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Abstract
Objectives To investigate the use of the score-based diffusion model to accelerate breast MRI reconstruction.

Materials and methods We trained a score-based model on 9549 MRI examinations of the female breast and
employed it to reconstruct undersampled MRI images with undersampling factors of 2, 5, and 20. Images were
evaluated by two experienced radiologists who rated the images based on their overall quality and diagnostic value
on an independent test set of 100 additional MRI examinations.

Results The score-based model produces MRl images of high quality and diagnostic value. Both T1- and T2-weighted
MRI images could be reconstructed to a high degree of accuracy. Two radiologists rated the images as almost
indistinguishable from the original images (rating 4 or 5 on a scale of 5) in 100% (radiologist 1) and 99% (radiologist 2)
of cases when the acceleration factor was 2. This fraction dropped to 88% and 70% for an acceleration factor of 5 and
to 5% and 21% with an extreme acceleration factor of 20.

Conclusion Score-based models can reconstruct MRl images at high fidelity, even at comparatively high acceleration
factors, but further work on a larger scale of images is needed to ensure that diagnostic quality holds.

Clinical relevance statement The number of MRI examinations of the breast is expected to rise with MRI screening
recommended for women with dense breasts. Accelerated image acquisition methods can help in making this
examination more accessible.

Key Points

* Accelerating breast MRI reconstruction remains a significant challenge in clinical settings.
* Score-based diffusion models can achieve near-perfect reconstruction for moderate undersampling factors.
* Faster breast MRl scans with maintained image quality could revolutionize clinic workflows and patient experience.

Keywords Score-based models, Breast MRI reconstruction, Acceleration factors, Image quality

Introduction

Breast MRI, with its superior soft tissue contrast and ability to
visualize angiogenesis through contrast-enhanced techniques,
offers distinct advantages over other modalities like ultra-
sound (US) and mammography for breast cancer detection
[1]. Recently, the European Society for Breast Imaging
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(EUSOBI) published a consensus statement advocating rou-
tine screening for patients with dense breasts [2]. However,
the wide-scale application of breast MRI is impeded by the
high costs associated with MRI scanners and the required
acquisition times. Consequently, there is a growing demand
for accelerated image acquisition methods that can reduce
examination time and thus increase the availability of breast
MRI A prevalent approach to accelerate MRI acquisition
involves undersampling the k-space data and reconstructing
the image data from this undersampled k-space data utilizing
sensitivity encoding (SENSE) [3] or compressed sensing (CS)
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[4]. The advent of generative machine learning models [5] has
extended these possibilities. Generative models can learn the
distinguishing characteristics of typical images and can sub-
sequently be used to synthesize new images that retain all the
properties of real images [6]. This technology has shown
promising applications in radiology, for example by reducing
the need for contrast agents [7], and presents potential ave-
nues for the acceleration of MRI acquisition [8, 9].

Among these generative models, score-based models
offer a compelling approach [10-12]. These models
operate within the framework of unsupervised learning.
By integrating the generative model’s knowledge of what a
typical MRI image would look like, ambiguities arising
from missing k-space data can be resolved. This enables
the reconstruction process to be completed even when
some fractions of the k-space data are missing [13].

MRI reconstruction is an important technique in medical
imaging. Traditional MRI reconstruction techniques can be
time-consuming and computationally expensive, which can
limit their practical use in clinical applications. However,
recent advances in machine learning have seen generative
models become very efficient in improving the speed and
accuracy of MRI reconstruction. Existing studies have
investigated the use of generative adversarial networks
(GANS) [14-16]. However, GANSs are difficult to train, and
diffusion models have been shown to deliver better perfor-
mance for medical imaging, exceeding GANs in terms of
diversity and image fidelity [17]. Therefore, we concentrated
on score-based models, which have the same underlying
structure as diffusion-based models and allow for the
mathematical integration of the MRI reconstruction process
[10, 13].

In this study, we leverage the score-based generative
model to accelerate breast MRI acquisition. Our approach
involves training a large dataset of breast MRI images with
a deep neural network to learn the underlying probability
distribution of the MRI images, i.e., to learn the general
appearance of these images. By combining this prior
knowledge of the learned probability distribution with the
acquired k-space measurements, we can quickly and
accurately reconstruct MRI images and compare the
image quality of reconstructions at various levels of
undersampling of the k-space data.

Our hypotheses in this study were: (1) score-based
models can serve as effective generative models for syn-
thesizing breast MRI images, and (2) these models can
accelerate breast MRI acquisition without compromising
image quality.

Materials and methods

Ethics statement

Local institutional review board approval was obtained
(EK028/19) and patient consent was waived for this
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retrospective study on anonymized data, following human
and animal rights declarations and regulations.

Patient enrolment and study design

In this retrospective study, we used a dataset of breast
MRI examinations from University Hospital, collected
between 2010 and 2019. The dataset comprises 9751
breast MRI examinations of 5086 women. All patients
were consecutively enrolled. Inclusion criteria revolved
around those undergoing standard breast MRI screenings
and exclusions were due to absent T2-weighted images.
See data preprocessing details in Fig. 1. Dynamic Contrast
Enhancement (DCE)-MRI studies of the breast were
performed according to a standardized protocol on a 1.5-
T system (Achieva and Ingenia; Philips Medical Systems)
by using a double-breast four-element surface coil
(Invivo) with two paddles being used to immobilize the
breast in the craniocaudal direction (Noras) [18]. See
Table S.2 in the supplemental material for a description of
the T2 imaging protocol.

Eligibility criteria

We performed the MRI reconstruction experiment using
the UKA breast MRI dataset, which was constructed by
randomly sampling from the set of all acquired breast
MRI examinations at the hospital between 2010 and 2021.
We only excluded examinations that had missing
sequences, but otherwise did not use exclusion criteria to
sample a comprehensive and general set of breast MRI
examinations.

MRI image reconstruction

Score-based model

The score-based model is a generative model that uses a
U-shaped encoder-decoder network architecture [19]

Query: Patient Archive Database

9916 Breast MRI Studies

Exclusion Criterion 165 T2-weighted
sequence not available

| 9751 Studies |

Training

Testing

9651 Studies 100 Studies

Fig. 1 Flowchart demonstrating the data preparation process for the MR
images used in this study. The dataset contained 9916 MR studies.

165 studies were discarded due to missing T2 sequences. The remaining
9751 breast MRI studies were split into two groups for training and testing
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(Fig. S.7) to learn the probability distribution of input data
via score-matching [20, 21]. For a more detailed overview
of the model, refer to section A in the supplemental
material.

Model training

We slice each of the T2-weighted 3D volumes respectively
into three 2D slices whose z-position is randomly sampled in
the examination. For all images, we have a total of 28,647
2D MRI slices. Image intensities were extracted and
z-normalized. Image resolution was resampled to 384 x 384
for all images. We first train a prior using the score-based
generative model. We used only vertical orientations during
masking and other parameters remain unchanged in the
algorithm. To test the reconstruction capabilities of our
model, we converted the image into k-space by performing a
Fourier-transform with Cartesian sampling and then deleted
k-space lines at random positions according to the pre-
specified ratio. E.g., for an acceleration factor of 5, we deleted
80% of all k-space lines. Comprehensive details on dataset
preparation and training are available in section C of the
supplemental material.

Image reconstruction

With the trained model, we employed the annealed
Langevin dynamics [2] for reconstructing undersampled
images. To test the reconstruction capabilities of our
model, we converted the image into k-space by per-
forming a Fourier-transform with Cartesian sampling and
then deleted k-space lines at random positions according
to the pre-specified ratio. E.g., for an acceleration factor of
5, we deleted 80% of all k-space lines. The entire training
to reconstruction procedure is illustrated in Fig. 2.

Image evaluation

Quantitative metrics such as peak signal-to-noise ratio
(PSNR) [22] and structural similarity index measure
(SSIM) [23], as well as qualitative assessments, were used.
Qualitative metrics included ratings on an interval scale
from two radiologists with 7 and 15 years of experience in
breast MRI, respectively, comparing reconstructed images
against a reference. We set up a web application for
radiologists to evaluate the reconstructed MRI images on
different acceleration factors and reduced k-space mea-
surements in comparison with a reference image. As a
reference image, we chose the original MRI image that
had been acquired in clinical routine. They graded them
on a scale of 1 to 5, with 5 symbolizing a perfect match to
the reference. The evaluation focused on deviations from
the reference, not just on reconstruction artifacts. A
screenshot of the browser-based evaluation tool is shown
in Fig. S.2 in the supplemental material.
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A comprehensive statistical analysis was conducted to
evaluate the performance of the image reconstruction
method and to assess the agreement between the evalu-
ating radiologists.

Quantitative evaluation Quantitative similarity between
the reconstructed and fully sampled images was assessed
using metrics like PSNR and SSIM. A sample of 100 slices
from different examinations was utilized to compute
average PSNR and SSIM values. Trends in these metrics
with varying undersampling factors were analyzed,
revealing implications for data compression and resulting
image quality.

Qualitative evaluation Radiologist ratings, conducted
on a five-point scale, were averaged and standard
deviations were calculated for various acceleration factors.
Inter-reader agreement between the two radiologists was
evaluated using Cohen’s kappa statistic.

Statistical significance A non-parametric Mann—Whitney
U test was performed to determine the significance in ratings.
Results were interpreted considering a confidence level
of 95%.

Reading strategy To ensure a standardized and unbiased
assessment, radiologists were informed about the study
objectives and given a reference set. Their qualitative
assessments were further supported by a screenshot of the
browser-based evaluation tool, as presented in Fig. S.2 in
the supplemental material.

Statistical significance The significance of the differ-
ences in ratings was determined using the non-
parametric Mann—Whitney U test, interpreted at a
95% confidence level.

Results

Dataset and demographics

Our final cohort, after applying the inclusion and exclu-
sion criteria, consisted of 9751 examinations from 5086
patients. The demographic details of the patients are
summarized in Table S.1. The examinations, which
spanned from January 2010 to December 2019, show that
37% were acquired in a screening setting, 37% were
follow-up examinations, and the remaining 26% com-
prised examinations performed for problem-solving and
other reasons (details can be found in Fig. S.1).

Image reconstruction
First, to test the trained model generative capabilities, we
were able to sample random breast MRI images without any
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A. Training Process Inject noise at each step

\

Estimate how to reduce the noise at each step (“score function)

B. Generation of Synthetic Images C. Reconstruction from Incomplete K-Space Data

i N ”~
Ny q
N Y
Full k-space Undersampled k-space Artefact image
Realistic Images - not related to measurement Images with Artefact - consistent with measurement
D. Combined Approach Generative prior + undersampled k-space

Sample from prior

Denoising via annealed Langevin dynamics
Undersampled k-space

Fig. 2 Overview of the score-based model pipeline used in this study. A During training, the score-based model is trained to estimate the scores of the
noise-perturbed data. B Generation of synthetic breast MR images using the annealed Langevin to remove the noise. These images look real but does
not relate to any k-space measurement. C Reconstruction of MRI image data from the undersampled k-space data, resulting in artifacts. D Combined
approach which leverages the score-based model as a generative prior along with the undersampled k-space data to reconstruct high-quality breast MR
images that are consistent with the measurement

k-space data (see Fig. S.3 in the supplemental material). Quantitative evaluation

Second, the model effectively reconstructed images from The similarity between the reconstructed and the fully
undersampled k-space data. Figure 3 displays MRI slices sampled images was measured using PSNR and SSIM. We
from two examinations based on different sampling rates. computed the average PSNR and SSIM values across 100
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R: 1, kspace: 100%, psnr: 36.45, ssim: 0.97 R: 2, kspace: 50%, psnr: 34.94, ssim: 0.94  R: 2.5, kspace: 40%, psnr: 34.94, ssim: 0.93

R: 4, kspace: 25%, psnr: 34.96, ssim: 0.89 R: 5, kspace: 20, psnr: 32.44, ssim: 0.92  R: 6.7, kspace: 15%, psnr: 33.52, ssim: 0.89

R: 10, kspace: 10%, psnr: 30.66, ssim: 0.87  R: 20, kspace: 5%, psnr: 28.76, ssim: 0.84 Ground Image

R: 1, kspace: 100%, psnr: 38.48, ssim: 0.97  R: 2, kspace: 50%, psnr: 36.23, ssim: 0.94 R: 2.5, kspace: 40%, psnr: 37.30, ssim: 0.91

R: 4, kspace: 25%, psnr: 30.93, ssim: 0.91 R: 5, kspace: 20, psnr: 32.40, ssim: 0.91 R: 6.7, kspace: 15%, psnr: 33.03, ssim: 0.85

R: 10, kspace: 10%, psnr: 28.20, ssim: 0.86  R: 20, kspace: 5%, psnr: 27.13, ssim: 0.78 Ground Image

Fig. 3 Two reconstructed breast MRl slices (A, B) at different acceleration factors for two illustrative examples. The fully sampled ground truth image is
shown in the right lower corner of each subfigure. Score-based reconstructed images are shown in the remaining eight panels of each subfigure with
the acceleration factor R increasing from R=1 (full sampling) to R = 20 (twentyfold undersampling). Quantitative PSNR and SSIM scores are shown
below each figure. Note that the images look realistic, but exhibit anatomical variations as compared to the ground truth images
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Fig. 4 Rating for the images that were reconstructed from the undersampled k-space data. A-C Show the confusion matrix for the radiologists’ ratings
for acceleration factors of R= 2, 5, and 20 respectively. D Rating allocated by the radiologist with 7 years of experience for R =2, 5, and 20 respectively.
E Rating allocated by the radiologist with 15 years of experience for R=2, 5, and 20 respectively

randomly chosen slices from 100 different exams. As
evident from Fig. S.4 in the supplemental material, the
average PSNR and SSIM values showed a decline with
higher undersampling factors. At the maximum under-
sampling factor of R =20, the score-based method still
showed a PSNR of approximately 27.04 dB and an SSIM
index of 0.78.

Qualitative evaluation

Two radiologists rated the reconstructed images using a
scale from 1 to 5. The mean ratings for acceleration fac-
tors R=2, R=5, and R =20, were 4.8 +0.10, 4.0 + 0.10,
and 2.6 £ 0.10 respectively (see Fig. 4). A significant inter-
reader agreement was observed with a Cohen’s kappa
value of 0.61 (95% confidence interval: 0.56—0.68). The
Mann—Whitney U test revealed a p-value of 0.26.

Figure S.6 in supplemental material provides instances of
reconstructed images that exhibited notable rating dif-
ferences among the radiologists.

Correlation between quantitative metrics and qualitative
ratings
To bridge the gap between quantitative image quality
metrics and qualitative expert evaluations, we conducted
an analysis that directly compares the PSNR and SSIM
values with the subjective ratings provided by two anon-
ymous radiologists. This comparison, illustrated in
Fig. S.5, serves to examine the extent to which objective
measures of image reconstruction quality align with
professional clinical judgment.

The analysis presented in Fig. S.5 through box plots
shows the distribution of PSNR and SSIM values across
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various rating categories established by the radiologists.
The plots reveal a positive correlation, indicating that
higher PSNR and SSIM values generally correspond to
higher qualitative ratings. This relationship validates the
predictive value of PSNR and SSIM as indicators of image
quality from a radiological perspective. Specifically, the
central tendency of the metrics across ratings highlights a
trend where improved quantitative measures—indicative
of closer approximations to the fully sampled image—are
associated with more favorable assessments by the
radiologists.

Computational details

The score-based model’s training was executed on 28,647
images, taking around 72h on an NVIDIA RTX 3090
GPU. In practice, the pre-trained model would be used for
image reconstruction, taking about 7 min per MRI slice
on the same GPU.

Discussion

Our study highlighted the potential of the score-based dif-
fusion model to streamline MRI reconstruction, presenting
an acceleration in MRI while maintaining clarity and
reliability. As the acceleration factor increased, we observed
that both quantitative measures (PSNR and SSIM) and
qualitative evaluations by radiologists showed a decrease in
image quality. Notably, the model’s reconstructions from
undersampled k-space data reached acceleration factors as
high as R = 20, though image quality ratings reduced con-
siderably for this highest acceleration level.

In addition to our findings, it is important to acknowl-
edge that while PSNR and SSIM provide valuable insights
into the technical quality of image reconstruction, they
may not fully encapsulate the complexities of visual
assessments conducted by radiologists. The presence of
outliers in our data suggests that evaluations by radi-
ologists are influenced by a range of factors that extend
beyond the simple metrics of image fidelity. Factors such
as the clinical relevance of the images, the radiologists’
years of experience, and the perceptibility of important
diagnostic features play significant roles in their judg-
ments. This observation underlines the notion that
quantitative metrics, while helpful, do not fully capture
the complexities of visual assessment and clinical applic-
ability as perceived by medical experts [24]. Our findings
generally showed good agreement between the quantita-
tive evaluations of our reconstruction technique and the
qualitative assessments by radiologists; however, this
highlights the need for a cautious interpretation of these
metrics in clinical settings. Future research should con-
sider these dynamics to better understand how such tools
can be integrated into clinical practice without over-
reliance on quantitative metrics alone.
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Presently, acceleration techniques such as sensitivity
encoding (SENSE) [3] and generalized autocalibrating
partially parallel acquisitions (GRAPPA) [25] dominate
clinical practice, with emerging research focusing on
convolutional neural networks for MRI reconstruction
[26, 27]. Yet, our study emphasizes the unique advan-
tages of the score-based model. Primarily, it sidesteps
the need for multiple coils, a requisite for SENSE and
GRAPPA. Our results evidenced this with an achieved
acceleration factor of 20, even when using just four coils.
Further, the versatility of the score-based model allows it
to adapt to various acquisition schemes post-training, a
contrast to specialized neural networks which demand
specific retraining for different acquisition techniques
[26, 27].

Furthermore, we incorporated both T1 and T2
weighted MRI sequences as class labels into the score
diffusion model. This approach allowed us to train a
single model that could handle multiple MRI sequences
rather than separate models for each sequence. In pre-
liminary experiments, we also tested whether a model
that was only trained on T2-weighted images could be
used to reconstruct T1-weighted images, but we found
that we needed to integrate T1-weighted images for this
to work. This integration is beneficial as it reduces the
computational cost of training separate models and
improves the accuracy and efficiency of MRI
reconstruction.

However, to minimize variability, it is crucial for radi-
ologists to adhere to established guidelines and protocols
for image interpretation. Consulting with colleagues or
referring to other imaging modalities may also be neces-
sary. A significant limitation of our study is that the
diagnostic accuracy of the reconstructed images has not
been evaluated. For instance, it is conceivable that
reconstruction methods based on generative AI models
might not accurately represent potentially malignant
lesions. While no evidence of this issue was found, the
lack of evidence does not confirm the absence of a pro-
blem. Thus, extensive investigations are needed before
these methods can be reliably used in clinical settings.
Should future studies show that the presented methods
can be implemented in clinical practice, then that would
help alleviate the problem of limited MRI capabilities
available to patients. This is particularly pressing con-
sidering the recent recommendation of the European
Society for Breast Imaging to screen women with dense
breasts by means of MRI [28].

Another approach to employing generative models for
breast imaging with MRI is to reduce the need for con-
trast agents. As demonstrated in a recent publication by
Miiller-Franzes et al [7], generative models can enhance
MRI subtraction images with reduced contrast doses.
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However, we did not train a model for different anato-
mical regions or employ the model on external institu-
tions. As a proof-of-concept study, we intended to show
that the generative model learns the underlying distribu-
tion of breast images at the institution where it had been
trained. There is evidence, however, that a model trained
on one specific anatomy or dataset can also be used for
the reconstruction of unrelated anatomies: Jalal et al
trained a score-based diffusion model to reconstruct MRI
images of the brain and applied it to abdominal and knee
MRI images [13]. Future research should investigate this
and perform clinical evaluations of such reconstructed
images.

Despite the promising outcomes, our study isn’t
devoid of limitations. First, our score-based model’s
dependency on a vast set of fully sampled images for
training could limit its adaptability across diverse
datasets or higher-resolution images. This raises perti-
nent questions about its generalization capacities which
necessitate further exploration. Moreover, our study’s
scope was limited to two-dimensional imaging, and
understanding its efficacy on three-dimensional ima-
ging remains a topic for future investigations. Our focus
was also predominantly on T2-weighted images; thus,
extrapolating our findings to varied MRI contrasts
requires additional research. Last, the inherent nature
of generative models to possibly “hallucinate” infor-
mation is a crucial consideration, especially when
assessing their viability in clinical settings. The relia-
bility of such models in clinical scenarios remains an
essential avenue for future studies.

In conclusion, our work demonstrates the potential of
score-based models for the acceleration of MRI recon-
struction. In contrast to existing approaches, the score-
based model does not require multiple coils and can be
used with arbitrary acquisition schemes. Further research
is needed, but we reckon that score-based models are a
promising approach for accelerating MRI reconstruction
in clinical practice.

Abbreviations
GRAPPA Generalized autocalibrating partially parallel acquisitions
MRI Magnetic resonance imaging

PSNR Peak signal-to-noise ratio
SENSE Sensitivity encoding
SSIM Structural similarity index measure
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Conversely, a prior study published by Muller-Franzes et al [7] investigated
using GANSs to generate contrast-enhanced breast MRIs from non-enhanced or
low-contrast images. Overlap: Both studies used the same cohort of 9751
breast MRI examinations from 5086 patients spanning from January 2010 to
December 2019. Distinctive Features: Objective and Approach: Our study
("Accelerating Breast MRI Acquisition with Generative Al Models”) centers on
the application of score-based diffusion models to accelerate breast MRI
reconstruction. In contrast the study by Mller-Franzes et al [7] investigates the
use of generative adversarial networks (GANs) to produce synthetic contrast-
enhanced MRI images either from unenhanced photos or virtual low-contrast-
enhanced images. Research Question: Our study questions how much the
scan times can be reduced using score-based diffusion models without
compromising the quality of breast MRI images. The previously published
paper investigates whether GANs can recreate contrast-enhanced breast MRI
scans from unenhanced and virtually low-contrast-enhanced images.
Outcome Metrics: In our study, the focus is on ratings of reconstructed images
at different undersampling factors. The previously published paper measured
the ability of radiologists to distinguish between real and synthesized contrast-
enhanced images and compared the appearance and conspicuity of
enhancing lesions on real vs. synthesized images. Clinical Implications: Our
study suggests the possibility of substantially reducing MRI scan times without
compromising image quality. The previously published paper emphasized the
potential for breast MRI with a reduced contrast agent dose.

Methodology

« This is a retrospective study including patients who have undergone an
MR examination of the breast at a tertiary university hospital
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