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The clique graph kG of a graph G has as its vertices the cliques (maximal complete 
subgraphs) of G , two of which are adjacent in kG if they have non-empty intersection 
in G . We say that G is clique convergent if knG ∼= kmG for some n �= m, and that G is clique 
divergent otherwise. We completely characterise the clique convergent graphs in the class 
of (not necessarily finite) locally cyclic graphs of minimum degree δ ≥ 6, showing that for 
such graphs clique divergence is a global phenomenon, dependent on the existence of large 
substructures. More precisely, we establish that such a graph is clique divergent if and only 
if its universal triangular cover contains arbitrarily large members from the family of so-
called “triangular-shaped graphs”.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Given a (not necessarily finite) simple graph G , a clique Q ⊆ G is an inclusion maximal complete subgraph. The clique 
graph kG has as its vertices the cliques of G , two of which are adjacent in kG if they have a non-empty intersection in 
G . The operator k is known as the clique graph operator and the behaviour of the sequence G , kG , k2G, . . . is the clique 
dynamics of G . The graph is clique convergent if the clique dynamics cycles eventually and it is clique divergent otherwise. 
It is an ongoing endeavour to understand which graph properties lead to convergence and divergence respectively, however, 
since clique convergence is known to be undecidable in general [2], this investigation often restricts to certain graph classes, 
such as graphs of low degree [17], circular arc graphs [13], or locally H graphs (e.g. locally cyclic graphs [5] or shoal graphs 
[12]).

The focus of the present article is on locally cyclic graphs, that is, graphs for which the neighbourhood of each vertex in-
duces a cycle. Such graphs can be interpreted as triangulations of surfaces (always to be understood as “without boundary”), 
and it was recognized early that the study of their clique dynamics can be informed by topological considerations.

So it is known that each closed surface (i.e., compact and without boundary) has a clique divergent triangulation [8], 
but that convergent triangulations exist on all closed surfaces of negative Euler characteristic [6]. It has furthermore been 
conjectured that there are no convergent triangulations on closed surfaces of non-negative Euler characteristic (for a precise 
statement one requires minimum degree δ ≥ 4; see Conjecture 5.1). For example, the 4-regular [3] and 5-regular [14]
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Fig. 1. The triangular-shaped graphs �m for m ∈ {0, . . . ,4}.

triangulations of the sphere (i.e., the octahedral and icosahedral graph) are clique divergent; as is any 6-regular triangulation 
of the torus or Klein bottle [4,5]. On the other hand, a triangulation of minimum degree δ ≥ 7 (necessarily of a closed surface 
of higher genus) is clique convergent [7]. Triangulations that mix degrees above and below six are still badly understood.

Baumeister & Limbach [1] broadened these investigations to triangulations of non-compact surfaces, that is, to infinite 
locally cyclic graphs. They gave an explicit description of knG in terms of so-called triangular-shaped subgraphs of G (see 
Fig. 1), where G is a triangulation of minimum degree δ ≥ 6 of a (not necessarily compact) simply connected surface (see 
Section 2.3 for details).

The goal of this article is to bring the investigation of [1] to a satisfying conclusion: we apply their explicit construction 
of knG to completely characterise the clique convergent triangulations in the class of (not necessarily finite) locally cyclic 
graphs of minimum degree δ ≥ 6. We thereby answer the open questions from Section 9 of [1].

Our first main result concerns locally cyclic graphs that are triangularly simply connected, that is, they correspond to 
triangulations of simply connected surfaces (see Section 4.2 for a rigorous definition). We identify the clique divergence of 
these graphs as a consequence of the existence of arbitrarily large triangular-shaped subgraphs.

Theorem A (Characterisation theorem for triangularly simply connected graphs). A triangularly simply connected locally cyclic graph 
of minimum degree δ ≥ 6 is clique divergent if and only if it contains arbitrarily large triangular-shaped subgraphs.

The difficulty in proving Theorem A lies in establishing divergence for a sequence of infinite graphs. Divergence is usually 
shown by observing the divergence of some numerical graph parameter, such as the vertex count or graph diameter. As our 
graphs are potentially infinite, this fails since the straightforward quantities might be infinite to begin with. The quest then 
lies mainly in identifying an often more contrived graph invariant which is still finite yet unbounded.

As a consequence of Theorem A we find that the 6-regular triangulation of the Euclidean plane (aka. the hexagonal 
lattice) is clique divergent.

By applying Theorem A to the universal triangular cover (see Section 4.2), we obtain the following more general result.

Theorem B (General characterisation theorem). A (not necessarily finite) connected locally cyclic graph of minimum degree δ ≥ 6 is 
clique divergent if and only if its universal triangular cover contains arbitrarily large triangular-shaped subgraphs.

The “only if” direction of Theorem B was supposedly proven in [1], but the proof contains a gap, which we close in 
Section 4.

As a consequence of Theorem B, a triangulation of minimum degree δ ≥ 6 of a closed surface is clique divergent if and 
only if it is 6-regular (cf. [1, Lemma 8.10]).

We mention two further recent results on clique dynamics that are in a similar spirit. In 2017, Larrión, Pizaña, and 
Villarroel-Flores [11] showed that the clique operator preserves (finite) triangular graph bundles, which are a generalisation 
of finite triangular covering maps. Also, just recently in 2022, Villarroel-Flores [17] showed that among the (finite) connected 
graphs with maximum degree at most four, the octahedral graph is the only one that is clique divergent.

1.1. Structure of the paper

In Section 2, we recall the fundamental concepts and notations used throughout the paper. In particular, in Section 2.3
we recall the geometric clique graph Gn and the relevant statements of [1] that established the explicit description of knG
in terms of Gn .

In Section 3, we prove Theorem A. To show that a sequence of infinite graphs is divergent, we identify a finite yet 
unbounded graph invariant D(H) (see (3.1)) based on the distribution of vertices of degree 26.

In Section 4, we prove Theorem B. We extend the divergence results of Section 3 to graphs that are not necessarily 
triangularly simply connected by exploiting that covering relations interact well with the clique operator and the geometric 
clique graph.

Section 5 summarizes the results and lists related open questions.
We also include an appendix which recalls helpful background theory for Section 4. Appendix A gives a proof that trian-

gular simple connectivity is preserved under the clique operator while Appendix B focuses on the existence and uniqueness 
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Fig. 2. The triangular-shaped graph �4 and its boundary ∂�4.

of a triangularly simply connected triangular cover for any connected graph. Appendix C recalls the construction of the 
�-isomorphism ψn : Gn → knG from [1].

2. Notation and background

2.1. Basic notation

All graphs in this article are simple, non-empty and potentially infinite. If not stated otherwise, they are connected and 
locally finite. For a graph G we write V (G) and E(G) to denote its vertex set and edge set, respectively. The adjacency 
relation is denoted by ∼. We define the closed and the open neighbourhood of a set U ⊆ V (G) of vertices as

NG [U ] := {v ∈ V (G) | v ∈ U or v ∼ w for some w ∈ U } and

NG(U ) := {v ∈ V (G) | v �∈ U and v ∼ w for some w ∈ U },
respectively.

For v ∈ V (G), we write NG [v] instead of NG [{v}] and NG (v) instead of NG ({v}). We write degG(v) := |NG(v)| for the 
degree of v , and distG(v, w) for the graph-theoretic distance between two vertices v, w ∈ V (G). For v ∈ V (G) and U , U ′ ⊆
V (G) we write

distG(v, U ) := min
w∈U

distG(v, w) and distG(U , U ′) := min
w∈U ,w ′∈U ′distG(w, w ′).

We write G-degree, G-neighbourhood, or G-distance to emphasize the graph with respect to which these quantities are 
computed. Finally, we use ∼= to denote isomorphy between graphs.

We write N := {1, 2, 3, . . .} and N0 :=N ∪ {0} for the sets of natural numbers without and with zero. We write kN and 
kN0 to denote multiples of k.

2.2. Cliques, clique graphs, and clique dynamics

A clique in G is an inclusion maximal complete subgraph. The clique graph kG has vertex set V (kG) := {cliques of G}, 
and distinct cliques Q , Q ′ ∈ V (kG) are adjacent in kG if they have vertices in common. We consider k as an operator, the
clique graph operator, mapping a graph to its clique graph. By kn , we denote its n-th iterate.

A sequence G0, G1, G2, . . . of graphs is said to be convergent if it is eventually periodic, that is, if for some r ∈N and all 
sufficiently large n ∈N we have Gn ∼= Gn+r . The sequence is said to be divergent otherwise. A graph G is said to be clique 
convergent if the sequence k0G , k1G , k2G, . . . is convergent, and is called clique divergent otherwise.

2.3. Locally cyclic graphs, triangular-shaped subgraphs, and the geometric clique graph

A graph G is locally cyclic if the (open) neighbourhood of each vertex induces a cycle. In particular, a locally cyclic graph 
is locally finite. Such graphs can also be interpreted as triangulations of surfaces. We shall however use this geometric 
perspective only informally, and work with the purely graph theoretic definition given above. A fundamental example of a 
locally cyclic graph is the hexagonal triangulation of the Euclidean plane.

We use the class of triangular-shaped graphs �m from [1], which are subgraphs of the hexagonal lattice, and the 
smallest five of which are depicted in Fig. 1. The parameter m is called the side length of �m , and the boundary ∂�m is the 
subgraph of �m that consists of the vertices of degree less than six and the edges that lie in only a single triangle (Fig. 2).

In [1], it was shown that the n-th iterated clique graph knG of a triangularly simply connected locally cyclic graph G
of minimum degree δ ≥ 6 (also called “pika” in [1]) can be explicitly constructed based on triangular-shaped subgraphs 
of G (see Definition 2.1 and Theorem 2.2 below). Hereby “triangularly simply connected” means “triangulation of a simply 
connected surface”, but a precise definition is postponed until Section 4.2 (or see [1]). For now it suffices to use these terms
as a black box, merely to apply Theorem 2.2. Note however that such a graph is in particular connected.

The explicit construction of knG is captured by the following definition:
3
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Definition 2.1 ([1, Definition 4.1]). Given a triangularly simply connected locally cyclic graph G of minimum degree δ ≥ 6, its
n-th geometric clique graph Gn (n ≥ 0) has the following form:

(i) the vertices of Gn are the triangular-shaped subgraphs of G of side length m ≤ n with m ≡ n (mod 2).
(ii) two distinct triangular-shaped subgraphs S1 ∼= �m and S2 ∼= �m+s with s ≥ 0 are adjacent in Gn if and only if any of 

the following applies:
a. s = 0 and S1 ⊂ NG [S2] (or equivalently, S2 ⊂ NG [S1]).
b. s = 2 and S1 ⊂ S2.
c. s = 4 and S1 ⊂ S2 \ ∂ S2.
d. s = 6 and S1 = S2 \ NG [∂ S2].

Note that G0 ∼= G . We then have

Theorem 2.2 ([1, Theorem 6.8 + Corallary 7.8]). If G is locally cyclic, triangularly simply connected and of minimum degree δ ≥ 6, then 
Gn ∼= knG for all n ∈N0 .

We refer to the four types of adjacencies listed in Definition 2.1 as adjacencies of type 0, ±2, ±4 and ±6 respectively. 
For a triangular-shaped graph S ∈ V (Gn) of side length m, we refer to a neighbour T ∈ NGn (S) of side length m + s as being 
of type s ∈ {−6, −4, −2, 0, +2, +4, +6}. Some visualisations for the various configurations of triangular-shaped graphs that 
correspond to adjacency in Gn can be seen in Figs. 3 to 5 in the next section.

The following example demonstrates how Theorem 2.2 can be used to establish clique convergence in non-trivial cases:

Example 2.3. A locally cyclic and triangularly simply connected graph G of minimum degree δ ≥ 7 does not contain any 
triangular-shaped graphs of side length ≥ 3 (because such have vertices of degree six). Hence, knG ∼= Gn = Gn+2 ∼= kn+2G
whenever n ≥ 1. Such a graph G is therefore clique convergent.

3. Proof of Theorem A

Throughout this section, we assume that G is a locally cyclic graph that is triangularly simply connected and has min-
imum degree δ ≥ 6. We can then apply Theorem 2.2 and investigate the dynamics of the sequence of geometric clique 
graphs Gn in place of knG .

One direction of Theorem A follows immediately from the definition of the geometric clique graph (Definition 2.1) to-
gether with Theorem 2.2. We make a remark for later reference:

Remark 3.1. If all triangular-shaped subgraphs of G are of side length ≤ m ∈ 2N , then Gm ∼= Gm+2, that is, the sequence 
cycles, and G is clique convergent by Theorem 2.2. This reasoning can also be found in [1, Theorem 7.9].

The remainder of this section is devoted to proving the other direction of Theorem A: if G contains arbitrarily large trian-
gular-shaped subgraphs, then G is clique divergent. For this, we identify a graph invariant that is both finite and unbounded 
for the sequence Gn as n → ∞, as long as G contains arbitrarily large triangular-shaped subgraphs. It turns out that a 
suitable graph invariant can be built from measuring distances between vertices of certain degrees. Curiously, the degree 26 
plays a special role, and the following notation comes in handy:

DEG26(H) := {v ∈ V (H) | degH (v) = 26}
DEG26(H) := {v ∈ V (H) | degH (v) �= 26}

The corresponding graph invariant is the following:

D(H) := max
v∈V (H)

distH
(

v,deg26(H)
)
. (3.1)

The significance of the number 26 stems from the observation that most vertices of Gn have Gn-degree ≤ 26; and have 
Gn-degree exactly 26 only in very special circumstances that can be expressed as the existence of certain triangular-shaped 
subgraphs in G . This is proven in Lemma 3.2 and Lemma 3.3. Finitude and divergence of D(Gn) as n → ∞ are proven 
afterwards in Lemma 3.4 and Lemma 3.5.

In the following, we generally consider Gn only for even n ∈ 2N , as this cuts down on the cases we need to inves-
tigate, and is still sufficient to show that D(Gn) is unbounded. Note that each S ∈ V (Gn) is then of even side length 
m ∈ {0, 2, 4, 6, . . .}.

Lemma 3.2. Let S ∈ V (Gn) be a triangular-shaped graph of side length m ≥ 6. Then degGn
(S) ≤ 26, with equality if and only if S has 

a neighbour of type +6.
4
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Fig. 3. The 26 possible ways in which a triangular-shaped graph S ∈ V (Gn) of side length m ≥ 6 can be Gn-adjacent to another triangular-shaped graph 
T ∈ V (Gn) of side length m + s, where s ∈ {−6, −4, −2, 0, +2, +4, +6}. Two configurations may differ merely by a symmetry (one of the six “reflections” 
and “rotations” of a triangular-shaped graph), and we always show only a single configuration with the multiplication factor next to it indicating the 
number of equivalent configuration related by symmetry. Note that for the types ±2, ±4 and ±6, the configurations must be accounted for twice in the 
Gn-degree of S: once with S being the larger graph (in grey), and once with S being the smaller graph (in black). Then 26 = 6 + 2 · (3 + 3 + 3 + 1).

Fig. 4. For m ∈ {2,4}, there also exist the following “twisted adjacencies”.

Fig. 5. The eight possible neighbours of a triangular-shaped graph of side length m = 0 of type +4 and +6. See the caption of Fig. 3 for an explanation of 
the multiplicities.

Lemma 3.2 actually holds unchanged for m ≥ 2. Since we do not need these cases to prove Theorem A, and since verifying 
them requires a distinct case analysis (because of “twisted adjacencies”, cf. Fig. 4), we do not include them here.

Proof of Lemma 3.2. Fig. 3 shows all potential configurations of S and a Gn-neighbour of S according to Definition 2.1 (here 
we need m ≥ 6, as there are exceptional “twisted adjacencies” for smaller m, see Fig. 4). In total this amounts to a degree 
of at most 26. In particular, if just one of the neighbours is missing, say the neighbour of type +6, then S must have a 
Gn-degree of less than 26.

Conversely, one can verify that if S has a neighbour of type +6, say T ∈ NGn (S), then all other neighbours of types 
−6, −4, −2, 0, +2, and +4 can be found as subgraphs of T . Therefore, all 26 neighbours are present and the degree is 
26. �

For m = 0 only one direction holds, which is also sufficient for our purpose.

Lemma 3.3. Let n ∈ 2N and s ∈ V (Gn) be a triangular-shaped graph of side length m = 0 (that is, s is a vertex of G). If s has no 
Gn-neighbour of type +6, then degGn

(s) �= 26.

Proof. Clearly, s has no neighbours of type −6, −4 or −2. The Gn-neighbours of type 0 are exactly the vertices that are 
also adjacent to s in G , that is, there are exactly degG(s) many. The potential neighbours of type +4 and +6 are shown in 
Fig. 5, which amount to at most eight neighbours of these types. Note that these can exist only if degG(s) = 6.

It remains to count the neighbours of type +2, which will turn out at exactly 2 degG(s), independent of the specifics of 
G . Observe first that there can be two types of neighbours T ∈ NGn (s) of type +2 distinguished by the T -degree of s, which 
is either two or four (cf. Fig. 6). We shall say that these neighbours are of type +22 and +24 respectively.

In the following, an r-chain is an inclusion chain s ⊂ � ⊂ T , where � is an s-incident triangle in G , and T is a neighbour 
of s of type +2r . The following information can be read from Fig. 6: a neighbour of s of type +2r can be extended to an 
r-chain in exactly nr ways (where n2 = 1 and n4 = 3). Likewise, an s-incident triangle can be extended to an r-chain in 
exactly nr ways as well. By double counting, we find that 1/nr times the number of r-chains equals both the number of 
5
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Fig. 6. Row +2r shows the ways in which an inclusion s ⊂ T (left; T being a Gn-neighbour of s of type +2r ) or an inclusion s ⊂ � (right; � being an 
triangle in G) extends to an r-chain in nr = r − 1 ways.

Fig. 7. Initial segment T0 T1 T2 . . . of an increasing path of triangular-shaped subgraphs of G where Ti and Ti+1 are adjacent of type ±6.

s-incident triangles (which is exactly degG(s)) and the number of neighbours of s of type +2r . In conclusion, the number 
of neighbours of s of type +2 is exactly 2 degG(s).

Taking together all of the above, we count

degGn
(s)

{
= degG(s) + 2 degG(s) = 3 degG(s) if degG(s) �= 6

≤ 6 + 2 · 6 + 8 = 26 if degG(s) = 6
.

Since 26 �≡ 0 (mod 3), if degG(s) �= 6 we obtain degGn
(s) �= 26 right away. If degG(s) = 6 and if there is no Gn-neighbour of 

type +6, then the maximal amount of 26 neighbours cannot have been attained, and degGn
(s) �= 26 as well. �

It remains to show that if G contains arbitrarily large triangular-shaped subgraphs, then the graph invariant D(Gn) is 
both finite and unbounded as n → ∞. We first prove finitude of D(Gn) if n ∈ 2N (in particular, n ≥ 2, as D(G0) = D(G)

might be infinite).

Lemma 3.4. If n ∈ 2N , then each S ∈ V (Gn) has a distance to deg26(Gn) of at most n/6 + 1. That is, D(Gn) ≤ n/6 + 1.

Proof. Suppose S ∼= �m with m ∈ 2N . We distinguish two cases.
Case 1: there is a T ∈ V (Gn) of side length μ ≥ 6 and distGn (S, T ) ≤ 2. We then fix a maximally long path T0 T1 . . . T� in 

Gn with T0 := T and Ti ∼= �μ+6i (i.e., Ti and Ti+1 are adjacent of type ±6; see Fig. 7). Since the path is maximal, T� has 
no Gn-neighbour of type +6, and since T� is of side length μ + 6� ≥ μ ≥ 6, we have T� ∈ deg26(Gn) by Lemma 3.2. As a 
vertex of Gn , T� is of side length at most n, and hence μ + 6� ≤ n =⇒ � ≤ n/6 − μ/6 ≤ n/6 − 1. We conclude

distGn (S,deg26(Gn)) ≤ distGn(S, T ) + distGn (T ,deg26(Gn))

≤ 2 + (n/6 − 1) = n/6 + 1.

Case 2: there is no T ∈ V (Gn) of side length μ ≥ 6 and distGn (S, T ) ≤ 2. Then we can conclude two things: first, m < 6
(otherwise, choose T := S) and so there is an s ∈ NGn (S) of side length zero. Second, s has no neighbour of type +6
(otherwise, set T to be this neighbour). But then s cannot have degree 26 by Lemma 3.3, and therefore

distGn (S,deg26(Gn)) ≤ distGn(S, s) = 1 ≤ n/6 + 1. �
Finally, we show that D(Gn) is unbounded as n → ∞, assuming that there are arbitrarily large triangular-shaped sub-

graphs of G .
6
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Fig. 8. The “corner vertex” v of T ∈ V (Gn) (light grey) has G-distance four to the neighbour T ′ ∈ NGn (T ) of type −6 (dark grey).

Lemma 3.5. If G contains a triangular-shaped subgraph of side length n ∈ 48N , then there exists an S ′ ∈ V (Gn) with distance to 
deg26(Gn) of more than n/48. That is, D(Gn) > n/48.

Proof. Choose a triangular-shaped graph S ∈ V (Gn) of side length n ∈ 48N . Roughly, the idea is to define a set M ⊆
deg26(Gn) that contains “deep vertices”, i.e., vertices that have no “short” Gn-paths that lead out of M. We claim that the 
following set has all the necessary properties:

M :=
{

T ∈ V (Gn)

∣∣∣∣∣
T ⊆ S,

T has side length m ≥ 6 and
distG(T , ∂ S) ≥ 4

}
.

The following observation will be used repeatedly and we shall abbreviate it by (∗): if T ∈ V (Gn) is of side length 
m ≥ 6 (e.g. if T ∈ M) and if T ′ ∈ NGn (T ) is some Gn-neighbour, then distG(T , v) ≤ 4 for all v ∈ T ′ . This can be verified by 
considering the configurations shown in Fig. 3. The bound ≤ 4 is best possible as seen in Fig. 8.

We first verify M ⊆ deg26(Gn). Fix T ∈M and consider an embedding of S into the hexagonal lattice. In this embedding, 
T ⊆ S has a neighbour T ′ of type +6 that, for all we know, might partially lie outside of S; though we now show that 
actually T ′ ⊆ S: in fact, for all v ∈ V (T ′) holds

distG(v, ∂ S) ≥ distG(T , ∂ S) − distG(T , v) ≥ 4 − 4 = 0,

where we used both (∗) and T ∈ M in the second inequality. Thus T ′ ⊆ S and T ′ also exists in G . Note that this argument 
shows that all Gn-neighbours of T are contained in S . We denote the latter fact by (∗∗) as we reuse it below. For now we 
conclude that since T has a Gn-neighbour of type +6, we have T ∈ deg26(Gn) by Lemma 3.2.

Next we identify a “deep vertex” in M, that is, a vertex with distance to V (Gn) \M of more than n/48. We claim that 
we can choose for this the “central” triangular-shaped subgraph S ′ ∼= �n/2. By that we mean the triangular-shaped graph 
obtained from S by repeatedly deleting the boundary n/6 times. The resulting triangular-shaped subgraph has side length 
n/2 and distG(S ′, ∂ S) = n/6. Since n ≥ 48, we have both m0 := n/2 ≥ 6 and distG(S ′, ∂ S) = n/6 ≥ 4, and therefore S ′ ∈ M. 
It remains to show that we have � := distGn (S ′, V (Gn) \ M) > n/48. Let S ′

0 . . . S ′
� be a path in Gn from S ′

0 := S ′ to some 
S ′

� �∈ M. Let mi ∈N0 be the side length of S ′
i . Since S ′

�−1 ∈ M, by (∗∗) we have S ′
� ⊆ S . Thus, for S ′

� to be not in M, only 
two reasons are left, and we verify that either implies � > n/48:

• Case 1: m� < 6. Since S ′
i−1 and S ′

i are adjacent in Gn they can differ in side length by at most six (via an adjacency of 
type ±6). That is, mi−1 − mi ≤ 6, and thus

6� ≥ m0 − m� > n/2 − 6 =⇒ � > n/12 − 1 ≥ n/48.

• Case 2: distG(S ′
�, ∂ S) < 4. Note first that for all i ∈ {1, . . . , �} holds

distG(S ′
i−1, ∂ S) − distG(S ′

i, ∂ S) ≤ distG(S ′
i−1, S ′

i)
(∗)≤ 4.

It then follows

4� ≥ distG(S ′
0, ∂ S) − distG(S ′

�, ∂ S) > n/6 − 4 =⇒ � > n/24 − 1 ≥ n/48.

In both cases, the right-most inequality was obtained using n ≥ 48. �
Since in our setting we have Gn ∼= knG , and since D( · ) is a graph invariant, we have D(knG) = D(Gn). We can then 

conclude

Corollary 3.6. If G contains �n as a subgraph for n ∈ 48N , then

D(knG) ∈ ( n , n + 1
]
,
48 6

7
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where D( · ) is the graph invariant defined in (3.1). In particular, if G contains arbitrarily large triangular-shaped subgraphs, then 
D(knG) is unbounded as n → ∞, and G is therefore clique divergent.

Together with Remark 3.1 we conclude the characterisation of clique convergent triangularly simply connected locally 
cyclic graphs of minimum degree δ ≥ 6.

Theorem A (Characterisation theorem for triangularly simply connected graphs). A triangularly simply connected locally cyclic graph 
of minimum degree δ ≥ 6 is clique divergent if and only if it contains arbitrarily large triangular-shaped subgraphs.

4. Proof of Theorem B

In this section we prove Theorem B. We need to recall basic facts about group actions and graph coverings, which we do 
in Section 4.1 and Section 4.2 below.

4.1. Group actions, �-isomorphisms, and quotient graphs

We say that a group � acts on a graph G if we have a group homomorphism σ : � → Aut(G). For every γ ∈ � and 
every v ∈ V (G), we define γ v := σ(γ )(v). The graph G together with this action is called a �-graph. For every subgroup 
� ≤ Aut(G), G is a �-graph in a natural way. For two �-graphs G and H , we call a graph isomorphism φ : G → H a
�-isomorphism, if φ(γ v) = γ φ(v) for each v ∈ V (G) and each γ ∈ �.

Remark 4.1. If G is a �-graph, so is kG with respect to the induced action γ Q = {γ v | v ∈ Q }. Note that in [5] this action 
is denoted as the natural action of the group �k ≤ Aut(kG), which is isomorphic to �. For a second �-graph H and a 
�-isomorphism φ : G → H , the map φk : kG → kH, Q �→ {φ(v) | v ∈ Q } is a �-isomorphism.

Remark 4.2. If a �-graph G is locally cyclic, triangularly simply connected and of minimum degree δ ≥ 6, the action of �
on G induces an action on the triangular-shaped subgraphs of G which makes the geometric clique graph Gn into a �-
graph as well. Moreover, the isomorphism ψn : Gn → knG , that exists according to Theorem 2.2, is a �-isomorphism. This 
can be seen easily from its explicit construction in [1, Corollary 6.9], though in order to be self-contained, the argument is 
summarized in Appendix C.

For any vertex v ∈ V (G) of a �-graph G , we denote the orbit of v under the action of � by �v . These orbits form the 
vertex set of the quotient graph G/�, two of which are adjacent if they contain adjacent representatives. Note that if two 
graphs G and H are �-isomorphic, the quotient graphs G/� and H/� are isomorphic.

4.2. Triangular covers

In the following, we transfer the convergence criterion of Theorem A from the triangularly simply connected case to the 
general case using the triangular covering maps from [5].

We define the topologically inspired term of “triangular simple connectivity” via the concept of walk homotopy. As 
usual, a walk of length � in a graph G is a finite sequence of vertices α = v0 . . . v� such that each pair vi−1 vi of consecutive 
vertices is adjacent. The vertex v0 is called the start vertex, the vertex v� is called the end vertex, a walk is called closed
if start and end vertices coincide, and it is called trivial if it has length zero.

In order to define the homotopy relation on walks, we define four types of elementary moves (see also Fig. 9). Given a 
walk that contains three consecutive vertices that form a triangle in G , the triangle removal shortens the walk by removing 
the middle one of them. Conversely, if a walk contains two consecutive vertices that lie in a triangle of G , the triangle 
insertion lengthens the walk by inserting the third vertex of the triangle between the other two. The dead end removal
shortens a walk that contains a vertex twice with distance two in the walk by removing one of the two occurrences as 
well as the vertex between them. Conversely, the dead end insertion lengthens a walk by inserting behind one vertex an 
adjacent one and then the vertex itself again.

Note that elementary moves do not change the start and end vertices of walks, not even of closed ones.
Two walks are called homotopic if it is possible to transform one into the other by performing a finite number of 

elementary moves. The graph G is called triangularly simply connected if it is connected and if every closed walk is 
homotopic to a trivial one.

A triangular covering map is a homomorphism p : G̃ → G between two connected graphs which is a local isomorphism, 
i.e., the restriction p|N[ṽ] : N[ṽ] → N[p(ṽ)] to the closed neighbourhood of any vertex ṽ of G̃ is an isomorphism and in this 
case, G̃ is called a triangular cover of G . The term “triangular” refers to the unique triangle lifting property which can 
be used as an alternative definition and is defined in Appendix B. For a triangular covering map p : G̃ → G , we define the 
map pkn : knG̃ → knG which is constructed from p recursively by pk0 = p and pkn (Q̃ ) = {pkn−1(ṽ) | ṽ ∈ Q̃ } for n ≥ 1. By [5, 
Proposition 2.2], pkn is a triangular covering map, as well.
8
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Fig. 9. Visualisations of the elementary moves.

A triangular covering map p : G̃ → G is called universal if G̃ is triangularly simply connected, and in this case G̃ is 
called the universal (triangular) cover of G . Note that every connected graph has a universal cover that is unique up to 
isomorphism. A proof can be found in [16, Theorem 3.6] or in the appendix in Theorem B.5.

For the following lemma, we need to use that triangular simple connectivity is preserved under the clique operator. This 
is proven in [9], but we also provide an elementary proof in the appendix in Lemma A.2.

Lemma 4.3. If a connected graph G is clique convergent, so is its universal triangular cover G̃.

Proof. Let the clique operator be convergent on G , i.e., there are n, r ∈ N such that knG ∼= kn+r G , and let p : G̃ → G be a 
universal triangular covering map. As pkn and pkn+r are triangular covering maps and knG̃ and kn+r G̃ are triangularly simply 
connected by Lemma A.2, they are universal triangular covering maps. As the universal cover is unique up to isomorphism 
(Theorem B.5), knG̃ ∼= kn+r G̃ and G̃ is clique convergent. �

In the following, we show that for locally cyclic graphs with minimum degree δ ≥ 6 the converse implication is true as 
well. This has been stated in [1] as Lemma 8.8, but the proof contains a gap, as it does not show that kn G̃ and kn+r G̃ are 
�-isomorphic (in fact, this is still unknown if G̃ is a cover of a general graph G; see also Question 5.5). We will close this 
gap in the remainder of this section.

In order to do this, we need the definition of Galois maps. For a group �, we call a triangular covering map p : G̃ → G
Galois with � if G̃ is a �-graph such that the vertex preimages of p are exactly the orbits of the action, which implies 
G̃/� ∼= G . By [5, Proposition 3.2], if p is Galois with �, so is pkn .

The following lemma is proven in [1, Lemma 8.7], but again, an elementary proof is provided in Lemma B.6.

Lemma 4.4 (from [1, Lemma 8.7]). A universal triangular covering map p : G̃ → G is Galois with � := {γ ∈ Aut(G̃) | p ◦ γ = p}, 
which is called the deck transformation group of p. Consequently, (knG̃)/� ∼= knG.

We are now able to deduce the clique convergence of a graph from the clique convergence of its universal cover.

Lemma 4.5. Let G be a locally cyclic graph with minimum degree δ ≥ 6 and G̃ its universal triangular cover. If G̃ is clique convergent, 
then so is G.

Proof. We start with the universal triangular cover G̃ being clique convergent. By Theorem A, there is an m ∈N such that 
G does not contain �m as a subgraph. Consequently, G̃m−2 and G̃m are identical and thus �-isomorphic (for every �).

Let � be the deck transformation group of the universal covering map p : G̃ → G . By Lemma 4.4, this implies knG ∼=
(knG̃)/� for each n ∈N0. Using the �-isomorphism ψn : knG̃ → G̃n from Remark 4.2, we conclude that G is clique convergent 
via

km−2G ∼= (km−2G̃)/� ∼= G̃m−2/� = G̃m/� ∼= (kmG̃)/� ∼= kmG. �
By joining Lemma 4.3, Lemma 4.5, and Theorem A, we conclude the characterisation of clique convergent locally cyclic 

graphs with minimum degree δ ≥ 6.

Theorem B (General characterisation theorem). A (not necessarily finite) connected locally cyclic graph of minimum degree δ ≥ 6 is 
clique divergent if and only if its universal triangular cover contains arbitrarily large triangular-shaped subgraphs.

5. Conclusion and further questions

In this article, we completed the characterisation of locally cyclic graphs of minimum degree δ ≥ 6 with a convergent 
clique dynamics, first in the triangularly simply connected case (Theorem A) and then in the general case (Theorem B).
9



A.M. Limbach and M. Winter Discrete Mathematics 347 (2024) 114144
Fig. 10. An “almost 7-regular” triangulation of the Euclidean plane, that is, it is 7-regular outside a small region.

Our findings turned out to be consistent with the geometric intuition from the finite case: the hexagonal lattice is clique 
divergent, as is any of its quotients. The finite analogues are the 6-regular triangulations of surfaces with Euler characteristic 
zero, which were known to be clique divergent by [4,5]. We are tempted to say that the hexagonal lattice is clique divergent 
because it has a “flat geometry”.

Theorem A may allow for a similar interpretation: if a triangularly simply connected locally cyclic graph G of minimum 
degree δ ≥ 6 is clique divergent, then it contains arbitrarily large triangular-shaped subgraphs. As a consequence, vertices 
of degree ≥ 7 cannot be distributed densely everywhere in G . Since degrees ≥ 7 can be interpreted as a discrete analogue 
of negative curvature (we think of the 7-regular triangulation of the hyperbolic plane), a potential geometric interpretation 
of Theorem A is that G is clique divergent because it is “close to being flat” on large parts, which then dominate the clique 
dynamics.

To consolidate this interpretation, it would be helpful to shed more light on the lower degree analogues: locally cyclic 
graphs of minimum degree δ = 5 or even δ = 4. There however, the clique dynamics might be governed by different effects. 
In a sense, it was surprising to find that for minimum degree δ ≥ 6, the asymptotic behaviour of the clique dynamics 
is determined only on the global scale, that is, by the presence or absence of subgraphs in G from a relatively simple 
infinite family (the triangular-shaped graphs). Such a description should not be expected for smaller minimum degree: for 
δ ≤ 5 there exist finite graphs that are clique divergent – even simply connected ones – and such clearly cannot contain 
“arbitrarily large” forbidden structures in any sense.

It might be worthwhile to first study triangulations of the plane of minimum degree δ = 5 or δ = 4, since those are 
not subject to the same argument of “finite size”. Yet, as far as we are aware, it is already unknown which of the fol-
lowing graphs are clique divergent: consider a triangulated sphere of minimum degree δ ∈ {4, 5} (e.g. the octahedron or 
icosahedron). Remove a vertex or edge together with all incident triangles – which leaves us with a triangulated disc – and 
extend this to a triangulation of the Euclidean plane that is 7-regular outside the interior of the disc (see Fig. 10). For all 
we know, it is at least conceivable that below minimum degree δ = 6 divergence can appear as a local phenomenon that 
does not require arbitrarily large “bad regions”.

For triangulations of closed surfaces (and further mild assumptions, see below), the most elementary open question 
is whether non-negative Euler characteristic already implies clique-divergence. This has previously been conjectured by 
Larrión, Neumann-Lara and Pizaña [7], and we shall repeat it here.

Conjecture 5.1. If a locally cyclic graph G of minimum degree δ ≥ 4 triangulates a closed surface of Euler characteristic χ ≥ 0 (i.e., a 
sphere, projective plane, torus or Klein bottle), then G is clique divergent.

To shed further light on the perceived connection between topology and clique dynamics, the study of further topologi-
cally motivated generalisations appears worthwhile. We briefly mention two of them.

First, one could turn to higher-dimensional analogues, that is, triangulations of higher-dimensional manifolds and their 
1-skeletons.

Question 5.2. Can something be said about when the clique dynamics of the triangulation of a manifold converges depend-
ing on the topology of the manifold?

The second generalisation is to allow for triangulations of surfaces with boundary. Such triangulations can be formalised 
as graphs for which each open neighbourhood is either a cycle (of length at least four) or a path graph – we shall call them
locally cyclic with boundary. Triangulations of bordered surfaces have already received some attention: in [10, Theorem 
1.4] the authors show that, except for the disc, each compact surface (potentially with boundary) admits a clique divergent 
triangulation. In contrast, they conjecture that discs do not have divergent triangulations:

Conjecture 5.3. If a locally cyclic graph G with boundary and of minimum degree δ ≥ 4 triangulates a disc, then it is clique convergent 
(actually, clique null, that is, it converges to the one-vertex graph).
10
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This is known to be true if all interior vertices of the triangulation have degree ≥ 6 [6, Theorem 4.5].
Moving on from the topologically motivated investigations, yet another route is to generalise from locally cyclic graphs 

of a particular minimum degree to graphs of a lower-bounded local girth (that is, the girth of each open neighbourhood 
is bounded from below). In fact, it has already been noted by the authors of [7] that their results apply not only to locally 
cyclic graphs of minimum degree ≥ 7, but equally to general graphs of local girth ≥ 7.

Question 5.4. Can the results for locally cyclic graphs of minimum degree δ ≥ 6 be generalized to graphs of local girth ≥ 6?

Various other open questions emerge from the context of graph coverings. As we have seen in Lemma 4.3, if a graph 
G is clique convergent, so is its universal triangular cover G̃ . Even stronger: if knG ∼= G , then knG̃ ∼= G̃ . If G is locally cyclic 
of minimum degree δ ≥ 6, then conversely, by Lemma 4.5 convergence of G̃ implies convergence of G .

For general triangular covers p : G̃ → G (between connected locally finite graphs) however, such connections are not 
known. If both G̃ and G are finite, then a straightforward pigeon hole argument shows that clique convergence of G and of 
G̃ are equivalent. Yet, whether finite or infinite, it is generally unknown whether the statements knG ∼= G and knG̃ ∼= G̃ are 
always equivalent. We summarize all of this in the following question:

Question 5.5. Let p : G̃ → G be a triangular covering map between two connected locally finite graphs. Is G̃ clique conver-
gent if and only if G is clique convergent? To consider the directions separately, we ask:

(i) Is there an analogue of Lemma 4.3 for non-universal covering maps: if G is clique convergent but p is not universal, is 
G̃ clique convergent as well?

(ii) If G̃ is clique convergent, is G clique convergent as well?

An even stronger version of the question is: is knG̃ ∼= G̃ equivalent to knG ∼= G for every n ∈N? Is this at least true for finite 
graphs?
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Appendix A. The clique graph operator and simple connectivity

In this section, we show that triangular simple connectivity is preserved under the clique graph operator. A weaker 
version was obtained by Prisner [15] in 1992, who proved that the clique graph operator preserves the first Z2 Betti 
number. Larrión and Neumann-Lara [5] then extended this in 2000 to the isomorphism type of the triangular fundamental 
group. An extension to more general graph operators (including the clique graph operator and the line graph operator) 
was proven by Larrión, Pizaña, and Villarroel-Flores [9] in 2009. The proof presented here is completely elementary, as it 
explicitly constructs a sequence of elementary moves that transforms a given closed walk to the trivial one.

As triangular simple connectivity requires connectivity, we start with a lemma about connectivity before we show that 
closed walks are equivalent to trivial ones.

Lemma A.1. For a connected graph G, the clique graph kG is also connected.

Proof. Let Q , Q ′ ∈ V (kG) be two cliques of G . We choose two vertices v ∈ Q and v ′ ∈ Q ′ . As G is connected, there is a 
shortest walk v0 . . . v� in G connecting v0 = v to v� = v ′ . For each i ∈ {1, . . . , �} we choose a clique Q i that contains the 
pair of consecutive vertices vi−1 and vi of this walk. Thus, for each i ∈ {1, . . . , � − 1}, the cliques Q i and Q i+1 intersect in 
vi and they are distinct, as otherwise the vertices vi−1 and vi+1 would be adjacent, in contradiction to the minimality of 
the walk v0 . . . v� . Thus, Q 1 . . . Q � is a walk in kG . If Q �= Q 1 we add Q to the start of the walk and if Q � �= Q ′ we append 
Q ′ . The resulting walk connects Q and Q ′ in kG and, thus, kG is connected. �
11
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Fig. A.11. The correspondence relation between a walk in G and one in kG .

Fig. A.12. The elementary move in kG that corresponds to a dead end insertion (left) or triangle insertion (right) of a vertex which is not in Q i .

We establish a concept of correspondence between a walk in G and a walk in kG in order to use the elementary moves 
that morph the former one into a trivial one as a guideline for doing the same with the latter one.

We say that a closed walk α in G and a closed walk α′ = Q 0 . . . Q � in kG with Q 0 = Q � correspond if for each 
i ∈ {0, . . . , � − 1} there is a walk vi,0 . . . vi,ti of length ti ∈N0 that lies completely in Q i and α is the concatenation of those 
walks, i.e., vi,ti = vi+1,0 for each i ∈ {0, . . . , � − 1}. As α is closed, we the have v0,0 = v�−1,t�−1 =: v�,0 (see Fig. A.11).

Note that for every closed walk in kG there is a corresponding one in G , which is obtained as follows. Let α′ = Q 0 . . . Q �

with Q 0 = Q � be a closed walk in kG . For every i ∈ {1, . . . , �}, we choose wi ∈ Q i−1 ∩ Q i , we define w0 := w� , and we drop 
repeated consecutive vertices. This way, we obtain a walk α = w0 . . . w� which clearly corresponds to α′ .

Lemma A.2. If G is a triangularly simply connected graph, so is kG.

Proof. Let G be a triangularly simply connected graph. Thus, G is connected and, by Lemma A.1, so is kG . Next, we show 
that every closed walk in kG can be morphed to a single vertex by a sequence of elementary moves. Let α′ = Q 0 . . . Q �

with Q 0 = Q � be a closed walk in kG . Let α be any corresponding walk in G , thus α consists of subwalks vi,0 . . . vi,ti as 
described above.

Since G is triangularly simply connected, there is a sequence of elementary moves from α to a trivial walk. We now 
describe how we use the first of these moves as a guideline for elementary moves on α′; for the other moves in the 
sequence, it works by induction.

Let β be the walk in G that is reached from α by the first move. We now perform two steps in order to construct a 
walk β ′ in kG , which is homotopic to α′ and which corresponds to β .

The first step consists of repeated triangle removals and dead end removals on α′ that preserve the correspondence to 
α until α′ cannot be shortened any further in that way. As no elementary move can change the start and end vertex of a 
walk, we do not remove Q 0 = Q � this way. As for every i ∈ {1, . . . , � − 1} with ti = 0, the clique Q i can be removed in a 
triangle or dead end removal; the only ti that can be zero is t0. For the second step, we distinguish two cases.

Case 1: insertion moves. If the elementary move from α to β is a triangle insertion or dead end insertion, let the indices 
i ∈ {0, . . . , � − 1} and j ∈ {0, . . . , ti − 1} be chosen such that the additional one or two vertices are inserted between vi, j and 
vi, j+1. For the triangle insertion, the subwalk vi,0 . . . vi,ti becomes vi,0 . . . vi, j v∗vi, j+1 . . . vi,ti and for the dead end insertion, 
it becomes vi,0 . . . vi, j v∗vi, j vi, j+1 . . . vi,ti . If v∗ ∈ Q i , β ′ := α′ corresponds to β and we are finished. If v∗ /∈ Q i , let Q ∗ be a 
clique that contains v∗, vi, j and, in the case of a triangle insertion, also vi, j+1. Then, the dead end inclusion of Q ∗ and Q i
behind Q i yields a walk β ′ . In the case of a dead end inclusion, it corresponds to β because vi,0 . . . vi, j and vi, j . . . vi,ti lie 
in Q i and vi, j v∗vi, j lies in Q ∗ . In the case of a triangle inclusion, it corresponds to β because vi,0 . . . vi, j and vi, j+1 . . . vi,ti

lie in Q i and vi, j v∗vi, j+1 lies in Q ∗ (see Fig. A.12).
Case 2: removal moves. If the elementary move from α to β is a triangle removal or dead end removal, let the indices 

i ∈ {0, . . . , � − 1} and j ∈ {0, . . . , ti − 1} be chosen such that vi, j (triangle removal) or vi, j and vi, j+1 (dead end removal) are 
removed from Q i . This choice is possible, as the (first) removed vertex and its successor lie in a common Q i . If j ≥ 1, the 
walk β ′ = α′ corresponds to β as vi,0 . . . vi, j−1 vi, j+1 . . . vi,ti or vi,0 . . . vi, j−1 vi, j+2 . . . vi,ti respectively, still lie in Q i . In case 
of a dead end removal, this works even if ti = j + 1, as then vi, j−1 = vi, j+1 = vi+1,0.
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Fig. A.13. The elementary move in kG that corresponds to triangle removal in G .

If j = 0, we know that i �= 0, as otherwise vi, j = v0,0 would be removed. Furthermore, we know that if i = 1, t0 �= 0 as 
this also would imply that v0,0 = v1,0 is removed. In any case, vi, j lies between vi−1,ti−1−1 and vi,1. We now distinguish 
between two subcases.

Case 2.1: vi−1,ti−1−1 /∈ Q i and vi,1 /∈ Q i−1. As vi,1 ∈ Q i , it is immediately clear that vi−1,ti−1−1 �= vi,1, thus it is a triangle 
removal step and vi−1,ti−1−1 vi,0 vi,1 is a triangle. Let Q ∗ be a clique that contains vi−1,ti−1−1 and vi,1. As Q ∗ is neither 
Q i−1 nor Q i , the insertion of Q ∗ between Q i−1 and Q i is a triangle insertion and thus the resulting walk β ′ is homotopic 
to α′ . Furthermore, β and β ′ correspond, because vi−1,0 . . . vi−1,ti−1−1 lies in Q i−1, vi−1,ti−1−1 vi,1 lies in Q ∗ and vi,1 . . . vi,ti

lies in Q i (see Fig. A.13).
Case 2.2: vi−1,ti−1−1 ∈ Q i or vi,1 ∈ Q i−1. We start by assuming that vi,1 ∈ Q i−1. We subdivide α differently in pieces 

that each lie in one clique Q i . Let t′
i−1 := ti−1 + 1, t′

i := ti − 1 and t′
s := ts for every s ∈ {0, . . . , � − 1} \ {i − 1, i}. Furthermore, 

let v ′
i−1,t′i−1

:= vi,1, let v ′
i,u := vi,u+1 for every u ∈ {0, . . . , t′

i}, and let v ′
s,u := vs,u for every s ∈ {0, . . . , � − 1} \ {i − 1, i} and 

every u ∈ {0, . . . , t′
s}. Now, the removed vertex is v ′

i−1,t′i−1
and as t′

i−1 ≥ 1 we are in the ( j ≥ 1)-part of Case 2, which we 
have already dealt with. The step for vi−1,ti−1−1 ∈ Q i is analogous.

After proceeding inductively for the other moves of the sequence, we reach a closed walk in kG which corresponds to a 
trivial walk in G . Thus, all vertices of that walk in kG are pairwise connected, as they all contain the single vertex of that 
trivial walk, and the walk can easily be morphed into a trivial one. �
Appendix B. Some background on (universal) triangular covers

In this section, we provide some background on triangular covering maps. We start with some preliminaries on walk 
homotopy in the preimage and image of a triangular covering map. After that, we spend the main part of this section 
showing that the universal cover of a connected graph is unique up to isomorphism and covers every other triangular cover 
of a connected graph. Afterwards, we show that the universal covering map is Galois, i.e., that it can be interpreted as 
factoring out a group of symmetries from a graph. Most of the proofs are based on ideas from [16], but they only use basic 
concepts and they are much more concise as they use stronger prerequisites than the respective theorems in [16] have.

We remark that every triangular covering map p : G̃ → G fulfils the unique edge lifting property, i.e., for each pair of 
adjacent vertices v, w ∈ V (G) and each ṽ ∈ V (G̃) such that p(ṽ) = v , there is a unique w̃ ∈ V (G̃) such that ṽ and w̃ are 
adjacent and p(w̃) = w . This property is equivalent to the unique walk lifting property, which says that for each walk α
in G and each preimage of its start vertex there is a unique walk α̃ in G̃ which is mapped to α. Furthermore, triangular 
covering maps fulfil the triangle lifting property, i.e., for each triangle (i.e. 3-cycle) {u, v, w} in G and each preimage ũ of 
u, there exists a unique triangle {ũ, ̃v, w̃} in G̃ that is bijectively mapped to {u, v, w}. Lastly, it follows from the unique 
walk lifting property that every triangular covering map between two connected graphs is surjective.

Throughout this section, we repeatedly make use of the following lemma connecting triangular covering maps and 
homotopy of walks. The lemma is equivalent to [16, Lemma 2.2] but instead of proving this equivalence, we reprove it in 
the language of [5].

Lemma B.1. Given a triangular covering map p : G̃ → G and two homotopic walks α = v0 . . . v� and β = v ′
0 . . . v ′

�′ in G, for a fixed 
vertex ṽ from the preimage of their common start vertex v0 = v ′

0 the unique walks α̃ = ṽ0 . . . ṽ� with p(ṽ i) = vi and β̃ = ṽ ′
0 . . . ṽ ′

�′
with p(ṽ ′

i) = v ′
i are homotopic as well. Especially, they have the same end vertex ṽ� = ṽ ′

�′ .

Proof. As homotopy is defined by a finite sequence of elementary moves, it suffices to show that an elementary move in 
the image implies an elementary move in the preimage. Thus, let α = v0 . . . v� be a walk in G and let α̃ = ṽ0 . . . ṽ� be from 
its preimage with p(ṽ i) = vi . Let β be reached from α by inserting a vertex v∗ and possibly vi again between vi and vi+1
for some i ∈ {0, . . . , � − 1}. As lifting a walk is done vertex by vertex from start to end, the lift of β begins with the vertices 
ṽ0 to ṽ i . As the restriction of p to the neighbourhood of vi−1 is an isomorphism, the lift of β starting in ṽ0 still has ṽ i+1
as the preimage of vi+1 and consequently the lift of β agrees with that of α in all following vertices. Thus, the lift of β
arises from the lift of α by inserting a vertex ṽ∗ and possibly ṽ i between ṽ i and ṽ i+1, which is an elementary move. For 
the elementary moves that remove vertices, exchange α and β . �
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Next, we show that every connected graph has a universal triangular cover. The proof of the following lemma is influ-
enced by a combination of [16, Theorem 2.5, 2.8, and 3.6].

Lemma B.2. For every connected graph G, there is a universal triangular covering map p : G̃ → G, i.e., a triangular covering map with 
a triangularly simply connected graph G̃.

Proof. We give a construction for a graph G̃ and a map p. Then, we show that p is in fact a triangular covering map, that 
G̃ is connected and that G̃ is triangularly simply connected.

Construction of G̃ and p : We fix a vertex v of G . For each walk α, we denote by [α] its homotopy class, i.e., the set of 
walks that can be reached from α by a finite sequence of elementary moves. A walk β is called a continuation of a walk α
if β arises from α by appending exactly one vertex to its end. Now we can define the graph G̃ by

V (G̃) = {[α] | α is a walk in G starting at vertex v} and

E(G̃) = {[α][β] | β is a continuation of α}.
Note that [α][β] ∈ E(G̃) does not imply that β is a continuation of α, but there is a β ′ ∈ [β] such that β ′ is a continuation 
of α. We define

p : G̃ → G, [α] �→ end(α),

in which end(α) is the end vertex of α. The map p is well defined as homotopic walks have the same start and end vertex.
Triangular covering map: For an edge [α][β] ∈ E(G̃), let without loss of generality β be a continuation of α. Thus, the 

end vertices of the two walks are adjacent and p is a graph homomorphism. Next we show that the restriction of p to 
neighbourhoods is bijective. Thus, let [αw ] be a class of walks from v to some vertex w . As noted above, the neighbour-
hood of [αw ] consists of the classes of continuations of αw to the neighbours of w . Especially, the restriction of p to the 
neighbourhoods of [αw ] and w , respectively, is bijective. Let now αx and αy be the continuations of αw by two distinct 
neighbours x and y of w . As we have already shown that the adjacency of [αx] and [αy] implies the adjacency of x and y, 
it remains to show the reverse. Thus, let x and y be adjacent. Hence, we can construct the walk α′

y as the continuation of 
αx by the vertex y, thus, [αx] and [α′

y] are adjacent. Since α′
y is reached from αy by the elementary move of inserting x

between w and y, they are homotopic and thus [αy] is also adjacent to [αx].
Connectivity: We show that every vertex [α] is connected to the trivial walk αv that consists only of the vertex v . Thus, 

let α be any walk in G . The vertices [αv ] and [α] are connected by the walk [β0] . . . [β�] in G̃ , where � is the length of α, 
and βi is the initial subwalk of length i of α.

Triangular simple connectivity: For a closed walk [α0] . . . [α�] with [α0] = [α�] in G̃ , we can assume without loss of 
generality that αi is a continuation of αi−1 for each i ∈ {1, . . . , �}. Furthermore, we can assume that α0 is the trivial walk 
as all the walks α0, . . . , α� coincide with α0 on their initial subwalks, anyway. We prove that the closed walk [α0] . . . [α�]
and the trivial walk [α0] are homotopic.

As α0 and α� are homotopic, there is a finite sequence of elementary moves that morphs α� into α0. To each walk α′ in 
G that occurs in this homotopy between α0 and α� , we associate the walk [α′

0] . . . [α′
�′ ] where �′ is the length of α′ , and α′

i
is the initial subwalk of length i of α′ . Then, [α′

0] . . . [α′
�′ ] is a walk by construction and it fulfils α′

0 = α0 and α′
�′ = α′ . This 

way, we associate the final (trivial) walk α0 to the trivial walk [α0]. If the walks α′ and α′′ are connected by an elementary 
move in G , their associated walks in G̃ are connected by the corresponding elementary move in the following way: a 
triangle insertion move that inserts v∗ after vi corresponds to the insertion of the class of the continuation of αi by v∗
and changing the representative of the following classes to the one, in which v∗ is inserted after vi . The other elementary 
moves work analogously. �

In the next lemma, we show that universal triangular covers are in fact universal objects. The proof is a combination of 
special cases from the proofs of [16, Theorem 3.2 and Theorem 3.3].

Lemma B.3. The universal triangular covering map p : G̃ → G fulfils the following universal property: for each triangular covering map 
q : Ḡ → G there exists a triangular covering map q̃ : G̃ → Ḡ such that p = q ◦ q̃ (see the commuting diagram in Fig. B.14). Furthermore, 
for any pair of fixed vertices ṽ ∈ V (G̃) and v̄ ∈ V (Ḡ) such that p(ṽ) = q(v̄), we get a unique triangular covering map q̃ṽ,v̄ : G̃ → Ḡ
with p = q ◦ q̃ṽ,v̄ and q̃ṽ,v̄(ṽ) = v̄ .

Proof. Let p : G̃ → G be a triangular covering map such that G̃ is triangularly simply connected and let q : Ḡ → G be any 
triangular covering map. We fix a vertex v ∈ V (G) as well as vertices ṽ ∈ V (G̃) and v̄ ∈ V (Ḡ) that are in the preimage of v
under p and q, respectively. We construct q̃ṽ,v̄ from p and q and show that it is in fact a well-defined triangular covering 
map.
14
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G̃

Ḡ

G

q̃

p

q

Fig. B.14. The commuting diagram depicting the property from Lemma B.3.

Construction of q̃ṽ,v̄ : For each ũ ∈ V (G̃), we choose a walk αṽ,ũ from ṽ to ũ. The image of αṽ,ũ under p is a walk, 
which we call βũ , from p(ṽ) to p(ũ). As p(ṽ) = v = q(v̄), by the unique walk lifting property, there is exactly one walk αv̄,ū
starting at v̄ that is mapped to βũ by q. We define q̃ṽ,v̄(ũ) to be the end vertex ū of αv̄,ū .

Well-Definedness: We need to show that q̃ṽ,v̄(ũ) is independent of the choice of the walk αṽ,ũ . Thus, let α′
ṽ,ũ be a 

different walk from ṽ to ũ. Its image under p is called β ′
ũ which has the same start and end vertices as βũ . As G̃ is 

triangularly simply connected, the walks αṽ,ũ and α′
ṽ,ũ are homotopic and, consequently, so are βũ and β ′

ũ . By Lemma B.1
also the preimages under q, which are called αv̄,ū and α ′̄

v,ū , are homotopic and, thus, have the same end vertex, implying 
q̃ṽ,v̄ being well defined. Additionally, p = q ◦ q̃ṽ,v̄ holds by construction.

Homomorphy: Let x̃, ỹ be adjacent vertices in G̃ . Let αṽ, ỹ be a walk from ṽ to ỹ such that x̃ is its penultimate vertex. Via 
the same construction as above, we obtain a walk αv̄, ȳ such that its penultimate vertex x̄ fulfils p(x̄) = q(x̃). Consequently, 
q̃ṽ,v̄(x̃) = x̄ and q̃ṽ,v̄( ỹ) = ȳ are adjacent and thus q̃ṽ,v̄ is a graph homomorphism.

Triangular covering map: Let ũ be a vertex of G̃ and let u = p(ũ) and ū = q̃ṽ,v̄(ũ) be its images. As p|N[ũ] : N[ũ] → N[u]
and q|N[ū] : N[ū] → N[u] are isomorphisms, so is q̃ṽ,v̄ |N[ũ] = q|−1

N[ū] ◦ p|N[ũ] .
Uniqueness of q̃ṽ,v̄ : Let q̃ : G̃ → Ḡ be any triangular covering map such that p = q ◦ q̃ and q̃(ṽ) = v̄ . With the definitions 

from above, both the image of αṽ,ũ under q̃ and αv̄,ū are lifts of the walk βũ and they share the start vertex v̄ . By the 
unique walk lifting property, they are equal and so is their end vertex, implying q̃(ũ) = ū = q̃ṽ,v̄(ũ). �
Lemma B.4. If for a graph G there are two graphs G̃ and Ḡ and two triangular covering maps p : G̃ → G and q : Ḡ → G such that p
and q both fulfil the universal property from Lemma B.3, G̃ and Ḡ are isomorphic.

Proof. Let p : G̃ → G and q : Ḡ → G be two triangular covering maps which both fulfil the universal property. Furthermore, 
let ṽ ∈ V (G̃) and v̄ ∈ V (Ḡ) be chosen such that p(ṽ) = q(v̄). By the universal properties, there are (unique) triangular 
covering maps p̃ : Ḡ → G̃ and q̃ : G̃ → Ḡ such that p = q ◦ q̃, q̃(ṽ) = v̄ , q = p ◦ p̃, and p̃(v̄) = ṽ . Consequently, p = p ◦ p̃ ◦ q̃
and (p̃ ◦ q̃)(ṽ) = ṽ . As the identity map id : G̃ → G̃ is a triangular covering map that fulfils p = p ◦ id and id(ṽ) = ṽ , we 
know by the uniqueness of the universal property of p that p̃ ◦ q̃ = id, which implies that q̃ : G̃ → Ḡ is an isomorphism. �
Theorem B.5. Every connected graph has a universal triangular cover, which is unique up to isomorphism.

Proof. By Lemma B.2, the graph G has a universal triangular cover. Let p : G̃ → G and q : Ḡ → G be two universal triangular 
covering maps. By applying Lemma B.3, they both have the universal property. By Lemma B.4, the universal triangular covers 
are isomorphic. �

Now we can look at the universal triangular cover through the lens of quotient graphs by using Galois covering maps. 
We reprove this lemma from [1] using only basic notation.

Lemma B.6. A universal triangular covering map p : G̃ → G is Galois with � := {γ ∈ Aut(G̃) | p ◦ γ = p}, which is called the deck 
transformation group of p. Moreover, it holds that (knG̃)/� ∼= knG.

Proof. As each γ ∈ � fulfils p ◦ γ = p, the group � acts on every vertex preimage of p individually. Thus, it suffices to 
show that for each pair of vertices ṽ, w̃ with p(ṽ) = p(w̃) there is a γ ∈ � such that γ (ṽ) = w̃ . If we apply Lemma B.3
with q = p, we get a triangular covering map q̃ṽ,w̃ which maps ṽ to w̃ and which is an isomorphism by Theorem B.5, thus 
γ = q̃ṽ,w̃ fulfils the condition. As p is a Galois covering map, by [5, Proposition 3.2] so is pkn . Consequently, it holds that 
(knG̃)/� ∼= knG . �
Appendix C. The isomorphism between Gn and knG

The proof of Theorem 2.2 as presented in [1] provides an explicit construction for the isomorphism ψn between the 
clique graph knG and the geometric clique graph Gn (Definition 2.1). More precisely, isomorphisms Cn are constructed 
between Gn and kGn−1.
15
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In this section we repeat the construction (Appendix C.1) and give a short argument for why this yields �-isomorphisms 
(Appendix C.2) as required in Section 4.

C.1. Notation and isomorphisms

We define the hexagonal grid as well as triangular-shaped graphs in a way that enables precise definition of maps.

Definition C.1. Define the coordinate set

�D0 := {
(1,−1,0), (1,0,−1), (−1,1,0), (0,1,−1), (−1,0,1), (0,−1,1)

}
.

For m ∈Z, the hexagonal grid of height m is the graph Hexm = (Vm, Em) with

V m := {(x1, x2, x3) ∈Z3 | x1 + x2 + x3 = m} and

Em := {{x, y} ⊂ Vm | x − y ∈ �D0}.
For m ≥ 0 the triangular-shaped graph �m of side length m, is defined as the induced subgraph Hexm[Vm ∩ Z3

≥0]. The 
boundary ∂�m is the subgraph of �m that consists of the vertices of degree less than six and the edges that lie in only a 
single triangle.

For a locally cyclic graph G , a hexagonal chart is a graph isomorphism μ : H → F (also written H
μ→∼ F ) with induced 

subgraphs H ⊆ Hexm and F ⊆ G . For (t1, t2, t3) ∈Z3, we define the triangle inclusion map:

�
t1,t2,t3
m : �m → Hexm+t1+t2+t3 , (a1,a2,a3) �→ (a1 + t1,a2 + t2,a3 + t3).

Furthermore, we define

�E := V 1 ∩N3
0 = {(1,0,0), (0,1,0), (0,0,1)},

∇1 := Hex2[(1,1,0), (0,1,1), (1,0,1)], and

∇′
2 := Hex1[(1,1,−1), (−1,1,1), (1,−1,1)].

For a hexagonal chart μ : �m+1 → S and (t1, t2, t3) ∈ Z3, we denote the image of μ ◦ �
t1,t2,t3
m+1−t1−t2−t3

by μt1,t2,t3 . The 
following remark is a combination of [1, Corollary 6.9] and [1, Corollary 7.8].

Remark C.2. If G is a triangularly simply-connected locally cyclic graph of minimum degree δ ≥ 6, then for each n ∈ N0, 
there is an isomorphism Cn+1 : Gn+1 → kGn , for which a direct construction is given as follows:

(a) Let �m
μ→∼ S ∈ V (Gn+1), for m ≥ 1. If m = 1 let μ̂ : ∇′

2 → G be the hexagonal chart extending μ. It exists and is unique, 
as each pair of vertices of S has one common neighbour outside S . Then,

Cn+1(S) = Mm−1︸ ︷︷ ︸
|·|=3

∪ Mm+1︸ ︷︷ ︸
|·|≤3
|·|=0, if n=m,

∪ Mm+3︸ ︷︷ ︸
|·|≤1
|·|=0, if n≤m+2,

∪

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∅, if m = 1 and n ≤ 1,

{μ̂(∇′
2)}, if m = 1 and n ≥ 2,

{μ(∇1)}, if m = 2,

{S \ ∂ S}, if m ≥ 3.

• Mm−1 consists of the elements �m−1 ∼= μ�e for �e ∈ �E .

• Mm+1 consists of the elements �m+1
ν→∼ T fulfilling μ = ν ◦ ��e

m−1 for an �e ∈ �E .
• Mm+3 consists of the element �m+3 ∼= T enclosing S with distance 1, i.e., S = T \ ∂T .

(b) For �0 ∼= S ∈ V (Gn+1), we denote the vertex of S by v . In this case,

Cn+1(S) = {T ∈ V (Gn) | T ∼= �1, S ⊆ T }︸ ︷︷ ︸
|·|=degG (v)

∪ {T ∈ V (Gn) | T ∼= �3, S ⊆ T \ ∂T }.︸ ︷︷ ︸
|·|=0, if degG (v)≥7 or n≤2,

|·|=2, if degG (v)=6 and n≥3,

In conclusion, for each m ≥ 0 and S ∼= �m the elements of Cn+1(S) can only be isomorphic to �m−3, �m−1, �m+1, or 
�m+3.
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C.2. �-isomorphisms

Let � be any group acting on G . Let � act on Gn and knG as described in Remark 4.1 and Remark 4.2, respectively.
By close inspection of Remark C.2, it can be seen that the isomorphism Cn : Gn → kGn−1 is a �-isomorphism in the 

following way: The elements of the clique Cn(S) for some �m
μ→∼ S ∈ V (Gn) are each defined by hexagonal charts or by 

subgraph inclusions, which behave well towards the automorphisms induced by the elements from �. For example, the 
triangular-shaped graphs from Mm−1 fulfil the following equivalences and similar calculations can be given for the other 
types of triangular-shaped graphs in the clique:

T ∈ Mm−1(S) ⇐⇒ T = μ�e for some �e ∈ �E
⇐⇒ γ (T ) = (γ ◦ μ)�e for some �e ∈ �E
⇐⇒ γ (T ) ∈ Mm−1(γ (S)).

Thus, a �-isomorphism ψn : Gn → knG is obtained from the following chain of �-isomorphisms:

Gn
Cn−→ kGn−1

(Cn−1)k−−−−→ k(kGn−2) = k2Gn−2

−→ · · · −→ kn−2(kG1) = kn−1G1
(C1)kn−1−−−−−→ kn−1(kG) = knG.
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