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Summary

Nowadays, model-based simulation methods play a major role in the research and development
of new technologies. This is not least due to the time and cost savings associated with their use.
Ideally, however, physically motivated simulation models also provide a deeper insight into
the processes depicted, which is otherwise difficult to achieve in many places. In the context
of engineering sciences, the prediction of the behaviour of a wide variety of materials under
mechanical loading plays a particularly important role. Since almost all materials tend to non-
linear material behaviour under certain circumstances, the modelling can be very challenging
depending on the effect under consideration. Especially in the area of rate- and time-dependent
modelling of a wide variety of material properties, many open research questions remain yet to
be answered. These include, for example, the description of time-dependent growth processes
in biological materials or the modelling of rate-dependent damage phenomena.

The present cumulative dissertation presents a compilation of the author’s (and his co-
authors’) work that has been published on topics of continuum mechanical modelling of
rate-dependent material behaviour. After the introduction, the overview of the current state of
research and the clarification of the research-relevant questions, four published research papers
are presented.

The dissertation starts with a paper on the topic of modelling growth processes in artificially
grown tissue. Based on experimental observations, a so-called homeostatic state is postulated
in this work. Such a state describes a state of tension preferred by the tissue, which the
material always tries to adopt through active contraction or expansion. This consideration
forms the basis for modelling the corresponding growth-induced change in shape and volume.
Following classical models for the description of plastic material behaviour, it is shown that by
introducing a homeostatic potential, the development of the growth-related, inelastic strains can
be elegantly described. For the description of the temporal component in the evolution of the
inelastic strains, a classical Perzyna approach is used. In addition to the theoretical derivation,
the numerical realization as well as the implementation in finite element (FE) software will be
discussed in the following. Using numerical examples, it is shown that the new formulation is
able to predict the growth behaviour more precisely than other well established models. This
is especially illustrated by considering the influence of complex boundary conditions. Finally,
a first investigation of the prediction quality of the model based on experimental data shows
that the developed model is able to reasonably approximate the growth-induced homeostatic
stress in the tissue.

Besides growth process effects, many other inelastic effects can occur in complex materials.



Polymers show a strong dependence in their deformation behaviour with respect to both loading
rate and temperature. Furthermore, rate-dependent damage effects play a important role in
these materials. In the further course of this dissertation, two articles and one conference
proceeding are presented, dealing with the thermodynamically consistent modelling of rate-
dependent damage behaviour in polymers. In the first two publications on this topic, the
purely mechanical continuum model is presented. Based on the multiplicative decomposition
of the deformation gradient, the viscoelastic material behaviour is described via a viscous
potential. A Perzyna approach is used to model the rate-dependent evolution of the scalar
damage variable. The thermodynamically consistent derivation is discussed in the following
as well as the numerical treatment of the equations and their implementation in FE software.
Finally, it is shown that the developed model is able to adequately represent creep damage
and polymers. This is a great advantage compared to classical, rate-independent models,
as these are not able to represent this effect in a meaningful way. Building on the previous
publications, the last article in this work deals with the thermodynamically consistent extension
of the proposed damage model to take thermal effects into account. For this purpose, a fully
thermomechanically coupled formulation is presented on the basis of a further decomposition
of the deformation gradient. Using appropriate parameter studies and numerical examples, the
influence of temperature on the development of damage is investigated. Finally, the results of
various structural calculations demonstrate the applicability of this mutliphysical simulation
model for various applications.

In the last chapter, this dissertation concludes the research questions investigated herein and

gives an outlook for further potential research based on the findings of this work.



Zusammenfassung

Modellbasierte Simulationsmethoden spielen heutzutage eine grofle Rolle im Bereich der For-
schung und Entwicklung neuer Technologien. Dies ist nicht zuletzt auf die mit ihrem Einsatz
verbundene Zeit- und Kostenersparnis zuriickzufiihren. Im Idealfall liefern physikalisch mo-
tivierte Simulationsmodelle jedoch auch einen tieferen Einblick in die abgebildeten Prozesse,
welche sonst an vielen Stellen nur schwer moglich sind. Im Rahmen der Ingenieurwissen-
schaften spielt hierbei vor allem die Vorhersage des Verhaltens verschiedenster Materialien
unter mechanischer Belastung eine grofe Rolle. Da fast alle Materialien unter entsprechen-
den Umstidnden zu nichtlinearem Materialverhalten neigen, kann die Modellierung je nach
betrachtetem Effekt sehr herausfordernd sein. Insbesondere im Bereich der raten- und zeitab-
hingigen Modellierung von verschiedensten Materialeigenschaften sind noch viele offene For-
schungsfragen zu klidren. Hierzu gehoren beispielsweise die Beschreibung von zeitabhéingigen
Wachstumsprozessen in biologischen Materialien oder die Modellierung von ratenabhéngiger
Schidigung.

In der vorliegenden kumulativen Dissertation wird in diesem Kontext eine Zusammenstel-
lung der bereits veroffentlichten Arbeiten des Autors (und seiner Koautor*innen) zu Themen
der kontinuumsmechanischen Modellierung von ratenabhingigem Materialverhalten priasen-
tiert. Nach der Einleitung, dem Uberblick iiber den aktuellen Stand der Forschung und der
Klédrung der forschungsrelevanten Fragen werden vier veroffentlichte Fachartikel vorgestellt.

Die Dissertation startet hierbei mit einer Arbeit zum Thema der Modellierung von Wachs-
tumsprozessen in kiinstlich geziichtetem biologischen Gewebe. Basierend auf experimentellen
Beobachtungen wird in dieser Arbeit eine sogenannter homeostatischer Zustand postuliert.
Ein solcher Zustand beschreibt einen vom Gewebe priferierten Spannungszustand, welchen
das Material durch aktive Kontraktion oder Expansion stets versucht einzunehmen. Diese
Uberlegung bildet darauf aufbauend die Grundlage fiir die Modellierung der entsprechenden
wachstumsinduzierten Form- und Volumenédnderung. In Anlehnung an klassische Modelle zur
Beschreibung von plastischem Materialverhalten wird gezeigt, dass durch die Einfiihrung eines
homeostatischen Potentials die Entwicklung der wachstumsbezogenen, inelastischen Dehnun-
gen elegant beschrieben werden kann. Zur Beschreibung der zeitlichen Komponente in der
Evolution der inelastischen Dehnungen wird dabei auf einen klassischen Perzyna Ansatz zu-
riickgegriffen. Neben der theoretischen Herleitung wird im Folgenden auch auf die numerische
Umsetzung, sowie die Implementierung in Finite Elemente (FE) Software eingegangen. An-
hand numerischer Beispiele wird anschlieBend gezeigt, dass diese neue Formulierung in der

Lage ist das Wachstumsverhalten préziser vorherzusagen als bis dahin gingige Modelle. Dies
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wird vor allem unter Beriicksichtigung des Einflusses komplexer Randbedingungen verdeut-
licht. Abschlieend zeigt eine erste Untersuchung der Vorhersagequalitdt des Modells anhand
experimenteller Daten, dass das entwickelte Modell in der Lage ist die durch Wachstum indu-
zierte homeostatische Spannung im Gewebe sinnvoll zu approximieren.

Neben Wachstumsprozesses konnen noch viele weitere inelastische Effekte in komplexen
Materialien auftreten. Polymere weisen zum Beispiel eine stark ausgeprigte Abhédngigkeit in
ihrem Deformationsverhalten sowohl in Bezug auf die Belastungsrate als auch die Temperatur
auf. Ferner spielen in diesen Materialien ratenabhingige Schidigungseffekte eine entspre-
chende Rolle. Im weiteren Verlauf dieser Dissertation werden daher zwei Artikel und ein
Konferenz Proceeding vorgestellt, welche sich mit der thermodynamisch konsistenten Model-
lierung von ratenabhingigen Schidigunsverhalten in Polymeren beschiftigen. In den ersten
beiden Veroffentlichungen zu diesem Thema wird das rein mechanische Kontinuumsmodell
vorgestellt. Basierend auf der multiplikativen Zerlegung des Deformationsgradienten wird das
viskoelastische Materialverhalten iiber ein viskoses Potential beschrieben. Zur Modellierung
der ratenabhéngige Entwicklung der skalaren Schadigungsvariable wird auf einen Perzyna An-
satz zuriickgegriffen. Die thermodynamisch konsistente Herleitung wird im Folgenden genauso
thematisiert wie die numerische Behandlung der Gleichungen und deren Implementierung in
FE Software. AbschlieBend wird gezeigt, dass das entwickelte Modell in der Lage ist Kriech-
schidigung und Polymeren addquat abzubilden. Dies ist ein groer Vorteil im Vergleich zu
klassischen, ratenunabhéngigen Modellen, da diese nicht ohne Weiteres in der Lage sind diesen
Effekt sinnvoll abzubilden. Der letzte Artikel in dieser Dissertation beschiftigt sich aufbau-
end auf den vorherigen Publikationen mit der thermodynamisch konsistenten Erweiterung des
vorgeschlagenen Schidigungsmodells zur Beriicksichtigung von thermischen Effekten. Hierzu
wird auf Grundlage einer weiteren Zerlegung des Deformationsgradienten eine thermome-
chanisch voll gekoppelte Formulierung vorgestellt. Anhand entsprechender Parameterstudien
und numerischer Beispiele wird der Einfluss der Temperatur auf die Entwicklung der Schidi-
gung im Polymer untersucht. Die Ergebnisse verschiedener Strukturrechnungen demonstrieren
abschliefend die Anwendbarkeit dieses mutliphysikalischen Simulationsmodells fiir verschie-
dene Anwendungsfille.

Die vorliegende Dissertation schlie3t im letzten Kapitel mit einem Fazit zu den untersuchten
Forschungsfragen und gibt einen Ausblick fiir weitere potentielle Forschungsziele, welche sich

auf Grundlage der vorgelegten Ergebnisse sinnvoll ergeben.
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1 | Introduction

We may regard the present state of the
universe as the effect of its past and the
cause of its future. An intellect which at
a certain moment would know all forces
that set nature in motion, and all
positions of all items of which nature is
composed, if this intellect were also vast
enough to submit these data to analysis,
it would embrace in a single formula the
movements of the greatest bodies of the
universe and those of the tiniest atom;
for such an intellect nothing would be
uncertain and the future just like the past

could be present before its eyes.

Pierre Simon Marquis de Laplace
in|Laplace] [[1902]

1.1 Motivation and research relevant questions

Even though current research in the field of artificial intelligence is constantly working on
evoking Laplace’s demon, an omniscient intelligence seems to be more an idea of science
fiction literature than reality at this point in time. We are therefore left with the possibility of
approaching the complexity of our world with the help of cleverly chosen modelling approaches.
From a mechanical point of view, this is particularly the case in the area of predicting the
behaviour of various types of materials. These cover a very large domain, ranging from
classical engineering materials such as rubber to more exotic materials such as artificially

grown tissue. Despite all their differences, most materials are similar in one simple point:



2 1 Introduction

their mechanical behaviour is far from simple. It is therefore one of the great challenges
in material modelling to find formulations that are simple enough to allow a meaningful
interpretation and at the same time include all relevant effects of the problem at hand. If
this balancing act is successful, such modelling approaches are valuable tools for predicting
the behaviour of complex materials. When used properly, model-based simulation methods
can accelerate the development of new technologies drastically. This is especially the case
if experimental investigations are very time-consuming or cost-intensive. In this case, the
number of experiments needed during the development process can be reduced to a minimum
on the basis of a meaningful model.

A prominent example for the need of computational modelling is the development of so-
called biohybrid implants. Here, to put it simply, the patient’s own tissue is artificially
cultivated in a bioreactor for use as an implant. In order to ensure the mechanical stability of
the tissue, it is supplemented with non-biological components. These can be simple polymer
fibres, among others. The aim of this addition can be, for example, to counteract excessive
deformation of the implant under mechanical stress. Experimentally determining the ideal
fibre position for this purpose is, without exaggeration, a hopeless endeavour. It is therefore of
great advantage to use a mathematically based model that can reasonably predict the growth
process together with the deformation behaviour of the implant. While the material behaviour
of fibre-reinforced biological materials has already been researched extensively, there are still
many open questions in the field of growth modelling of such systems. A very prominent
effect in the cultivation of artificially grown tissue is tensional homeostasis. It describes a
deformation process induced by the tissue itself, which leads to a build-up of tensile stresses
in the material. A common hypothesis is that the smooth muscle cells actively contract the
surrounding tissue because they need a certain tension in the material in order to exist. From
a mechanical point of view, this effect is very interesting due to the self-induced tensions
and should therefore not be neglected when modelling artificially cultured tissue. As will
be described in more detail in the following paragraph, some models which are based upon
the multiplicative decomposition of the deformation gradient into elastic and growth related
parts already exist. Unfortunately, most of these approaches to model the self-induced growth
process are not able to represent the material behaviour under arbitrary boundary conditions
in a meaningful way. It is therefore of great interest to find new modelling formulations that
are also able to represent the desired effect of homeostasis well also under complex structural
conditions.

Another example of the need for meaningful simulation models in the field of material theory

is that of general damage processes in arbitrary materials. While the final failure of a material
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is comparatively easy to observe experimentally, the same cannot be said for the development
of damage before the ultimate failure. Especially in the case of mechanical loading of complex
structures, an experimental investigation of early damage arising within the material is often
not feasible in a meaningful way. Here, damage models can make a useful contribution to
understanding the effects that lead to the failure of a corresponding structure. In this respect,
the modelling of the damage behaviour of polymers is particularly interesting. This type of
material is characterised not only by its strong temperature dependence but also by a strongly
rate-dependent material behaviour. While the area of classical viscoelasticity has already
been researched and modelled many times over the last decades, the same cannot be said for
rate-dependent damage processes. A prominent example of such a rate-dependent damage
process is that of creep damage in polymers. In this case, the material fails under creep load
only with a time delay after a certain creep strain has already set in. However, a combination
of viscoelastic models with classical damage formulations is usually not able to reproduce this
behaviour properly. With regard to the use of polymers, e.g. as adhesives in the construction
industry, a meaningful modelling of creep failure is of great interest and should therefore be
the subject of current research. Due to the pronounced temperature dependence of polymer
materials already mentioned above, a thermodynamically consistent multi-physical modelling
is indispensable. Such a modelling approach must include both, the thermal influence on the
material as well as heat generated due to dissipative processes in the material itself.

This dissertation presents approaches to clarify the research questions described above on
inelastic, rate-dependent material behaviour in biological tissue and as well as polymers. A

brief outline of the current state of research on this topic is presented in the following section.

1.2 State of the art

All models presented in this dissertation are based on the basic idea that the deformation gra-
dient can be multiplicatively decomposed into different components, for which the underlying
assumption is that any inelastic deformation can be described by means of a stress-free inter-
mediate material configuration. Whilst this basic idea dates back to the works of [Eckart [[1948]]
and Kroner [1959], the overall concept has been adapted multiple times to model various
inelastic effects under finite deformations (see e.g. |[Lubarda [2004]; Sadik and Yavari [2015]).
In the field of non-linear thermoelasticity Stojanovic et al.| [1964]] were the first to formally
introduce the split into elastic and thermal parts. Soon after, Lee and Liu|[[1967] and Lee [1969]
used the similar concept to model finite plasticity. Some decades later, Rodriguez et al.|[1994]]

introduced a multiplicative split to describe the growth related deformation of living systems.
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Also in the field of rate-dependent material modelling, the multiplicative decomposition was
introduced, e.g. for finite viscoelasticity as shown in Reese and Govindjee [1998] or Bergstrom
[1998]. Within all these approaches mentioned above, the concept of hyperelasticity is used
as a ground model to describe the elastic contribution of the material response. Here, the exis-
tence of a specific and differentiable strain energy is postulated, which acts as a potential for the
stresses (see e.g. (Coleman and Noll [1963]]). When modelling inelastic effects, information on
the current state of inelastic deformations must be tracked throughout the mechanical process.
To achieve this, the pioneering works of (Coleman and Gurtinl [1967]; Rice| [1971] and |Ger-
main et al. [1983]] introduced the concept of internal state variables in a mathematically sound
and thermodynamically consistent manner. This concept has subsequently been used in count-

less modelling approaches and is also included in the models developed within this dissertation.

1.2.1 Biological growth

As described earlier, one of the important aspects of modelling the mechanics of growth
processes within soft tissue is the description of active geometry changes due to contraction
or expansion of the material. Throughout this dissertation, this effect will be referred to as
volumetric growth and must not be confused with the change in density or internal structure
of the material, which is also often reffered to as growth in the common literature. It is clear,
that a detailed modelling approach of such growth processes must also take the multiphysical
nature of the problem into account. This would not only include the influence of mechanical
stimuli but also of other physiological factors such as e.g. nutrients, hormones, among many
others. Examples for such complex modelling approaches are the recent works of e.g. |[Escuer
et al.[[2019] or Manjunatha et al.|[2022]]; Gierig et al.|[2023]]. However, it is generally assumed
that the mechanical stimulation plays one of the dominant roles in this process, since it triggers
e.g. the production of growth factors. Therefore, the complex problem of volumetric growth
is often reduced and studied merely from the mechanical perspective.

While early works of Skalak| [1981]] and |Skalak et al.| [1982] already dealt with the changes
in size and chapes of growing soft tissue, it was the work of |[Rodriguez et al.|[1994] and the
introduction of the multiplicative split which laid the foundation for most of the models in this
field to come. Since then many publications have been made to describe volumetric growth
using this basic framework. For a comprehensive overview the interested reader is referred
to the works of |Goriely| [2018] or Ambrosi et al.| [2019]. In general, models based on the
multiplicative decomposition of the deformation gradient can be divided into two categories;

Isotropic and anisotropic growth models.
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Isotropic models assume that the growth related part of the deformation gradient is propor-
tional to the identity tensor, which leads to a uniform change of volume and shape in all spatial
dimensions. Due to its simplicity, isotropic growth models are applied widely throughout the
literature. Among others,|Lubarda and Hoger|[2002]; [Himpel et al. [2005]] as well as Hajikhani
et al.|[2021]]; Lee et al.| [2021]] are some examples for models based on this assumption. Unfor-
tunately, such models are often strongly limited when it comes to the prediction of structures
with complex boundary conditions. This is due to the fact that the assumption of an uniform
change in volume is way to restrictive form a kinematical point of view. As it has been shown
e.g. in|Braeu et al. [2017,[2019]], an isotropic growth response is rather the exception than the
norm when it comes to real biological systems.

Rejecting the assumption of isotropic expansion naturally leads to an anisotropic growth
formulation. Anisotropy in this case means that the growth related expansion does not need to
be uniform in all spatial dimensions but can rather differ for individual spatial components. The
most simple way of discribing an anisotropic growth relation is by assuming that growth always
takes place along a certain preferred direction. Such approaches have been made by Goktepe
et al.|[2010]; Firouzi and Rabczuk! [2022] or|Groh) [2022];|[Rahman et al.| [2023]; Sempértegui
and Avril [2023]], among others. These approaches have proven to work reasonably well when
it comes to systems where the direction of growth can be determined a-priori, e.g. in the
case of growing fibres. For more general case in which the direction of growth can not be
predetermined, other models are needed, which describe growth in a more general sense. Such
models have been developed by Menzel [2005]; [Soleimant et al.| [2020] or|Lamm et al.| [2021)}
2022]]; Holthusen et al.|[[2023]], to name but a few.

In addition to the phenomenological models listed here, a completely different approach to
describing anisotropic growth has become established on the basis of the work of Humphrey
and Rajagopal [2002]. These are the so-called constrained mixture models. Their approach
differs in such a way that it is assumed that a continuous increase and decrease in mass leads
to the desired change in volume and shape. Since this modelling approach needs to track the
overall change in mass throughout the whole duration of the growth process, the computational
costs can be very high. To overcome this problem, a temporally homogenised version of this
approach was developed by|Cyron et al.|[2016] and Cyron and Humphrey|[2017]. More recent
publications in this field, such as Braeu et al. [2017,2019]], build on this work and extend it to
a more general formulation that has similar properties to the general anisotropic formulations
mentioned above. For a detailed overview on various models and applications of constrained
mixture theory, the interested reader is kindly referred to the comprehensive overview given in
Humphrey [2021]].
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Within this dissertation, the focus lies on the phenomenological modelling approach of
anisotropic volumetric growth which has been successfully introduced and further established
inLamm et al.|[2021},[2022]] and Holthusen et al. [2023]]. This approach uses the mutliplicative
decomposition to describe the growth related part of the deformation. To define its evolution,
a potential for the homeostatic stress state is postulated and used as the basis for the derivation
of appropriate evolution equations. Here, many ideas from the field of classic plasticity theory

are reused in a modified manner to capture growth towards a preferred homeostatic stress state.

1.2.2 Viscoelasticity

When it comes to the description of rate-dependent material behaviour in solids, viscoelas-
ticity is the classic effect that has been studied extensively in the computational mechanics
community over the last decades. The result of this is a large number of various different
modelling approaches describing viscoelastic material response under small and finite defor-
mation. Although this dissertation focuses only on the modelling of large deformations, the
literature on this topic is so extensive that an all-inclusive literature review cannot be provided
here. Therefore, only the most important and influential modelling approaches in the author’s
opinion will be mentioned in the following.

Leaving aside the classical rheological modelling approaches, viscoelastic material models
for large deformations can be roughly divided into two classes. Models that assume a linear
relationship between stress and strain rate include, for example, the works of Lubliner| [1985];
Simo [1987]]; [Holzapfel and Simo| [1996]; [Kaliske and Rothert [1997]; Stmo and Hughes
[1998]]; Bonet [2001]. Such models have been applied successfully for various applications
within the literature (see e.g.  Xiang et al.|[2020]] for reference). Due to their linear nature, these
models are only valid for small pertubations from the thermodynamic equilibrium, rendering
them infeasible for many thermo-mechanical processes of interest. In contrast to that, more
general models that also include a non-linear relation between stresses and strain rate, are also
applicable for large pertubations from the thermodynamic equlibrium. The most commonly
cited and used models of this kind are, for example, the ones of Reese and Govindjee [[1998];
Bergstrom| [[1998]] or Haupt et al.| [2000]. One of the interesting features of such non-linear
approaches is their ability to be easily reducable to the linear theory, which gives them more
flexibility then classical linear models can provide. More recently, modelling approaches
made by [Fancello et al.|[2006]; Kumar and Lopez-Pamies [2016]; [Wang and Chester [2018]];
Rambausek et al.| [2022], among others, have followed this path of non-linear modelling and
sucessfully applied the ideas established in the literature listed above.

Within this dissertation, the viscoelastic nature of the materials under consideration is
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modelled using an adapted version of the general finite viscoelastic model developed by
Reese and Govindjee|[1998], which is again based on the multiplicative decomposition of the
deformation gradient into elastic and viscous parts. To describe the evolution of the inelastic
kinematic quantities, this approach postulates the existence of a viscous potential from wich

the appropriate evolution equations are derived.

1.2.3 Thermo-mechanical coupling

If we consider inelastic processes, the mechanical energy lost through this process must also
be considered. Since this energy is usually lost to the mechanical process in the form of heat,
a multi-physical consideration taking temperature into account is appropriate for modelling
such processes. For this, in addition to the mechanical balance equations, the balance of heat
must also be solved in a coupled form. Furthermore, the kinematical constraints due to heat
expansion of the material has to be considered.

Classical thermo-mechanically coupled models start from the fundamental relation between
the materials heat capacity and the Helmholtz free energy (see Chadwick] [1974]]), which is
subsequently integrated twice to determine the general form of the overall free energy. Based
on this general idea, the model of Reese and Govindjee| [1997] introduces a temperature
and deformation dependent heat capacity yielding a non-linear relation between stresses and
temperature. The description of heat expansion within this framework is then directly described
via the Helmholtz free energy. Following this approach, more recent models of Xiao and
Nguyen| [2015]); Behnke et al.| [2016]]; Mehnert et al. [2017, 2018 or Dai et al. [2020], among
others, adapted the same methodology successfully. Although such approaches are elegant
and simple, they tend to pose a problem as soon as the modelling of damage processes come
into the picture. |[Felder et al. [2022] showed that the damage growth criterion (see Wulfinghofl
et al. [2017]) is not easily fulfilled a-priori by this kind of modelling attempt.

In contrast to the classical thermo-mechanical models listed above, the approach first intro-
duced by Stojanovic et al. [1964]] as well as|Lu and Pister [1975] is based on a multiplicative
split of the deformation gradient to describe the thermal expansion of the material by means
of an individual part of the deformation gradient. The Helmholtz free energy is consequently
additively split into mechanical and thermal contributions. The dependence of the stresses
on the temperature is furthermore determined by introduction of temperature dependent ma-
terial parameters (see e.g. |Holzapfel and Simo| [1996]] and |Lion|[1996,|1997], among others).
Considering the fundamental connection between the heat capacity and the free energy, this
approach leads to a non-linear function of the heat capacity in terms of all internal variables

considered. Therefore, the thermal part of the free energy must be chosen appropriately to en-
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sure that unwanted dependencies do not arise from the model. Since this is usually not trivial,
many approaches based on the split methodology assume that the heat capacity is constant and
that the thermal energy takes whatever form needed to assure this assumption being true (see
e.g. |Canadija and Mosler [2011];|Aldakheel and Miehe [2017]; |Dittmann et al.|[2020]; Felder
et al.[[2022]). Only few approaches can be found in literature, which take the effort to actually
determine a specific form of the thermal energy for a given material. Among them are, for
example, the works of |Lion|[1996,1997] or Lion et al.|[2017].

Within the thermomechanical modelling approaches described in this dissertation, the mul-
tiplicative modelling approach is used to ensure that the damage growth criterion is a-priori

fulfilled for arbitrary damage processes. Furthermore, a constant heat capacity is assumed.

1.2.4 Damage modelling

Although most materials differ greatly in their elastic and inelastic properties, one fact is
certain: a continuous increase in load will, at a certain point, lead to damage of the material
and ultimately to its failure. Especially when analysing complex structures and their maximum
load capacity, a proper description of the damaging behaviour of different materials is of
great importance and can give valuable insights for the optimal design of a mechanically
loaded system. In times of raw material scarcity and global warming, this can contribute to
a reduction in the consumption of valuable resources and the emission of climate-damaging
substances.

When considering the micromechanical perspective, damage arising in deformable bodies is
usually associated with the physical processes of the formation and development of microscopic
cracks or cavities within the material itself. Depending on the type of material, a detailled
modelling approach for these effects on the micro level is often not trivial and for many
applications not even neccessary. This is especially true, if the overall macroscopic material
response under damage and failure is rather simple. It is therefore often assumed, that damage
can be described by means of a continuous reduction of the materials stiffness. Based on
the pioneering works of [Kachanov| [1958]] and Rabotnov| [1969] many models in the field
of the so-called Continuum Damage Mechanics (CDM) approach have been developed over
the years. The assumption that the stiffness of a given material is degraded due to damage
such that all spatial dimensions are effected equally leads to the classical isotropic damage
models. The modelling approaches use a scalar valued internal damage variable to describe
the amount of damage accumulated within the material. Many approaches choose this variable
to be defined on the finite intevall [0, 1] (e.g. Chaboche| [[1978]; Lemaitre| [[1984, 19854lb]),
whereas the works of Dimitrijevic and Hackl| [2008]; Junker et al.| [2019], among others, use
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the open intervall [0, co) for the definition of the damage variable. In both cases a value of
zero referres to the virgin, undamaged state of the material. Whilst a value of one within the
former approach corresponds to the fully damaged material, the latter modelling assumption
only asymptotically approaches the fully damaged state while the damage variable approaches
0o. The evolution of the internal variable is usually derived from thermodynamic principles
and the the hypothesis of strain (see Lemaitre [1971]]; Lemaitre and Chaboche [1978]]) or
energy equivalence (Cordebois and Sidoroff| [1982]). Over the years, extensions for various
applications have been made to these original modelling approaches, e.g., aging effects in
Marquis and Lemaitre, [[1988]], crack-closure in Pires et al.|[2003], introduction of Lode‘s angle
in [Lian et al.| [2014]], extension to finite strains in [de Souza Neto et al.| [2008]], or material
dissolution in \van der Velden et al.| [2021} 2023]], to name but a few. For a comprehensive
overview on various types of phenomenological CDM models, the interested reader is kindly
refferd to the work of [Skrzypek [1999].

The assumption of an isotropic damage response can be a strong one, since materials show
a dependency of the damage evolution on the loading direction. To account for this, models
considering the anisotropic evolution of the damage response have been developed over the
years. Such models often make use of a higher order damage tensor instead of an scalar damage
variable. A first order apporach has been made, for example, by Davison and Stevens| [[1973];
Krajcinovic and Fonsekal [[1981]]; Dorn and Wulfinghoft|[2021]], while the works of Murakami
and Ohno| [[1981]]; |Cordebois and Sidoroff [[1982]; [Fassin et al.|[2019]]; Reese et al.|[[2021]] and
Holthusen, Brepols, Reese and Simon|[2022], among others, make use of second order damage
tensor. There exist also approaches in literature using tensors of fourth or eighth order (see
e.g. (Chaboche et al. [19935]] or Pituba and Fernandes| [2011]]).

Independent of the choice of the type of damage variable, all classical, local continuum dam-
age models suffer from the same inherent problem when it comes to the simulation of structures.
They show severe pathological mesh dependencies and non-uniqueness of the solution of the
damage field. Since the initial reports made by Bazant et al.| [[1984] and |de Borst et al.| [[1993]],
those issues have been studied extensively in the literature and various approaches have been
developed in order to cure this problem. In the field of continuum damage modelling, two main
research directions have been established among others. The non-local integral type models as
developed and applied, for example, by Pijaudier-Cabot and Bazant| [1987]; Ganghoftfer et al.
[1999]; Borino et al. [2003]]) use a non-local integration of the damage variable to overcome
the issue of damage localization. Although this is an elegant approach, the combination with
classical Finite Element formulations is not straight forward and computational expensive.

Gradient-extended damage formulations, on the other hand, introduce an internal length scale
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by means of an additional partial differential equation describing the diffusive nature of the
damage field itself. Based on this idea, phase field models of fracture (see Francfort and
Marigo [1998]; [Bourdin et al. [2000]) as well as micromorphic damage models (Dimitrijevic
and Hackl [2008, 2009]; Forest [2009} 2016]) have been developed and successfully applied
for various situations (see e.g. Brepols et al.| [2017alb]; Fassin et al. [2019]).

Besides viscoelastic effects, many materials also tend to show a rate-dependent damage
response. A famous example is the creep damage response of polymers. Classical, rate-
independent damage models unfortunately are not able to cover this kind of behaviour properly
(see Lamm et al.| [2023]). Various approaches for modelling of rate-dependent damage be-
haviour already exist in the literature, which can be devided into micromechanically motivated
and continuum based models. In the case of polymeric materials the class of micromechani-
cally based models is usually based on chain statistics and scission kinematics of the polymeric
network (see e.g. [Shaw et al.| [2005]]; Wineman and Shaw|[2007]; Wineman| [2009]; Vernerey
et al.| [2018]]; |Guo and Zairi [2021]]; ILavoie et al.| [2016]]. Continuum based models are usu-
ally motivated by phenomenological observations made in experiments. When cosidering the
simulation of structures subjected to small deformations, a variety of rate-dependent damage
models have been developed over the years. Some examples of such models are Murakami
and Ohno| [1981]]; Lemaitre| [1985a]; Wang et al.| [2013]]; Pandey et al.| [2019]; Pereira et al.
[2017]; [Shlyannikov and Tumanov| [2019]]; Nahrmann and Matzenmiller [2021]; |[Kou et al.
[2022] among others. The literature on rate-dependent damage models covering also finite
deformations is up to now, however, relatively sparse. The works of [Lion| [[1996]; Miehe
[2000]; Lin and Schomburg [2003]]; Aboudi [201 1] build on the ideas from small strain theory
and extends it to the finite strain regime. These models are based on the explicitly definitiion
of an evolution equation considering the rate of a strain like quantity as the main driving force
for the damage process. The approach of Khaleghi et al.| [2022] uses a damage evolution law
based on the work of Lemaitre [1985a] and adapts it to the finite strain regime. Lamm et al.
[2023] use a classical damage formulation and introduce the rate-dependent material response
by means of an modified Perzynal [1963] type Ansatz.

For completeness, it should be mentioned that there exist also other approaches for the
modelling of damage besides the CDM theory. Various authors have also worked on approaches
using cohesive zone theory (see e.g. Dugdale] [1960]; Barenblatt| [1962]; Bayat et al.| [2020])
or X-FEM (see e.g. [Pezeshki et al.|[2017]]). Within this dissertation, an isotropic, gradient
extended, CDM model based on the work of Brepols et al.| [2017¢a] is used and adapted to

account for rate-dependent damage evolutions by using a modified Perzyna-type ansatz.
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1.3 Outline of the dissertation

The cumulative dissertation presented here consists of three peer-reviewed journal articles

(Chapters 2, 4 and 5) and one conference proceeding (Chapter 3). It is structured as follows:

Article 1 (Chapter[2) considers a novel modelling approach for the description of volumetric
growth processes in artificially grown biological tissues. The main assumption for this model
is that the tissue is able to actively contract or expand in order to approach a desired internal
stress state. Such a state is called homeostatic state and is subsequently described in terms of
an inelastic pseudo potential. The framework is based on the multiplicative decomposition of
the deformation gradient into elastic and growth related parts. Instead of a-priori defining a
fixed structure of the growth related deformation gradient, this formulation bases the evolution
of the inelastic, growth related contributions to the deformation on a Perzyna-type evolution
law which uses the homeostatic potential. This gives the model much more flexibility than
previous modelling approaches and leads in general to an anisotropic deformation due to the
growth process itself. The overall formulation is derived in thermodynamically consistent

manner.

Article 2 (Chapter[3)) presents a novel framework for the description of rate-dependent dam-
age occuring in polymeric materials. In this conference proceeding, a fully elastic, isotropic
damage model for finite strains is introduced. To account for the temporal effects arising from
the damage process, a Perzyna-type Ansatz for the definition of the damage evolution equation
is used. All quantities used in the model are derived in a thermodynamically consistent manner

by fulfilling the restrictions arising from the Clausius-Planck inequality.

Article 3 (Chapter[d)) builds upon the previous chapter and extends the rate-dependent dam-
age model to also account for viscoelastic effects. The viscous part of the model is based on
the multiplicative decomposition of the deformation gradient into elastic and inelastic parts.
For the description of the evolution of viscous state variables, a viscoelastic pseudo potential
is introduced. The whole model is derived in a thermodynamically consistent manner. Within
extensive studies, the differences in the material response between viscoelasticity and rate-
dependent damage are investigated. It is furthermore shown, that a combination of viscous
effects and rate-dependent damage is capable of predicting creep damage processes accurately.
This is a great advantage over classical damage models, since they are in general not capable

of capturing this effect properly.
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Article 4 (Chapter [5) describes the thermodynamically consistent extension of the afore-
mentioned model for rate-dependent damage to also capture thermo-mechanical effects. For
this, an additional decomposition of the deformation gradient into mechanical and thermal
parts is utilized. The thermal expansion is assumed to be isotropic, which yields the thermal
part of the deformation gradient being proportional to the identity tensor. For the influence of
the temperature field on the mechanical response, a linear relation of the material parameters
with respect to the current temperature is assumed. Subsequently, all thermodynamic driving
forces, heat sources and thermal coupling terms are derived in a thermodynamically sound

manner.

Finally, Chapter 8 draws a conclusion to the work presented here and gives an outlook on

further potential research opportunities.
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A macroscopic approach for
stress-driven anisotropic growth
in bioengineered soft tissues

This article was published as:

Lamm, L.; Holthusen, H.; Brepols, T.; Jockenhovel, S.; Reese, S. [2022], ‘A macroscopic
approach for stress driven anisotropic growth in bioengineered soft tissues’, Biomechanics and
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2.1 Abstract

The simulation of growth processes within soft biological tissues is of utmost importance
for many applications in the medical sector. Within this contribution we propose a new
macroscopic approach for modelling stress-driven volumetric growth occurring in soft tissues.
Instead of using the standard approach of a-priori defining the structure of the growth tensor,
we postulate the existence of a general growth potential. Such a potential describes all eligible
homeostatic stress states that can ultimately be reached as a result of the growth process. Making
use of well established methods from visco-plasticity, the evolution of the growth-related right
Cauchy-Green tensor is subsequently defined as a time dependent associative evolution law
with respect to the introduced potential. This approach naturally leads to a formulation that is
able to cover both, isotropic and anisotropic growth-related changes in geometry. It furthermore
allows the model to flexibly adapt to changing boundary and loading conditions. Besides the
theoretical development, we also describe the algorithmic implementation and furthermore

compare the newly derived model with a standard formulation of isotropic growth.

2.2 Introduction

The production and use of artificially grown biological tissue has become an important research
topic in the medical context over the last two decades. Great progress has been made in implant
research in particular, with the cultivation of biohybrid heart valves being just one example
among many (Fioretta et al.| [2019]). Designing and constructing highly complex medical
implants is a big challenge due to the biomechanical properties of the underlying cultivated
tissue. Early works in the field of biomechanics have already pointed out that biological
tissues adapt dynamically to the environment they are exposed to (see e.g. [Fung| [[1995]] and
references therein). The goal of this process is to reach a homeostatic state in which e.g. a
certain critical stress state is neither exceeded nor fallen below. From a physiological point of
view this process, which we will call growth in the following, is mainly driven by a change
in mass and internal structure of the given biological material. It is important to notice that
since the model presented in this paper is a purely phenomenological approach, we disregard
the micromechanical effects of remodelling in the following and concentrate exclusively on
the description of volumetric growth. Subsequently, the growth process leads to a change in
the mechanical behaviour, which usually has a large influence on the performance of the given
implant. In contrast to native tissue, these adaptive effects are particularly pronounced during

the cultivation period of bioengineered tissues and must therefore be taken into account from
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the beginning of the design process. Within this context, computational modelling contributes
to a deeper understanding and prediction of such adaptation processes. An important aspect
of modelling the mechanics of growth is the description of geometry changes which are due
to contraction and expansion of the material, respectively. Starting from the works of |Skalak
[1981], Skalak et al.|[1982] and Rodriguez et al. [[1994], many models have been developed
over the last decades in order to describe such finite volumetric growth effects. Although
being already successfully applied e.g. in the modelling of finite plasticity (see e.g. [Eckart
[1948]], Kroner [1959], Lee| [1969]), it was the contribution of Rodriguez et al.| [1994] which
first adapted the multiplicative split of the deformation gradient to describe the inelastic nature
of finite growth processes. For a detailed overview on the various modelling strategies, the
interested reader is referred to the comprehensive overviews given e.g. by |Goriely [2018]]
and Ambrosi et al| [2019]. Most of the approaches based on the conceptually simple and
computationally efficient framework by Rodriguez et al. [1994] can be roughly divided into
two different groups, isotropic (e.g. [Lubarda and Hoger [2002], [Himpel et al. [2005]) and
anisotropic growth models (e.g. Menzel [2005], Goktepe et al.| [2010], [Soleimani et al.
[2020]). It is important to outline that the terms isotropic and anisotropic which are used here
in the context of describing the volumetric growth response must not be confused with the
similar terminology of the underlying basic continuum mechanical models, where anisotropy
is often used to denote an initially preferred direction within the material. In case of isotropic
growth, the growth-related part of the deformation gradient tensor is often assumed to be
proportional to the identity tensor (e.g. [Lubarda and Hoger [2002]), which yields a uniform
expansion of a referential volume element. On the other hand, the term anisotropic growth
describes a geometry change of a given volume element that is not uniform in all three spatial
dimensions but rather has a distinct growth direction (e.g. |Goktepe et al. [2010]). Despite its
widespread use, the approach of isotropic growth modelling has strong limitations with regard
to describing the mechanical behaviour of complex structures. Recently, Braeu et al. [2017,
2019]] pointed out that in the context of relevant applications, anisotropic growth behaviour
is more the standard case than an isotropic response. Classically, this intrinsically anistropic
growth behaviour is modelled using heuristic assumptions on the definition of preferred growth
directions. This, unfortunately, yields the need to a-priori prescribe a certain structure of the
growth-related deformation gradient. Whilst this approach might be feasible for relatively
simple problems such as e.g. fibre elongation and contraction, it is not well applicable for
more complex applications. In order to cure the need for describing the structure of the growth-
related deformation gradient a-priori, more recent works (e.g. Zahn and Balzani| [2017]]) have

developed formulations in which the growth-related deformation gradient tensor is constructed
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with respect to the eigenvectors corresponding to the principal stress state. Nevertheless,
defining general and flexible formulations that can adapt to various boundary value problems
remains a challenging task and ongoing topic of research, as pointed out already by e.g. Menzel
[2005]] or[Soleimani et al.|[[2020].

In addition to the phenomenologically motivated models described above, another class
of models was established for describing growth processes. Originating from the theory of
mixtures, [Humphrey and Rajagopall [2002]], among others, developed the constrained mixture
theory. Instead of assuming that the volume as a whole is deformed during the growth process,
this modelling approach describes the change of volume in terms of a continuous deposition
and removal of mass increments. Since this approach is computationally very expensive,
Cyron et al.| [2016]] and Cyron and Humphrey [2017] developed a homogenized version of
the constrained mixture model. This is achieved by using a temporal homogenization of the
mass increments alongside with the same multiplicative split as described by [Rodriguez et al.
[1994]. Although this approach overcomes the limitations of the classical constrained mixture
theory in terms of computational costs, it still suffers from the need to a-priori define the
structure of the growth tensor. Recent versions of this framework, as described e.g. in the
work of Braeu et al.|[2019]], were able to modify this approach such that the growth tensor
adapts automatically to the given boundary value problem.

As an alternative to the just mentioned promising approach, this contribution presents
a different way on tackling the issue of predefined growth tensors. This novel and flexible
framework for the description of stress driven volumetric growth is able to cover both, isotropic
and anisotropic growth behaviour, naturally. Section[2.3|covers the theoretical modelling ideas
behind the proposed model. The numerical implementation of the derived material model is

described in Section[2.4] Finally, numerical examples are given in Section[2.5]

2.3 Continuum mechanical modelling of finite growth

Let us first introduce the well established multiplicative split of the deformation gradient F

into an elastic and a growth-related part (see e.g. Rodriguez et al. [1994]), i.e.
F=F.F,. 2.1

Using this equation, the determinant of F, abbreviated by J := det F = det F. det F,, is also
multiplicatively split into two parts. Whilst the change of volume due to elastic deformations is

described by J. = det F, the growth-related volume changes are represented by J, = det F,,.
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In analogy to the right Cauchy-Green tensor C = FTF as well as the left Cauchy-Green
tensor B = FF7, the elastic right Cauchy-Green tensor and the growth-related right and left

Cauchy-Green tensor can be defined as

C.:=F/F.=F,"CF,"
C,:=F_F, (2.2)
B, :=F,F].

Furthermore, the growth-related velocity gradient L, is introduced as

L,=F,F ' (2.3)

g

2.3.1 Balance relations

Growth processes within biological systems in general lead to a change of the systems mass
as well as a change of its shape and volume, respectively. Within this contribution, the focus
lies on the macroscopic description of changes in shape rather than a change of the systems
mass. We therefore neglect the description of the balance of mass in terms of production or
flux terms and assume that this balance relation is fulfilled implicitly. It is furthermore well
established to assume that growth processes take place on a significantly larger time scale than
mechanical deformations do. This standard argument is known as the slow growth assumption

and yields a quasi-static setup of the well known balance of linear momentum
Div (FS) 4+ by = 0. (2.4)

Here S and by denote the second Piola-Kirchhoff stress tensor and the referential body force
vector per reference volume, respectively. Following the idea of open system thermodynam-
ics (see e.g. [Kuhl and Steinmann| [2003]] and references therein), we describe the entropy

production - in terms of the Clausius-Duhem inequality

1. .
7=S:§C—w+8020, (2.5)

with the volume specific Helmholtz free energy density i) defined more precisely in the
following section. The additional referential entropy contribution Sy is capturing both, entropy
fluxes through the boundary as well as entropy sources within the system itself. It is important
to notice, that we do not explicitly compute this particular contribution but introduce it to allow

e.g. for a decrease in entropy due to the growth process itself.
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2.3.2 Helmholtz free energy

We start from the general continuum mechanical framework laid down in |Svendsen| [2001]].
Within this context, the constitutive equations are described with respect to a given but other-
wise arbitrary configuration of the material body in question. Similar to the approaches made
by Bertram|[[1999]] and Svendsen| [2001] in the context of finite plasticity, we choose the elastic
part of the Helmholtz free energy to be stated in terms of quantities defined within the so-called
grown intermediate configuration.

When modelling finite volumetric growth, it is important to ensure that the growth process
will ultimately reach a homeostatic state. This must be the case even under the absence of
growth restricting boundary conditions, since, otherwise, the growth process would continue
ad infinitum. A common approach to limit the growth response is to introduce a set of material
parameters, which can be interpreted as the maximum possible growth induced stretches (see
e.g. Lubarda and Hoger| [2002]). Such approaches may give computationally reasonable
results, however, in the authors’ opinion, cannot be easily motivated by physical arguments.
Within this contribution we much rather assume that an internal force must evolve during the
growth process that consequently counteracts the deformation process and ultimately yields
it to stop. Since (engineered) biological tissue consists of high amounts of bound water, it
is reasonable to assume that a growth-related change in volume is always accompanied by
a change in internal pressure. Such pressure accumulations are consequently counteracting
the expansion and contraction process, respectively. This growth-related internal pressure can
be described by including an additional dependency on either C, or B,. Using the idea of
interpreting I, as a so-called material isomorphism (see e.g. |Noll [1958], Svendsen| [2001]]),
it follows that one has to choose B, in order to ensure that the kinematic quantities are located

within the same configuration, i.e.

¥ =19 (C,,B,).

Note that this choice is strongly related to the general concept of structural tensors. In the
present case, namely by choosing the structural tensor equal to By, the relation to linear
kinematic hardening becomes obvious. This is worked out in the paper of Dettmer and Reese
[2004], where linear kinematic hardening is a special case of the so-called Armstrong-Frederick

type of kinematic hardening. In the following, we choose an additive format, i.e.

¢ = we(ce) + wg(Bg)a (26)
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H

Figure 2.1: Rheological model corresponding to the given volumetric growth model. Growth
is denoted by the element including the character G.

g

for the Helmholtz free energy, which can be motivated easily by the rheological model shown
in Figure 2.1 This model illustrates nicely that a growth-related expansion or contraction
directly results in an accumulation of the growth-related energy 1, due to the loading of the
associated spring element. Such an increase in growth-related energy clearly counteracts the
growth deformation and ultimately leads to a decaying growth response. Please notice that the
general idea of an energy contribution counteracting the growth process can also be found e.g.
in Braeu et al. [2019]. In the above publication, however, this is achieved by a change in elastic
energy, which is enforced by an additional term considering the change in volume directly.
The elastically stored energy . is represented within this rheological model by the second
spring element. It is obvious that this particular spring is influenced by both, growth-related

and purely elastic deformations.

2.3.3 Thermodynamic considerations

To derive the constitutive equations representing finite volumetric growth, we next consider
the isothermal Clausius-Duhem inequality as given in Equation (2.5). Inserting the Helmholtz

free energy (Equation (2.6))) and differentiating with respect to time yields

1. e - N,
S:-C-— ° . C, . B Sp > 0. 2.7
> (ace * 3B, 9>+ 0= @7
By using the product rule as well as utilizing the identities F;T = —Fg_TF;gFg_T and ;1 =

—Fg‘ngFg‘l, the elastic deformation rate can be expressed as

- -Trp-1 T
C.=F,TCF,' - LIC, - C.L,. (2.8)
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With the definition of the growth velocity gradient given in Equation (2.3)), the growth-related

deformation rate can similarly be found as
B, =L,B, +B,L’. (2.9)

As shown in detail in Appendix [2.7.1] the thermodynamically consistent definition of the
second Piola-Kirchhoff stress tensor can be derived by combining the equations above and

making use of the standard procedure of |(Coleman and Noll [[1963], such that

L, O
_ 1
S = 2F, ' o

F T (2.10)

With this definition at hand, the reduced version of the Clausius-Duhem inequality is given

a8 Vpeq = g(“;i . (LTC. + C.Ly) — g—gz : (LyBy 4+ B,LT) + Sy > 0. If we furthermore let

e
aC.

symmetric and commute with either C. or B,. Combining this with the properties of the

1. and 1), only depend on the invariants of C. and By, their derivatives

Ny
and B, are

double contracting product, the reduced Clausius-Duhem inequality can be written only in

terms of the symmetric part D, = sym L, of the growth velocity gradient, i.e.
Area = [M = x] : Dy + Sy > 0, (2.11)

where the Mandel stress tensor is denoted by M = QCE% and the back-stress tensor is given
g

9B, Similar to classical plasticity theory, see e.g. Vladimirov et al. [2008], one

can identify the difference of the Mandel stress tensor M and the back-stress tensor x as

as x = 2B

the conjugated driving force for the evolution of growth. It is therefore natural to describe
the evolution equation for D, in terms of these quantities. Notice that M and x are located
within a grown intermediate configuration, where they can be clearly identified as stress like
quantities. This becomes clear by the fact that M has the same invariants as the Kirchhoff
stress tensor 7 and, thus, has a clear physical meaning (see Appendix [2.7.2)). Pulling M and
x back to the reference configuration will yield a loss of such clear physical interpretation.
Nevertheless, from a conceptual and computational point of view, a pull back of these quantities
to the reference configuration is desirable (for details see e.g. |Dettmer and Reese| [2004] and
Vladimirov et al.|[2008]]). Taking into account the relation D, = %F;TCQF;1 one can rewrite

the Clausius Duhem inequality purely in terms of quantities located within the reference
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configuration, i.e.

1.
: -1 -T -1 -7\ .
Frea = (Fy 'MF T —FIxF 1) 5Cy + S

=(T'-X): %Cg + 8o (2.12)

1.
:Z§CQ+SOZO

Similar to the formulation given with respect to the grown intermediate configuration, it is
reasonable to define the evolution of the growth-related right Cauchy-Green tensor C, in
o .

aci CItis
important to mention that using C, as the internal variable yields the fact that F'; must never be

terms of the thermodynamically conjugated driving forces I' = C;lCS and X = 2

computed in the first place. Such an approach is in clear contrast to the standard formulations

in volumetric growth modelling, where the growth tensor itself is usually explicitly prescribed.

2.3.4 Evolution of growth

Up to this point, the framework presented is very general and could be used to describe a wide
variety of inelastic phenomena in finite deformations. It is therefore the choice of evolution
equations for C, that explicitly defines a particular kind of inelastic material model. For the
most simple modelling assumption of a purely isotropic growth response, the inelastic part of
the deformation gradient is usually defined as ', = ¢I, where o) describes the growth induced
stretch (see e.g. [Lubarda and Hoger| [2002]], Himpel et al.| [2005], |Goktepe et al.| [2010]).
Using the thermodynamic framework described above, this assumption naturally leads to an
evolution equation of C,, which can be written as

= 2%09. (2.13)
Within this context, a scalar valued evolution equation = f(, M, x, ...) is used to determine
the overall growth response (see Appendix [2.7.3|for a more detailed example). Although the a
priori assumption of F'; being a diagonal tensor is tempting due to its computational simplicity,
it was already pointed out in various publications that such an assumption is not reasonable for
many applications (see e.g. Soleimani et al. [2020], Braeu et al. [2019]], Braeu et al.|[2017]).
This is especially the case for scenarios in which the body cannot grow freely but is restricted

by complex boundary conditions. To overcome this issue, a new volumetric growth model is

proposed in the following.
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2.3.4.1 Finite growth using a growth potential

As described in the introduction, cell mediated expansion or compaction of engineered tissues
takes place in such a way that a preferred homeostatic stress state is reached within the material.
In the present work, it is assumed that this homeostatic state can be described in terms of a
scalar equivalent stress. Thus, growth always takes place, if this equivalent stress is not equal
to the preferred stress state of the biological material. These considerations lead us to the

introduction of a general growth potential
=0 (M, x, 0, ..., an) (2.14)

which is a function of the conjugated driving forces as well as a set of material parameters «;.
Similar to the representation used in classical plasticity theory, this potential can be represented
as a surface, located within the principal stress space, which contains all eligible homeostatic
stress states. It will therefore be named homeostatic surface in the following. An example
for such a homeostatic surface can be found in Figure [2.2] The overall goal of this process
is to approach ® = 0 over time and therefore reach a stress state that lies on the homeostatic
surface. Furthermore, it seems natural that such growth processes always try to minimize
the amount of energy needed to reach the homeostatic state. Hence, the direction of growth
response will be described by the derivative of the growth potential, i.e. N = g—ﬁ. It is
furthermore obvious that homeostasis is never reached instantaneously but rather approached
over a certain period of time. To account for this temporal effect, we introduce the growth
multiplier }\g = }\g (®,m, P, ..., Bn) defined as an explicit function of the growth potential, the
growth velocity 7 and a set of material parameters /3;. Subsequently, the considerations above

lead us to an associative growth evolution law that is postulated as

. N

D,=)\,—.
||IN|

(2.15)

g

In general, we do not want to restrict the choice of ® to only positive homogeneous potentials
of degree one. This has the side effect that ||[N|| = 1 can not be guaranteed, which yields the
need to normalize the growth direction tensor to assure that only /.\g has an influence on the
amount of accumulated growth deformations. As before, we furthermore can define the given
evolution equation in terms of quantities located purely within the reference configuration. To
achieve this, a pull back operation is performed that yields

2Ny p : .
HNg||Fg NF, = A\, f = \,gC,, (2.16)

C, =
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including the general second order tensors f = ﬁFgNFQ as well as g = fC;l.

Remark. The same result for Equation [2.16) could also be obtained following Reese et al.
[2021)] and the procedures proposed therein. Therefore, this evolution law could be interpreted

in the broader context of a theory describing the evolution of general structural tensors.

Since this approach is very similar to the classical models of visco-plasticity, the attentive
reader may ask how far these approaches differ. In the case of plasticity, the yield criterion
is used to clearly distinguish between the purely elastic and elasto-plastic state, i.e. the yield
criterion must always be less than or equal to zero. In contrast, the growth potential ¢ does not
serve to distinguish between an elastic and inelastic region, since an ’elasto-growth’ state is
present for both & < 0 and ¢ > 0. Only in case of & = 0 no further growth has to take place,
since homeostasis has already been reached. This behaviour is also reflected by the growth
multiplier, which in contrast to plasticity can also have negative values. In the authors opinion
this modelling approach has several advantages: (i) As stated earlier, the direction of growth
does not have to be prescribed a priori, (ii) the complexity of the material model is reduced and
(ii1) due to the strong similarities to plasticity, one can rely on a large repertoire of knowledge
from this field, both from a modeling and numerical point of view. For instance, one could
argue that the preferred stress can not only be described by only one smooth growth potential.
Having e.g. the concept of multisurface plasticity in mind, it would be easy to adopt the growth
potential by a more sophisticated approach. In addition, it is also possible, for instance, to take
into account a changing preferred stress using an approach similar to the concept of isotropic

hardening.

Remark. It is important to point out that while the model developed here is strongly inspired
by the methods of classical plasticity theory, the micromechanical intepretations of these purely
phenomenological approaches do not correspond to each other in any way. Furthermore, it is
important to note that in reality, instead of a sharply defined homeostatic state, a fuzzy state

or possibly even a multitude of such states might occur.

Before defining a specific form of the growth potential, we first take a closer look at the
structure of such a potential. It has already been pointed out above that it is reasonable to
assume that growth in biological tissues tends to be of isotropic nature only in the absence of
restricting boundary conditions. This idea leads us to the definition of the growth potential
as a function of the volumetric invariant [; := tr (M —x) = tr (XC,). To allow also
for an anisotropic growth response, we furthermore include the deviatoric invariant J, :=
Ltr (dev (M — x)g) = 1tr (dev (ZCQ)Q) (see Appendix [2.7.4)), where we use the deviatoric

2



24 2 A macroscopic approach for stress-driven anisotropic growth in bioengineered soft tissues

projection given as dev (o) = (o) — % tr (o) I. With theses considerations at hand, we propose

a general form for the growth potential as

Q= D (11, Ja, Whom) = &1 (I1) + P2 (J2) — Whom- (2.17)

Here, the material parameter wy,,,, describes a stress like quantity defining the state of home-
ostasis. It is important to emphasize that the combination of /; and .J; is crucial for the
proposed material model. If the potential was merely defined in terms of the volumetric
invariant /;, the growth direction tensor would become proportional to the identity tensor
which consequently yields an evolution equation that is similar to the isotropic evolution law
given in Equation (2.13)). It is the dependency on .J, that introduces an anisotropic growth
behaviour, since the growth direction tensor no longer necessarily has to correspond to the
identity. Nevertheless, in case of purely volumetric stress states, the dependency on I; ensures
the desired isotropic growth response. This consideration yields an exclusion of any purely
deviatoric potential, e.g. of von Mises type potentials. Furthermore, any suitable potential
must fulfill g—ﬁ # 0 for all (M — x) € (R® x R?) in order to guarantee a well-defined growth

direction for any arbitrary loading condition.

2.3.4.2 Choice of the growth potential and growth multiplier evolution

The form of a specific potential depends strongly upon the needs of the given application. Un-
fortunately, there is currently a lack of meaningful experimental data regarding the mechanics
of volumetric growth. We therefore choose a potential that proofed to be able to predict our
macroscopical observations and further satisfies the general requirements stated above. For

this purpose, the quadratic potential as described e.g. by [Stassi-D’Alia [[1967] and Tschoegl

2

[1971] is used in the following. This potential can be expressed in terms of wpe, = mao,

including the material parameters m and oy, i.e.
® =3Jy — (1 —m)ogly —mo.. (2.18)

As shown in Figure the homeostatic state defined by this particular growth potential
forms a hyperbolic surface within the principal stress space. The tipping point of this parabola
is located on the hydrostatic axis, where its precise location is determined by the parameter
m (see Figures and 2.2¢). From Equation it is obvious that both parameters must
always be greater than zero. It is furthermore important to notice that the opening side of the

parabolic potential lies within the compressive regime for m < 1 and in the tensional regime
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(a) Homeostatic surface located in principal stress space.

o3 A v mq o3 A

/7 s

(b) Intersection of homeostatic surface with o1 = (c) Intersection of homeostatic surface with o1 =
o9, showing the influence of the material pa- 09, showing the influence of the material pa-
rameter m for m; < 1 with m; < mo < ms. rameter m for m; > 1 with m; < mo < ms.

Figure 2.2: Schematic representation of the homeostatic surface defined by Equation (2.18))
displayed in principal stress space. The hydrostatic axis p = tr (M — x) is shown
in orange. The eigenvaules of M — x are denoted by o;.
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for m > 1, respectively. Since a choice of m = 1 describes a von-Mises type model such
a choice of this parameters must be avoided. It is worth noticing from Figure [2.2] that this
particular form of the growth potential leads to a different material response in the compressive
and tensional regime, respectively. Using this form of the growth potential yields the growth
direction tensor as

N =3dev(M—-x)—(1—m)o,L (2.19)

It is important to notice that this quantity can be reformulated with respect to quantities located
within the reference configuration by using the identities from Appendix In this case,
Equation (2.16) can be written solely in terms of C, since

F/NF, = C, (3dev (2C,) — (1 —m)a,I).

To complete the set of equations needed to describe the evolution of the growth-related right
Cauchy-Green tensor, we furthermore define a particular form for the evolution of the growth
multiplier }\g. From a physically motived point of view, it seems natural that the growth response
increases with the deviation of the current stress state from homeostasis. We therefore assume
the change in accumulated growth stretch is proportional to the current value of the growth
potential. This furthermore ensures that the growth process stops as soon as homeostasis is
reached. With these assumptions in mind, we choose the well established approach proposed
in Perzyna [[1966] and Perzynal [[1971], i.e.

Ay :_1( ¢ ) (2.20)

2
n \mo,

Herein the growth multiplier is defined in terms of the growth relaxation time 7 as well as a

non-linearity parameter v.

2.3.4.3 Choice of Helmholtz free energy

Until this point, the constitutive framework presented herein has been described without
defining a particular form of the Helmholtz free energy. In general, the choice of the energy
potential depends upon the specific type of material one would want to model. For the time
being, we choose a compressible Neo-Hookean type model to describe the elastic response of
the material. Therefore, the elastic energy ). is written in terms of the Lamé constants y and
A as

A
¢€:g(trce—:%)—uaneJrZ(Jf—l—anJe)- (2.21)
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Following the argumentation in Section [2.3.2] we furthermore define the growth-related

Helmholtz free energy 1), in terms of a stiffness like material parameter x, such that

K

Yy = 39 (J2—=1-2InJ,). (2.22)
This particular choice of the growth-related energy obviously fulfills the general requirements
for the definition of a strain energy density, i.e. ,(.J;, — 0) — oo as well as ¢,(J, = 1) =0
and t,(J, — 00) — oo. With these definitions at hand the second Piola-Kirchhoff stress

tensor and the back-stress tensor can be derived as

G A (TN .
S:N(Cgl—c 1)+§<(J—g) —1>C ! (223)

X =ry (J7—1)C,!

g

Notice that the conjugated driving force I' can be easily computed, if C, and S are known (see

Section [2.3.3).

2.4 Numerical implementation

To incorporate the volumetric growth model at hand into a finite element simulation framework,
a suitable time integration technique has to be used for evolution Equation (2.16)). As shown for
example by [Weber and Anand [1990], [Simo| [1992], Reese and Govindjee| [[1998]], VIadimirov
et al.| [2008]] and discussed in further detail by |Korelc and Stupkiewicz|[2014]], the exponential
mapping algorithm is a very suitable choice for the treatment of the given evolution equation.
We will therefore briefly describe this approach in the following.

Starting with the discrete time increments At = t,,. 1 —t,,, we introduce the growth increment
AXg,

exponential integration scheme for the evolution Equation (2.16]) can be written in terms of the

= At)'\g as the discretized version of the growth multiplier. With this at hand, the

general second order tensors g and f as introduced in context of Equation (2.16), e.g.

C,,... =exp(ANg)C,, . (2.24)

gn+1

Notice, that subscript n + 1 will be dropped in the following for notational simplicity, which
means that any discrete quantity without subscript will be associated with the current time step.
Following the argumentation within Vladimirov et al. [2008] and Dettmer and Reese| [2004]

Equation (2.24) can be reformulated to ensure the symmetry of C,. Furthermore, the authors
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mentioned above show that the exponential function within this equation can be expressed in
terms of the growth-related right stretch tensor U, = |/C,. Consequently, this leads to the
discretized evolution equation given as

C,! =U, exp (AN\U,'fU 1) U

gn

-1
g (2.25)
In order to complete the set of discrete constitutive equations, the discrete growth multiplier
A\, must determined. This can be achieved by reformulating Equation (2.20) (see e.g. [Simo
and Hughes|[1998]] and lde Souza Neto et al.|[2008]]), i.e.

® = ma, (Axg)"” . (2.26)

Since both of the discrete constitutive equations are non-linear in their arguments, a local
iterative solution algorithm must be applied at integration point level to solve for both, the
internal variable U;l as well as the growth increment A),. Itis convenient for such algorithms
to write the evolution equations in terms of a set of coupled residual functions, which read in
the case of this material model

r,=—C,'+ U, exp (ANU, U, ) U, =0

g

AN, \" (2.27)
= @ — 2 —g — O

T mao, ( Az )
Due to the symmetry of U,, the tensor valued residual function r, can be transformed into
Voigt notation, which is computationally more efficient than solving the full tensorial equation.
When applying a Newton-Raphson procedure to solve Equations (2.27)), the increments of the
equations’ arguments can be found by solving a linearized system of equations, i.e.

o U r
Ore  Bre AN re, ) '
90, 0A) g n

During the solution process, these increments are recomputed for every iteration step in which
they are used to update the local iteration procedure. The partial derivatives used herein are
not computed analytically but rather calculated by means of an algorithmic differentiation
approach. For this, the software package AceGen, as described e.g. in Korelc| [2002] and
Korelc| [2009], is being used to automatically generate source code for the computation of the
tangent operators.

Since the local material response is implicitly included within the global material tangent
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operator of a finite element simulation, we furthermore need to derive this tangent in a
consistent manner. Otherwise, quadratic convergence of the global iteration scheme would
not be reached. For this, one should bear in mind that the second Piola-Kirchhoff stress is a
function of the right Cauchy-Green tensor as well as the internal variables. Within the given

framework, the material tangent operator can be expressed as

~_(os oy,
c_z(% C'ac)‘ (2.29)

.08
Uy aUg

Similar to the local tangent operator, these partial derivatives are computed using the software
package AceGen. For this, the partial derivative of the growth-related stretch tensor U, with

respect to the right Cauchy Green tensor can be determined from the following relation

-1
- or,  0F, o

Al Yr) = (oo, 2 oc | AC (2.30)
AN Ore  Ore org
9 90, 0D\ TS

Here, we reuse the fully converged residual and Jacobian from the local solution process. Then,
the desired partial derivative is given as the corresponding 6 x 6 submatrix located in the upper

left corner of the right-hand side matrix product.

2.5 Numerical examples

In the following section, numerical examples are presented to examine and discuss various
aspects of the material model introduced above. First, we show the influence of boundary
conditions on the development of the volumetric growth process using a simple block model.
For this purpose, volumetric growth in the absence of geometrically constraining boundary
conditions is evaluated as well as the impact of both, temporal constant and time dependent
constraining boundary conditions. Next, we investigate the influence of the introduced set
of material parameters, before showing structural examples of a shrinking tissue stripe and
comparing its growth-related response to an isotropic growth formulation. Finally, we show a
qualitative comparison of our model with experimental data from the literature. For the finite
element simulations, we implemented the presented material model as well as the element
formulation itself into the FEAP software package (Taylor and Govindjee [2020]) in terms of
a user-element routine. For meshing and visualization of the structural examples we have used
the open source software tools GMSH (Geuzaine and Remacle| [2009]) and Paraview (Ahrens
et al. [2003]). Furthermore, the open source parallelisation tool GNU Parallel (Tange| [2011])
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/\‘ﬁ>\uz (1‘)

Figure 2.3: Geometrical block model with uniform side length of 1 mm. Uniaxial boundary
conditions are given in gray and time dependent displacement u,(t) is denoted in
red. Evaluation points P, = (1,1,1) and P, = (1,1, 0.5) are given in blue.

1 A Kg m o4 n v
[zl (ol | el ] [l B8] [
Geom. unconstrained growth | 40 400 150 1.2 70 20 1.0

Geom. constrained growth | 40 400 250 1.2 200 100 1.0

Clamped tissue stripe | 100 800 150 2.0 250 100 1.0

Table 2.1: Material parameters for numerical examples

was used during evaluations of the examples shown below.

2.5.1 Geometrically unconstrained growth

As a first example, we use the geometrical model shown in Figure [2.3] without applying any
time dependent displacement boundary condition u,(t). Therefore, the specimen is able to
expand or contract freely throughout the whole simulation, which should result in an isotropic
growth response. We furthermore use the set of material parameters given in Table [2.1] The
growth response for a choice of m = 1.2 is visualized in Figure 2.4] Shown by the stretches
of point P; located in the upper corner of the given block geometry, it is obvious that the
specimen contracts as expected. Since no constraining boundary conditions are applied, the
overall stress within this system should always be equal to zero and therefore could never reach
a state of tensional homeostasis. It is the additional growth-related free energy, which leads
to the limitation of the otherwise infinite shrinking process. One can observe this influence

really well in Figure[2.5a, where lower values of r, lead to a more pronounced shrinking of the
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Figure 2.4: Isotropic growth behaviour resulting in a uniform contraction in all three spatial
dimensions. No constraining boundary conditions are applied (i.e. no w,(t)).
Stretches are evaluated at point P (see Figure[2.3).

specimen. It is worth noticing that x, > 0 must hold for any simulation, since neglecting the
contribution of internal pressures would lead to non physical behaviour and consequently to
an unstable simulation. It is furthermore shown in Figure that the growth rate parameter
7 has only an impact on the speed at which the volumetric growth process approaches the
desired homeostatic state but not on its magnitude. However, as shown in Figures [2.5b| and
a change in magnitude of the homeostatic state can be achieved by variation of m and o,.
As already described in Section [2.3.4.2] the material parameter m defines the location of the
growth potential’s tipping point on the hydrostatic axis. For values of m < 1 this point lies in
the compressive regime, whilst a choice of m > 1 pushes this point into the tension regime.
As a result, the specimen approaches homeostasis either by expansion or by shrinkage. This
behaviour is really well reflected within Figure 2.5b] It is furthermore important to point out
that for a choice of m = 1 the homeostatic potential introduced in Equation (2.18) becomes
a von Mises type criterion, which must not be applied due to its purely deviatoric nature.
Therefore, this particular choice of m should be avoided when using the potential introduced
above.

2.5.2 Geometrically constrained growth

For the next example, we choose a stepwise time dependent displacement u,(¢) to which

the block given in Figure [2.3]is subjected. For the first 250 time steps, the displacement is
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(a) Various choices of the material parameter 4.  (b) Various choices of the material parameter m.
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(c) Various choices of the material parameter o,.  (d) Various choices of the material parameter 7).

Figure 2.5: Growth induced stretch due to contraction of a block specimen for various sets
of material parameters. No constraining boundary conditions are applied (i.e. no
u.(t)). Stretches are evaluated at point P; (see Figure 2.3).
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Figure 2.6: Evolution of Cauchy stress o, and growth multiplier A\, during stepwise loading
of block specimen with u, (¢). Both quantities are evaluated at point P; (Figure.
Right: The stress response is always converging towards a homeostatic state. This
state is slightly different, after coming out of the compressive regime. This can be
explained by the accumulted internal pressures described by the energy v,. Left:
Growth multiplier indicating, that the specimen is either expanding or shrinking to
reach homeostasis.

held constant at u,(¢) = 0 mm before being raised to u,(¢) = 0.3 mm and held constant for
another 200 time steps. Next, we apply compression by setting u, () = —0.1 mm and holding
it constant for another 250 time steps. At last, u,(t) is reset to zero again. The material
parameters for this example are given in Table [2.1]

When applying this stepwise alternating stretch to the given block specimen, it can be seen
in Figure [2.6] that the material shrinks and expands depending on the current loading state,
respectively. During the first loading period, the accumulated Cauchy stress o, rises to a
value of approximately 300 MPa, which is due to a contraction induced by the volumetric
growth process. This effect is represented by the evolution of the growth multiplier as shown
in Figure Since the multiplier is negative, the specimen approaches homeostasis by
shrinking. Once the displacement is raised to u,(¢) = 0.3 mm, the Cauchy stress o, also rises
abruptly before decaying and approaching the same homeostatic stress state as before. This
kind of stress reduction is achieved by an expansion of the specimen, which is represented by
a positive value of the growth multiplier. The following compression of the specimen causes
a negative jump in the overall stress response. This again induces shrinkage of the specimen
in order to regain the homeostatic state of approximately 300 MPa. It is important to notice

that this homeostatic state is slightly higher than the state reached in the loading cycles before.
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This change is due to the accumulated internal pressures described by the growth-related
energy v¢,. Consequently, this results in a shift of the homeostatic surface similar to kinematic
hardening in plasticity. To what extent this effect corresponds to experimental studies is still
unclear due to the lack of available data. However, there is no question that this effect can be
adapted to any experimental data without further problems by extending the model, e.g. by
a non-linear formulation. When setting u,(¢) = 0 mm in the last loading cycle, the Cauchy
stresses overshoot this new homeostatic state slightly. This again results in an expansion of the

specimen in order to release the excessive stresses.

2.5.3 Growth of a clamped tissue stripe

In the next example we consider the volumetric growth process within a tissue stripe that is
clamped at both ends such that no stresses are induced at time ¢ = 0. Under these conditions, the
tissue stripe is expected to shrink, which induces a homeostatic stress state that is dominated
by tension. Such effects have been shown experimentally e.g. by |Ghazanfari et al.| [2015]
among others. As illustrated in Figure symmetric properties are exploited such that only
a quarter of the full specimen is used for the following simulations. The elastic and growth-
related material parameters applied in this example are chosen in such a way that the desired
shrinkage of the specimen is achieved. These parameters are given in Table[2.1] For the spatial
discretisation, a standard linear (Q1) finite element formulation is adopted with various meshes
containing 360, 408, 450, 1000 and 3000 elements (see Figure[2.8)). Since the most pronounced
stresses are expected to occur in the lower right corner of the symmetric specimen, the mesh is
refined with a focus on this particular region. When considering the reaction force £, evaluated
over time at z = 0, Figure 2.9 shows good convergence behaviour for increasing number of
elements within the mesh. Similar results can be obtained when evaluating the reaction forces
in y and z direction, respectively. Although the solution of a mesh containing 450 elements has
already reached convergence, for visualization purposes, the finest discretisation containing
3000 elements is used in the following.

To show the capabilities of the newly introduced material model, we next compare its
response to the growth behaviour of a well established model for isotropic volumetric growth.
For this, we adapted the model of [Lubarda and Hoger| [2002] such that it is capable of
reaching a prescribed homeostatic state. Details about the evolution equations for this particular
model are given in Appendix Within this formulation, we use the material parameter
M..;; = 80 MPa to describe the homeostatic stress state that shall ultimately be reached. For
the positive and negative growth velocities k™ = 0.1 and £k~ = 0.1 are chosen, respectively.

The upper and lower growth boundaries are set to ¥+ = 2.0 and ¥~ = 0.25, while the shape
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Figure 2.7: Geometric model of clamped tissue stripe with thickness of £ = 2 mm. The overall
structure is also supported in the z direction.
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(a) 360 el. (b) 408 el. (c) 450 el. (d) 1000 el. (e) 3000 el.
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(f) Close up of right corner for 450 el. (g) Close up of right corner for 3000 el.

Figure 2.8: Mesh refinements for symmetric part of clamped tissue stripe.



2.5 Numerical examples 37

100

— 360 elem.
408 elem.
z 80 - | | =450 elem.
=S Y 45 A N AR 1000 elem.
g 601 - | === 3000 elem.
g
£ 10| |
S
S
& 20| -
0 |

l l l
0 50 100 150 200 250
Time ¢ [s]

Figure 2.9: Reaction force of a clamped tissue stripe evaluated at z = 0 for various mesh sizes.
Mesh convergence can be observed nicely.

factors are given as v = 2 and 4y~ = 3. First of all it is important to notice that the given
1sotropic formulation shows severe stability problems for the example at hand. More precisely,
as soon as material parameters are chosen such that a similar homeostatic stress state shall be
reached within the specimen, the simulation becomes unstable after a finite number of time
steps and eventually breaks. When taking a closer look at the evolution of the growth process
as it is shown for three distinct time steps in Figure[2.10] it is obvious that the starting point of
the instability can be located at the clamping of the tissue stripe. Due to the initial contraction
of the overall tissue stripe, a multi-axial stress state is induced at the clamping. In this region,
the stress state soon exceeds the desired homeostatic state which yields an expansion of the
material in order to release excessive stresses. Whilst the newly derived growth model reduces
this stress state by expanding anisotropically, the isotropic formulation seems not to be able to
deal with this effect. This is due to the fact that an isotropic growth formulation can only predict
expansion or shrinkage uniformly in all three spatial dimensions. Such a uniform expansion
at the foot of the specimen results in a passive compression of the specimen’s middle part,
reducing the overall stress within this region and therefore inducing further contraction. This
again triggers an increasing expansion in the foot of the specimen. A vicious cycle is born,
which eventually leads to the hourglass like shape of the specimen as it is shown in Figure[2.10a]
Ultimately, this leads to instabilities and a failing simulation at ¢ = 93. For sure, it is possible
to reduce such unwanted behaviour by variation of the material parameters. Nevertheless,
the general problem of a non-physical expansion in the foot area could not be cured with
such an approach. This example shows clearly how restrictive and, therefore, unsuitable the

assumption of isotropic growth is, even for a relatively simple structure as the one shown in
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Figure 2.10: Comparison of an isotropic growth model with the newly introduced formulation.
The response of a clamped tissue stripe differs significantly in both, shape as well
as the displayed stress response (Cauchy stresses o).

this example. Taking a closer look at the stress response of the newly derived model, one can
observe the exceeding maximum principal Cauchy stresses o,,,, located at the clamped foot of
the specimen (see Figure [2.11)) being released due to the anisotropic expansion process. This
effect can also be observed in Figure [2.9] where the reaction forces reach a maximum at time
t = 100 and decrease afterwards to approach a converged state. Unfortunately, this effect also
leads to a pronounced distortion of the associated elements within the corners of the clamped
stripe. Figure 2.T1] shows that this artefact is even noticable for the finest mesh evaluated.
Nevertheless, it is important to emphasize that this effect so far does not have an influence
on the stability of the given simulation. Due to the incompressible nature of the material, it
is possible that such behaviour is also amplified by shear or volumetric locking effects and
would not occur in such a pronounced manner if locking would not play a role. However, the

influence of possible locking effects is out of scope for this work.

2.5.4 Comparison with experimental data

Next, we are comparing our newly derived model to experimental data for the growth response

of a clamped engineered tissue stripe. As an experimental reference, we are using the data

published just recently in [Eichinger et al| [2020], which was kindly provided to us by the
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Figure 2.11: Pronounced distortion of elements at the clamped corner due to growth-related
reduction of exceeding stresses. Maximum principal Cauchy stresses are plotted
for four different snapshots in time.

authors. In this study, the authors used a cell seeded collagen gel to create the test specimens.
For the experiment those specimens are clamped tension-free at the ends and are cultivated for
27 hours within a nutrient solution. After 17 hours, a positive or negative perturbation of the
measured reaction force in longitudinal direction is applied. The displacement achieved by this
perturbation is kept constant in the following course of the experiment. For our simulations
we used a geometric representation of the clamped tissue stripe that is similar to the example
shown in Figure[2.8|but has a width, hight and thickness of 10 mm, 60 mm and 2 mm. We again
used only the symmetric part of the specimen in order to reduce computational effort. Since
the microstructure of the collagen gel is somehow similar to polymeric materials, we decided
to exchange the elastic strain energy density 1. in order to better capture the stress stiffening
behaviour that can be observed within the experimental data. Here we used the well-known
formulation of [Arruda and Boyce| [1993]] (see Appendix [2.7.5] for details on the form of the

energy).
Figure [2.12] shows a comparison of the measured normalized reaction force in longitudinal

direction versus the results gained from our simulation. A perturbation of +10% of the

homeostatic reaction force at time ¢ = 17h is shown in Figures [2.12a] and [2.12b], respectively.

Here it is clearly visible that the simulation is close to the experimental results both before and
after perturbation and is mostly within the error tolerance. In particular, it can be observed
in [2.124) that both the experiment and the simulation strive towards a new, somewhat higher
homeostatic state after the perturbation. In contrast, the homeostatic state in Figure 2.12b|

settles back in approximately the same range as before, which also fits the behaviour observed

in the experiment. Figures|2.12c|and[2.12d|show the results for a perturbation of +20%. Here,

with the material data we use, the results of the experiment are also very well matched up to

the point of perturbation. Only after that the simulation results do deviate quantitatively from
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the measured data. Here it is particularly noticeable that a higher gradient is achieved in the
result curve of the experiment directly after the perturbation. This leads to a faster convergence
towards the new homeostatic state. This deviation could possibly be related to the fact that
we assume a constant growth rate parameter 7 in our model. However, it cannot be ruled out
that this parameter itself should be dependent on other constitutive variables such as e.g. the
driving force (M — ). Overall, however, it can be stated that the simulation results represent

the experimental data very well in a qualitative sense.

2.6 Conclusion and outlook

In this paper, we developed a novel model for the description of stress driven volumetric growth.
This approach is based on the well established multiplicative split of the deformation gradient
into an elastic and a growth related part. Furthermore, we made the assumption that the given
material adapts to its surroundings such that a certain homeostatic stress state is induced within
the material. For this homeostatic state, we assume that it can be described in terms of a scalar
valued stress like quantity, which led us to the definition of a growth potential. With this
idea in hand, we defined an evolution law for the growth related right Cauchy-Green tensor
by means of a time dependent associative rule. This approach is similar but not identical to
those often used in the field of finite visco-plasticity. To overcome the issue of infinite growth
response, we made use of a similar idea as |Braeu et al.| [2019] and introduced an additional
energy contribution that subsequently counteracts the growth process. In contrast to the latter
approach, we use the inelastic part of the volume change, which leads us to a formulation
similar to that of kinematic hardening. With these basic modelling assumptions, we were
able to show that this approach is capable of simulating both, isotropic and anisotropic growth
behaviour within one singular formulation. The distinction between isotropic and anisotropic
response is merely a question of the applied boundary conditions and not a-priori prescribed
by the structure of the growth tensor. The advantages of this approach have been shown
by comparing it to a standard formulation of isotropic growth. In the authors’ opinion, the
results of the evaluations shown within this publication are very promising. We furthermore
were able to show that our simulations are able to reproduce experimental results published
in Eichinger et al. [2020]] to a reasonable extend. Since the overall framework of the model is
quiet general, it seems possible to easily adapt the growth behaviour to fit various experiments.
For this, the choice of alternative descriptions for the growth potential as well as the evolution
equation for the growth multiplier could be investigated. To this point, our formulation makes

use of a purely isotropic elastic ground model, i.e. Neo-Hooke. Since biological tissue by
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Figure 2.12: Comparison of simulation results with experimental data of an initially tension-
free clamped tissue stripe that is perturbated at time ¢ = 17h with +10% and
+20% of the homeostatic reaction force measured at this point. Experimental
data is plotted as the mean value of all experiments with error bars denoting the
SEM (taken with permission from Eichinger et al.| [2020]).
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its very own nature is composed of various components, such as e.g. collagen and elastin,
the assumption of material isotropy is not ideal. Therefore, we suggest that the given elastic
ground model could be extended to also capture the anisotropic nature of the underlying
material response properly. This could be achieved by introducing an additional dependency
within the Helmholtz free energy that is defined by means of structural tensors describing e.g.
the direction of collagen fibres. Furthermore, the investigation of locking effects triggered by
the nearly incompressible material behaviour of biological tissues might also be of interest.
Since standard low order finite element formulations are particularly vulnerable in this area,
the finite element implementation should therefore be considered more closely. Investigating
the influence of reduced integration finite elements seems to be of high benefit. Especially the
element formulations Q1SP (see [Reese [2005]]) or Q1STx (see |[Schwarze and Reese| [2011]],
Barfusz et al.| [2021]) could improve the computation in terms of computational accuracy as

well as computational speed.

2.7 Appendix

2.7.1 Derivation of stresses

To determine the second Piola-Kirchhoff stress tensor, we start with the isothermal Clausius-

Duhem inequality as given in Equation (2.7)), i.e.

L. adje s aﬂ)g .
. =C — : : > 0.
$::C (ace C€+aBg Bg>+30_o

When inserting the identities given in Equations (2.8) and (2.9) into the equation above, one

can find

e
0C.

Wy

O . p-Tep-t
F,7CF,' + OB,

oC,

S: %C — : (LIC. 4 C.Ly) — : (LyBy + B,LT) + 8, > 0

By reformulating the second term in this equation such that
1.

a% T A~p—1 -1 a¢e -T
F'CF " =2F F:.-C
0C, g g 9 0C, 7 2

the Clausius-Duhem inequality becomes

_ 877/15 — 1 . awe 8¢
(S — 2FglaCngT) 153G+ 9C, (L;C. + C.L,) — a_ng : (LyBy 4+ ByL)) + S, > 0.
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Following the standard argumentation of|(Coleman and Noll|[1963]] and assuming that the stress
response shall be independent of the rate of C, we find the second Piola-Kirchhoft stress tensor

to be defined as

oY
=oF ' °F
S gac

2.7.2 Invariants of Mandel stress tensor and Kirchhoff stress
tensor

The Kirchhoff stress tensor is defined as

+ = FSF”.

Making use of the identity C.F, = F;TC and using a push forward operation on the second

Piola-KirchhofT stress tensor S, the definition of the Mandel stress tensor can be rewritten as

M = C.F,SF]
_ T T
=F,"CSF].

With this at hand, it is easy to show that the main invariants .J, with a € 1,2, 3 are identical
for both, the Mandel and the Kirchhoff stress tensor, i.€.

tr

(M*)
tr (F,7CSF?)")
tr ((CS)")
(
(7

tr ((FSF")")
‘).

tr

2.7.3 Isotropic growth model for comparison

The isotropic growth model used for comparison with the anisotropic growth model developed
herein is based on the formulation of [Lubarda and Hoger| [2002]. It uses the multiplicative
split of the deformation gradient, i.e.

F=F.F

g»
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where the growth related deformation gradient is defined as

F, = L

g

with ¢ describing the growth induced stretch. The evolution equation of this particular model

is defined in terms of the Mandel stress tensor IM as well as a set of material parameters, i.e.
0 = k(0)p(M).
Here the driving force ¢ is defined as
¢ =tr M — M,

where M.,.;; describes the desired homeostatic stress state that should be reached by the

material. Furthermore, the growth velocity is described by

+

+(ot—s\"
vy AR ()i

= (f;g:)7 if <0,

with kT, k£~ denote the expansion and contraction speed, respectively. To restrict the growth
process, the parameters ¥ and ¥~ are introduced as upper and lower thresholds of the growth
induced stretch. Finally, two shape factors for the evolution are described by v+ and ™.
For further information on this particular model, the reader is kindly referred to the original

publication.

2.7.4 Transformation of invariants from intermediate to reference
configuration

Reformulating the definition of the referential driving force, i.e.

M- x =F,3F],
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directly yields the new definition for the volumetric invariant, i.e.
I =tr(M—x)
= tr (F,XF))
tr (XC,).

Making use of this relation, the deviatoric part of the driving force is given by
dev (M — x) = dev (F,SF))
=F,XF] — %tr (F,=F])1
=F,SC,F,' — %tr (2C,)1
=F, (Ecg - %tr (=£C,) I) F !
=F,dev (XC,) Fg_l.

Utilizing the properties of the trace operator, the deviatoric invariant can be rewritten as

1
Jo = 5 tr (dev (ch)z) :

2.7.5 Arruda-Boyce model

By introducing the volumetric deviatoric split of the elastic right Cauchy Green tensor, i.e.
C. = J& C., one can describe the elastic energy of the well known hyperelastic material model
of |Arruda and Boyce|[[1993] as

v =U(J,)+W(C,.)

_ Z [Z—1—2Wm(L)] +pnY C [y —3"].
k=1

Here, x, i and N are material parameters and Cj = [l Lo AL 19 519 ] are coeflicients
resulting from an approximation of the inverse Langevin function. Furthermore, I, = tr (Ce)
describes the first invariant of the deviatoric part of C.. For further information on this model,

the reader is kindly referred to the comprehensive overview of Steinmann et al.| [2012]
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3.1 Abstract

Hyperelastic adhesive joints are used successfully in many areas of industry. Besides all their
inherent advantages, materials used for the construction of such bonds show a vast variety of
non-linear effects in their response to mechanical loading, which poses a challenge in modelling
and predicting their material response. Recent experiments have shown a strong temporal
response when it comes to damage and failure within these materials. This contribution aims
to propose a simple but yet flexible formulation to predict time-dependent damage effects
within polymeric adhesives. Besides the main aspects of the thermodynamically consistent

development, we also show numerical examples to demonstrate the capabilities of the model.

3.2 Introduction

Adhesives are widely used in the industrial context. Especially in the building industry, their
use in the construction of glass fagade systems is becoming increasingly important Klosowski
and Wolf [2016]. To ensure safe application, the material behaviour under real load conditions
must be predicted with high accuracy. Computational models have proven their worth for this
purpose. In addition to the highly non-linear elastic material behaviour, such models must also
be able to represent a wide range of inelastic, temperature-dependent and rate-dependent effects.
Just recently Seewald et al. [2021]] and Schaaf et al.| [2020] found that such adhesives do show
a pronounced time-dependent behaviour when it comes to damage and failure. These effects
can not be described by a classical rate-independent viscoelastic damage model. Modelling
time-dependent inelastic behaviour of solids is nothing new. In the field of damage modelling,
however, approaches are often used which assume small deformations. The so called creep
damage model developed by Kachanov| [1958] and later modified by Rabotnov| [[1969] lays
the ground for a variety of models used e.g. in the modelling of damage in rock or asphalt
(see e.g. Geers et al. [1994], [Wang et al.| [2013] or Zeng et al.|[2014]). Further approaches
using viscous regularization as described in the work of [Perzyna) [1963]] are e.g. Simo and Ju
[1987], Cervera et al.| [1996] or Ren and Lif [2013]]. The assumption of small deformations
can no longer be assumed to be true for hyperelastic adhesives. Within this contribution
we therefore follow an approach similar to viscous regularization but extend it to describe
material responses at finite strains. The model proposed is simple yet powerful for modelling
time-dependent isotropic damage. To study the effects of this modelling approach, we solely
focus on this single type of temporal inelastic effect. For this, we derive a thermodynamically

consistent material formulation based on the gradient extended micromorphic framework of
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Brepols et al.|[2020] and extend it with a Perzyna-type ansatz |Perzynal[1963,1966] to capture
the temporal effects. We also show the algorithmic implementation strategy as well as selected

numerical examples to evaluate the capabilities of the given model.

3.3 Continuum mechanical modelling

As frequently done within the modelling of hyperelastic polymeric materials, we start with
the well-established multiplicative split of the deformation gradient F' into volumetric and

isochoric parts (see e.g. [Lubliner| [1985]]; [Simo and Taylor| [1991])), i.e.
F = det F5IF* = J5F*. 3.1)

With this at hand, the isochoric right Cauchy-Green tensor can be defined as C* = J~ SFTF. To
describe the damage behaviour within hyperelastic polymeric adhesives an isotropic evolution
of damage within the material is assumed. Therefore, a scalar damage variable D € [0, 1] can
be defined. The state of this variable determines the amount of accumulated damage. In this
context, D = 0 describes the undamaged, virgin material whereas ) = 1 means total failure
of the material. Since the focus of this work is the investigation of time-dependent damage
phenomena within polymeric adhesives, we assume the underlying basic material response to
be hyperelastic. It is obvious that this is a strong assumption since polymers tend to show a
pronounced time-dependent material response even within the purely elastic loading regime.
For the sake of investigating the effects of time-dependent damage, it seems beneficial to isolate
this modelling approach from further temporal dependencies and focus merely on the effects
shown by the damage model itself. Therefore, the Helmholtz free energy can be defined by
means of a damage degradation function f;(D) = (1 — D)? such that

¢ = fd(D)¢e(J7 C*) + ¢d(£d) + ¢J(D> D? VD) (32)

Here, 1. is the elastically stored strain energy which is defined in terms of the symmetric
right Cauchy-Green tensor C = FTF with F being the deformation gradient. To describe
damage hardening, we furthermore introduce the hardening variable £, as well as the associated
hardening energy /4. It is well known that classical damage models tend to show pathological
mesh dependencies accompanied by strong localization effects Rizzi and Loret| [1997]. To
avoid such effects, we make use of a gradient-extended ansatz as proposed by Brepols et al.

[2020]]. For this, the global damage variable D is introduced together with its associated free
energy ;.
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3.3.1 Thermodynamic considerations

In order to ensure physical correctness of the developed material model, the second law of
thermodynamics must be fulfilled. Taking the given micromorphic extension into account it

can be written in terms of the isothermal Clausius-Duhem inequality as

]_. . = =
S:-C—4+aD+b-VD >0. (3.3)
2 N L

micromorphic ext.

Here, S denotes the second Piola-Kirchhoff stress tensor whereas a and b describe the gener-
alized stresses related to the non-local variable D and its gradient, respectively. For a more
detailed elaboration the interested reader is kindly referred to | Forest [2009]. Inserting Equation
into Equation and applying the standard Coleman-Noll procedure Coleman and Noll
[1963] yields the thermodynamically consistent definition of the second Piola-Kirchhoff stress

tensor
S=2fy g% (3.4)
together with the generalized stresses a = wd andb = (W 4. Defining the thermodynamically
conjugated driving forces for the damage Varlable D as well as the damage hardening variable
gasY = (af 49 + de) and ¢ = Wd leads to the reduced Clausius-Duhem inequality
given by
YD —qaa 2 0. (3.5)

In order to ensure thermodynamical consistency, evolution equations for D and &; must be

found that fulfil this reduced inequality.

3.3.2 Evolution equations

In order to describe the onset of damage evolution within the material, we follow the standard

approach of defining a scalar damage function as
g =Y — (Yo + qa), (3.6)

which includes the damage threshold parameter Y. Next, we introduce the so-called damage
multiplier Ay and postulate an associative evolution law for both, the damage variable D as
well as the hardening variable &g, i.e.

0d; 0P,

Gy =M and Ci = —M—" = . (3.7)

D= \——r 3a
d
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This particular choice of the evolution equations has the effect that the evolution of D and
&q are equivalent. It is important to notice that this is a rather simple assumption and by no
means the only possible definition of associative evolution laws for D or &;. For classical
rate-independent isotropic damage, the definition of Equations (3.6) and is sufficient and
could be solved using Karush-Kuhn-Tucker conditions.

To introduce a temporal dependency into the damage model at hand, we adapt an ansatz
made by e.g. |Perzynal[[1963},|1966] or Peric [[1993]] where we explicitly define an extra evolution

equation for the damage multiplier A4 such that

1
. D if B, >0
Ay = M 4= (3.8)
0 if @, <0

Here, 1y describes a damage velocity and ¢, is the damage rate sensitivity.

3.3.3 Particular choice of the Helmhotz free energies

Depending on the material at hand, various hyperelastic ground models are applicable. For
hyperelastic polymers which are showing pronounced strain-stiffening effects models such as
Arruda and Boyce [1993] or |(Ogden| [1972]] seem to be a good choice. Since the focus of
this study is merely the time-dependent damage behaviour and for the sake of simplicity, we
make use of a classical Neo-Hookean type energy to describe the underlying elastic material

response, i.e.
(1,07 = S (rC = 8) + 7 ()P = 1—2InJ). (3.9)

To describe the energy density associated with damage hardening, a combination of linear and

nonlinear, Voce-type hardening |Voce [1948] is used, i.e.

Va(&) = % k& 4r (gd + é [exp(—s&q) — 1]) . (3.10)

[\ S/
-~

Voce-type hardening

lin. hardening

Here, r, s and k are material parameters controlling the damage hardening behaviour. Regard-
ing the energy density of the micromorphic gradient extension, we define v; in accordance
with [Forest [2009]] as

_ _ H _ A _
4a(D.D,VD) = = (D - D) + 5VD-VD, (3.11)
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where the parameters H and A describe the coupling between local and non-local damage
fields as well as the influence of the gradient of D. These choices of the individual parts
of the Helmholtz free energy yield for the thermodynamically conjugated driving forces the

following expressions:

Y =—(2(1 - D)¢.+ H(D — D)) and qa =k &g+ 1 — exp(—s&q) (3.12)

3.4 Algorithmic implementation

The material formulation described above has been implemented into the multipurpose finite
element program FEAP. For the solution of evolution Equation together with Equation
(3-8) we apply an implicit Euler integration scheme with time step size At = t,,41 — t,, such
that )

r=Dps— Dy — g ®AAL = 0. (3.13)

This non-linear residual equation can be solved using standard Newton-Raphson iteration,

for which the local tangent operator g—g must be computed. Within this contribution, we

used the automatic differentiation framework AceGen (see Korelc|[[2002,[2009])) to obtain this

derivative. With this at hand the current value of the local damage variable D can be iteratively
or —1
oD

The local material response is implicitly included within the global material tangent operator

determined for the kth iteration step via Dy, = Dy, — Tk.
of the finite element simulation. We therefore need to derive this tangent in a consistent manner
in order to achieve quadratic convergence of the global iteration scheme. Since the second
Piola-Kirchhoff stress tensor is a function of the right Cauchy-Green tensor as well as the

internal variables, the tangent operator can be expressed as

S oD
— 2 _— L . .14
t (ac o ac) 3.14)

08
, 0D

For the given choices of the Helmholtz free energies from the last section, the partial derivative
of the second Piola-Kirchhoff stress tensor with respect to the right Cauchy-Green tensor can
be computed easily using AceGen. For the partial derivative of the local damage variable D
with respect to the right Cauchy-Green tensor C we make use of the relation

oD or ' or

where we use the fully converged residual and jacobian from the local solution process.
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3.5 Numerical examples

In the following, we demonstrate the behaviour of the model described above showing some
numerical studies conducted at integration point level. For this, a uniaxial loading state is
applied whilst the damage associated material parameters are varied. For the elastic parameters
we choose the shear modulus to be ;1 = 6.0 MPa whilst the bulk modulus is set to £ = 10000
which enforces nearly incompressible material behaviour. In order to avoid locking effects, we
adapted a reduced integration finite element formulation with adaptive hourglass stabilization
as described in Barfusz et al.| [2021]].

3.5.1 Linear displacement simulation

}
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(a) Evolution of damage variable D. (b) Evolution of stress in loading direction.

Figure 3.1: Results of linear displacement applied uniaxially to a single element. Showing
the influence of the damage relaxation velocity 1, with reference 7,9 = 1072,
Reaction force normalized wrt. F},,, = 20.25 N.

The first example given in Figure[3.1]shows the results from a uniaxially loaded single element
simulation over time. Here, a displacement u(t) is applied at a constant rate ‘31—1;. Figures
and [3.Tb| clearly show the pronounced time dependency of the damage response with respect
to time. For small values of the relaxation velocity 7, the model shows nearly no damage at

all resulting in a response similar to classical Neo-Hookean elasticity. In case of high values
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of 14 we observe results similar to what is expected from a rate-independent model. Values of

74 in between these two edge case are able to interpolate the time-dependency nicely.

3.5.2 Relaxation simulation
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(a) Influence of damage relaxation velocity 7. (b) Influence of damage threshold Y.

Figure 3.2: Results of relaxation experiment applied uniaxially to a single element. Showing
the influence of material parameters 7 and Y with reference 14 = 1073, Reaction
force normalized wrt. F},,,, = 20.25 N.

The next example considers a classical relaxation simulation where a constant displacement
u(t) is applied at time ¢ = 1s and held constant for the remainder of the simulation. Figure
[3.2] shows the influence of both, the relaxation velocity 7, as well as the damage threshold Yj,.
As already discussed in the previous example, the relaxation velocity as shown in Figure [3.24]
is able to produces smooth interpolations between the pure elastic response for small values
of 14 and the nearly rate-independent damage response for large values. Figure [3.2b| shows
the influence of Y on the damage progression. Here it is obvious that smaller values lead to
a more pronounced damage behaviour whereas larger values result in a more subtle damage
progression and consequently in a higher residual reaction force. This behaviour is as expected,
since the damage related driving force Y decreases with increasing damage progression and

consequently falls below Y faster for a higher threshold.
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3.5.3 Creep simulation
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(a) Influence of damage relaxation velocity 7. (b) Influence of damage threshold Yj.

Figure 3.3: Results of creep experiment applied uniaxially to a single element. Showing the
influence of material parameters 7, and Y, with reference 7,0 = 1073. Displace-
ment normalized wrt. ug = 0.125 mm.

In the last example, we take a closer look at a classical creep simulation setup. For this, a
constant force F), is applied uniaxially at time ¢ = 1s and held constant over the rest of the
simulation. Figure [3.3]shows the influence of the damage relaxation time 7, as well as of the
damage threshold Y. Both evaluations shown in Figures and [3.3b| show the expected
damage behaviour. For small relaxation velocities 74, the quasi-elastic response is achieved,
whereas for large 7, an exponential growth in the displacement can be measured. This effect
is even more pronounced when looking at the influence of the damage threshold Y,. Since
this measure describes the amount of energy that must be present in order to trigger damage

effects, lower values of Y| lead to a faster and more pronounced damage progression.

3.6 Conclusion and outlook

In this work, we have presented a simple yet flexible approach to modelling rate-dependent
isotropic damage at finite deformation. To account for the temporal dependence of the material,
we used a Perzyna-type approach to describe the evolution equations of damage. With this

at hand, we were able to briefly demonstrate the reasonability of the material response for
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three different use-cases. Besides uniaxial linear deformation, also relaxation and creep
simulations were shown. From a qualitative point of view, these studies gave reasonable
results. Nevertheless, the model must still be validated using experimental data. Unfortunately,
time-dependent damage is usually not observed as an isolated effect in real world materials
but rather coupled with other inelastic effects, such as viscoelasticity in polymeric materials.
Therefore, an extension of the given model to capture also viscoelasticity must be done before
proceeding with the experimental validation of the model. Since polymers are known for
their strongly temperature-dependent material behaviour, an extension of the model into a

thermomechanically coupled formulation seems reasonable.
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4.1 Abstract

While the strong rate-dependent effects of polymeric materials in the elastic regime are well
studied, the time-dependent effects that arise in the inelastic damage regime are still difficult
to model and are therefore the subject of investigation. In this work, we propose a simple but
flexible formulation for the description of rate-dependent damage combined with viscoelasticity
at finite strains. This model is based on a finite viscoelastic material formulation combined with
a Perzyna-type approach to describe the damage evolution equation. With this formulation we
are able to describe both damage due to creep and relaxation of the polymer matrix in both a
qualitative and quantitative manner. Besides the main aspects of thermodynamic consistency,
we describe the numerical implementation into finite elements and present numerical examples
to demonstrate the capabilities of the proposed model. At last, we compare the model with
experimental data and show the good predictive capabilities of this newly developed material

model.

4.2 Introduction

Highly deformable silicone-based polymeric adhesives play an important role in industrial
applications such as building construction and the automotive industry. One particular example
is their use in the construction of structural glazing facades. Here, the glass facade component
is bonded directly to the load-bearing substructure using adhesives (see e.g. Hagl [2002]).
To ensure the stability of such constructions, the mechanical behaviour of these bonded joints
under load must be accurately predicted. Sophisticated computational models of material
response are required to make such predictions. Within such models a vast variety of elastic
and inelastic effects must be considered. In addition to their highly non-linear elastic behaviour,
polymers typically exhibit strong rate dependencies. Viscoelasticity is classically considered
to be the dominant rate-dependent effect in polymeric materials. Its modelling has long been a
major research focus of the computational mechanics community. This has resulted in a large
number of different models for the viscoelastic response of materials under finite deformation.
A comprehensive list of the majority of publications in this field is not possible within the
scope of this paper due to the sheer volume of publications. In the following, we will therefore
limit ourselves to a brief overview of what we consider to be the most influential works at
present. In general, these modelling approaches can be roughly divided into two classes. On
the one hand, there is work by e.g. |Simo) [1987]; [Holzapfel and Simo|[1996]; Bonet| [2001]]

which focuses on finite viscoelasticity considering a linear relation between stress and strain
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rate. While these works only allow for small deviations from thermodynamic equilibrium, the
works of e.g. Reese and Govindjee|[[1998]]; Bergstrom [[1998]; [Haupt et al. [2000] also include
the intrinsic non-linearity of the viscoelastic rates. These approaches leads to a generalised
form of the description of viscoelastic behaviour. It has been shown, that such approaches can
also be easily reduced to the linear theory, if needed. More recent modelling approaches and
applications in this regard can be found e.g. inFancello et al. [2006]; Kumar and Lopez-Pamies
[2016]; Wang and Chester| [2018]] and Rambausek et al.| [2022], among others.

In addition to their visco-elastic behaviour, polymeric adhesives also clearly show a strong
rate dependence of the damage process itself. This is particularly evident in the high strain
regime under finite deformation. We have been able to demonstrate this effect in experimental
studies for the case of damage occuring under creep (creep damage) as well as during relaxation.
Some of the results from these investigations will be presented within this paper. The main focus
of this publication, however, is on the development of a material model that is able to account
for both, viscoelasticity and rate-dependent damage effects. Various approaches for describing
rate-dependent damage behaviour already exist in the literature. On the one hand side, there are
micromechanically motivated models which are usually based on chain statistics and scission
kinematics of the polymeric network. Examples for such works in the case of isotropic damage
are Shaw et al.|[2005]]; Wineman and Shaw| [2007]; Wineman| [2009]; Vernerey et al.| [2018];
Guo and Zairi| [2021]]. Based on some of these ideas, |[Lavoie et al. [2016] extended the idea
of scission kinematics to a general damage model that is also able to cover anisotropic damage
behaviour. On the other side, there are models based on the phenomenological observations
made in experiments. This category contains modelling approaches made either in the field
of continuum damage or phase field modelling. Miehe and Schinzel| [2014] and Miehe et al.
[2015]], for example, introduced a viscous damage equation covered by "over force" to stabilize
their numerical algorithms. [Loew et al.|[2019] later took this idea and extended it to model
fully rate-dependent damage and failure of polymeric materials. When cosidering classical
isotropic continuum damage modelling, rate-independent models such as the one by |Brepols
et al.| [2020] are usually not capable of properly covering effects such as creep damage, for
example. This is due to the fact that they assume an instantaneous accumulation of damage
once a certain damage threshold is reached and the underlying damage criterion is violated. If
no further loading is applied, no additional damage can be accumulated within the material. In
contrast to this, a model that could capture the rate-dependent nature of damage taking place
in polymeric materials must be able to describe a contiunous accumulation of damage over
time. When dealing with problems associated with structures subjected to small deformations,

a variety of rate-dependent damage models have been developed for various applications and
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materials. Some examples of such models are Murakami and Ohno| [[1981]]; Lemaitre| [[19854];
Wang et al. [2013]]; Pandey et al. [2019]; Pereira et al.| [2017]; Shlyannikov and Tumanov
[2019]; Nahrmann and Matzenmiller| [2021]]; Kou et al.| [2022] among others. In case of
materials and structures subjected to finite deformation, such as the glass facade components
mentioned above, the selection of relevant scientific literature is relatively sparse. |Lion|[1996]
builds on the ideas from small strain theory, as described e.g. in|S1mo|[[1987]], and extends it to
finite deformation. While this model aims to describe stress softening and the Mullins effect,
the models of Miehe [2000]; |Lin and Schomburg|[2003]]; Aboudi| [2011]], use the same idea to
more generally describe rate-dependent damage processes arising in polymeric materials. All
of these models are based on an explicitly defined evolution equation considering the rate of
a strain like quantity as a driving force for the damage process. Another approach published
just recently in|Khaleghi et al.| [[2022]] uses a damage evolution law based on Lemaitre| [[19854]
and extends it to the finite strain regime.

Within this work we propose a simple yet flexible model for the description of rate-dependent
non-local damage combined with viscoelasticy at finite deformations. Our model is based on
the gradient-extended but rate-dependent micromorphic damage formulation for large defor-
mations developed by Brepols et al.|[2020]. For the viscoelastic material formulation we adapt
the well-known model of Reese and Govindjee| [1998]] and formulate it in a co-rotated inter-
mediate configuration as proposed recently by Holthusen et al.|[2023]]. In order to describe the
rate-dependency of the damage evolution, we use the approach described in [Lamm, Pfeifer,
Holthusen, Brepols and Reese| [2023]] and adapt a Perzyna-type ansatz (see Perzynal [1966),
19°71]]) for the corresponding evolution law. Similar approaches have already successfully been
used when modelling rate-dependent inelastic phenomena of various origin (see e.g. [Lamm
et al.| [2021] 2022]]; Holthusen et al.|[2023]] and references therein).

The overall work is structured as follows. In Section[4.3] we cover the theoretical modelling
ideas behind the proposed model before describing its numerical implementation within Section

4.4l Numerical examples and validation using experimental data are given in Section[4.3]

4.3 Modelling of viscoelastic rate-dependent damage

4.3.1 Gradient extended damage formulation

For the sake of simplicity, we assume damage to occur isotropically, i.e. the material at hand
is weakened equally with respect to all spacial dimensions. In order to model this kind of

damage behaviour, we introduce a scalar damage variable D € [0, 1], which describes the
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amount of accumulated damage. In this context, D = 0 refers to a virgin state of the material
whereas D = 1 means total failure. Such an approach is called local damage model. 1t is well-
known from the literature that local models show non-physical localization effects, resulting
in pathological mesh dependencies (see e.g. Bazant et al.|[[1984],|de Borst et al.|[[1993]], R1zz1
and Loret [[1997]]). To overcome these major problems, we use the gradient extended damage
formulation of |Brepols et al.|[2020] which is based on the micromorphic framework of |[Forest
[2009]. Here, an addition global field variable D is introduced as the so-called global damage
variable. Due to this additional field, the classical balance of linear momentum has to be

solved together with the micromorphic balance relation
Div (bo, — bg,) — ag, + ap, =0 4.1

in a coupled sense. Here, by, by, are the internal forces related to the global damage variable
as well as its gradient. Furthermore, ay, and ao_ describe generalized body forces resulting
from the micromorphic extension. For further details on the gradient extended approach, the
interested reader is kindly referred to |Brepols et al. [2017a, [2020].

Since polymer materials usually behave incompressibly, the use of a standard finite element
formulation with linear shape functions can lead to spurious locking effects, resulting in an non-
physical material response. To avoid this, we use a finite element formulation with reduced
integration and hourglass stabilisation. Its derivations for gradient-extended micromorphic
damage modelling can be found in Barfusz et al.|/[2021]]. In addition to the avoidance of locking
effects, this formulation is characterised in particular by its high computational efficiency,
since the evaluation of the material routine only has to take place at a single Gaussian point
per element. Other well established methods to deal with locking effects can be found e.g. in

Reese [2005]], Schwarze and Reese|[[2011]] and references therein.

4.3.2 Continuum mechanical modelling

In order to describe the viscoelastic properties of the given material, we need to define the
viscous part of the deformation of a given continuum body. We therefore start with the well
established multiplicative decomposition of the deformation gradient F' into an elastic and
viscous part, i.e.

F=F.F, (4.2)

This particular choice is by no means the only possible option but is well established in

the modelling of inelastic phenomena at finite strains (see e.g. |Sidoroff [1974]). Possible
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variations of this multiplicative split are investigated in more detail in Bahreman et al.| [2022].
Furthermore, we define the Green-Lagrange strain tensor E = % (C — 1) together with the

right Cauchy-Green tensor C := FTF as well as its viscous and elastic counterparts as

C,:=F’F,

(4.3)
C.:=F!F,=F,”CF,".

Following the argumentation of Holthusen et al.| [2023]], we utilize the polar decomposition of
the viscous deformation gradient F, = R, U, to define the co-rotated elastic right Cauchy-

Green tensor as
C.=R;'C.R,=U;'CU;". (4.4)

In this context U, is the viscous stretch tensor and R, describes a proper orthogonal non-unique
viscous rotational tensor. With the definition of the co-rotated velocity gradient L, = UvU; L

the associated rate of the co-rotated elastic right Cauchy Green tensor can be derived as shown

in Appendix ie.

;o d
C.=— (U,'cu;?
dt ( ‘ )N o (4.5)
—UlCUl - <LZCe + CeLv) .

Nd

Mo

Figure 4.1: Rheological model motivating the proposed viscoelastic model including rate-
dependent damage. Damage is denoted by the element including the character D.
Viscous relaxation and damage velocities are denoted by 7, and 7,4, respectively.
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4.3.2.1 General structure of the Helmholtz free energy

Within this contribution, we define the Helmholtz free energy as an energy density per unit

reference volume and assume it to be additively split into

U= fulD) (¥ea(C) + ves(C.) ) +4aléa) + ¥a( D, D, VD). (4.6)

N J/
-

o

Here, the degradation function f;(D) = (1 — D)? describes how the effective strain energy
g 1s decreased due to damage of the material. Motivated by the rheological model shown
in Figure we follow the ansatz of Reese and Govindjee [1998] and split the effective
strain energy density of the undamaged viscoelastic material additively into an equilibrium
and a non-equilibrium part, respectively. Within this approach, the equilibrium energy 1),
describes the time-independent part of the elastic energy, whereas the non-equilibrium part
neq 18 related to the viscous response of the material. For a more flexible damage formulation,
14 1s introduced as a damage hardening energy, which acts similar to isotropic hardening in
the field of plasticity (see e.g. Chow and Wang| [[1987]; Chow and Lu/ [1989] among others).
In order to make use of the micromorphic damage extension, an additional penalty energy

contribution 1 ; is required to couple the local and global damage fields with each other.

4.3.2.2 Thermodynamic considerations

In order to ensure that the constitutive relations of the model lead to physically reasonable
results, we need to ensure that they do not violate the second law of thermodynamics which can
be written in terms of the micromorphically extended isothermal Clausius-Duhem inequality,
i.e.

s:%C—¢+goiB+b0i-v1§zo. 4.7)

micromorphic extension

Here, S denotes the second Piola-Kirchhoff stress tensor. The latter terms in this equation
result from the micromorphic extension of the model (see |[Forest [2009] for further details).
By inserting the Helmholtz free energy from Equation (4.6) into the inequality and applying
the standard Coleman-Noll procedure (see Coleman and Noll [1963]]), the thermodynamically
consistent definition of the second Piola-Kirchhoff stress tensor is given by

a?/feq + U;l a@{n@q U;l) (4.8)

0C oC,

S=2n(
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alongside with the generalized micromorphic stresses ay, = % and by, = aavi%' We further-
more assume that both, 1., as well as v,,., are isotropic functions of their arguments. In this
way their derivatives 8;5“1 and W""q become symmetric and commute with either C or C.,
respectively. Consequently, also the co-rotated Mandel stress tensor X = 2f,C, ag; g‘l is sym-
metric. If we exploit the properties of the double contracting product, we can write the reduced
form of the Clausius-Duhem Inequality in terms of the symmetric part D, = sym L, of

the co-rotated viscous velocity gradient such that
YD — g4+ 3 : D, > 0. (4.9)

The thermodynamically conjugate driving forces for damage and damage hardening are given

in this equation by

._ dfa Ohg _ Ot
_— < Yo + aD> and gai= gt (4.10)

Further details of the derivation can be found in Appendix

4.3.2.3 Evolution equations

In order to fulfill the reduced inequality, we must formulate thermodynamically consistent
evolution laws for the damage related quantities D and Sd as well as the symmetric part of
the co-rotated viscous velocity gradient D,. To stay consistent with the thermodynamical
considerations above, these laws must be formulated in terms of their corresponding conjugate
driving forces Y, g4 and >, respectively. Following the considerations of e.g. Simo and Miehe
[1992] or Reese and Govindjee [1998], we postulate the existence of a viscoelastic potential

that is written in terms of the viscous bulk modulus «, as well as the viscous shear modulus

oy 1.€.

B,(S) = 4}1% r (dev (20>2> n 181/% tr (20>2. @.11)
Here, tr(e) is the trace operator while dev(e) = (o) — 3 tr(e) is the deviatoric projection
operator. We choose the potential to be a function of the co-rotated effective Mandel stress
tensor Xg = f ! 3. rather than the original Mandel stress tensor. This concept of using effective
stresses is already well established in the field of plasticity modelling (see e.g. [Lemaitre
[1971]]; S1mo and Ju|[1987]) as well as in the field of viscoelasticity (see e.g. /Abdel-Tawab and
Weitsman| [2000]). We adapt this idea to ensure that the viscoelastic response of the material

is not reduced due to the evolution of damage. From the potential defined above we can easily
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define an associative evolution law for the symmetric part of the co-rotated viscous velocity
gradient by means of a relaxation velocity 7, that reads
N 0P, (X)

Dv =M= 4.12

n 5 (4.12)

By using the identity CU = ZUUf)UUU (see Appendix for the detailed derivation), we

can reformulate Equation (4.12)) and use an evolution equation in terms of the viscous right

Cauchy-Green tensor C, instead, i.e.

. v 1 . 2 .

Cy = U, (5 dev () + = vol () ) U.. (4.13)
f d 2/~Lv 3Ky

For more details on this derivation, the interested reader is kindly referred to Appendix

To model isotropic damage within the material at hand, we choose a scalar damage function

which is defined in terms of the driving forces for damage Y and damage hardening ¢, as well

as the material parameter Y, which acts as a threshold for the damage process, i.e.
Dy=Y — (Yo +qq). (4.14)

Remark. Although it is the most simple and obvious, Equation (4.14)) is not the only possible
choice for the definition of an appropriate damage function. Without any doubt, the use of more
complex (e.g. nonlinear) functions is possible and strongly depends on the type of material

being modelled.

With this at hand, the damage related evolution equations for the local damage variable D

and the damage hardening variable £, can be written as
. 0D, : L
D:=X\j——=AX d === = A\g- 4.15

Y% 4 an §a T d (4.15)

It is important to note that this particular choice of the associative evolution equations yields

the same result for both, the local damage variable D and the damage hardening variable ;.

Such a relatively simple approach is by no means the only feasible option. For isotropic damage

it has the computational and algorithmic advantage that only one of these variables must be

stored in memory and only one evolution equation must be solved. In the case of a classical

rate-independent damage model, A\¢ would serve as a Lagrangian multiplier which has to be

solved using the Karush-Kuhn-Tucker conditions. In contrast to that, we introduce an explicit



66 4 Gradient-extended damage modelling for polymeric materials at finite strains

formulation for Xd, 1.€.

1
. Pa_) i By >0
Sy = "d(Y0+qd) mTd= (4.16)

0 else

in order to introduce a temporal dependence into our model (see e.g. Perzynal [1963] 1966];
Peri€ [1993]]). Similar to the viscoelastic part of this model, 74 describes the damage velocity.

Furthermore, ¢, is the so-called damage sensitivity parameter.

Remark. It has been shown recently by |Satouri et al.| [2022] that it makes a clear difference
whether the local damage field D or the local hardening variable &, is used for the non-local,
gradient-extended regularization strategy. In their case, using the hardening variable rendered
better results than the usage of D. In our modelling case, however, the damage variable D

and hardening variable £ evolve in the same manner as given in Equations (4.13)) and (4.16)).

Coupling either of these local variables therefore renders the same regularization effect. It
is clear that this is no longer the case, if different evolution equations are used for D and &,.
In such a case, a detailed investigation on the influence of the choice of the coupling variable

must be performed.

4.3.2.4 Particular choices of the Helmholtz free energy

Up to this point, the constitutive framework presented herein is very generic and is not complete
without the definition of a particular form of individual parts of the Helmholtz free energy. The
choice of the individual energy potentials depends strongly upon the specific type of material
which one aims to model. Especially for hyperelastic materials at finite strains, various energy
models exist, which all have their own advantages and disadvantages (see e.g. Steinmann et al.
[2012] for a detailed overview). Not least for simplicity reasons, we choose a Neo-Hookean
type model as an elastic ground model for both, the equilibrium energy part v, as well as
the non-equilibrium part 1),,.,. Written in terms of the well-known volumetric-isochoric split
and with C, referring either to C or C,. depending on the individual energy, this form can be
written as

b= B o (ne)) —8] + B (2 - 1= 2mn ), 4.17)

with J, = /det C,. Here, u, and k, refer to the shear and bulk modulus of the individual
energy contribution, respectively. For the energy density of the damage hardening contribution,

we choose a combination of a Voce-type hardening (see |Voce| [1948]) and a classical linear
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hardening law including the material paramters &, r and s, i.e.

Valls) = % ke 4r (gd 4 é fexp(—s4) — 1]) . 4.18)
—

(. J

linear hardeni oh
inear hardening Voce-type hardening

Regarding the energy density of the micromorphic damage extension, we follow the choice of
e.g. [Forest [2009] or Brepols et al. [20175} 2020] and define it such that

_ _ H _ A _ _
4a(D, D, VD) := = (D~ D)’ + SVD-VD. (4.19)

Here, H acts as a penalty parameter to couple the local and non-local damage fields whereas
A describes the influence of the non-local damage gradient. With these definitions, the overall

model consists of the material parameters as shown in Table 4.1]

Table 4.1: List of all material parameters included in the proposed material model.

Symbol | Units | Description

teg | N/mm? | Elastic shear modulus

Kneq | N/mm? | Elastic bulk modulus

Ly N/mm? | Viscous shear modulus

Koy N/mm? | Viscous bulk modulus

M st Viscoelastic relaxation velocity
N4 s~t | Damage evolution velocity

Y, N/mm? | Damage threshold
E€d — Damage evolution shape parameter
k N/mm? | Linear damage hardening parameter
r N/mm? | Voce-type damage hardening parameter 1
S — Voce-type damage hardening parameter 2
H N/mm? | Micromorphic coupling between local an non-local damage fields
A N mm? | Micromorphic influence of non-local damage gradient
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4.4 Algorithmic implementation

For numerical investigations, we implemented the material model at hand into a finite element
framework. Within this context, the evolution equations descibed in Section have to
be solved in a discrete manner. For this purpose, let us introduce the discrete time increment
At = t,41 — t,, where subscipts n + 1 and n denote the current and previous timestep,
respectively.

In order to find a solution to the viscoelastic evolution equation given in Equation (4.13),
we follow the approach of an exponential mapping algorithm as described in detail e.g. in
Weber and Anand| [1990]; Simo| [1992]; Reese and Govindjee [1998]]; Dettmer and Reese
[2004]; |Vladimirov et al.|[2008]] and |Korelc and Stupkiewicz [2014]]. To apply this particular
integration scheme, we first rewrite Equation (4.13)) in terms of the newly introduced second-

order tensorial quantities f and g, i.e.

. 1 ~ 2
C, = @UU (— dev <EO) +
Ja 241, 3

vol (20)) U, = fC;' C, = gC,. (4.20)

v
~~ d g

f

The exponential map algorithm yields then the viscoelastic evolution law in its discretized
form as
Co,pi = exp (Algni1) Co, 4.21)

For notational simplicity, subscripts n 4+ 1 will be droped in the following. This means that
any discrete quantity without subscript is associated with the current time step. Depending on
the particular choice of the viscoelastic potential, g must not necessarrily be symmetric, which
yields the implementation of the matrix eponential to be a non-trivial task (see e.g. Moler and
van Loan|[2003])). Following the argumentations in|Dettmer and Reese [2004] and |V]ladimirov

et al.|[2008] we simplify the calculation of the matrix exponential by transformation such that
U,? =U, exp (AtU,'fU; 1) U, (4.22)

Notice that we exploit the identity C,, = U? within this relation and subsequently use the
symmetric inverse of the viscous stretch tensor U, ! as the internal variable to solve for.
Further details on this particular choice are ommited here but can be found in detailed manner
in the original works by Dettmer and Reese [2004] and |Vladimirov et al. [2008]].

For the solution of the damage evolution equation given by Equations (4.13]) and (4.16), we
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apply a standard implicit Euler method which yields the discretized evolution law as

1

Q) e
D:Dn+Atnd< d )d. (4.23)
Yo + qa

Since both discrete evolution equations are coupled and highly non-linear in their arguments,
we apply a Newton-Raphson iteration scheme in order to solve these equations. For this, we

rewrite the evolution laws as a set of coupled residual functions, which reads

r,=U,” - U, exp (AtU,'fU, ) U =0
o, );d (4.24)
Yo+ qa '

Td:D—Dn—Atnd<

-1
v o

Due to the symmetry of U ", we can transform it together with the residual function r,
into Voigt notation, which yields the residual vector r := [r,, rd]T alongside the vector of
arguments x := [ﬁ; 1 D]T. Here, (;) denotes the Voigt notation of the tensorial quantity
at hand. The increment Ax = [AU;', AD]T used in the iteration process can be found by
solving the linearized system of equations that is given by J;Ax = —r. Herein, the jacobian
J; is explicitly given in terms of the partial derivatives of the residual vector with respect to

the vector of arguments, i.e.

Of,  Ofy

_ |euzt oD
J = oy org |- 4.25)

au,t oD

During the solution process, the current state of x is updated such that x;,; = x;, + Ax,
where k + 1 and & denote the current and previous iteration step, respectively. It is important to
mention that the partial derivatives used for the computation of J; are not computed analytically
by hand but rather automatically by means of algorithmic differentiation. For this, we used the
commercial software package AceGen (see e.g. Korelc [2002, 2009]).

Within the global iteration scheme of the finite element method used in this contribution, the
material tangent operators 9S/OE, 9S/0D and 0D /JE are being used. Since these material
tangents implicitly depend on the local material response, we must derive those quantities in an
algorithmically consistent manner in order to ensure the best possible convergence behaviour

of our global iteration scheme, i.e.

a—EZQ

oc T aut - ac T ap ¥ ac (4.26)

oS (as oS 9U;l  8S 8D>



70 4 Gradient-extended damage modelling for polymeric materials at finite strains

oS  9S auU,!  9S 8D oD oD
ob_au ‘[ep|"ep ‘lab " ok ~’lee 7

The green partial derivatives can be calculated directly from the introduced quantities by
means of algorithmic differentiation. For the calculation of the red partial derivatives we
introduce y = [C, D] with C being the Voigt-notation of the right Cauchy-Green tensor. By
calculating Jo = Or/dy we can make use of the chain rule and find the following relation, i.e.

Ox Ut Ut
Joi= oo ==J0' = | 05 07 (4.28)
y 56 D

It is important to notice that J; and J, are computed from the fully converged solution of
the local Newton iteration scheme. The partial derivatives needed for the calculation of the
material tangent operator are now directly given as the submatrices of J3. An overview on the

overall algorithm of the local material model is given as pseudo-code in Figure d.2]

4.5 Numerical examples

Within the following section, we present selected numerical examples to examine and discuss
various aspects of the rate-dependent model introduced above. We start with a general pa-
rameter study for the purely viscoelastic, the pure rate-dependent damage model as well as the
combined model. Here, we show the influence of the given material parameters, investigate the
differences of the individual approaches and elaborate on the limiting cases for each of these
models. Next, we show structural examples of a uniaxially loaded double notched specimen
as well as clamped cylindrical test specimen. For the simulations shown below, the model was
implemented into the general purpose finite element software package FEAP (see [Taylor and
Govindjee| [2020]). For meshing and visualization, we used the open source software tools
GMSH (see|Geuzaine and Remacle| [2009]]) and Paraview (see |Ahrens et al.| [2005])).

4.5.1 Parameter studies

For the following studies, we use the simulation of a uniaxially loaded single element and
vary the individual material parameters of the model according to the investigations at hand.
For the viscoelastic material response, we choose an elastic Neo-Hookean ground model (see

Equation (#.17))) with the same parameters for both, the equlibrium and the non-equilibrium

N
mm?

part of the Helmholtz free energy given in Equation (4.6)). These are given by p, = 6.0

and x, = 300.0 % The damage evolution shape parameter is set to €4 = 1 for the following
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Time-dependent viscoelastic damage model routine

Input: C, D, I]'U;l, D,

.QT 98 9S8 9D 9D
Output: S, U, ,D, S5’ 5D o5 D

A

U, « U, DD,
A)\d 0
O, < getPhiD()

if &, < 0 then
// Enforce purely viscoelastic step without damage
Nd < 0
end if
// Solve local Newton iteration
~ -1 .
{Uv , D, Jq, Jg} < doLocalNewtonRaphsonlteration()
J3 ¢ —J7 1T,
U, ! G o1
e +— J3[1:6, 1:6]

U, Jy[l1:6,7]
oD .
oD J4l7, 1:6]

o8 357,71

{S, g—g 838_1, 6D} < getPK2andPartial Tangents()

as<_2< 408 8UU1+BS8D>

E1o) aC ' au, "t aD ¢
2, -1
oS S 8UU S oD

oD * gu, " + 9b ob
oD < 99D oD
OE aC

Figure 4.2: Pseudo-code for the implementation of the material model at integration point
level. Quantities given in Voigt notation are denoted by (;) The local Newton
iteration as well as the calculation of the second Piola-Kirchhoff stress tensor and
its partial derivatives is performed using custom AceGen implementations.
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(a) Evolution of damage variable D. (b) Evolution of stress in loading direction.

Figure 4.3: Results of a constant deformation rate applied uniaxially to a single element for
pure rate-dependent damage, i.e. 7, = 0. The influence of the damage relaxation
velocity 7, with reference 1,0 = 1072 s™! is shown. Stress is given as the first
Piola-Kirchhoff stress P evaluated in loading direction.

investigations. Since this study is based on the simulation of a single finite element, the
micromorphic parameters A and H are set to zero and do not play any role within this

investigation.

4.5.1.1 Constant deformation rate

In the first example, we study the influence of the damage relaxation velocity 7, on the
temporal evolution of the damage variable D). For this, we apply a constant deformation rate
of 4, = 0.5 = to the uniaxially loaded specimen and focus only on the temporal damage
response, i.e. the viscous relaxation time is set to 7, = 0 s~!. The damage threshold for this
simulation is set to Y = 3.0 % and damage hardening is turned off by setting k = r = 0 %
Figure shows the evolution of both, the damage variable D and the first Piola-Kirchhoff
stress in loading direction Py, for variations of 7,. First, we take a look at the edge cases, i.e.
very low and very high values for 7),, respectively. In the first case, the damage progression
observed during the simulation is almost negliable. This leads approximately to a purely elastic

stress response. For very high values of the damage relaxation velocity the response approaches
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(a) Influence of damage relaxation velocity 7. (b) Influence of damage threshold Yj.

Figure 4.4: Results of relaxation experiment applied uniaxially to a single element for pure
rate-dependent damage, i.e. 7, = 0 s~!. Left: Influence of damage relaxation
velocity 7y with reference 149 = 107 s~!. Right: Influence of damage threshold
Y,. Here, a damage velocity of 1y = 0.01 s™! is chosen. The reaction force is
normalized with respect to F},,,, = 20.52 N.

the well-investigated rate-independent isotropic damage formulation. Choices of 7; which lie
in-between are able to interpolate smoothly between these edge cases. This examples clearly
shows how the approach to model rate-dependent damage behaviour is a generalized version
of the classical rate-independent modelling approach, thus giving the simulations much more

flexibility.

4.5.1.2 Relaxation

Next, we take a look at the simulation of a one-dimensional relaxation experiment. For
this, we apply a constant displacement u, = 1 mm almost instantaneously and hold it fixed

over the remainder of the simulation. The damage threshold for this simulation is set to

Yo =11.0 [mﬁ 2} . Similar to the simulation above, damage hardening is again ommited for the
sake of simplicity.
Figure [4.4] shows the influence of both the damage relaxation velocity 7, and the damage

threshold Yj on the reaction force over time for a purely rate-dependent damage model, i.e.
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n, = 0 s~!. Similar to the example of a constant deformation rate from Section the
damage relaxation velocity determines how fast damage is accumulated within the material.
Since the damage threshold Yj is held constant during the simulation shown in Figure §.4a]
the reaction force is not going down to zero but rather converges to a residual value. This
limit state is ultimately reached for all non-zero choices of 7, and reflects the same state a
rate-independent model would reach instantaneously rather than over time. This influence of
the damage threshold on the residual value of the reaction force can further be studied in Figure
[4.4b] where it is obvious that lower values lead to more damage being accumulated over time.
At first glance, this behaviour might seem counterintuitive, but on closer inspection it is easy
to explain. As damage progresses, the thermodynamic driving force Y given by Equation
(4.10) also decreases steadily until it falls below the damage threshold Yy, yielding the damage
function to be ®; < 0. This causes the damage process to gradually come to a standstill.
The lower the threshold is selected, the longer the damage function is greater than zero, which
leads to a continuation of the corresponding damage process. In the classical rate-independent
damage formulation, this behaviour is of course not observed, since damage always occurs
instantaneously in such a way that ®; = 0 is directly given rather than approached over a finite
period of time. The attentive reader will have noticed that the initial peak in the reaction force
varies in height between the individual curves. This effect is very clearly visible in Figure
4.4al The reaction force shown at this point takes on lower values for very high values of 7,
than for low values of 7,. This is due to the fact that a high damage velocity already leads to
damage accumulation during load application.

From the observations that can be made in Figure [4.4] the question arises as to how far
this behaviour differs from pure viscoelastic behaviour. This difference can be seen in Figure
4.5l Here, after t = 50s, an additional jump in the displacement of the system was applied,
which was kept constant until the end of the simulation. Whilst Figure .53 shows the purely
viscoelastic response (i.e. 1y = 0), Figure[4.5b|shows the pure rate-dependent damage response
(i.e. 0, = 0). In both figures, a jump in displacement results in a jump in reaction force. After
that, the purely viscoelastic model converges as expected towards a residual force that is higher
than that of the previous displacement state, while the behaviour of the rate-dependent damage
model is exactly the opposite. This behaviour can be explained if one takes into account that
the additional displacement applied also introduces more elastic energy into the system, which
increases the thermodynamic driving force Y and subsequently triggers the damage process

more strongly than before.
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(a) Influence of viscous relaxation velocity 1, with-

out damage, i.e. g = 0s~ L.

(b) Influence of damage relaxation velocity 7, for
pure rate-dependent damage, i.e. 1, = 0 s L.

Figure 4.5: Results of relaxation experiment with stepwise loading applied uniaxially to a
single element. Left: Influence of viscous relaxation velocity 7, with reference

Nwo = 1072 s71. The damage velocity is set to 7y = 0s™'. Right: Influence

of damage relaxation velocity 7, with reference 7,9 = 1072 s™'. The relaxation

velocity is set to 7, = 0 s~!. The reaction forces are normalized with respect to
Fraz = 20.52 N.

4.5.1.3 Creep

Within the next study, we investigate the material response using the simulation of a one-
dimensional creep experiment. We apply a constant force F,, = 6.4 N at the beginning of the
experiment and hold it fixed in the following. The damage threshold is set to Yy = 11.0 [ 2]
and damage hardening is again ommited. It is important to notice that for this creep simulation
the relation between £, and Y{ is very important. If the loading force is too compared to
the damage threshold, no damage is triggered and only a purely viscoelastic response will
be observed. In this context, the differences between the purely viscoelastic model and the
purely rate-dependent damage model are particularly interesting. As shown in Figure
we again observe nearly perfect elastic behaviour for very low choices of the corresponding
relaxation velocities 14 and 7,,, respectively. In contrast to that, we can see a clearly different

progression of the displacement for higher choices of the relaxation velocities. Whilst the
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(a) Influence of damage relaxation velocity 7, for (b) Influence of viscous relaxation velocity 7, for
pure rate-dependent damage, i.e. 1, = 0 s~ L. pure viscoelasticity, i.e. ng = 0 s~ L.

Figure 4.6: Results of creep experiment applied uniaxially to a single element. Left: Influence
of damage relaxation velocity 7, with reference 7,9 = 1072 s™'. The relaxation
!, Right: Influence of viscous relaxation velocity 1,

velocity is set to 7, =0s™".
with reference 7,0 = 1072 s~!. The damage velocity is set to 7, = 0s~'. The

displacement is normalized with respect to up = 0.125 mm.

results of the viscoelastic model converge towards a finite value, the displacements for the
purely rate-dependent damage model grow exponentially. These observations are in line with
what one would expect from a damage creep experiment (see Section #.5.3). In contrast to
this, the classical rate-independent damage formulation is usually not able to describe such
kind of behaviour, since damage is instantaneously accumulated once the damage threshold Y|
is reached. This effect becomes obvious when taking a look at the response of the combined
viscoelastic rate-dependent damage model as shown in Figure(i.e. Ny # 087 mg #0s7h).
Since the given model includes the rate-independent case for very high values of 1,4, we are able
to approximate this behaviour and show that this leads to an almost instantaneous accumulation
of full damage within the material. The computation of a delayed evolution of damage as seen in
experimental observations (see Section[#.5.3)) is therefore not possible with a rate-independent
approach. Within this example, the rate-dependent damage model is able to capture the distinct

bahviour of creep damage in a qualitative manner.
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Figure 4.7: Results of creep experiment for the combined viscoelastic rate-dependent damage

model. Influence of damage relaxation velocity 7, with reference 7,9 = 1072 s71.

Here, the relaxation velocity is set to 7, = 0 s,

4.5.1.4 Cyclic loading

In the last example of this section, we evaluate the behaviour of the given material model for
cyclic loading as shown in Figure The rate of displacement u, = 0.06 % is constant
for all loading cycles. For this evaluation, we compare the response of the purely viscoelastic
model (i.e. 1y = 0 s~!) with results from both, the purely rate-dependent damage model
(i.e. m, = 0 s71) as well as the combined viscoelastic model for rate-dependent damage (i.e.
Ny # 0s7L, ng # 0s™1). Here, we use a damage threshold of Y, = 2.5 % and again
ommit damage hardening. If not set to zero, the viscoelastic relaxation time and the damage
velocity are chosen to 1, = 1.7 s~ and 1y = 0.01 s%, respectively. Figures and
show the corresponding material response for either the pure rate-dependent damage model
(i.e. m, = 0 s7!) or the pure viscoelastic response (i.e. 173 = 0 s~'). It is obvious that the
stress-strain curves differ from each other both qualitatively and quantitatively. As expected,
a corresponding hysteresis occurs in the case of pure viscoelasticity. With further loading,
the material then returns to the same path as with a non-cyclic load. Furthermore, a residual
viscous strain can be observed upon unloading. In the pure damage model, it can be seen that

no damage occurs during the first loading cycle and thus a purely elastic material behaviour is
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present. This is due to the fact that the damage threshold Y|, for the load applied here has not
yet been exceeded. As expected, a gradual stiffness reduction due to the accumulated damage
can be observed for the further load cycles. Furthermore, there is no residual elongation when
the load is removed. Figure [4.8b|shows the response for a combined model with the velocities
ng = 0.01 s7! and n, = 1.7 s~1. Within the first two loading cycles, the model resembles the
response of the pure viscoelastic material response whereas it is much closer to the pure damage
response within the third cycle. This behaviour makes sense because no damage occurs in the
first load cycle and damage develops slowly in the second cycle due to the low damage velocity
n4. Thus, the viscoelastic material behaviour dominates. In the third load cycle, however, the

damage accumulation is now so significant that it becomes the predominant effect.

4.5.2 Structural example

In the following, we show a structural example of a double notched specimen (see Figure §.9)
subjected to a relaxation experiment using the combined viscoelastic rate-dependent damage

model described above. For this investigation, we used the same bulk and shear moduli as in

the examples above, namely p, = 6.0 mljnz) and k., = 300.0 mlfn 5. The relaxation velocity is
set to 1, = 0.055 s~! while the damage velocity is choosen to be 1; = 0.002 s~!. For the
damage threshold we use Y, = 1.0 % whilst damage hardening is not activated here. The
damage evolution shape parameter is set to ¢4 = 1.0. Since we are now dealing with structural
simulations containing multiple elements, we need to also consider the micromorphic extension
and therefore the material parameters A = 50.0 N and H = 10° % For the relaxation
simulation, a displacement of u,, = 15 mm is applied within the first few seconds and then held
fixed for the duration of the simulation. The notches located in the middle of the specimen are
introduced to enforce this particular spot as the predeterminded point of damage initialization
and failure. We therefore locally refined the mesh density within this area. Two examples of
meshes with different element sizes are shown in Figure[d.9] By exposing symmetric boundary

conditions, we are able to consider only a quarter of the full structure.
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Figure 4.8: Results of the simulation of a cyclic loading experiment applied uniaxially to a
single element with material parameters 1y = 0.01 s~* and 7, = 1.7 s~!. |4.8al)
The cyclic loading process used in this simulation. [4.8b) Stress-strain response
for the combined viscoelastic rate-dependent damage model. Stress-strain
response for the purely rate-dependent damage model. [4.8d)) Stress-strain response
for the purely viscoelastic model. The stress in loading direction is given as the
corresponding first Piola-Kirchhoff stress component.
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Figure 4.9: Two different discretizations for the model of a uniaxially loaded double notched
specimen of thickness ¢ = 1 mm. For the simulation, only a quarter of the full
structure is used by exposing symmetric boundary conditions.

Figure 4.10] shows the convergence behaviour of the solution to this problem given in terms
of a diagram of the reaction forces. Here we evaluated different mesh sizes from really coarse
with 524 elements to a relatively fine spatial discretization with 36316 elements. In the first area

of the simulation, the curves lie exactly on top of each other. Similar to the example of cyclic
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loading from the previous section, the viscoelastic material behaviour forms the predominant
effect here. However, this does not seem to be particularly sensitive to the spatial discretisation.
Only from about 40 seconds onwards does the cluster of curves fan out and converge for finer

discretisations.

250 [7 | |— 524 elements

—— 1068 elements
200 + | 2209 elements

Z —— 9052 elements
o — 18152 elements
3 150 + 1 |—36316 elements
g3

[t

S 100 .

5 S

S

g0l .

07 | | | | | | | 1
0 10 20 30 40 50 60 70 &0

Time ¢ [s]

Figure 4.10: Reaction force over time for various mesh refinements of the uniaxially loaded
double notched specimen given in Figure 4.9] Finer mesh discretizations yield
successive convergence towards the unique solution.

The local distribution of the damage field for various snapshots in time is shown in Figure
M.T1l Here, only the middle part of the specimen is shown, since this is the region where
the damage response is triggered due to the imperfection associated with the double notch.
Although the displacement is held constant, the evolution of damage starts slowly from the
inner edges of the notches and gradually evolves from there over time. This distinct feature
of the rate-dependent damage model is clearly visible here. Also the amount of accumulated
damage within the structure correlates with the observations from the reaction force diagram,
since the initialization of a crack is located roughly in the time period where the mesh sensitivity
starts to occur. This observation is in line with what is already well known from the literature

on rate-independent damage modelling.
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Figure 4.11: Contour plot of damage progression for uniaxially loaded double notched speci-
men subjected to the simulation of a relaxation experiment. Outlines of the initial
geometry before loading is denoted by black solid lines. Only the middle part
of the specimen is shown in order to give a closer look at the spatial domain of
interest.
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4.5.3 Comparison with experimental data

To demonstrate some of the models predictive capabilities, we conducted both, uniaxial relax-
ation and creep experiments. Based on these, we used one relaxation experiment to calibrate
the material parameters of the elastic and viscoelastic domain. Next, we applied the parameter
set found in the previous step to both, another relaxation experiment as well as the unixial
creep problem. It is clear that this procedure is not comparable with a complete validation of
the model. To achieve this, further experimental investigations would have to be used. For
example, cyclic tests or montone tests at different strain rates could be considered. Due to the
limited data basis on which we carry out this comparison, we would like to explicitly point out
at this point that the following investigations only represent a first comparison of the predictive

capability of the model with corresponding experimental data.

4.5.3.1 Experimental setup

For the experimental setup we choose the silicone-based adhesive Koediglaze S from HB
Fuller / Koemmerling for the production of the test specimen. During production we stick
to the specifications given in DIN| [2012] for both, geometry and production protocol. More
precisely, we select geometry type 1B according to section 6 of the given standard as the
geometry for the test specimen. Figure 4.12b|shows a schematic drawing of the geometry at
hand. We chose a Z100 testing device manufactured by Zwick / Roell. A picture of the testing
setup is shown in Figure In both the creep test and the relaxation test, we apply a
constant strain rate of 1.0 per minute until the desired target state of strain or stress is reached.
In total, we apply two different loading scenarios within the relaxation experiment. In the first
one, we choose a constant technical target strain of 0.75, whereas for the second one we set the
target strain to 1.2. In the creep test we select the target condition corresponding to a constant
technical stress of 1.5 MPa. Once reached, we keep the target state constant for the rest of the
experiment. In the relaxation test, this is done for 4000 s. For the creep test, the maximum

duration is 1300 s. Both, relaxation and creep experiments are repeated two times.
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Y
, Y
(a) Blue arrows denote the loading direction for (b) Total length {; = 150 mm, inner length I; =
the uniaxial loading applied during testing. (I) 108 mm, outer width wes = 10 mm, inner
Elongation measuring system. (II) Thickness  width w; = 20 mm, clamping distance L. =
measuring system. 115 mm, measurement distance Ly = 50 mm,

radius 7 = 60 mm, thickness ¢ = 4 mm.

Figure 4.12: Setup for validation experiments as described in Section Figure
Setup of the test specimen within the testing device. Figure d.12b; Geometrical
specifications of test specimen according to standard [2012] with geometry
type 1B.
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4.5.3.2 Comparison of numerical and experimental results
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Figure 4.13: Results from two different uniaxially loaded relaxation experiments and simu-
lations, respectively. Comparison of the reaction forces in loading direction.
Experimental results are given as mean values. Errorbars show the standard mean
error (SEM) of the experimental results. Material parameters were fitted for the
Exp. 1 curve.

To adjust the parameters of the model for the comparison with experimental data presented here,
we used a two-step approach. In a first step, the material parameters associated with the elastic
or viscoelastic material behaviour were adjusted. For this purpose, we used the optimisation
algorithm according to Levenberg| [1944] and Marquardt| [[1963]] in its implementation in the
open source library SciPy (see Virtanen et al.| [2020]). In order to be able to perform the
optimisation, we implemented a corresponding routine in Python, which solves the given
boundary value problem with the corresponding material parameters in the background and
uses the results of this calculation for the optimisation. For this purpose, we used the data
set labeled as Exp. I in Figure 4.13] Next, we adjusted the parameters associated with the
damage behaviour. Here, the hardening parameters were chosen so that no hardening occurs.
Furthermore, the shape parameter ¢, = 1.0 was set. The remaining parameters were then
adjusted by hand in order to reproduce the results in Figure .14 well. The use of an automated
optimisation algorithm was not possible at this point due to the abrupt material failure in the
experiment. The results of this adjustment process are given in Table |4.2

Figure d.13|shows the results from two different relaxation experiments and the correspond-
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ing results predicted by the model. As described aboev, we use the experimental data of
Exp. 1 for the calibration of the material model and afterwards apply the same set of material
parameters to the simulation for the second loading scenario (see Exp. 2) as an example
for the predictive capabilities of the model. Due to the calibration process itself, it is not
surprising that the results from the first experiment are reproduced very well. But also the
predictive results of the simulation of the second loading scenario are in good agreement with
the data provided by the experiments. These results show how well the given material model

generalizes for the case of pure viscoelastic material response.

Table 4.2: List of all material parameters included in the proposed material model. Values
from the comparison experiments of Section @ are given in the second column.

Symbol | Values | Units | Description

feg 17.5 mII\IHQ Elastic shear modulus

Kneq 300.0 | 55 | Elastic bulk modulus

Loy 6.6 % Viscous shear modulus

Koy 300.0 mlilQ Viscous bulk modulus
Mo 0.01 % Viscoelastic relaxation velocity
Nd 1075 % Damage evolution velocity

Y, 45.0 I | Damage threshold
€d 1.0 — Damage evolution shape parameter
k 0.0 % Linear damage hardening parameter
r 0.0 X | Voce-type damage hardening parameter 1
5 0.0 — Voce-type damage hardening parameter 2
H 10° mlr\lni, Micromorphic coupling between local an non-local damage fields
A 50.0 | Nmm? | Micromorphic influence of non-local damage gradient

In a next step, we used the same parameter set for the simulation of a uniaxial creep
experiment and compared the results with the given experimental data. Figure [4.14] shows
the corresponding results. In the beginning of the experiment, the experimental curve (red)
shows the classical primary and secondary creep behaviour of polymeric materials. After
an initial rise in displacement, the curve flattens. "The last [(tertiary)] stage of the creep
process is characterized by an increase of the creep strain rate due to microstructural damage
mechanisms" (Vladimirov et al.|[2009]]) and leads to rupture of the specimen at approximately
1300 s. Due to the sudden failure and the comparatively low temporal resolution of the

measuring system, the failure path could not be captured in detail in the experiment. In Figure
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M.14] the data point marked by the blue circle shows the point of failure observed in the
experiment. When comparing the results from the simulation with the data points provided
by the experiment, it becomes obvious that the model is well capable of predicting the creep

damage behaviour of the polymeric adhesive under investigation.
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Figure 4.14: Results of validation simulation of a uniaxially loaded creep experiment using
the material parameters fitted to the experimental results shown in Figure 4.13]
Comparison of displacements in loading direction. Experimental data point
marked by blue circle shows the abrupt rupture of the specimen due to creep
damage. Here, the experimental setup was not able to capture this process in a
detailed manner due to the low temporal resolution of the recorded signal.
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4.6 Conclusion and outlook

In this paper, we have presented a model that combines viscoelasticity with rate-dependent
damage for the case of finite deformations. This model makes use of a multiplicative split of
the deformation gradient. Based on this, we have incorporated the viscoelastic effects by using
an additive partition of the elastic Helmholtz free energy into equilibrium and nonequilibrium
parts. Using the concepts of damage hardening and micromorphic damage extension, we
were able to model the rate dependence of the damage behaviour by means of a modified
Perzyna-type model. The entire model is derived in a thermodynamically consistent manner. In
addition, we chose to describe the model in a novel corotated intermediate configuration, which
allows for a straightforward implementation into computer code using automatic differentiation
techniques.

In order to test the developed model, we carried out several numerical examples. Among
them, we showed multi-parameter studies where we considered a single finite element of unit
length subjected to a homogeneous stress state under tension. These parameter studies showed
the influence of the material parameters on the response of the material. We were able to
show how the rate-dependent damage approach differs from the purely viscoelastic material
response. Furthermore, our results showed that damage associated with creep or relaxation can
be well captured by the material formulation. We were able to demonstrate that this would not
be the case for a rate-independent damage model. In addition, we presented selected structural
examples. These include a double-notched specimen and a butt joint specimen. The developed
model was able to resemble the standard viscoelastic relaxation and creep effects expected for
a viscoelastic material.

Finally, we compared the model with a limited set of experimental data from uniaxial creep
and relaxation experiments. We were able to show that the model is capable of predicting both,
elastic relaxation as well as creep damage behaviour reasonably well. This gives confidence in
the predictive capabilities of the model, although further investigations considering different
loading scenarios must be performed in order to get a proper validation of the given model.
Furthermore, an extension for thermo-mechanical coupling as shown for example in Reese
[2003] or [Felder et al. [2022] seems to be the next plausible step, as polymeric materials in

particular are known for their temperature dependence.
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4.7 Appendix

4.7.1 Total time derivative of the co-rotated elastic right
Cauchy-Green tensor

Starting with the definition of the co-rotated elastic right Cauchy-Green tensor from Equation

(4.4) and using the product rule of calculus, the total time derivative can written as
C.=U;'CU;! + U;'CUS! + U ICU .

With the relation U; ! = —U; U, U ! as well as the definition of the viscous velocity gradient

L, = UUU; ! we can write the rate of the the co-rotated elastic right Cauchy-Green tensor as
C,=U;'CU;l - (Lfée + éJLU) .

4.7.2 Derivation of the reduced Clausius-Duhem inequality

In order to derive the reduced version of the Clausius-Duhem inequality (4.7) we need to
calculate the total derivative of the Helmholtz free energy (see Equation (4.6))) with respect to

time, 1.€.

b = fa(D)o(C, C.) + fa(D)ibo(C, Ce) + by +

_ (9 9\ f Oteq MWneq . & Ibq Map , Wi or
_(8D¢0+ )D+fd<8C C+ L« 5G .Ce)—l—agdgd 5D D+8VD VD

e

With the identity ée = U;'CU;' — (ifCe + Ceiv> from Equation (@.3) we can rewrite

the second term as

aweq - aQ/Jneq ~ aweq 1 8wneq az/}neq r T o~ ~N T
: — = —fi——: (L L
fd<ac G+ 28 C) = ha( GG +USGE Ut O (LIC. +C.L,)

Under the assumption that .., is an isotropic function of its arguments, we can exploit the
symetric properties of the double contracting product which yields with the definition of the
Mandel stress tensor 3 = 2 fdée%

a77Z)eq awneq A o a77Z)eq 16¢n€q _ Y. T
fd(ac C+ 3G .Ce>—fd(ac +U, 3G U'):C-2:D,

e
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With this at hand, we can include the derivative of the Helmholtz free energy in the Clausius-

Duhem inequality (4.7) and arrive at

|: . 2fd (aweq U;l awﬁeq U;l) :| . (afd @Z)O 3%) 3% Sd

oC, afd
:;? ::‘Jd
. 0uq] 0] or
>:D . D by, — —| -VD >
+ v + |:CL01 8D :| + |: 0; 8VD Vv = 0

Under the assumption that the rates of the right Cauchy-Green tensor as well as the global
damage variable and its gradient are arbitrary, the individual terms including these quantities
should vanish (see [Coleman and Noll, [1963]]). This yields the reduced Clausius-Duhem

inequality (4.9), i.e.
YD—ngd—i-i}:f)v > 0.

4.7.3 Total time derivative of the viscous right Cauchy-Green
tensor
The rate of the viscous right Cauchy-Green tensor as given in Equation (4.3]) can be derived as
follows:
C, =FI'F, + F FT
: T :

= (FZFvFgva) + FZFqulev

— (F'L,F,)" + FTL,F,

=F] (L] +L,)F,

=2F'D,F,

=2U’R'D,R,U,

=2U,D,U,
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4.7.4 Derivation of the viscoelastic evolution law

Considering the viscoelastic potential from Equation (@.1T]), the corresponding evolution law

from Equation (4.12)) can be written as

i 0,
D, = 2%
Mos
09, 0%,
oS, 0%

= % (in dev <io> + 3,1% vol <2~]0)> .
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5.1 Abstract

Rate-dependencies play a crucial role in the mechanical response of polymeric materials.
Besides viscoelasticity, many polymers also show pronounced rate-dependent behaviour with
respect to damage accumulating within the material. Furthermore, thermal effects and large
deformations have to be taken into account when modelling the mechanical behaviour of
polymers. Within this work, we propose a novel fully thermomechanically coupled material
model for the description of rate-dependent damage combined with viscoelasticity at finite
strains. The model is based on the multiplicative decomposition of the deformation gradient
into thermal and mechanical parts as well as a further decomposition of the mechanical part
into equilibrium and non-equilibrium contributions. To describe the temporal dependencies
of the damage evolution, we make use of a Perzyna-type approach. We furthermore show
the thermodynamically consistent derivation of stresses and heat sources which arise due
to energy dissipations triggered by the inelastic effects within the material. With the given
material formulation, we are able to describe both, damage due to creep and due to relaxation in
a precise manner. Besides the theoretical aspects, we describe the numerical implementation
into finite element software and present numerical studies demonstrating the capabilities of the

given model.

5.2 Introduction

Silicone based polymeric materials play a major role in today’s industrial context. Load
bearing adhesives are used e.g. in the automotive, mechanical engineering or construction
industry to connect various components with each other. One example among many is the
construction of glass fagade systems using silicone bonding (see e.g. de Buyl [2001]]). In
such constructions, the glass panels are bonded directly to the load bearing structure below. In
addition to improved load transfer and easier installation, this also ensures a better insulation
effect. Another example for applications of silicone is its use in the field of biomedical
engineering. In this sector, silicone is used in a variety of ways. Just recently it was even for
the production of heart valve prosthetics replacing a crucial part of the native human heart (see
Engelhardtet al.|[2019]; Coulter et al.|[2019]], among others). In addition to these two examples,
there are many other possible applications for silicone-based materials, whose description is
beyond the scope of this paper. However, all these fields of application have in common that
they have to deal with the highly complex mechanical behaviour of this particular type of

material. In this respect, mathematical models can make a valuable contribution to a deeper
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understanding of the material behaviour in addition to classical experimental investigations.
However, an adequate mathematical description of this behaviour is not trivial. This is due
to the many different inelastic and multiphysical effects that must be taken into account for a
realistic description of the material. In addition to temperature dependence, incompressibility
and entropy elasticity, these also include the strongly rate-dependent material behaviour, which
takes place in both the elastic regime and in the limit range of damage and failure.

The description of the thermoelastic behaviour of polymeric materials has long been an
important part of research in the field of continuum mechanics and differs fundamentally
from that of other classical engineering materials, such as metals. Above their individual glass
transition temperature, the stress response of polymers is mainly of entropic origin, whereas the
energetic part is predominant in metals (see Chadwickl [1974] for more details). Fortunately,
silicone based polymeric materials often show a very low glass transition temperature which
usually lies in a range that is not relevant for technical application. We therefore limit this
modelling approach to the description of rubberlike behaviour. The modelling approaches
capturing this behaviour can be roughly divided into two groups. On the one hand, there
are works based on the idea of Lu and Pister [1975] which multiplicatively decompose the
deformation of the body (represented by the deformation gradient) into a mechanical and a
thermal part. The free energy is then described by a mechanical and a thermal part, which are
added accordingly. In order to be able to represent the dominant entropic material behaviour of
polymers well in this context, Holzapfel and Simo [1996]] and Lion| [1996,1997] add an explicit
dependence of the material parameters on the temperature. Due to the fundamental connection
between the heat capacity and the Helmholtz free energy, this leads to the heat capacity
becoming a complex, non-linear function of all internal variables. The thermal fraction of
the free energy must therefore be chosen appropriately to avoid unwanted dependencies. This
is usually not trivial, which is why various works implicitly assume that the heat capacity
is constant and the thermal energy assumes an appropriate form that ensures this (see e.g.
Canadija and Mosler [2011]; Aldakheel and Miehe [2017]]; Dittmann et al. [2020]; Felder et al.
[2022]). Other works use a different approach and are able to find an explicit form for the
thermal fraction of the free energy on the basis of elaborate material tests (see e.g. [Lion/[1996,
1997]]; Lion et al.|[2017]). As an alternative to the models based on the split of the deformation
gradient, the other side in this classification is based on the original ideas of (Chadwick! [1974].
Here, the double integration of the fundamental connection between the heat capacity and
the Helmholtz free energy forms the basis for determining a general form of the free energy.
This approach motivated e.g. Reese and Govindjee| [[1997] to develop a model which takes

into account the temperature and deformation dependence of the heat capacity and thus leads
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directly to a non-linear relationship between stress and temperature. One particular advantage
of this method is that the material parameters not functions of the the temperature anymore
and must therefore only be determined for a predefined reference temperature. More recent
works using this approach are e.g. Xiao and Nguyen| [2015]]; |Behnke et al.| [2016]]; Mehnert
et al. [2017, 2018]]; Dai et al. [2020], among others.

The rate-dependent behaviour of polymers can be described very well in the elastic range
with the help of the viscoelasticity theory. Similar to thermomechanical coupling, a large
number of modelling approaches exist in this area today. If finite deformations are considered,
these approaches can be subdivided according to their dependence of the stresses on the strain
rate. In classical approaches, e.g. by |Simo|[1987]]; Holzapfel and Simo| [[1996]; Bonet| [2001]];
Osterlof et al.|[2016]; Guo et al. [2018]; Wang et al.| [2019], a linear relationship between the
variables is assumed. While such work is only valid for small pertubations of thermodynamic
equilibrium, the works of, for example, |Reese and Govindjee|[[1998]]; Bergstrom![[1998]]; Haupt
et al. [2000] also consider the intrinsically non-linear nature of the relationship between stress
and strain rate. These approaches lead to a more general formulation of the viscoelastic
constitutive equations and can usually be reduced to the simpler case of the linear theory.
Current works applying the approach of a non-linear theory can be found e.g. in Fancello et al.
[2006]; Kumar and Lopez-Pamies| [2016]; Wang and Chester| [2018]] and Rambausek et al.
[2022], among others.

Another important effect that should not be neglected when describing the material behaviour
of polymers is the behaviour in the event of damage or failure. In general, the damage behaviour
of rubber-like polymers can be attributed to various microscopic effects. In addition to the
well-known Mullins effect, the formation of cavities also plays a role. The latter occurs
primarily in filled polymers when they are exposed to high hydrostatic tensile stresses. Both
effects lead to a substantial reduction in the stiffness of the material, but are only indirectly
responsible for the corresponding crack failure. In addition, another type of damage plays
an important role, in which the molecular bonds between the individual polymer chains are
successively broken, ultimately leading to crack failure in the material under high tensile
stresses. It has already been shown in the literature that this crack failure is a rate-dependent
effect (see e.g. [Lamm et al. [2023]]). In the present work, our focus is on the description
of rate-dependent crack damage in rubber-like polymers. Other damage effects, such as the
Mullins effect or cavity damage, are therefore not considered further in this work. A detailed
modelling of the micromechanical effects is basically very complicated and often not necessary
for the characterisation of the macroscopically visible material behaviour. A large amount of
Continuum Damage Mechanics (CDM) models based on the work of |Kachanov| [1958]] and



5.2 Introduction 97

Rabotnov| [1969] have been established in the literature. These approaches consider damage
in an averaged sense by introducing one or more internal damage variables. These tensor- or
scalar-valued variables are subsequently used to achieve a stiffness reduction. The simplest
choice is that of isotropic damage, for which only one scalar damage variable is introduced (see
Lemaitre| [[1984, [19854]; de Souza Neto et al.| [1998]]; [Saanouni| [2009]]; Jeridi et al.| [2015]];
Brepols et al.[[2017a], among many others). More complex models also take into account an
anisotropic development of damage by introducing a damage tensor (see Davison and Stevens
[1973]]; Krajcinovic and Fonsekal [1981]]; Murakami and Ohno [[1981]]; Pituba and Fernandes
[2011];|Ayadi et al. [2016]; Reese et al. [2021]]; Holthusen et al.| [2022], among many others).
It should be noted at this point that the literature on the subject of CDM is so extensive that a
detailed listing of all modelling approaches would go beyond the scope of this paper.

When considering the damage behaviour of polymeric adhesives, it has been shown that also
the damage process itself is depending on rate of deformation applied to the material at hand
(see Lamm et al.| [2023]]). It is therefore desirable to also include this dependency within the
modelling process. When considering small strains, a variety of models has been developed
such as e.g. |Voyiadjis et al.|[2012]];|Al-Rub and Darabi|[2012]]; Wang et al. [2013]]; Zhu and Sun
[2013]];|Pandey et al. [2019]; Pereira et al.|[2017];|Shlyannikov and Tumanov|[2019]; Nahrmann
and Matzenmiller [2021]]; Xia et al.|[2022]; Kou et al.| [2022], among others. Unfortunately, the
literature considering rate-dependent CDM approaches which are valid for large deformations
is relatively sparse. Based on the work of [Lion| [[1996], the models of Miehe| [2000]; Lin and
Schomburg| [2003]] and |/Aboudi| [2011]] describe a general rate-dependent damage process by
defining an explicit damage evolution equation considering the rate of a strain-like quantity as
the corresponding driving force. The approach of Khaleghi et al.| [2022] extends the classical
damage evolution formulation of |Lemaitre| [19854] to the finite strain regime. Just recently,
the approach by Lamm et al.| [2023]] proposes a Perzyna-type (Perzyna [1963]) approach to
describe the rate-dependent evoution of the local damage variable in a simple yet effective
fashion.

A fundamental problem in the field of CDM are the instabilities caused by localisations,
which can lead to strong mesh dependence and potentially physically implausible results (see
e.g. Bazant et al.|[1984]; |de Borst et al.| [1993]]; Cervera and Chiumenti [2006]; Jirasek and
Grassl [2008]). To counteract this problem, a number of approaches have been developed based
on the non-local extension of the otherwise local damage model (see |Bazant [1976]]; Bazant
and Lin| [1988]]). This means that the evolution of the local damage variable at a single point
is made explicitly dependent the damage state at surrounding points. The region of influence

can generally be understood as an internal length limiting the localisation. A frequently used
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method to realise this regularisation in the context of a non-local extension is the concept of
gradient-extended damage, which can be, for example, based on the micromorphic framework
of [Forest|[2009]. In this framework, an additional global variable is introduced whose diffusive
nature is described by means of another partial differential equation (PDE). This results in the
present case in a coupled problem of balance of linear momentum, energy balance and the
mentioned PDE, which have to be solved in a meaningful way.

Within this work we introduce a flexible model for the description of thermomechanically
coupled rate-dependent damage in polymeric adhesives. For this, we follow the approach
of |[Lu and Pister| [1975] and introduce the multiplicative decomposition of the deformation
gradient into mechanical and thermal parts.For the viscoelastic ground model, a formulation
for finite viscoelasticity is chosen as described by Reese and Govindjee| [1998]. For the reg-
ularisation of the damage field, we base our model on the gradient-extended micromorphic
damage formulation for large deformations introduced by Brepols et al. [2020]. To include the
rate-dependencies into the damage response, we follow the approach of [Lamm et al.| [2023]]
and apply a Perzyna type ansatz for the description of the damage evolution equations (see
Perzyna [1963,|1966, 1971]]). This approach has shown to be an effective way of including rate-
dependent material properties into various kinds of material descriptions (see e.g. [Lamm et al.
[2021},2022]). To assure a straight forward implementation by means of automatic differenti-
ation, we base the whole formulation on the theory of co-rotated intermediate configurations
as described by |Holthusen et al.|[2023]].

The overall structure of this work is as follows. In Section[5.3] we introduce the theoretical
modelling ideas behind the proposed model before we come to the description of its numerical
implementation within Section[5.4] Finally, we show numerical examples of selected parameter

sensitivities as well as structural simulations in Section

5.3 Modelling of thermo-viscoelastic rate-dependent
damage

Within this contribution, we aim to solve a fully thermomechanically coupled problem consid-
ering inelastic deformations and damage within the finite strain regime. We therefore do not
only need to consider the vector valued displacement field u as the global degrees of freedom
but also the scalar valued temperature field ©. To model the damage behaviour, we make use
of a continuum damage approach and introduce the local internal damage variable D € [0, 1],

which describes the amount of damage accumulated within a point of the continuum at hand.
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Here, D = 0 refers to a virgin state of the material, while D = 1 describes total failure. For
D — 1 the material stiffness approaches zero, which could be interpreted as the formation of
a macroscopic crack. It is obvious that we limit ourselves to isotropic damage evolutions with
this choice. There are other approaches in the literature which deal with anisotropic evolutions
of a damage tensor (see Murakami and Ohno [1981]]; |Pituba and Fernandes [2011]]; Reese
et al.| [2021]]; Holthusen et al.| [2022]], among others). In this work, we, however, stick to
the assumption of isotropy, since we mainly want to study the influence of rate-dependencies
arising in the damage evolution.

For the deformation of a continuum body B, located within the reference configuration, we
introduce the stationary version of the balance of linear momentum written in terms of the
deformation gradient F', the second Piola-Kirchhoff stress tensor S, the general body force
vector by, the outward normal ny, the traction vector t, as well as prescribed displacements u,

1.e.

Div(FS)+by=0  in B,
FS- ng = ty on 8Bot (51)

u=1u on 0B, .

In order to overcome pathological mesh dependencies (see e.g. Bazant et al.|[1984];/de Borst
et al.| [1993]), we base our constitutive modelling approach on the general micromorphic
approach as suggested by [Forest [2009]], which was applied for gradient-extended damage
simulations at finite strains e.g. by Brepols et al.|[2020]. In line with these works, we
introduce an additional global micromorphic damage field D. This additional global damage
field is subsequently coupled with the local damage field D by introducing a contribution to
the Helmholtz free energy (see Section [5.3.1.1). The development of the global damage field

D is described by means of the micromorphic balance equation as

DiV(bQi—bge)—aoi—i—(loe =0 inBo
(bo, — bg,) -1 = ag, on By, (5.2)
D=D on 0B,,.

This equation describes the diffusion of the global state variable in terms of the micromorphic
body forces ay, and by, together with the internal micromorphic forces a, and by,, respectively.
The approach is directly derived from the extended version of the principle of virtual work,
thermodynamic consistency is a priori given.

To describe the change in internal energy e within B, we furthermore introduce an extended
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balance of energy (see e.g. Forest [2009]; Felder et al.|[2022]) in terms of the referential heat

flux vector qq and the external heat sources r.,; such that

1. = =
—é+S:§C—Divq0+anD—|—b0i-GradD—l—rmt:O inBo

do - o = —qo on aBoq (5-3)
0=06 on 0By,

To account for the additional contributions of the gradient-extended approach on the internal
energy, we must also include corresponding terms into the balance of energy. For more details
on the derivation of the gradient-extended framework, the interested reader is kindly referred
to the original works by [Forest [2009] and Brepols et al.| [2017a, 2020]; [Felder et al.| [2022].

Within Equations (5.1)), (5.2) and (5.3)) the corresponding Dirichlet boundary conditions are
described on the boundaries 0B,,,, 0B,,, and 0B,. These parts of the boundary are exposed
to the prescribed displacement u, global damage variable D and temperature o, respectively.
Furthermore, all relevant Neumann boundary conditions are given on the boudaries 0B8,,, 9B,
and 0B,. The imposed values on these portions of the boundary are given by the tractions t,
ap, and the heat flux gyo. These equations described here form the basis of the solution of the
thermomechanical problem and are completed in the following by the constitutive model we

have developed.

5.3.1 Constitutive framework

We start the constitutive modelling process by following the argumentation of |Lu and Pister

[1975] and multiplicatively decompose the deformation gradient F' such that
F =FyFy, 54

where Fy describes the part of the deformation which is related to thermal expansion. De-
pending on the degree of anisotropy within the thermal material response, various explicit
definitions of Fy can be found in literature (see e.g. Vujosevic and Lubarda [2002]]; Lubarda
[2004]]). Within this work, we limit ourselves to purely isotropic heat expansion. By defining
the heat expansion coefficient ajp and a reference temperature ©(, we can therefore describe
isotropic heat expansion of the continuum body at hand via the relation Fy = 9(©)I using the
heat expansion function ¥(©) = exp(ap(© — ©y)) (see e.g Lion| [20005]).

In order to describe inelastic material behaviour, we apply a further multiplicative decom-
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position of the mechanical part of the deformation gradient F; into an elastic part F, and
an inelastic part F', (see e.g. Reese and Govindjee [1998]). The full decomposition of the
deformation gradient consequently reads F = ¢(0)F .F,,. With this at hand, we can define the
right Cauchy-Green tensor

C=9*FL,Fy =9°Cy (5.5)

as well as its viscous counterpart, i.e. C, = FIF,. By following the argumentations made
in |Holthusen et al.| [2023], we make use of the right polar decomposition of the viscous
deformation gradient, i.e. ¥, = R,U,, to define the co-rotated elastic right Cauchy Green
tensor Ce, 1.e.

C.o =972U;'CU;! =v72C.. (5.6)

For details on the theory of co-rotated intermediate configurations, the interested reader is
kindly referred to the original literature given in Holthusen et al. [2023]]. Using the definition
of the co-rotated velocity gradient L, = UUU; !, we can derive the associated rate of the

co-rotated elastic right Cauchy-Green tensor as

C,=U'CU!l - (IZZ C. + CJZU) . (5.7)

For details on the corresponding derivation, the reader if referred to Appendix

5.3.1.1 General structure of the Helmholtz free energy

Motivated by the multiplicative decompositions made above, we postulate the Helmholtz free

energy for the given material as

ek
O

(.

¥ = ulD) 5 [$ea(C. ) + ey (Ce ©)] (&) + ¥l D, D, Grad D) + 44(8), (58)

g

o

where )y describes the undamaged viscoelastic energy. This energy further consists of a
rate-independent elastic equilibrium energy 1., as well as an inelastic non-equilibrium energy
Vneq (see Reese and Govindjee| [1998]]). In order to describe the temperature dependency of
the undamaged energy 1)y, we choose a linear relation of the material parameters following
the argumentations in [Lion| [1997]. It is important to mention that this is not the only feasible
choice. One could also describe the material parameters as nonlinear functions of the tem-
perature. The particular choice depends strongly on the individual behaviour of the material
at hand. In order to describe the influence of damage on the stored energy, we introduce the

quadratic function f;(D) = (1 — D)?, which successively degrades the undamaged energy
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while damage evolves. This effectively leads to a softening behaviour with zero stiffness for
D=1.

Remark. Without any doubt there exist many different choices for a suitable definition of the
damage degradation function. Among others, the most well-known are probably f; = (1 — D)
(see Lemaitre| [1971]) and f; = (1 — D)2 (see e.g. \Cordebois and Sidoroff| [1982]). Other
authors even use an exponential formulation f; = exp(—D) (see e.g. \Dimitrijevic and Hackl
[2008]). In case of the polynomial approaches, the linear approach can be directly derived from
the hypothesis of strain equivalence, whereas the quadratic form follows from the hypothesis

of energy equivalence (see e.g. the references mentioned above).

To achieve more flexibility within the damage formulation, we introduce 1); as a damage
hardening energy. This energy acts similar to isotropic hardening in the field of elasto-plasticity
(see e.g. |Chow and Wang [[1987]; Chow and Lu [1989]). Finally, we introduce 1); denoting

the energy associated with the micromorphic gradient-extension as well as the caloric energy

Y.

5.3.1.2 Thermodynamic considerations & heat sources

One goal of major importance in the development of constitutive relations is to assure that
the model developed fulfills the basic laws of thermodynamics. This is necessary to ensure
physically reasonable results of the computations conducted with the given model. In the case
of a thermomechanically coupled problem, both, the balance of energy as well as the Clausius
Duhem inequality (CDI) must be fulfilled to construct a thermodynamically consistent material
model. The former is given in Equation (5.3]), whilst the CDI can be written in terms of the

entropy 7 as
. 1. - - . 1
-+ S: §C + ap,D + by, - Grad D — n© — 6q0 - Grad © > 0. (5.9)

The fundamental relation between the specific free energy v, the internal energy e, the entropy n
as well as the thermodynamic temperature © is given by means of the Legendre transformation
e =1 + On. By combining the temporal derivative of the Helmholtz free energy given in
Equation (5.8) with the CDI and following the standard argumentation of [Coleman and Noll

[1963, 1974]], we can find the thermodynamically consistent definitions of the second Piola-
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Kirchhoft stress tensor, the entropy and the generalized micromorphic stresses as

e Rl [ oLl o0
= 2Jag, ( oc U aC, Y ) 17796 % T 9GadD’ T @D
(5.10)

We furthermore can define the damage driving force Y, the hardening driving force ¢; and the
co-rotated Mandel stress tensor 1\7[, 1.€.

_ (0fa Obg Otha al/me
Y =— ( Yo + 8D) qa = 3, fd 50 eq (5.11)

With this as well as the symmetric part of the corotated viscous velocity gradient D, := sym L,

the reduced Clausius Duhem inequality reads

- . .1
M:D, —qés+YD — 6010 -Grad © > 0. (5.12)

For a detailed derivation, the interested reader is kindly referred to Appendix In order to
fulfill Equation (5.12) we have to define reasonable equations for the evolution of the internal
variables as well as for the heat flux vector qg, which will be described in detail later in this
text.

All inelastic processes occuring within the material at hand are directly associated with the
dissipation of elastic energy. Be it the viscous response or the damage evolution, both effects
transfer elastic energy into other forms of energy. Besides other forms of energies, the most
predominant form in which the elastic energy is transformed is heat. This process can be
interpreted as internal heat sources entering the balance of energy. To derive the internal heat
sources in a thermodynamically consistent manner, we start with the Legendre transformation
e = 1+ On, describing the relation between internal energy e and the Helmholtz free energy
as well as the temperature © and entropy 7, respectively. By inserting the temporal derivative
of the Legendre transformation into the balance of energy given by Equation (5.3]) we can find
a version of the balance of energy that is given solely in terms of quantities already introduced

above, i.e.
. . 1 . = =
- -1 —nO+S: §C — Divqy + ap,D + by, - Grad D + 1y = 0. (5.13)

Subsequently, we insert the time derivative of the Helmholtz free energy (5.8) and the total time

derivative of the entropy (5.10) into this relation. In this way, we arrive at a partial differential
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equation describing the temperature field in terms of the internal heat generation 7;,,, i.e.
O = Tint + Text — Div qo. (5.14)

Here, the specific heat capacity per reference volume is given by ¢ = —0921) /00?2, If we follow
the procedures described in detail in Appendix[5.7.3] the internal heat source r;,,; = r.+17, 4174
is given in terms of the thermoelastic coupling term 7. as well as the viscous heat source 7,

and the damage related heat source 74, i.e.

10S :
=507 C
oM -
= [M-=06]:D
Ty ( 8(9@) v (5.15)

ryg = (Y— g—g@) D — (qd— %@> éd—l— a;g@b—i-%@-GradD.

5.3.1.3 Heat flux & evolution equations

A well established approach of describing a thermodynamically consistent constitutive relation
for the heat flux vector qq is Fourier’s law. Written in referential coordinates this relation often
reads

qo = —Jh C' Grad © (5.16)

and makes use of the thermal conductivity / to describe how heat flows from regions of higher
to regions of lower temperature. Here, J = det F denotes the determinant of the deformation
gradient. If we consider a material undergoing damage, we cannot assume that the conductivity
h is constant but must rather assume that it is dependent on the damage process itself. Following
the approach introduced in Dittmann et al.|[2020], we define the thermal conductivity in terms

of the virgin conductivity hj as well as the damaged conductivity hg, i.e.
k(D) = fa(D)ho + (1 = fa(D))ha. (5.17)

This definition ensures that a damaged material does no longer conduct heat in the same
manner as a virgin material, which seems physically reasonable. It is obvious, that also other
degradation functions could be used here, depending on the behaviour of the material under
investigation.

Besides the heat flux, we also need to define how the internal variables, namely the damage

variable D and the viscous right Cauchy-Green tensor C,, evolve. Following the ideas from
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e.g. [Simo [1992] and Reese and Govindjee [ 1998]], we postulate the existence of a viscoelastic

dissipation potential that is written as

. 1 N2 1
b, (M) := I tr (dev (M()) ) + T8

where £, = k,(0O) denotes the viscous bulk modulus and y,, = 1,(©) the viscous shear mod-

ulus. Here, the operators tr (o) and dev (o) = (o) — 3 tr (o) I denote the trace as well as the

tqmgﬁ (5.18)

v

deviatoric operator, respectively. From Equation (5.1T]) it becomes obvious that the co-rotated
Mandel stress tensor M gets degraded during damage evolution due to its explicit dependency
on the degradation funtion f;. This, however, is not desirable, since it would ultimately lead
to a vanishing viscous driving force for D — 1. We therefore follow the suggestion made e.g.
in|Abdel-Tawab and Weitsman [2000] and define the viscous potential in terms of the effective
co-rotated Mandel stress tensor My = f 7 'M instead. Based on these assumptions, we choose
the evolution of the viscous velocity gradient D, to being proportional to the derivative of the
dissipative potential given above with respect to the viscous driving force. By using a pull-back

operation, we can define the evolution of the viscous right Cauchy Green tensor such that

¢, =2U,D,U,

dd, (M)
=2 Ue— ==l (5.19)

_Ty (L Y 2 ;
=+ U (Mv dev (M0> + Or vol <M0>) u,,

where 1, = 1,(0) is a (nonlinear) function of the temperature and acts as the relaxation velocity

of the given material. Here, the operator vol (e) = % tr (o) I denotes the volumetric part of the
given tensorial quantity.
In order to describe the onset of damage evolution, we introduce a damage threshold

Yy = Yy(©) and define the damage function as
Dy:=Y — (Yo +qa)- (5.20)

By interpreting this function as a damage related pseudo potential, we define the evolution of
the damage variable D as well as the damage hardening variable ¢; by means of a Perzyna
type ansatz (see e.g. Perzyna|[1963]1966]). This idea yields the following damage evolution

equations in terms of the damage velocity 1y = 14(©) and the damage sensitivity parameter
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Eds i.€.
1

iy EE
D = éd = 11 <Y0+dqd) if ®420

0 else

(5.21)

It is important to note that the choice of D and £, evolving in the same manner is by no means
the only one feasible but rather the most simple assumption for damage hardening. Due to
simplicity, we however stick to this assumption within this work. Furthermore, it should be
explicitly mentioned that all material parameters used in Equations (5.19) and (5.21) are in

general described as nonlinear functions of the temperature.

Remark. The relaxation and damage velocities 1, and 4 are often also known as the reciprocal

relaxation time and the reciprocal time of damage evolution, respectively.

5.3.1.4 Particular choices of the Helmholtz free energy

The constitutive framework presented so far is very generic and not complete without the
specific definition of particular forms for the individual terms of the Helmholtz free energy
(5.8). Within this contribution we choose a Neo-Hookean type energy model for both, the elastic
equilibrium energy 1., as well as the non-equilibrium energy v,.,. Using the well known

volumetric-isochoric split (see |[Flory|[1961]), we define both of these energy contributions as

b=l (s0C) 8|+ 2 (- 1-2m). (5.22)
Here, C., is referring either to C,; or C., depending on the individual energy. Furthermore,
J, = v/det C, describes the Jacobian determinant and i, and , refer to the shear and bulk
modulus of the individual energy contribution, respectively. For the energy density associated
with damage hardening, we choose a combined formulation that is composed of a linear and
a Voce-type (Voce [1948]]) hardening term. Defining the material parameters £, r and s, this
energy contribution reads

Va(&) = % k& +r (gd + é [exp(—s&4) — 1]) . (5.23)
N—— N

linear hardeni o
inear hardening Voce-type hardening

It should be mentioned here that whilst plastic hardening might have a clear physical interpre-
tation, e.g. in the case of metal plasticity, the situation remains less clear for damage hardening
not just for polymeric materials but in general. Nevertheless, in line with the phenomenological

approach pursued in this paper, we included damage hardening into the model in order to make
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it much more flexible in adapting to experimental data. For a short study on the influence of
damage hardening, please see Appendix [5.7.4]

For the definition of the energy related to the micromorphic damage extension, we follow

the choice made, for example, by |[Brepols et al. [2017a, 2020] such that

wg(D,D,VD) = g (D-D)*+ évp VD, (5.24)
where H acts as a penalty parameter coupling the local and non-local damage fields whereas
A describes the influence of the non-local damage gradient.

In general the specific heat capacity ¢ = —0©09%*)/00? is determined by means of the
temperature dependence of the free energy function ). It therefore depends on a variety of
quantities such as, for example, the current temperature and the deformation state. Within this
contribution, however, we make the simplifying assumption that the specific heat capacity c
is a constant. To achieve this, we further assume that the caloric energy 1o implicitly takes a
suitable form which ensures this. Please note that in this way, the caloric energy does not need
to be defined explicitly but remains undetermined (see e.g. [Lion|[2000a]; Felder et al.| [2022],

among others).

5.3.2 Summary of constitutive equations

All constitutive equations derived above can be expressed in terms of the symmetric strain-like
tensors C and U,, the temperature ©, the global damage variable D and the local damage
variable D. The internal variables used within this context are U, and D, since the evolution
of the damage hardening variable &; is by definition equivalent to the evolution of D. For

convenience, we provide a summary of the constitutive equations below:

* Stresses and stress-like quantities:

© 8¢e —_ 8wne — 16 15)
S =2fu(D)g, <W +UUIWSUUI> . by, = 5o . =55

¢ Heat flux:
qo = —K Grad ©
K = [fa(D)ho + (1 — f4(D))hg) C! Grad ©

* Thermodynamically conjugate driving forces:

v ~ Oneq _ g o
M = 2fu(D)&C.2, ¥ = — (P& (W + Unea) + 54), aa= 32

* Damage onset criterion:
Py:=Y — (Yo + qa)
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* Evolution equations of damage and viscous deformation:
1

P eq
g o |m(wm)" i iz
0 else

C, = U, 5k dev (My) + 32 vol (My) ) U,.

* Internal heat generation:
_ 198
=3 ag)@ C i

= (M

rg= (Y = 2%0) D - ( — Q) ¢, + 240D + 246 - Grad D.

A brief summary and description of the material parameters used within this modelling ap-

proach is given in Table

5.4 Algorithmic implementation

For the investigation of the performances of the given material model we implemented the equa-
tions derived above into the finite element framework FEAP (Taylor and Govindjee [2020]).
For the efficient and easy computation of derivatives, we used automatic differentiation as pro-
vided by the Wolfram Mathematica package AceGen (Korelc [2002,2009]). Within the context
of the numerical implementation, we needed to find appropriate numerical strategies for the
solution of the Equations described in Section[5.3] These strategies are described briefly in the
following. For the derivation of the finite element formulation used for the gradient-extended
thermomechanical problem at hand, the interested reader is kindly referred to |[Felder et al.
[2022] and the derivations made therein.

First, we introduce the discrete time interval At = t,, — t,,_; with subscripts n and n + 1
denoting the previous and current time step, respectively. For notational simplicity, we drop
the subscript for the current time step in the following. With this in hand, we can use the
exponential mapping algorithm as described e.g. in Dettmer and Reese|[2004]] or |Vladimirov

et al.| [2009] to approximate the solution to the viscous evolution given in Equation (5.19), i.e.

U2 = Us exp (At 5 (2u dev (20> v ?j vol (20)>> Ul (525

Notice that we can now express the overall viscous evolution solely in terms of the viscous

stretch tensor U,,, which will be used in the following as the internal variable describing viscous

deformations. For further details on the derivation of this particular form of the discretized
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evolution equation, we kindly refer the interested reader to Lamm et al.| [2023]] as well as the
original literature.

In order to derive a discretized equation for the evolution of damage, we use an implicit
Euler method to discretize the associated evolution equation given in Equation (5.21)). This

leads to the following formulation:

(Pag) \%a
D =D, + Atn, <— . (5.26)
Yo+ qa
Here, (o) describes the Macauley bracket, i.e. all values of ®; that are less than zero are
explicitly set to zero.
For the solution of the resulting set of discretized coupled differential equations, we make
use of a Newton-Raphson iteration scheme for which we must rewrite the equations in terms

of residuals, i.e.

N N . 1 2 2 S N
B, = U2 = U exp (At?— (u_ dev (%) + 5—vol (20)>) Ul =0
¢ Ao ’ (5.27)

P, cq
rg=D— D, — At —_— =0
d nd(%+%)

Here, we chose to use the vector valued Voigt notation denoted by (;) to describe symmetric
tensorial quantities. We can therefore combine both residua into the residual vector r :=
[Ty, rd]T. Using the vector of arguments x := [fjv, D} T, we can find the incremental solution
Ax by solving the linearized system of equations given by J; Ax = —r. Here, the jacobian J

is directly given as the matrix of partial derivatives such that

Oty Oy

_ | oU;t oD
J, = oy org |- (5.28)

ouy;t oD

With this at hand, the updated solution vector is computed by applying xx,1 = X + AX
iteratively until sufficient convergence is achieved. Within this context, £ and k + 1 denote the
previous and current iteration step, respectively.

For the global iteration scheme of the finite element solver used by FEAP we need to further
provide the material sensitivities by means of the algorithmically consistent tangent operators
for both, the mechanical as well as the thermal subproblem. For this, let us start with the

sensitivities of the second Piola Kirchhoff stress S with respect to the independent variables
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C, D and ©, which can be written as

s 88 8S ou,

aC~ aCc T auU, | ac

&S _ oS 90U, 08 9D
dD 0U, = 9D oD 0D

§_0_8+ s ou,
de 00 ou, = 00

o5 oD
oD oC
oS oD
oD 00

(5.29)

Here, the terms marked in green color can be computed directly using automatic differentiation.

All terms marked in red on the other hand, must be found implicitly. An approach on how

to deal with this will be described later in this text. Similar to the second Piola Kirchhoff

stress tensor, we can also find the material sensitivities of the internal heat generation r;,,; with

respect to the independent variables as

drint o 8742'711& + arint . 8Uv 87ﬂint
dC ~ oC ou, = oC oD
drint o arimﬁ + arint . aUv arint
dD 9D ou, = aD oD
drint o 8741'7115 + afrint . aUv 8rint
o 00 ou, = 00 oD

Finally, the sensitivities of the heat flux vector qq are given as

dgo  9qop dqo

= -

dC 0C oD

da _ da0 0D
dD ~ 9D oD

dgo  9qop dqo

, D
oC

oD

© 90 oD 20

dqo

dGrad® —

oD
0C

oD
oD

oD

00

(5.30)

(5.31)

As mentioned above, the partial derivatives marked in red must be calculated using an

implicit formulation that will be described next. For this, let us introduce the vector y =

[C, D, @] and furthermore define the jacobian of the residual vector r with respect to y, i.e.

Jy = g—;. By applying the chain rule of differentiation, we can come up with the following
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matrix of partial derivatives,

ox 1 a,q” QQU 90y

oCc 8D 96

The partial derivatives needed for the computation of the material sensitivities are then given
directly as the corresponding submatrices of J3. A summary of the overall algorithm for the

material model proposed herein is shown in Figure [5.1]
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Thermomechanical material routine for viscoelasticity and rate-dependent dam-
age

Input: C , 0, Uv, D, matPars
Output: S, U,, D, 25, 98 08 0D 0D 0D Orie Oripe Orime 990 0d0 99 ~_0do
A 9 b

> 9C’ 0D’ 80’ 9C’ 9D’ 98’ 9C > 9D’ 90 > 9C’ 9D’ 90’ 9Grad ©

fd < ( 1-— D)2

Define energy contributions g, ¥4 €tc.
o

Ve - (% 60 (theq + Vneq) + wd)

[el2}
Qa < P

if (Y — (Yo + qq)) < 0 then

// Enforce purely viscoelastic step without damage
Ng < 0

end if

// Solve local Newton iteration

{ﬂv, D,J,J 2} + doLocalNewtonRaphsonlteration()

J3 ¢ —J; 1T,

// Get stresses and partial tangent operators

{S> %, %, 3—%, %} <+ getPK2andPartialTangents|()

// Assemble tangent operators

Por) a8
£<—ac J[1616]+ 5 @ J307, 1:6]
9 J3[1 6 71+ 285 3,07, 71

28 I8+ IE 4116, 8] + 553517, 8]

8T1nt (_ 6rznt _I_ 8Tznt J3[1 6 1 6] + 87"znt ® J3[7 1 6]

822 . a'fmtJ [1 6 7]+ Zine J5[7, 7]

Orias arm + Dot Ty 1 6 8] + %t J4[7, 8]
% — aqo + a‘m ®J3[7 1:6]

?9%) — +aq0 J3[7 7]
ot

8G3r?1?1® < K

Figure 5.1: Pseudo code for the proposed material model at integration point level.
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5.5 Numerical examples

Within the following section, we investigate the capabilities of the proposed material model
using numerical simulations. For this, we start with a general parameter study conducted
at integration point level in order to show the overall behaviour of the material model with
respect to the individual material parameters. Afterwards, we show some structural examples
including more complex geometries and boundary conditions. Here, we used the finite element
formulation recently described by [Felder et al.| [2022], which uses a Q1 based discretisation
of the fully coupled thermoelastic micromorphic damage formulation given above. For all the
simulations shown herein, we used the general purpose finite element software FEAP (Taylor
and Govindjee [2020]) together with the open source software tools GMSH (Geuzaine and
Remacle|[2009]]) and ParaView for meshing and visualization, respectively.

5.5.1 Parameter studies

For the parameter studies conducted in the following, we use a three dimensional single
element with edge length of [, = [, = [, = 1 mm and apply the corresponding boundary
conditions such that a uniaxial deformation state is achieved. For the viscoelastic energy
contribution, we choose an elastic Neo-Hookean ground model with the same parameter sets
for both, the equilibrium and the non-equilibrium parts. These are given by p,. = 30 % and
ke = 3000 %, respectively. Furthermore, the damage parameter is set to ¢4 = 1.0. Since we
do not consider a structural simulation at this stage of our investigations, the gradient extension
parameters A and H are also set to zero. Additionally, we also choose the hardening parameters
r, s and k to become zero in order to get a clearer view on the influence of the remaining
parameters. For the referential temperature, the conductivity and the volume specific heat
capacity we choose Oy = 273.15 K, hg = hy = 0.0 —Y— and ¢ = 3.588 —%—. The thermal
expansion coefficient is set to ag = 0.01 K. Since the focus of this work is on modelling
rate-dependent damage, we will limit the parameter studies shown in the following sections to
the influence of the parameters describing exactly this behaviour. For more detailed evaluations
in the context of thermocoupled finite viscoelasticity, the interested reader is kindly referred to

the existing extensive literature on this topic.

5.5.1.1 Constant deformation rate

The first example considers a displacement that is applied to the system at hand with a constant

deformation rate of 1, = 0.5 %*. We first take a look at the influence of the damage velocity
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parameter 7); with respect to the damage evolution as well as the internal heat generated due
to dissipational effects. For this purpose, we set the relaxation velocity 1, = 0.0 s~ and only
take a look at the pure damage behaviour.

—— g = 0.0001 — 14 = 0.0035 — 1y = 0.0187
ng = 0.0007 — 1y = 0.0081 — 1y = 0.1000

14 60
E
= g
: ITI 40 .
o S
& 0.5 =
E 5
Q §D 20 a
/ §
0 A T T T T T T m 0 A T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Time [s] Time [s]

Figure 5.2: Influence of the damage velocity 1, on both, the evolution of the damage variable

D (left) as well as the internal heat generation due to damage (right). Results are

given for a viscous relaxation velocity of 7, = 0 s~ 1.

Figure [5.2] shows the results of this investigation. It is clearly visible that higher values of
74 result in a faster evolution of damage and vice versa. Similarly, the heat generated due
to the overall dissipation shows that a higher damage velocity also yields a faster release of
energy. Furthermore, it is visible that lower values of 7, lead to more heat being generated
throughout the damage process. If we take a look at the boundary conditions applied in this
example, this result is as expected. Since we specify a constant deformation rate, more and
more deformation related energy is introduced into the system over time. On the other hand,
the damage progression in the material develops more slowly as the damage velocity 7, is
decreased. This leads to the fact that for smaller values of 7., more energy can be introduced
into the system before being released again due to the damage process.

Next, we consider the influence of the damage threshold Y{. For this, we set the damage
velocity to 7y = 0.01 s~! and evaluate the same boundary value problem as above for a varying
Yy Figure[5.3|shows the results of this variation. We can observe that a lower damage threshold
lead to an earlier onset of the damage process. A similar behaviour is also reflected within the
progression of the heat generation due to damage, which is depicted on the right plot in Figure
Here, higher values of Y{, again yield a later damage onset together with more energy

being released throughout the damage process. Similarly to the example above, this is mainly
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due to the fact that, the later damage starts to evolve, the more energy is already stored in the

system. This additional energy can then be released during the damage of the material.
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Figure 5.3: Influence of the damage threshold Y, on both, the evolution of the damage variable
D (left) as well as the internal heat generation due to damage (right). Results are

given for a viscous relaxation velocity of 7, = 0 s~* as well as a damage velocity

ofng =0.1s7%

5.5.1.2 Relaxation

For the next example, we consider the simulation of a uniaxial relaxation experiment. Here
we increase the displacement within 0.2 s to v, = 0.5 mm and then keep it constant. The
influence of the damage velocity parameter 7; on the reaction force and the heat generated
due to dissipation is shown in Figure [5.4a As shown on the left side of Figure [5.4a] the
reduction of the reaction force in the loading direction is faster with increasing 1. For
example, for ; = 0.0433 s, complete damage is reached after about one second, while for
na = 0.0001 s~1, about 90 per cent of the initial reaction force is still present even after 5 s.
Furthermore, it can be seen that the peak value of the reaction force reduces with increasing
74 and shifts further forward. This effect is to be expected because the accumulated damage in
the material under consideration can no longer be neglected at high damage speeds even in the
ascending load branch. As a result, a correspondingly high initial reaction force can only build
up at very low damage velocities. This behaviour is also reflected in the course of the heat
development, as it is depicted on the right side of Figure[5.4al A faster damage development

leads here to a faster and higher increase in the generated heat at high values of 7. For low
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values of the damage rate, the high point of dissipation is shifted backwards in time and the
heat curve flattens out.
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(b) Influence of the damage threshold Y. Results given for a damage velocity of g = 0.01 s~1.

Figure 5.4: Influence of the damage velocity 7, and the damage threshold Y{, on the internal heat

generation for a relaxation simulation. Results are given for a viscous relaxation

velocity of n, = 0s™ 1.

Next, we take a look at the evolution of the damage response as well as the corresponding
heat production for variations in the damage threshold Y. Figure [5.4b| shows both of these
quantities over time for a constant damage velocity 1; = 0.01 s~* and a viscous relaxation
velocity 17, = 0.0 s™1. These results show a different behaviour of the damage response as the

ones given in Figure [5.4a] It is clearly visible that the damage process starts earlier for lower
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values of Yj. This effect is as expected, since the lower the threshold, the earlier it is overshot
during loading and therefore triggers the damage process. Another interesting effect that can
be seen in the results is the fact that for higher values of Y{, the solution seems to converge
towards a stationary value for the reaction force that is not equal to zero. Whilst such an effect
might be unexpected at first sight, it can easily be explained and is in line with the theory lying
behind the proposed model. If damage is triggered in the material, its stiffness and therefore
also the stored energy is reduced gradually. For higher values of the damage threshold, this can
lead to a point at which the damage driving force Y becomes smaller than the given threshold
and the damage process comes to an end. This effect is also very well reflected in the heat
generation due to damage shown on the right side of Figure[5.4b] The lower the value of Y, the
earlier energy is dissipated due to the damage process and transformed into heat. Furthermore,
the total amount of energy dissipated over time given by the integral of the heat curves is lower
for higher values of the damage threshold. This is a clear indicator for the interpretation that
in such cases not all of the elastically stored energy is dissipated leading to a residual stiffness

of the material.

5.5.1.3 Creep

In the following example, we show the simulation of a simple creep experiment. For this, a
force of F' = 5 N was uniaxially applied within 0.1 s and kept constant for the rest of the
simulation. We again considered the influence of the damage velocity 7, on the development
of the displacement as well as the associated heat generation. The results of this investigation
can be found in Figure [5.5a] It can be observed that, similarly to the results from in the
investigations shown above, a higher value of 7); results in a faster accumulation of damage
within the material. In the case of this creep simulation this yields an exponential growth
of the measured displacement. Since a fully damaged material has effectively zero stiffness,
this would ultimately lead to an infinite displacement. This behaviour is nicely reflected in
the evaluation shown on the left side of Figure [5.5al Considering the heat generation due
to damage in the material, the right side of Figure [5.5a shows that the heat generation is
directly proportional to the displacement measured and therefore also to the amount of damage
accumulated. Here it is evident that a faster development of damage also leads to a higher
initial heat release.

Furthermore, Figure[5.5b|shows the results from a parameter study considering the influence
of the damage threshold Y; on the same creep experiment. For this, we show both, the
displacement as well as the generated heat over time for constant values of the damage velocity

ng = 0.01 s~! and a viscous relaxation velocity of 7, = 0.0 s~1. Here again, lower values of
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Y) lead to a faster and more pronounced evolution of damage and therefore of the associated
displacements as well as the heat generated due to dissipation.
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Figure 5.5: Influence of the damage velocity 7, and of the damage threshold Y; on the evolution

of the global displacements as well as the internal heat generation for a creep
simulation. Results are given for a viscous relaxation velocity of 7, = 0 s7L.
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5.5.1.4 Cyclic loading

= 087
g
= 0.6
=
(5]
5 04
2
2 02
o)
0 | I I I I
0 20 40 60
Time [s]

Figure 5.6: Loading pattern for cyclic loading simulation used in parameter study.

As a final example in this section on the influence of material parameters, we show the sim-
ulation of a displacement-driven cyclic loading experiment conducted under uniaxial loading
conditions. For this, we linearly increased the displacement during the first 5 s to a value of
u, = 0.3 mm and decreased it afterwards to v, = 0 mm. Two additional cycles were applied
afterwards with the maximum values of the displacement of v, = 0.6 mm at ¢ = 20 s and
u, = 0.9 mm at ¢ = 45 s (see Figure [5.6). For this investigation, we took a look at the
influence of the damage velocity 7, as well as the damage threshold Y. The results showing
their influence on the progression of damage as well as the associated heat generation are
shown in Figures [5.7]and [5.8] respectively.

Figure|5.7|shows the progression of damage over time on the left as well as the development
of the corresponding heat generation on the right for four different choices of the damage
velocity 7,. The progression of the quantities of interest over time can be found in Appendix
Here it can be observed that damage only increases during the loading phases and
remains constant during the unloading phases. This is also reflected in the heat generation in
that the highest values occur at those points in time where the damage rate reaches its respective
maximum value. Depending on the amount of newly accumulated damage during one loading
cycle, the additional amount of generated heat also differs. For larger steps in the damage
progression also more heat is generated and vice versa. This effect makes total sense from a
qualitative point of view. Since the development of damage changes with a change in 7,4, the
corresponding maximum values in the heat generation are shifted in time. Furthermore, it can
be observed that the curves for n; = 0.02 s7! and 7y = 0.03 s~! strongly converge in the last

load cycle.
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Figure 5.7: Influence of the damage velocity 7, on the internal heat generation for a cyclic
loading simulation. Results are given for a viscous relaxation velocity of 1), = 0s™ .
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Table 5.1: List of all material parameters that are included in the proposed material model and
are used for the structural simulations.

| Symbol | Value | Units | Description

fegq 6.0 # Elastic shear modulus
Kneq 3000 —- | Elastic bulk modulus
Lo 6.0 — | Viscous shear modulus
Koy 3000 —- | Viscous bulk modulus
Mo 0.055 % Viscoelastic relaxation velocity
N 0.002 < Damage evolution velocity
Y, 1.0 L. | Damage threshold
E€d 1.0 — Damage evolution shape parameter
k 0.0 % Linear damage hardening parameter
r 0.0 % Voce-type damage hardening parameter 1
S 1.0 — Voce-type damage hardening parameter 2
H 10° % Micromorphic coupling between local an non-local damage fields
A 50 N mm? | Micromorphic influence of non-local damage gradient
O 293.15 K Referential temperature
ho 0.19 | Y= | Undamaged heat conductivity
hq 0.0 % Damaged heat conductivity
c 3.588 mmJ3 Volume specific heat capacity
e 0.001 - Heat expansion coefficient

This can be attributed to the fact that the damage value of D = (.93 represents the maximum
damage level achievable under the given boundary conditions. This is also supported by the
fact that the damage rate for ; = 0.03 s~! strongly decreases during this cycle. Figure
shows the influence of the damage threshold Y; on the development of both, damage (left)
and the corresponding heat generation (right). These results were achieved with a viscous
relaxation velocity of 7, = 0 s~! and a damage velocity of 77; = 0.01 s~!. As described above,
the corresponding force-displacement diagrams are given in Appendix [5.7.5] Especially for
Yy = 4.0 and Y, = 8.0 the influence of the damage threshold is clearly visible, because here no
damage is accumulated in the first loading cycle. Only in the last two cycles is the corresponding
threshold exceeded at the specified load, such that damage can develop in the material. For a
value of Y, = 8.0 this effect can be observed particularly well. The same behaviour can also
be observed in the corresponding curves of the generated heat. If we compare the results from
this investigation with those from Figure it is immediately apparent that the choice of the
damage threshold also has a direct influence on the amount of accumulated damage after three
load cycles. For the same damage rate 7,;, more damage can build up in the material if Yj is

chosen smaller.
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5.5.2 Structural examples

After having shown and evaluated the influences of some of the material parameters associated
with the rate dependent behaviour of the proposed damage model, we will next show some
examples of simulations using more complex boundary value problems. For this, we first show
the results of a relaxation experiment conducted on a double notched specimen. Next, we show
the behaviour of a creep simulation performed usind a plate with a singular hole at its center.
We furthermore present results of the simulation of a silicone duckbill valve subjected to a
cyclic loading scenario. If not stated otherwise for the individual example, the related material
parameters parameters used for the simulation are given in Table[5.1] It is important to point
out that we chose the parameters related to inelastic effects as constants. This rather strong
assumption should be replaced with temperature related functions adjusted to experimental
data once available. For the time being, we use this choice for demonstrative purpose only.
Furthermore, we would like to point out that the choice of the viscous and elastic moduli having
the same value is in this case arbitrary, since the parameters used in these examples were not

determined using experimental data.
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Figure 5.9: Schematic drawing of the double notched specimen geometry used for the simu-
lation of a relaxation experiment. Due to symmetry, only a quarter of the whole
geometry is used. The simulation is performed using a full three dimensional
model.

5.5.2.1 Double notched specimen

We start with the example of a simulation of a symmetrically notched specimen subjected to
uniaxial boundary conditions. Due to the symmetry of the given boundary value problem, we
used only a quarter of the overall structure for the simulation. Figure [5.9)shows a schematic
drawing of the boundary value problem used here. The time dependent displacement boundary

condition is applied with a constant rate during the first 20 s and held constant afterwards at a



5.5 Numerical examples 123

t i ta i ty | —neg = 508
30 : : : Ne = 587
= —ng = 912
Z | | | Tl
s | = | T s
= i | | | — Nel =
g 20 | | | — g = 5865
.8 I I I
S | | |
= | | |
5 10 | | |
~ | | |
| | |
| | |
| | |
O ! T I T 1
0 20 40 60 80
Time [s]

Figure 5.10: Results of the development of the reaction force recorded from the relaxation
simulation of the double notched specimen. Evaluated for six different levels of
refinement. The number of elements used is given by n.;. Convergence of the
solution can be observed for finer discretizations.

value of u, = 10 mm. The spatial discretization is refined in the region of the notches, since
this is the place where damage is supposed to appear most predominantly.

In order to obtain a unique solution, we investigated the influence of the mesh size for the
given problem. For this, we refined the mesh mainly within the region of interest around
the notches. The results of this investigation are shown in Figure [5.10] Here, the reaction
force due to the applied displacement boundary conditions is shown for six different levels
of discretization. It can be observed that finer discretizations lead to a converged solution.
Furthermore, it can be seen that the mesh dependencies only effect the solution in the high
damage regime starting at around 55 s within this simulation. This is an important finding,
since many applications do not need to take the high damage regime into account. This gives
such applications the advantage of using coarser spatial discretisation and therefore saving
computational costs. Figure shows selected contour plots for the results of the damage
variable D (left), the effective viscous stretch U, .;; = /U, : U, (right) and the overall
temperature © (middle) at three different points in time. The original (undeformed) geometry
is denoted by black lines and all elements with a damage value of D > 0.99 are removed from
the pictures. Attime¢ = 20 s the maximum displacement boundary condition is applied, which
is kept constant in the following. Due to the relatively low damage velocity 74, no significant
damage accumulation can yet be observed in the structure at this point. The effective viscous
strain, on the other hand, is already greater than zero throughout the structure at this point in

time, with higher values observed in the area of the narrowest part of the cross-section. As
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can be seen in the temperature distribution, this leads to a temperature increase in the same
region of the sample. The temperature maximum can be observed, as expected, in the area of
the largest viscous strains. This is reasonable since the most energy is dissipated at this point
in space.

As already shown in Figure[5.10] viscous deformation dominates over damage in the initial
phase of the relaxation process. Here, especially the area at the notch is influenced by
viscoelastic deformation and leads to a corresponding heating of the material in this area. In
the later course of the simulation, however, damage dominates as the main inelastic effect. This
becomes very clear in the lower two rows of Figure[5.11] Here, damage starts in the area of the
notch and develops gradually from there towards the middle symmetry axis of the structure.
The energy released in this process contributes significantly to an increase in the temperature
of the material in the area of the crack edge. As the crack progresses, the cross-sectional area
available for load transfer is reduced and the overall stiffness of the structure decreases. This
allows the upper part of the structure to contract more, inhibiting the viscous strain process in
this area. As soon as the crack has moved completely through the material, the corresponding
structure can be considered as completely unloaded under the given boundary conditions.
From this point in time onwards, further heat production therefore only takes place in regions
where the material relaxes towards its stress free configuration. Therefore, the viscous strains
still existing in the material can now be gradually reduced, so that the original geometric
dimensions of the structure are achieved again over time. Changes in termperature after this
point are mainly due to the conduction of heat throughout the undamaged material.

Overall, it can be stated that the material behaviour observed here can be assessed as plausible
from a qualitative point of view. In particular, the effect of damage related full relaxation as
well as the coupling between the inelastic effects considered and the temperature development

can be captured nicely in this structural simulation.
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Figure 5.11: Selected results of the relaxation simulation at a double notched specimen. Only
the middle of the symmetric part of the specimen is shown. The original (un-
deformed) geometry is denoted by black lines. Elements with a damage value
of D > 0.99 are removed from the pictures. The effective viscous stretch is
calculated as U, s = /U, : U,. Points in time ?;, ¢, and ¢3 are highlighted in

Figure [5.10}
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5.5.2.2 Plate with hole

In the second example, we consider the simulation of a plate with a singular hole located in its
middle. Again, due to the symmetry of the given system, we used only a quarter of the overall
structure for the simulation. The structure including boundary values is shown schematically
in Figure We applied a time dependent surface loading ¢,.(¢) on the outer left and right
edges of the plate. This loading was linearly increased during the first 10 s until a value

of g, = 0.5 mﬁﬂ was reached. During the remainder of the simulation, the load was held

constant resulting in a classical creep setup. We chose to refine the spatial discretization at the
symmetry plane that is perpendicular to the loading direction. This is the region where damage
is supposed to mainly occur during the simulation which yields the need for a relatively fine

mesh to capture the damage process precisely.
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Figure 5.12: Schematic drawing of the plate with holeg eometry used for the simulation of
a creep experiment. Due to symmetry, only a quarter of the whole geometry is
used. The simulation is performed using a full three dimensional model.

We again investigated the influence of the spatial discretization on the uniqueness of the
solution for this boundary value problem. Figure [5.13|shows the displacement over time for
two different levels of discretization. It is clearly visible that the results for both discretizations
yield the same solution even though the number of elements was nearly four times higher for
the finer mesh than for the coarse mesh. This behaviour gives us confidence to assume that

this simulation converges towards a unique solution.
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Figure[5.13|furthermore shows a pronounced creep damage behaviour of the given structure.
This behaviour can be observed for many materials and is characterised by an initial phase
of viscous creep followed by abrupt crack propagation, leading to an exponential increase in
the measured displacements. Classical rate-independent damage models are usually not able
to reproduce this behaviour, as full damage always occurs at the time of the highest energy
of the system. However, this is the case directly at the beginning of the creep process, which
means that complete damage to the material would also occur at this point. In contrast, the
model proposed by us in this paper is able to represent the desired behaviour in a qualitatively

meaningful way.
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Figure 5.13: Results of the development of the displacement recorded from the creep simulation
of the plate with a hole. Evaluated for two different levels of refinement. The
number of elements used is given by n.;.

If we take a look at the development of the damage variable D, the effective viscous stretch
Uy.eff and the temperature © in Figure at the end of the simulation, the rapid propagation
of damage at this point in time becomes particularly visible. This is accompanied by a strong
increase in temperature in the area where most of the damage is accumulated. Compared to this,
the effective viscous stretch develops only relatively slowly at this point. This can be associated
with creep process already progressing towards its end. In contrast to the previous structural
example from Section[5.5.2.1] an increasing damage propagation does not automatically lead
to a reduction of loading of the structure and, thus, does not necessarily reduce the development

of viscous stretches.
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Figure 5.14: Selected results of the relaxation simulation of a plate with hole. Only the
symmetric part of the specimen is shown. The original (undeformed) geometry
is denoted by black lines. The effective viscous stretch is calculated as U, .rf =

VU, : U,.

5.5.2.3 Duckbill check valve

As a last structural example, we show the simulation of a cyclically loaded duckbill valve.
These types of valves are often used as check valves to ensure a unidirectional fluid flow within
a certain system, for example, in ventilation systems used for medical purpose. Due to the
large amount of cycles such valves are subjected to, fatigue due to creep damage is a big issue.
It is therefore of interest to identify the regions within the valve which are most susceptible for
such damage effects.

Figure[5.15a/shows the geometric representation of the duckbill valve used in this simulation.
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Due to the symmetric properties of the system, we only used a quarter of the valve for the
computation and applied the corresponding symmetric boundary conditions. During the whole
simulation, the bottom surface at = = 0 mm of the valve was held fixed in all three spatial
directions. A varying normal pressure with maximum value of p,,,, = 2.7 MPa was applied
to the inner surface of the valve in a sawtooth pattern as shown in the upper graph of Figure

[5.15b] The inital temperature is set to ©y = 293.15 K and no flux over the boundary of the
valve is applied.

T T
0 200 400 600 800 1,000

| |
_ 111 1o
0 \ \ T T \

T
0 200 400 600 800 1,000

Time [s]

3ty

Displacement [mm]
(@]
|

Z

=

(a) Geometric representation of the valve. The bot- (b) Top: Loading path for pressure applied on the
tom of the system (¢ = 0 mm) is held fixed in inside of the valve. Botfom: Displacement at
all spatial dimensions. Only a quarter of the point a in y-direction over time.
overall geometry is used by exposing symmet-
ric boundary conditions.

Figure 5.15: Left: Geometric representation of the duckbill valve showing the spatial discreti-
sation of the symmetric part of the valve. The bottom surface of the valve is held
fixed in all three spatial directions during the whole simulation. A varying normal
pressure of p,,,., = 2.7 MPais applied uniformly on the inner surface of the valve.

Right: The loading path of the applied pressure p as well as the corresponding
displacement of point a over time.

The bottom graph of Figure [5.15b] shows the y-directional displacement response of the
valve at point a (see Figure[5.15b) over time. During the first few loading cycles, the nonlinear,
visco-elastic material response is clearly visible. The amount of damage within the valve does
not yet play a role in the displacement response of the valves cusp. Within the last loading

cycle, however, the damage response becomes the dominating inelastic effect and consequently
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leads to a creep-like failure of the overall valve.
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Figure 5.16: Selected results for the amount of accumulated damage (top) and the temperature
distribution (bottom) for four destinct points in time.

This effect is reflected in both, the displacement response and the spatial distribution of the
damage field as shown in Figure [5.16] Here, the damage response at four different points in
time is shown together with the temperature distribution within the valve. It is obvious from
these results that the folding edge of the valve is the most crucial part when it comes to damage
of the material. While the value of accumulated damage within this region is still relatively
low at the end of the third and fourth loading cycle, creep failure leads to a rapid increase in
the amount of damage afterwards. The heat produced by the damage process within the region
of interest consequently leads to a slight rise in temperature of the whole valve. Overall, based
on this simulation, the statement can be made that especially the folded edge shows a great risk
for incipient damage. It might therefore be of high interest to reinforce these areas to ensure

longevity of the valve.
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5.6 Conclusion and outlook

In this contribution, we introduced a fully thermomechanically coupled material model for
damage and failure within polymeric materials subjected to finite strains. We made use of the
multiplicative decomposition of the deformation gradient in mechanical and thermal parts as
well as elastic and inelastic parts. Following well established models from the literature, we
incorporated viscoelastic effects by introducing an additive decomposition of the free energy
into equilibrium and non-equilibrium parts. The desired rate-dependent damage response was
captured using a Perzyna-type ansatz for the evolution of the internal damage variable. To
avoid pathological mesh dependencies, we furthermore introduced a gradient-extension of the
damage field. Based on the balance of energy, we also derived all necessary source terms
of internal heat generation for the given inelastic effects of the material. The entire model
was derived in a thermodynamically consistent manner and implemented into finite element
software making use of automatic differentiation for the calculation of all partial derivatives.
To show the capabilities of the given model, we conducted and showed several numerical
studies including investigations of the parameter influences as well as structural examples.
Doing so, we were able to show that the model behaves as expected and gives qualitatively
good results. Due to a current lack of experimental data capturing the thermal effects of
rate-dependent damage within rubberlike polymers, we were not yet able to validate the given
model. This should be a plausible next step for further investigations. For this, experimental
setups similar to the ones used in |Ovalle Rodas et al.|[2016] or Hottin et al. [2023]] could, for
example, be used. Furthermore, it is well known that polymeric materials behave in a nearly
incompressible way. This general material property can lead to undesired stiffening effects of
the results due to locking effects of lower order finite element functions. To ensure that this
model does not suffer from such problems, an extension of the finite element formulation using
methods such as reduced integration might be benefitial (see e.g. |[Reese|[2005]; Barfusz et al.
[2021], among others).
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5.7 Appendix

5.7.1 Total time derivative of the co-rotated elastic right
Cauchy-Green tensor

The total time derivative of the co-rotated elastic right Cauchy-Green tensor can be written

using the product rule of calculus as
C.=U;'CU;! + U;'CUS! + U ICU .

Using the relations U;! = —U;'U,U;" and C, = U;'CU;" together with the definition
of the viscous velocity gradient L, = UUU; !, we can rewrite the rate of the co-rotated elastic

right Cauchy-Green tensor as
C,=U'CU!l - (Efée + CEL,) .

5.7.2 Derivation of the reduced Clausius Duhem inequality

We start with the definition of the Helmholtz free energy as given in Equation (5.8]) and take

its temporal derivative, i.e.

' dfa g
Y= ( o + 8D) D

aweq . - awneq . =
+fag (80 . C+ el : C,

(f L (s + Yoeg) + aw@> o

00
+ awdéd + 81@[} 4 0V _ . Grad D.

0&q oD 0Grad D

Using the identity ée = U;ICU; ! — (ifée + éeiv>, we are able to reformulate the later

part of the second term such that

Oneq . C, = U;law—’feqU;l ¢ = Pnea (IZZ’CS + Cei,U)
o0C, o0C, 0C,
_u Pyt ¢ oG, W,

oC, ° 9C.
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Here, we assumed that 1),,., is an isotropic function of its arguments, which enabled us to make
use of the symmetric properties of the double contracting product and describe the last term
of this equation in terms of the symmetric part of the viscous velocity gradient D, = sym L,.

With this at hand, we can describe the temporal derivative given above as

. (afd% oy

oD
- fd (88%‘1 - leaﬁcﬁquf) :C
+ 2fd aawé:" : D,
(fd (theg + Pneq) + a@) S
+ ?gjéd+ Wap 8CiidD Grad D.

If we include this form into the Clausius-Duhem inequality given by Equation (5.9) and define

the co-rotated Mandel stress tensor as M = 2 fde% ~eag; éeq, we arrive at
. a% — a,Ivz)ne — -
=|S-2 1 LU 24Ut ) ) C
1= [5-21ig (56 + v G|
Ofa C%d O ;
D—
( Yot oD ) agd G
:VY 2=Qd
o .
+ {n_(fd (Veq + Vneq) + agzga)}@‘i‘M:Dv

. 9 .
+ {aol — a—%l] D+ {boi aéﬂg} -Grad D

1
—6q0~Grad® >0

By following the argumentations of Coleman and Noll|[1963]], the corresponding bracket terms
should vanish and yield the definition of the generalized stress measures as well as the entropy.

With this, the reduced Clausius-Duhem inequality is given as

- ~ . . 1
M:Dv—qdfd—i-YD—6q0'Grad@ZO.
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5.7.3 Derivation of heat sources

To find the thermodynamically consistent heat source terms for the dissipative behaviour of
the material, we start with a reformulation of the temporal derivative given in Equation (5.7.2))

in terms of the driving forces, i.e.

. . . . i = 1 . ~
b ==YD 10+ qua+ao.D +bg, - Grad D+ 58 : C ~M: D,

By considering the change of internal energy ¢ = Y + 1O + 1O and including the temporal

derivative above, we can find the following formulation:

@ﬁ:YD—qdfd+1\~/[:f)v—DiVQ()-I—Text-
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wandc— — 507

With further using the identities 1 = we can come up with the balance of

energy as given in Equation (5.14), i.e.

C@ = (Y - 8—Y@> (qd an ) ﬁd + aaoi @5 + aboi O - Gradf)

00 EE) 00 00
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5.7.4 Influence of damage hardening

The following study shows the influence of damage hardening on the material response. For
this, we used the same setup of a constant deformation rate as described in Section[5.5.1.1] To

illustrate the effect of damage hardening in a pronounced manner, we used a damage velocity

of g = 0.5 s™! for these evaluations. In Figures|5.17}|5.18|and [5.19| we show the influence on

the hardening parameters &, r and s on both, the damage evolution as well as the stress-strain
response. For further and more detailed studies on the effect of damage hardening, we refer the
interested reader to Brepols et al. [2017a]] and Brepols et al.| [2020] and the examples shown

therein.
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Figure 5.17: Influence of the damage hardening parameter k& on the damage evolution and
the stress-strain response. Results are given for a viscous relaxation velocity of

n, = 0s7L.
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Figure 5.18: Influence of the damage hardening parameter r» on the damage evolution and

the stress-strain response. Results are given for a viscous relaxation velocity of
n, =0s1,
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Figure 5.19: Influence of the damage hardening parameter s on the damage evolution and

the stress-strain response. Results are given for a viscous relaxation velocity of
n, = 0s71.

5.7.5 Force displacement diagrams of cyclic loading scenario

The corresponding force-displacement diagrams for the study conducted in Section[5.5.1.4]are
given here in Figure
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Figure 5.20: Influence of the damage velocity 7, and the damage threshold Y|, on the internal

heat generation for the cyclic loading case given in Section[5.5.1.4] Results are
given for a viscous relaxation velocity of 1, = 0 s~ 1.



6 Conclusions and Outlook

This dissertation was concerned with mathematical modelling approaches for different rate-
dependent and inelastic material responses. In this context particular interest was on the
description of continuum based modelling approaches for the prediction of biological growth
in artificially cultivated tissue as well as rate-dependent damage processes arising in polymeric
materials. As is usual in research, not all of the relevant research questions could be fully
answered within this work. In the following, a brief summary of the work is given and some
open questions are raised, which should be further investigated in subsequent investigations.
The first article presented in Chapter [2] dealt with a novel modelling approach for the
prediction of volumetric growth effects arising in artificially grown tissue. Utilizing the
assumption of a stress driven homeostatic state, a homeostatic potential was used as the basis
for the evolution of the growth related part of the deformation. This novel idea was mainly
inspired by the classical methods from the field of finite viscoplasticity and adapted accordingly.
The main difference with respect to viscoplastic theory is that the evolution of inelastic strains
is triggerd always if the current stress state of the material does not lie on the homeostatic
surface. By applying a rate-dependent associative evolution law based on the homeostatic
potential, the growth related deformations evolve until homeostasis is reached. Without further
modifications, this formulation tends to grow or shrink indefinety if no restricting boundary
conditions are applied. The model therefore introduces an additional energy contribution
which subsequently counteracts the growth process. This additional energy can be interpreted
as some kind of hydrostatic pressure arising from the nearly incompressible growth related
part of the deformation. Within the examples presented in this publications, the model was
able to predict both, isotropic and anisotropic volumetric growth behaviour using one single
material formulation. The destiction between these two types of growth response does not
have to be made a-priori anymore but is merely a question of the boundary conditions applied.
The growth tensor subsequently takes any form needed to fulfill the assumption of stress
driven homeostasis. The advantages of such an approach have been shown in comparison with
a classical isotropic growth ansatz. Furthermore, comparisons with experimental data have

shown that the model is able to accurately predict the growth induced stress and deformation for
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artificially grown tissue. So far, the formulation presented in this article makes use of a simple
1sotropic elastic ground model and neglects other important aspects of biological tissue. Since
the tissue itself is composed of various constituents, such as e.g. collagen, elastin and smooth
muscle cells, the assumption of material isotropy is far from ideal. Generally, an initially
isotropic material with evolving anisotropy due to collagen disposal in the extracellular matrix
should be considered. A first step towards such a model has already been taken in |Holthusen
et al.|[2023]] and|Sesa et al.|[2023]]. Furthermore, the influence of various different homeostatic
potential formulations should be investigated to find the most suitable for a given biological
tissue (see |[Holthusen et al.| [2023]]). Furthermore, explicit modelling of cell growth and
movement as well as the associated interactions on the production of e.g. elastin and collagen
could be investigated. Interesting work that takes similar effects into account can be found,
for example, in Manjunatha et al.| [2022] or |Gierig et al.| [2023]]. Artificially grown tissue is
usually only used in combination with non-biological reinforcement (e.g. polymer fibres) in
the context of implant production. Therefore, an extension of the material model should be
considered, which also includes these non-biological components. Initial work on this topic
can be found for the case of the artificially grown heart valve in|Sodhani et al.|[2016, 2018]].
The second article presented in Chapter [3| considered the rate-dependent modelling of
damage within materials subjected to finite strains. It focused on a purely elastic, isotropic
continuum damage formulation for which an Perzyna-type ansatz was chosen to describe the
evolution of the damage variable. With this simple extension, the publication showed that a
rate-dependent damage response can be predicted nicely in a qualitative sense. A quantitative
comparison with experimental results has not been conducted in this publication. Furthermore,
it is clear that a purely elastic ground model for this material description is far from realistic.
This is especially the case when considering highly rate-dependent materials such as polymers.
Article three presented in Chapter ] therefore showed a thermodynamically consistent ex-
tension of the previously published rate-dependent damage model to include also viscoelastic
material behaviour at finite strains. For this, the multiplicative decomposition of the deforma-
tion gradient into elastic and viscous parts was utilized and the well known approach by |Reese
and Govindjee [1998] was adopted to describe the evolution of the inelastic deformations. In
addition, the model was formulated in terms of a corotated intermediate formulation (Holthusen
et al. [2023]]) to allow for a more flexible and straightforward implementation into computer
code using automatic differentiation. The publication not only showed various parameter
studies elaborating on the differences between the two individual rate-dependent formulations
used in the model. It also showed first comparisons with experimental data demonstrating that

the model formulation is able to accurately predict the creep damage behaviour in polymeric
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adhesives under uniaxial tension. This comparison is promising but still far from a full vali-
dation of the model. It is therefore of particular interest to perform an extensive validation to
the model. Such a process should include experimental data captured under various loading
scenarios such as, for example, cyclic or monotonic loading with various loading rates. It
is furthermore a well-known fact that any inelastic deformation process leads to a loss of
elastic energy during the process itself. This energy is usually assumed to be converted into
heat which itself influences the deformation process. This is especially true for polymeric
materials, which are known for their strongly termperature and rate-dependent behaviour.

This is the reason why the fourth article presented in Chapter [5] considered the consistent
extension of the given rate-dependent damage model to cover also thermomechanical coupling
effects. Here, a bilateral coupling was chosen, where the dissipated energy gets converted
into heat and the heat influences the material response. This influence is captured by means
of an explicit dependency of the material paramters on the current temperature as well as the
heat expansion of the material. To achieve this, the publication made use of an additional
multiplicative decomposition of the deformatioin gradient into thermal and mechanical parts.
Based on the balance of energy, the source terms for heat generation due to inelastic dissipation
were derived in a thermodynamically sound manner. Showing extensive parameter studies and
structural examples, the model was able to capture the overall dissipative thermomechanical
behaviour well.

Following up on the approach taken in the last three articles presented in this dissertation to
describe rate-dependent damage in polymers, there are some open questions and investigations
that should be addressed in the future. A rigorous validation of the model based on experimen-
tal studies is certainly one of them and has already been mentioned in a previous paragraph.
Furthermore, polymers are known for their almost incompressible material behaviour, which
can lead to some problems when solving the underlying equations using standard finite element
formulations. Especially when using simple linear ansatz functions, it is known that incom-
pressible material properties can lead to undesired locking phenomena. In order to avoid this,
appropriate technologies should be used in the future that prevent such behaviour. For example,
reduced integration methods such as those described in Reese [2005] or Barfusz et al.|[2021],
among others, could be used for this purpose. Furthermore, filled polymers in particular show
pronounced cavity formation under high hydrostatic load. In many cases, this leads to a strong
and permanent decrease in stiffness without plastic deformation. Consideration of this effect
should therefore be taken into account in subsequent iterations of the material model. The
description of the Mullins effect could also be of great importance for a realistic applicability

of the material model and should therefore be taken into account in the future.
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Finally, it should be mentioned at this point that for some time now there have been major
innovations in the field of material modelling in terms of the modelling approaches used.
While analytical approaches played a major role until a few years ago, there have been a large
number of data-based modelling methods in the field of material modelling since the hype
surrounding the topic of machine learning has taken off. The charm of these approaches
is usually that the model formulation is determined autonomously and automatically by the
machine learning algorithm on the basis of the available experimental data. However, one of
the major drawbacks of many formulations in this field is the difficulty in ensuring a priori
that generally applicable physical laws, such as thermodynamic consistency, are satisfied by
these formulations. It is only recently, for example, that works such as the ones of Linka et al.
[2021]; Linka and Kuhl| [2023]] have made great progress on this issue, possibly opening the
door to a new era of material models.

The field of material modelling remains exciting.
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