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ABSTRACT This article proposes the application of correlated Gaussian processes (Corr-GPs) for the
recovery of missing intervals in power systems signals. Based on only local power system topology, the
presented algorithm combines cross-channel information of the considered signals with a universal, non-
parametric probabilistic machine learning regression to recover missing data. Starting from the theoretical
background, the proposed approach is presented and contextualized in the framework of signal recovery for
power systems. Then, by making use of real data collected from the Living Lab Energy Campus—a real-life
laboratory established at Forschungszentrum Jülich—we demonstrate the use of the proposed approach for
recovering distribution grid signals. We evaluate the performances of Corr-GP compared with those of other
state-of-the-art techniques. In addition to outperformance in terms of recovery accuracy, it is explained when
and how the accuracy of the reconstructed signal is independent of the missing interval length. Finally,
detailed insights about key characteristics of the proposed approach that generate practical benefits for
system operators are provided. A self-aware failing indication allowing system operators a direct evaluation
of the recovered data and enabling further improvement of the proposed approach is presented, as well as
recommendations for field implementation.

INDEX TERMS Gaussian processes (GPs), monitoring, power system monitoring.

I. INTRODUCTION
A. MOTIVATION
Nowadays, power systems are monitored with an increas-
ing number of measurement devices, aimed at providing the
system operator with fundamental information about the oper-
ating conditions of the system. From smart meters and power
quality meters [1], largely applied in low-voltage networks, to
phasor measurement units (PMUs) [2], mostly used in trans-
mission and distribution systems, every day huge datasets are
generated in the field. In control centers, this large amount
of data is provided as input to routines for monitoring (e.g.,
state estimation [2] or the estimation of line parameters [3]),
automation (e.g., harmonic analysis [4]), and control (e.g., for
voltage stability [5]) that strongly rely on these measurements.
Within this framework, it is evident that the successful opera-
tion of these algorithms depends not only on the number and

accuracy of measurements but also on the data quality [6]. In
particular, bad data is the term commonly used when referring
to corrupted data and data loss [7]. Such issues can originate
from malfunctioning of the devices in the monitoring chain
(instrument transformers and measurement devices), issues
with the communication network, or failures when storing
the data. An example with reference to a PMU-based mea-
surement system is reported in [8], while in [9], the problem
of outliers in a SCADA-based monitoring environment is ad-
dressed. Bad data can also originate from a tough environment
and thus can play a key role in the monitoring of health
conditions of components where, as underlined in [10], data
considered incorrect in other fields are indicators of faults in
machinery. Moreover, it is worth mentioning that bad data can
also originate from malicious cyberattacks, which are causing
an increasing concern [11]. Since the issues mentioned above
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are getting more and more common, being able to recover a
missing section of a signal would help the system operator
overcome the issues due to bad data and ensure the proper
operation of network managing routines.

B. RELATED WORK
Signal recovery methods applied to large-scale monitoring
systems can roughly be classified into single-channel and
multichannel algorithms [12]. Classical single-channel meth-
ods range from expectation–maximization methods [13] to
mean methods [12]. As linear interpolation (Lin-Int) is a com-
mon representative of those methods, we use it to evaluate
the method proposed in this work. Modern single-channel
approaches include both regression and matrix completion al-
gorithms. Konstantinopoulos et al. [14] addressed the problem
of data losses in a monitoring framework composed of PMUs
utilizing temporal online algorithm for PMU data processing
(OLAP-t). Such an algorithm allows the recovery of signals
exhibiting temporal patterns subjected to prolonged data out-
ages. Alternatively, based on the method of multipliers in the
alternating direction, in [15], the recovery of missing PMU
data has been addressed by exploiting the low-rank prop-
erty of the corresponding measurement matrix. Addressing
the matrix completion algorithms, we evaluate the proposed
approach against a compressive sensing (CS)-based recovery
technique, which is presented in [16]. One such technique,
which has been shown to provide the best performance in
case of varying signals, uses a discrete cosine transform to
reformulate the recovery problem on a sparse basis, such that
a norm-1 minimization algorithm can be applied to recover
not-null components. Due to the lack of information within
larger missing intervals, single-channel methods have a natu-
ral limitation.

A straightforward cross-channel approach utilizes related
signals, referred to as Rep-phase in this article, such as other
phases of a multiphase system. Although this approach is
highly dependent on the balance of the power system and
is not universally applicable, any dedicated algorithm has to
outperform this trivial method. More elaborated multichan-
nel algorithms include the power system’s graph structure,
extended matrix completion algorithms, as well as machine
learning techniques. Similarly to [14] and [15], but combined
with Kirchhoff’s laws and three-phase circuit relations as
regularization terms, in [17], the recovered values are given
by using cross-correlations of synchrophasor measurements
to complete a low-rank tensor. Wu et al. [18] considered the
spatial and temporal graphs to define the correlations be-
tween system components and quantities, before applying a
regression neural network for the recovery of missing data
in large power systems. Similarly, in [17], cross-correlations
of synchrophasor measurements are recovered by the com-
pletion of a low-rank tensor using Kirchhoff’s laws and
three-phase circuit relations as regularization terms. In [19],
a jointly low-rank tensor completion is applied to recover
data from logistic systems. In [15], the recovery of missing
PMU data has been addressed by exploiting the low-rank

property of the corresponding measurement matrix. In [20], a
network expectation–maximization algorithm is proposed to
recover data in spatiotemporal applications for small missing
intervals. Using neural networks including graph structures,
missing power system synchrophasors caused by communi-
cation delays are recovered as reported in [21]. In [22], a
generative adversarial network is used for missing data recon-
struction.

To summarize, single-channel recovery algorithms capture
typical signal behaviors and are mainly capable of dealing
with short missing data intervals. Multichannel approaches
can incorporate simultaneously appearing information but
might be limited by unknown system information in practical
applications. For example, in [22], the entire power system
has to be known first, a simulation model has to be built, and
a decent amount of scenarios, e.g., 12 000 in the application
in [22], has to be simulated to generate training data. In other
words, the need for Big Data in artificial intelligence might
be a limitation in a practical setting. Moreover, a changing
system topology, which once in a while appears in real power
systems, cannot be tracked without dedicated effort. On top,
the inherent strong dependency of artificial intelligence on
the specific dataset, i.e., on a specific regularization scheme,
makes universal application difficult. Consequently, there is a
need for a multichannel approach based only on local system
topology that is capable of recovering large missing intervals
from a relatively small amount of known data.

The proposed approach is based on the technique of
multioutput Gaussian processes (GPs). With applications in
different domains including distinct domain-specific peculiar-
ities, these types of models have been applied in [23] and [24].
In [23], a multioutput GP is utilized for model building of
crowdsourced traffic data. With a focus on real-time infor-
mation processing, the application of data collection from a
weather sensor network is presented in [24].

C. CONTRIBUTION
In this article, a correlated Gaussian process (Corr-GP) frame-
work is formulated for the application within the field of
power systems’ data recovery. First, we give a construction
of single and multichannel models for use in power systems,
utilized for signal recovery. We then emphasize cross-channel
information transfer that encodes local power system’s topol-
ogy. In particular, we show that the amount of needed data
to recover a signal is comparable to the desired signal to
be recovered. Thus, the proposed approach can handle large
periods of missing data, while getting along with compara-
bly small amounts of data. We analyze and demonstrate the
proposed signal recovery algorithm’s self-aware failing indi-
cation, yielding trustworthy recovery results. More precisely,
we show that the proposed approach allows for a direct and
inherent evaluation of performance, which can be utilized as
a possibly automated reliable recovery procedure applied to
large databases. We demonstrate that the results provided by
the proposed approach are independent of the length of the
missing window if sufficient local cross-channel information
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is available. Moreover, supported by a detailed mathematical
analysis, we show that the proposed approach is almost un-
constrained within the desired application. In particular, we
explicitly point out that the valid assumption for any sensor
reading of Gaussian (measurement) noise is sufficient for the
proposed approach to handle any continuous power system
signal. The entire evaluation and analysis of the above state-
ments are performed using real data collected from the field.
We apply the proposed framework to a real-live laboratory in
operation at Forschungszentrum Jülich (FZJ) called the Living
Lab Energy Campus (LLEC).

The rest of this article is organized as follows. Section II
presents the theoretical background. In Section III, we present
the proposed methods and provide a theoretical discussion.
Section IV describes the case study. The analysis and results
are presented in Section V. Finally, Section VI concludes this
article.

II. THEORETICAL BACKGROUND
In this section, the basic mathematical formulation of GPs is
presented.

A GP is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution [25]. In line
with the given definition, we may assume the training data
(X,Y ) = {(X,Y )|(x, y) ∈ R

N × R, N ∈ N}, the test data X ∗,
as well as the joint set to have a Gaussian distribution, re-
spectively. In the application of signal recovery, Y will be
the available signal values with corresponding time instances
X , and X ∗ denote the time instances of the signal to be re-
covered. Using Bayes’ theorem [25], the joint process can
be reduced to the test set X ∗ = {

x∗|x∗ ∈ R
N
}
, yielding the

desired prediction at X ∗, by conditioning on the training set.
Accordingly, it is possible to define a prior and a posterior of
the process. Formally, this procedure is computed according
to the following equations.

Let X be a compact subset of Rn. We call μprior : X → R a
prior mean function. For the sake of simplicity, we assume that
μprior = 0 throughout as justified in Section III-A for the given
case study. The positive semidefinite function κ : X × X ′ →
R is called a prior covariance function. Synonymously used
and evident from the following definition, we refer to κ as the
kernel function, kernel matrix, or simply kernel as we have

K
(
X, X ′)

i j := (
κ
(
xi, x j

)) ∀xi ∈ X ∀x j ∈ X ′. (1)

Noise is taken into account by adding σn ∈ R to the diagonal,
i.e., Kn(X, X ) = K (X, X ) + 1σn, where 1 denotes the identity
matrix. Although called prior noise, in practice the value of
σn accounts for multiple effects. First, as the label suggests,
additive, independent, identically distributed white noise is in-
cluded in the model. Second, a small positive number is added
to the diagonal of Kn(X, X ), fixing numerical issues con-
cerning matrix inversion via Cholesky decomposition [26].
On top, it also allows to take into account aspects not to be
captured explicitly, which may be treated as noise.

Any κ is specified by a set of hyperparameters determined
by training the GP. This, is due to the fact that the GP is

nonparametric itself, and thus, the hyperparameters defining
(1) might be trained. More precisely, any given process is
trained by minimizing the objective function, called negative
log marginal likelihood, which can be computed, as shown
in [25], and reads as follows:

1

2
Y T Kn(X, X )−1Y + 1

2
ln |Kn(X, X )| + N

2
ln(2π ) (2)

where N denotes the number of training data points with
respect to the hyperparameters defining the selected kernel.
The three parts of (2) can be interpreted as follows. The first
part is responsible for fitting the model to the data while
the second part suppresses model complexity. The third part
is a constant, which originates from the computation of the
marginal likelihood [25].

The training is performed according to a gradient-based op-
timizer [25], whereby an limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) algorithm is used in the given
implementation [26]. With optimally determined kernel, the
posterior mean μpost and the posterior covariance function
σpost can be computed as follows:

μpost = K (X ∗, X )Kn(X, X )−1Y (3)

�post =K (X ∗, X ∗)−K (X ∗, X )Kn(X, X )−1K (X, X ∗). (4)

III. PROPOSED APPROACH
In this section, the application of GPs as a signal-recovering
method in power systems is proposed. First, we discuss the-
oretical insights, which allow for stating key findings and
characteristics of the proposed method. Second, we show how
to build GP models for power systems applications.

A. GP CHARACTERISTICS FOR SIGNAL RECOVERY
By definition of GPs, the Gaussian assumption holds at a
function space level, not on the data itself. This is rooted in
the fact that any finite number of function evaluations have a
joint Gaussian distribution, not only individual measurements
themselves. Thus, a generic signal of interest interpreted as a
time series does not have to explicitly obtain a Gaussian distri-
bution, e.g., with respect to temporal structures. Nevertheless,
it is worth underlining that the Gaussian assumption on indi-
vidual measurement values can still be valid for conventional
measurement devices. Based on models lying densely in the
space of continuous functions, the considered GPs are univer-
sal approximators [27], meaning any continuous function can
be approximated by a GP. Thus, no constraints exist within the
proposed application.

In the framework of signal recovery, we refer to the
available or known data as the training set. The temporal
component of the data to be recovered is called the test set.
By definition, the prior, as well as the posterior, is Gaussian
distributed in the respective sense. Thus, each posterior comes
with a mean and a covariance, μpost and �post, respectively. In
particular, we commonly refer to the posterior mean values,
μpost, as the recovered signal. The posterior variance, σpost,
is given by the square root of the diagonal of �post. Strictly
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speaking, σpost cannot be interpreted as an error interval in the
usual sense, and thus cannot be associated with the model’s
accuracy. However, as being a major concern of this work,
it provides a measure of the model’s precision, as well as, a
self-contained failing indication. Thus, on top of recovering
missing data, the suggested models provide a reliable, in a
sense self-aware technique, conveniently usable by system
operators.

With regard to the prior mean function, it should be noted
that a nonzero mean function corresponds to a coupling of
the nonparametric GP described above with a parametric
model [25]. In the given power system application, due to the
continuous power demand fluctuations, the signals of interest
are nondeterministic. To this end, imposing a prebuild struc-
ture on the data by a parametric model is not applicable due
to the required flexibility and the considered time scale. Thus,
we choose μprior = 0.

B. CORR-GPS FOR SIGNAL RECOVERY
1) SINGLE-CHANNEL MODEL—VOLTAGE AND CURRENT
MAGNITUDES
The kernel is the defining property of the GP models under
consideration. We start by selecting a single-channel kernel
for the modeling of power system signals. Since sums and
products of kernels also yield valid kernels [25], it is worth
highlighting that there are infinite ways to construct GPs
for individual power system signals. As we are dealing with
time-depending signals, we use t, t ′ ∈ T ⊂ R to indicate time
variables instead of generic x, x′ ∈ X as used in Section II in
the following.

A roughly varying voltage or current rms signal, collected
from the low-voltage side of a transformer with a reporting
rate of 1 min, as investigated in this work, is best described by
a one-time continuous differentiable kernel, e.g., the ν = 3/2
Matérn kernel. Such a kernel is formulated as follows:

M3/2(t, t ′) = σ 2

(
l + √

3|t − t ′|
l

)
exp

(
−√

3|t − t ′|
l

)
(5)

where the hyperparameter l ∈ R
+ defines a timescale of the

given process and σ ∈ R
+ accounts for a scaling in magni-

tudes’ direction.
Furthermore, in order to take slowly varying trends into

account, a smooth kernel, such as the squared exponential,
denoted as radial basis function (RBF), can be considered

RBF(t, t ′) = σ 2 exp

(
−|t − t ′|2

2 l2

)
. (6)

It is worth to note two important aspects. First, due to the
universal property, for data characterized by a high time res-
olution, the specific choice appears to be less important as
the presented kernels yield a universal approximation. On the
contrary, in the case of coarser datasets, the signals of interest
tend to appear smoother, which implies the usage of smooth
kernels. Second, as described in the next section, the key
feature of the presented approach to power system signals is

the coupling of different single-channel signals into a mutual
multichannel signal. As this appears to be the dominant effect
of the proposed approach, the single-channel kernel selection
becomes less significant in Corr-GPs.

2) MULTICHANNEL MODEL—CROSS-CORRELATED VOLTAGE
AND CURRENT MAGNITUDES
Intrinsically induced by their local topological nature, power
system signals display a certain degree of similarity depend-
ing on the level of balance present in the given system.
The proposed approach takes these characteristic cross-
correlations between certain signals explicitly into account.
The key mathematical operation accomplishing this task is
the tensor product ⊗, a multiplication structure yielding to
GP models with multiple outputs [25]. More specifically,
as a mathematical operation, the tensor product provides a
separable kernel, i.e., a composition of a kernel describing
both single-channel characteristics and a cross-correlation
kernel [28]. In other words, by construction, the proposed
method accounts for the balance induced by the power system
topology while being flexible with respect to the type of signal
considered. We refer to such models as Corr-GPs, highlight-
ing the main characteristics of the proposed approach. This
type of model has been applied in different domains, such as
transport analysis [23] and anomaly detection [29].

At the level of matrices, the tensor product is established in
terms of the Kronecker product, also denoted by ⊗. In partic-
ular, given a kernel matrix K (T, T ′) and a symmetric positive
semidefinite d × d-matrix B[d], a d-dimensional model can be
constructed by

B[d] ⊗ K
(
T, T ′) =

⎛
⎜⎝

b11K (T, T ′) . . . b1d K (T, T ′)
...

. . .
...

bd1K (T, T ′) . . . bdd K (T, T ′)

⎞
⎟⎠
(7)

where the superscript [·] denotes the dimension of the associ-
ated square matrix. The dimension d of the coregionalization
matrix, B[d], corresponds to the number of coupled signals.
As being the key component of the proposed approach, we
want to emphasize the interpretation of B[d] in terms of power
system signal recovery. First, it should be noted that the entries
{bi j |i, j = 1, . . . , d} of B[d] are trainable hyperparameters of
the given model. Diagonal entries {bi j |i = j; i, j = 1, . . . , d}
describe the self-contribution of the signal to be recovered
to the proposed model while off-diagonal terms {bi j |i 
=
j; i, j = 1, . . . , d} account for cross-correlations among re-
lated signals induced by the local system’s topology. The latter
is the key component of the proposed approach to incorporate
simultaneous local power system information, improving the
accuracy of recovery results. Emphasizing the consequences
of this technicality regarding the given application, we give
the following comments.

First, note that the possibility of including simultaneously
appearing information, of arbitrary size, about the power sys-
tem allows the proposed approach to handle large missing
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FIGURE 1. Simplified scheme of FZJ ICT FIWARE-based platform.

FIGURE 2. Overview of the considered buildings.

periods. Practically constrained by the availability of suf-
ficient simultaneous system information, theoretically, the
proposed approach can recover missing intervals of arbitrary
size. Second, the different interpretation of elements of B[d]

induces a particular choice of the dataset from which the
missing interval can be recovered. To train diagonal elements
{b11, b22, . . . }, the available data on both sides of the missing
period are selected. We considered the missing window to be
in between two known intervals of almost the same size, as vi-
sualized for this case study in Figs. 3 and 4. It should be noted
that this is done for a matter of convenience and by no means
mandatory to the proposed approach. In fact, having known
data before and after the missing period is recommended as it
conditions the proposed approach on both ends of the missing
window. For off-diagonal entries {bi j |i 
= j; i, j = 1, . . . , d},
correlated signals are chosen, which are selected by the local
power system’s topology.

With this at hand, we may define two types of models, one
being the generalization of the other. Let Kbasis be a kernel.
The intrinsic coregionalization model (ICM) is defined as
follows:

KICM(T, T ′) = B[d] ⊗ Kbasis
(
T, T ′) . (8)

This type of model is used in the case of a single class of
correlated signals, such as, for example, balanced three-phase
current magnitudes.

For multiple classes, e.g., several types of similarities
within a set of signals, more sophisticated models are needed.
To this end, several ICMs could be added in order to obtain a

FIGURE 3. Reference signals—voltages.

FIGURE 4. Reference signals—currents.

linear coregionalization model (LCM)

KLCM(T, T ′) =
∑

q

B[d]
q ⊗ Kbasis,q

(
T, T ′) (9)

where q denotes the number of considered ICMs. For exam-
ple, this might be used for modeling q transformers.

Beyond the separable kernel subclass of multioutput GPs,
nonseparable kernels as described in [28] do exist. Concerning
less evident correlations, this class of kernels might be worth
investigating. Nevertheless, given the presented application,
such models are out of the scope of this article.
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C. MULTICHANNEL RECOVERED SIGNALS
For j signals (s∗

1(t∗
1 ), . . . s∗

j (t∗
j )) to be recovered from i cor-

related signals (s1(t1), . . . si(ti )), the proposed approach reads
as follows:⎛

⎜⎝
s∗

1(t∗
1 )

...
s∗

j (t∗
j )

⎞
⎟⎠=

∑
q

⎛
⎜⎝

bq
11Kq(t∗

1 , t1) . . . bq
1 d Kq(t∗

1 , ti )
...

. . .
...

bq
d1Kq(t∗

j , t1) . . . bq
dd Kq(t∗

j , ti )·

⎞
⎟⎠

⎛
⎜⎝

bq
11Kq(t1,t1)+σ 2

s1
. . . bq

1d Kq(t1,ti )
...

. . .
...

bq
d1Kq(ti,t1) . . . bq

dd Kq(ti,ti )+σ 2
si

⎞
⎟⎠

−1⎛
⎜⎝

s1(t1)
...

si(ti )

⎞
⎟⎠

(10)

where q runs over the corresponding similarity classes and
d = i + j. For the base kernel Kq(t, t ′), we propose to choose
a Matérn kernel (5). For larger models with q > 2, an ad-
ditional kernel squared exponential kernel (6) should be
included.

IV. CASE STUDY—LLEC AT FZJ
The power grid of the LLEC of FZJ serves as a test bench in
this article. In particular, it is worth noticing that the proposed
data-recovery solution is being developed for its implementa-
tion on the FIWARE-based information and communication
technology (ICT) platform of LLEC.

A. ICT PLATFORM
The ICT platform of FZJ is based on the open-source
Internet-of-Things (IoT) platform FIWARE [30]. A schematic
representation of its implementation in the LLEC framework
is shown in Fig. 1. The platform allows gathering data from
various components on the field (e.g., photovoltaic systems,
batteries, monitoring devices, and so on) in real time, via an
MQTT broker. Then, via the IoT agent, data are converted into
the NGSIv2 data format and sent via representational state
transfer (REST) application programming interface (API) to
the FIWARE Orion Context Broker. Here, only the most
updated data are stored in the MongoDB database, whereas
the historical data are stored in the InfluxDB database. Since
this large-scale framework is used to store data from dif-
ferent components and sensors, the internal structure of the
databases consists of multiple subdatabases customized to
properly store data from specific components. It is worth
noting that different devices and sensors are typically charac-
terized by different reporting rates. For example, temperature
sensors installed in the rooms of the FZJ campus provide
change-of-value measurements, i.e., no fixed reporting rate
can be given. Instead, the power system data considered in
this work, rms voltages and currents are collected from the
energy meters installed on the field, are provided with a fixed
reporting rate of 5 min. All these data are first saved inde-
pendently in the MongoDB, overwriting the data stored in the
previous reporting interval, and then saved in the InfluxDB,
concatenated to the corresponding set of historical data. In
addition to the specific quantities for each device/sensor, the

metadata structure is also composed of more general informa-
tion, such as timestamps, unique identification number of the
device/sensor, location, and so on. External applications and
services can read/write data directly from the databases. In
particular, the ICT platform is modular, which allows different
applications to run independently, suppressing malfunctioning
due to chain effects.

An example of such an application is constituted by the
bad data detection and handling tool presented in [7]. This
multilevel application aims to detect bad data and provide
reconstructed/recovered data. The signal recovery method
presented in this article has been developed for its application
in the recovery module of the abovementioned application,
to recover large sets of missing data. Nevertheless, since this
work aims to present the Corr-GP-based method, and under-
line its capabilities as a standalone tool, the proposed method
has been tested outside the routine presented in [7]. In par-
ticular, the datasets needed for the tests have been identified
by the authors, according to the settings of the considered test
cases, and the corresponding data have been collected directly
from the historical database, i.e., InfluxDB.

B. POWER SYSTEM
Over the campus, the power distribution is carried out on the
10-kV level via two main busbars. In total, 136 three-phase
medium-voltage/low-voltage (MV/LV) transformers are used
to supply the low-voltage loads on the 400-V level. On each
transformer, the rms values of voltages and currents on each
phase are monitored by means of measurement devices in
compliance with class 1 of the standard IEC 61036 [31], as
well as the total active and reactive powers. The collected data
are stored in internal databases, introduced in the previous
section, for monitoring, control, and planning purposes. Nev-
ertheless, as underlined in [7], it is often the case that a large
amount of data are missing or corrupted from this database.
Thus, in this article, we will consider the recovery of missing
data and voltage or current rms magnitudes in particular, by
means of the proposed Corr-GP.

For the tests, two different buildings have been considered,
as shown in Fig. 2.

The corresponding different internal configurations can be
described as follows.

1) Building 1 is characterized by two MV/LV transformers
(in the following labeled as B1-TR1 and B1-TR2) in
parallel.

2) Building 2, directly connected to Building 1, being in
the same ring, is characterized by three MV/LV trans-
formers (in the following labeled as B2-TR1, B2-TR2,
and B2-TR3), two of which are connected in parallel.

For these two buildings, a 10-h interval of voltages and cur-
rents without missing data has been identified in the historical
database. Then, in order to be able to evaluate and discuss
key characteristics of the proposed Corr-GP, different missing
intervals have been simulated during the tests. The considered
voltage and current signals are reported in Figs. 3 and 4. Black
curves denote training data, while green sections underline the
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TABLE 1. Summary of Missing and Available Data or Each Test Case

maximum interval of the considered missing data, i.e., the sets
under test. In particular, during the tests, the total duration of
these intervals will vary from 5 min to a total period of 4 h.
Different patterns are used to represent the different phases.
In order to properly evaluate the performance of the proposed
method and to underline its associated coupling features, three
different test cases have been considered.

In Case 1, the recovery of the voltage magnitude on phase
B of the first three-phase MV/LV transformer in Building 2,
i.e., B2-Tr1-B, will be investigated by taking into account
the magnitude of the voltages on the two other phases of
the same transformer, i.e., B2-TR1-A and B2-TR2-C. First,
case 1-a analyzes the performance with respect to a miss-
ing 4-h interval compared with the state-of-the-art methods,
i.e., single-output Gaussian process (S-GP), CS [16], Lin-
Int, and the naive approach of substitution by data collected
from phases A and C, denoted by Rep-A and Rep-C, respec-
tively. Second, case 1-b analyzes the effect of the missing
interval length and a comparison is made with the stated
alternatives.

In Case 2, in addition to Case 1, the voltage magnitudes col-
lected from all transformers present in Buildings 1 and 2 are
provided as input to the proposed method. More specifically,
all of the three phases from the first transformer in Building
1, B1-Tr1, and the last transformer in Building 2, B2-Tr3, are
considered missing for 4 h. In case 2-a, scalability and the
ability to identify relevant cross-correlations of Corr-GPs are
discussed. In case 2-b, a self-failing indication is presented.

Finally, to show the applicability of Corr-GPs to signals
with different characteristics, the recovery of the current mag-
nitudes of Building 2 is considered in Case 3. In particular, the
current profile of B2-Tr2 will be recovered on the basis of the
current magnitudes collected from B2-Tr1 and B2-Tr3.

To further clarify the considered experimental setup, a sum-
mary of missing and available data for each considered test
case is reported in Table 1, in terms of rms samples. In the
table, also the number of channels (i.e., signals) considered in
the test cases is indicated. Thus, with reference to Case 1-a, a
total of 360 samples are considered from three channels (i.e.,
120 samples per signal), 48 of which are considered missing.
It is worth noting that, although the proposed approach is
rooted in the realm of probabilistic machine learning, the
amount of available data (training data) to recover missing
data (test data) is comparable in size.

V. TESTS AND RESULTS
In this section, the validity of the proposed approach will be
investigated by discussing its performance with reference to
the test cases described in the previous section. All of the

FIGURE 5. Case 1-a—True and recovered voltage profiles of the
three-phase transformer B2-Tr1, with Corr-GP.

TABLE 2. Comparison of Different Methods

results are evaluated with respect to the normalized root mean
squared error, stated as follows:

NRMSE(ytrue, yrec) = 1

ȳtrue

√
1

N

∑N

i=1
(ytrue,i − yrec,i )2

(11)
where ytrue and yrec denote the true and the recovered values,
respectively, and ȳtrue denotes the arithmetic mean of ytrue,i

over the N samples. Below, we abbreviate (11) by normalized
root mean squared error (NRMSE).

A. CASE 1-A: ACCURACY, PRECISION, AND BASIC
CHARACTERISTICS
The basic characteristics and the performance of Corr-GPs as
a recovery tool will be presented in the following considering
signals derived from the collection of voltage magnitudes of
the first three-phase transformer in Building 2, B2-Tr1. The
explicit model reads as follows:

KCase1(T, T ′) = B[3] ⊗ M3/2(T, T ′). (12)

In Fig. 5, the recovery results for a missing 4-h interval are
presented.

The color-contrasting upper subplot recaps the available
data of 10 h taken into account. Focusing on the miss-
ing interval, the green crosses denote the signals considered
missing while blue crosses describe the recovered values
by the Corr-GP. It has to be noticed that in the figure it
is not possible to appreciate the blue error bars represent-
ing the posterior variances 2σpost, since their value is in
the order of magnitude of 0.08 V. This is in line with the
interpretation of posterior variances of Corr-GPs provided in
Section III-A.

The comparison to alternative methods is reported in Ta-
ble 2, in terms of the NRMSE, and displayed in Fig. 6.
Contextualizing recap and color coding of Fig. 6 is used
the same way as before. From Figs. 5 and 6 and Table 2,
the first two main results can be deduced. In particular, the
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FIGURE 6. Case 1-a—Comparison between recovered voltage profiles of
phase B of transformer B2-Tr1. (a) Rep-A / Rep-C. (b) Lin-Int. (c) CS.
(d) S-GP ±σ.

overlapping green and blue curves in Fig. 5, with an NRMSE
of 0.031%, underline the accuracy of the Corr-GP recovery.
Compared to the alternative methods, an improvement by a
factor between 5.3 and 32.0 can be archived by using the
proposed Corr-GP.

With the naive approach Rep-A and Rep-C, which can also
be seen as a model correlating different phases, the accuracy
of this rudimentary method is unpredictable in practice as it
is fully relying on the network balance. While Rep-C is less
accurate than the Corr-GP by a factor of 5.3, Rep-A deviates
by a factor of 32.0. Lin-Int, CS, and S-GPs with Matérn
kernel (5) are less accurate by factors of 7.4, 10.7, and 10.4,
respectively.

Furthermore, being in a range too small to be visualized in
Fig. 5, the posterior covariance indicates a high precision of
the given Corr-GP. This is in particular evident when com-
pared to the S-GP, shown in Fig. 6(d). In both cases, the
same (base) kernel (5) is used. This comparison clearly indi-
cates the value of taking cross-correlations between different
phases into account. While the single-phase GP, defined by
(5), is not able to accurately recover the missing signal due
to missing information during the recovery period, the use
of a separable kernel, given by (7), enables the inclusion of
simultaneously occurring information. Contrarily, if no cross-
correlation information is available, the proposed Corr-GP
approach reduces to an uncoupled multioutput model, i.e.,
the correlation matrices have zero off-diagonal terms. As this
is equivalent to multiple S-GP, in the absence of sufficient

FIGURE 7. Case 1-b—Comparison of NRMSE of different methods with
respect to the length of the missing signal.

correlations, the accuracy of Corr-GP reduces to the given
single-output GP alternatives.

B. CASE 1-B: MISSING INTERVAL INDEPENDENT
RECOVERY ACCURACY
Besides the high accuracy and precision of Corr-GPs, a
main characteristic is the independence of the recovery
performances with respect to the missing interval length as
long as a good level of correlation exists between the signal to
be reconstructed and other signals in the systems. In practical
applications, this property is met for sufficient large power
systems by local topological system’s characteristic. Using the
same dataset as above, this property is shown by varying the
missing interval length from 5 min (1 sample) to 4 h (48 sam-
ples), with an increasing step of 5 min. Individual NRMSEs
of the methods discussed above with respect to the percentage
of missing values in reference to the total interval length are
reported in Fig. 7. The blue line is used for the results of
the Corr-GP while the remaining methods are reported in
black. From the figure, it is possible to deduce that the per-
formance of Corr-GP is almost independent of the percentage
amount of missing data. Due to the lack of further network
unbalances in the observed period, such stability also holds
for the replacement by the other phases Rep-A and Rep-C. As
for the other methods considered in the comparison, it is pos-
sible to observe that the corresponding NRMSE is sensitive
to the increase in the portion of missing data. In other words,
these results provide an experimental validation, within the
given case study, of the independence of the proposed al-
gorithm’s accuracy with respect to the missing period size,
theoretically discussed in Section III-B2.

Furthermore, the presence of peaks in the curves of these
methods underlines how their performances are also affected
by the different characteristics of the available and the missing
signals. These considerations are not only shown in the given
test case but are also clear from a theoretic perspective. As
these methods do not take into account any information within
the missing time frame, they cannot be expected to provide
precise results for larger intervals.

VOLUME 5, 2024 699



ZIMMER ET AL.: SIGNAL RECOVERY IN POWER SYSTEMS BY CORRELATED GAUSSIAN PROCESSES

TABLE 3. Case 2—NRMSE of Corr-GP for B1-Tr1 and B2-Tr3

FIGURE 8. Phase A for three hours of available signals of all five
transformers.

C. CASE 2-A: CROSS-CORRELATION IDENTIFICATION
In the second case study, the amount of information provided
as input to the Corr-GP method is increased, by considering
the voltage magnitudes of all five transformers present in
both Building 1 and Building 2. Instead of recovering the
missing window only from one phase of a single transformer,
here, three phases from two different transformers located in
different buildings, B1-Tr1 and B2-Tr3, will be considered
as missing. The comparison of the results achieved with the
previous ICM model for five three-phase transformers, for-
mulated as follows:

K ICM
Case2

(
T, T ′) = B[15] ⊗ M3/2 (T, T ′) (13)

and the generalized LCM model, formulated as follows:

KLCM
Case2

(
T, T ′) = B[15]

1 ⊗ M3/2
1

(
T, T ′) (14a)

+ B[15]
2 ⊗ M3/2

2

(
T, T ′) (14b)

are reported in terms of the NRMSE, in Table 3.
While the results for transformer B1-Tr1 are comparable

for both considered Corr-GP’s and similar to those discussed
in Case 1, different considerations should be made for the
accuracy of B2-Tr3. We elaborate on this and discuss a key
feature of Corr-GP’s in the rest of this section.

In general, signals collected across different buildings are
expected to have fewer similarities than signals collected
within a single transformer. As an example, we report the
current magnitudes of phase A for the first three hours of the
considered interval for all five transformers in Fig. 8.

From Fig. 8, it is possible to appreciate that transformers
B1-Tr1, B1-Tr2, B2-Tr1, and B2-Tr2, denoted in black, are
quite balanced while transformer B2-Tr3, denoted in blue,
slightly deviates. Thus, taking two classes of signal types
into account by using an LCM instead of an ICM model,
leads to the better performance of the Corr-GP for transformer
B2-Tr3, reported in Table 3. The overall better performance

FIGURE 9. Posterior variances (left-hand side) for transformer B2-Tr3, by
(a) ICM and (b) LCM, with corresponding NRMSE (right-hand side).

of the LCM Corr-GP model (14) for the recovery of B1-Tr1
compared with those of B2-Tr3 is also evident, as B2-Tr3
is the only transformer displaying this isolated behavior.
In fact, there are less cross-correlations available to recover
voltage magnitudes of B2-Tr3. In summary, the Corr-GP
learns during training which cross-correlation to take into
account. If less cross-information is available in this regard,
the corresponding signals are treated separately, giving results
that are similarly accurate to the single-phase methods pro-
vided in Case 1.

D. CASE 2-B: SELF-AWARE FAILING INDICATION
So far, the discussion mainly focused on the Corr-GP’s per-
formance. In this section, an additional feature of Corr-GP for
practical, and possibly automated, usage by system operators
is underlined. In Fig. 9, posterior variances are shown for
both models under test with respect to the overall 4-h missing
interval as well as the corresponding accuracy results.

As shown in Fig. 9(a), the ICM approach is characterized
by a significant increase of σpost-values when compared with
the LCM model depicted in Fig. 9(b). Moreover, a depen-
dence between σpost (left-hand side of Fig. 9) and the NRMSE
(right-hand side of Fig. 9) is evident. Thus, not only the proper
Corr-GP model, in this case the LCM, comes with a high
accuracy, but the less fitting Corr-GP approach can be detected
by a high posterior variance. Contrarily to the common us-
age as an error estimate of the resulting values, the posterior
variance of GPs displays an error estimate of the selected
model. It is worth recalling that, in line with the interpretation
discussed in Section III-A, the posterior variance describes
the uncertainty of the Corr-GP associated with each recovered
sample, where the latter is the corresponding Corr-GP mean
value. This means that the higher the posterior variance, the
less the selected Corr-GP model fits the recovery task of a de-
sired accuracy. Thus, the notion of posterior variances yields
a self-failing indication allowing a direct evaluation of the
performance of the given model. Consequently, an automated
iterative procedure could be performed by system operators,
by gradually increasing model complexity. In cases without
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FIGURE 10. Case 3—True and recovered current profiles for the three
phases of transformer B2-Tr2.

detailed prior knowledge of the similarity classes provided
by the topology and load conditions of the power system,
or within an automated operation, a trial and error approach
could be performed. First, a basic ICM model of the proposed
approach corresponding to a single similarity class including
posterior variances is computed. If, based on the posterior
variance, the desired model accuracy is not sufficient, an ad-
ditional ICM term is appended and the extended Corr-GP is
retrained. This procedure might be iterated until an acceptable
value for the posterior variance is reached. In other words,
the iterations terminate if the number of added ICM terms
corresponds to the number of similarity classes. However,
in practical applications, the number of possible iterations is
bounded by computational resources, thus, limiting a fully
automated operation in cases where no cross-channel infor-
mation is available. In cases where detailed information can
be provided by system operators or a dedicated pre-analysis
of the given signals is performed, the trial and error procedure
might be neglected. In such a case, the posterior variance
serves as a consistency check.

E. CASE 3: MODELING OF MULTI CROSS-CORRELATED
SIGNALS
Due to their different characteristics, current signals can-
not be modeled as the voltage ones. Evident from Figs. 4
and 10, in Case 3 the current magnitudes are considered,
which are characterized by less homogeneity and cross-
correlation compared to the voltages. Taking into account the
10-h current profiles of all phases of B2-Tr1 and B2-Tr-3, as
well as the preceding and following 3-h intervals of B2-Tr2,
the recovered 4-h interval profiles are displayed in blue in
Fig. 10. In particular, missing current magnitudes to be re-
covered are denoted in green.

By a closer inspection of Fig. 4, it is possible to observe that
there exist three similarity classes in the given data set, yield-
ing (15b). Moreover, to also have a correlation term across

distinct classes, we take long-term correlations into account,
established by (15a). Thus, the proposed Corr-GP model reads
as follows:

KCase3
(
X, X ′) = B[9]

0 ⊗ RBF
(
T, T ′) (15a)

+
3∑

q=1

B[9]
q ⊗ Mq

(
T, T ′) (15b)

and gives accuracies with respect to the NRMSE of 1.2%,
1.0%, and 1.3% for phases A, B and C, respectively. Con-
trarily, in this scenario Lin-Int results in 4.6%, 7.5%, and
5.5%. It should be emphasized that the findings of the previous
Section V-D allow an automated determination of the right
LCM model.

From Fig. 4, it is possible to observe that the current profiles
of B2-Tr1 and B2-Tr2 are very similar, while the currents
flowing in the third transformer are almost four times higher,
and also characterized by a more volatile profile. Consider-
ing the results shown in Fig. 10, we can thus observe that
the proposed recovery method is able to distinguish between
the characteristics of the different coupled signals and to
give more weight to the information coming from the more
similar inputs.

F. LIMITATIONS, FIELD IMPLEMENTATION, AND FUTURE
PROSPECT
As shown in the previous analysis, the proposed approach is
neither limited by the missing window length nor the type
of correlation under consideration. However, it is worth un-
derlying that the absence of any correlated signal makes the
proposed approach not applicable. Thus, regarding an au-
tomated application of the proposed approach, the relevant
domain is within large-scale monitoring systems, in which the
existence of correlated signals can be guaranteed in practi-
cal scenarios. It is currently planned to implement Corr-GPs
as part of the recovery module running in the modular tool
for bad data detection and recovery of the ICT platform of
FZJ [7]. Nevertheless, before applying it in a large scale,
automated environment, certain aspects and limitations of
Corr-GP have to be considered.

One aspect to consider is the computational complexity
associated with the matrix inversion by Cholesky decomposi-
tion in (2)–(4). In [24], an updated Cholesky decomposition
is proposed to accelerate the calculation of the matrix in-
verse. However, this means a continuous operation, i.e., the
inclusion of every data point into the proposed approach. In
the recovery of large missing windows, this is not beneficial
since the outage of sensors, communication problems within
the database, or maintenance work do not frequently occur
but are limited to individual occasions. A possible reduction
of the computational burden can be obtained with the use of a
minimal dataset in each recovery task, i.e., the ratio between
known and missing data has to be minimized. Within a large-
scale application, this requires a statistical analysis to ensure
reliable applicability. Another possibility is the limitation of
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hyperparameters to a relevant domain. Although retraining
cannot be avoided completely as timescales and magnitudes
might change during online operation, the number of opti-
mizer restarts might be decreased. Another possibility is an
analytical preanalysis of the given signals to predetermine the
number of needed similarity classes. This might reduce the
number of possible model iterations, and could thus, reduce
computational costs.

The implementation can be easily performed using
GPy [26] by means of APIs as described in [7]. However,
depending on the actual computational load, scaling might
be limited due to computational resources. In this case, a
tailored GPU-based computational environment including a
specialized Corr-GP implementation might be needed.

VI. CONCLUSION
In this work, power systems’ data recovery by Corr-GPs has
been proposed, discussed, and evaluated. During the tests that
were performed considering real voltage and current signals
collected from the campus network of Forschungszentrum
Jülich, the proposed Corr-GP was capable of outperform-
ing the alternative state-of-the-art methods. Moreover, it has
been shown that, contrary to the considered alternatives, the
accurate performance is mainly independent of the missing
interval length. Besides the approximately one order of mag-
nitude higher accuracy when cross-correlated information is
available, Corr-GPs perform comparably accurate to the stated
alternatives if no such correlated information is available. On
top, the proposed method yields a self-failing indication in
terms of posterior variances, thus recovery precision, allowing
system operators a direct evaluation and further improvement
if needed. Finally, key aspects, such as limitations and compu-
tational complexity regarding the field implementation, have
been discussed.
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