, dynamischen Modells fiir die Synthese von
geladenen Mikrogelen unter Berticksichtigung von pH-Einfluss vorgestellt. Auch hier werden fehlende
Parameterwerte mittels Parameterschatzung berechnet und quantenmechanisch berechnete Werte
dabei eingebunden. Das entwickelte Modell ermdglicht die Vorhersage und Optimierung geladener
Mikrogele fir die effiziente Entwicklung mafigeschneiderter Systeme.

Sechstens wird ein datengetriebener Hardware-in-the-Loop-Ansatz zur erfolgreichen Synthese von
Mikrogelen einer gewiinschten Grofle prasentiert. Dabei wird Bayes’sche Optimierung eingesetzt fiir
die gleichzeitige Verbesserung der Mikrogelsynthese hinsichtlich Produkt- und Prozesseigenschaften.
Der vorgeschlagene Ansatz ermoglicht eine effiziente Mikrogelentwicklung, indem die Anzahl der
erforderlichen Experimente minimiert werden.

Die Arbeit vereint Fortschritte in den Bereichen Prozessanalytik, mathematische Modellierung und
datengetriebene Optimierung und kombiniert experimentelle Entwicklungen (in-situ) mit theoreti-
schen Uberlegungen (in-silico). Daher stellen die Ergebnisse dieser Arbeit einen wichtigen Schritt in
Richtung der Synthese von mafigeschneiderten Mikrogelen mit spezifischen Zusammensetzungen oder
Funktionalitdten in einem grofieren Produktionsmafstab dar. Schliellich sind viele Erkenntnisse dieser
Arbeit nicht nur fiir andere Polymersysteme relevant, sondern auch fir die Methodenentwicklung im
Bereich der spektroskopiebasierten Groflienvorhersage oder der Hardware-in-the-Loop-Optimierung
fir alle Arten von (chemischen) Systemen.
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Summary

Microgels are functional polymers with the potential for versatile applications. Each application re-
quires tailored properties of the functional microgels. To enable a tailor-made production, insights
during the reaction via process monitoring are essential, as well as mathematical modeling for pre-
dicting and optimizing microgel properties. Thus, this thesis provides advancements in microgel
synthesis regarding monitoring, modeling, and optimization to unlock the full potential of these
versatile polymers.

First, concentration monitoring via Raman spectroscopy is established for the continuous microgel
production mode. Transferring this monitoring technique from batch to continuous flow setups poses
challenges that are systematically addressed. A quality criterion for Raman spectra is derived to
allow functional outlier detection during continuous synthesis. Hence, overall, a guideline for in-line
monitoring transfer is established.

Second, the capabilities of Raman spectroscopy are enhanced by presenting a method to determine
the microgel size from Raman measurements. Recent developments in machine learning are leveraged
to improve size determination quality. The resulting accuracy is comparable with state-of-the-art off-
line analysis tools. Thus, combining Raman spectroscopy and advanced machine learning methods
is a promising approach for in-line polymer size determination.

Third, Raman spectroscopy is also enabled for monitoring the charged microgel synthesis. Applying
indirect spectral hard modeling resolves the complexities caused by the multi-component solutions
with dissociated and undissociated states. Therefore, a detailed insight into the reaction phenomena
during the charged microgel synthesis is enabled.

Fourth, a mechanistic, dynamic model for the synthesis of microgels is extended to account for
integration of functional epoxy groups. Unknown parameter values are calculated within a param-
eter estimation. By strategically including quantum mechanically calculated parameter values, the
fit between model prediction and experimental measurements can be improved while reducing the
calculational effort. By applying the identified synthesis model, the distribution of functional epoxy
groups within the microgel is predicted.

Fifth, a mechanistic, dynamic model is enhanced to capture the synthesis of charged microgels with
regard to pH changes during the process. Again, missing parameter values are calculated within a
parameter estimation, including quantum mechanically computed values strategically. The developed
model presents a robust framework for predicting and optimizing the performance of charged microgels
in diverse scenarios, paving the way for designing more efficient and tailored microgel-based systems.

Sixth, a data-driven hardware-in-the-loop approach is presented to synthesize microgels of a de-
sired size successfully. Data-driven approaches, particularly Bayesian optimization, are employed
for microgel synthesis optimization for multiple objectives regarding product and process properties
simultaneously. The proposed framework includes global deterministic optimization and has the po-
tential for efficient microgel development by minimizing the number of experiments and modeling
efforts needed.

The thesis brings together advancements in the fields of process analytical technology, mathemat-
ical modeling, and data-driven optimization while combining experimental real-world development
(in-situ) with theoretical considerations (in-silico). Therefore, this thesis’s findings provide one step
toward synthesizing tailored microgels with specific compositions or functionalities at increased pro-
duction scale. Finally, many findings of this thesis are relevant not only for other polymer systems
but also for method development in the field of spectroscopy-based size determination and hardware-
in-the-loop optimization for all kinds of (chemical) systems.
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1 Introduction

Microgels are cross-linked polymer networks in the size range between 0.1jum to 100 pm in the
swollen state [15]. These microgels inhibit the unique characteristic that they react reversibly upon
specific triggers in their surrounding medium (such as temperature [16], pH [17, 18], electrochem-
ical potential [19-21], and ultraviolet (UV) irradiation [22-25]). The most studied microgels are
thermo-responsive and based on the monomers N-isopropylacrylamide (NIPAM) [26, 27] and N-
vinylcaprolactam (VCL) [28, 29]. Upon reaching a certain threshold in temperature, the so-called
volume phase transition temperature (VPTT), thermo-responsive microgels collapse and thus change
their size. This collapse is fully reversible when cooling below the VPTT, making microgels attrac-
tive for switchable systems. The VPTT is approximately 32°C for NIPAM [26, 30, 31| and 31°C
to 38°C for VCL [32], thus, close to physiological temperature. It is possible to enhance the mi-
crogel’s functionality beyond thermo-responsiveness by adding co-monomers to the synthesis, e.g.,
pH-responsive groups such as methacrylic acid (MAA) or other functional units such as glycidyl
methacrylate (GMA). The multi-responsive functionality, relatively small size, and the VPTT close
to physiological temperature make microgels interesting for many applications. Microgels with single
or dual stimuli swelling response are relevant, e.g., for medical applicationss [33-40], catalysis [41-44],
enzyme immobilization [45], sensing [46], phase separation [47-49], and membranes [22].

Scientific research on microgel synthesis is versatile. To structure the scope of this thesis, the
following paragraphs focus on three research topics regarding the synthesis of microgels: process
monitoring, mechanistic modeling, and data-driven optimization. The literature gaps are highlighted
for each topic. Furthermore, a thorough literature review is included in each of the subsequent
chapters separately.

Microgels are synthesized via precipitation polymerization [26, 50]. In the past, synthesis in batch
reactors has been the established production mode [12, 50-53]. Recently, production in continuous
flow reactors has gained more attention [54-56]. Each production mode holds benefits, e.g., continu-
ous production facilitates scale-up and reaction control, while batch reactors enable more flexibility
and process optimization at an early development stage. Synthesis monitoring via suitable process
analytical technology (PAT) is crucial for process control and identifying reaction phenomena. Raman
spectroscopy is an established and reliable tool for in-line concentration monitoring of the microgel
synthesis [57, 58]. The term in-line refers to a measurement probe positioned directly inside the
reactor as opposed to automatic on-line measurements using a bypass [59]. Both measurement types
do not require sample drawing. In-line monitoring of polymerization via Raman spectroscopy is stan-
dard for batch reactors but is yet to be manifested for flow reactors. Maintaining the measurement
precision is critical when transferring the in-line Raman spectroscopy from batch to flow reactors. A
systematic approach for transferring Raman monitoring from batch to continuous flow setups is yet
to be established. At the same time, process analytical investigation of multi-component solutions
that occur in the synthesis of microgels is challenging, especially when charged species such as MAA
occur. Therefore, a suitable evaluation procedure is needed to determine the content of all partic-
ipating components during the synthesis of charged microgels. Furthermore, the polymer size also
constitutes a crucial characteristic for product quality in the polymerization of microgels. Recent
approaches [58, 60-64] and some theoretical considerations show a correlation between Raman sig-
nals and particle sizes but do not determine polymer size from Raman spectroscopic measurements
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accurately and reliably. Hence, recent developments of machine learning are expected to enable a
better size determination quality.

To tailor microgels with defined composition or functionality, model-based approaches are suitable.
As microgels are considered products by process [65], the synthesis conditions directly determine the
functionality of the produced microgel. The detailed insight into the occurring reactions during the
microgel synthesis derived from computational models enables the precise control of the microgel
properties. However, modeling approaches for synthesizing charged microgels include steady-state
models exclusively, while the kinetic parameter values still need to be fully understood. Hence, a
model accounting for pH changes during the synthesis of charged microgels is needed. For applications
with specified requirements regarding size, producing tailored microgels in a continuous flow reactor
is advantageous because the microgel properties can be controlled tightly. However, no fully specified
mechanistic models are available for continuous microgel synthesis, as the physical properties of the
included components are only studied partly. Also, the microgel growth has been modeled only
semi-empirically so far [66]. Thus, data-driven approaches can optimize microgel synthesis without
needing a mechanistic system representation.

In this thesis, the production of functional microgels is enhanced in multiple ways. The focus is
on the three aspects of the microgel synthesis mentioned previously (process monitoring, extend-
ing mechanistic models, and data-driven hardware-in-the-loop optimization). Monitoring via Raman
spectroscopy is enhanced in three ways: conversion monitoring in continuous flow reactors, conver-
sion monitoring of charged microgels, and microgel size determination. Further, dynamic modeling
approaches are extended to cover pH changes during the synthesis and to predict reaction progression
for novel functional co-monomers. Finally, a data-driven approach is applied to conduct a product-
process optimization of the microgel synthesis using Bayesian optimization.

As an underlying theme, this thesis combines in-silico and in-situ optimization of the microgel syn-
thesis. Conducting experiments (in-situ) contributes to the generation of new knowledge and insights,
that support the understanding of fundamental principles in the synthesis of microgels. Furthermore,
experimental validation is essential to test theoretical concepts and to confirm or challenge existing
theories. In addition, in-silico studies involving mathematical modeling and computational simula-
tions are particularly helpful to reduce experimental effort, cost, and time. This thesis bridges the
gap between purely experimental and theoretical studies by exploiting the complementary advantages
of both approaches.

The following thesis is structured as described below. Chapter 2 gives background information on
microgel synthesis focusing on materials, batch production, monitoring via Raman spectroscopy, and
mechanistic modeling approaches.

Chapters 3, 4, and 5 deal with synthesis monitoring, in particular with the transfer from batch
to continuous processing, monitoring charged species, and exploiting the Raman signal for particle
size determination. Chapter 3 presents a customized Raman measurement cell for in-line monitoring
in a tubular flow reactor and a systematic accuracy analysis of the obtained measurement. Also, an
accuracy analysis comparing three calibration models and measurements of flowing solvent, monomer
solution, and microgel solution is included. In Chapter 4, a machine learning workflow leveraging
diffusion maps (DMAPs), a nonlinear manifold learning technique, and conformal autoencoder neural
networks is presented for microgel size determination from Raman spectra. The workflow is applied
to a data set of Raman spectra with associated size measured via dynamic light scattering of 47
microgel samples in a diameter range of 208 nm to 483 nm and compared to state-of-the-art methods.
Lastly, in Chapter 5, Raman spectroscopy and indirect hard modeling (IHM) are used to monitor the
synthesis of charged microgels and thereby predict the monomer contents.

Chapters 6 and 7 deal with synthesis modeling and subsequent parameter estimation. In both



chapters, the presented models are based on previous modeling approaches by Jung et al. [66-69]
and extended to account for addition of functional co-monomers. In Chapter 6, a kinetic model of
the co-polymerization of VCL-based microgels with functional GMA monomers and cross-linked with
N, N’-methylene bisacrylamide (BIS) is identified. For that, propagation reaction rates calculated via
quantum chemical methods are incorporated. Subsequently, the five most sensitive propagation and
initiation and termination rates using the enthalpy transfer rate from real-time reaction calorimetry
experiments are estimated. For the parameter estimation, the quantum chemically calculated values
act as start values, and the determined error scopes function as bounds in the optimization. Finally,
the developed approach of incorporating computed parameter values is compared to variations of
the procedure. In Chapter 7, a dynamic synthesis model for the polymerization of charged micro-
gels, including pH dependency, is derived. Based on the reaction monitoring results from Raman
spectroscopy, and real-time reaction calorimetry, and quantum chemical computations, missing pa-
rameter values are estimated to obtain a complete set of reaction parameter values for synthesizing
NIPAM-co-MAA microgels. The proposed model allows simulating the microgel synthesis concerning
changes in pH and its implications.

Chapter 8 deals with data-driven synthesis optimization, particularly microgel product-process op-
timization in a continuous flow reactor via Bayesian optimization. To accelerate tailor-made microgel
development, a data-driven optimization in a hardware-in-the-loop approach is proposed to efficiently
synthesize microgels with defined sizes. The synthesis is optimized regarding conflicting objectives
(maximum production efficiency, minimum energy consumption, and the desired microgel radius) by
applying Bayesian optimization via the solver Thompson sampling efficient multi-objective optimiza-
tion (TS-EMO). The optimization is validated using the deterministic global solver McCormick-based
algorithm for mized-integer nonlinear global optimization (MAINGO), and three computed Pareto op-
timal solutions are verified via experiments.

The thesis ends with a summary of the key results, derived conclusions, and perspectives for further
research in Chapter 9.






2 Background Information on Microgel
Synthesis

This chapter outlines background knowledge about the main topics of microgel synthesis covered
within this dissertation at a high-level description to provide a general introduction. In addition,
each of the following chapters includes a literature review that explores the specific aspects in more
depth. For more detailed information, the reader is referred to the literature cited below. First, the
basic procedure for synthesizing thermo-responsive microgels is outlined focusing on the chemicals
used (see Section 2.1) and the general setup in batch production mode (see Section 2.2). Next, the
synthesis monitoring via Raman spectroscopy and the evaluation of detected spectra via indirect
hard modeling is shown (see Section 2.3). Subsequently, the current approaches in microgel synthesis
modeling are summarized (see Section 2.4).

2.1 Materials

For synthesizing microgels, the experimental procedure relies on the following reactants:

e Solvent: Throughout the thesis deionized water is used as the exclusive solvent. The deionized
water (referred to as “water” in the following chapters) is produced in-house (conductivity
0.8 uS em! at 25°C). All other reactants are dissolved in water, but the solvent does participate
in the polymerization reaction. For microgels, the solvent is highly relevant, as the solvent
influences the gel properties [70, 71].

e Main monomer: The main monomer is added in high concentration to form the body of
the microgel. This thesis focuses on N-isopropylacrylamide (NIPAM) as the main monomer,
but also covers a synthesis involving N-vinylcaprolactam (VCL) as the main monomer (see
Chapter 6). NIPAM (97%, Acros Organics for Chapter 3 and TCI Chemicals for Chapters 5
and 8) is recrystallized from hexane. Microgels based on VCL and NIPAM exhibit similar
response temperatures, but VCL-based microgels have the advantage of biodegradability [72]
and reduced reaction times compared to NIPAM. VCL (98%, Sigma Aldrich) is distilled under
vacuum and recrystallized from hexane for purification.

» Cross-linker: As cross-linker only N, N’-methylenebis(acrylamide) (BIS, 99%, Sigma-Aldrich)
is considered in this thesis. BIS is used as received. The cross-linker creates connections (so-
called cross-links) between polymer chains and thereby generates a polymer network.

e Functional co-monomer: Functional co-monomer is incorporated in the synthesis at low
concentration to enable a targeted functionality. This dissertation concentrates on the func-
tional co-monomers methacrylic acid (MAA) and glycidyl methacrylate (GMA). MAA (>99%,
stabilized with 4-methoxyphenol (MEHQ), TCI Chemicals) is used as received. Adding MAA
to the thermo-responsive microgel synthesis extends the functionality to pH-responsiveness.
GMA (97%, Sigma Aldrich) is distilled for purification. The reactive epoxy group of GMA is
versatile in subsequent reactions.
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o Initiator: Two initiators are considered in the context of this thesis, namely 2,2’-azobis(2-
methylpropionamidine)dihydrochloride (AMPA, 97%, Sigma-Aldrich) and potassium persulfate
(KPS, >99.0%, Sigma-Aldrich). Both initiators decompose thermally, meaning that above a
defined temperature, they start to decompose by forming two initiator radicals. They are both
used as received in the synthesis.

o Surfactant: Hexadecyltrimethylammonium bromide (CTAB, >97%, Merck) and sodium
dodecyl-sulfate (SDS, 99%, Acros Organics) are considered as surfactants in this thesis. Both
chemicals are used as received. Surfactants ensure colloidal stability but do not influence the
reaction kinetic of the microgel synthesis.

Note that not all reactants need to be part of the microgel synthesis. Surfactant is only added for
colloidal stability, which is not needed in all applications. Also, the co-monomers pose as optional
additives. Finally, occasionally no cross-linker is needed to produce ultra-low cross-linked micro-
gels [73]. Each chapter outlines the involved reactants and the respective amount in the microgel
synthesis under investigation.

2.2 Batch Synthesis

To this day, most microgels are synthesized in (fed-)batch reactor setups. Therefore, the following
paragraph highlights the general experimental procedure for batch synthesis. For details on contin-
uous production, the reader is referred to Section 3.2 and supporting literature sources [54, 55]. The
polymerization of NIPAM with BIS is depicted exemplarily in a reaction scheme in Figure 2.1.
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Figure 2.1: Schematic representation of the NIPAM-based microgel synthesis.

First, all partaking reactants except the initiator are dissolved. The reaction mixture is then
heated to reaction temperature under constant degassing using nitrogen to repress all oxygen from
the system. Oxygen inhibits the reaction, as it bonds to the radicals in the system and prevents the
continuation of the polymerization. After approximately 30 min of degassing, the initiator is added
(usually in dry form). The initiator decomposes and thereby forms primary radicals. The formed
radicals build chains by propagating with monomer, cross-linker, or functional co-monomer. Here,
the terminal end of the growing radical chains determines the kinetics of the propagation reaction.
Therefore, different reaction kinetics are valid. While adding a monomer to the chain extends the
chain, adding a cross-linker attaches a second double bond, thus enabling a three-dimensional network
formation. As the solubility in water decreases with longer chains, the polymers start to precipitate
from the water upon reaching a critical length. The propagation reactions continue until all monomers
are fully converted to polymer chains. The synthesis ends with a termination reaction of two polymer
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chains. The reaction setup permits several degrees of freedom, including the initial concentration of
all components, temperature, stirring, and feeding of additional reactants during the synthesis. The
reaction temperature is usually between 60°C to 80 °C, as a minimum temperature is needed for
the decomposition of the initiator to set in, and water evaporation limits the maximum temperature.
Generally, a higher temperature speeds up the reaction kinetics and thus decreases the overall reaction
time [57]. For the experiments conducted within this thesis, the stirring speed is set to 300 rpm if not
stated otherwise. It is well known that the stirring speed influences the microgel size [66] but does not
affect the reaction kinetics. Note that microgels are not considered particles [74], and thus, the term
microgel size or polymer size is used throughout this thesis instead of the more common particle size.
Also, various contributions of experimental [51, 53, 54, 75] and simulation [76] analysis regarding
the microgel growth indicate that the microgel growth is homogeneous, resulting in monodispers
microgels.

2.3 Process Monitoring via Raman Spectroscopy

For polymerization processes, the time scales of change are usually in the order of minutes [77].
Precipitation polymerization of VCL-based microgels at 80°C reaches a final conversion already after
5min to 8min after addition of the initiator [57]. Monitoring the synthesis adequately requires
measurements of a suitable, relatively high frequency. Here, in-line monitoring with low acquisition
times enables the acquisition of the desired information on the analyte. As mentioned before, the term
in-line refers to a measurement probe positioned directly inside the reactor as opposed to automatic
on-line measurements using a bypass [59]. Off-line methods that require sampling or even further
sample preparation before measurement cause long delays in the processing and are, therefore, not
the first choice for high-resolution microgel synthesis monitoring.

For concentration monitoring, Raman spectroscopy is established as a suitable in-line process
analytical tool for microgel synthesis [57, 58]. Raman spectroscopy is an optical method for identifying
and quantifying components in samples of all physical states. In general, optical methods inherit the
benefit of nondestructive measurements. For Raman spectroscopy, a monochromatic light source
(laser) is used to excite the molecules in the analyte, and the scattered photon radiation is detected
subsequently [78]. The inelastically scattered photons from the molecules inhibit a lower frequency
than the excitation. These frequencies shifted from the excitation (also called Raman-shifted) are
characteristic for each molecule. A measurement device collects the scattering intensities for these
shifted wavelengths.

For the Raman spectra recorded within this dissertation, an RXN2 Raman Analyzer (Kaiser Op-
tical Systems) is used. The Raman spectra are recorded in HoloGRAMS (Kaiser Optical Systems,
Ann Arbor, Michigan, USA) with cosmic ray correction. The RXN2 operates at 785 nm with 400 mW
excitation power. Depending on the reaction system, a short (0 mm) or long focus (3 mm) immersion
probe (both Kaiser Optical Systems) is employed. The respective focus length is indicated in each
chapter. The total detectable wavenumber range of the RXN2 Raman Analyzer used is between
100 cm ™! to 3450 cm ™!, The acquisition time interval applied is adjusted to the specific system and
described in each chapter separately.

For the evaluation of Raman spectra, indirect hard modeling (IHM) using the software PEAXACT
(S-Pact GmbH, Germany, 2018) is applied. As the software evolves, the version varies between 4.5
to 5.8 in the following chapters. However, the main functionality of the software remains the same
throughout. IHM is a physically justified, multivariate regression method that allows analysis of
mixtures with overlapping component peaks and accounting for nonlinear spectral effects [79, 80],
while relying on relatively small calibration data sets [79, 81]. For IHM, pure component models
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(PCMs) are used to construct a mixture hard model (HM). The general procedure is visualized in
Figure 2.2 [82]. To derive the PCM for each component in the reaction system, a spectrum of the pure
component is collected. Subsequently, pseudo-Voigt peaks are fitted to the characteristic spectrum of
the component within a certain spectral range, the so-called fingerprint range. Each peak is comprised
of four parameters: the maximum intensity (a), the position (J), the half-width at half maximum
(HWHM, ~), and the fraction of the Gaussian part (). For species that occur in mixtures, such
as the dissolved monomers for the microgel synthesis, complemental hard modeling (CHM) [80] is
applied. For CHM, the PCM of the known component and additional pseudo-Voigt peaks are fitted
to the mixture spectra.
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Figure 2.2: Indirect hard modeling procedure (Graphic taken from [82] and adapted).

Next, the PCM is subtracted so that only the peaks related to the other component remain. All
PCM together, in Figure 2.2 they correspond to A] and A5, are combined by linear weighting (wy,
wy) and a baseline (B) is added to build the mixture HM A. To calibrate the mixture HM, Raman
spectra of samples with known concentrations of all components are used. After calibration, the
mixture HM can predict concentrations of known composition. For that, the mixture HM is adjusted
to the spectrum of unknown composition within PEAXACT. The individual HM for evaluating the
different microgel systems are described in the respective chapters. The settings for acquisition time
interval, finger print region, excluded ranges, applied spectral pre-treatment, base line parameter,
and additional peak constraints are also presented in each chapter separately.

To evaluate the model performance, qualitative and quantitative assessments occur. For qualitative
considerations, the overall fit of mixture HM to the spectrum under evaluation is examined. For
quantitative analysis, the following figures of merit for validation are applied: root mean squared error
(RMSE) and RMSE of cross-validation (RMSECV), standard deviation of multiple measurements (s),
and coefficient of determination (R?). Each figure of merit is a measure to assess the model prediction
performance.

The RMSE is calculated from the difference of the measured y;';*® and model-predicted ygrfd mole
fraction of each species (k) based on a single measurement or 7multiple calibration measurements

(Ncal):

Neal <ymeas pred) 2

RMSE;, :J 2int b ki

The RMSE value can be interpreted as a measure of how spread the predicted values are on average
from the measured sample concentrations. Another measure for the quality of the calibration model
is the RMSECYV, which is also calculated for each chemical species k in the analyte individually:

(2.1)

ZNCV( meas pred,CV)z
i=1 yk,z’ yk,i

NCV

RMSECV,, = J (2.2)
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Here, the calibration is conducted with a subset of the whole calibration sample set, and the remaining
samples are used for validation. This procedure is repeated until all subsets have been left out once.
The additional index CV denotes that the values are predicted by an IHM calibrated on the subset of
calibration samples NV of the experimental data set N. To access how spread the Raman spectra
(NsPectra) of the same sample are, the sample standard deviation (s) for each species k is calculated

as:
ZNSpectra <y2rzd7 2rcd,avg) 2
sk - = Nspectra -1 : (23)
Here, yzred’avg accounts for the mean of the y},z’ried values.

Finally, the Ri value represents the fraction of variance in the calibration for each species k
explained by the regression model:

Neal < meas __ pred)2

2 i—1 \Yk,i ki
Ri=1— Nlcal N —— (2.4)
2ict WES™ =Y )
Here, the total number of calibration samples is given by N and y??as’avg accounts for the mean of

the calibration samples. The R? value is not exceeding 1, indicating a high prediction performance.

2.4 Microgel Synthesis Modeling

Modeling the conversion of reactants during polymerization has been a key topic of research for
numerous decades. Owing to the similar structures and assumptions employed by kinetic models
for general polymer synthesis and microgel synthesis, modeling approaches for microgel synthesis
frequently derive from general models for radical polymerization. Odian presents a comprehensive
summary of various polymerization types and modeling approaches, highlighting prevalent assump-
tions in the context of radical polymerization. In past studies, modeling approaches have been applied
and presented for the synthesis of microgels in different microgel systems [14, 6668, 76, 83-88].

Hoare et al. [83] derived a solely propagation-based steady-state terminal co-polymerization model
accounting for the simultaneous reaction of four separate monomers. They applied the model for
synthesizing microgels containing NIPAM, cross-linker, and up to two functional monomers. To
estimate the required reactivity ratios, they used the Price-Alfrey scheme [89]. Subsequently, Hoare
et al. [84] observed a sufficient accuracy of their model prediction of the chain and radial functional
group distribution with experimentally observed data.

Janssen et al. [85] presented an elaborate dynamic co-polymerization model for the VCL-based
microgel synthesis accounting for initiation, distinguishing between liquid and gel phase reaction, and
including disproportionation and recombination as termination mechanisms. They applied quantum
mechanical calculations and parameter estimation to determine unknown reaction parameter values.
Subsequently, Janssen et al. [86] extended the model to account for the terpolymerization of NIPAM-
and VCL-based microgels. In addition, Janssen et al. [76] later formulated the model as a pseudo-bulk
model to describe the particle growth and particle size distribution during the microgel synthesis. The
model showed good agreement in comparison with experimental data from calorimetry and dynamic
light scattering.

Virtanen et al. [87] used in situ small-angle neutron scattering to monitor the formation of NIPAM-
based microgels and developed a single exponential equation for the average particle volume from the
experimentally observed values. The derived equation entails that the particle growth rate depends
only on monomer concentration. The developed correlation was successfully applied by Nishizawa et
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al. [88], who used temperature-controlled high-speed atomic force microscopy to monitor the NIPAM-
based microgel synthesis.

Jung et al. [66] simplified the dynamic model by Janssen et al. [85] by assuming a pseudo-
homogeneous phase, accounting only for diffusion-limited termination and excluding chain-transfer
reactions. Next, they conducted a parameter identifiability analysis to increase the reliability of the
estimated parameter values. Also, Jung et al. [67] modeled the impact of reactor type, reactor tem-
perature, monomer-to-initiator ratio, cross-linker concentration, and surfactant concentration on the
hydrodynamic radius of collapsed VCL- and NIPAM-based microgels. In experimental validation,
they showed a suitable quantitative alignment of model predictions and various experimental data.
Furthermore, Schneider et al. [68] extended their simplified dynamic model to account for the co-
polymerization of NIPAM-based microgel with functional vinyl ferrocene (VFc) co-monomers. They
used the enhanced model to simulate feeding strategies to modify the localization of the functional
co-monomer within the particle and were able to experimentally validate the proposed strategies.

In the following, the underlying general reaction mechanisms are described based on the assump-
tions and derivations developed by Jung et al. [66].

o Initiator Decomposition: I k—d> 2fRY
Within the initiator decomposition, the initiator (I) decays to initiator radicals RY. For this
reaction, two main factors are relevant for the kinetics of the subsequent polymerization re-
actions: the decomposition rate coefficient (ky) and the initiator efficiency (f). The rate
coefficient depends on the type of initiator that is used in the synthesis. The decomposition
rate also depends on the reaction temperature. The initiator efficiency for polymerization
reactions ranges in the literature between 2 % and 99 % [90].

kp11
+ Chain initiation: R{+M; — R}
Once initiator radicals R? are formed, they begin attacking monomers M of all types j (here, j
also includes cross-linker monomers). The initiation kinetic coefficient is assumed to be equal
to the propagation reaction (described below) coefficient kp11 of an active polymer chain with
the main monomer (index 1) as the end type with another main monomer.

Ko
+ Propagation of monomer: R} +M; BN R?H
The propagation reactions of monomer M describe the chain growth of an active polymer chain
R of length n. The kinetics of these reactions are assumed to only depend on the radical type
i at the end of the active polymer chain and the attaching monomer j. This method is called
terminal approach [91].

kpicL
« Propagation of cross-linker: R} +CL B RCLnJrl +PDB

The propagation reactions of cross-linker CL with an active polymer chain R are similar to the
propagation of monomer. However, since the cross-linker has two double bonds that allow a
chain connection, a pendent double bond PDB is formed whenever a cross-linker is incorporated
into the active polymer chain. This PDB enables another possibility for a monomer radical to
attach.

kpicL
« Cross-linking: R + PDB —— R + X
Cross-linking occurs when a PDB attaches another active radical. A cross-link X is created
that establishes the three-dimensional network formation of the microgel. The cross-linking
kinetic coefficient is assumed to be the same as for the propagation of cross-linker.

10
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e Termination: R} + R;” ft—> P?4+pP™
In the termination reaction, two active polymer chains R}* and R;” convert to inactive polymer
chains P™ and P™. The termination reaction is assumed to be diffusion-limited, as the longer
polymer chains lack mobility [90, 92]. Thus, the kinetic coefficient of the termination reactions
k; does not depend on the active polymer chain type ¢ or j. This approach reduces the model
complexity and the number of parameters and facilitates parameter identification.
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3 In-line Monitoring of Microgel
Synthesis: Flow versus Batch Reactor

Data Repository: The Raman spectra acquired and the indirect hard modeling evaluation models
developed in this chapter are published and available for free download via RWTH Publications [93].

3.1 Motivation for In-line Monitoring of
Continuous Flow Microgel Synthesis

The use of flow reactors continuously gains interest for polymer synthesis. Reis et al. [94] provide a
detailed review of recent advances in flow polymerization. Flow reactors facilitate quasi-isothermal
reaction control due to a high surface area to volume ratio, which is beneficial for quality control
despite the exothermic polymerization. Flow reactors can be used for enhanced generation of re-
action knowledge at the lab-scale when sufficient in-line monitoring is integrated. The term in-line
implies that the immersion probe is inserted into the process stream, and the analysis is performed
in situ [95]. In-line measurements via Raman spectroscopy are non-destructive, need no preparation,
and are only slightly affected by scattering of water below a Raman shift of 2750 cm~!. Thus, Raman
spectroscopy represents an established process analytical technology (PAT) tool for various applica-
tions in polymerization, most prominently in emulsion polymerization [96-100] and precipitation
polymerization [57, 101].

From the PAT perspective, flow processing in a tube reactor enables the transfer from the time to
the space domain when the reactor is operated at steady-state conditions. In an ideal flow reactor
operated at steady-state, the composition of the analyte is constant over time at any location. Then,
the acquisition time of the PAT is independent of the elapsed reaction time, thus the acquisition
time is no longer a limiting factor for high-resolution measurements. In flow reactors, measurements
over long periods improve the signal-to-noise ratio (SNR) and enable satisfying Raman spectroscopy
measurements, which commonly experience low sensitivity [102]. Thus, flow reactors enable reaction
monitoring at a higher SNR, thus higher resolution than batch reactors, at least in principle. An
improved resolution is valuable, especially for polymer synthesis, where complex chain-growth kinetics
and rapid reaction rates occur. Yet, to benefit from the advantages of a flow reactor system, a high
measurement accuracy of the Raman signal is essential.

Recently, Wolff et al. [54] successfully demonstrated the use of a flow reactor system. During
precipitation polymerization, the reactants are dissolved in water and homogeneously mixed when the
initiator is added to start the synthesis. The polymer chains build a colloidal network, transform into
a collapsed state, and precipitate from the solution [50]. The precipitation of microgels is associated
with rising turbidity towards the end of the fast reaction progress, making monitoring the synthesis
demanding towards PAT.

In this chapter, the challenges associated with the integration of Raman spectroscopy into the flow
reactor for the microgel synthesis are addressed. In particular, a measurement cell for monitoring
in flow reactors is developed, potential measurement errors are systematically excluded, and Raman
measurements in flow and batch reactors are compared. Below, each of these aspects is discussed in
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detail concerning the literature and the approach applied in this work.

Generally, there are examples for the integration of Raman spectroscopy in continuous flow, as
outlined in the review by Sans et al. [103]. It is stated that integration approaches at the lab-scale
usually encounter difficulties in incorporating the spectrometer into the flow reactor without affecting
the reaction system. When using a commercial spectrometer for in-line monitoring in flow reactors,
the development of customized flow cells and analytical probes to integrate into the reactor entails
a challenging task [103]. Flow cell development aims at minimizing the distance between reactor
position and measurement cell position, which otherwise causes a significant dead volume. Despite
the challenging conditions for in-line monitoring via Raman spectroscopy in flow reactors, some
reactions have already been monitored inside continuous micro-reactors. Prominent applications of
Raman spectroscopy in micro-reactors include the works of Mozharov et al. [102, 104], Leung et
al. [105], Schwolow et al. [106], Rinke et al. [107], and Cao et al. [108].

Monitoring of polymerization is particularly challenging due to the rapid kinetics and turbidity.
So far, exclusively Barnes et al. [109] monitored a polymeric system in flow via Raman spectroscopy.
Barnes et al. measured the content of the monomer and the conversion of droplet phase fluids inside
a microfluidic device during photo-polymerization. In contrast to micro-reactors, the in-line analysis
via Raman spectroscopy in the milliscale, also called mesoscale, flow reactors is less studied [110].
Hamlin et al. [110, 111], Chaplain et al. [112], and Feidl et al. [113] propose approaches for flow
syntheses in mesoscale reactors.

In terms of the measurement cell design, Hamlin et al. [110, 111] present a flow cell (width:
6.5mm, height: 20mm, length: 5mm) connected to the reactor via tubes with an inner diameter
of 1mm. Therefore, the flow cell has a different geometry and size than the reactor tubes where
the reaction under investigation occurs. Chaplain et al. [112] present a custom-built polytetrafluo-
roethylene (PTFE) in-line flow cell with a quartz window and a diameter of 10 mm. Here, the focus
of the Raman laser points axially into the channel, and the fluid orthogonally exits the cell; thus,
the direction of flow is suddenly changed. Feidl et al. [113] developed an in-house measurement cell
for assistance in chromatography. The cell consists of a non-contact objective, a flow cuvette, and a
concave mirror. The measurements occur in a cubic cuvette, which does not have the same geometric
properties as the in-coming tube. At laboratory scale, Raman probe integration via simple union
tees shows a sufficient performance for in-line monitoring as influence of the cell material is avoided.
In this chapter, a 3d-printed measurement cell is proposed made of polyamide with a customized
geometry for Raman measurements, thereby overcoming substantial alterations between reactor and
measurement cell geometry. The cell allows measurements at two positions along the reactor tube.
In this work, the measurement cell and reactor are similarly structured, as the tube geometry and
magnitude of the diameter are equivalent. The developed cell presents an alternative to union tees
and can be used in applications where steel is not inert.

For a systematic elimination of measurement errors, the identification of sources for mea-
surement errors is essential. Here, the interface of the sample, the measurement settings, and the
environmental conditions influence the method’s accuracy [114] and need to be carefully studied when
applying Raman spectroscopy. Also, inherent reactor dynamics are caused by rheology effects in the
reactor or by short-term fluctuations of the included pumps, which are often impacted by pulsa-
tion [104]. In heterogeneous fluid systems, the pulsation of multiple pumps can cause an unstable
flow. The unstable flow can impact the distribution of the components within the reactor and, hence,
impede the synthesis’s reproducibility. As reactor dynamics can affect the accuracy of the measure-
ments, these dynamics need to be considered. For example, Mozharov et al. [102] assessed the flow
conditions for their micro-reactor setup qualitatively and reported that the spectral noise is smaller
than pumping-related noise. However, so far, for flow reactors, the influence of sample presentation
on measurement accuracy has not been systematically studied in a quantitative assessment. Thus, a

14



3.2 Experimental

systematic approach for studying and analyzing the factors impacting the Raman method accuracy
in a tubular flow reactor is presented. Specifically, individual factors are investigated such as the
evaluation model calibration, the flow of the solvent in the reactor, the position of the measurement
along the length of the flow reactor, the influence of particular solutions, and the cumulative accu-
racy in detail. Overall, different calibration strategies for the evaluation model are compared, and a
quality criterion for the Raman measurements in the flow reactor is derived to allow outlier detection.

High accuracy monitoring of the microgel synthesis in flow enables comparing Raman mea-
surements in the flow and batch reactors. Meyer-Kirschner et al. [57, 101] showed that Raman
spectroscopy adequately monitors the monomer and the polymer content during the microgel synthe-
sis in batch reactors. Fandrich et al. [55] measured the continuous synthesis of N-isopropylacrylamide
(NIPAM)-based microgels via in-situ Fourier-transform infrared (FTIR) spectroscopy. Since the wa-
ter signal strongly influences infrared spectroscopy, Raman spectroscopy appears to be the more
suitable PAT for monitoring the microgel synthesis. However, in-line Raman spectroscopy is yet
to be transferred to the tubular flow reactor. Herein, the poly N-isopropylacrylamide (PNIPAM)
microgel synthesis is measured via in-line Raman spectroscopy, integrating the probe via the cus-
tomized measurement cell, and apply the developed quality criterion. Finally, the trajectories of the
reaction conversion over the mean residence time from batch and flow experiments of the PNIPAM
synthesis are compared. For validation, the in-line FTIR measurements of the continuous microgel
synthesis [55] are compared with the Raman measurements of this chapter.

3.2 Experimental

3.2.1 Flow Reactor

The microgel synthesis in the flow reactor is carried out similar to previous works by Wolff et al. [54],
using two stock solutions, the monomer and the initiator stock solution. The stock solution of the
monomer contains 12.52 g of the monomer NIPAM, 0.42 g of the cross-linker N, N’-methylenebis(acryl-
amide) (BIS), and 0.15 g of the surfactant hexadecyltrimethylammonium bromide (CTAB) dissolved
in 1000 mL of water. The stock solution of the initiator contains 0.4 g of the initiator 2,2’-azobis(2-
methylpropionamidine)dihydrochloride (AMPA) dissolved in 50 mL of water. The stock solution of
the monomer is stirred and heated to 70°C while constantly being degassed with nitrogen for 30
minutes before the reaction start. For the initiator solution, pure water is degassed with nitrogen for
30 minutes at 70°C. The initiator is added after cooling the degassed water to ambient temperature
in a vacuui.

A schematic representation of the experimental setup is shown in Figure 3.1. To start the reaction,
two pumps (LabDos P100, HiTec Zang, Herzogenrath, Germany and ISMATEC MCP Standard with
Easy-Load II pump head, Wertheim, Germany) transport the stock solutions of the initiator and
the monomer. Both solutions are mixed in a Y-connector and a subsequent static PTFE mixer (24
mixing elements, total length: 150 mm, outer diameter: 6.35 mm; ESSKA, Hamburg, Germany) with
a volume ratio of 19 to 1 of the heated monomer solution to initiator solution at ambient temperature,
respectively. An increased concentration in the stock solution of the initiator compared to previous
works [54] is introduced to minimize the temperature loss in the Y-connector due to the ambient
temperature of the initiator solution. Nevertheless, the overall concentrations in the flow reactor
still match those previously reported in recipes for batch reactions [101]. Subsequently, the reaction
solution flows into two sequential tubular glass reactors with an inner diameter of 4 mm (customized
production by Seele Glasapparatebau & Laborservice, Swisttal-Strafifeld, Germany). The reactor coil
is embedded in a 70°C tempered fluid controlled by an external heating bath (MGW Lauda C6 with
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Figure 3.1: Schematic representation of the experimental setup for the PNIPAM synthesis in
flow including equipment and material flows.
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a control unit CS, Lauda, New Jersey, USA). The use of glass reactors enables the visualization of the
reaction progress from a transparent to a turbid appearance from the growing microgels. Unlike high-
temperature plastic materials such as polycarbonates, the glass construction hinders oxygen diffusion
through the reactor walls and comprises higher heat transfer coefficients. Thus, oxygen inhibition
during the microgel synthesis and temperature loss are avoided inside the glass reactors. At the end
of the second tubular glass reactor, the polymerization is stopped by cooling the reaction fluid in an
ice bath.

3.2.2 Raman Measurements
3.2.2.1 Evaluation Models

The Raman spectra for calibration are collected using a 60s acquisition time interval. A Raman shift
from 800 cm ™! to 1850 cm ™! is considered, as this range covers the so-called fingerprint region of the
monomer and the polymer [101]. The atmospheric oxygen signal between 1552 cm™! to 1560 cm™1 is
excluded for the model generation. The pure component model of water is directly determined, while
the pure component models of NIPAM and PNIPAM are derived using complemental hard modeling
(CHM) [80]. Pure component models are then used to build a mixture model. A linear baseline is
employed in every evaluation model.

The mixture model with the integrated linear baseline is calibrated using ratiometric regression
and leave-10%-out cross-validation. Samples of aqueous mixtures containing up to 1.5 wt% NIPAM
and up to 1.5wt% PNIPAM span the calibration range (see Tables A.1 and A.2 in Appendix).
Measurements of the calibration samples are recorded by applying three different strategies. Firstly,
measurements are acquired via a standard procedure with single measurements inside glass flasks.
This procedure is usually conducted for batch monitoring and is abbreviated as in glass flask.Among
the considered strategies, the in glass flask strategy is the least time-consuming, as the effort to
prepare calibration samples in glass flasks is low. The standard procedure is extended to multiple
measurements of the same calibration sample inside a glass flask as the second strategy. This second
procedure is referred to as multiple in glass flask. The multiple in glass flask takes notably longer, as
the time for multiple measurements linearly scales with the number of measures. Lastly, calibration
measurements are carried out inside the novel measurement cell (abbreviated in cell) to avoid any
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influence of the transfer between calibration and measurement setup. The in cell model ultimately
requires the highest effort, as the measurement cell has to be prepared to conduct measurements.
For the in cell procedure, the weighting of samples takes place in glass flasks, and the content is
afterward transferred into the cell. The procedure comes along with significant effort for cleaning
the measurement cell for proper calibration measurements. However, the evaluation model calibrated
by applying the in cell strategy is expected to outperform the other models in terms of accuracy
when evaluating measurements inside the measurement cell. Here, the calibration environment and
the measurement environment are identical; thus, no structural offset occurs concerning the transfer
from calibration to measurement setup.

By applying the indirect hard modeling (IHM) evaluation models to measurements of pure solvent
inside the reactor setup, the suitability of the calibration methods in terms of accuracy and effort
is analyzed. The prediction accuracy of the developed calibration models is evaluated based on the
root mean squared errors of cross-validation (RMSECV) and the coefficients of determination (R?).

3.2.2.2 Synthesis Conditions

In-line Raman measurements during the microgel synthesis are conducted at two positions at the
reactor setup (see Figure 3.1) using different settings of the volume flow rates of the stock solutions.
The spectrum acquisition interval starts when continuous Raman measurements of 10s acquisition
time per spectrum show no longer a gradient in intensity.

For synthesis monitoring, larger acquisition time intervals generally yield higher SNRs and thus
measurements of higher quality, but the gain of the SNR is limited. Meyer-Kirschner et al. [58] found
the SNR to be constant above an acquisition time interval of 40s for off-line measurements of a
similar microgel system. Therefore, a time interval of 40s is applied in all experiments for Raman
signal acquisition as a trade-off between maximizing SNR, and minimizing effort in time.

3.2.2.3 Measurement Accuracy

The accuracy of the Raman measurements is analyzed via a variety of measurements inside the novel
measurement cell. Thereby the influence of several aspects is analyzed, which are listed below and
visualized in Figure 3.2.

The calibration method of the IHM evaluation model

The flow of the solvent water

The flow of the monomer NIPAM and the flow of PNIPAM microgels with turbid conditions
The complete setup

SANE R

The position of the measurement cell

The investigated analytes comprise pure water and mixtures of water with NIPAM or PNIPAM.
First, the analyte is in stagnation for analyzing the influence of the reactor environment and for
comparing differently calibrated evaluation models. The subsequent measurements for the analysis
of the accuracy are conducted with flowing analytes. If not stated otherwise, the measurements
are conducted at the reaction temperature of 70°C. The effects of temperature on the measurement
accuracy are not studied in depth in this work, as previous studies by Meyer-Kirschner et al. [57] show
that the Raman peaks of microgel solutions at different temperatures not exhibit nonlinear effects.
Furthermore, Meyer-Kirschner et al. quantified the effects of temperature changes on the microgel
spectra as a relative error of 1.8%. Also, temperature has the most significant impact on Raman
OH-stretching in the spectrum of water. This stretching occurs at frequencies outside the considered
spectral range of this work. Hence, the role of temperature effects are negligible in this work.
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Figure 3.2: Graphical representation of the aspects of interest of the measurement accuracy
analysis.

The measurements are evaluated using a calibrated evaluation model (see Section 3.2.2.1). Then
error-values are calculated like the root mean squared error (RMSE) and standard deviations of the
sample (s) for the NIPAM prediction as measures for the measurement accuracy. The NIPAM content
is most reliable to predict due to a strong double-bond signal.

The RMSE is calculated from the predictions of multiple measurements (see Equation (2.1)).The
RMSE value can be interpreted as a measure of how spread the predicted values are from the true
sample concentrations (determined via weighting). During the synthesis, the aims is to determine the
concentration from samples of unknown composition, thus the RMSE can not be calculated under
these conditions. In this case, the sample standard deviation (s) is calculated (see Equation (2.3)).

3.3 Results and Discussion

The results of this chapter comprise the development of an adequate measurement cell, the compari-
son of calibration strategies for the development of an evaluation model, and the systematic analysis
of the accuracy of the Raman measurements in the flow reactor. The comparison of different cal-
ibration strategies allows the analysis of the suitability of the calibrated evaluation models. From
the systematic analysis of the accuracy in the flow reactor, a quality criterion is derived for outlier
detection during synthesis monitoring. This quality criterion is applied to in-line measurements of
the PNIPAM microgel synthesis. Additionally, the results include the comparison of Raman mea-
surements in the carried-out synthesis in flow with a batch synthesis [101] and a FTIR approach in
a flow reactor [55] from the literature. The comparison to batch measurements shows the impact of
the synthesis transfer to batch. The comparison to FTIR measurements enables the validation of the
Raman synthesis measurements in flow reactors.
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3.3 Results and Discussion

3.3.1 Measurement Cell

The customized measurement cell enables in-line Raman measurements during the synthesis in flow
with reduced velocity variations and flexible positioning (see Figure 3.1). The cell consists of three
main components shown in Figure 3.3: a flow channel with an open slot, a cover with a bore for
the Raman immersion probe head, and a sealing plate. Additionally, two metal tube connectors are
attached to the flow channel, one on each side.

Raman immersion
probe head

Cover \L /

Sealing
plate

Flow channel

Flow
channel

Cross-section of
assembly

Sealing plate

Figure 3.3: Measurement cell consisting of flow channel and cover with sealing plate and Raman
immersion probe head.

The connectors allow a quick assembly of the measurement cell with the reactor system and enable
flexibility in positioning the cell along the tubular flow reactor (see Figure 3.1). The 3d-printed flow
channel and the cover are made from polyamide, whereas the sealing plate is made of a 3 mm ethylene
propylene diene monomer (EPDM) rubber plate. The reaction fluid enters the cell via the connector
on one side. Subsequently, the fluid runs through a 6 mm diameter circular channel until it reaches
the open slot where the channel becomes semi-circular (see cross-section depicted in Figure 3.3) and
the Raman immersion probe head is positioned perpendicular to the direction of flow.

During all measurements, the backside of the channel is lined with aluminum foil to minimize
the influence on the Raman spectra caused by the cell’s material. Furthermore, all ambient light is
excluded during data acquisition by placing an opaque polyvinyl chloride (PVC) cover around the
cell. For synthesis execution, the cell is tilted upward in the direction of flow to prevent gas bubbles
from getting stuck inside the cell.

3.3.2 Evaluation Models

Three calibration models are developed for the Raman spectroscopy in the flow reactor: in cell, in glass
flask, and multiple in glass flask. The calibration results show that all three models perform with high
accuracy. The calibration models consist of the priorly developed pure component models for NIPAM
and PNIPAM. The pure component models agree with previously published models [101, 115]. The
Raman measurements of calibration samples in the measurement cell containing water and NIPAM
are shown in Figure 3.4. Figure 3.5 illustrates the Raman measurements of calibration samples in the
measurement cell containing water and PNIPAM. All spectra are treated with a linear fit subtraction
for visualization. The characteristic peaks are described in detail in Appendix A.1.
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Figure 3.4: Raman spectra of the in cell calibration measurements containing NIPAM and water.
The spectra are treated with a linear fit subtraction.

The calibration results are illustrated as parity plots in Figure 3.6 for the three alternative calibra-
tion models. The parity plots indicate that all evaluation models predict the calibration measurement
composition precisely. Yet, for all evaluation models, the prediction for NIPAM consistently is more
accurate than for PNIPAM. The corresponding RMSECV and R? values for the prediction of NIPAM
and PNIPAM for the three calibration models are shown in Table 3.1. For the in cell calibration, the
RMSECYV value for NIPAM is 0.037 wt% and for PNIPAM 0.157 wt%, while the R? values of NIPAM
and PNIPAM are 0.998 and 0.954, respectively. For the calibration in the glass flasks, the RMSECV
values result in 0.040 wt% for NIPAM and 0.434 wt% for PNIPAM. The according R? values are 0.996
and 0.613. Finally, for the calibration multiple in glass flasks, the RMSECV values for NIPAM and
PNIPAM yield 0.026 wt% and 0.269 wt%, whereas the R? values yield 0.998 and 0.758. All of these
values are equivalent to previously published IHM models for similar systems [57, 101]. Thus, the
results confirm that predictions of the monomer content tend to be the most reliable.

Table 3.1: RMSECV and R? values for the NIPAM and PNIPAM prediction of the three alter-
native calibration strategies.

Component Evaluation model RMSECV [wt%] R?
in cell 0.037 0.998

NIPAM in glass flask 0.040 0.996
multiple in glass flask 0.026 0.998
in cell 0.157 0.954

PNIPAM in glass flask 0.434 0.613
multiple in glass flask 0.269 0.758
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Figure 3.5: Raman spectra of the in cell calibration measurements containing
water. The spectra are treated with a linear fit subtraction.
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Comparing the three calibration strategies yields that the in cell and multiple in glass flask methods
are most appropriate. For NIPAM predictions, the comparison of the RMSECYV and the R? values in
Table 3.1 validates a high prediction accuracy of the NIPAM content for all presented models. Still,
these coefficients indicate an improved prediction accuracy for the in cell and the multiple in glass
flask calibration strategy. Thus, both calibration strategies constitute sufficiently accurate methods
for the generation of the evaluation model.

3.3.3 Systematic Elimination of Measurement Errors

To systematically eliminate measurement errors, the accuracy analysis is carried out for the influenc-
ing parameter. The accuracy analysis yields that the influence of a multi-molecular analyte determines
the quality criterion. When transferring PAT from batch to continuous mode, the influence of the
monomer and microgel flow, the precision of the complete reactor setup, and the measurement cell
position (see Figure 3.1) need to be considered in detail to maintain high accuracy quantification.
The RMSE values for the NIPAM prediction are calculated to quantitatively assess the influence
of the analyzed factors. The RMSE indicates how much NIPAM content the model predicts even
when the analyte contains no NIPAM. For measurements, which contain an unknown amount of
NIPAM, the standard deviation of the sample is calculated from the NIPAM predictions to estimate
the pertaining measurement accuracy.
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Figure 3.7: RMSE of the NIPAM prediction for different flow rates for measurements of (A)
pure water at 70°C, (B) 1.2 wt% NIPAM solution at 20°C, and (C) 1.2 wt% PNIPAM solution
at 20°C; (D) predicted NIPAM content for different flow rates during the microgel synthesis at
70°C. Grey boxes and blue circles denote measurements at Position 1 and 2, respectively. Red x
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3.3 Results and Discussion

3.3.3.1 Calibration Method

Although the calibration of the in cell evaluation model is the most laborious among the studied
calibration methods, it suits the application most accurately. The comparison of RMSE values
from the evaluation using different calibration models yields that the in cell model performs more
accurately than the models calibrated in glass flasks. The calculated RMSE value for ten repeated
measurements is 0.011 wt% for 70°C using the in cell evaluation model. This value is significantly
smaller than the correlated RMSECV error value 0.037 wt% of the in cell model, which indicates
that the measurement variations of the solvent in the cell are negligible compared to the inherent
evaluation model deviation. Thus, the in cell model represents the reactor environment with sufficient
precision.

As deviations resulting from the transfer from calibration to reactor setup are expected, the in cell
model expectedly outperforms all other considered evaluation models. Nonetheless, all models are
discussed below. The RMSE value of the in glass flask model evaluation is 0.061 wt% at 70°C and
thus larger than the RMSECYV value 0.040 wt% of the model itself. A similar phenomenon applies
for the multiple in glass flask model, where the RMSECV value 0.026 wt% is smaller than the RMSE
value of 0.061 wt% at 70°C. Hence, deviations in measurement evaluation are notable at 70°C but
still range in a similar magnitude to the inherent model error for both models calibrated in glass
flasks. Thus, the prediction resulting from a model not calibrated at ideal environment conditions is
still relatively accurate and could be acceptable depending on the application. Therefore, the needed
accuracy for the individual application must first be defined to choose the most suitable calibration
strategy for effort and preciseness. The in cell evaluation model is applied to generate reaction data
knowledge, as most precise measurements are targeted.

3.3.3.2 Solvent in Flow

The measurement accuracy from flowing solvent water shows no identifiable dependency on the
magnitude of the volumetric flow rate. Furthermore, the accuracy at Position 2 is slightly better
than at Position 1. The RMSE of the NIPAM prediction under changing volume flow rates of the
solvent water is shown in Figure 3.7(a) for both measurement cell positions at 70°C. On average,
the RMSE values calculated from ten measurements are lower at Position 1 with 0.0070 wt% than
at Position 2 with 0.0088 wt%. At Position 1, the measurements exhibit a maximum RMSE value
of 0.0097 wt% and a minimum of 0.0042wt%, while for Position 2 the maximum RMSE value is
0.0123 wt% and the minimum is 0.0059 wt%. The RMSE values of Positions 1 and 2 are still in a
similar range. They show that overall the deviations resulting from the impact of the solvent flow
are negligible compared to the inherent error from the evaluation model itself. This finding suggests
that for transferring the PAT, a closer analysis of the impact of the solvent flow is not recommended
considering the effort and time of the transfer.

3.3.3.3 NIPAM in Flow

The presence of multi-molecular systems in the reactor impacts the quantification accuracy. Here,
the actual NIPAM content of the analyte is known from the weighing during the preparation of
the solution. Thus, the actual content is used for the calculation of the RMSE. The impact of
flowing NIPAM on the measurement accuracy can be analyzed only at ambient temperature because
an increase to reaction temperature could initiate the polymerization and falsify the real NIPAM
content. Furthermore, omitting AMPA in the analyte solution ensures that no PNIPAM is formed
during the measurements.

Figure 3.7(b) shows the RMSE values of the NIPAM prediction at Position 1 and 2 for a 1.2wt%
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NIPAM solution in flow at ambient temperature. At Position 1, the average RMSE is 0.0865 wt%,
with a maximum of 0.1161 wt% and minimum of 0.0591 wt%. For Position 2, the values are given by
an average RMSE of 0.0571 wt% and the maximum and maximum of 0.0894 wt% and 0.0091 wt%,
respectively. The comparison shows that the prediction at Position 2 is slightly better than Position
1, but the accuracy range is similar. The RMSE values are significantly higher for the measurements
including NIPAM than for pure water at ambient temperature. Measurements of flowing water at
ambient temperature have an average RMSE value of 0.0110 wt% at Position 1 and 0.0092 wt% at
Position 2. Therefore, the presence of NIPAM monomers impairs the accuracy significantly. The
magnitude of the deviations resulting from the NIPAM influence hence considerably dictates the best
possible accuracy.

3.3.3.4 Microgels in Flow

The turbidity from the presence of PNIPAM microgels in the solution reduces the measurement ac-
curacy further. The RMSE values of the NIPAM prediction over different flow rates of measurements
of a 1.2wt% PNIPAM microgel solution inside the reactor at ambient temperature are depicted in
Figure 3.7(c). The analyte solution contains PNIPAM microgels which have been dialyzed for multi-
ple days against water to remove unreacted substances and freeze-dried to remove the water content.
For the measurements at Position 1, the maximum RMSE value is 0.1343 wt% and the minimum is
0.1117 wt% with an average value of 0.1199 wt%. For the measurements at Position 2, the maximum
RMSE value is 0.1036 wt% and the minimum is 0.0925 wt% while the average value is at 0.0980 wt%.
Thus, the accuracy at Position 2 is slightly better than at Position 1.

The comparison of the PNIPAM microgel and NIPAM solution measurements in the flow reactor
yields that the accuracy is in the same order of magnitude. This similarity indicates that the increasing
turbidity caused by the PNIPAM microgels does not influence the preciseness as much as solely
the multi-molecular system. Yet, the average RMSE values for the NIPAM solution at Position 1
and Position 2 are lower than for the PNIPAM microgel solution by 0.0334 wt% and 0.0409 wt%,
respectively. However, conducting measurements of PNIPAM microgels comes along with increased
effort, as the PNIPAM microgels either have to be synthesized, filtered, and freeze-dried or have to
be bought, which is relatively expensive. Both ways to receive PNIPAM microgels are cumbersome.
Thus, it is suggested that generally the accuracy range achievable with NIPAM molecules flowing
through the reactor is applied as the limit on feasible accuracy for synthesis measurements. However,
considering the quality criterion in the context of this work, the RMSE values of the PNIPAM microgel
measurements are applied subsequently.

3.3.3.5 Precision of Complete Setup

Variations between multiple microgel synthesis measurements at the same reactor setting are larger
for Position 1 than for Position 2. Still, overall the variations range in an insignificant magnitude
compared to the formerly analyzed factors, like flowing NIPAM or PNIPAM microgel solution. Reac-
tor dynamics can only be analyzed when varying composition occurs. Also, the RMSE of the NIPAM
prediction can not be calculated as the population mean (meaning the true NIPAM content) is un-
known. Consequently, the reactions are measured ten times to calculate the standard deviation of
the sample. The prediction of the NIPAM content for the different volumetric flow rates is depicted
in Figure 3.7(d). The resulting values of the standard deviation are presented in Table 3.2. The vari-
ation of multiple synthesis measurements at Position 1 is overall higher than at Position 2. However,
the largest measured standard deviation is only 0.0334 wt%. Thus, the inaccuracies from the inherent
reactor dynamics are negligible compared to the influence of flowing NIPAM molecules or PNIPAM
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microgels in the reactor. The small standard deviation values indicate a sufficient reproducibility of
the synthesis in the flow reactor.

Table 3.2: Sample standard deviation for the NIPAM prediction of reaction measurements at
70°C at Position 1 and 2.

Volumetric flow rate Standard deviation

[mLmin ] [wt %]

4.8 0.0204

Position 1 11.97 0.0334
32.4 0.0108

2.5 0.0075

Position 2 12.0 0.0076
20.0 0.0270

3.3.3.6 Measurement Position

The review of the results from the previous sections, which are graphically summarized in Figure 3.7,
indicates that the measurements at Position 2 mainly have a lower RMSE or standard deviation
and, hence, a higher precision. However, the results do not explicitly show a clear trend towards one
position over the other. To further elucidate the relevance of the cell position on the measurement
accuracy, the relation between RMSE and mean residence time is plotted in Figure 3.8. The mean
residence time is linked to the volumetric flow rate by the correlation provided in Appendix Figure A.3.
In Figure 3.8, the RMSE is lower for most measurements acquired at a similar mean residence time
for Position 2 than for Position 1. The only exception occurs for the flow of the NIPAM solution at
around 436 s mean residence time. The results indicate that overall the measurements at Position 2
tend to be more precise. The accuracy of measurements at Position 1 or 2 range in a similar order of
magnitude, thus not allowing for a final recommendation on optimal position of the measurement cell.
Nevertheless, Position 2 of the measurement cell is slightly favored regarding measurement accuracy.
Hence, if feasible, measurements should preferably be conducted at Position 2 of the proposed reactor
setup at higher volumetric flow rates.
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Figure 3.8: RMSE of measurements of (A) the NIPAM solution and (B) the PNIPAM microgel
solution at Position 1 and 2 for various mean residence times. Grey boxes and blue circles denote
measurements at Position 1 and 2, respectively.

3.3.4 Synthesis Conditions

In-line monitoring of the microgel synthesis via Raman spectroscopy in the tubular reactor yields
satisfying results of high accuracy when using the manufactured measurement cell and the developed
quality criterion. If the sample standard deviation of the synthesis measurements exceeds the average
RMSE error value of the flowing PNIPAM microgels (see Figure 3.7(c)), the measurement data of
the synthesis is discarded, and the experiment is repeated. This procedure enables reliable outlier
detection and ensures measurements of sufficient precision. Consequently, if the measurements quality
is acceptable, the measurements can be used for generating reaction knowledge or estimating kinetic
parameters. Raman spectra are taken at different volume flow rates inside the developed measurement
cell during the continuous reaction. Qualitatively, the results show successfull monitoring of the
microgel synthesis reaction (see Figure 3.9). The Raman intensity of the prominent monomer double
peak at approximately 1550 cm™! to 1700 cm™! diminishes (yellow to dark blue curve) as the volume
flow rate decreases. Similarly, the characteristic polymer peak at 950cm™! increases with lower
volume flow rates.

The quantitative evaluation of the Raman measurements in Figure 3.8(b) shows that the predictions
for Position 1 and 2 coincide. The predicted weight fraction of NIPAM with the associated standard
deviation of the measurements over the mean residence time is shown in Figure 3.10. At least six
measurements are taken into account to calculate the average NIPAM prediction and the standard
deviation for each set of volumetric flow rates. The measurements at Position 1 tend to have a lower
standard deviation than the measures at Position 2. However, only one set of synthesis measurements
at a volumetric flow rate of 14.0mLmin ! had to be repeated from all conducted experiments, as
the standard deviation exceeded the applied quality criterion. Overall, the progress of the NIPAM
content over the mean residence time meets the expectations.
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Figure 3.9: Raman intensity over Raman shift pretreated with a linear fit baseline subtraction
for synthesis measurements at 70°C at volume flow rates between 2.5 mL min™! to 18 mL min!
in the flow reactor.

3.3.5 Comparison to Batch Reactor

The comparison of synthesis measurements via in-line Raman spectroscopy in batch and flow reactor
diverge significantly, especially in the first seconds of the residence time. Figure 3.11 compares the
NIPAM conversion measurements from the batch [101] and the flow reactor obtained in this work.
The recipe of the batch reference [101] is transferred identically to the flow reactor so that the initial
concentrations of the components and the reaction temperature of 70°C are the same. However, when
transferring the synthesis, the flow regime changes from turbulent conditions in the batch reactor to
laminar conditions in the flow reactor.

In both reactor types the change in conversion of the monomer NIPAM (see Figure 3.11) can be
monitored, but the progress of the predictions from the batch reactor and the flow reactors are not
congruent. In the early reaction stages, up to about 700 s mean residence time, the deviation between
batch and flow synthesis is most significant. The Raman measurements of the flow and the batch
reactor agree in a final conversion of about 85%. Fandrich et al. [55] ascribed the delayed beginning
of the reaction in the flow reactor to non-ideal mixing, which leads to a laminar flow regime and a
diffusion-limited reaction. However, from the conducted accuracy analysis and the comparison with
batch measurements in this chapter, solely measurement inaccuracies can be excluded as the cause
for the deviation between batch and flow. The deviations seem to be caused by an initial inhibition of
the reaction, visible for short mean residence times in Figure 3.11. Such an inhibition can stem from
multiple factors. For example, remaining or diffusing oxygen in the reaction solution, temperature loss
in the tubing from the reservoir to the reactor, and a necessarily present reduced initial temperature
in the reactor due to mixing the initiator phase. Further, the deviations could occur because of the
different hydrodynamics in the reactors. Hence, a model-based analysis is necessary to account for
the described phenomena and to precisely explain the differences between batch and flow reactions.
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Figure 3.10: Prediction of NIPAM weight fraction and standard deviation of synthesis measure-
ments at Position 1 and 2 for different mean residence times at 70°C. Grey boxes and blue circles
denote measurements at Position 1 and 2, respectively.
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Figure 3.11: Comparison of the NIPAM conversion over the mean residence time during the
synthesis of PNIPAM microgels at 70°C: blue x indicate Raman measurements from a batch
reactor, grey boxes and blue circles indicate Raman measurements in the proposed flow cell at
Position 1 and 2, respectively. The conversion data of the reference batch reactor measured via
Raman spectroscopy is taken from Meyer-Kirschner et al. [101].

3.3.6 Measurement Validation

To validate the results, the Raman measurements are compared with flow reactor FTIR measure-
ments by Fandrich et al. [55]. To this end, the reaction recipe is changed from the original recipe
presented in Section 3.2.1 to match the concentrations from the literature [55]. Initial concentrations
of 0.07 mol L=! NIPAM and 3.7 molLL~! BIS are applied and ammonium persulfate (APS) is used as
the reaction initiator. The recipe yields microgels with a 5% BIS fraction. The reported FTIR mea-
surements were carried out with deuterium oxide (D50O) as the solvent. For the synthesis monitored
via Raman spectroscopy in this thesis, water (HyO) is used. Although the solvents are different, the
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difference in dielectric constants of the solvents which is relevant for the reactivity can be regarded
negligible in this context [116, 117].

As a result, Raman measurements match FTIR measurements (see Figure 3.12). FTIR measure-
ments (green triangles) agree with Raman measurements (blue circles) sufficiently under the same
reaction conditions using APS as initiator with the most considerable difference at approximately
900s of 13% conversion. However, both methods exhibit a mean absolute error of 8% conversion at
the analyzed residence times. Therefore, the Raman measurements from this chapter are validated
effectively.
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Figure 3.12: Comparison of the NIPAM conversion over the mean residence time during the
synthesis of PNIPAM microgels at 70°C without stabilizer: Green triangles indicate FTIR spec-
troscopy in a flow reactor, blue circles indicate Raman measurements in the proposed flow cell
at Position 2 with initiator APS. The conversion data of the reference flow reactor measured via
FTIR is taken from Fandrich et al. [55].

3.4 Conclusions

Precise synthesis monitoring via Raman spectroscopy is essential for reaction understanding yet
challenging to implement into small-scale flow reactors. In-line Raman spectroscopy is integrated
into a tubular flow reactor to monitor precipitation polymerization of PNIPAM microgels. Using a
3d-printed measurement cell to conduct in-line measurements and to calibrate the evaluation model
enabled a high quality of the Raman measurements. Furthermore, an increased acquisition time
interval of the Raman spectroscopy to 40s ensured measurements with low SNRs. Several potential
measurement errors are eliminated systematically and the RMSE of multiple measurements of flowing
PNIPAM microgels is applied as a quality criterion for the synthesis measurements. That way, the
detection of outliers is enabled and reliable and accurate insights into the reaction progress are
proffered. These insights are valuable, especially at the early reaction stages, where fast changes
occur. The comparison of Raman measurements in the flow and batch reactor shows that the progress
of the measurement predictions is not congruent. With this work, the measurement deviations are
reduced and potential measurement errors are eliminated as the cause for divergent results of batch
and flow reactors. The comparison of Raman measurements and FTIR measurements allows the
validation of the proposed measurement setup. Furthermore, the advantage of Raman spectroscopy
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is underlined as it does not require expensive D,O as a solvent for high quality measurements.
Altogether, this contribution illustrates the advantages of suitable measurement cells for in-line
monitoring and exposes the potential of integrating powerful analytical technology into flow reactor
systems with a systematic quality assessment. The proposed method for outlier detection applies
to other spectroscopic techniques and can thus be extended for further applications. Further study
is recommended to address the model-based analysis of the synthesis in flow reactors. The flow
phenomena and the influence of possible oxygen diffusion or heating phenomena in the reactor setup
are of interest to fully understand the differences between the microgel synthesis in batch and flow
reactors. Particularly, the non-ideal velocity, concentration, and temperature profile caused by the
dimensions and modularity of the reactor need to be elucidated. Regarding synthesis monitoring,
a further investigation of the measure in the radial direction is relevant to determine whether the
detected intensity originates from the (weighted) average or a portion of the radial intensity profile.
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4 Nonlinear Manifold Learning
Determines Microgel Size from Raman
Spectroscopy

Data Repository: The acquired raw Raman spectra, the pre-treated Raman spectra, and the derived
IHM parameters thereof are published and available for free download via RWTH Publications [118].

4.1 Motivation for Polymer Size Determination
from Raman Spectra

Process analytical methods are crucial for optimizing process performance and product properties,
especially in polymerization. In-line spectroscopic methods are advantageous, and, in particular,
near-infrared (NIR) and Raman spectroscopy are widely applied spectroscopic methods [119-122].
Evaluation methods for concentrations from spectroscopic data are established and comprise regres-
sion models, such as univariate peak integration based on the Beer-Lambert law [123], multivariate
partial least squares (PLS), or artificial neural networks (ANNs) [124], and physically supported
strategies such as multivariate curve resolution-alternating least squares (MCR-ALS) [125] or indi-
rect hard modeling (IHM) [79].

Size is a crucial product feature in several processes, e.g., polymerization and crystallization. In
contrast to concentrations, determination of size from spectroscopic data remains a major challenge.
As mentioned earlier, the here analyzed microgels are not considered particles [74], and thus the
term microgel size or polymer size is used throughout, instead of the more common particle size.
The fact that particles such as polymers influence spectroscopic measurements by light scattering is
well established [126], and experimental evidence of the correlation between Raman scattering and
polymer size has been presented [60], even for relatively large particles [61]. However, only a few
approaches attempt to determine polymer sizes from Raman spectra [58, 60-64]. These approaches
rely on relatively small sets of data points and focus on training data-driven models. The accuracy
of these approaches needs improvement compared to established methods such as dynamic light
scattering (DLS). An overview of the state-of-the-art work on polymer size determination from Raman
spectra is presented in Table 4.1. Most of these methods are based on the linear methods PLS or
principal component analysis (PCA), which reduce the predictors to a smaller set of uncorrelated
components and perform least squares regression on these components instead of on the original
data.

Each spectral measurement consists of many measured intensities at different wavelengths, result-
ing in large dimensionality of the input vector. However, the measured intensities are not independent
and ideally depend on a small number of meaningful properties, e.g., concentration and size. When
the available data live in a low-dimensional, yet nonlinear manifold, linear methods often fail to cap-
ture the majority of the variance of the data, even with an increased number of principal components.
Hence, in this chapter, nonlinear manifold learning approaches are proposed to achieve significant
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Table 4.1: Overview of state-of-the-art approaches and the proposed method (last row) to
determine polymer sizes from Raman spectra. The number of data points refers to the amount
of samples measured via Raman spectroscopy.

Ref. Method Polymer system Size # . Speftlrum
[nm]| points  [cm ]
styrene, butadiene,
[62] PLS methyl methacrylate,  80-200 47 100-4000
acrylonitrile
[61] Focal depth styrene 42-210 6 3200-3800
[60] PLS styrene, acrylic acid 55-150 23 400-4000
styrene, butyl acrylate,
63] PLS acrylic acid, 20-200  N.S. 128_111286
methyl acrylate i
150-400,
[64] PLS styrene 50-400 40 0-4000
[58] [HM+PLS styrene 23-60 21 1020-2000
Nonlinear manifold learning N-isopropylacrylamide 208-483 47 100-3425

dimensionality reduction, replacing extensive data sets with few latent variables and, more impor-
tantly, to identify latent variables possessing certain desired (predictive) properties. For the former,
diffusion maps (DMAPs) [127-129] are employed, to derive a parsimonious reduced description of the
Raman spectra. Subsequently, an ensemble of concurrently trained neural networks (NNs) is pro-
posed, named Y-shaped conformal autoencoders, introduced by Evangelou et al. [130] in the context
of parameter non-identifiability.

The proposed workflow is particularly appropriate for measurements that depend on various com-
binations of factors, the effect of which is not readily quantifiable. Herein, the workflow is employed
to identify the changes in the spectra explicitly attributed to the polymer sizes since the samples are
not pretreated, and several factors beyond the size influence them: specifically, the concentrations
of monomer, inhibitor, surfactant, and other species that participate in the reaction. In essence, the
proposed method acts as a nonlinear filter that isolates or rather disentangles the changes in the
spectra that are attributed to the differences in polymer size.

The starting point for the machine learning approach proposed in this chapter addresses the re-
duction of the high dimensionality of spectra, here achieved with DMAPs. The DMAPs algorithm
is based upon (mathematical) diffusion processes on the data, and facilitates discovering meaningful
low-dimensional intrinsic geometric descriptions of data sets, even when the data is high-dimensional,
nonlinear, and/or corrupted by (relatively small) noise. The DMAPs framework has been shown to
facilitate the discovery of meaningful low-dimensional intrinsic geometric descriptions of data sets
(dimensionality reduction) [131-133]. For a detailed description of the method, the interested reader
is referred to the seminal papers [127, 129, 131, 132, 134, 135].

The algorithm is used as an effective dimensionality reduction of full spectra, consisting of ~11000
wavenumbers. This reduction enables efficient interpolation and regression since much fewer (typically
<10) variables are involved. Once the low-dimensional representation of the spectra is determined, it
is possible to translate between coordinates in the ambient (spectra) and the reduced space (DMAP
coordinates). The mapping from high to low dimension is achieved with the Nystrom extension [136,

34



4.2 Methods

137]. Accurate reconstruction of the data set from the selected DMAP coordinates indicates that the
latter is an adequate low-dimensional parameterization.

After the dimensionality reduction, the machine learning workflow begins. Here, recent advances
in conformal autoencoder neural network (CANN) techniques are exploited. The DMAP coordinates
are used as inputs (and also outputs) to a Y-shaped autoencoder to disentangle the dependencies
of the latent variables discovered by a traditional autoencoder architecture and define the desired
output, i.e., the polymer size, as a function of a single latent variable. Ultimately, given a new set
of DMAPs, this CANN determines the corresponding polymer size and reconstructs the DMAPs
themselves.

The proposed workflow is compared with state-of-the-art techniques, demonstrating it is important
to not only find a generic parsimonious low-dimensional parameterization of the data (here achieved
with DMAPs) but, more importantly, to find the appropriate one, i.e., the one that possesses a
component that the polymer size can be writen as a function of. It is demonstrated that although the
number of pairs of microgel size and spectral measurements is moderate (47, i.e., at least as high as
in previous works, Table 4.1), the workflow is a promising direction in deducing polymer size in-line
from Raman spectra.

The remainder of this chapter is structured as follows: First, the process of data collection is
presented along with an overview of the state-of-the-art methods for polymer size determination from
spectra. Subsequently, the DMAPs method is summarized, followed by a detailed description of the
CANN architecture. Finally, results and conclusions are drawn from the proposed implementation.

4.2 Methods

The following sections include the description of the data set used in this contribution (Section 4.2.1)
and the applied methods for size determination: benchmark methods in Section 4.2.2, and the pro-
posed workflow in Section 4.2.3, including the DMAPs approach (Section 4.2.3.1), and the CANN
(Section 4.2.3.2).

4.2.1 Data

The considered microgels here are based on N-isopropylacrylamide (NIPAM) and cross-linked via
N,N’-methylenebis(acrylamide) (BIS). The reactor and measurement setup for the continuous syn-
thesis are explained in Chapter 3. Using the continuous flow reactor, microgels of different sizes
are synthesized by changing the reactor temperature and flow rates and the initiator and surfactant
concentration. As microgels are known to have uniform size [51, 54, 76], they represent an excellent
system to study polymer size deduction from Raman spectroscopy. In previous works presented in
Chapter 8, in-line Raman spectra at reaction temperature at 60°C to 80°C and DLS measurements
at 50°C were conducted. In contrast, in this chapter, additional off-line Raman measurements of the
same samples but at 20°C and restricted conditions are acquired. The restrictions include measuring
the samples all within a small amount of time (over two experimentation days) and in glass vials
filled to the exact same fluid level to ensure equal conditions for the acquisition of all spectra and
to eliminate external influences on the measurements. Consequently, further DLS measurements at
20°C are also conducted.

The data consist of Raman spectra and DLS measurements of microgel samples. The samples are
taken from the output of the continuous flow reactor, which runs at different experimental conditions
for each sample. The samples are measured off-line without further treatment, e.g., filtration or
dialysis. In total, the data comprises 47 samples at different microgel sizes in the range of 208 nm to
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483 nm in diameter.

Microgels have a different size depending on a threshold in temperature: above approximately
32°C, they occur in a collapsed state, and below the threshold temperature, they occur in a swollen
state. Hence, the microgel sizes at 20°C are almost twice as big as at the reaction temperature.
Each sample is measured three times via Raman spectroscopy. Raman spectra are taken with an
acquisition time of 40s. DLS measurements of the samples diluted in ultrapure water are conducted
via the Zetasizer Ultra (Malvern Panalytical, Malvern, UK) at 20°C with a scattering angle of 90°.
Each DLS measurement is repeated four times, and the software ZS Xplorer analyzes the scattering
intensities.

The Raman spectra comprise the Raman intensity measured over a range of wavelengths. The
global range is between 100cm™! to 3425cm™! correlating to 11084 wavelengths per spectrum.
Different spectra pretreatment methods can be applied to the spectral data. Using raw spectra and
spectra with a linear fit or rubber band baseline correction in combination with standardization in
the form of either standard normal variate (SNV) or min-max normalization are compared. The
experimental data set is published open access [118] and comprises raw and pretreated Raman and
evaluated DLS data.

The same data set is applied for all subsequently described methods to determine microgel size
from Raman spectra. Out of the 47 pairs of microgel size and Raman spectra, 40 are used for training
and 7 for testing. The same split is applied to quantify the performance of each considered method
(state-of-the-art methods and the proposed workflow with nonlinear methods). The training for each
method is conducted with 10-fold cross-validation, which involves splitting the training set into ten
smaller sub-sets and using nine for training and one for testing. By repeating this process, using a
different collection of sub-sets for training and validation each time, it is possible to define the best
possible model hyper-parameters without sacrificing a lot of data. The number of hyper-parameters
varies depending on the method. Hence, the set of hyper-parameters for the individual method is
described for each method separately in the following sections. The performance of each method is
evaluated based on commonly applied metrics: coefficiant of determination (R?), root mean squared
error (RMSE), and mean absolute percentage error (MAPE) for training and testing.

The accuracy is reflected in the %-error calculated as:

Dpred — Dmeas
%—error = 100- —HL— —H

Dgeas ’ (4 1)

where Dy is the microgel’s hydrodynamic diameter. Based on the %-error the MAPE is calculated
as the sum of the %-errors divided by the number of observations.

4.2.2 Benchmark Methods for Polymer Size Determination
from Raman Spectra

To benchmark the proposed method, it is compared against two state-of-the-art methods. These
methods include the direct application of PLS to the spectral intensities (Section 4.2.2.1) and the
application of PLS to fitted IHM parameters (Section 4.2.2.2).

4.2.2.1 Partial Least Squares Regression of Spectral Intensities

As conducted in the literature [60, 62, 64, 100], a PLS model regression is directly applied to the
spectral data as first introduced by [62]. Different spectral ranges for the calibration of the PLS
models are considered. These ranges include the global range and the so-called fingerprint region
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between 850cm™! to 1800 cm~!. Also, pretreatment methods are applied, combining two different
types of baseline subtractions (linear fit and rubber band) and two normalization approaches (min-
max and SNV). Further, the data is normalized using the zscore function in Matlab. The results
are analyzed based on the metrics R%2, RMSE, and MAPE for calibration and validation. Based on
the mean squared error (MSE) for cross-validation, the number of components (latent variables) for
the PLS regression is determined.

4.2.2.2 Regression of Hard Model Parameters

The regression of fitted hard model parameters for determining microgel sizes is conducted, as pro-
posed by Meyer-Kirschner et al. [58]. First, an indirect hard model (IHM) [79] is developed. For
that model, the spectral range of the so-called fingerprint region between 800 cm™! to 1850 cm ™ is
considered. The range between 1552cm™! to 1560 cm™! is excluded as it is attributed to an atmo-
spheric oxygen signal. Besides the range restrictions, no further pretreatment is usually applied [58].
However, the PLS performance of the IHM parameters is compared with and without pretreatment
for a comprehensive comparison. The applied pretreatment for the comparison is min-max or SNV
normalization and linear fit or rubber band baseline subtraction. The THM evaluation model is
calibrated using calibration measurements from [93].

The model includes component hard models for the monomer, polymer, and water and a linear
baseline. The hard model of each component consists of multiple characteristic peaks. The individual
peaks are characterized by four parameters (see Figure 2.2): position J, maximum intensity «, shape
(fraction of the Gaussian part) /3, and half-width at half maximum (HWHM) ~. The complete IHM
combines the component models with their distinctive peaks. The indirect hard model parameters
are adjusted to suit the spectra of interest within the fitting process. The applied fitting mode
constitutes a medium interaction method, where the weights of the components, the baseline, and the
peak positions are varied. The weights of the components represent the magnitude of the individual
component in the spectra. Each component (monomer, polymer, water) is accredited with one weight
parameter during the model fitting process. The incorporated linear baseline is fitted with regard
to its offset and slope. In this context, component shifts are restricted to avoid ambiguities due to
overlapping spectral peak positions. The fitting mode follows previous works by Meyer-Kirschner et
al. [58]. The medium interaction fitting mode results in 49 modified parameter values (intercept and
slope of the baseline, one weight for each of the three components, 23 monomer peak positions, 17
polymer peak positions, and four water peak positions) that serve as the input variables to the PLS
regression model.

In addition, the medium fitting mode is compared with the fitting mode with high interaction.
For the high interaction, in addition to the changes in the medium interaction, all peak parameters
can be varied within the fitting process. Thus, the high interaction method results in 181 modified
parameter values (intercept and slope of the baseline, one weight for each of the three components,
23 monomer peaks, 17 polymer peaks, and four water peaks, where each peak is characterized by the
four parameters described previously).

The fitted IHM parameter values serve as input to the subsequent PLS regression. Again, the data
is normalized using the zscore function in Matlab. The results of the PLS regression are also analyzed
based on the R2, RMSE, and MAPE values for the hybrid modeling approach, combining IHM and
PLS. Based on the MSE for cross-validation, the number of components for the PLS regression is
chosen.
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4.2.3 Nonlinear Manifold Learning Workflow

The following section outlines the proposed nonlinear manifold learning workflow. First, the func-
tionality of DMAPs for dimensionality reduction is highlighted. Subsequently, the Y-shaped CANN
is introduced. Figure 4.1 shows a schematic representation of the entire workflow.
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Figure 4.1: Schematic representation of the proposed workflow including the DMAPs algorithm
and Y-shaped CANN architecture.

4.2.3.1 Diffusion Maps for Dimensionality Reduction

The DMAPs algorithm discovers the dimensionality of the manifold that contains a collection of
Raman spectra of microgel samples. Furthermore, DMAPs discover data-driven coordinates on the
low-dimensional manifold. These coordinates are a few of the leading eigenvectors, ¢;, of a scaled
affinity matrix, which contains the Euclidean distances between all the pairs of available data points.

Discovering which eigenvectors parameterize independent directions and do not span the same
direction with different frequencies (harmonics) is essential. To achieve this distinction, the so-called
local linear regression algorithm is used as proposed by Dsliva et al. [138] and summarized here. Each
DMAP coordinate is fit as a function of the previous ones. To select DMAP coordinates that are
independent, the “goodness of fit” of this function is used. A good fit is associated with a specific
eigenvector, ¢, that is a harmonic function of the previous eigenmodes, whereas a bad fit signifies
that ¢;, is a new, independent direction on the data manifold.

An important ingredient of the proposed approach includes the reverse mapping from the DMAP
coordinates to the variables in ambient space, which allows for the translation between the high
and low-dimensional data description. To this end, geometric harmonics are proposed, introduced
originally in [127], as a scheme for extending functions defined on data X, f(X): X — R, for z,,.,, ¢
X. Here, the DoubleDMAPs [132] algorithm, a particular implementation of geometric harmonics,
is selected. DoubleDMAPs are suitable in cases where the data are low-dimensional and can be
parameterized by a few non-harmonic eigenvectors. Generally, geometric harmonics construct an
input-output mapping between the ambient coordinates X and a function of interest f defined on X
by operating directly on the non-harmonic DMAP coordinates.

The DMAPs algorithm starts with a data set of N individual points (represented as d-dimensional

real vectors, zy,...,zy). A similarity measure between each pair of vectors (x;,;), is computed
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4.2 Methods

based on the standard Euclidean distance, based on which an affinity matrix is constructed. A
N2
popular choice is the Gaussian kernel w(i,j) = exp [— (M) } where € is a hyper-parameter

that quantifies the kernel’s bandwidth. To recover a parameterization insensitive to the sampling
density, the normalization

W=P 'wp!

is performed, where P;; = Z;\il W;; and W;; the elements of the matrix W. A second normalization

applied on W,
K=D'W (4.2)

gives a N x N Markov matrix K; here D is a diagonal matrix, collecting the row sums of the matrix
W eigenvectors ¢;.

In an offline step, the dimensionality reduction of the original collection of spectra, consisting
of around 11000 wavenumbers via DMAPs, is conducted. The goal is to reduce the number of
variables to ideally < 10 and thus to re-state the high-dimensional data set in a low-dimensional
coordinate system, parameterized by a small number of selected eigenvectors of the kernel matrix
defined in Equation (4.2). The eigenvectors are selected with the help of the local linear regression
algorithm. Having established a reduced representation of the spectra, the online steps for a new
spectrum follows. In the online step, the DMAP coordinates of a new spectrum are computed using
the Nystrom extension (see Figure 4.1).

4.2.3.2 Y-shaped CANNs

The proposed workflow to determine polymer sizes from Raman spectra involves an ensemble of
concurrently trained NNs, called Y-shaped CANNs. These Y-shaped CANNSs are applied to determine
polymer sizes based on DMAP coordinates. The schematic representation of the workflow including
the Y-shaped CANN is presented in Figure 4.1. The Y-shaped autoencoder scheme, initially proposed
by Nikolaos et al. [130], is summarized here as it is adjusted for the current application. For more
details on the implementation and training of this machine learning technology, the reader is referred
to the original work of Nikolaos et al. [130]. At the core of the scheme lies a regular autoencoder, i.e.,
a NN where the inputs and outputs are the same, with the addition of an extra side NN component, as
explained below. Overall, the Y-shaped scheme can be broken down into three connected subnetworks
(illustrated in Figure 4.2):

« Encoder, NN1, which maps the DMAP coordinates, ¢;, to the autoencoder latent variables,
Vi:

<¢1>¢23¢3a¢47¢5) = <V17V27V3ay477/5)

o Decoder, NN2, which can be thought of as the inverse transformation from the latent space of
the autoencoder (v;) back to the DMAP coordinates ¢y,:

<V17V2,V3al/4vy5> = (¢17¢27¢§37¢4a¢§5)

o Polymer size estimator, NN3, which maps the right number of autoencoder latent variables,
here one of them, v;, to the observed output data, here the polymer size Dy;:
(v1) = Dy
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Figure 4.2: Schematic breakdown of the Y-shaped CANN architecture: NN1 is the encoder
that maps the DMAP coordinates to the latent variables of the autoencoder; NN2 is the inverse
transformation, from the latent space back to the DMAP coordinates; NN3 maps one of the
latent variables to the output of interest: polymer size Dy,.

The key feature is the loss function, consisting of several parts. The first part is the successful
reconstruction of the input original parameters (the autoencoder part). Next comes the ability of
NN3 to reproduce the observed output, i.e., the polymer size. The polymer size becomes a funstion
of a single input v;. To concurrently train the different NNs, an additional component to the loss
function becomes necessary, which results from further imposing an orthogonality constraint on the
conformal autoencoder’s latent coordinates:

<dl/i,dl/j> = O,V'L 7& ]

Here, dv; indicates the vector of partial derivatives of the latent coordinate v; with respect to of
the input parameters ¢, and (-,-) indicates the inner product. This constraint is imposed using
the automatic differentiation capabilities of the relevant code libraries and aims to disentangle the
combination of features that matters to the output from those combinations of features that do not
affect it, making the architecture a conformal autoencoder.

4.3 Results and Discussion

The results comprise the analysis of the size determination from the benchmark methods in Sec-
tion 4.3.1 and 4.3.2, and the developed workflow based on the Y-shaped CANN in Section 4.3.3.
The Raman spectra and size measurements from DLS of microgel samples are available for trans-
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parency [118]. The codes implementing the different workflow steps can be found in the GitLab
repository [139)].

4.3.1 Partial Least Squares Regression of Spectral
Intensities

The exhaustive evaluation of various combinations of pretreatment methods for Raman spectra as
the basis for PLS regression is summarized in Table 4.2. Overall, the direct application of PLS
regression to the spectral intensities results in poor performances for any pretreatment method. The
poor performance is indicated by the R? values significantly lower than 1 for the training and testing.
Comparing the performance of spectra in the fingerprint and global spectral region yields that the
performance is slightly better when using models in the fingerprint region. Interestingly, the number
of latent variables needed for the fingerprint region is consistently higher than for the global region,
although the global region comprises more predictive variables.

Table 4.2: Performance of PLS regression on Raman spectra with different pretreatment meth-
ods. The values for RMSE are given in nm and for MAPE in %.

Pretreatment Spectral region R2 ;%alélglg MAPE  R2 gﬁ;gﬁg MAPE # latent variables
Linear fit Fingerprint 0.759 31.200 7.013 0.535 39.350 10.105 4
Linear fit Global 0.283 53.820 12.876 0.584 37.240 8.915 2
min-max, linear fit Fingerprint 0.780 29.790 6.558 0.336 47.050 11.298 6
min-max, linear fit Global 0412 48.730 11.255 0.735 29.690 7.173 3
min-max, rubber band Fingerprint 0.753 31.570 6.773 0.084 55.260 14.736 5
min-max, rubber band Global 0.421 48.340 11.116 0.732 29.880 7.350 3

‘ Raw Fingerprint 0.961 12.570 2.884 0.596 36.680 10.574 7
Raw Global 0.495 45.170 10.635 0.160 52.920 14.233 4
Rubber band Fingerprint 0.801 28.320 6.834 0.461 42400 11.962 4
Rubber band Global 0.613 39.530 9.430 0.484 41.470 10.795 4

‘ SNV, linear fit Fingerprint 0.751 31.710 7.481 0.545 38.930 10.993 4
SNV, linear fit Global 0.275 54.110 12.941 0.608 36.150 9.168 2
SNV, rubber band Fingerprint 0.766 30.720 7.142 0.430 43.580 11.727 4
SNV, rubber band Global 0.275 54.110 12.940 0.609 36.120 9.157 2

In summary, determination of microgel sizes using raw spectra with no pretreatment in the fin-
gerprint region perform best in training and testing. Also, the determination based on spectra in
the fingerprint region pretreated via SNV and a linear fit subtraction shows a relatively good per-
formance. Thus, the parity plot for these most promising configurations is shown in Figure 4.3 in
comparison. Here, the gray circles represent the training data, and the red circles represent the test
data. Over-fitting is precluded sufficiently, as the discrepancy between actual and deduced size is
in the same range for the training and the test data set. Furthermore, comparing the PLS results
based on the pretreated spectra (left) and raw spectra (right) shows no significant improvement for
the pretreated spectra in the PLS performance.
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Figure 4.3: Parity plots of microgel size determination via PLS regression of spectra in the
fingerprint region. Left: pretreated via SNV normalization and linear fit baseline subtraction.
Right: Raw spectra. Gray circles represent the training data and red circles indicate the test data.

4.3.2 Regression of Hard Model Parameters

Table 4.3 shows the overview of different pretreatment methods in the indirect hard modeling step.
The fitted parameter values from the IHM are subsequently used in the PLS regression. A high and
medium fitting mode are considered corresponding to more or less degrees of freedom for fitting the
IHM evaluation model to the experimental spectra. Similarly to the direct regression on spectral
intensities, the overall performance is unsatisfying. Again, the determined R? values are significantly
lower than 1 for the training and even below zero for testing in some cases. Note that R? values below
zero imply that the size determination would be more accurate using the mean value than the value
determined by the regression model. Overall, the medium fitting mode shows a poorer performance
than the high fitting mode. However, the high fitting mode necessitates more latent variables, as a
larger space of predictive variables needs to be reduced. Furthermore, no clear trend exists that one
pretreatment method performs better than the other.

Figure 4.4 presents the results of the PLS regression based on IHM parameters from Raman spectra
pretreated via SNV and rubber band baseline subtraction and high interaction during the fitting, as
this configuration yields the relatively best performance according to Table 4.3. Also, the second best
performing configuration is shown, namely regression based on spectra pretreated with a linear fit
subtraction and high interaction fitting. Similarly to the results from Section 4.3.1, the distribution
of gray circles (training data) and the red circles (test data) here shows that over-fitting is suppressed.
In addition, the comparison of the PLS results based on the IHM parameter values from SNV plus
linear fit pretreated spectra (left) and spectra only pretreated with a linear fit subtraction (right)
shows a notable improvement for the spectra additionally pretreated via SNV in the PLS performance.
However, the resulting performance does not indicate reliable accuracy.
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Table 4.3: Performance of PLS regression on IHM parameters from Raman spectra with different
pretreatment methods. The values for RMSE are given in nm and for MAPE in %.

Protreatment Training Testing # latent
Fitting mode R?> RMSE MAPE R? RMSE MAPE variables
‘ Linear fit High 0.734 32770 7.264 0.286 48.780  9.908 5 ‘
Linear fit Medium 0.211 56.450 14.184 0.260 49.660 12.108 1
Raw High 0.921 17.850 4.281 -0.515 71.070 19.052 9
Raw Medium 0.212 56.420 14.142 0.276 49.140 11.965 1
Rubber band High 0.647 37.750 8.566  0.346 46.690 11.745 6
Rubber band Medium 0.359 50.900 11.921 -0.144 61.750 12.369 3
min-max, linear fit High 0.739 32,500 7.201 0.280 49.000 9.974 5
min-max, linear fit Medium 0.506 44.650 10.667 -0.430 69.050 18.194 5
min-max, rubber band High 0.682 35.850 7.766  0.335 47.080 12.032 6
min-max, rubber band Medium 0.384 49900 11.443 -0.173 62.540 11.966 3
SNV, linear fit High 0.743 32.250 7.239 0.235 50.500 10.730 5
SNV, linear fit Medium 0.499 44.970 10.725 -0.438 69.240 18.220 5
‘ SNV, rubber band High 0.584 40.990 9.520 0.636 34.840 8.573 4

SNV, rubber band Medium 0.382 49.970 11.492 -0.183 62.790 12.004 3
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Figure 4.4: Parity plots of microgel size determination via PLS regression of IHM parameters
from spectra fitted via high interaction. Left: pretreated via SNV normalization and rubber band
baseline subtraction. Right: pretreated via linear fit subtraction only. Gray circles represent the
training data and red circles indicate the test data.

4.3.3 Nonlinear Manifold Learning Workflow

Firstly, the DMAPs algorithm is implemented, and six DMAP coordinates, ¢, ¢o, @3, ¢4, ¢5, and
¢g are selected to parsimoniously represent the spectra that live in a high-dimensional ambient space.
These are selected based on how accurately the original data can be reconstructed from those latent
variables. Following the computation of diffusion coordinates, it is possible to proceed directly with
the determination of the polymer size via the Y-shaped CANN.
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Figure 4.5: Size determination from Y-shaped autoencoder architecture: (a) Actual versus
predicted polymer size, and (b) % error for each one of the data points in the test set. Red points
correspond to the test set and gray points correspond to the training set values. The R?, RMSE,
and MAPE reported correspond to the test data.

The CANN architecture described in Section 4.2.3.2 is trained with the DMAP coordinates
(¢1,...,0g) corresponding to the training set as the input to the encoder network NN1. These values
are also the target values for the decoder network NN2. Six latent variables are set in the bottleneck
layer, and the polymer size is required to be defined as a function of v, by concurrently training the
neural network NN3.

The proposed method shows a superior performance with R?=0.951 and MAPE= 2.93% for the
test set. Assumably, the reason for the enhanced performance lies in the fact that the Y-shaped
architecture not only finds the latent variables of the data set, as do DMAPs, but with the second
NN, specific properties are explicitly imposed on one of them: the polymer size must be a function of
one latent variable, which it must also be orthogonal to all other latent variables. The latter property
implies that only this one latent variable correlates to the particle diameter.

4.3.4 Comparison of Presented Methods

Table 4.4 compares the results from the state-of-the-art to the proposed method. The results us-
ing the state-of-the-art methods are described in detail in Section 4.3.1 and 4.3.2. Here, solely the
best-forming configuration of pretreatment and spectral range for the direct PLS regression on Ra-
man spectra and PLS regression on IHM parameters are presented. Finally, the in-depth results
regarding the size determination from DMAP coordinates via Y-shaped autoencoder are presented
in Section 4.3.3.

For the collection of Raman spectra studied here, the Y-shaped CANN outperforms the other
state-of-the-art methods indicated by the only R? value considerably close to 1. Also, the low RMSE
values of the Y-shaped autoencoder, being approximately a third of the values of the compared
methods, indicate the improved performance. Lastly, the MAPE value of the autoencoder-based
method ranges at 2.930 %, which approximates the precision range of around 2% expected from
DLS [140], the established size measurement device. Thus, even though the evaluation is based on a
data set with limited size, for the first time, a purely data-driven evaluation method based on Raman
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Table 4.4: Testing performance of all considered methods within this work. The values for
RMSE are given in nm and for MAPE in %.

Cluster Method R? RMSE MAPE 1 latent
variables

Best configuration based on PLS
State-of-the-art regression directly to Raman spectra

Best configuration based on PLS

regression on IHM parameters

0.596 36.668 10.574 7

0.636 34.840 8.573 4

Determination from

DMAP coordinates Y-shaped autoencoder 0.951 11.991  2.930 1

spectra advances the accuracy capability of the established size determination device.

Further, it is worth looking into the number of latent variables required (see the last column of
Table 4.4). DMAPs is able to meaningfully embed the high dimensional data using six coordinates.
Even though a parsimonious embedding of the data is achieved, which is key in making machine
learning tasks computationally tractable, it is not a quantitatively accurate predictor. This is where
the CANN becomes relevant for the polymer size determination. Consequently, it is possible to
reduce even further the variables that are meaningful for the specific task of determining polymer
size to a single latent variable, on the data. It becomes clear that designed latent spaces, i.e., ones
with specific desired characteristics, become useful in disentangling the data features and creating
latent variables that specifically map to the observable quantity of choice, here polymer size. This is
precisely the motivation for the proposed CANN architecture: it manages to identify a single latent
variable, which not only maps to the size, but in addition is independent of other data features by
design (by imposing an orthogonality condition in the loss function of the neural network). This trait
of the CANN architecture enables the minimal accurate determination of polymer size here.

4.4 Conclusions

In this contribution, the important open problem of determining particle sizes online is considered. A
data-driven approach is proposed to determine polymer sizes from Raman spectra. This approach is
applied the acquired open-access data set of continuous microgel synthesis and demonstrate its capa-
bility. Further, the proposed approach is compared against two state-of-the-art benchmark methods
to underline the excellent performance of the nonlinear approach.

The proposed nonlinear approach relies on nonlinear manifold learning, more precisely dimen-
sionality reduction via DMAP coordinates combined with recent advances of Y-shaped autoencoder.
The proposed workflow outperforms the state-of-the-art linear methods significantly. The Y-shaped
autoencoder approach based on determination from DMAP coordinates enables drastically better
accuracy, similar to the established size measurement methods such as DLS.

Determining polymer sizes directly from Raman spectra taken directly from untreated samples
and not manipulated by spectral pretreatment constitutes a substantial advantage. Compared to the
established particle determination via DLS, Raman spectra can now be acquired in-line and evaluated
directly online, circumventing the labor-intensive DLS processing and allowing online reaction mon-
itoring for closed-loop control. Furthermore, the ability to handle noise in the form of information
included in the spectra, such as chemical composition, irrelevant for size determination, makes the
proposed workflow superior. Compared to state-of-the-art Raman methods, the workflow is advan-
tageous for determining polymer sizes, as no spectral pretreatment and, thus, no expert knowledge
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is necessary. In addition, the workflow typically relies on less than ten coordinates in the reduced
component space. Here, only the first six DMAP coordinates enable us to use the entire wavelength
spectrum without exclusions, which would require problem-specific intuition.

Future works include the application of the proposed workflow to determine polymer concentrations
and sizes simultaneously to highlight the application of the proposed readily available analysis tool.
The simultaneous determination allows a more comprehensive characterization via a single in-line
process analytical tool. In addition, future considerations involve extending the workflow to other
systems beyond the presented application. Additional types systems to consider in the future can
involve crystallization processes, amongst others.

46



5 Raman Spectroscopy and Indirect
Hard Modeling for Microgel Synthesis
with Charged Domains

Data Repository: The Raman spectra acquired and the indirect hard modeling evaluation models
developed in this chapter are published and available for free download via RWTH Publications [1/1].

5.1 Motivation for Monitoring the Synthesis of
Microgels with Charged Domains

Microgels ungergo a volume phase transistion in response to external stimuli. The most studied
stimulus constitutes temperature but pH-responsiveness has gained a lot of interested over the
years as well [142-145]. By adding functional carboxylic acids such as methacrylic acid (MAA)
or acrylic acid (AA) to thermo-responsive microgels such as N-isopropylacrylamide (NIPAM)- or
N-vinylcaprolactam (VCL)-based microgels, dual-responsive microgels are created. These microgels
with dual stimulus swelling response are especially relevant for applications in drug delivery [33-36],
catalysis [42, 43], sensing [46], and membranes [22]. For each application, tailored properties are de-
sired for optimal microgel functionality. Therefore, the production process of these charged microgels
needs to be fully understood and optimally controlled.

For improved insight into the charged microgel synthesis, process monitoring via analytical technol-
ogy is needed. So far, most work studying the synthesis of microgels with carboxylic acids focuses on
the examination of the final microgel product. For investigating these completed microgels, process
analytical studies involve mostly size measurements via dynamic light scattering (DLS) [143, 146-149],
determination of the polymerization conversions by gravimetric analysis [148] or Fourier transform
infrared (FTIR) microscopy [146, 147], scanning electron microscopy analysis [146-148], morphol-
ogy analysis via atomic force microscopy (AFM) [146], or (time-lapse) nuclear magnetic resonance
(NMR) [150] to evaluate the microgel’s swelling response. Monitoring of conversion or size during
the synthesis has not been the research focus.

For monitoring of charged species, Echtermeyer et al. [81] showed that via Raman spectroscopy
monitoring of the dissociated states of an acidic component is possible. In this chapter, an analysis of
the capabilities of Raman spectroscopy to monitor the synthesis of charged microgels at the example
of NIPAM-co-MAA microgels is presented. For the analysis of the Raman spectra, indirect hard
modeling (IHM) is applied, as this methods yields sufficient predictions for multi-component systems
with many overlapping component peaks [79, 80] while necessitating only a small calibration data
set [79, 81].

The chapter is structured as follows. First, the experimental methods, including the microgel
synthesis settings, and Raman spectroscopy with indirect hard modeling, are presented in Section 5.2.
Subsequently, in Section 5.3, the results are highlighted with focus on the Raman evaluation model
and the synthesis monitoring outcome. Finally, conclusions from the work are drawn in Section 5.4.
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5.2 Experimental

In the following sections, first the setup of the synthesis of charged microgels in batch is described
in Section 5.2.1. The NIPAM-co-MAA synthesis is conducted with varying MAA content. By taking
samples during polymerization, measuring them via Raman spectroscopy, and evaluating the mea-
surements via IHM, the species concentrations are infered (Section 5.2.2). For the evaluation of the
measurements, the IHM is calibrated (Section 5.2.3).

5.2.1 Experimental Procedure For Microgel Synthesis and
Sampling

Three different compositions of microgels with varying molar fractions of the MAA monomer within
the microgel are synthesized within this work. For that, molar MAA fractions of 5, 10, and 15 mol%
are targeted. For the synthesis of NIPAM-co-MAA microgels, an aqueous solution of the monomer
NIPAM, the functional carboxylic co-monomer MAA, the surfactant sodium dodecyl-sulfate (SDS),
the cross-linker N, N’-methylenebis(acrylamide) (BIS), and deionized water is prepared in a glass flask.
The composition of the initial synthesis solution is presented in Table 5.1. The cross-linker content
of the microgel is fixed at 1.0 mol-% while the composition of NIPAM to MAA varies.

Table 5.1: Recipe of the NIPAM-co-MAA synthesis.
Component 5mol% 10mol% 15 mol%
Deionized water 184.65g 184.65g 184.65¢g

MAA 0.12¢g 0.24¢g 0.36g
NIPAM 2.95¢g 2.80¢g 2.64¢g
BIS 43 mg 43 mg 43 mg
SDS 80mg 80 mg 80 mg
KPS 150mg  150mg 150 mg

The reactor head has multiple openings for the Raman probe, pH and temperature sensors (SenTix
940 from WTW), mechanical stirrer (RZR 2102 control from Heidolph), and access for the addition
of the initiator and the withdrawal of samples. The reaction solution is heated to the reaction tem-
perature of 70°C, stirred at 300 rpm, and continuously purged with nitrogen for the entire duration
of the synthesis to prevent oxygen inhibition. After the system reaches a steady state with constant
temperature, the initiator potassium persulfate (KPS) is added in dry form to start the polymeriza-
tion. Samples are drawn directly before initiation and 1, 3, 5, 7, 10, 15, 20, 30, 60, and 120 minutes
after initiation. The withdrawn samples are shock-cooled in an iced water bath to terminate the
polymerization. Subsequently, the samples are investigated off-line via Raman spectroscopy.

After two hours of reaction time, the product solution is collected and cooled for storage. The
remaining solution is filtered through glass wool and dialyzed against deionized water using Spec-
tra/Por dialysis membranes (ZelluTrans MWCO of 12000 to 14000 from Carl Roth). The deionized
water is changed daily for four to six days. Afterwards, the dialyzed solution is freeze-dried under
a vacuum to receive the pure microgel. The freeze-dried microgel is then weighted to determine the
conversion of reactants.
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5.2.2 Raman Spectroscopy of Reaction Samples and
Indirect Hard Modeling

Raman measurements are taken with two accumulations of a time interval of 30s and assessed using
the software PEAXACT to apply IHM [80]. For the IHM, a Raman shift from 1025 cm™! to 1850 cm~*
is considered. The atmospheric oxygen signal between 1552cm™! to 1560 cm™! is included as a
dummy peak for the model generation. Also, the remaining signal of the device is derived from a
measurement in the empty dark chamber and is modeled as a combination of dummy peaks spanning
the entire considered wavenumber range. The pure component model (PCM) of water is directly
determined, while the PCMs of KPS, NIPAM, MAA, and the respective microgel are derived using
complemental hard modeling (CHM) [80]. Within the PCM of each species, characteristic peaks are
merged into peak groups, which are fitted coherently. The fitting of peak groups has been shown
to decrease confusion between neighboring peaks of different components during the model fitting
process. PCMs are then used to build a mixture model for the aqueous NIPAM-BIS-MAA system.
The mixture model utilizes a linear fit baseline subtraction and SNV normalization. The applied
fitting mode for a component evaluation encompasses medium interaction, no component shift, and
ten considered component peaks with a 0.001 component weight threshold. The relative parameter
constraints comprise variations in position § +10, maximum intensity o 4+20%, half-width at half
maximum (HWHM) v £10%, and the Gaussian part 5 £0.5 (see Figure 2.2).

5.2.3 Calibration of the Raman Evaluation Models

IHM evaluation models need calibration for each component of the respective system to predict
concentrations of an unknown sample. For ITHM of multi-component systems, calibrating the pure
components is sufficient to measure the mixture spectra thereof. Also, relatively few calibration
samples are needed for a suitable model calibration enabled by the physical justification of the IHM
method. For the IHM calibration for the NIPAM-BIS-MAA system, aqueous mixtures of monomers
and microgels are prepared in 4 mL glass vials. The calibration set contains nine aqueous mixtures
of NIPAM (0.2wt% to 1.8wt%), and MAA (0.05wt% to 0.45wt%). For the microgel calibration,
the calibration samples contain three aqueous mixtures of NIPAM-MAA-based microgels (0.2 wt%
to 1.8 wt%). For calibration of the initiator KPS, two samples are used (0.008 wt% to 0.08 wt%).
Fach calibration sample is measured ten times. Finally, the evaluation model is calibrated using ten
measurements per calibration sample and ratiometric regression with 10-fold cross-validation.

5.3 Results and Discussion

The results comprise the IHM evaluation model of the Raman measurements (Section 5.3.1) and the
resultant outcomes (Section 5.3.2). The presentation of the IHM evaluation model comprises the
consideration of neglected components (Section 5.3.1.1), the influence of pH on the Raman spectra
(Section 5.3.1.2), the developemnt of different IHM evaluation models depending on the content of
MAA during the synthesis (Section 5.3.1.3), and the calibration metrices (Section 5.3.1.4). The
outcomes involve the Raman spectra during the synthesis, the weight fraction predictions thereof,
and the NIPAM and MAA conversion determined.
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5.3.1 Raman IHM Evaluation Model

The synthesis of cross-linked microgels with pH-responsive functional groups results in a complex
system to monitor, as it comprises many components. For developing the Raman evaluation model
via THM, ratiometric calibration is applied since all components of the analyte are known. However,
some components present during the synthesis are neglected in the evaluation model due to low
Raman activity or initial concentration.

5.3.1.1 Neglected Components

Within the Raman evaluation model based on IHM, a few components of the complex system are
neglected. These components include the crosslinker BIS and the stabilizer SDS. BIS is excluded
from the peak modeling and calibration because of the low concentration during the synthesis. Fur-
thermore, the contribution of the stabilizer SDS to the spectral signal is negligible due to the low
Raman activity of the component.

In Figures 5.1(a) and 5.1(b), the Raman spectra of pure deionized water are compared to the
Raman spectra of aqueous solutions of BIS and SDS at synthesis conditions, respectively. For the
BIS solution, two BIS characteristic peaks can be differentiated at around 1259 cm ™! and 1413 cm™!.
These peaks are relatively small and overlap with characteristic peaks of the monomer NIPAM, which
exhibit a significantly higher intensity. Hence, the weight fraction of BIS cannot be reliably quantified
during the microgel synthesis. For the SDS solution a similar phenomenon occurs. Here, the two
SDS characteristic peaks at around 1062cm ™" and 1442 cm™! exhibit an even lower signal intensity
in the aqueous solution. Hence, the SDS weight fraction is also not quantifiable during the synthesis.
Also, technically there is no need to determine the SDS content during the synthesis, as SDS is not
expected to take part in the polymerization reactions.
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Figure 5.1: Comparison of Raman spectra of deionized water (blue spectra) and other compo-
nents (red spectra). (a) 0.023 wt% BIS in deionized water, and (b) 0.044 wt% SDS in deionized
water. Spectra are recorded at 25°C and pretreated with linear fit subtraction and SNV standard-
ization for visualization.
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5.3.1.2 pH Influence on Raman Signal

The Raman spectra of MAA solutions are analyzed at different pH values to analyze the impact of
the dissociation of the carboxylic groups on the Raman signal.

For the development of the Raman evaluation model, the detectability of the monomer MAA and
its charged state MAA™ in Raman spectra is investigated. Both monomers contain carboxylic groups
that enable the monomers to switch between the charged and uncharged state. Changing the pH
value of the monomer solution influences the charge of the monomers. For a pH value below the
so-called pKa value, the monomers are mostly protonated (MAA). Whereas, for a pH value above the
pKa value, the monomers are mostly negatively charged (MAA~). The pKa value of MAA at 20°C is
4.65 [151]. Since modifications of the charge involves changes of the molecular structure in the form
of loosing a hydrogen atom, a spectral change is expected to be visible via Raman measurements.

To visualize the influence of pH change on the MAA Raman spectra, titration experiments are
conducted. In these experiments, the pH value of the monomer solution is gradually changed and
the Raman signal is recorded at each step. The experimental setup (Figure 5.2) and protocol for the
titration are adapted from Echtermeyer at al. [81]. The titration is conducted at constant temperature
in a three-neck flask with a RXN2 Raman Analyzer probe and a pH electrode (SenTix 940) with pH
meter (Multi 3420, WTW, Weilheim, Germany) including a thermometer. To adjust the pH value
of the solution, sodium hydroxide (NaOH, 1molL ™', VWR Chemicals) and hydrochloric acid (HCI,
I mol L1, Carl Roth) as received are used. The solution is heated by a water bath. A non-transparent
black PVC liner is installed around the setup to exclude ambient light. The analyte solution contains
MAA in deionized water at different concentrations.

pH/Temperature
probe

Raman probe

Titrant
injection

I Light

Thermo-
meter

Magnetic stirring/heating plate

Figure 5.2: Setup for titration experiments including three-neck flask with a pH/temperature
probe and Raman immersion probe. Schematic drawing adapted from Echtermeyer et al. [81].

The analyte concentrations studied and the concentration and volume of the titration steps are
presented in Table 5.2. The molar concentrations for MAA in the analyte are 0.5molL~! and

51



5 Raman Spectroscopy and Indirect Hard Modeling for Microgel Synthesis with Charged
Domains

0.05molL~!. The monomer concentration of 0.05 molL~! corresponds to the same order of magni-
tude as the initial reaction composition of 15mol% microgel synthesis (0.022molL~1). Titrations
with 0.5molL~" of MAA are carried out at 25°C and 70°C. Titrations with 0.05 molL =1 of MAA
are conducted only at 25°C. If not noted otherwise, the pH of the solution is titrated to an acidic
pH using 1 molL.~! HCI to ensure full dissociation of MAA. However, due to the low concentration
in reaction conditions, the acid is practically fully deprotonated without the use of acidic titrants. A
NaOH solution as titrant is injected step-wise to the stirred analyte solution. During the titration,
the pH value of the aqueous acid mixture is monitored. For the titration with 0.05 molL~' MAA,
smaller and less concentrated titrant steps are chosen due to the low concentration of MAA and
related sensitivity of the protonation state. During the titration, Raman spectra of the solution are
taken at every titration step.

Table 5.2: Concentration and volume of titration steps.

CMAA CNaOH Viitrant
[mol L7 [mol L1 [mL]
Reference concentration 0.5 1 1.5
Synthesis concentration 0.05 0.05 0.25-1.5

Figures 5.3 to 5.4 show the resulting Raman spectra from the titration experiments. First, in
Figure 5.3(a) the influence of pH variation on the Raman spectra of a 0.5molL~! MAA solution
is examined. The most prominent peaks with associated molecular groups of MAA are found at
800cm ! (COOH group), 850cm~! (COO" group), 1400cm~! (CO and OH group) and 1690cm*
(C=0 group). An evolution of those peaks with regards to the pH of the solution (and therefore
the protonation state of MAA) can be observed: Peaks at 800 and 1690cm~! (COOH and C=0
group), which are related to the protonated form of MAA, decrease with increasing pH. While the
peak at 850cm~! (COO" group), which is related to the deprotonated form of MAA, increases with
increasing pH. Moreover, the peaks for the COOH and COO~ group show equal intensity at pH=pKa.
The peak at 1400cm ™! shows a shift to higher wavenumbers and increases with increasing pH. While
there are several additional minor peaks that show some sort of shifting or intensity changes, only the
peaks mentioned above are also distinctive in the titration experiment with lower concentration of
MAA (0.05molL.™1) as shown in Figure 5.3(b). Significant changes in the spectra of the 0.05 mol L~}
solution appear only at around 800 cm™!. However, in this spectral region multiple component peaks
arise which impede an explicit allocation of components within the spectra. Thus, the spectral
range considered for the IHM evaluation model in this work is truncated as a trade-off between a
bigger spectral region with more information on the analyte versus a bigger spectral region containing
unambiguous information. Further, the pH influence on the Raman spectra at ambient temperature
and synthesis temperature of 70°C is examined. No differences in spectral expression between the
two temperature regions are visible when comparing Figure 5.3(a) and 5.4. Overall, changes in peak
position and intensity occur in the Raman spectra of MAA solutions upon pH variation. However,
the spectral changes are insignificant for MAA solutions at synthesis concentrations. Thus, for the
IHM evaluation model development, MAA and its dissociated species are considered as one model
component.
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Figure 5.3: Raman spectra of the titration experiment at 25°C: (a) 0.5 mol L' MAA, and (b)
0.05 mol L' MAA. Spectra are pretreated with linear fit baseline subtraction and SNV standard-
ization for visualization.
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Figure 5.4: Raman spectra of the titration experiment of 0.5 mol L'* MAA at 70°C. Initial
13.0 mL of 1 mol L't HCI to achieve full protonation. Spectra are pretreated with linear fit
baseline subtraction and SNV standardization for visualization.

The analysis yields that the Raman signal of MAA varies with the degree of dissociation of the
monomer. However, at the highly diluted conditions applied in the context of the aqueous microgel
synthesis, the change in peak intensities due to the dissociation of the carboxylic group is negligible in
the considered wavelength range. Hence, the carboxylic MAA monomers are included as one species
comprising the charged and uncharged state for the evaluation model.

5.3.1.3 MAA-dependent IHM Evaluation Models

To model the produced microgel, the three different compositions of microgels with varying MAA
compositions (5, 10, and 15mol% of MAA) are considered. For improved visualization, linear fit
subtraction and standard normal variate (SNV) standardization are applied as pretreatment to all
spectral representations within this contribution. The Raman signal of microgels incorporating differ-
ent amounts of MAA are shown in Figure 5.5. The Raman spectra of the NIPAM-co-MAA microgels
change significantly depending on the content of MAA within the microgel. Exemplarily, in Fig-
ure 5.5, a spectral peak is visible at around 1300 cm ™! for microgels with a 5mol% MAA content,
but is not differentiable for 15mol% MAA microgels. As the Raman signals of the microgels with
different MAA amounts differ significantly, a different model is used for evaluating each synthesis sep-
arately. Hence, each model is calibrated with the corresponding microgel. The synthesized microgel
is freeze-dried for calibration, and calibration samples are prepared accordingly.
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Figure 5.5: Raman spectra of NIPAM-co-MAA microgels in deionized water at 25°C with varying
MAA composition. Spectra are pretreated with linear fit subtraction and SNV standardization for
visualization.

The developed Raman evaluation model contains PCMs for water (6 peaks), NIPAM (21 peaks),
KPS (1 peak), MAA (8 peaks), and the corresponding microgel NIPAM-co-MAA (14 peaks). Addi-
tional dummy PCMs are included for the oxygen peak (1 peak) and background noise (4 peaks).

5.3.1.4 Calibration Metrices

The results from the model calibration for the NIPAM-co-MAA containing different mol% of MAA
are shown in Table 5.3 in the form of the coefficient of determination (R?) value and the root mean
squared error of cross-validation (RMSECV), respectively. The R? value and the RMSECYV value all
range in the same order of magnitude. Both calibration metrics show excellent model accuracy for
the model training. Additionally, Figures 5.6(a) to 5.6(c) visualize the parity plots of the developed
IHM models. The parity plots reflect the excellent model calibration, also indicated by the proper
calibration metrics in Table 5.3.

5.3.2 Raman Spectroscopy of Reaction Samples

The spectra received by off-line Raman monitoring show the reaction progress explicitly. The result-
ing Raman spectra and the evaluation thereof for the remaining compositions are presented in the
following. Figures 5.7 to 5.9 present the Raman signal during the NIPAM-co-MAA microgel synthesis
with 5 to 15 mol-% MAA content. Here, the characteristic NIPAM monomer peaks at 1068 cm™!,
1262cm ™!, and 1415cm ™! and the double peak at 1617 cm ! and 1653 cm ™! (corresponding to the
C=0 bond and C=C bond, respectively) vanish with progressing reaction time. Also, MAA exhibits
characteristic monomer peaks at 1379 cm™!, 1407 cm™!, and 1641 cm™! which only contribute slightly
to the spectral signal. Concurrently, the characteristic polymer peaks at 1392 cm™! (CHjy symmetric
deformation) and 1636 cm ™! (amide I group) emerge. Also, the intensity of the common peak at
1452 cm ™! attributed to the C-H bending becomes more significant with longer reaction times.
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Table 5.3: Calibration metrics for the NIPAM-co-MAA IHM evaluation models for different mol%
of MAA co-monomer in the microgel.

Component R? [%] RMSECV [wt%)]

< Water 99.93 0.0153
< NIPAM 99.97 0.0098
~ MAA 99.79 0.0066
'S Microgel 99.97 0.0074
5 KPS 99.87 0.0006
= Water 99.86 0.0219
= NIPAM 99.97 0.0100
e MAA 99.81 0.0063
g Microgel 99.83 0.0165
S KPS 99.92 0.0005
= Water 99.89 0.0192
= NIPAM 99.97 0.0104
e MAA 99.83 0.0059
E Microgel 99.88 0.0146
= KPS 99.80 0.0007
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Figure 5.6: Parity plots for components of IHM prediction model for NIPAM-co-MAA synthesis
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Figure 5.7: Raman spectra of the off-line samples during the 5 mol% NIPAM-co-MAA batch
synthesis. Spectra are pretreated with a linear fit baseline subtraction and a SNV standardization
for visualization.
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Figure 5.8: Raman spectra of the off-line samples during the 10 mol% NIPAM-co-MAA batch

synthesis. Spectra are pretreated with a linear fit subtraction and SNV standardization for visu-
alization.
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Figure 5.9: Raman spectra of the off-line samples during the 15 mol% NIPAM-co-MAA batch
synthesis. Spectra are pretreated with a linear fit baseline subtraction and a SNV standardization
for visualization.

When applying the developed THM evaluation to the detected Raman spectra, the weight fractions
of each component in the solution can be predicted over time. Figure 5.10 illustrates the predicted
progression of NIPAM, MAA, KPS, and microgel over reaction time for the synthesis with different
MAA content. The stars indicate the initial weighted weight fractions for NIPAM, MAA and BIS, and
the final weighted microgel weight fraction determined after dialysis and freeze-drying. The weight
fractions of the monomers NIPAM and MAA decrease over time. While NIPAM is fully consumed
after approximately 20 min, MAA is already depleted after 10 min. The initial weighted weight
fractions of the monomers agree precisely with the predicted values from the Raman monitoring. The
microgel formation arises inversely to the monomer consumption. Similar to the NIPAM progression,
the microgel production reaches its final value after approximately 20 min. The final microgel weight
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fraction determined by weighting is very similar to the predicted one but differs for example for the
10 mol% MAA synthesis by an absolute value of 0.134 wt%. The initiator weight fraction decreases
steadily and reaches a value of 0.068 wt% after an hour of reaction (also examplarily for the 10 mol%
MAA synthesis). Thus, the initiator KPS is not depleted during the synthesis. Generally, the THM
evaluation model tends to overestimate the content of the components in the solution. Altogether,
this work shows that Raman spectroscopy and THM evaluation are reliable methods for predicting
the compositions during the microgel synthesis.
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Figure 5.10: Predicted weight fractions of the off-line samples using IHM for the NIPAM-co-
MAA batch synthesis with (a) 5 mol%, (b) 10 mol%, and (c) 15 mol% MAA content. The stars
indicate the initial weighted weight fractions of the reactants and the weighted microgel weight
fraction after dialysis and freeze-drying.

Based on the predicted weight fractions during the microgel synthesis, the conversion of the two
monomers, NIPAM and MAA, can be calculated over time. Figure 5.11 shows the conversion of
NIPAM and MAA over the reaction time for different content of MAA in the microgel. The conversion
of NIPAM changes depending on the content of MAA in the synthesis. The more MAA is taking
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part, the slower the conversion of NIPAM during the synthesis. Nevertheless, on average, a final
NIPAM conversion of 0.985 is reached for every content of MAA considered. The conversion of
MAA during the synthesis is challenging to monitor precisely. The acquired measurements and the
evaluation thereof yield a high variance. Also, nonphysical values of the MAA conversion are derived
(below zero conversion). Still, there is a trend that MAA is consumed much faster than NIPAM.
Furthermore, the conversion of MAA is similar in every case considered.
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Figure 5.11: Conversion during the NIPAM-co-MAA synthesis with 5, 10, and 15 mol% MAA
in the microgel: (a) NIPAM conversion, and (b) MAA conversion.

5.4 Conclusions

Process analytical analysis of multi-component solutions that occur in the turbid synthesis of micro-
gels is challenging, especially when charged species such as MAA occur in dissociated and undisso-
ciated state. Raman spectroscopy is deployed to monitor the synthesis of charged NIPAM-co-MAA
microgels. Applying indirect spectral hard modeling for spectra evaluation resolves the complexi-
ties caused by overlapping spectral peaks from multi-component solutions. The developed analytical
procedure to determine the content of all participating components during the synthesis of charged
microgels enables a sufficent concentration prediction. However, due to the low concentration of
MAA in the system, the MAA prediction during the synthesis remains subject to high variance.
Nevertheless, a detailed insight into the reaction phenomena during the charged microgel synthesis

is enabled.
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6 ldentification of a Dynamic Model of
the N-Vinylcaprolactam-co-Glycidyl
Methacrylate Microgel Synthesis

6.1 Motivation for Modeling of
N-Vinylcaprolactam-co-Glycidyl Methacrylate
Microgel Synthesis

Microgels are crosslinked polymer networks with a reversible stimulus-specific swelling response to
temperature, pH, or ionic strength. Microgels based on N-vinylcaprolactam (VCL) are tempera-
ture responsive and interesting due to their biocompatibility [72]. Incorporating co-monomers into
PVCL microgels allows tuning their functionalities. Glycidyl methacrylate (GMA) is a promising co-
monomer thanks to its reactive epoxy group that is versatile in subsequent reactions. Hence, PVCL
microgels functionalized with GMA experience a wide range of applications [40, 44, 45].

GMA is more reactive than VCL in the co-polymerization leading to the heterogeneous composition
of the resulting microgels, thus, the authors of [152] performed a gradual feeding technique to produce
more homogeneous microgels. Under batch conditions, [153] also showed via high-magnification
scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images that the
microgels inhibit a core-shell structure with a GMA-rich core surrounded by a VCL-rich shell. Due
to the complexity of the reaction network during microgel synthesis, understanding the relationship
between the synthesis conditions and the final composition of the microgels is challenging. Thus,
for designing tailored microgels, detailed reaction models provide insights and assist with developing
microgels with defined monomer distributions.

Previously, Janssen et al. [85] have developed a dynamic and mechanistic kinetic model for the
aqueous microgel synthesis by precipitation polymerization. There, unknown parameter values were
determined via quantum mechanical calculations [85, 154]. The model from Janssen et al. was
simplified by Jung et al. [66] for improved parameter identifiabiliy. To estimate the model parameters,
a combination of quantum mechanical calculations [154] and physical measurements [66] were used.
Later, Schneider et al. [68] adjusted the dynamic model and applied it to predict and guide the
synthesis of microgels based on monomer VCL, co-monomer vinylferrocene (VFc), and crosslinker
N,N’-methylenebisacrylamide (BIS). In contrast to these monomer combinations, parameter values
for the propagation rate coefficients and polymerization enthalpies of GMA/VCL and GMA/BIS
systems in an aqueous solution remain unknown.

In previous work [14], a mechanistic model based on the model developed by Schneider et al. [68]
was build for synthesizing VCL-based microgels functionalized with GMA. For the application to the
VCL/GMA/BIS system, the model structure stayed identical but the parameter values have to be
adjusted. Altogether, the model contains 14 unknown kinetic parameter values. For model identifi-
cation in this chapter, a hybrid approach is pursued. First, parameter values for the propagation rate
coefficients and polymerization enthalpies of the GMA/VCL and GMA /BIS systems in an aqueous
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solution can be computed using transition state theory and quantum mechanical calculations [14].
These parameters account for 12 out of 14 parameters in total. Additionally, experiments with four
different initial compositions and measurements of the enthalpy transfer rate during the synthesis
using a calorimetric device are conducted [14]. Subsequently, the remaining parameter values of the
five most sensitive propagation rate coefficients and the initiation and termination rates are estimated
using the measured enthalpy transfer rate from the experiments. The quantum mechanically calcu-
lated values are incorporated as start values for the parameter estimation. Also, the computed error
bounds from the quantum calculation are added as optimization constraints during the parameter
estimation.

In this chapter, the focus is on a deeper analysis of parameter estimation that incorporate quantum
mechanically calculated parameter values. Unknown parameter values are either set to the quantum
mechanically calculated values or determined in a parameter estimation. In contrast to previous
works that leveraged quantum mechanical computations [85], the present work developes a strategy
to include quantum mechanically calculated values, while handling the arising trade-off between (i)
using all available quantum mechanically calculated values with a significant computational error, and
(17) only estimating parameter values from experimental data, which necessitates high computational
effort. Additionally, an identifiability analysis is conducted. Finally, the fully identified model of the
VCL-co-GMA microgel synthesis is applied to predict feeding strategies for a homogeneous microgel
composition.

6.2 Methods

In the following sections, first the experimental setup for the microgel synthesis monitored via real-
time reaction calorimetry is described in Section 6.2.1. Subsequently, quantum mechanical calcula-
tions to determine propagation rate coefficients are briefly explained in Section 6.2.2. In Section 6.2.3,
the assumptions of the model that is extended in this work is highlighted. Finally, the configurations
for the parameter estimations and the identifiability analysis are explained in Section 6.2.4.

6.2.1 Microgel Synthesis and Real-Time Reaction
Calorimetry

The precipitation polymerization of VCL crosslinked with BIS and functionalized with GMA is an-
alyzed in the following. 2,2’-azobis(2-methylpropionamidine)dihydrochloride (AMPA) is considered
as initiator. The previously measured enthalpy transfer rates during the reaction via real-time reac-
tion calorimetry [14] are used as experimental data. Details on the setup and compositions of the
conducted experiments can be found in previous works [14]. In Table 6.1, the variations between the
experiments used in the current chapter are briefly outlined.

Table 6.1: Synthesis composition for experiments monitored via real-time reaction calorimetry.

Experiment Molar ratio VCL:GMA Molar amount of crosslinker BIS

1 90:10:00 2.0 mol%
2 90:10:00 2.6 mol%
3 93:07:00 2.0mol%
4 95:05:00 2.6 mol%
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6.2.2 Quantum Mechanical Calculations

The propagation rate coefficients of the VCL/GMA/BIS system that were calculated via quantum
chemistry methods [14] are incorporated for the following work. There, conventional transition state
theory was applied to determine propagation rate coefficients. Further, the enthalpies of reaction
were calculated using the Gibbs-Helmholtz equation. Computational details can be found in [14].

6.2.3 Kinetic Model of Microgel Synthesis

The reaction system of the kinetic synthesis model is adapted from Schneider et al. [68] and the
parameter values are changed according to the VCL/GMA /BIS system. The main model assumptions
are briefly summarized in the following. The dispersed system is modeled in a pseudo-homogeneous
phase. The occurring reactions include initiation, propagation, termination, and crosslinking. The
efficiency of the initiator decomposition is assumed to be constant over the course of the synthesis
and is set to 50% [69]. The kinetics of the propagation reactions depend only on the radical at the
terminal end of the chain, and propagation reactions make up for to the enthalpy release. Termination
only occurs due to disproportionation, and the kinetics of termination reactions do not depend on the
terminal end of the active radical chains. The kinetics of the crosslinking reaction equals the kinetics
of a propagation reaction with a BIS monomer.

6.2.4 Parameter Estimation and ldentifiability Analysis

For the parameter estimation and identifiability analysis, the five reaction enthalpy values for the
quantum mechanically calculated propagation including GMA are used without further considera-
tions or treatment in the synthesis model. Then, a sensitivity analysis is performed to identify the
most sensitive propagation rate coefficient (kp) parameters. Subsequently, a parameter estimation is
performed to determine different set of parameter values. For all estimations, the initiator decompo-
sition (kq) and the termination (k) rate coefficients are estimated as they remain unknown after the
quantum mechanical calculations. The conducted estimations are split into the following sets:

1. Estimate all ks with arbitrary start values and bounds

2. Estimate all k,s using the quantum calculations as start values and their error bounds as
constraints

3. Estimate the five most sensitive ks using the quantum calculations as start values and their
error bounds as constraints

4. Insert all ks into the model and only estimate k; and kg

The parameter estimation and the identifiability are conducted in Matlab, similar to [66], using the
presented co-polymerization model and the calorimetric measurements. For part of the estimations,
the calculated propagation rate coefficients act as start values and the calculation uncertainties de-
rived from Gaussian error propagation analysis of the quantum mechanical method’s uncertainty act
as constraints in the optimization problem. For estimation (1) the start values for the propagation
rate coefficients are 10, and the upper and lower bounds are 1072 and 10°, respectively. Within the
identifiability analysis, the feasible parameter set is approximated for each parameter as a box con-
straint. The bounds of the box constraint are determined by solving multiple constrained parameter
estimation problems [66]. By conducting the identifiability analysis, the confidence in the determined
parameter values in the parameter estimation is established.
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6.3 Results and Discussion

The results include the comparison of the propagation rate coefficient values calculated via quantum
mechanically computations with the different parameter estimation configurations in Section 6.3.1.
In addition, the results of the identifiability analysis are also presented in Section 6.3.1. Lastly,
Section 6.3.2 shows process simulations for different feeding strategies of GMA to determine the
optimal settings for a homogeneous GMA distribution within the microgel.

6.3.1 Quantum Mechanically Calculated and Estimated
Kinetic Parameters

The calculated propagation rate coefficients for the VCL/GMA/BIS system in an ideally diluted
aqueous solution at a temperature of 343K are shown in the second column of Table 6.2. The
applied bounds are presented in the third and fourth columns of Table 6.2. Using the optimized
parameter values from estimation (3), the proposed model agrees to 97% on average to the measured
enthalpy transfer rate from the experiments monitored via real-time reaction calorimetry.

The results in Table 6.2 show that the homopolymerizations of GMA and VCL are in the same
order of magnitude when calculated, but the VCL reaction is approximately twice as fast after the
optimization. The most significant reaction is between VCL-radical and GMA. The reaction between
GMA-radical and VCL plays are negligible role in the polymerization system. All reactions consuming
GMA occur relatively fast. Thus, the experimental observation of a GMA-rich microgel core for batch
production fits the calculated findings.

The enthalpy transfer rate simulated via the synthesis model containing the respective parameter
values is shown in Figure 6.1 exemplary for Experiment 3. The parameter sets from estimation (2)
and (3) result in the best fit to the experimental data. Apparently, the estimation (1) with arbitrary
start values and bounds gets stuck in a local minimum indicating the need for deterministic global
optimization. The simulation of estimation (4) only has k, and kg4 as the degrees of freedom and does
not sufficiently follow the experimental trend.

66



6.3 Results and Discussion

"SPUNO( o1} Je sonfeA Iojourered pajeuIryse sajousp

G'18 0871 e Lo OTXT 01 ¢ 0T X1 - [ _low gua] Yy
10T XL6'S ¢ 01XTC'8 ¢ O0IXSFe , 0IXST9 ¢ O0IXI 0T XT - [—s] Py
- - Ras! 01cy 080T 7'al 6¢1 VIND / [eotper Sig

- - A Le0T 819 88070 [ZA0 SIg / reoper YIND

- - L6°L9 Le0T 6°L9 296°0 1’8 SId / 1eorper Sig

- LT 9.6 celL LT (% cve TOA / 1eotper S1g

- 97 v.L0 6G°T G'8¢ G0 97 TOA / [eo1per YIND

- 679 ¢'ST Le0T 67S 8L G¢'q9 VIND / [eo1per YIND

- 00€T LEC €070 0eEV 919 91¢ VIND / [ed1per THA

- 91T €T L'8C xd) 701 898 TOA / Ted1per THA

(%) a,@\ 2do (g) Qv\ ado  (2) av\ ado (1) au\ dQ  punoq redd) punoq Iemor [p]] mu\ oTeD) SyueIORIY]

"SuoI1e|Nd[ed |edlueydaW wnjuenb ay3l Jo Jouid ayl wolj punogq Jamo| pue Jaddn Suipuodsaiod yum suollewilss Jalaweled ay3 ul
(3dQ) paziwndo pue suoneindwod |ediueydsw wniuenb eia ("d]eD)) paie|ndjed Y £pE 38 [;.S; 0w W] s3usIdlyR0d 3ed uoileSedoid 1z g djqel

67



6 Identification of a Dynamic Model of the N-Vinylcaprolactam-co-Glycidyl Methacrylate
Microgel Synthesis
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Figure 6.1: Enthalpy transfer rate for Experiment 3 and the simulations with the estimated
parameter values from estimation (1) to (4).

In Figure 6.2, the result of the identifiability for the estimation with configuration (2) is shown.
For visualization, only the parameters with the most significant variability are shown. Here, all pa-
rameters appear to be sufficiently identifiable except k:pBIS’BIS. Hence, based on the real-time reaction
calorimetry measurements all propagation rate coefficients can be identified except propagation rate
coeffient of the BIS radical / BIS reaction. This finding is similar to previous identifiability studies
considering microgel syntheses with cross-linker BIS [66].

10

1071

10 10°

10

| 4
10 10°
I(pBIS,VCL kpBIS,GMA kpGMA,BIS kpBIS,BIS

Figure 6.2: Identifiability analysis of selected parameters from estimation (2). The x indicates
the optimal parameter value.

6.3.2 Process Simulations for Feeding Strategy

The identified model allows for assessment of feeding strategies. Optimization is conducted by lever-
aging synthesis simulations to find suitable strategies. However, in this context, no advanced com-
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Figure 6.3: Simulation results of different GMA feeding strategies during the microgel synthesis:
(a) Feeding strategy 1:0, all GMA is fed to the reactor, and the dosing flow rate varies. (b)
Feeding strategy 1:1, half of the GMA is in the reactor at the start of the reaction, and half is
fed at different dosing flow rates.

putational optimization methods, e.g., mathematical programming or numerical optimization, are
applied. Therefore, different feeding strategies of GMA to the batch reaction are simulated in the
following to analyze the distribution of functional GMA within the microgel. The focus is on two
aspects, firstly the ratio of GMA initially in the reactor to in the dosing feed and secondly the dosing
flow rate. The simulation includes the composition of Experiment 1 (see Table 6.1) and assumes that
7.5mL of the total water volume is used for dosing. The ratio of GMA fed to GMA in the reactor
varies from 0:1 (all GMA is initially in the reactor) to 1:1 and 1:0 (all GMA is fed to the reactor).
Simultaneously, the dosing flow rate is set to 1.5, 3, and 6 mmols~?.

In Figure 6.3, the results of the simulation scenarios are shown. Here, the combined reaction rate
of GMA is depicted over time. The combined reaction rate comprises all reactions where GMA is
consumed. When assuming monodisperse particle growth, the time of consumption of GMA correlates
to the incorporated position in the microgel. Thus, the combined reaction rate of GMA represents
its composition in the microgel. The progressions of Figure 6.3 indicate that adding all GMA at a
dosing flow of 1.5 mmols ! is likely to achieve a homogeneous composition of GMA in the microgel.

6.4 Conclusions

In this contribution, the precipitation polymerization of microgels based on VCL/GMA/BIS in an
aqueous solution is studied focusing on parameter estimation approaches. It is shown that incorporat-
ing quantum mechanically computed parameter values and their calculation error into the estimation
problem improves the optimization result, while reducing the computational effort of the parameter
estimation. Based on the fully identified synthesis model, it is possibel to derive an improved feeding
strategy of GMA to the batch reaction to achieve a homogeneous GMA composition in the microgels
by testing different scenarios. The proposed hybrid approach of quantum mechanical calculations and
parameter estimation from experimental data shows the potential of integrating theoretical deriva-
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tions and semi-empirical knowledge. Further, this contribution laid the ground to design and optimize
the functionalization of VCL-based microgels with GMA in the future.

70



7/ Dynamic Modeling and ldentification
of Microgel Synthesis with Charged
Domains

Data Repository: The mechanistic model developed in this chapter are published and available for
free download vie RWTH Publications [141].

7.1 Motivation for Modeling of Charged Microgel
Synthesis

By adding functional groups such as carboxylic acids to thermo-responsive microgels, these microgels
are also attributed pH responsiveness [142-145]. Microgels with such dual stimulus swelling response
find applications in drug delivery [33-36], catalysis [42, 43|, sensing [46], and membranes [22]. Tan
et al. [155] present a detailed review of pH-responsive microgel research.

Generally, it is possible to implement anionic (negatively charged) functional groups such as
methacrylic acid (MAA) [143], or acrylic acid (AA) [144], or cationic (positively charged) functional
groups such as amine N-(3-aminopropyl)methacrylamide hydrochloride (APMH) [156], or amine 2-
aminoethylmethacrylate hydrochloride (AEMH) [157] into microgels. Tonic charges potentially allow
the uptake of guest molecules based on electrostatic interactions [18], making pH-responsive micro-
gels a proper material for drug delivery systems. Also, the different conditions of tumor tissue (pH
4.5) and physiological environments (pH 7.4) require pH-responsive drug delivery agents such as mi-
crogels for controlled release [158]. For biomedical applications, the toxicity of cationic particles is
undesired [159, 160]. Thus, implementing anionic co-monomers such as AA or MAA is preferable.
Therefore, the present study focuses on N-isopropylacrylamide (NIPAM)-based cross-linked microgels
functionalized with MAA to represent a relevant case study.

In the past decades, modeling efforts regarding the synthesis of microgels have been presented and
applied [14, 66-68, 76, 83-88]. With regard to the synthesis of NIPAM-BIS microgels cross-linked with
N,N’-methylenebis(acrylamide) (BIS), Hoare et al. [83] derived a solely propagation-based steady-
state terminal co-polymerization model accounting for the simultaneous reaction of four separate
monomers. They applied the model to the synthesis of microgels containing NIPAM, cross-linker,
and up to two functional monomers (among them MAA). To estimate the required reactivity ratios,
they used the Price-Alfrey scheme [89]. Subsequently, Hoare et al. [84] observed a sufficient accuracy
of their model prediction of the chain and radial functional group distribution with experimentally
observed data.

For a complete model representation of the microgel synthesis, kinetic parameter values are crucial.
As the kinetic rates involving carboxylic acids are temperature and pH-dependent, finding a complete
set of coherent parameter values is challenging. Various experimental and theoretical studies regard-
ing the kinetics of the homo- and co-polymerizations of NIPAM, BIS, and MAA are presented in
the literature. However, no set of parameter values for consistent temperature, pH value, and dilute
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aqueous conditions are available. For the system of NIPAM and BIS, Kroger et al. [154] used quan-
tum mechanical calculations to determine the reaction enthalpies. Furthermore, Jung et al. [66, 67]
estimated the kinetic rate coefficients of the NIPAM/BIS system, which were later used by Schneider
et al. [68] in the synthesis model of NIPAM, BIS, and vinylferrocene (VFc). Thus, coherent parameter
values for kinetic rate coefficients and reaction enthalpies for the NIPAM/BIS system are available.

Multiple experimental studies investigated the kinetics of the homopolymerization of aqueous
MAA [161-166]. Recently, Buback et al. [167] reviewed the polymerization kinetics and model-
ing of ionized and non-ionized water-soluble monomers; among the studied monomers was MAA
prominently. For a comprehensive review of propagation and termination rate coefficients regarding
MAA, the reader is therefore directed to the work of Buback et al. [167]. In summary, the studies
analyze the dependence on temperature and solvent [162], and the degree of ionization (which de-
pends on the pH value of the solution) [164, 166]. Further, the propagation rate of MAA depends
strongly on the weight fraction of MAA in the solution. For modeling the homopolymerization of
MAA, a pseudo-co-polymerization of undissociated MAA and its ionized form is mainly applied, as
introduced by Shoaf and Poehlein [161] to allow representing partially ionized MAA polymerization.
Finally, non-ionized MAA at 50°C was chosen by Buback et al. [163] to study the effect that with
lower monomer concentrations, the propagation rate is higher.

Brazel et al. [168] proposed experimentally determined reactivity ratios of NIPAM and MAA
cross-linked with ethylene glycol dimethylacrylate (EGDMA) at 50°C. Regarding the linear co-
polymerization of NIPAM and MAA, Xue et al. [169] calculated the reactivity ratios of NIPAM
and MAA via the extended Kelen-Tiidos method. Their study explicitly omitted the reactivity ratios
involving the cross-linker BIS. Finally, Hoare et al. [84] used the Price-Alfey scheme [89] to calculate
missing parameter values of the synthesis involving NIPAM/BIS/MAA. Although the Price-Alfey
scheme is a good approximation, it does not account for pH variations and does not generate precise
parameter values, as it incorporates vague assumptions. All studies regarding the co-polymerization
of NIPAM and MAA yield significantly different values for the reactivity ratios of the partaking
monomers and even other qualitative trends [168-170]. Hence, the reliability of the reactivity values
is questionable.

Herein, we present a dynamic model of the precipitation polymerization of pH- and thermo-
responsive NIPAM-based microgels functionalized with MAA including pH dependency to predict
the monomer conversion. The model extends previously developed models for the purley thermo-
responsive microgel synthesis [66, 68]. To the authors knowledge, dynamic modeling is applied for
the first time to the polymerization of microgels with charged domains. Moreover, missing reaction
rate coefficients and reaction enthalpies for charged species are calculated by quantum mechanical
computation or determined via parameter estimation based on experimental data from Raman spectra
and real-time calorimetric measurements within this work.

The remaining chapter is structured as follows: Section 7.2 outlines the methods, encompassing
experimental setup and settings and process analytical techniques. In Section 7.3, the modeling
framework, structure of the quantum mechanical calculations, and parameter estimation approaches
are introduced, outlining both theoretical assumptions and computational methods. Section 7.4
presents the results with respect to the evaluation of Raman monitoring, quantum mechanically
calculated parameter values, and parameter estimation. Finally, Section 7.5 summarizes all findings,
drawing conclusions and suggesting future research directions.
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7.2 Experimental Microgel Synthesis with
Real-Time Calorimetry

For real-time calorimetric measurements, microgel synthesis is carried out in a reaction calorimeter
RCl1e from Mettler Toledo using a 500 mL 3-wall AP01-0.5-RT'Cal reactor. The reactor is equipped
with a Hastelloy stirrer, a baffle, and a Turbido turbidity probe from Solvias. The measurements
are carried out in the isothermal mode, which means that the desired reaction temperature is set
at a constant value, and the jacket temperature is changed automatically, such that the reaction
temperature stays at the desired value. All experiments are performed at 70°C and ambient pressure.
The reactor is filled with 0.185 L deionized water, the monomers NIPAM and MAA, the cross-linker
BIS, and the surfactant sodium dodecyl sulfate (SDS) according to the previously stated compositions
found in Table 5.1. The solution is stirred at 300 rpm, heated to 70°C, and subsequently degassed
with nitrogen for 30 minutes. To generate a stable baseline, the solution is equilibrated for at least
60 minutes. The addition of dry potassium persulfate (KPS) initiates the reaction, and the synthesis
lasts for 120 minutes. The experiments for the molar fractions of 5, 10, and 15mol% are repeated
three times. The software iControl RC1e 5.0 is used for data evaluation.

7.3 Dynamic Model of Charged-Microgel
Synthesis and Parameter Determination

The structure and assumptions of the developed kinetic synthesis model of the NIPAM-co-MAA
polymerization is presented in Section 7.3.1. Next, Section 7.3.2 describes the calculation of missing
parameter values for the reaction enthalpies and the reaction rates via quantum mechanical calcu-
lations. Finally, Section 7.3.3 reports the setup of the parameter estimation problem based on the
quantum mechanical calculations and experimental data.

7.3.1 Kinetic Synthesis Model

The presented dynamic model extends previous works on microgel synthesis modeling [66-69]. The
assumptions derived therein are essentially:

e The dispersed system can be approximated by a pseudo-homogeneous phase.

o The kinetics of the initiator reaction are the same as the propagation reaction kinetics of an
active polymer chain with the main monomer as the end type and the main monomer.

o The kinetics of the propagation reactions depend only on the type of radical at the end of the
chain.

o The kinetics of the cross-linking reaction are as fast as the kinetics of a propagation reaction
with a BIS monomer.

o The kinetics of termination reactions are diffusion-limited; thus, they do not depend on the
terminal end of the active radical chains.

o Chain transfer reactions are negligible.

o The system is strongly diluted, which implies, that the volume, total mass, and heat capacity
of the reactor content are equal to the corresponding properties of the solvent.
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7 Dynamic Modeling and Identification of Microgel Synthesis with Charged Domains

Table 7.1: Reaction mechanism with associated reaction rate coefficients (k,,,), where m is the
type of reaction and the partaking reactants. The indices ¢ and j describe the reactants as NIPAM
i,7=1, BIS 4,7 =2 MAA 4,5 =3, and MAA" i, = 3d. PDB stands for pending double bond,
and X denotes a completed cross-link.

Type of reaction Mechanism
kd
Decomposition I —2fRY
kplj
Chain initiation RY + M; — R}

kpij
Propagation of monomer (i,j={1,3,3d})  R}+M; — R?H
kpa;
Ry +M; — R;LH
kpic
Propagation of cross-linker (4,7 ={1,3,3d}) R+ M, o, RgJLfl +PDB

kp22

R% +M, — R + PDB

s

Cross-linking R” + PDB —— R 4+ X
kt

Termination R +R™ — P"+P™

The model presented in the current study includes the decomposition of the initiator, the propaga-
tion reactions between an active radical chain and the monomers, the cross-linking reaction between
a pendant double bond (PDB) and an active radical chain, and a termination reaction between two
active radical chains. The reaction system is shown in Table 7.1. Here, k,,, (in m? mol ! s~1) generally
represents the reaction rate coefficient in each type of reaction m.

Further assumptions are included regarding the functional co-monomer MAA:

» No secondary reactions such as backbiting occur with MAA polymerization [165, 166].

o The chain transfer to monomer MAA is negligible, as the constant Ci, ,,on = k"kﬂ =5.37x
’ P

10~ [165] indicates that the kinetic rate of the transfer reaction is five orders of magnitude
smaller than the propagation rate of MAA.

e The initiator efficiency is assumed to be constant over the course of the reaction, similarly to
previous studies [69, 171, 172].

The kinetic model based on the listed assumptions is presented in Equations (7.1a) to (7.1g).
Generally, the kinetic model equations presented by Jung et al. [66, 67] are extended to account for
introducing the functional monomers MAA and its dissociated state MAA™. The newly arising model
equations are presented below, while the full model description is reported in Appendix B.2. Here,
the time dependence (t) is omitted for improved readability.

Eq. (7.1a) describes the initiator decomposition rate kq in form of the Arrhenius expression with
as the

ideal gas constant (8.3145] mol ! K1), and E (in J molfl) as the activation energy. The initiator

kqo (in s1) as the pre-exponential factor, T (in K) as the temperature in the reactor, Ry,

decomposition depends on the temperature of the solution, while the pH dependency is negligible.

This assumption is based on the insignificant change at 80°C from kg = 6.9 x 1075571 at pH 7 to
kq=9.2x1075s71 at pH 13 [173]. Further, Lin et al. [174] could not observe a significant change in

74



7.3 Dynamic Model of Charged-Microgel Synthesis and Parameter Determination

polymerization rate with changing pH value for the solution polymerization of acrylamide using KPS
as an initiator. Similarly, Preusser et al. [172] omitted the pH dependency of the initiator KPS in their
kinetic model for the acrylamide polymerization. Further, the rate of propagation of the initiator
radicals is equal to the rate of initiation in Equation (7.1b). Here, ¢; represents the concentration
(in molm~3) of the respective component, f is the initiator efficiency, and R; (in molm—3s~!) is the
reaction rate.

A mass balance equation is derived for the total mass of MAA, including dissociated (M3d) and
not dissociated MAA (M3) in Equation (7.1c). This pseudo-co-polymerization of dissociated and not
dissociated MAA approach was originally introduced by Shoaf and Poehlein [161]. In the presented
model, the amount of MAA radicals is balanced in Equation (7.1d). In Equation (7.1e), the total
amount of MAA (dissociated and not dissociated) in the system is then calculated. The amount of

diss

dissociated MAA is calculated via the dissociation degree a«®*® in Equation (7.1f). Here, a9 depends
on the pH value of the solution and the pKa value of MAA and is calculated in Equation (7.1g).
Furthermore, an equilibrium of dissociation is assumed. As MAA has a pKa value of 4.65 [151],
MAA is considered a weak acid. Furthermore, the concentration of MAA in the solution is very little

(see Table 5.1). Thus, Ka = % holds for the synthesis system. With the definition pH =

—log[H30%] and the correlation Ka = 107PX2 Equation (7.1g) is derived. Previously, it was found
that the pKa value changes during the polymerization of MAA. For the pKa value of polymerized
MAA, a value of 4.8 was reported by Singh et al. [36]. Buback et al. [167] explain the difference in
pKa value of the polymerized MAA due to the “exchange of hydrogen cations as well as counterions
during polymerization”. For the kinetic model of the NIPAM-BIS-MAA synthesis in this chapter, the
change in pKa is considered negligible, as the resulting model is insensitive to changes in the pKa
parameter values.
The derived model equations include:

FE
kq =kq - exp (— R -T) (7.1a)
¢r =2fkqc; — Rpy — Rry — Rr3 — RRraas (7.1b)
En3,tot = — Rp13 — Rpos — Rz — Rpyzaz — Rpisa — Rpasa
— R334 — Rpsasas (7.1c)

CR3,total =1R3 + RRr3q T Bp13 + Rz + Bhi3q + Bposa

- Rp31 - Rp32 - Rp3d1 - Rp3d2 - kp32 CR3CPDB

— kp3d2Cr3acppB — Bz — Risas (7.1d)

M3, total =CM3 T CM3d> (7.1e)
CM3d —CM3,total * adiss, (7.1f)
odiss :1O—pKa+pH. (7'1g)

Here, R,;; is defined as kp;;cg;en; and Ryj as kpjjcgey;. Furthermore, Ry; is computed as
ktcRi . (QCRi 4 Zch) Wlth j 7& 7.

7.3.2 Quantum Mechanical Calculations of Polymerization
Enthalpies and Reaction Rates

To calculate parameter values for reaction rate coefficients k.., we use conventional transition state

ptj>
(TS) theory described in our previous works [14, 154]. We start by splitting the reaction rate coefficient
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into two contributions, the gas and solution phase parts, which allows for separate calculations of
gas-phase geometries and energies first, followed by incorporating solvation effects.

The gas phase reaction rates constants are obtained using the TAMkin software [175] with the
rigid rotor harmonic oscillator (RRHO) approximation and Eckart tunneling correction. The molec-
ular geometric structures and frequencies of TSs, reactants, and products are computed using
the B3LYPD3/TZVP [176, 177] level of theory with an ultrafine grid and D3BJ [178] dispersion
correction using GAUSSIANI16 [179], while the single-point energy calculations are performed at
the B2PLYPD3/aug-cc-pVTZ level of theory using TURBOMOLE [180]. To investigate a wide
range of TS conformations, dihedral scans around the new formed bond were conducted at the
B3LYPD3/TZVP level of theory. Furthermore, intrinsic reaction coordinate (IRC) calculations were
carried out at the BSALYPD3BJ/TZVP level to validate the connectivity of transition states between
the desired reactants and products. For each reaction, all identified conformers of transition states
are taken into consideration, and the final reaction rate is then obtained as the sum of the individual
reaction rates.

To account for solvation effects, we estimate the solvation Gibbs free energies utilizing COSMO-
RS theory [181-183]. Reactant and product geometries are optimized using COSMOconf [184], while
transition state geometries are optimized using TURBOMOLE [180] at the BP-TZVP-COSMO level
of theory. Once the geometries are determined, the solvation Gibbs free energies are calculated using
COSMOtherm [185] at the reference state of a pure ideal gas at a concentration of 1molL ™1, with
the solute dissolved at infinite dilution and a reference concentration of 1 molL 1.

Similarly to reaction rates, the reaction enthalpies are computed separately for the gas phase at
B2PLYPD3BJ/aug-cc-pVTZ//B3LYPD3BJ/TZVP level of theory and solution phase at BP-TZVP-
COSMO level of theory. The gas phase reaction enthalpies are calculated using TAMkin [175],
and the solvation Gibbs free energies are obtained using COSMOtherm [185]. To approximate the
derivative in the Gibbs-Helmholtz equation, we employ a first-order central finite difference scheme
with a temperature step of 1 K. Finally, we use the Gibbs-Helmholtz equation, combining both gas
and solution phase contributions, to calculate the missing parameter values for reaction enthalpies
AHg,;-

The method of Gaussian error propagation is employed to establish the confidence intervals for the
AHp;; values. A detailed description of this methodology can be found in earlier studies [14, 154].
The method is based on the assumption that there are two primary independent contributions to the
error, coming from the gas and solution calculations.

7.3.3 Determination of Parameter Values of the Dynamic
Model

The model parameters of the proposed model (see Equations (7.1a) to (7.1g)) include kg4 o, E, f, pKa
of MAA, ki,
are outlined. The values are either derived from the literature, calculated via quantum mechanical

AHpg;;, and k. In the following paragraphs, the parameter values used in the model

calculations (Section 7.3.2), or estimated via regression (parameter estimation). For the estimation,
the upper and lower bounds and the start values of the parameters in the estimation problem are
highlighted.

The decomposition of the initiator KPS was studied extensively by Costa et al. [186]. Their
work reports values for the decomposition rate coeflicient ky with In (kd,o) =59+£8 for kg in h—!
and E = 176422 kJmol . These parameter values are incorporated into the kinetic model for
Equation (7.1a). For the initiator efficiency f, a value of 0.8 was previously proposed by Preusser et

al. [172].
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Table 7.2: Polymerization enthalpies A Hy;,; and kinetic rate coefficients k ,;; of the NIPAM/BIS
system at 70°C [68].

Reaction AHg,; (kJmol ) [154] ky;; (m? mol 's71) [68]
NIPAM radical / NIPAM -87.5 1.69
NIPAM radical / BIS -89.3 1.86
BIS radical / BIS -77.8 338
BIS radical / NIPAM -81.7 42.3

For the NIPAM/BIS system, parameter values for the kinetic rate coefficient and polymerization
enthalpies are provided by Schneider et al. [68]. The system was extensively investigated in the past,
and parameter values via quantum chemistry calculations [154] and parameter estimation [66] are
generated. The parameter values are listed in Table 7.2 for a reactor temperature of 70°C.

The pKa value of MAA is well studied; thus, it is set to 4.65 [151] in the synthesis model. However,
as stated previously, no reliable parameter values for the propagation reactions involving MAA (or
even MAA™) are available. The propagation rates of the NIPAM/MAA system have been analyzed
by Ponratnam et al. [170], Brazel et al. [168], Xue et al. [169], and Hoare et al. [83, 84]. The provided
values in the literature diverge significantly, as exemplified by the reactivity ratios presented in
Table 7.3. Note that Ponratnam et al. [170] also provide reactivity ratios of the NIPAM/MAA
system at different pH values. Here, the reactivity ratios of the NIPAM/MAA system are defined as

k
PNIPAM,NIPAM
7"1 = k s (72&)
PNIPAM,MAA
koMAA MAA
T2 = —pas,vanh (72b)

KpMAA NIPAM

Due to the insufficient certainty of the parameter values regarding the NIPAM/MAA system, the
literature values are not included in the proposed model.

The propagation rates of (non-)ionized MAA homopolymerization are studied extensively in the
literature [163, 166, 167]. However, the derived parameter values for the MAA homopolymerization
are not applicable for the microgel synthesis considered here, as the temperature and concentration
range differ significantly.

Table 7.3: Reactivity ratios for the NIPAM/MAA system presented in the literature.

Reference Ty Ty
Ponratnam et al. [170] 0.20 2.8
Brazel et al. [168] 0.891 1.128
Xue et al. [169] 10.2+£1.4 0.014 0.03

The termination rate k, in the homopolymerization of MAA has been studied experimentally in the
past [163]. For the MAA homopolymerization, Buback et al. [167] found that k, strongly depends on
the degree of ionization. However, as previously stated, the presented model relies on the assumption
of diffusion-limited termination; thus, the pH dependency is not included in the termination rate
coefficient but influences the reaction outcome via the shift in equilibrium between MAA and MAA~
(see Equation (7.1g)). Also, due to the assumption of diffusion-limitation, it is impossible to measure
or explicitly calculate the termination rate k; via quantum mechanical calculations. Hence, for
the parameter estimation, arbitrary and relatively large bounds of 1.00 x 107° m? mol 's~! and
1.00 x 10° m3mol 's~! and an initial value of 8.7967 m3mol 's~! based on previously estimated

values for k; in the context of the NIPAM/BIS synthesis [68] are included.
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For the parameter estimation, the results of quantum mechanical calculations are incorporated
to determine the parameter values of AHp;; and k;;, as described in Section 7.3.2. Generally,
polymerization models have multiple parameters which cannot be determined using the available
measurements; the reader is referred to previous publications [66, 187] for discussion of this non-
identifiable parameter estimation. Therefore, reducing the amount of parameter values to be esti-
mated is beneficial. The reduction is achieved in terms of incorporation of parameter values of high
certainty (e.g., well-studied parameters from the literature) or by using suitable measurement data
to estimate sub-sets of the parameters. Furthermore, good start values and reasonable parameter
bounds for the estimation problem are crucial. As shown in previous work [9, 14], it is beneficial
to include parameters calculated via quantum mechanical calculations and the respective calculation
confidence intervals as bounds in the parameter estimation to improve the fit between simulation and
experiment.
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(1) Sensitivity analysis

Set parameters with negligible
influence to quantum
mechanically calculated values

(2) Model suitability:
Parameter estimation based on Xp
to determine k;, f, kp;, and AHy;

(3) Parameter estimation
based on WNIPAM> WMAA- and ZR
to determine k;

(4) Parameter estimation based on Use optimal
wnipam and wyaa to determine ki, f, parameter values for
kq, kp; with participating MAA AHy; as start values

Use optimal
parameter values as
start values

(5) Parameter estimation based on
wnipam and wyiaa to determine k;, f,
and kpif

Use optimal
parameter values for
ky; as start values

(6) Parameter estimation based on
WNIPAM> WMAA, and ZR to determine |€=—
kt,f; kpija and AHRij

Figure 7.1: Schematic diagram of the conducted steps for estimating parameter values.
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The procedure for including the quantum mechanically calculated values and estimating missing
values meaningfully is outlined in Figure 7.1. The proposed procedure allows meaningful integration of
well-studied and quantum mechanically calculated parameter values while deriving appropriate start
values for the parameter estimation optimization problem. First, in Step 1, the parameter values that
affect the model outcome most significantly are determined in a sensitivity analysis (Section 7.4.2.1).
Propagation rates and enthalpies of polymerization that have a minor influence on the model outcome
are set directly to the quantum mechanically calculated values. To assess the suitability of the
proposed model structure to represent the experimental data (Step 2), a parameter estimation study
is conducted, allowing all parameter values to change to suit the calorimetric measurements of the
enthalpy transfer rate Ly (Section 7.4.2.2). For this suitability test,the parameter values for each
experimental setting (5, 10, and 15 mol% content of MAA in the microgel) are estimated individually.

After the suitability of the model structure is established, a benchmark is determined in Step
3 by setting all parameters to the quantum mechanically determined values and solely estimating
the remaining parameter k;. For that, k; is estimated first based on each experimental setting
individually (5, 10, and 15 mol% MAA). After that, the results of the individual estimations are used
for an estimation based on all experimental settings combined.

Next, the experimental data regarding the weight fractions of NIPAM and MAA (wypay and
wyaa) during the synthesis are used to estimate f, kpij of all reactions involving MAA, and k;
in Step 4 (Section 7.4.2.3). The upper and lower bounds of the k;;
mechanically calculated values and their respective uncertainty interval. Note that although Preusser
et al. [172] provide a suitable value for f, they also reference the works of Kim et al. [171] suggesting
to decrease the initiator efficiency of KPS to 0.2. Thus, the proposed values are included as upper
and lower bound in the parameter estimation problem. In addition, the parameter values of the
intensively studied NIPAM/BIS system are set to the values presented in Table 7.2 to reduce the
number of parameter values to be estimated in Step 4.

are based on the quantum

In Step 5, the parameter values for &y, f, and k,,;; are then estimated based on wypan and wyaa
for each experimental setting individually (Section 7.4.2.3). The start values are either derived from
the previous estimation step or taken from the quantum mechanically calculated values. Next, the
parameter values from the individual estimation are used as start values for the estimation based on
all available experimental settings combined.

Finally, the outcome of the previously described estimation based on wypapy and wypa a4 and the
model suitability study based on Ly are combined in Step 6 (Section 7.4.2.4). The previously derived
optimal parameter values serve as starting points in the estimation. Based on all measurements, k;,
[y kpij» and AHg,; are estimated.

Mathematically, the problem formulation of the parameter estimation in all cases is expressed as
the weighted residual between model predictions and available measurements:

Nmeas Nt
1

min Y Y | (1p) — 2 (1) (7.3)
pe i=1 j=1 ,j

jneas (tj) is a measurement of all available measurements N™ e.g.. Lr, WnpaM OF WhAA

with respective standard deviations s; ; at times t; € [to,t;] with j=1,..., N* (total number of dis-

Here, z

fred and depend on the

model parameters p. For the parameter estimation, previously developed framework implemented in
MATLAB [66] is used. Within this framework, the dynamic optimization tool DyOS [188] is used
to integrate the system of differential-algebraic equations to compute zfred. Specifically, the inte-
grator NIXE [189] is applied with 1 x 107¢ absolute and relative tolerance. The synthesis model is

crete time points). The model predictions at times t; are symbolized by z

implemented in the software Dymola [190] and is incorporated in DyOS as a functional mock-up unit
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(FMU) [191]. By minimizing the weighted residual between the measurements and model (Equa-
tion (7.3)), an optimal set of parameter values is determined. This dynamic optimization problem
involves a highly nonlinear synthesis model and multiple constraints on the parameter values. There-
fore, the problem becomes challenging to solve. Furthermore, global optimization is essential to en-
sure optimal parameter values are found, providing the best alignment of simulated and experimental
outcomes. The optimization problem is solved globally by incorporating the enhanced scatter-search
method implemented in the open-source software for dynamic optimization MEIGO [192], similar to
previous works [66]. In MEIGO, the dynamic hill climbing method [193] is implemented as a local
solver. Altogether, the MEIGO-generated solutions are global but non-deterministic. Thus, global
convergence is not secured but by allowing longer CPU times the likelihood of global optimality
increases.

7.4 Results and Discussion

The results comprise the parameter values calculated via quantum mechanical calculations (Sec-
tion 7.4.1) and the parameter estimation results (Section 7.4.2). The full model and the data gathered
within this Chapter are published with open access [141].

7.4.1 Reaction Enthalpies and Rate Coefficients Calculated
via Quantum Mechanical Calculations

Table 7.4 shows the values for reaction enthalpies and kinetic rate coeflicients calculated via quan-
tum mechanical computations. For the reaction enthalpies where only neutral molecules are in-
volved, the total error is estimated to be are determined to be 3.49kJ mol ! after combining the
3.26kJmol ' [194] for the liquid phase and 1.25 kJmol ' [195] for the gas phase (see Table 7.5).
Regarding charged molecules, the total error is estimated to be 10.16 kJ mol culminating the un-
certainties 3.26kJmol ' in the gas phase (assuming the same value from the neutral molecule in
the gas phase) and 9.62kJ mol [196] in the liquid phase. For the kinetic rate coefficients where
only neutral molecules are involved, the determined factor of the uncertainty interval is 8.379 at
temperature 343K [14, 154, 197]. This factor is estimated after combining the uncertainty of the
solvation free energies predicted with COSMO-RS 1.25kJ mol ! [194] and of the gas phase energies
predicted at double hybrid density functional theory (DFT) methods 3.26kJmol " [195]. In case
of the reactions where charged species are involved, the factor is estimated at 478.5 since the error
contribution of the solvation free energies is 9.62 kJmol ' [196].

Table 7.4 reveals that the absolute polymerization enthalpy values of reactions including MAA-
are smaller than for not dissociated MAA except for the reaction of an MAA™ with either species.
Furthermore, all reactions including MAA™ have propagation rate coefficients in the order of magni-
tude between 1 x 107° to 1 x 10722 and can thus be considered rather insignificant. Due to the slow
reaction kinetics of MAA~, the reaction of undissociated MAA is more likely to occur. The highest
reaction rate coefficients are for MAA with a radical NIPAM or BIS end with 4.08 x 101 m3mol 's~!
and 1.56 m3mol s~1, respectively.

7.4.2 Parameter Estimation

From the quantum mechanical calculations in Section 7.4.1, it is derived that the propagation rate of
the reaction between MAA~ and another MA A~ molecule is extremely slow (1.16 x 10720 molm 357!,
see Table 7.4). Therefore, the reaction is considered negligible for the kinetic model and parameter
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7 Dynamic Modeling and Identification of Microgel Synthesis with Charged Domains

Table 7.4: Polymerization enthalpies and propagation rate coefficients at the B2PLYPD3BJ/aug-
cc-pVTZ//B3LYPD3BJ/TZVP and BP-TZVP-COSMO level of theory in infinite diluted aqueous
solution at T=343 K.

Reaction AHg,; (kJmol ") kyi; (m? mol " s71)

MAA radical / BIS -57.3 + 3.49 3.54 x 1072
MAA radical / MAA -63.7 + 3.49 5.64x 107t
MAA radical / MAA" -27.4 4+ 10.16 6.48 x 10710
MAA radical / NIPAM -57.7 + 3.49 1.21 x 1071
MAA- radical / BIS -16.2 + 3.49 1.08 x 1077
MAA- radical / MAA 37 + 3.49 1.34x 1076
MAA- radical / MAA" -65.8 + 10.16 1.16 x 10720
MAA- radical / NIPAM -42.9 + 10.16 1.03x 1077
NIPAM radical / MAA -85.8 + 3.49 4.08 x 10"
NIPAM radical / MAA- -31.2 + 10.16 3.76 x 1078
BIS radical / MAA -76.5 + 3.49 1.56
BIS radical / MAA- -27.5 + 10.16 7.12x107°
NIPAM radical / BIS -89.3 + 3.49 1.03 x 103
NIPAM radical / NIPAM 87,5 + 3.49 5.99 x 102
BIS radical / NIPAM -81.7 + 3.49 9.99
BIS radical / BIS -77.8 + 3.49 8.10

estimation. Furthermore, the experimental analysis indicates that the pH value changes significantly
during the reaction and can not be considered constant. The in-line pH measurements and the
resulting dissociation degree during the synthesis of charged NIPAM-co-MAA microgels are shown
in Appendix B.1. The varying measured pH values are included as piecewise constant input to the
model for the parameter estimation.

7.4.2.1 Sensitivity Analysis

The sensitivity analysis of the parameter values in the model reveals that the propagation rate coef-
ficients and the polymerization enthalpies involving the dissociated MAA exhibit a negligible impact
on the model predictions (see Appendix B.3). This finding is attributed to the low concentration
of dissociated MAA under the studied conditions. Consequently, only the parameters without the
participation of dissociated MAA are included in the parameter estimation study. In the subsequent
estimations, the propagation rate coefficient and polymerization enthalpy parameter values, including
dissociated MAA, are fixed to the value calculated via quantum mechanical methods (see Table 7.4).

Table 7.5: Error of polymerization enthalpies.

Error of AHg;;
neutral Ref. charged Ref.

gas 326 [198] 3.26%  [198]
liquid  1.25 [194]  9.62  [196]
3.49 10.16

* Assuming error in gas phase is the same for gas and liquid conditions.
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7.4 Results and Discussion

7.4.2.2 Model Suitability

The model suitability study reveals that the model structure can cover the progression of the en-
thalpy transfer rate during the synthesis (see Figure 7.2). The underlying optimal parameter values
are tabulated in Appendix B.4.1. For the suitability analysis, all parameter values (k, kq, f, all

propagation rate coefficients k_.. and polymerization enthalpies AHRZ-j excluding dissociated MAA)

7
are allowed to change. Note fc)hjat the parameter bounds for AHypayvntpam and AHgppq prg have
to be adjusted to allow a suitable fit (see Appendix B.4.1). Further, the parameter estimation is
conducted solely based on the enthalpy transfer rates Xg, as this progression is more challenging to
cover than the weight fractions of the monomers. In the process, each experimental setting (5, 10,
or 15mol%) is individually used in the estimation. The resulting fit of experimentally and computa-
tionally determined Xy indicates that the model structure can cover the general trends qualitatively
and quantitatively with adjusted parameter values. Furthermore, the experimental Xy progressions
(see Figure 7.2) reveal that with increasing MAA content in the synthesis, the second peak in time

and the overall enthalpy transfer diminish.
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Figure 7.2: Simulation and experimental results for the synthesis of microgels with 5 mol% to
15 mol% MAA content.

7.4.2.3 Estimation Based on Weight Fractions

The available measurements are split and only the weight fraction predictions of NIPAM and MAA
are used for estimating kinetic rates in the subsequent studies. The parameter values for each experi-
mental setup are estimated first individually and then for all experiments together. Note that due to
the significant difference in quantum mechanically calculated parameter values for the NIPAM /BIS
system in this work and previous works [68], the upper and lower bounds for the respective parame-
ter values are increased for the parameter estimations here. Furthermore, the conducted parameter
estimation study in Step 4 serves for the determination of suitable start values exclusively and is not
elaborated on in detail here.

When estimating the parameter values based on each experimental setup (5mol% to 15mol%
of MAA in the microgel) individually (see Figure 7.3), the resulting fit is appropriate. Also, when
estimating based on all experimental setups combined (see Figure 7.4 for estimation with start values
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7 Dynamic Modeling and Identification of Microgel Synthesis with Charged Domains

from the 10 mol% individual estimation, or Appendix B.4.3 for the remaining cases) the fit is satisfy-
ing. Note that for the combined case, different estimation runs are conducted by changing the start
values of the estimation to the values obtained in the estimation of each individual setup. Although
the allowed CPU time is set to 200000s, the estimated optimal parameter values differ slightly de-
pending on the start values incorporated (see Appendix Table B.5). Furthermore, Figures 7.3(b) and
7.4(b) reveal that the model prediction lacks to cover the progression of wyyaa during the 5mol%
MAA microgel synthesis. The small amount of MAA present during this synthesis setting complicates
the Raman monitoring (as indicated by the high measurement standard deviation in Figure 5.11) and
hinders a better fit. Thus, although the fit of the experiment and simulation does not fully agree, the

model prediction is considered sufficient.
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Figure 7.3: Results of estimation using only the weight fractions and estimating based on each

experiment individually.
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Figure 7.4: Results of estimation using only the weight fractions and estimating based on all
experiments together, using the results of the individual estimation with 10 mol% MAA as the
start values.

7.4.2.4 Estimation Based on Enthalpy Transfer Rates and Weight
Fractions

The polymerization enthalpies and kinetic rate coefficients are estimated within the bounds obtained
by the quantum mechanical calculations (see Section 7.4.1). Exceptions are the reaction enthalpies
of NIPAM radical / NIPAM and BIS radical / BIS, as in the suitability analysis it was determined
that the bounds must be adapted (see Section 7.4.2.2). Also, the bounds on the propagation rate
coefficient of the NIPAM/BIS system are adjusted as the kinetic rates from different studies diverge
significantly. The numeric values for all parameter bounds are included in Table 7.6. The initial
values for the kinetic rate coefficients are taken from the results of the estimation based on the weight
fractions altogether (see Section 7.4.2.3). For the polymerization enthalpies, the initial values are
taken from the suitability study.

Figure 7.5 presents the results of the estimation based on the measured enthalpy transfer rates
and weight fractions, using the results of the previous estimation that used start values of 10 wt%
(figures showing the results for the remaining start values are shown in Appendix B.4.4). The deter-
mined optimal parameter values for all start values are presented in Table 7.6. In comparison, the
experimental data is shown, and the result of the estimation when only & is estimated, and all other
parameter values are taken from quantum mechanical calculations or the literature. The resulting
progressions in Figure 7.5 indicate that by using the error estimates from the quantum mechanical
calculations, the fit can be significantly improved compared to the benchmark case (indicated by
ref.). Especially the enthalpy transfer rate can not be sufficiently covered when only allowing k; to
change, as is demonstrated in Figure 7.5(c). The model is capable of predicting the progression of
the enthalpy transfer rate during the microgel synthesis with 5mol% MAA accurately. However, for
the synthesis with higher amounts of MAA (10 and 15 mol%), the model over-predicts the enthalpy
transfer rates at higher reaction times.
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7 Dynamic Modeling and Identification of Microgel Synthesis with Charged Domains

Table 7.6: Parameter estimation setup and optimal parameter values for estimation based on
enthalpy transfer rate and weight fraction measurements combined from all experimental setups
for the synthesis of microgels containing 5 mol% to 15 mol% MAA. Termination rate coefficient
and propagation rate coefficients are provided in [m3molts?].

Optimization setup Optimal parameter values
Parameter Lower Upper Start value Start value Start value
bound bound 5mol% 10 mol% 15 mol%

ky 1.00E-05 1.00E+05 2.26E-01 2.29E-01 2.29E-01
f 2.00E-01  8.00E-01 2.18E-01 2.15E-01 2.16E-01
Propagation rate coefficients £, ;:

NIPAM radical / MAA 4.87E+00 3.42E+4+02  8.52E4+00 8.63E+00  8.63E400
BIS radical / MAA 1.86E-01 1.31E+01 1.86E-01 1.86E-01 1.86E-01
MAA radical / NIPAM 1.44E-02 1.01E+00 1.79E-01 1.81E-01 1.81E-01
MAA radical / BIS 4.22E-03  2.97E-01 2.97E-01 2.97E-01 2.97E-01
MAA radical / MAA 6.73E-02  4.73E400 6.73E-02 6.73E-02 6.73E-02
BIS radical / BIS 9.67E-01 2.83E403 9.67E-01 9.67E-01 9.67E-01
BIS radical / NIPAM 1.19E400 3.54E+02  3.54E+02  3.54E+02  3.54E+02
NIPAM radical / BIS 2.22E-01 8.63E+4+03  6.35E+4+01 6.43E+01  6.43E+01
NIPAM radical / NIPAM 2.02E-01 5.02E+403 8.78E-01 8.89E-01 8.89E-01
Polymerization enthalpies AHp;;:

MAA radical / MAA 6.02E+04 6.72E4+04 6.72E404 6.72E4+04  6.72E+04
NIPAM radical / MAA 8.23E+04 8.93E+04 8.23E4+04 8.23E4+04  8.23E+404
MAA radical / NIPAM 542E+04 6.12E+04  5.42E404  5.42E404  5.42E+404
BIS radical / MAA 7.30E+04 8.00E+04 8.00E4+04 8.00E4+04  8.00E+404
MAA radical / BIS 5.38E+04 6.08E+04 6.08E4+04 6.08E4+04  6.08E+404
BIS radical / BIS 743E+04 9.13E+04  9.13E4+04  9.13E404  9.13E+404
BIS radical / NIPAM 7.82E4+04 8.52E+04  8.52E+4+04  8.52E+04  8.52E404
NIPAM radical / BIS 8.58E+04 9.28E+04  9.28E4+04  9.28E4+04  9.28E+04
NIPAM radical / NIPAM 5.38E+04 9.10E4+04 6.10E404 6.10E404  6.10E404

Notably, during parameter estimation, the parameter values for the polymerization enthalpies all
reach the allowable bounds except for the NIPAM radical / NIPAM reaction. Together with the low
sensitivity of the model overall concerning the polymerization enthalpies, this phenomenon indicates
that the identifiability of these parameter values is deficient. Furthermore, the initiator efficiency is
relatively low, with values around 0.22. A closer analysis of the derived propagation rate coefficients
is presented in the following Section 7.4.2.5, including the comparison to literature values.
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Figure 7.5: Results of estimation using the weight fraction and enthalpy transfer measurements
and estimating based on all experiment together. Using the start values from estimation based
on 10 mol% MAA experiment start values.
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7.4.2.5 Comparison to Literature Reactivity Values

When calculating the reactivity ratios for the NIPAM/MAA system based on Equations (7.2a)
and (7.2b), the values 7y =0.74 and ry = 1.24 agree the most with the values proposed by Brazel
et al. [168] (see Table 7.3). Thus, MAA will be favored in comparison to NIPAM during the poly-
merization. Furthermore, now the reactivity ratios can be calculated also for the BIS-MAA system.
The reactivity ratios for the BIS-MAA system yield ry = 1.14 and ro = 1.11. Because of the similar
reactivity ratios, MAA and BIS will be incorporated equally during the reaction.

7.5 Conclusions

This chapter provides valuable insights into the synthesis of charged microgels through a compre-
hensive approach of experimental and modeling studies. A dynamic synthesis model is extended to
account for the pH dependence of the reaction kinetics. Combining experimental approaches and
quantum mechanical computations allows estimating unknown parameter values based on the de-
rived synthesis model. The systematic approach provides clariyfing insight into the reactivity ratios
of NIPAM, MAA, and BIS, improving the system knowledge significantly.

Furthermore, the developed computational model presents a robust framework for predicting and
optimizing the performance of charged microgels in diverse scenarios, paving the way for designing
more efficient and tailored microgel-based systems for innovative applications, e.g., in drug-delivery
systems. Future investigations face the extension of the dynamic synthesis model to also cover the
particle growth of the charged microgels to enhance the predictive capabilities of the existing model.
Also, experimental validation of the developed synthesis model will involve the synthesis of charged
microgels with pH control to leverage the developed model.
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8 Data-Driven Product-Process
Optimization of N-isopropylacrylamide
Microgel Flow-Synthesis

Data Repository: The Raman spectra and polymer size predictions acquired in this chapter are

published and available for free download via RWTH Publications [199].

8.1 Motivation for Data-Driven Multi-Objective
Optimization of Microgel Flow-Synthesis

The microgels’ size and their ability to react reversibly to external stimuli of temperature, pH, or
electrical potential in the surrounding medium [50] is highly relevant for their application. By defi-
nition microgels of any form exhibit an equivalent diameter between 0.1 pm to 100 pm in the swollen
state [15]. The relevance of the microgel size has been studied for biomedical [37-39], phase separa-
tion [47-49], and catalysis [41] applications. Especially smaller microgels (diameters between 0.1 pm
to 0.2m in the swollen state) have previously been applied for biomedical purposes, e.g., for drug
delivery agents for medical uptake and release [38, 39] or implant coating [37]. In biomedical appli-
cations, microgels are particularly relevant, as their small size allows them to pass the human cell
boundary [38]. For the cellular uptake, it was found that microgels of a hydrodynamic radius in
the swollen state (at 20°C) above 400 nm and a cross-linker content above 10 mol % prevent microgel
internalization.

The synthesis of microgels in flow reactors can overcome shortcomings of batch reactors, e.g.,
limited production capacity and downtime between batches, and enhances product development,
intensifies production, and facilitates reaction scale-up [1, 51, 54, 55]. Furthermore, including process
analytical technology in flow reactors allows in-line monitoring and process control under highly
reproducible conditions [1, 55, 56]. Thus, continuous production enables the reliable synthesis of
microgels.

To unfold the full potential of microgels, accelerating the development of tailor-made microgels is
desirable. A faster development can be achieved by producing microgels in a continuous reactor mode,
as it simplifies up-scaling to large-scale industrial production. Furthermore, model-based approaches
facilitate the optimization of microgels with tailored properties. Computational models for describing
microgel growth during the synthesis are very sparse and comprise mechanistic models suited for batch
reaction exclusively [66, 67, 76, 84-86]. The findings from Chapter 3 revealed significant deviations
between the reaction progress in batch and flow reactors in the microgel synthesis. In particular, the
batch model equations cannot be transferred straight to a plug-flow model, but rather diffusion effects,
temperature distribution, and rheological aspects must be considered. The physical properties such
as diffusivity coefficient and viscosity are not known during the microgel synthesis, so mechanistic
modeling of the flow process is restricted.

To address this gap, in this chapter, a data-driven hardware-in-the-loop optimization for N-
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isopropylacrylamide (NIPAM)-based microgels, one of the most widely studied thermo-responsive
microgel systems, is proposed. The data-driven approach facilitates the reaction optimization of
the microgel synthesis in flow. Here, Thompson sampling efficient multi-objective optimization (TS-
EMO) [200] is applied to enhance the experimental synthesis design iteratively. The TS-EMO solver
is based on the Thompson sampling [201] algorithm, a popular approach in Bayesian optimization. In
the following, a concise introduction to Bayesian optimization focusing on the TS-EMO algorithm is
presented. For a more comprehensive elaboration of the methodology, the interested reader is kindly
direct to consult the relevant literature [202, 203].

Bayesian optimization searches for a (global) optimum with a focus on efficiency, i.e., aiming for
small number of function evaluations. Efficiency is crucial when function evaluations are costly, e.g.,
require experimentation or extensive computation. In Bayesian optimization, a probabilistic model
(also called surrogate or digital twin) of the objective function is constructed and iteratively updated
as new data points are evaluated. The surrogate models are constructed via Gaussian Processes (GPs).
GPs are considered an effective surrogate model as they provide predictions and variance estimates
while relying on relatively few data points [204]. Black-box optimization involving GPs for chemical
synthesis has been successfully applied for various reactions [205], including pharmaceutical product
development [206], electrochemical reductive carboxylation [207], and polymerization [208]. Based
on the surrogate model, a new set of input conditions is proposed for the next experimentation while
considering the exploration-exploitation trade-off. The goal is to find the input variable values that
minimize the objective function. TS-EMO extends the Thompson sampling algorithm to the multi-
objective optimization setting. The promising performance of TS-EMO concerning data efficiency,
capacity to handle noise, and the ability for batch-sequential usage [200] makes the algorithm suitable
for the optimization of microgel synthesis.

As the microgel size is a highly relevant product characteristic in the mentioned applications, the
aim is to produce microgels of a targeted size (product feature). Simultaneously, the product flow
and energy demand (process features) are optimized because the synthesis has to meet economic
and ecological requirements. The synthesis procedure highly influences the characteristics of micro-
gels, and multiple influences on the microgel size have been discovered experimentally. The surfac-
tant [48, 54, 75, 209-212], monomer [213], cross-linker [52, 87, 210, 214], and initiator [213, 215, 216]
concentration in the synthesis impact the microgel size. Also, the process conditions, including reac-
tor temperature [210, 213] and flow profile [51, 213], determine the microgel size. For the synthesis
of microgels with constant cross-linking fraction, the reaction temperature, initiator and monomer
flow, and the surfactant concentration are included as variable inputs in the data-driven study.

Since TS-EMO is a stochastic optimization algorithm, it does not guarantee finding the global op-
timum. Therefore a computational validation step is conducted via global deterministic optimization
using the open-source software MAINGO (McCormick-based algorithm for mixed-integer nonlinear
global optimization) [217]. MAiINGO has been demonstrated to be very suitable for optimization with
GPs embedded [218]. The global deterministic optimization ensures that for a given GP and acqui-
sition function the optimal solution is found. The computed Pareto-optimal solutions are computed
based on the GPs trained on the experimental data. Thus, the Pareto-optimal points are estimates
and need to be validated experimentally to show that indeed it is possible to synthesize the desired
microgel and to ensure that computational prediction and real experiment agree. Therefore, in ad-
dition, the optimization results are validated experimentally. The proposed synthesis of a selection
of Pareto-optimal points are conducted and the experimental outcome is compared to the computed
findings.

The remaining chapter is structured as follows. Section 8.2 describes the experimental setup of the
microgel synthesis in the flow reactor. Section 8.3 reports the optimization approach, including the
TS-EMO algorithm, the initial data set, and the problem setup using MAiNGO. Section 8.4 presents
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the results of the optimization studies and the computational and experimental validation. Finally,
the contributions are concluded in Section 8.5.

8.2 Experimental Microgel Synthesis in Flow
Reactor

Microgels are synthesized via precipitation polymerization inside a tubular glass reactor setup, as
described in detail in Chapter 3. In the following, a brief summary of this experimental setup is
provided. Two feed solutions are created, where the monomer and initiator are dissolved in water. The
monomer solution contains deionized water with 110.6 mmolL ™! of NIPAM, 2.7mmolL ™! of cross-
linker N,N’-methylenebis(acrylamide) (BIS), and 0.41 mmolL~! of surfactant hexadecyltrimethyl-
ammonium bromide (CTAB). Thus, the resulting microgels contain a cross-linker fraction of 2.5 mol%.
The initiator solution comprises deionized water with 1.5 mmolL~! of initiator 2,2’-azobis(2-methyl-
propionamidine)dihydrochloride (AMPA). Both solutions (initiator and monomer) and constantly
degassed using nitrogen. The flow rates of the monomer and initiator solution can be controlled

!and 0.1mLmin™" to 0.9 mLmin_l, respectively. Hence, the

between 2mLmin ! to 18 mLmin~
overall flow rate and the ratio between both feed flows can be adapted. An external heating bath
heats the reactor to reaction temperature. The reactor temperature is adjusted between 60°C to
80°C. The produced microgels exit the reactor, and the solution is cooled to stop the reaction.
During the continuous synthesis, Raman spectroscopy is used to determine the weight fraction of the
remaining NIPAM (wpypaas) via in-line measurements. Raman spectra are recorded in HoloGRAMS
(Kaiser Optical Systems, Ann Arbor, Michigan, USA) with cosmic ray correction using an RXN2
Raman Analyzer (Kaiser Optical Systems) and an acquisition time of 40s. More details on the
Raman measurement configuration are described in Chapter 3. The Raman spectra are assessed
using an evaluation model based on indirect hard modeling [80], which is presented in Chapter 3
as well. The calibration measurements for the model development are published for transparency
and reproducibility [93]. In an off-line step, a Zetasizer Ultra (Malvern Panalytical, Malvern, UK)
is used to determine the hydrodynamic diameter (D) of the collapsed microgels via dynamic light
scattering (DLS). The microgel samples are diluted in ultrapure water and prepared in a disposable
capillary cell of the type DTS0012 for the DLS measurements. The measurements are carried out at
50°C with an angle of 90°(side scatter). For consistency, microgel size measurements are acquired in
the collapsed state above the volume phase transition temperature (approximately 32° C [50]), as the
in-line Raman measurements are also conducted at reaction temperature (between 60°C to 80°C).
For the sake of completeness, DLS measurements are taken at 20°C and also provided in the data
publication to this work [199]. Each DLS measurement is repeated four times, and the software ZS
Xplorer analyzes the results. Experimental data points are excluded when the DLS measurements
are unreliable due to a high relative error of the microgel size or an increased polydispersity index,
indicating that no microgels formed.

8.3 Computational

The following section is structured as follows. First, the optimization problem is formulated con-
sidering the goals and limitations of the experimental setup, see Section 8.3.1. In Section 8.3.2, the
procedure for generating a set of experiments to initialize the iterative optimization study is described.
Next, the conducted optimization studies are outlined in a high-level description in Section 8.3.3. Fur-
ther, details are provided on the basic operating principle of the employed TS-EMO algorithm in the
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hardware-in-the-loop setup and the validation approach via global deterministic optimization and the
optimization problem definition therein in Section 8.3.3.1 and 8.3.3.2, respectively.

8.3.1 Optimization Problem Definition

The optimization aims to find optimal settings for the synthesis to generate a high product output at
short residence times and precise, targeted microgel sizes while minimizing the reaction temperature
at steady-state. Bayesian optimization designs the best combination of input values to optimize these
objectives efficiently. Furthermore, the objectives must be determined from outputs quantifiable via
established monitoring techniques.

The reaction system has four optimization variables as inputs x: reaction temperature 7', surfactant
concentration copap, and flow rates of the initiator /7 and monomer Fy; solution. The bounds on the
inputs are presented in Table 8.1. The range of T' comprises the minimum of 60°C when the initiator
decomposition effectively sets in [173] and the maximum of 80°C when solvent evaporation becomes
an issue. The bounds on c¢cpap are based on the reaction experience that no colloidal stability sets in
below the lower limit. Generally, a higher ccpap causes a smaller microgel size. Thus, the upper limit

for ccpap is determined based on preliminary experiments. The pump’s capacity defines the limits
1

for the monomer and initiator solution flow rates. Furthermore, at the minimum Fy; = 2mLmin -,

which entails the maximum residence time in the reactor (approximately 1800s), the final conversion
is reached, as discovered previously (see Chapter 3). The employed upper bounds allow for achieving
the desired microgel size range, as is concluded from empirical knowledge. The concentration of the
monomer NIPAM (cxpay = 110.6 mmolL~1) in the stock solution, and the ratio of monomer to
cross-linker BIS are kept constant for the reaction optimization to maintain a cross-linking fraction
of 2.5 mol% within the microgel.

Table 8.1: Bounds on input variable values.

Variable Unit Lower bound Upper bound

F mLmin ' 0.1 0.9
Fy mLmin ' 2 18
CCTAB mmol L1 0.14 0.41
T °C 60 80

Two quantities of the system are measured at the end of the reaction: The weight fraction of the
monomer NIPAM wypaym and the microgel’s hydrodynamic radius 7. From the measurements,
two quantities y are derived for the surrogate model data set: The product flow (Fp,ogquet) and the
squared deviation from the targeted microgel size (Arg). The product flow characterizes the reactor
efficiency and is computed via:

WNIPAM,0 — WNIPAM,f

FProduct = (FI+FM)7

WNIPAM,0
where wypan,o and wyrpan s denote the initial and final NIPAM weight fraction.
The output Ar%{ is calculated as the squared difference between the measured and targeted hydro-
dynamic radius:
Arg = (ripeas — T‘E&rget)z.

The targeted microgel size in this chapter is a hydrodynamic radius of 100 nm in the collapsed state
at 50° C, as the size range is relevant in medical applications to pass the human cell boundary.
Previously, it was found that microgels with a hydrodynamic diameter above 800 nm in the swollen
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state are unsuitable for cellular uptake [38]. This size corresponds to a hydrodynamic radius of
approximately 222nm at the collapsed state. Thus, microgels of a hydrodynamic radius of 100 nm
are expected to achieve fast cellular uptake kinetics.

The efficient microgel production targets a low reaction temperature as heating contributes sig-
nificantly to energy consumption. The reaction temperature 71" is an input to the reactor system;
hence, no additional measurement technology is needed. The difference to the minimum allowable
temperature (see Table 8.1) is defined as another objective function:

AT =T —T™in,

Technically, the input temperature can be used as an objective function directly. However, the
temperature difference is used as the objective to scale the temperature values to a similar magnitude
as the flow rates and to underline the generality of the method.
The resulting multi-objective optimization problem is summarized in the following:
min =~ — Fproducts AT%I, AT,
x€[xl xV]

where, x = [F}, F\p,corap, 7], and x and xY denote their corresponding lower and upper bounds as
presented in Table 8.1.

8.3.2 Initial Data Set

Effective initial values are important to initialize the data-driven optimization algorithm. Often
random choices are taken as initial guesses, without distinguishing between variables. However,
efficient usage of experimental resources is desired and accordingly the following tailored initialization
is devised. Three groups of experiments are configured, each comprising five experimental settings.
The division is visualized in Figure 8.1. It is distinguished between input variables T" and ccrap
that are at a fixed value for each group and inputs Fjy; and Fj that vary simultaneously within one
group. A group size of five experimental settings per session is adopted, as this quantity aligns with
the capacity of a day’s work in the laboratory.

Furthermore, three groups of experiments are considered as a trade-off between covering the input
space of T" and cqpap sufficiently and conducting a reasonable size of initial experiments in total.

Changing T between experimental runs relates to long transition times. Thus, T' is kept at a
fixed value for each group of experiments for an efficient proceeding. Also, copap is fixed for an
experimental group, as preparing the monomer solution with different content of CTAB for each
experiment execution is laborious and increases the risks of inserting air into the reactor system
(oxygen inhibits the reaction) while decreasing the flexibility of the reaction setup. Therefore, keeping
corap fixed constitutes a trade-off between effort for the synthesis preparation, risk of contamination,
and loss of flexibility in synthesis execution.

The lhsdesign function for latin hypercube sampling (LHS) is employed in MATLAB 2019b to
determine the input values for the initial experiments. In the first step, the values for 7" and ccrap
are set for each of the three groups via LHS. Subsequently, LHS is performed again for F; and Fy;
within each group for five settings. In total, an amount of 15 initial experiments is derived.

8.3.3 General Approach

A hardware-in-the-loop optimization study involving T'S-EMO and a validation study including com-
putational and experimental validation are conducted. In the hardware-in-the-loop approach, TS-
EMO is employed to determine the next group of experiments based on an initial experimental data
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Figure 8.1: Grouping of initial experiments designed via LHS.

set. The Bayesian optimization algorithm TS-EMO iteratively suggests new experimental conditions
based on the results of previous experiments. After the suggested group conditions are experimentally
tested, the optimization process and subsequent experimentation are repeated until eleven iterations
have been reached. Finally, the results from the TS-EMO study are validated computationally via
global deterministic optimization using the software MAINGO and experimentally with reaction set-
tings from Pareto optimal points.

8.3.3.1 TS-EMO Algorithm

TS-EMO [200] is applied to the product-process optimization of the continuous microgel synthesis.
The schematic setup of the reactor combined with the algorithm is shown in Figure 8.2. TS-EMO

In-line Raman Off-line Dynamic
spectroscopy Light Scattering

I I
Static WNIPAM | | M
h - T - - -

mixer |
T

A 4
Gaussian process models
Fprodléc‘t =f(F, Fu, ccras, T)
Heater Ary"=1(F, Fw, ccras, T)
+ I
|
: T > TS-EMO
E | Multi-objective optimization algorithm
|
_______ B Y — 1 I
| |
A 4
Fu . New experiment inputs:
- —I Fl,neWy FM,new; CCTAB,HGWy 7-new
|
|
Initiator solution |
(ambient temperature) |
|
T, cctas |

Monomer solution
(reaction temperature)

Figure 8.2: Overview of the iterative multi-objective optimization of the microgel synthesis in
flow using the TS-EMO algorithm. Solid arrows indicate material flow, dotted arrows represent
information transfer.
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uses experimental data points x9 = [F}, Fy,corap,T] and y@) == [Foroduct: Arfy] to create an ap-
proximation via a GP surrogate model of the unknown function f. For the training of the GPs,
Matérn type 1 is applied as the function kernel. The third objective can directly be calculated from
the input variables. In the multi-objective optimization step, Thompson sampling allows approxi-
mating the Pareto set of the optimal solutions. Here, the number of spectral sampling points is set to
4.000. Lastly, an optimal candidate set of input conditions x(**1) = [F1 news FM news COTAB news Inew]
is calculated to continue in the next experimental iteration loop. The settings incorporate a genetic
algorithm with 1.000 generations for optimization.

In conclusion, the TS-EMO algorithm is provided with an initial experimental data set designed
via LHS. The algorithm then provides a new set of experiments to be conducted in the following
experimental round. Subsequently, in each optimization round, a set of the following five experiments
at one fixed T and ccpap With varying F} and Fy; is determined. Here, atch-sequential optimization
is chosen, meaning evaluating multiple points in each iteration, as off-line DLS measurements are
conducted more efficiently in batch preparation. In addition, five experimental settings are chosen,
as this quantity can adequately be conducted within one day of synthesis experimentation. The TS-
EMO calculation and the experimentation are repeated in multiple iterations. Meanwhile, searching
for the optimal recipe should take as few iterations as possible to decrease the experimental effort and
expense of chemicals used. Thus, the hardware-in-the-loop procedure ends when a certain number of
iterations have been performed or the executor decides that sufficient reaction knowledge has been

gathered. In the presented study, the procedure ends after eleven iterations.

8.3.3.2 Global Deterministic Optimization

For the computational validation, MAINGO [217] is used to conduct a global deterministic optimiza-
tion. MAINGO is employed as an alternative approach to the non-deterministic optimization included
in the TS-EMO algorithm. Validation using MAINGO does not require conducting new experiments
but leverages the data collected during the Bayesian optimization. For the validation study, Fp oquct
acts as the single objective. Additionally, the e-constraint method [219] is applied to restrict the
objective Ar%{‘ As the remaining objective AT is directly proportional to the input 7', the upper
bound of the input variable T is step-wise restricted. For the global optimization, the experimental
data received in the TS-EMO study is used and no further experiments in the form of a hardware-
in-the-loop approach are performed. The starting point and the € values for the optimization are set
based on the results derived from the hardware-in-the-loop study.
The optimization problem is re-written to a single-objective formulation in reduced space:

min — K
xe[xL,xU] Product (8 1)

s.t. Ar%l <e

As stated above, the values for €, xU of T, and the starting point are derived from the results of the
TS-EMO study.

8.4 Results and Discussion

The results and discussion are organized as follows. First, the findings from the study involving TS-
EMO with four inputs and three objectives are presented in Section 8.4.1. There, the Pareto optimal
solutions for the three-dimensional objective system, the progression of the experimental outcome
with accumulating experimentation, the error analysis of the measurements, and the Pareto optimal

95



8 Data-Driven Product-Process Optimization of N-isopropylacrylamide Microgel
Flow-Synthesis

solutions for each of the four inputs are shown. Subsequently, the results of the validation studies
are displayed in Section 8.4.2. The computational validation via global deterministic optimization
is shown in Section 8.4.2.1. The optimization problem is re-formualted to a single objective with
four input variables for the final study. In Section 8.4.2.2, the experimental validation of three
Pareto optimal points is additionally exhibited. All experimental data [199] is provided open-source.
The data includes the raw Raman measurements and an evaluation of the DLS measurements. In
addition, data points underlying the graphical representation of the results are made available in
Section C.2 in the Appendix. The data points include the experimental data (Appendix C.2.1) and
the Pareto optimal solutions calculated via global deterministic optimization in the validation step
(Appendix C.2.2). As the Pareto optimal solutions calculated via TS-EMO are exhaustive, the data is
not provided explicitly. The results can be re-constructed by applying TS-EMO on the experimental
data provided. The software employed in this chapter is available open-source: TS-EMO [220] and
MAINGO [221] with MeLOn [222], the interface for embedded machine-learning models.

8.4.1 Hardware-in-the-Loop Involving TS-EMO

Eleven iterations are conducted for the hardware-in-the-loop optimization. The Pareto optimal so-
lutions are analyzed in detail regarding the feasible space of the objective values in Section 8.4.1.1.
Next, the progression of the experimentation outcome, an analysis of the errors from the experimen-
tal measurements, and the computational uncertainty of the calculated Pareto front are presented in
Section 8.4.1.2. Lastly, the input variable values at the Pareto optimal points are evaluated to derive
suitable reactor settings for the desired microgel product in Section 8.4.1.3.

8.4.1.1 Pareto Optimal Solutions

In the hardware-in-the-loop study, Fy, Fy, ccrap, and T' are varied as the inputs to the reactor, and
Fproduct, Ar%, and AT are the objectives. Figure 8.3 shows the resulting Pareto front of the study
calculated using TS-EMO (marked with colored circles) and the experimental data points obtained
during the hardware-in-the-loop optimization (marked with x’ symbols). Later, in Section 8.4.1.2,
also the progression of experimental outcomes for each iteration are shown separately (see Figure 8.4).
For the TS-EMO calculations in Figure 8.3, a population size of 5,000 is used to represent the three-
dimensional Pareto front sufficiently. As visualizing three objectives is challenging, a two-dimensional
plot and add a color scale for the third objective are employed to visualize the estimated Pareto front
for better interpretation. However, it is crucial to remember that the optimization results are three-
dimensional for the meaningful interpretation of the two-dimensional plots.

For the two-dimensional Pareto fronts, the desired outcome in Figure 8.3, the utopia point, of the
multi-objective optimization regarding the product flow and the squared radius deviation is located
in the bottom left corner of the plot. Equally, small temperature deviations (depicted in dark blue)
indicate the location of the utopia point in the third dimension. Looking at the results, it appears
that the three objective functions are conflicting; thus, reaching the utopia point is impossible. In
other words: the product flow rate becomes lower for microgels closer to the targeted size, and higher
temperatures are needed for high product flow rates. In addition, the shaded area around a squared
radius deviation accounts for a difference of £5nm or 5% to the desired size.

The analysis of the estimated Pareto front in Figure 8.3 yields that up to 6.0 mL min~! of product
flow, a microgel size sufficiently close (£5nm) to the desired size is achievable. The microgel size
deviation begins to diverge more strongly from the targeted value after a product flow rate of ap-
proximately 6.5 mL min ! is reached. This deviation shows that product flow rates above a value of
around 6.5mLmin" " are incompatible with the targeted microgel size.
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The temperature influences the optimal product flow more significantly than the optimal microgel
size. This trend is represented by the color indicated temperature change that is more substantial
along the x-axis than the y-axis. The underlying GPs (depicted in Appendix C.1) show that an
increase in temperature generally accompanies an increase in product flow. Still, the product flow
converges towards approximately 6.5 mL min~' for temperatures above approximately 70°C (corre-
sponding to 10 K temperature deviation). Thus, low temperatures (below 70°C) are sufficient con-
sidering the trade-off between maximizing product flow and achieving the targeted microgel size, as
above approximately 70°C only the product flow improves. Overall, the optimal temperature input
spans the entire allowable range between 60°C to 80°C. Furthermore, the GP for the squared ra-
dius deviation (Appendix C.1) shows an increase with rising temperatures. However, the correlation
between reaction temperature and microgel size deviation appears highly nonlinear and subject to
inherent variance. Lastly, the underlying GP for the temperature deviation (Appendix C.1) confirms
the successful training of the GPs, as the temperature deviation shows no correlation to Fy, Fy;, or
corap, and is directly proportional to the input temperature values with little variance.
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Figure 8.3: Estimated Pareto front of the hardware-in-the-loop study using TS-EMO: Squared
radius deviation over product flow. The color scale indicates the temperature deviation. The x
symbols mark the experimental data points. The shaded area maps the deviation of +- 5 nm to
the desired microgel radius.

In conclusion, the results concerning a suitable microgel size at a high product flow and medium
reactor temperatures are promising. The underlying GPs confirm the apriori reaction knowledge;
thus, the functionality of the applied method is validated elementarily. However, the GPs are occa-
sionally subject to high variance, and the available data points are limited. Nevertheless, meaningful
information about the synthesis can be derived, e.g., limiting the temperature to 70°C is sufficient
for successful synthesis. Furthermore, a maximum product flow of 6.0 mL min ! is achievable when
restricting the allowable microgel size deviation to £5nm.
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8.4.1.2 Experiment Progression and Error Analysis

In Figure 8.4, the calculated Pareto front is shown with the progression of the experimentation. The
temperature and the surfactant concentration for each experimental group are listed in addition to
the order of experiment progression on the color scale. In the graph, the stars mark the results from
the initial experiments designed via LHS. The LHS ensures a good distribution over the input space.
The initial experimental results also cover the output space adequately, indicating that the initial
data set already provides a reasonable basis for information on the reaction.

Furthermore, the triangles depicted in a color scale represent the experimentally determined data
points and their progression in the hardware-in-the-loop approach. In each set of experiments, five
data points are received. Some data points must be neglected due to DLS measurement showing a
high size distribution index (indicating that no real microgel is formed) or a high relative measurement
error. Thus, a reduced amount of experimental data points is shown. There is no clear trend visible
in the experiment progression, as the algorithm tries to balance exploitation and exploration in the
design of the next experiment. The listed temperature and surfactant concentration values along
the experimental progression show that the algorithm mostly explores temperature regions below
70°C. While the surfactant concentration is varied over the entire allowed input space. Also, for the
conducted experiments in this study, the algorithm does not repeat in any iteration the suggested
experimental conditions regarding the combination of temperature and surfactant concentration.
Although output measurements are sometimes excluded without further information to the algorithm,
the algorithm does not try to re-evaluate the correlated input space. The batch-sequential procedure
presumably achieves that the algorithm carries on without going back to previously tested conditions
where no information is received. In other words: although no input information is gathered at
certain input conditions within one experimental group, the information from the remaining input
conditions within the group supports the algorithm enough.
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Figure 8.4: Estimated Pareto front of the hardware-in-the-loop study using TS-EMO: Squared
radius deviation over product flow. The gray circles represent the estimated Pareto optimal
solutions based on the GPs. The stars indicate the initial experimental data set and the triangles
the subsequent experimental data points, while the color of the triangles shows the experimental
progression.

98



8.4 Results and Discussion

In Figure 8.5, the calculated Pareto front is shown with the computational standard deviation of
the optimal points. Also, the experimental data points are depicted with the according experimental
error bars. The magnitude of the experimental error is derived from the measurement technology.
The evaluation model of the Raman measurements has an inherent root mean squared error of cross-
validation (RMSECV) of 0.037 wt%. The error propagation, including the RMSECV, is considered
for the uncertainty of the product flow. For the DLS measurement, the Zetasizer Ultra internally
evaluates the standard deviation over the four conducted measurements. This error value is also
propagated for the uncertainty of the experimental squared particle size deviation.
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Figure 8.5: Estimated Pareto front of the hardware-in-the-loop study using TS-EMO: Squared
radius deviation over product flow. The gray circles represent the estimated Pareto optimal
solutions based on the GPs and the according standard deviation. The black circles indicate the
experimental outcomes and the according measurement uncertainty.

Some experimental data points lie slightly below the estimated Pareto front. This phenomenon
becomes visible in a three-dimensional analysis. However, the considered experimental data points
lie within the calculated standard deviation of the estimated Pareto front for the squared radius
deviation. Furthermore, the experimental error bars resulting from the DLS and Raman measurement
errors are displayed to underline the magnitude of uncertainty inherent in the real-life experimental
setup.

8.4.1.3 Pareto Optimal Solutions for Different Inputs

In Figure 8.6(a) to 8.6(c), the Pareto front for the objectives Ard and Fpyoque; and three out of
the four applied inputs is shown. The color scale indicates the associated input configuration. The
inputs pictured include the surfactant concentration, the monomer, and the initiator flow rate. The
Pareto front with the according input temperature is not depicted explicitly, as Figure 8.3 contains
information on the input temperature.
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Figure 8.6: Estimated Pareto front of main study: Squared radius deviation over product flow
for the input variables (a) CTAB concentration, (b) monomer flow rate, and (c) initiator flow
rate. The circles represent the estimated Pareto optimal solutions based on the GPs, while the
color scale indicates the magnitude of the respective input variable.

Figure 8.6(a) shows that the microgel size deviates strongly from the desired size for higher corap
values. Overall, copap ranges only between 0.22mmolL ™! to 0.41 mmolL~!. The underlying GP
(depicted in Appendix C.1) indicates that the product flow can be considered independent of coppp.
In contrast, the correlation between squared radius deviation and cqpap is impaired by high variance.
The finding that the product flow is unaffected by copap follows the expected outcome, as a change
in stabilizer should not impact the conversion kinetics of the reaction system.

In Figure 8.6(b), the monomer flow rate ranges between 2.75mLmin~" to 14.2mLmin " and
mainly correlates to the product flow. The relation between monomer flow rate and product flow is
defined in Equation (8.3.1) stating that generally, the monomer flow and product flow are directly
proportional (second term in Equation (8.3.1)). However, the monomer flow rate is also related to the
conversion (first term of Equation (8.3.1)). A higher monomer flow can cause a smaller conversion,
as not all monomer can be consumed in the smaller residence time. The underlying GP (depicted
in Appendix C.1) shows the trade-off between high monomer flow rates associated with an increased
overall flow and a lower conversion and low monomer flow rates with a low overall flow but higher
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conversion. Furthermore, the monomer flow rate has little to no influence on the microgel size
deviation according to the underlying GP.

Finally, Figure 8.6(c) shows the Pareto front for different initiator flow rates. Here, the initiator
flow rate ranges between 0.59 mL min~! to 0.8mLmin" ' with a clear tendency to the upper bound.
Similar to the monomer flow rate, the initiator flow rate is directly proportional to the product flow
as defined in Equation (8.3.1). However, the initiator flow is a maximum of a third of the total flow
rate and thus less significant for the overall change in residence time. As expected, the underlying
GP (depicted in Appendix C.1) also shows a highly linear correlation between initiator flow rate and
product flow. In addition, the GP for the squared radius deviation shows no clear trend depending
on the initiator flow rate.

8.4.2 Validation

The validation conducted within this chapter includes a computational and experimental part. The
computational validation is global deterministic optimization of the final GP, Section 8.4.2.1. The
experimental validation is carried out for three calculated Pareto optimal solutions, and the results
are shown in Section 8.4.2.2.

8.4.2.1 Computational Validation via Global Deterministic Optimization

A final deterministic global optimization is conducted using MAiNGO. The results from the hardware-
in-the-loop study are incorporated into the final optimization for validation. First, the data points
from the TS-EMO study are used to train GPs for Fp,que, and Arg. The training settings are
the same as for the GPs used in the hardware-in-the-loop approach including TS-EMO. Second, the
identified optimal point close to the targeted microgel size and a sufficient product flow at a reasonably
low temperature is embedded as the starting point of the optimization: F; = 0.73 mL min_l, Fy =
8.1mLmin ", corap = 0.34mmol L=t and T = 68.5°C. The calculated outcome for these input
variables yields a microgel size deviation of 21.1nm? and a product flow of 6.0 mLmin~*. Also,
the visualization of the TS-EMO study (see Figure 8.3) allows setting reasonable values for the e
constraint method.

For the deterministic global optimization, the results including the e constraint method, are pre-
sented in Figure 8.7 for each input separately. Here, the squared radius deviation is constrained
step-wise with a maximum of 25 nm?. The problem becomes infeasible, meaning under the specified
conditions no solution meets all the constraints and still optimizes the objective, for squared radius
deviations below 2nm?. The global deterministic optimization (MAINGO) is compared with the
optimization results for two objectives (product flow and squared radius deviation) using T'S-EMO.

Overall, the Figs. 8.7(a) to 8.7(d) show that the experimental data points, the Pareto front gen-
erated via TS-EMO, and the Pareto front obtained from MAINGO agree correctly above a product
flow of approximately 4.3 mL min~"'. TS-EMO finds a feasible Pareto optimal solution only down
to 12.6nm? at a product flow of 4.0 mL min "', In this region, the calculated solution via MAINGO
diverges and includes feasible solutions in the product flow range around 4.3 mL min ! with squared
radius deviations between 10nm? to 12 nm?.

The experimental data is obtained through hardware-in-the-loop optimization, balancing explo-
ration and exploitation strategies. Consequently, the experimental data only partly aligns with the
computed Pareto curve, as the algorithm also ventures into uncharted regions. Particularly at low
product flows with high radius deviations, the experimental points are not part of the Pareto optimal
set. However, the calculated Pareto optimal curve relies on the experimental data points. Hence,
it becomes imperative that in the region of multi-objective optima, the experimental data points
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agree with the calculated Pareto front. As illustrated in Figure 8.7, the experimental values agree
with the calculated results along the estimated Pareto front, implying qualitatively that the result is
trustworthy.

Within the Pareto optimal solutions calculated via MAINGO, three regimes can be differenti-
ated most visible for the CTAB concentration and the reaction temperature. These regimes range
at a product flow of 3.4mLmin"! to 3.8 mLmin_l, around 4.3 mLmin_l, and 4.5mLmin"' to
6mLmin . In each regime, the CTAB concentration, the initiator flow rate, and the reaction
temperature are approximately constant, and only the monomer flow rate varies.
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Figure 8.7: Estimated Pareto front of global deterministic optimization: squared radius deviation
over product flow for the input variables (a) CTAB concentration, (b) monomer flow rate, (c)
initiator flow rate and, (d) reaction temperature. The squares represent the estimated Pareto
optimal solutions based on the GPs, while the color scale indicates the magnitude of the respective
input variable. The x symbols mark the experimental data points. The blue circles indicate the
estimated Pareto front via TS-EMO for two objectives only.

Further, the upper bound of the reactor temperature input variable value is changed to 61°C,
62°C, and 70°C. The results of the TS-EMO optimization with two objectives compared to global
deterministic optimization results via MAINGO are shown in Figure 8.8. The problem becomes
infeasible for squared radius deviations below 2nm? for temperatures 62°C and higher, and below
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16 nm? for 61°C. In other words, based on the optimization results it is not possible to synthesize
microgels with a squared radius deviation below 2nm? when restricting the reaction temperature to a
maximum of 62°C or higher. Similarly, for a maximum temperature of 61°C, the smallest achievable
squared radius deviation is 16 nm?2.

In Figure 8.8, the Pareto optimal points generated via TS-EMO and MAINGO agree mostly. Only
for a maximum input temperature of 61°C the global deterministic optimization via MAINGO finds
slightly better Pareto optimal points for squared radius deviations above 23nm?2. However, the
product flow range between 1.3 mL min~* to 1.6 mLmin "' and a minimum squared radius deviation
of 16.4nm? for the associated temperature are undesirable. Thus, temperatures above 61°C are more
relevant. For a maximum input temperature of 62°C, the Pareto optimal product flow is limited to
4mLmin"! even for substantial deviations in squared radius at 25 nm2. The Pareto optimal points for
squared radius deviations below 13 nm? overlap for the MAINGO and TS-EMO optimization for 62°C
and 70°C. For a maximum input temperature of 70°C, a notable improvement of the product flow up
to approximately 6 mL min ! is achievable when allowing squared radius deviations starting at 18 nm?
and above. The TS-EMO Pareto optimal points only cover squared radius deviations above 12.5nm?
for a maximum temperature of 70°C. The Pareto optimal points for the MAINGO optimization with a
maximum temperature of 70°C (see Figure 8.8) and 80°C (see Figure 8.7) agree except for the regime
around 4.3 mLmin" ! and squared radius deviations of 10 nm? to 12 nm? indicating that temperatures
above 70°C are irrelevant for optimized reactor settings.
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Figure 8.8: Comparison of TS-EMO and MAINGO results for different bounds on input tem-
perature. The filled circles represent the Pareto optimal points calculated via TS-EMO, while the
squares show the Pareto optimal points calculated via MAINGO.

Overall, the Pareto optimal solutions of TS-EMO and MAINGO agree very well. Hence, the
hardware-in-the-loop procedure using TS-EMO is validated sufficiently. However, the global deter-
ministic optimization finds feasible Pareto optimal solutions beyond TS-EMO. The global determin-
istic optimization of the multi-objective synthesis problem is beneficial because little data is available,
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and thus guaranteeing a reliable and reproducible solution is crucial. However, the surrogate models
represented by GPs are subject to significant variance. Thus, a solution representing the actual reality
remains challenging. Also, it is demonstrated that the deterministic single-objective formulation is
advantageous here to focus on the output space of interest and reduce computational effort.

8.4.2.2 Experimental Validation

Three experiments are conducted along the deterministically estimated Pareto front for an experi-
mental validation step to determine if the computed estimate based on the trained GPs can be verified
experimentally. The inputs, the estimated, and experimentally determined values are presented in
Table 8.2. The experimental and calculated values agree very well for the product flow. The most
significant difference regarding the product flow occurs in Experiment 3 with an absolute divergence
of 0.03mLmin ! (or approximately 2.8%) to the calculated value. Generally, the agreement of cal-
culated and experimental values is higher for the product flow than for the squared radius deviation.
The most notable difference regarding the squared radius deviation arises for Experiment 1, where
the absolute divergence is 83 nm?. This significant divergence can be attributed to the high variation
in the GP prediction for the squared radius deviation. At the same time, the estimated and experi-
mental value for Experiments 2 and 3 agree sufficiently. Experiment 3 shows that microgels with a
radius of 101.5nm can be efficiently synthesized, which is acceptable in terms of accuracy.

Overall, the experimental validation indicates that the obtained data is enough to enable an ade-
quate prediction via a GP surrogate model. The agreement between estimated and calculated data
is good, although the underlying GPs are subject to significant variance. The applied procedure is
successful with an absolute deviation of 1.5nm to the desired microgel radius.

Table 8.2: Experimental validation of global deterministic optimization.

Experiment Input Value Output Estimated value Experimental value
T 68.5°C
) corap  0-35mmolL™'  Fp qe  5.95mLmin " 5.93mLmin "
F; 0.73mLmin "' Arg 17 nm? 100 nm?
Fy o 7.69 mLmin '
T 71.0°C
9 corap 016 mmolL™t  Fp g 4.29mL min " 4.20 mLmin "
F; 0.34mLmin " Arg 10 nm? 12.25 nm?
Fy;  4.87mLmin"
T 62.0°C
3 corap  0.33 mmol Li Fproduet 3-43mLmin~" 3.53mLmin""
Fy 0.74mLmin Arg 2nm? 2.25 nm?

Fy o 3.68 mLmin '

8.5 Conclusions

Polymerization reactions in flow reactors play an essential role in precise polymer production. The
efficient, accurate, reproducible synthesis of polymers such as microgels is important. Data-driven op-
timization supports the microgel development effectively. The multi-objective optimization algorithm
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TS-EMO is incorporated to optimize the synthesis of tailored microgels ecologically and economically.
The proposed synthesis settings enable a product flow of maximum 6.0 mLmin~ ' while remaining
in an acceptable range of +5nm to the targeted hydrodynamic radius. The global deterministic
optimization software MAINGO is used to prove the reliability and reproducibility of the results. In
addition, the usefulness of global deterministic solutions for problems with little data availability is
demonstrated.

From the experimental side, including Raman spectroscopy constitutes a powerful in-line process
analytical tool that has the potential to be incorporated into automated reaction optimization setups.
Limitations of the proposed work include the non-automated reactor system due to off-line DLS
measurements. Dependable in-line size determination remains a critical shortcoming on the road to
autonomous reaction optimization. Furthermore, the DLS data is occasionally unreliable or shows a
high polydispersity (indicating no real microgel is produced). At the moment, these data points are
discarded but could be meaningfully included as valuable information for the algorithm in the future.
The reliability of DLS data and the challenging interpretation of the GP predictions shows that expert
knowledge is still crucial in the optimization procedure and limits a potentially autonomous process
based on machine learning. Generally, data-driven optimization is limited to a specific reactor setup.
However, the proposed framework can be quickly adapted to other desired microgel properties and
reactor setups. Thus, this work supports and enhances the development of suitable microgels for
size-specific applications. The presented method efficiently explores new microgel synthesis recipes
that facilitate tailor-made microgel production.
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9 Conclusions and Perspectives

This thesis systematically enhances the production of functional microgels through a multifactorial
approach. The main emphasis encompasses three aspects of microgel synthesis: process monitoring,
mechanistic modeling, and data-driven hardware-in-the-loop optimization. Monitoring via Raman
spectroscopy is amplified in three ways: conversion monitoring in continuous flow reactors, con-
version monitoring of charged microgels, and microgel size determination. Additionally, dynamic
mechanistic modeling approaches are extended to include pH influence during the synthesis and fore-
cast the course of reactions involving novel functional co-monomers, specifically glycidyl methacry-
late (GMA) and methacrylic acid (MAA). Ultimately, a data-driven approach is implemented to
execute product-process optimization of microgel synthesis, leveraging Bayesian optimization. The
following paragraphs present conclusive thoughts on each aspect of microgel synthesis enhancement.
As each aspect exhibits links to future works, perspective next steps are also described, respectively.

Regarding conversion monitoring in continuous flow reactors, the main challenge was to transfer
the measurement accuracy from batch to continuous production mode. This challenge is resolved by
establishing a successive protocol to rule out potential sources of measurement interference, thereby
deriving the maximum allowable measurement deviation as a quality criterion. Applying the derived
quality criterion enables high-quality measurements and allows the functional detection of outliers
during the synthesis. Identifying and excluding outliers eliminates several potential errors that cause
the difference in measurement results from the flow and batch reactor. Furthermore, outlier detection
allows reliable process monitoring. Therefore, the contribution serves as a guideline for transferring
in-line monitoring from batch to flow reactors at the example of precipitation polymerization. The
next steps include the model-based validation of the experimental outcomes regarding the continuous
microgel synthesis. A model-based approach allows advanced process control of the continuous flow
reactor. Consequently, flexible production modes and accelerated process start-up are facilitated.

Considering microgel size prediction from Raman spectra, the main challenges were reducing the
large input spectral dimension and robust size prediction from untreated spectra. These challenges
are overcome by applying the diffusion maps (DMAPs) algorithm for dimensionality and conformal
autoencoder neural network (CANN) for size prediction. The developed workflow is applied to a
data set of Raman spectra with associated size measured via dynamic light scattering of 47 microgel
samples in a diameter range of 208 nm to 483 nm. The CANN approach substantially outperforms
state-of-the-art methods and results for the first time in a promising prediction of polymer size from
Raman spectra. Opportunities to continue the work on size prediction (or other characteristics, e.g.,
morphologies) from Raman spectra are manifold and range beyond the application to microgels or
even polymers in general. Concerning microgel synthesis, future work focuses on the workflow exten-
sion to simultaneously predict concentrations and microgel sizes from Raman spectra and analysis of
extrapolation for size prediction beyond the capabilities of established process analytics.

With respect to conversion determination of charged microgels, the main challenge arose from
the multitude of components in the system with dissociated and undissociated states. At the same
time, the synthesis kinetics are in the order of magnitude challenging to acquire with low-frequency
measurements, and the synthesis conditions are turbid due to precipitation. The challenges are tackled
by applying indirect hard modeling (IHM) spectral evaluation and successively analyzing components
with relevant influence on the Raman spectra during the synthesis. Although the prediction of MAA
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concentration during the synthesis remains subject to significant variance, Raman measurements allow
detailed insight into the reaction phenomena during the charged microgel synthesis. Furthermore, the
procedure involving Raman measurements and the evaluation using IHM thereof can be easily applied
to other charged microgel systems. Future research also directs towards enabling in-line monitoring
via Raman spectroscopy of the charged synthesis.

Dynamic mechanistic modeling and parameter estimation for microgel synthesis with functional
co-monomer GMA is challenging due to the high number of unknown parameter values and identifia-
bility issues. The obstacles are overcome by systematically including parameter values computed via
quantum mechanical calculations. The results show that the estimation approach enables a sufficient
accuracy of parameter values of the N-vinylcaprolactam-co-glycidyl methacrylate (VCL-co-GMA)
system. Further, the distribution of functional groups within the microgel is predicted with the fully
identified model for multiple fed-batch scenarios. Future considerations should focus on experimen-
tal validation of the model predictions but face the challenge of lacking experimental methods for
determining the position of functional GMA groups within the microgel.

Synthesizing charged microgels entails the challenging tasks of unreliable kinetic parameter values
and, at the same time, a large reaction system with many parameters. This complexity is dealt with by
including pH dependency in the dynamic synthesis model and estimating unknown parameter values
in a structured procedure. Based on the reaction monitoring results from Raman spectroscopy and
calorimetry and quantum chemical computations, missing parameter values are estimated to obtain
a complete set of reaction parameter values for synthesizing N-isopropylacrylamide-co-methacrylic
(NIPAM-co-MAA) microgels. The proposed model allows simulating the microgel synthesis with
respect to changes in pH and its implications. Thus, this work represents an important step towards
the model-based production of multi-responsive microgels. The subsequent steps address various
aspects, including the model extension to additionally predict sizes of charged microgels, transfer of
the charged microgel synthesis to continuous flow production, and model application and adaptation
to other charged microgel systems.

Holistic optimization of the microgel synthesis with a focus on product and process objectives
entails the inherent challenge of conflicting objectives and necessitating either mechanistic model-
based approaches or many experiments for validation. The hardware-in-the-loop framework based on
Bayesian optimization developed in this thesis enables the resource-efficient and effective synthesis
of microgels with tailored properties regarding the polymer size. The results from the experiment-
driven hardware-in-the-loop study are validated via global deterministic optimization. The proposed
framework can be applied to other desired microgel properties and reactor setups and has the potential
for efficient development by minimizing the number of experiments and modeling efforts needed.
Perspective work develops methods to include mechanistic modeling knowledge into the data-driven
approach for a hybrid concept and incorporates global deterministic optimization already in the
hardware-in-the-loop optimization steps.

In conclusion, this thesis amalgamates progress in process analytical technology, computational
mechanistic modeling, and data-driven optimization concatenating experimental real-world advance-
ment with theoretical considerations. Consequently, the findings of this thesis represent a significant
advance toward synthesizing tailor-made microgels with specific compositions or functionalities at
an augmented production scale. Lastly, numerous insights derived from this thesis bear relevance to
methodological advancements in spectroscopy-based size prediction and hardware-in-the-loop opti-
mization for diverse (chemical) systems.
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Appendix A

Supplemental Material Regarding In-line
Monitoring of Continuous Flow Microgel
Synthesis

A.1 Calibration Samples and Raman
Measurements

The compositions of the calibration samples used for regression are presented in Tables A.1 and
A.2. For the in cell calibration (see Table A.1), all samples are prepared in conventional glass flasks
and subsequently filled in the measurement cell to conduct calibration measurements via Raman
spectroscopy. For these measurements, the cell is sealed at the entrance and the exit to keep the
calibration sample inside the cell. The compositions of the calibration samples used for regression
of the in glass and multiple in glass indirect hard models (IHMs) are presented in Table A.2. These
samples are prepared in glass flasks and afterward measured via Raman spectroscopy.

In Figure 3.4, the Raman measurements of calibration samples in the measurement cell containing
water and N-isopropylacrylamide (NIPAM) are shown. For the monomer NIPAM, characteristic
peaks occur at 1653 cm ™! corresponding to the C=C bond and 1617 cm™! corresponding to the C=0
bond [101]. The NIPAM spectra also show characteristic peaks at 977 cm™!, 1068 cm ™!, 1262cm™1,
and 1415cm~!. The NIPAM and the poly N-isopropylacrylamide (PNIPAM) spectra display similar
peaks at approximately 850cm~! representing the C—C stretching, 1133 cm™! representing CHg
rocking, 1160 cm ™! representing C— O C stretching, between 1244 cm™! and 1367 cm™! representing
amide III groups, and 1452 cm ™! representing the C—H bending [223]. The broad peak at 1452 cm™*
is present in the NIPAM and the PNIPAM spectrum, but contributes more substantially to the
polymer spectrum. Most visibly, the two C=0 peaks disappear in the polymer spectrum; instead,
a characteristic peak at around 1636 cm™! emerges, which corresponds to the amide I group. The
PNIPAM spectra shown in Figure 6 exhibit further peaks between 900 cm™! to 970 cm ™! representing
C-C skeletal stretching, and at 1392 cm ™! representing CHy symmetric deformation [223).

Figure A.1 illustrates the spectra of N,N’-methylenebis(acrylamide) (BIS), 2,2’-azobis(2-methyl-
propionamidine)dihydrochloride (AMPA), and hexadecyltrimethylammonium bromide (CTAB) in
water at the concentrations used for the microgel synthesis. The spectra are acquired at 60s ac-
quisition time interval. In the significant spectral range used for the quantification of the reactant
composition between 800cm™! to 1850 cm ™!, the three components are unidentifiable. All compo-
nents are present at small weight fractions of below 0.04 wt% during the synthesis. Due to the small
weight fractions, the Raman signatures of the substances cannot be detected. Hence, a quantita-
tive determination of the composition of these substances in the reaction solution is not feasible.
Therefore, the components are not included in the IHM evaluation model for quantitative analysis.
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Table A.1: Composition of the samples used for calibration inside the measurement cell in weight
fraction.

Water NIPAM PNIPAM

C1 1.00 - -

C2  0.9981 - 0.0019
C3  0.9965 - 0.0035
C4  0.9949 - 0.0051
G5 0.9929 - 0.0071
C6  0.9911 - 0.0089
C7  0.9867 - 0.0133
C8  0.9825 - 0.0175
C9  0.9735 0.0265

C10 0.9899 0.0055 0.0046
C11 0.9785 0.0058 0.0157
C12 0.9852 0.0101 0.0047
C13 0.9806 0.0104 0.0090
C14 09782 0.0150 0.0068
C15 09715 0.0151 0.0134
C16 0.9763 0.0215 0.0022
C17 0.9973 0.0027 -
C18 0.9945 0.0055 -
C19 0.9917 0.0083 -
C20 0.9889 0.0111 -
C21 0.9861 0.0139 -

A.2 Measurement Cell

In Figure A.2, reference Raman spectra from conventional measurements inside a 3 ml glass flask (solid
line) are compared to measurements conducted inside the novel measurement cell. The cell material
(polyamide) has a considerable influence on the overall intensity even when using a short focal length
(0mm). For polyamide, additional characteristic peaks emerge in the considered spectral range of
the Raman shift (dotted line). In particular, a characteristic peak at wavenumbers of approximately
1400 cm ™! to 1500 cm™! occurs. This effect is suppressed by covering the inside of the measurement
cell channel with aluminum foil (dashed line). This material is reaction-inert and, at the same time,
very reflective. Therefore, it amplifies the intensity of the detected Raman signal in the measurement
cell while preventing characteristic peaks of the cell material in the spectral range considered.

A.3 Raman Synthesis Measurements

For the synthesis measurements shown in Figure 3.9, the predicted weight fractions of NIPAM and
PNIPAM are presented in Table A.3.

A.4 Mean Residence Time Measurements

The experimental determination of the mean residence time allows comparing the flow reactor with
the mean residence time in a batch reactor. The volume flow rates are experimentally related to mean
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Table A.2: Composition of the samples used for calibration inside conventional glass flasks in
weight fraction.

Water NIPAM PNIPAM

G1 1.00 - -

G2 0.9970 - 0.0030
G3  0.9939 - 0.0061
G4 0.9909 - 0.0091
G5  0.9879 - 0.0121
G6  0.9849 0.0151

G7  0.9898 0.0051 0.0051
G8  0.9799 0.0051 0.0150
G9 0.9799 0.0151 0.0051
G10 0.9791 0.0102 0.0108
G11 0.9844 0.0105 0.0051
G12 0.9842 0.0051 0.0108
G13 0.9970 0.0030 -
G14 0.9939 0.0061 -
G15 0.9910 0.0090 -
G16 0.9879 0.0121 -
G17 0.9849 0.0151 -

residence times at Position 1 and 2 by conducting pulse injections of a fluid with a strong Raman
signal. Here, water flows inside the reactor, and a pulse of 0.5 mL ethanol is injected right in front
of the Y-connector. The use of ethanol allows short acquisition time intervals of 1s. The constant
1 . —1 .1
and 4.8 mLmin = to 32.4mLmin

evaluate mean residence times at Position 1 and 2. The continuous Raman measurements start once

volume flow rates range from 2.5 mLmin~" to 20mLmin~ to
the pulse is injected and end when no more ethanol signal is detected. The mean residence time is
defined as the time when half of the tracer material has exited the reactor.
The relation between total volume flow rate and the mean residence time in the reactor is presented

in Figure A.3. The solid lines represent the equation fit to:

v

T=—. Al

. (A1)
Here, 7 denotes the mean residence time, V' the reactor volume, and F' the volumetric flow rate. The
flow rates result in Reynolds numbers between 16 and 128 and mean residence times of 65s to 1465 s.
Thus, the set range of volumetric flow rates provokes a laminar flow regime.

A.5 Impact of Raman Focus Depth

Analyzing the measurement accuracy necessitates the discussion of the captured signal of the focus
of the Raman probe. The integrated Raman focus has a focus depth of 0 mm. In theory, the analyte
in the focus point will have the most decisive influence on the Raman signal. In a flow reactor with
a reigning laminar flow regime, the short focus would cause that the Raman probe captures the edge
of the laminar velocity profile and thus not the average of the analyte content at the measurement
position. However, the visualization of the background influence of the measurement in Figure A.2
and the experiences show that the probe captures Raman signals within a longer distance than
Omm. The actual change in signal intensity over the distance to the Raman probe head is not this
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Figure A.1: Raman spectra of samples containing water with AMPA, BIS, and CTAB, respec-
tively. The spectra are treated with a linear fit subtraction.

Table A.3: NIPAM and PNIPAM microgel weight fractions for different volumetric flow rates
during the synthesis.

Volumetric flow rate NIPAM weight fraction PNIPAM microgel weight fraction

[mLmin ] [wt %] [wt %]
2.5 0.126 0.950
3.4 0.195 0.853
5.0 0.381 0.639
6.0 0.500 0.455
7.9 0.718 0.131
12.0 0.981 2.3x 10713
14.0 1.061 1.9 x 10713
18.0 1.106 1.8 x 10713

study’s topic. Yet, to exclude that the flow regime combined with the focus depth results in flawed
measurements, two aspects are considered. First, an additional static mixer is integrated right before
the installed position of the measurement cell. The second mixer causes a nearly homogeneously
mixed reactor fluid to enter the measurement cell. The comparison of the synthesis measurements
with and without the mixer is shown in Figure A.4. Hence, the difference between the measurements
with and without the additional static mixer is insignificant. The additional mean residence time
caused by the length of the static mixer is not taken into account, though. The additional time is
not expected to contradict the matching results, as the red triangles in Figure A.4 would be slightly
shifted to the right.

Secondly, the immersion depth of the Raman probe head into the reactor is varied. Here, the
exact immersion depth is challenging to determine, as the depth is changed manually. However, an
approximate analysis is still possible under these conditions. The standard deviations of the NIPAM
content during the microgel synthesis at 70° C for varying immersion depths of the Raman probe
head at Position 2 are calculated from measurements at volumetric flow rates of 2.5 mLmin ' and

112



A.5 Impact of Raman Focus Depth

7000

T T T T i

aluminum foil inside the measurement
cell as a reflective background

6000 -
inside the novel measurement cell
5" with no additional coating

A

5000

s’
4000

reference measurement

3000 in 3ml glass flask

Raman intensity [a.u.]

2000

| | 1 1 |
1800 1700 1600 1500 1400 1300 1200 1100 1000 900
Raman shift [cm-1]

1000

Figure A.2: Raw spectra of Raman intensity of pure water of 30 s acquisition time interval for
different configurations.

20mLmin . The values for the standard deviation are 0.0052wt% and 0.0097 wt%, respectively.
These values range in the order of magnitude as the standard deviation from repeated experiments (see
Table 3.2). Compared to the root mean squared error (RMSE) of flowing PNIPAM (see Figure 3.7(c)),
the standard deviation of varying immersion depths is very small. Hence, the small standard deviation
from changing the immersion depth is another indicator that the exact signal path of the focus is
insignificant compared to the influence of larger molecules in the flow reactor.
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Figure A.3: Mean residence time measurements for Position 1 (grey boxes) and Position 2 (blue
circles). Bold lines indicate the respective equation fit to Equation (A.1).
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Figure A.4: Comparison NIPAM content during reaction inside the flow reactor at Position 2:

Red triangles and blue circles indicate measurements with and without static mixer before the
measurement cell, respectively.
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Appendix B

Supplemental Material Regarding

Modeling of the
N-isopropylacrylamide-co-Methacrylic
Acid Microgel Synthesis

B.1 Influence of pH Value during Synthesis

The pH value is measured during the synthesis of microgels with a methacylic acid (MAA) content
of 5, 10 and 15mol% using a pH and temperature sensor (SenTix 940 from WTW). The measured
pH values are presented in Figure B.1(a). Based on the measured pH values the degree of dissociation

can be calculated via:
(B.1)

adiss :1O—pKa+pH_

The according degree of dissociation is pictured in Figure B.1(b). Here, it is visible that the

pH value ranges between 2.8 and 4.4 over the course of the reaction. Accordingly, the degree of
dissociation reaches a minimum and maximum value of 1.3 % and 54.5 %, respectively.
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Figure B.1: pH value and resulting degree of dissociation during the synthesis of microgels with
5, 10, and 15 mol% MAA content.
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Using the developed synthesis model, it is found that the pH value significantly influences the
system outputs, namely the enthalpy transfer rate and the weight fractions of the monomers N-
isopropylacrylamide (NIPAM) and MAA. By simulating the model for different pH values, the sig-
nificance of the pH value on the synthesis outcome is demonstrated. Figure B.2 shows the enthalpy
transfer rate and the weight fractions of the monomers NIPAM and MAA predicted by the kinetic
synthesis model for different pH values. The parameter values for the propagation rates and reaction
enthalpies are taken directly from the quantum mechanical calculations (see Section 7.3.2). The ini-
tiator efficiency f is set to 0.8, the decomposition rate ky is set to 1 x 107 s~!, and the termination
rate k; is set to 1 x 1072 m3 mol 's~!. The pH value is varied between 2.8 to 4.4, which corresponds

to the lowest and highest pH values measured during the syntheses (see Figure B.1(a)).
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Figure B.2: Simulation results for the synthesis of microgels with 10 mol% MAA for different
pH values.

Figure B.2 demonstrates that differences in the pH value in the range below 4.0 result in insignif-
icantly different progression of the enthalpy transfer rate and monomer weight fractions. However,
above a pH of 4.0 the pH value influences the output quantities substantially. Thus, the pH value
cannot be assumed to be constant during the synthesis.
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B.2 Synthesis Model

B.2 Synthesis Model

The model equations presented by Jung et al. [66] (marked in gray) are extended to account for the
integration of functional monomer MAA. Time dependence (t) is omitted for improved readability.

0=2fkgcr —kpi1crenn — kpraCrene

_kp13CRCM3 - kp13dCRCM3d7 (B.2a)
Chi :*]‘”pnﬁn(fxu - Af‘p21"1{2"1\11—]‘@’pfsoucmch

—kp31CR3ACM1 (B.2Db)
a2 :—A'fl;lz(?lz,l CM2 — /"1,)22(‘112(—‘1\12—k?pgchsCMz

—kp3daCR3d M2 (B.2¢)

r1 =+kp11ercnn ke (2¢&, + cri (Cro + Cr3 + Cr3q))

*A'I>12""1<'1 ('fxlz—k‘pmcm CM3 — k’pmcm CPDB_kp13ch1 CM3d

+hpo1 ot Fhpsicracan + KpadiCrad O s (B.2d)
Cro =+kp19CR N2k (265 + Cr2 (CR1 + CR3 + CR34))

+kp120R1 CvoThp32CR3CM2 + Kp3d2CR3dCM2

+kp126R16pDB + Kp32CR3CPDB + Fp3d2CRr3dCPDB

ko1 CraCn —Kp23Cratms — Kp2sd CR2CM3d s (B.2e)

Cppp =+ 190R1 Cua + FpooCroCnoHhpgaCraCme + Kpsd2CRad O
*]fplz“Rl“PDB - Afpzz(‘Rz“PDB

—kp32CR3CPDB — Kp3d2CR3dCPDB (B.2f)

where ¢, ¢y, and ¢y are the molar concentrations of initiator (I) 2,2’-azobis(2-methylpropion-
amidine)dihydrochloride (AMPA), monomer NIPAM (M, ), and cross-linker (M,) N,N’-methylene-
bis(acrylamide) (BIS), respectively. cg; are the molar concentrations of active radical chains with a
corresponding terminal end; they are equivalent to the zeroth order moments of the radical chains.

The enthalpy transfer rate ¥, which is the enthalpy flow rate due to the exothermic polymerization
reaction, is modeled based on the assumption that the major contributor to the enthalpy release are
the propagation reactions. Hence, the enthalpy transfer rate can be determined as

rR=—V" (ZZAHRz‘jkpichz'ch +ZAHRi2kpi20Rz’CPDB> ; (B.3)
5 7

for 4,5 = {1,2,3,3d}. There, ¢; is the molar concentration of component i €
[1=NIPAM, 2=BIS, 3=MAA, 3d=MAA"], AHg,;; is the enthalpy of reaction of respective
reactions. V denotes the volume of the solvent water in the reactor.

The weight fraction of monomer can be determined based on the concentration by

M MM V
WNIPAM = M (B.4a)

my,0

(emz Mz + evzaMza) -V (B.4b)
MH,0

WMAA =
where Myyy, Myy3, and Myyzq are the molecular weights of NIPAM, MAA, and MAA”, and my, g is

the mass of solvent in the reactor. The weight fraction of the cross-linker wgjg cannot be measured
with Raman spectroscopy due to the low amounts of cross-linker present in the reactor.
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Table B.1: Sensitivity of changes in AHg,;; on Y.

Reaction Relative sensitivity [%]
MAA radical / BIS 0.34
MAA radical / MAA 39.38
MAA radical / MAA" 0.00
MAA radical / NIPAM 95.42
MAA" radical / BIS 0.00
MAA" radical / MAA 0.00
MAA" radical /| MAA" 0.00
MAA- radical / NIPAM 0.00
NIPAM radical / MAA 100.00
NIPAM radical / MAA" 0.00
BIS radical / MAA 0.00
BIS radical / MAA- 0.00

B.3 Sensitivity Analysis

For the sensitivity analysis, parameter values calculated from quantum mechanical computations and
initial concentration values from the synthesis of microgels containing 10 mol% MAA are incorpo-
rated. Each parameter is varied by +10% and simulate the output variables: weight fraction of
NIPAM (wnpan) and MAA (wypaa), and enthalpy transfer rate (X¥g). The deviation in output
prediction for changes in parameter (p) is calculated, e.g., for the change in ¥, summarized for each
time point (t;) as follows:

tg

[XRo(t) — % o(t)]
s (P 2

to
AER’p

= B
7 max(AXg ) (B-5D)

The sensitivity (o) based on the parameter p change is calculated in Equation (B.5b). Here, the
maximum output change is used to normalize the resulting sensitivity. Based on the model structure,
the enthalpies of polymerization (AHg,;) only impact ¥g. The resulting sensitivities of X for
changes in AHp,;; are summarized in Table B.1. Similarly, the sensitivities of Xg, wypay, and
wypaa for changes in kinetic rate parameters are shown in Table B.1.
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Table B.2: Sensitivity of changes in reaction rate coefficients on Xy, wypan, and Wyaa-

Relative sensitivity [%]

Parameter

YR WNPAM  WMAA
k, 100.00 100.00 100.00
kq 22.91 90.52 36.35
f 25.59 1.03 39.96

Propagation rate coefficients:

MAA radical / BIS 1.13 0.00 0.99
MAA radical / MAA 31.18 0.00 29.37
MAA radical /| MAA~ 0.00 0.00 0.00
MAA radical / NIPAM  57.70 38.68 70.72

MAA" radical / BIS 0.00 0.00 0.00
MAA- radical / MAA 0.00 0.00 0.00
MAA" radical / MAA- 0.00 0.00 0.00
MAA" radical / NIPAM  0.00 0.00 0.00

NIPAM radical / MAA  19.16 3.79 11.27
NIPAM radical / MAA~  0.00 0.00 0.00
BIS radical / MAA 0.00 0.00 0.00
BIS radical / MAA" 0.00 0.00 0.00

B.4 Parameter Estimations

B.4.1 Model Suitability
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Table B.3: Parameter estimation setup and optimal parameter values for estimation based on individual Xy for the synthesis of microgels
containing 5 mol% to 15 mol% MAA. Termination rate coefficient and propagation rate coefficients are provided in [m3mols], decomposition
rate in [s'1] and polymerization enthalpies in [J].

Optimization setup Optimal parameter values

Appendix B Supplemental Material Regarding Modeling of the
N-isopropylacrylamide-co-Methacrylic Acid Microgel Synthesis

Parameter (5 MMMQHWWMMWANV ) MNMNMWM vm Lower bound Upper bound  5mol% 10 mol% 15 mol%
k, 8.80 1.00x 10~ 1.00x 107®  1.00 x 10° 1.55 x 101 1.54 x 102 1.32
kq 1.89 x 107° 1.37x107° 2.84x10712  1.26 x 10? 4.57x107% 2.69x 1077 5.24x107
f 8.00 x 1071 7.97x1071 2.00x1071  8.00x107!  3.52x107' 517x107! 4.73x 107!
Propagation rate coefficients k;

NIPAM radical / MAA  4.08 x 10* 1.19x10%  4.87 3.42 x 102 1.23 x 10* 6.57  2.71 x 102
BIS radical / MAA 1.56 1.86x 1071 1.86x 1071 1.31x 10! 1.03x 10" 1.31x10' 1.86x107!
MAA radical / NIPAM  1.21x 10! 1.54x 1072 1.44x1072  1.01 9.88x 1072 1.40x107! 8.03x 1072
MAA radical / BIS 3.54x 1072 297x1071 4.22x1073  297x107t  4.22x107 4.63x107% 2.97x107!
MAA radical / MAA 5.64 x 107! 1.04x 1071 6.73x1072  4.73 6.73x 1072 6.73x 1072 2.01
BIS radical / BIS 8.10 9.67x107" 9.67x107'  2.83x10° 1.04 1.04x10° 2.83x10°
BIS radical / NIPAM 9.99 8.37x10%  1.19 3.54 x 102 .19 1.97x10'  2.30 x 10}
NIPAM radical / BIS 1.03 x 10° 2.14x10%  222x107! 863 %103 7.14x 10?2  5.59x10®  8.63 x 103
NIPAM radical / NIPAM  5.99 x 102 1.72x 10>  2.02x107t  5.02x 103 8.06 x 101 9.37x10*  3.23x 102
Polymerization enthalpies AHyg,;:

MAA radical / MAA 6.37 x 104 6.02x10*  6.02 x 10* 6.72 x 104 6.02x10*  6.02x10*  6.72x 10*
NIPAM radical / MAA  8.58 x 10% 8.23x10*  8.23x 10* 8.93 x 104 8.23x10*  8.23x10* 8.93x10*
MAA radical / NIPAM  5.77 x 10* 5.42x 10%  5.42 x 10* 6.12 x 10* 542 x10*  5.42x10*  6.12x10%
BIS radical / MAA 7.65 x 10 7.30 x 10*  7.30 x 10* 8.00 x 10* 7.30x10*  7.30x10*  8.00 x 104
MAA radical / BIS 5.73 x 10* 5.43 x10*  5.38 x 10* 6.08 x 10* 538 x10*  5.38x10*  6.08 x 104
BIS radical / BIS 7.78 x 104 9.13x10*  7.43x 10* 8.13 x 10%* 7.43x10*  7.43x10* 9.13x10*
BIS radical / NIPAM 8.17 x 104 8.49x10*  7.82x 10* 8.52 x 104 7.82x10*  7.82x10* 8.52x10*
NIPAM radical / BIS 8.93 x 104 9.28 x 10+ 8.58 x 10* 9.28 x 104 8.58 x 104  8.58 x10*  9.28 x 10*
NIPAM radical / NIPAM 8.75 x 10* 5.38 x 10*  8.40 x 10***  9.10 x 10* 8.40x 10*  8.40x10* 543 x10*

* For 15 mol% this value is 9.22 x 104,

*k

For 15mol% this value is 5.38 x 10%.
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Figure B.3: Results of estimation using only the weight fractions and estimating based all
experiment combined with start values from estimation based on: (a),(b) 5 mol% MAA, (c), (d)

10 mol% MAA, and (e), (f) 15 mol% MAA experiment individually.
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B.4.4 Estimation Based on All Enthalpy Transfer Rates and
Weight Fractions
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Figure B.4: Results of estimation using the weight fraction and enthalpy transfer measurements

and estimating based on all experiment together. Using the start values from estimation based
on 5 mol% MAA experiment start values.
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Figure B.5: Results of estimation using the weight fraction and enthalpy transfer measurements
and estimating based on all experiment together. Using the start values from estimation based

on 15 mol% MAA experiment start values.
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Figure C.1: GP prediction of product flow as a function of: (a) reaction temperature, (b) initiator
flow rate, (c) monomer flow rate, and (d) surfactant concentration. The GP is trained on data
points generated in the hardware-in-the-loop study involving TS-EMO. The shaded are represents
the variance of the prediction at 0.32 mmol L for (a). For (b), (c), and (d), the shaded area
denotes the variance of the prediction at 68°C.
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Figure C.2: GP prediction of squared radius deviation as a function of: (a) reaction temperature,
(b) initiator flow rate, (c) monomer flow rate, and (d) surfactant concentration. The GP is trained
on data points generated in the hardware-in-the-loop study involving TS-EMO. The shaded are

represents the variance of the prediction at 0.32 mmol L™ for (a).
shaded area denotes the variance of the prediction at 68°C.
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Figure C.3: GP prediction of temperature deviation as a function of: (a) reaction temperature,
(b) initiator flow rate, (c) monomer flow rate, and (d) surfactant concentration. The GP is trained
on data points generated in the hardware-in-the-loop study involving TS-EMO. The shaded are
represents the variance of the prediction at 0.32 mmol L for (a). For (b), (c), and (d), the
shaded area denotes the variance of the prediction at 63°C.
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C.2 Data Tables

C.2.1 Data Regarding Hardware-in-the-loop Study
Involving TS-EMO

The data presented in Table C.1 enables the reconstruction of Figures 3, 4, and 6.

Table C.1: Hardware-in-the-loop input and output data.

# FI FM T CcTAB A7"12-1 Fproduct
iteration | [mLmin"'] [mLmin"'] [°C] [mmolL™] | [nm?  [mLmin ']
0 0.34 4.86 71 0.16 9.00 -4.29
0 0.46 10.46 71 0.16 169.00 -4.53
0 0.8 7.80 71 0.16 42.25 -6.54
0 0.52 16.42 71 0.16 1,056.25 -2.49
0 0.44 9.45 80 0.41 1,225.00 -7.41
0 0.59 13.58 80 0.41 1,332.25 -8.75
0 0.21 4.04 80 0.41 729.00 -3.85
0 0.73 5.23 80 0.41 210.25 -5.50
0 0.74 3.67 62 0.33 1.00 -3.43
0 0.65 13.76 62 0.33 90.25 -0.20
0 0.11 5.51 62 0.33 110.25 0.00
1 0.70 13.12 72.2 0.34 1089.00 -5.42
1 0.11 6.51 72.2 0.34 6.25 -0.40
1 0.71 14.77 72.2 0.34 1260.25 -5.92
1 0.52 5.14 72.2 0.34 225.00 -5.06
1 0.10 14.03 72.2 0.34 64.00 0.00
2 0.77 2.60 66.3 0.37 30.25 -3.26
2 0.18 3.90 66.3 0.37 182.25 -2.83
2 0.73 3.80 66.3 0.37 144.00 -4.13
2 0.10 4.00 66.3 0.37 676.00 -1.56
2 0.17 3.30 66.3 0.37 484.00 -2.84
3 0.36 2.02 63.5 0.14 900.00 -2.15
3 0.58 5.96 63.5 0.14 289.00 -3.64
3 0.59 3.40 63.5 0.14 600.25 -3.39
3 0.56 10.64 63.5 0.14 132.25 -1.40
3 0.56 6.24 63.5 0.14 210.25 -4.25
4 0.80 9.91 69 0.29 121.00 -6.30
4 0.67 7.52 69 0.29 90.25 -6.13
4 0.46 6.97 69 0.29 144.00 -5.25
4 0.53 7.98 69 0.29 144.00 -5.88
5 0.44 3.58 62.4 0.21 196.00 -0.71
) 0.44 2.94 62.4 0.21 240.25 -0.49
6 0.77 6.70 62.3 0.41 210.25 -4.54
6 0.80 7.52 62.3 0.41 462.25 -6.14
7 0.61 5.53 68.5 0.35 81.00 -5.16
7 0.65 4.22 68.5 0.35 90.25 -4.46
7 0.19 2.68 68.5 0.35 196.00 -2.68
7 0.73 3.63 68.5 0.35 12.25 -4.08
7 0.53 3.06 68.5 0.35 42.25 -3.43
8 0.70 4.22 60.7 0.23 484.00 -0.54
8 0.60 2.66 60.7 0.23 16.00 -1.26
8 0.74 3.67 60.7 0.23 132.25 -0.90
8 0.70 3.03 60.7 0.23 529.00 -0.20
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C.2.2 Data Regarding Global Deterministic Optimization
Including MAINGO
The data presented in Tables C.2 to C.5 enables the reconstruction of Figures 7 and 8.

Table C.2: Pareto optimal solutions calculated via MAINGO for a upper bound on the input
temperature of 80°C.

F Fy T CCTAB A7”12{ F product
mLmin"'] [mLmin '] [°C] [mmolL™'] | nm? [mLmin ]
0.73 8.44 68.52 0.34 25 -6.04
0.73 8.44 68.51 0.34 24 -6.04
0.73 8.44 68.50 0.34 23 -6.04
0.73 8.44 68.50 0.34 22 -6.03
0.73 8.43 68.49 0.34 21 -6.03
0.73 8.43 68.49 0.34 20 -6.02
0.73 8.42 68.48 0.34 19 -6.02
0.73 8.38 68.46 0.35 18 -6.01
0.73 7.69 68.46 0.35 17 -5.95
0.73 6.84 68.47 0.35 16 -5.76
0.73 2.98 68.48 0.35 15 -5.44
0.73 0.13 68.49 0.35 14 -5.01
0.73 4.27 68.49 0.35 13 -4.50
0.34 4.88 71.00 0.16 12 -4.30
0.34 4.87 71.00 0.16 11 -4.30
0.34 4.87 71.00 0.16 10 -4.29
0.74 6.63 62.00 0.33 9 -3.78
0.74 6.26 62.00 0.33 8 -3.70
0.74 5.88 62.00 0.33 7 -3.62
0.74 5.51 62.00 0.33 6 -3.54
0.74 0.14 62.00 0.33 Y -3.48
0.74 3.70 62.01 0.33 4 -3.44
0.74 3.69 62.01 0.33 3 -3.43
0.74 3.68 62.00 0.33 2 -3.43
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Table C.3: Pareto optimal solutions calculated via MAINGO for a upper bound on the input
temperature of 70°C.

F Fu T CCcTAB ATIQ-I F product
mLmin '] [mLmin"'] [°C] [mmolL~!] | [nm?] [mLmin ']
0.73 8.45 68.51 0.34 25 -6.04
0.73 8.44 68.51 0.34 24 -6.04
0.73 8.44 68.51 0.34 23 -6.04
0.73 8.44 68.50 0.34 22 -6.03
0.73 8.44 68.50 0.34 21 -6.03
0.73 8.43 68.49 0.34 20 -6.02
0.73 8.42 68.48 0.34 19 -6.02
0.73 8.36 68.47 0.35 18 -6.01
0.73 7.69 68.46 0.35 17 -5.95
0.73 6.84 68.47 0.35 16 -5.76
0.73 5.98 68.48 0.35 15 -5.44
0.73 5.13 68.49 0.35 14 -5.01
0.73 4.27 68.49 0.35 13 -4.50
0.74 7.57 62.01 0.33 12 -3.92
0.74 7.35 62.00 0.33 11 -3.90
0.74 7.00 62.00 0.33 10 -3.85
0.74 6.63 62.00 0.33 9 -3.78
0.74 6.26 62.00 0.33 8 -3.70
0.74 5.88 62.00 0.33 7 -3.62
0.74 9.01 62.00 0.33 6 -3.54
0.74 5.14 62.00 0.33 5 -3.48
0.74 3.70 62.01 0.33 4 -3.44
0.74 3.69 62.01 0.33 3 -3.43
0.74 3.68 62.00 0.33 2 -3.43
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Table C.4: Pareto optimal solutions calculated via MAINGO for a upper bound on the input
temperature of 62°C.

Fy Fy r CoTAB ATIQ-I F product
mLmin'] [mLmin"'] [°C] [mmolL~!] | [nm?] [mLmin ']
0.74 7.78 62.00 0.34 25 -4.02
0.74 7.77 62.00 0.34 24 -4.02
0.74 7.77 62.00 0.34 23 -4.01
0.74 7.7 62.00 0.34 22 -4.00
0.74 7.76 62.00 0.34 21 -4.00
0.74 7.76 62.00 0.34 20 -3.99
0.74 7.75 62.00 0.34 19 -3.99
0.74 7.75 62.00 0.33 18 -3.98
0.74 7.74 62.00 0.33 17 -3.97
0.74 7.73 62.00 0.33 16 -3.96
0.74 7.72 62.00 0.33 15 -3.96
0.74 7.70 62.00 0.33 14 -3.95
0.74 7.67 62.00 0.33 13 -3.94
0.74 7.59 62.00 0.33 12 -3.92
0.74 7.35 62.00 0.33 11 -3.89
0.74 7.00 62.00 0.33 10 -3.84
0.74 6.63 62.00 0.33 9 -3.77
0.74 6.25 62.00 0.33 8 -3.69
0.74 0.88 62.00 0.33 7 -3.61
0.74 5.01 62.00 0.33 6 -3.54
0.74 5.14 62.00 0.33 5 -3.48
0.74 3.70 62.00 0.33 4 -3.43
0.74 3.69 62.00 0.33 3 -3.43
0.74 3.68 62.00 0.33 2 -3.43
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Table C.5: Pareto optimal solutions calculated via MAINGO for a upper bound on the input
temperature of 61°C.

FI FM T CCcTAB AT%{ Fproduct
mLmin '] [mLmin'] [°C] [mmolL~!]| [nm?] [mLmin ']
0.60 6.44 60.71 0.23 25 -1.55
0.60 6.01 60.71 0.23 24 -1.48
0.60 5.59 60.70 0.23 23 -1.40
0.60 5.16 60.70 0.23 22 -1.31
0.60 2.66 60.73 0.23 21 -1.27
0.60 2.66 60.72 0.23 20 -1.27
0.60 2.66 60.72 0.23 19 -1.27
0.60 2.66 60.71 0.23 18 -1.27
0.60 2.66 60.71 0.23 17 -1.26
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