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Abstract. In sheet metal forming and blanking processes, the direct assessment of process 

conditions and product quality poses a challenge due to high production rates and the 

inaccessibility of the tool. In this context, the process signals generated by the manufacturing 

process, such as force and acoustic emissions, have the potential to serve as a valuable source of 

information, containing important insights into the quality of the final product as well as the 

complexity of the process itself. To date, it is not yet fully understood how these process signals 

depend on different influencing factors, such as process parameters. However, knowing how 

process signals, which reflect the process state, change with influencing factors is relevant to put 

observed signals into context and make informed decisions with respect to parameter adjustments. 

Conditional generative AI models, such as conditional generative adversarial networks (CGANs) 

offer a promising approach to the aforementioned issue by generating probable process signals 

based on specified conditions. In this study, thin metal sheets with three different thicknesses were 

provided into a fine blanking process, and corresponding punching force signals were measured. 

With these signals, a conditional-deep convolutional GAN (C-DCGAN), a model that combines 

the principles of both CGAN and deep convolutional GAN (DCGAN), is trained with sheet metal 

thickness specified as a condition. The trained generator is employed to predict process signals for 

different sheet thickness values. The presented model is evaluated with respect to thickness values 

that were known during training time as well as with thickness values that were not presented to 

the model during training. 

Introduction 

Sheet metal forming and blanking processes are widely used in the automotive and aerospace 

industries due to their high production rates and stable quality, making them suitable for high 

production rates. Fine blanking, specifically, stands out with its capability to create a high 

proportion of smooth cutting surface [1], enabling its use in production of safety-related products, 

such as automotive seat belt tongues. Given the applications of the products resulting from this 

process, it becomes significant to monitor the tool's condition and strive to extend the tool's 

lifespan. While direct assessment of this condition is difficult due to their high production rates 

and the inaccessibility of tools [2], it has been recognized that indirect assessments based on 

process signals show potential in tackling these challenges. In wear monitoring, Unterberg et al. 

[3] analyzed acoustic emission (AE) signals in an industrial-grade fine blanking process and 

revealed potential correlations with the surface roughness of scrap webs, as a proxy for tool wear. 



 

 

They suggested an approach for developing models that predict tool wear based on extracted 

features from AE signals. In another publication, Kubik et al. [4] presented a machine learning 

(ML)-based inline wear state quantification model using torque and force signals in the roll 

forming – fine blanking process chain. They classified the abrasive wear states of the punch into 

five stages, and based on this classification, they trained a ML model that is able to predict the 

wear states. 

Despite recent research of indirect assessment of the process state through process signals, 

adjusting process parameters based on these signals still remains a challenge. Difficulties arise due 

to the lack of knowledge regarding how the changing values of process parameters impact the state 

of the process. Simulations are developed to tackle these problems, but simulation models often 

face a trade-off between high accuracy and computational complexity [5]. However, the fact that 

process signals reflect process states suggests an approach to overcome this problem associated 

with utilizing reference process signals. For example, by considering the shape of a process signal 

that mirrors the desired process state as a target, process parameters can be adjusted to align the 

current process signal with the target process signal while monitoring corresponding changes in 

the current process signal. However, in the absence of a thorough comprehension of the behavior 

of the process signal, it becomes challenging to make such informed adjustments to process 

parameters. To comprehend the complex dynamics of process signals, a thorough analysis must 

be attempted with signals generated with a wide variety of parameters [6]. Unfortunately, the 

current scenario in production lines is characterized by signals generated within restricted 

parameter ranges, primarily due to safety constraints or economic considerations, such as tool 

breakage. These limited and frequently imbalanced datasets hinder a thorough understanding of 

the process signal behavior, therefore results in the selection of right target parameters and the 

adjustment of their values becoming complex tasks. In order to overcome these limitations, 

exploiting synthetic process signals in yet unexplored or scarce parameter spaces becomes an 

essential step. 

In recent study in manufacturing, generating synthetic data using deep learning models are 

actively investigated. Their ability to generate synthetic, but realistic data has already been 

demonstrated, for instance, in the context of predicting SEM images of a material's microstructure 

using a CGAN under previously unknown processing conditions [7]. Analogously, the work by 

Link et al. [8] conducted a comprehensive investigation into the metamodeling of deep drawing 

processes. Their study demonstrated the feasibility of employing CGANs in sheet metal forming 

for predicting sheet thickness of forming result from finite element simulations, achieving high 

precision with limited data and robustness against varying input parameters. The study by Molitor 

et al. [9] addressed the challenges of data efficiency in the context of utilizing deep learning models 

for tool wear classification in stamping process. Using various types of GANs, their work 

demonstrated the effectiveness of data augmentation techniques to improve classification 

accuracies of deep learning models even with low data availability. However, most of the existing 

research does not utilize conditional generative models for the synthesis of time series process 

signals, but rather focuses on image data. Those for time series have primarily emphasized the 

balancing of dataset through categorical conditions of the machine state [10] or the models are 

used to predict missing data by leveraging relationship within and between input data, rather than 

relying solely on modifying condition to obtain them [11]. 

In this paper, the C-DCGAN model is trained using sheet metal thickness as the conditioning 

parameter, employing stamping force signals obtained from a fine blanking machine. We 

demonstrate the effectiveness of the trained generator in learning the distinctions between force 

signals for specific sheet thicknesses and show its ability to generate synthetic force signals 



 

 

accurately under these conditions. These synthetic signals are then compared to real signals to 

assess the feasibility of employing an approach that utilizes synthetic process signals for signal-

based parameter adjustments in the manufacturing process under specific parameter conditions. In 

this context, the following research questions are outlined: 

RQ1. How effectively can the generated process signals align with real process signals across 

different thickness classes? 

RQ2. How effectively can the generated process signals align with conditions that were not 

presented to the model during training? 

Methods 

In the experiment of this study, a 16MnCr5 (AISI 5115) thin metal sheet with three different 

thicknesses was provided to the Laboratory for Machine Tools and Production Engineering (WZL) 

of RWTH Aachen University. The sheet underwent processing through the fine blanking process 

line at a stroke speed of 30 strokes per minute, as illustrated in Fig. 1. 

 

Fig. 1. Fine blanking process line 

The stamping force is measured via four in-tool piezoelectric force sensors integrated into the 

fine blanking machine. Each sensor captures signals at a sampling rate of 10 kHz, and the acquired 

signals are segmented based on the stroke. This yields a multivariate time series for each sensor, 

where each time series of 10,500 data points varies with the number of strokes. The start and end 

parts of each stroke are adjusted to attain zero force values, and these corrected force signals from 

the four sensors are averaged to create a unified multivariate time series. This led to in total of 287, 

270 and 181 time series for each thickness class: 3.95 mm, 4.00 mm and 4.05 mm, respectively. 

For a detailed analysis of force signal variations concerning sheet thickness, the shearing and 

stripping stages are isolated from the overall time series. This isolation yields 2,000 data points of 

the shearing stage and 1,201 data points of the stripping stage. The time series for these isolated 

stages are then aligned along the time-axis with specified reference points, which are identified as 

the maximum peaks for shearing and minimum peaks for stripping within each stage’s time series.  

To reduce the amount of data points per time series for model training, each stage is further 

divided into two segments for shearing and three segments for stripping, respectively. On one 

hand, these segments are scaled, resulting in each data point across the time series being scaled to 

have a mean of 0 and a unit variance. Each scalar model is saved before training phase (Fig. 2 (a)) 

and utilized for the rescaling of the generated data in the after training phase (Fig. 2 (c)). In the 

training phase (Fig. 2 (b)), the total of 738 scaled segments are employed as the training data for 

the model. For balanced training across each class, the training data is complemented by randomly 

sampling additional training data from each class, which leads to 288 time series for each class. 

On the other hand, average time series from the non-scaled segments are computed for each 

thickness class. These average time series serve as the ground truth for selecting trained models 

based on time series plots, as depicted by xground_truth in Fig. 2 (c). 
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Fig. 2. Training and evaluation of the model 

The model used in this paper follows the C-DCGAN architecture, which is the combination of 

CGAN [12] and DCGAN [13]. The generator network operates by taking input from noise z, which 

is composed of random numbers from the standard normal distribution. Additionally, the generator 

receives the label y of the real data x as the 2nd input. Both the generator and the discriminator 

receive this label as the auxiliary information. Under this condition y, the generator network G 

strives to produce realistic data G(z|y), whereas the discriminator tries to distinguish between the 

real data x and the synthetic data G(z|y). The m de ’s   jecti e functi n can  e descri ed as a 

two-player minmax game: 

 

min
G

max
D

V(D, G) = 𝔼x~pdata(x)[logD(x|y)] + 𝔼z~pz(z)[log(1 − D(G(z|y)))] (1) 

 

where the terms 𝔼x~pdata(x)[logD(x|y)] denotes the expected value of the log-likelihood of the 

discriminator D on the conditioned real data x|y and 𝔼z~pz(z)[log(1 − D(G(z|y)))] represents the 

expected value of the negative log-likelihood of the discriminator D on the generated data G(z|y) 
[12]. In this experiment, the label 𝑦 corresponds to the sheet metal thickness as a conditioning 

factor. These labels are encoded as 0, 1, and 2 for each thickness class. 

For the training of the model, an NVIDIA Tesla V100 GPU is used. After training, the best 

models were selected with different learning rates and number of epochs for each segment because 

of the different length of the data points and the data distributions across the time series segments. 

Furthermore, rec gniti n  f the m de ’s c n ergence thr ugh generat r   sses  ecame  ess 

straightforward due to the adversarial relationship between the generator and the discriminator 

network, i.e., low generator losses do not necessarily mean that the generator can produce realistic 

data [14]. Because of these issues, training results are acquired by visually inspecting data plots, 

that were generated at intervals of 250 epochs, comparing generated data with the ground truth of 

the corresponding thickness class. Based on the adequacy of the visual inspection result from these 

checkpoints, the models are selected that correspond to the respective number of epochs. This 

resulted in five distinct generator models per research question, each trained on a different time 

series segment accordingly. 
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Results and Discussion 

To address the research questions, individual training strategies are developed. For the first 

question (RQ1), the model is trained across all three thickness classes to investigate the fitness of 

the presented model by generating synthetic process signals, solely manipulating the thickness as 

the given condition. In the evaluation phase, the generated data from the trained generator is 

compared to real data within each thickness class. For each thickness class, an equivalent amount 

of time series is generated by the trained generator to match the number of real time series. 

Fig. 3 and Fig. 4 depict time series plots for the real and generated force signals for each stage 

across different thickness classes. In general, the trained generators could imitate the original time 

series well, with the exception of the last 100 data points in the shearing stage and the data points 

between 950th and 1000th positions in the stripping stage, constituting part of the 2nd stripping 

segment. The training for the 2nd stripping segment was particularly challenging due to its small 

yet frequent fluctuations of the data points, in comparison to other segments’ data distributions. 

 
Fig. 3. Real and generated force signals (shearing stage) – RQ1 
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Fig. 4. Real and generated force signals (stripping stage) – RQ1 

This could be observed in Fig. 5 (e) as well, which is the violin plot of the 2nd stripping segment. 

In the following Fig. 5, each region corresponds to a Gaussian kernel density estimate (KDE), 

depicting the density of respective values. The horizontal dashed line within each violin indicates 

the median, while the dotted lines indicate the first and third quartiles. The shapes of KDE for 

generated signals look similar to those of real signals. Although there are some deviations in the 

medians for 4.00 mm and 4.05 mm, the scale of the 2nd stripping segment is still smaller than that 

of shearing segments. This is because the real time series of the shearing stage cover a much 

broader range of force values compared to that of the stripping stage. 

For numerical comparison, the first Wasserstein distances are calculated between real and 

generated time series across different thickness classes to measure the similarity of two time series. 

Given i.i.d. samples X1, … , Xn~P and Y1, … , Ym~Q, the first Wasserstein distance between two 

probability distributions P and Q is defined as the minimum cost of transforming one distribution 

into the other, i.e.: 

 st stripping segment  nd stripping segment

 st stripping segment  nd stripping segment

 st stripping segment  nd stripping segment



 

 

W1(P, Q) = inf
π∈Γ(P,Q)

∫ |X − Y|dπ
ℝ×ℝ

 (2) 

 

where Γ(P, Q) is the set of all joint probability measures on ℝ× ℝ [15]. 

Fig. 5. Violin plot for Gaussian KDE of real and generated force signals – RQ1 

 

Fig. 6. Heatmap of Wasserstein distance between real and generated force signals – RQ1 



 

 

The heatmaps with Wasserstein distance in Fig. 6 visualize the calculated results, rounded up 

to two decimal places. Lower value indicates high similarity between real and generated time 

series. When examining the heatmap in Fig. 6 derived from the generated data side, it becomes 

apparent that the darkest color within the values corresponding to each thickness class aligns with 

the thickness classes of the actual real data, except for the 2nd stripping segment. However, 

considering that there is a significant scale difference between the shearing stage (Fig. 6 (a), (b) 

and (c)) and the stripping stage (Fig. 6 (d) and (e)), the dissimilarity in thickness between 4 mm 

and 4.05 mm for the 2nd stripping segment is not deemed critical. Nevertheless, despite of that the 

last 100 data points generated by targeting a thickness of 4.05 mm in the third shearing segment 

appeared closer to thickness 4.00 mm (refer to Fig. 4), the Fig. 6 (c) reveals that the Wasserstein 

distance still indicates a greater proximity of the data generated with a target of 4.05 mm rather 

than 4.00 mm. This implies that, despite the last 100 data points aligning more closely with 

thickness 4.00 mm, when considering the entire dataset comprising approximately 2000 points, 

this favorable alignment consists only a small fraction.  

For RQ2, training is exclusively conducted on two thickness classes, namely 3.95 mm and 4.00 

mm, to explore the capability of the trained generator in producing synthetic process signals for 

thickness classes that were not included in the training set. The generator, trained under this 

specific setting, is employed to generate data conditioned on all thickness classes, including 4.05 

mm. Subsequently, the generated data is compared to real data in this previously unseen condition. 

Owing to the difficulties in visually comparing using time series and violin plots that illustrate 

differences between the results of two research questions, only the numerical comparison using 

the Wasserstein distances is presented for RQ2 as Fig. 7. 

 
Fig. 7. Heatmap of Wasserstein distance between real and generated force signals – RQ2 

As illustrated in Fig. 7 (b), (c) and (d), the generators trained under limited conditions can 

predict the time series for 4.05 mm with some degree of error, yet the predictions are still closer 



 

 

to the target time series compared to those for 3.95 mm and 4.00 mm. This also further validates 

the extrapolation ability of conditional GANs, as demonstrated by Fu et al. [16]. Although the 

model failed to predict accurate time series for the 1st shearing segment and the 2nd stripping 

segment (Fig. 7 (a) and (e)), an interesting point is that these generators exhibit even better 

prediction results than when trained with all thickness classes (compared to Fig. 6 (b), (c) and (d)). 

This might be due to the typical problems of deep learning model such as overfitting or catastrophic 

forgetting, implying that the model performance can be improved through fine-tuning of the 

hyperparameters.  

Summary 

This study explores the application of C-DCGAN in generating synthetic process signals for sheet 

metal forming processes, particularly in fine blanking. In the context of process parameter 

adjustments, synthetic process signals have the potential to serve as the baselines for understanding 

complex dynamics of the process signals with given parameter conditions. This research addresses 

two main questions: examining the effectiveness of generated process signals across different sheet 

thickness classes (RQ1) and assessing the m de ’s a i it  t  predict signa s f r c nditi ns n t 

presented during training (RQ2). For RQ1, the trained generators demonstrated the capability to 

approximate the original time series for three different thickness classes: 3.05 mm, 4.00 mm and 

4.05 mm. This suggests that the selected conditional generative model can predict process signal 

by employing the given influencing parameter as the condition. For RQ2, training under limited 

conditions on two thickness classes allowed the generator to predict time series for previously 

unseen condition. This extrapolation capability of conditional generative models can be further 

utilized to generate synthetic process signals by exploring as-yet-unknown process parameter 

spaces. 

This paper serves as a feasibility study to determine the potential for generating synthetic yet 

realistic process signals under specified conditions. The generated synthetic process signals can be 

utilized as the baselines for further analogy experiments related to understanding process signal 

behavior. While environmental factors or system parameters (e.g., sheet thickness) are beyond the 

scope of in-line control, leveraging the synthetic process signals can be extended to signal-based 

adjustments of in-line controllable process parameters. Hence, evaluating the model conditioned 

on in-line controllable process parameters has to be considered as main focus of future work. A 

more efficient model selection metric could also be considered to reduce the manual labor in 

selecting the best models. In addition, to further assess the validity of the synthetic process signals, 

additional statistical tests measuring (dis)similarity of two probability distributions could be 

considered, such as the Kolmogorov-Smirnov test [17]. 
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