

Contents

List of Figures iii

List of Tables iv

List of Listings v

Glossary vii

1 Introduction 2

1.1 Motivation . 2

1.2 Research Questions . 3

2 Preliminaries 4

2.1 Abstract Syntax Trees . 4

2.2 APTED . 5

3 Related Work 7

3.1 Code Assessment Tools . 7

3.2 Repair Tools . 8

3.3 Effects of Feedback . 11

4 Conceptual Approach 13

4.1 Python Language Features . 14

4.2 Submission Validation . 17

4.3 Cold Start Problem . 19

4.4 Feedback Generation . 19

4.5 Technical Setup . 20

5 Implementation 23

5.1 Checks . 24

5.1.1 Check Generation . 24

5.1.2 Check Execution . 27

5.2 Solution Generation . 28

5.3 Code Repair . 31

5.3.1 Creating the Abstract Syntax Tree and BaseNode Tree 32

5.3.2 Repair Improvements . 33

5.3.3 Calculate Distance and Compute Operations 34

5.3.4 Possible Updates . 35

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices i

Contents

5.3.5 Variable Matching and Renaming 36

5.3.6 Finding the Minimum Repair . 38

5.3.7 Linking the Trees . 39

5.3.8 Generating Feedback . 42

5.3.9 Extendability . 43

5.4 Clustering . 43

5.5 Web Interface . 47

5.5.1 Student Interface . 48

5.5.2 Teacher Interface . 48

5.5.3 Application Programming Interface 49

5.6 Storage System . 50

6 Evaluation 52

6.1 Building the Questionnaire . 52

6.1.1 Selecting the Tasks . 52

6.1.2 Repair Options . 53

6.1.3 Evaluation Questions . 54

6.2 Evaluating the Results . 56

6.2.1 Negative Feedback for Suggestions A and B 56

6.2.2 Negative Feedback for Suggestion A, Positive for B 57

6.2.3 Positive Feedback for the Only Suggestion 58

6.2.4 General Results . 58

6.3 Evaluation of Prefiltering Functions . 58

6.3.1 Usage of Correct Student Submissions 61

6.3.2 Removing Debug Output . 61

6.3.3 Removing Top Level Code . 62

6.3.4 Removing Unused Variables . 63

6.3.5 Variable Name Matching . 63

7 Future Work 65

Appendix 67

A Bibliography 68

B Evaluation Codes 73

C Application Programming Interface 75

D Digital Appendix 77

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices ii

List of Figures

2.1 Example tree A . 6

2.2 Example tree B . 6

3.1 The overall procedure of CLARA [10] . 9

3.2 The overall procedure of Refactory [14] 10

3.3 The overall procedure of MMAPR [53] . 11

4.1 Docker containers and their networking 21

5.1 High-level overview of the task workflow from the teacher’s perspective 23

5.2 ChatGPT prompt evaluation results, relative values 30

5.3 Overview of the repair algorithm implemented in Pyrat. Classes

implementing the functionality are given below the boxes. 31

5.4 Screenshot of the student interface to work on a task 48

5.5 Screenshot of the check adding form in the teacher interface 49

6.1 First page from the evaluation of the car dictionary task, familiarizing the

participant with the task and the submission 54

6.2 Second page from the evaluation of the car dictionary task, getting

feedback from the participant regarding the proposed repair 55

6.3 Self assessment of the Python skills and teaching experience. Ranges

from 1 (none existent) to 5 (excellent). 59

6.4 Evaluation results of the Likert-scale questions. Missing values are

caused by the "don’t know" option. 60

6.5 Boxplots representing the repair cost and number of repair messages

comparing batches A and B . 62

6.6 Boxplots representing the repair cost and number of repair messages

comparing batches B to F . 64

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices iii

List of Tables

6.1 Number of available submissions for the selected tasks with their error

and repair rate . 59

6.2 Configurations used for the evaluation of the prefiltering options 61

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices iv

List of Listings

2.1 Small Python code as ast example . 4

2.2 AST dump of code in listing 2.1 . 4

4.1 Valid Python code without classes and functions 15

4.2 Buggy Python code calculating an integer’s cross sum using a while loop 17

4.3 A buggy submission for the add_iterable Problem 20

4.4 Repair suggestion of Refactory for listing 4.3 20

4.5 Repair suggestion of CLARA for listing 4.3 20

5.1 Prompt set 1 for check generation . 24

5.2 Prompt for the built-in function check for the checksum task, built on

listing 5.1 . 25

5.3 ChatGPT-3.5-Turbo result for the prompt in listing 5.2 25

5.4 Prompt set 2 for check generation . 26

5.5 Example input/output tests for the front_times task 28

5.6 Prompt set 1 for solution generation . 29

5.7 Prompt set 2 for solution generation . 29

5.8 First result, generated by ChatGPT for the checksum problem using

prompt set 2 (listing 5.7) . 30

5.9 Second result, generated by ChatGPT for the checksum problem using

prompt set 2 (listing 5.7) using a refinement statement 31

5.10Example code of an output with side effects 33

5.11Small ast example (revisiting listing 2.2) 35

5.12Buggy code for circle circumference calculation 37

5.13Reference code for circle circumference calculation 37

5.14Pseudocode for the variable bijection finding algorithm 38

5.15Buggy code for number addition . 38

5.16Reference code for circle circumference calculation 38

5.17Sample code A for distance and operations calculation 39

5.18Sample Code B for distance and operations calculation 39

5.19Generated tree edit operations as list of tuples for the code in

listings 5.17 and 5.18 . 39

5.20Buggy code for circle surface calculation 40

5.21Reference code for circle surface calculation 40

5.22BaseNode tree for the buggy code . 40

5.23BaseNode tree for the reference code . 40

5.24Operations generated for the trees in listings 5.22 and 5.23 40

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices v

5.25Linked BaseNode tree for feedback generation based on the trees in

listings 5.22 and 5.23. m, i and u are abbreviations for match, insert

and update, respectively. 42

5.26Example code A for CLARA’s equivalence 44

5.27Example code B for CLARA’s equivalence 45

5.28Example code A for inlining, correct . 46

5.29Example code B for inlining, correct . 46

5.30Example code C for inlining, incorrect . 46

5.31Real student submission using a while loop in an unconvenient way . . . 47

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices vi

Glossary

AST Abstract Syntax Tree . 66

API Application Programming Interface . 75

CRUD Create, Read, Update and Delete . 20

CSV Comma Seperated Values . 51

JSON JavaScript Object Notation . 24

LLM Large Language Model . 24

LMS Learning Management System . 50

MOOC Massive Open Online Course . 14

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices vii

Abstract

Correcting submissions to programming exercises by hand is time consuming and

thus expensive. The increase in enrolments in computer science subjects and the

expansion of programming courses in other degree programmes are exacerbating

this problem. Thus, alternatives to manually reviewing every submission, checking

its correctness and providing feedback to the students is needed. Current tools either

focus on checking the correctness of a submission or provide feedback for buggy

submissions. However, both is needed as a simple correct or not correct message is

usually not sufficient for students. Also, feedback changing the code should only be

created if the submission indeed contains errors, or it must be marked as optional

feedback, e.g., improving the code style.

To solve this issue, we develop Pyrat, a Python repair tool that combines the validation

of correctness of submissions and, if necessary, a program repair algorithm to

generate feedback. In case of correct code, just a message that the submission is

correct is returned to the student, optionally extended with coding guideline violation

hints. On the other hand, if the code is not correct, test results are returned together

with feedback on how to solve the error. The correctness validation is perfomed on

the base of unit tests, extended with supporting libraries for static code analysis.

For the repair part, a static algorithm is developed that computes the edit distance

of the Abstract Syntax Tree of the buggy submission against all available correct

submissions for the task. Based on the tree edit operations with the minimum

cost, feedback is generated that advises the student on how to fix the error in their

submission. A Large Language Model (LLM) is used to support teachers in the creation

of unit tests and reference solutions for the repair.

To analyse the quality of the feedback, we perform a study analysing the feedback

generated by Pyrat on buggy student submissions. Evaluating the results of the

study shows that Pyrat performs well on submissions with small errors if a correct

submission is available that follows a similar approach. However, the feedback is too

complex if no submission is known that follows the student’s approach. Thus, further

research is necessary on how complex feedback can be cut down into messages that

are easy to understand, e.g., by not returning the complete feedback at once but

providing just a first hint instead.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 1

Chapter 1 Introduction

1.1 Motivation
In programming education, exercises are often used to improve the learning process

compared to a lecture without any training. By correcting the submitted exercises

teachers can give students feedback on how well they did. However, the increase of

students in introductory programming lectures makes it hard for teachers to manually

provide feedback for all submissions.

To mitigate this problem, automated assessment and repair tools can be used to aid

the teachers in providing feedback to the students. The capabilities’ range of such

tools is very high. Simple code assessment tools like Web-CAT [7] or nbgrader [16]

check the correctness of exercise tasks by predefined rules. Thus, grading is possible

for the teachers, e.g., to encourage students to work on the exercises by making them

mandatory for admission on an exam or by improving the exam’s grade. However,

feedback usually consists of a simple "passed" or "not passed", sometimes extended

with the results of a unit test. The problem with this is that such simple feedback is

no good aid for novices [20]. One reason is the complexity of the unit tests’ output.

While code assessment tools are useful to grade submissions, they fail on providing

meaningful feedback to the students. As an alternative, code repair tools try to find

and fix the error in a buggy submission for an exercise task. Using the results from

this repair process, it is either possible to return a working code to the student

or to generate feedback messages that describe the error in the program in an

understandable way [14, 10]. Some of those tools, e.g., CLARA or Refactory, execute

the buggy submission to generate the necessary repair. Thus, they require the code

to be syntactically correct, i.e., only semantic errors can be fixed with these tools.

Another option are code repair tools based on Large Language Models (LLMs). As they

do not execute the code but use the capabilities of a pre-trained LLM instead, they are

also capable of fixing syntax errors. However, there is no guarantee that the feedback

generated by an LLM is useful or even correct. Another drawback is the availability

of LLMs. While access to commercial LLMs, e.g., OpenAI’s ChatGPT1, is often possible

using an Application Programming Interface (API), this makes teaching at university

level dependent on the pricing of commercial companies.

Instead of generating feedback for semantical errors, tools like PythonTA focus on

providing hints regarding code violation errors [23]. Thus, students can identify

logical errors and prevent semantical errors from occurring themselves.

1ChatGPT, https://chatgpt.com/, last accessed 07/24//2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 2

1.2. Research Questions

All of the tools presented in the Related Work chapter of this thesis (chapter 3) focus

on one of these tasks, i.e., either they use a unit test base approach to determine if a

submission is correct or not or they offer code repair to generate feedback for a buggy

submission. However, just checking if the solution is correct or not does not serve as

feedback; and generating feedback using a code repair algorithm requires knowledge

whether the submission needs repair at all. Thus, teachers need to somehowmanually

combine different tools to get feedback only for those tasks that require it. To ease

this task, we present Pyrat, a Python repair tool combining code assessment and a

static code repair algorithm.

1.2 Research Questions
The goal of this Master’s thesis is to develop a tool that can be used to automatically

repair buggy code submissions. To structure the work, we focus on the research

questions below.

[RQ1] Which Python features need to be supported by a code repair tool? Not all

Python features are supported by current tools like CLARA or Refactory. As an

example, both tools cannot work with raised exceptions [10, 14]. To build a code

repair tool that fits the need of Python lectures, we discuss which features of the

Python language are required for novice learners.

[RQ2] How can a code repair tool be used for new exercises? In current code

evaluation and code repair tools like nbgrader, CLARA or Refactory, unit tests and

reference solutions for the tasks are required to evaluate and fix the student’s

submissions [16, 10, 14]. As providing unit tests and a larger amount of reference

solutions is time-consuming, we will discuss options to reduce this effort.

[RQ3] How can a code repair tool be integrated into existing courses and technical

setups? If a Python course already exists, it might also already use an exercise

system that teachers and students are used to. To support teachers and not enforce

the usage of a specific exercise system, we discuss the options of integrating the

developed tool into existing environments like JupyterLab [32].

To answer these research questions, we develop Pyrat, a code repair tool that

integrates the assessment of submissions, feedback generation, LLM-based unit tests

and reference solution creation as well as code clustering for correct submissions.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 3

Chapter 2 Preliminaries

2.1 Abstract Syntax Trees
While programming in Python is done using a textual language, the program code is

not directly interpreted. Instead, an Abstract Syntax Tree (AST) is generated first that

can then be used to execute the program.

In Python, it is possible to programmatically compute the AST of any code received

as an input using the built-in ast module1used by the compiler as well [33]. The

computation of ASTs using the built-in module is static, i.e., the code that is to be

parsed is not executed during the computation of the AST [33]. This reduces security

issues as potentially malicious code is not executed and thus cannot cause any harm.

Additionally, it is also possible to generate ASTs from codes that cannot be fully

executed for semantic reasons, e.g., because they mistakenly implement an infinity

loop. However, it is not possible to create AST from codes with syntax errors.

[i ** 2 for i in range(10)]

Listing 2.1: Small Python code as ast example

Module(

body=[

Expr(

value=ListComp(

elt=BinOp(

left=Name(id=’i’, ctx=Load()),

op=Pow(),

right=Constant(value=2)),

generators=[

comprehension(

target=Name(id=’i’, ctx=Store()),

iter=Call(

func=Name(id=’range’, ctx=Load()),

args=[

Constant(value=10)],

keywords=[]),

ifs=[],

is_async=0)]))],

type_ignores=[])

Listing 2.2: AST dump of code in listing 2.1

1 ast - Abstract Syntax Trees - Python 3.12.4 documentation, https://docs.python.org/3/library/

ast.html, last accesses 07/23/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 4

2.2. APTED

As an example of ASTs in Python, see the demonstration in listings 2.1 and 2.2

calculating the squares of all numbers from zero to five. Every item in the AST in

listing 2.2 is an object of an according Python class, e.g., Module for the overall

module or Pow for the binary power operator [33]. Thus, every property of every

element in the tree, e.g., the value of the constant 2, is accessible.

2.2 APTED
The All Path Tree Edit Distance (APTED) algorithm is an efficient algorithm to

calculate the tree edit distance of arbitrary trees [29] with an available Python

implementation [30]. The tree edit distance is a measure for the similarity of two

trees, "which is defined as the minimum-cost sequence of node edit operations that

transform one tree into another" [29]. While the idea behind the implementation and

the mathematical proof is not of interest for this thesis and can be found in the paper

of Pawlik and Augsten, we focus on the required input and the output generated by

the Python implementation [29, 30].

In general, the APTED algorithm takes two trees A and B as input and computes the

update cost between both trees and a list of operations that transforms tree A into

tree B [29]. When using the Python package for APTED without any configuration,

trees nodes are expected to have a string label and an ordered list of children. A

tree is then represented by the root node. To calculate the edit distance between A

and B, the algorithm knows four different operations with a cost metric that can be

performed on the tree [29, 30].

The insert operation creates a new labeled node in the tree with an arbitrary number

of children. The cost is hereby defined as the length of the label, i.e., inserting a node

with the label abc has a cost of 3. The remove operation, on the other hand, removes

a labeled node from the tree [30]. However, children of the node are not necessarily

removed as well. The cost is again defined as the length of the label [30].

The third operation, the update operation, changes the label of a node. This reduces

the total distance as updating a label is cheaper than removing the old label and

inserting a new one. In the base implementation of APTED, Levenshtein distance is

used to calculate the cost of updating a label [30]. The Levenshtein distance is a

string metric to calculate the cost of changing a string into another one. It counts

how many single-character edits, i.e., insertions, removals and updates (as for the

tree edit distance) are required to change the string.

The last operation is a match operation, it is used if the nodes in tree A and B have

the same label.

Figures 2.1 and 2.2 show two example trees for which APTED can calculate the tree

edit distance. While the node date has to be removed from tree A, a new node

honeydew needs to be inserted as the second child of fig. Due to the length of the

label, this results in an insertion cost of 4 and an update cost of 8, summing up to

12. The node labels cherrie and cherry have a Levenshtein distance of 2, as the i

has to be replaced by a y and the e has to be removed. Compared to a cost of 13 for

removing and re-inserting this node, this is an improvement resulting in an overall

tree edit distance of 14 between tree A and B.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 5

2.2. APTED

While this basic configuration is suitable for general calculation of tree edit distance,

it is not sufficient for calculating the edit distance and operations between Python

ASTs as the cost metric is not sufficient. This is because the labels of the nodes in the

AST are not chosen in a way that Levenshtein distance can be used to measure the cost

of inserting, removing or updating them. However, it is possible to apply a customized

configuration that changes the cost metric. In detail, a configuration class with four

methods is defined. While the methods insert, remove and rename calculate the cost

of performing the specified operation on one or two nodes, respectively, the children

method returns a list of all children of the given node [30]. Thus, we can adopt the

APTED algorithm to match the needs of Pyrat’s code repair algorithm.

apple

banana

cherrie date

fig

grape

Figure 2.1: Example tree A

apple

banana

cherry

fig

grape honeydew

Figure 2.2: Example tree B

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 6

Chapter 3 Related Work

In the recent years, a lot of research in the domain of automated code repair and

feedback generation has been published. In this chapter, we introduce existing

literature and tools to better narrow down the scope for Pyrat, the PYthon and RepAir

Tool developed in this thesis.

3.1 Code Assessment Tools
The most basic tools providing feedback on coding exercises for novices are code

assessment tools that evaluate code submissions based on predefined rules, e.g., unit

tests. While the earliest code assessment tools where developed in the 1960’s [12],

there are now multiple publications every year presenting and describing new code

assessment tools as presented by Souza et al. [44]. 70% of the analyzed tools work

automatically, i.e., the assessment criteria is defined before the student’s submissions

are assessed and no further interaction by the teacher is required [44]. Of those tools,

62 % follow a student-centered approach, i.e., the validation of the submission can be

initiated by the students whenever they like [44]. However, the code assessment tools

listed by Souza et al. are not developed for Python [44].

A flexible code assessment and auto-grading tool supporting Python is Web-CAT [7].

Teachers can create the code assignments they want to hand out to their student’s

in the Web-CAT system. Students can then use a plugin in their programming

environment to submit their solution to Web-CAT for grading, where feedback is

generated [24]. Besides applying teacher-defined tests on the code, Web-CAT offers

the option to use student-written test cases and calculate the grade on the coverage

of these tests [48].

Another code assessment tool is nbgrader, a plugin for JupyterLab [16, 32].

JupyterLab is a programming environment that can be accessed by a web browser

and does not need any setup on the client machine [32]. Thus, using JupyterLab in

introductory programming courses has the advantage of reducing the setup hurdles

for students. The nbgrader project now makes it possible to grade coding exercises

directly in the notebook files, i.e., students can work online on an exercise sheet

implemented as a Python notebook file and later submit this file for grading. To

provide this functionality, nbgrader extends a Python notebook file by the required

metadata. More precisely, code cells can be marked as automated correction cells

by the teacher when creating the notebook file for the students. Code inside these

automated correction cells is then considered as a unit test and removed from the

version of the notebooks that is created for the students. When a notebook file is

grated, all cells in the notebook are executed, including the students’ submission

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 7

3.2. Repair Tools

cells as well as the correction cells. If and only if the code in a correction cell can be

executed without errors, the points assigned to this cell are granted to the student

[16]. However, teachers are in charge of the collection of the notebook files from

the students, performing the repair, and the returning of the results to the students.

Using the classification of Souza et al., nbgrader uses an instructor-centered approach

performing an automatic assessment [44].

3.2 Repair Tools
The tools presented in section 3.1 only assess the submitted code, i.e., they determine

if the code is correct or not. If feedback is generated and returned to the student at

all, it consists of a grade and possibly the unit test results, but not more. However,

this is not necessarily useful for students [20]. In contrast to this, the repair tools

presented in this section aim to generate feedback on buggy submissions that helps

the students to find the error in the submission and fix it.

CLARA In their paper, Gulwani et al. present CLARA, designed to provide feedback

on necessary correction steps to match a working solution for syntactically correct

code [10]. Figure 3.1 shows the overall strategy of the repair algorithm. The key idea

of CLARA is "to use the existing correct student solutions to repair the incorrect

attempts" [10]. For an assignment, CLARA clusters all already known correct

submissions for the task based on "dynamic equivalence" [10]. To be dynamically

equivalent, two codes need to have the same looping structure, i.e., both need to

have the same types of loops (for/while) in the same order. Also, the variables of both

codes need to form a "total bijective relation" [10], meaning that when the code is

executed on the same input, related variables have to take the same values in the

same order [10]. This clustering reduces the number of reference solutions a buggy

code needs to be compared against, as only one reference solution per equivalence

set is used.

In the repair part, CLARA then compares a buggy code against every cluster of

reference solutions. The repair is then created by choosing the reference solutions

with the smallest syntactic distance [10].

This approach has two drawbacks as the code submitted by the student must be

executed in the repair process. First, this must be done in a secure environment to

prevent malicious code (whether intentional or not) from compromising the executing

system. A prominent example for unintentionally harmful code is the usage of infinity

loops, working like a denial-of-service attack on the executing system if not handled

correctly. However, even if handled correctly, the existence of infinity loops disturbs

the repair process. While it is possible to prevent problems for the executing system

caused by infinity loops, e.g., by using time limits for the repair of a single buggy

submission, code repair cannot deliver feedback on how to solve the problem if it is

killed due to a timeout.

Second, the environment needs to be correctly set up to meet the requirements of a

task. As an example, consider a task where student’s need to read data from a file

and transform it based on given rules. In the repair process, it is now necessary to

provide this environment for every repair. Otherwise, we could cause new errors in

the code, e.g., because a file that should exist under a certain location does not exist.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 8

3.3. Effects of Feedback

Another approach of generating feedback by learning the different classes of errors

and providing manual feedback for each class is presented in the form of the

"Concepts and Skills based Feedback Generation Framework" by Haldeman et al. The

aim is to "link errors to concepts and skills central to a programming assignment"

[11] by manually generating hints for submissions that can then be used in future

semesters. To be able to generate feedback, instructors have to create a test suite

covering all aspects of the task. This test suite is then used to evaluate each student’s

submission to group them into clusters of the same failed tests. Instructors then

have to update the test suite and re-run it until every cluster has the same logical

error in all of its submissions. Once this is achieved, it is possible to manually write

feedback for this error and return it to all submissions in the cluster. After applying

the methodology to introductory course assignments, Haldeman et al. "found that the

hints should provide useful feedback for the vast majority of incorrect submissions"

[11].

PythonTA is a system designed for educational purposes to aid students with

information about their code quality. Using static code analysis, PythonTA is able

to check style errors, syntax errors or the correct usage of imports, e.g., forbidding

students to import a specific module [22]. As shown by Liu et al., "students generally

had positive impressions of PythonTA" [23]. This was detected by integrating

PythonTA into a Python course with over 800 students. Nevertheless, students with

no prior knowledge about Python programming had difficulties using PythonTA, which

leads to the assumption that the integration into the course needs to be improved,

especially for novices [23].

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 12

Chapter 4 Conceptual Approach

This chapter introduces the conceptual approach of Pyrat, the Python repair tool

developed in this thesis. To structure the work and this thesis, we discuss the

functional and non-functional requirements Pyrat needs to fulfill.

[R1] Python Language Features Support Existing tools like CLARA or Refactory do

not support the complete Python language, e.g., Object Orientation is not supported

[10, 14]. Section 4.1 analyzes three different introductory courses to check if there

are Python features that are not supported by the presented existing code repair tools,

solving Research Question 1.

[R2] Integrated Submission Validation Repair tools like CLARA or Refactory are only

built to repair the buggy code and generate feedback for it, using a given set of

correct submissions for the same problem. However, they do not include functionality

to distinguish if a submission is correct or not and thus needs code repair. [10, 14].

As this Master’s thesis aims to create a code repair tool that can be used by students

while working on their exercise tasks, Pyrat should include functionality to verify if

a student’s submission is correct or not. Solely based on the result of these checks,

i.e., without the need of interaction with a teacher, code repair should be executed.

In section 4.2 we discuss the options for integrated submission validation.

[R3] Cold Start Code repair tools like CLARA depend on the availability of a large

amount of reference solutions for a task to be able to fix buggy code [10]. For new

tasks this can be a problem, as there are no correct student solutions known which

could be used as reference solutions. Thus, Pyrat should offer options to easily create

a sufficient number of reference solutions for the code repair. Section 4.3 discusses

how these options can be designed.

[R4] Strategy Enforcement On occasion, educators may discourage students from

employing the most straightforward strategy to a task. For instance, when

introducing the concept of recursion, it can be beneficial to restrict students to the

usage of recursion instead of looping structures in the corresponding exercises. Thus,

Pyrat should be configureable in a way that submissions which do not work with

the given strategy are marked as incorrect, even if the calculated result is correct.

Furthermore, code repair should not generate feedback to fix the code in a direction

that does not follow the requested strategy.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 13

4.1. Python Language Features

[R5] Verification of Non-Teacher-Authored Data Results obtained from Large

Language Models (LLMs), e.g., generated reference solutions or repair suggestions,

are not necessarily correct [18, 6]. The same applies for technically correct

submissions for a task by other students. Even if all configured checks are passed this

does not mean that a solutions is indeed correct and of good quality, mostly because

of incomplete checks by the teacher [1]. This leads to the possibility of incorrect

feedback when using erroneous LLM-generated or student-written codes as reference

solutions for a task. To prevent this, Pyrat should offer the option to use external code

only after it has been reviewed by a teacher.

[R6] Integration and Usability Each task that students can work on and generate

feedback for in Pyrat needs to be configured in the system. To make this task easier

for teachers, Pyrat should provide a graphical interface to add and configure tasks,

including the validation checks and code repair settings. Nevertheless, the utilization

of Pyrat should not be confined to its graphical interface, particularly with regard

to the student interface that performs the code verification and repair functions.

Thus, all functions of Pyrat should as well be accessible by a documented Application

Programming Interface (API).

[R7] Scalability Scalability is one reason code repair tools are developed – the higher

a number of students enrolled in a programming course gets, the more effort it is

for teachers to provide manual feedback. Code repair algorithms need some time

to generate feedback for a buggy solution [10, 14]. However, feedback is most

effective if students receive it shortly after submitting their code [51]. While this

is not a problem for courses where only a small number of submissions are made per

hour, large courses like Massive Open Online Courses (MOOCs) come with an equally

large number of submissions. Thus, Pyrat should be able to generate feedback in a

reasonable amount of time after the student submitted their code and deliver said

feedback. Furthermore, the technical setup of Pyrat should be designed in a way that

can be scaled vertically for large courses if the need arises.

4.1 Python Language Features
The goal of this section is to find an answer for the first research question, i.e., which

Python features have to be supported by a code repair tool. For this, we analyze three

different courses; one of which is a university course, while the other two are online

courses.

1. Lecture "Introduction into Programming for Data-Driven Sciences", RWTH

Aachen 1

2. Online Course "LearnPython.org", LearnX 2

1 https://learntech.rwth-aachen.de/go/id/jzoi, https://learntech.rwth-aachen.de/go/id/jzoi, last

accessed 04/12/2024
2 Learn Python - Free Interactive Python Tutorial, https://learnpython.org/, last accessed

04/12/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 14

4.1. Python Language Features

3. Online Course "Python", Google Education 3

Based on these courses, a tool should support at least the Python concepts listed

below.

A: Input and Output (1, 2, 3) In Python, input and output for command-line scripts

is done using the built-in functions input and print [34]. While the print function

is non-blocking, the input function waits until an input terminated by the newline

character is provided [34]. This can be a problem for code repair tools relying on

executing the code as they need to detect if the code is waiting for input and, if so,

provide it.

B: Code execution without function definitions (1, 2, 3) In Java, one of the most used

languages in MOOCs [25] and introductory progamming courses [8], a code file always

needs to define a class with a static main method to be executable [28]. However,

Python does not require the usage of classes or even functions, making the code

in listing 4.1 a valid Python program [37]. Thus, courses can make use of this and

introduce the most basic programming concepts like variable assignments before

introducing the concept of functions or object orientation. As students can write

buggy code for those tasks, too, code repair tools need to work with code that is not

encapsulated in functions. This is currently not the case for the tools CLARA and

Refactory [10, 14].

1 a = int(input("Your number a: "))

2 b = int(input("Your number b: "))

3 print(f"The sum of your numbers is {a + b}")

Listing 4.1: Valid Python code without classes and functions

C: Usage of built-in function names like len, sum, round, min, max (1, 2, 3) In Python,

many functions like calculating the length of a string or list are performed by top-level

built-in functions instead of public methods of the string or list [34]. As they are

necessary for many programs, code repair tools need to support their use.

D: Usage of looping structures for and while (1, 2, 3) Python supports two different

loop types: a for and a while loop [38]. While the while loop repeats as long as a

condition is true, the for loop iterates over an iterable object defined beforehand [38].

While everything that can be computed using a for loop can also be done using a

while loop, using a for loop can reduce the complexity of the code, making both loop

types important for programming education. Both loop types are supported by all

code repair tools listed in chapter 3. However, problems can occur if a buggy code

contains infinite while loops if the code is executed.

E: Usage of conditional statements if and else (1, 2, 3) Another important control

statement is the if statement used to conditionally execute parts of the code [38]. If

statements are supported by all code repair tools listed in chapter 3.

3Google’s Python Class | Python Education | Google for Developers, https://developers.google.com/

edu/python, last accessed 04/12/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 15

4.1. Python Language Features

F: Function definitions (1, 2, 3) Functions can be used to structure code and improve

reusability. In Python, functions can receive both positional and keyword arguments

(and arguments that can be used as positional and keyword argument simultaneously)

[38]. While CLARA and Refactory support functions in genereal, it is not possible to

define functions accepting an arbitrary number of arguments with CLARA [10, 14].

G: Import and usage of external modules (1, 2, 3) Another way of code reusability

in Python is the usage of external modules. Imported modules can either be part of

the standard library or be manually installed, e.g, using a package manager like pip

[39, 35]. While the behavior of modules from the standard library is known at the

time a code repair tool is developed, this is not the case for installable modules. Thus,

CLARA restricts the use of imported modules to a small subset of Python’s standard

library [10].

H: File access (1, 3) While file access is in general nothing else than working with

with special functions, these functions come with side effects on the operating system

level. Besides security concerns, code repair tools need to make sure that the

assumptions a code makes about the directory structure, e.g., the existence of a file

that is required to solve the task, are fulfilled, if the repair tool relies on executing the

code. File access is possible when repairing code with CLARA or Refactory, however,

it will lead to problems if files that are accessed by the buggy code or a reference

solution are not created and prepared by the teacher. Furthermore, CLARA does not

support the use of context managers, i.e., the with statement, which is the preferred

way of dealing with file access in Python [10, 14, 37].

I: Object orientation (1, 2) "Object-oriented programming is central to modern

software development and therefore integral to a computer science curriculum" [9].

Thus, a code repair tool needs to be able to fix code that contains object orientation.

However, CLARA and Refactory both do not support the use of object orientation

[10, 14].

J: Working with / intentionally raising exceptions (1, 2, 3) Exceptions in Python can

be used to stop the program execution if something unwanted happens, e.g., when a

string containing non-numeric characters is converted to an integer. As students tend

to make mistakes when learning a new programming language, they are propably

used to the behavior of a raised exception. Using try and except statements makes it

possible to define fallback plans in case an exception is raised [38]. However, CLARA

and Refactory cannot work with intentionally raised exceptions, i.e., code for a task

that needs to raise an acception to be considered as correct cannot be repaired as

they consider the raised exception as a failure [10, 14].

K: Recursion (1) As recursion is based on defining and calling functions (F), code

repair tools that can work with function definitions can also work with recursion.

However, infinite recursion can lead to the same problems as an infinite while loop.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 16

4.2. Submission Validation

L: Forcing special paradigms like using lambda or list comprehension (1) In

programming education, teachers might want to force students to use special

programming concepts, i.e., to use recursion instead of loops. This is not directly part

of code repair, as a code repair tool can work with these tasks as long as it supports

the concepts that are required to use. Nevertheless, teachers need to check if the

concept that should be used was indeed used by the student. Furthermore, consider

an example where students should define a recursive function which calculates the

cross sum of a positive integer. The easiest fix for the buggy code in listing 4.2 is to

replace the float division assignment (/=) in line 5 with an integer division assignment

(//=). However, this would still not solve the task as the student is required to use

recursion instead of a while loop. Thus, code repair tools need to be somehow aware

of which concepts can be used to fix a code.

1 def crosssum(n):

2 res = 0

3 while n > 0:

4 res += n % 10

5 n /= 10

6 return res

Listing 4.2: Buggy Python code calculating an integer’s cross sum using a while loop

M: Randomness (1, 2) Refactory uses unit tests to determine if a repair suggestion

is indeed correct. These unit tests are simple input-output tests, i.e., teachers have to

provide a set of Python expressions calling the function to be tested and the according

return value as string. This leads to problems for tasks that accepts a range of

correct answers, e.g., a random number between 0 and 50, as this cannot be checked

by string comparison [14]. The same applies for the variable bijection matching in

CLARA. Two variables are only considered as equivalent if they take the same values

in the same order, which again is not the case if randomness is used [10]. Pyrat thus

should be able to work with randomness, i.e., the fact that variable and return values

can differ for two executions of the exact same code and that both results can be

correct.

With the information derived from the courses, we find an answer to Research

Question 1.

4.2 Submission Validation
Submission validation is needed in Pyrat to check if a student’s submission contains

errors that need to be repaired or not. One option for validating the correctness of

student submissions is using unit tests, defined as the individual testing of software

units by IEEE [15]. As teachers have no knowledge about the internal logic of

a student’s submission, the black box testing technique is ideal for validating the

submission [17].

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 17

4.2. Submission Validation

This concept is used in autograding tools like nbgrader [16] or AutoGrader [54]. In the

example of nbgrader, teachers can add hidden test cells to the notebook and assign

points to it. In the correction phase, every cell of the notebook is executed, including

the hidden test cells. If and only if the test cell does not raise an exception, it is

marked as passed and the points are granted to the student. In general, a task can be

considered as correct if all test cells are passed.

For Pyrat, we introduce checks, a unit-test-like approach for submission validation.

In general, Pyrat checks can have one of three types: formal, semantic and warning.

Formal checks are used to check the submission for syntax errors. Another use case

for formal checks is checking compliance with constraints that are not absolutely

necessary for the semantic correctness of the code. This could entail the imposition

of constraints on the utilization of programming concepts such as recursion, the

prohibition of the use of external modules, or the verification of the existence of

specific variables.

Semantic checks, on the other hand, are used to check whether a formally correct

code calculates the correct results, i.e., is semantically correct.

Finally, it is possible to add warning checks to a task. These checks inform students

about any aspect of the code that is not a direct mistake but could potentially harm

readability or lead to future errors, e.g., using list or int as variable names.

Besides the check type, teachers can add a title for internal identification and

feedback that gets delivered to the student should the check fail.

The most basic check available in Pyrat is the unit test. Here, the teacher can define

two Python codes, a prefix and a suffix. When the check is executed, a Python file is

created where the student’s submission is placed between the prefix and the suffix.

The check is evaluated as passed if no exception is raised, i.e., the Python interpreter

exits with code 0. This extendable execution of unit tests allows teachers to decide

whether or not to use frameworks like unittest [41] or pytest [19]. By default, the

file is run without additional arguments. However, teachers can define a custom call

signature to run the Python file.

To ease the creation of new tasks, Pyrat provides a number of predefined checks

for recurring tasks using the libraries PyCheckMate4 [3] and PythonTA5 [23] that

require little to no configuration. PyCheckMate focuses on checks that can primarily

be assigned to the group of formal checks, including checks for compilation, the

existence of a variable, function or class as well as for concepts like recursion, list

comprehension or specific loops [3]. PythonTA, on the other hand, is designed to

provide information about code quality and "support learners by identifying logical

errors" [23]. This includes checks for the reuse of built-in names, unused imports or

variables or the usage of undefined variables, all of them fitting in the category of

warning checks. Even if most of the checks provided by PyCheckMate and PythonTa

fit into the category of formal or warning checks as described above, teachers are

free to assign another check type if they want.

Finally, it should be noted that checks can be assigned dependencies. If check B

depends on check A, it is only executed if check A passed. By this, unnecessary check

execution can be prevented, e.g., checks that rely on syntactically correct code are not

4 pycheckmate · PyPI, https://pypi.org/project/pycheckmate/, last accessed 07/25/2024
5 python-ta · PyPIhttps://pypi.org/project/python-ta/, last accessed 07/25/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 18

4.3. Cold Start Problem

executed if the code contains syntax errors. Also, checks can be stored as templates,

making it easy to reuse checks that are required often in the same or a similar way.

4.3 Cold Start Problem
Upon the creation of a new task, teachers are required to provide detailed information

to enable Pyrat to generate feedback for student submissions. Besides configuring the

checks used for the submission validation, reference solutions need to be added as a

base for the code repair and feedback generation.

As creating unit tests and reference solutions by hand is a time consuming process,

we discuss the integration of LLMs for this task. A prominent example for an LLM is

ChatGPT, released in 2022, which gathered more than 100 million active users in the

first two months of its public availability [13]. Accessible by an API, it is possible to

integrate ChatGPT into Pyrat in a way that teachers do not have to deal with the LLM

directly [27].

To ensure R5, the verification of non-teacher-authored data, teachers have to review

the generated checks and reference solutions before they are applied to the task.

Details on the generation of checks are given in section 5.1.1, the generation of

reference solutions is handled in section 5.2.

Once the first correct codes are submitted to Pyrat, they can be used in the repair

process as well. However, correct submissions can be very similar especially for small

and simple tasks [49]. This makes it inefficient to store every correct submission that

has been made to Pyrat. To solve this problem, section 5.4 describes a clustering

process to detect equivalent solutions, storing only one code of each equivalence set.

With the generation of checks and especially reference solutions, we solve Research

Question 2.

4.4 Feedback Generation
According to Shute, "Feedback used in educational contexts is generally regarded

as crucial to improving knowledge and skill acquisition" [43]. Following Rivers and

Koedinger, "students who receive help while programming do better in their courses"

[42]. A simple feedback in the form of passed or not passed for a set of unit tests is

thereby only helpful to a part of the students [20]. Thus, the tool developed in this

thesis should not only detect the mistakes a student made for an exercise, but instead

generate feedback that can be handed out to the student as an aid to find and fix the

error.

Both CLARA and Refactory do not focus on feedback [10, 14]. As an example, see

the buggy submission in listing 4.3. The task was to create a function add_iterable

which returns 0 in case a dictionary is given as the only argument. If a list or a set

is given, the function should return the sum of the values in the iterable object. The

error in listing 4.3 is that the student uses a print call instead of a return statement.

Listing 4.4 shows the repair suggestion offered by Refactory based on another

student’s correct submission. While the suggestion is correct, it does not highlight the

change that needs to be made in order to turn the buggy program into a correct one.

This violates the third rule of Shute’s "Formative Feedback Guidelines to Enhance

Learning", requesting to "present elaborated feedback in manageable units" [43].

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 19

4.5. Technical Setup

1 def add_iterable (iter):

2 result = 0

3 for element in iter:

4 result += element

5 if type(iter) == dict:

6 result = 0

7 print(result)

Listing 4.3: A buggy submission for the add_iterable Problem

1 def add_iterable(iter):

2 result = 0

3 for element in iter:

4 result += element

5 if type(iter) == dict:

6 result = 0

7 return result

Listing 4.4: Repair suggestion of Refactory for listing 4.3

In comparison, listing 4.5 shows the feedback created by CLARA. While this describes

the needed correction instead of providing a fixed code and thus highlights the needed

change, one must know the output schema of CLARA to be able to understand this

output.

* Change ’$ret := $ret’ to ’$ret := result’ *after*
the ’for’ loop starting at line 3 (cost=1.0)

Listing 4.5: Repair suggestion of CLARA for listing 4.3

4.5 Technical Setup
The main technical goal for Pyrat is that it can be easily set up and does not require

complex or even conflicting dependencies on its host system. This can be achieved

using Docker6, a virtualization system that builds containers for applications than

can be executed on most systems as long as the Docker environment is installed.

Thus, side effects with other software are prevented and updates with changing

dependencies are easy to apply.

As a Docker container usually should execute just one task, Pyrat is divided into three

Docker containers, as illustrated in figure 4.1. Thus, different dependencies of the

various parts of Pyrat can be handled and security issues are reduced.

The management container serves as the interface between Pyrat and the users,

both teachers and students. Built with the Next.js framework7, it offers an API with

Create, Read, Update and Delete (CRUD) access to all data that is stored in the

storage container. Furthermore, a compact web interface is provided to assist in the

administration of tasks, with a dedicated interface for students also available. Both

the API and the web interface are described in section 5.5.

6Docker: Accelerated Container Application Development, https://www.docker.com/, last accessed

07/24/2024
7Next.js by Vercel - The React Framework, https://nextjs.dev, last accessed 07/24/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 20

4.5. Technical Setup

Additionally, Next.js is built to be executed on Vercels Edge Network9 or using

serverless Node.js functions, making it possible to host the web interface on highly

scalable content delivery networks. While the storage is naturally not stateless,

MongoDB offers scaling options using replication. This highly increases the number

of possible read operations as they can be handled by every replication node of a

replica set. As write operations, i.e., operations that can only be performed by the

primary node, only occur if teachers make changes to the task or a new cluster

of correct student submissions is detected, scalability will be no problem for usual

course sizes. Otherwise, partitioning of the data can be used to further reduce the

load on individual containers by having multiple replica sets with own primary nodes.

[26]

As every task (including its checks, reference solutions and correct student

submissions) can be administrated using the API, integration of Pyrat into existing

exercise or programming environments is possible as long as these environments

can be extended, e.g., by plugins. This solves the third Research Question. As an

example, it is possible to create an extension for Jupyter Lab that integrates Pyrat

into the notebooks [31].

9 Edge Network, https://vercel.com/docs/edge-network/overview, last accessed 07/24/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 22

5.1. Checks

Section 5.1 describes the process of generating or manually adding checks that are

executed on code submissions to test if the submission is correct or not. Section 5.2

describes how a Large Language Model (LLM) can be used to add reference solutions

as a basis for the code repair.

Once a task is created, students can work on the task and submit their codes.

After executing the checks, Pyrat performs the code repair (section 5.3) in case the

submission is not correct. Feedback can then be used by students to fix errors in their

code, either leading to correct code or to new feedback. Using clustering of correct

submissions (section 5.4), teachers can enhance the set of reference solutions used

for repair.

Section 5.5 describes the web application that can be used to create and edit

tasks including their checks and reference solutions as well as to run the student

submissions.

5.1 Checks
As shown in figure 5.1, check execution is the first thing that happens after a student

submits their code. By executing the checks, Pyrat can ascertain whether code repair

is necessary for the submission.

5.1.1 Check Generation

Because it is complicated and time-consuming to create the necessary checks by hand,

the system aims to facilitate this task by using an LLM to extract essential information

from the task description and build the checks based on this information.

As PyCheckMate [3] and PythonTA [22] are included as libraries to remove the need

of writing unit test code for boilerplate checks, the LLM should be used to create the

checks using PyCheckMate and PythonTA. When using LLMs, prompt engineering is

important to get high-quality results [50]. To build a guideline for prompt engineering,

White et al. developed prompt patterns. Following White et al., "prompt patterns

provide a codified approach to customizing the output and interactions of LLMs" [50].

The first approach to generate these checks is to prompt the LLM for every available

check with the prompt in listing 5.1 based on White et al.’s Template Pattern [50].

While the first sentence introduces the LLM to the overall context, the second one

instructs the model to use JavaScript Object Notation (JSON) mode as output and is a

necessary message if the output should be valid JSON [27].

$ You are an assistant creating unit tests for Python introductory problems.

$ Respond with a JSON object containing a boolean value ’check_needed’ and,

if needed, an array ’args’ with the arguments for the check. Each argument

should be an object with the keys ’arg’ and ’value’.

$ <A description of the check including the required and optional args>

$ <Task description created by the teacher>

Listing 5.1: Prompt set 1 for check generation

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 24

5.1. Checks

As an example, we built the prompt for a PyCheckMate function checking if a given

built-in function is used in the student’s submission. This check should be created for

a task where the student is required to define a checksum function calculating the

cross sum of a number. Adding the check and task descriptions to the prompt set in

listing 5.1, this results in the prompt in listing 5.2. When executing this prompt on

the ChatGPT-3.5-Turbo model, we get the result in listing 5.3.

$ You are an assistant creating unit tests for Python introductory problems.

$ Respond with a JSON object containing a boolean value ’check_needed’ and, if

needed, an array ’args’ with the arguments for the check. Each argument

should be an object with the keys ’arg’ and ’value’.

$ Add this check for each built-in function that is required by the task

description. Use the following arguments: function_to_use: str, name of

the function that is required.

$ Implement a function ‘checksum(number)‘. Your function should calculate the

cross sum of the passed number, i.e., the checksum of a number is the sum

of its digits. For example, the checksum of the number 721365 is

7+2+1+3+6+5 = 24. Hint: Only positive integers (>=0) are passed to the

function.

Listing 5.2: Prompt for the built-in function check for the checksum task, built on listing 5.1

{

"check_needed": true,

}

Listing 5.3: ChatGPT-3.5-Turbo result for the prompt in listing 5.2

Running the prompt set from listing 5.1 for all available checks for the checksum task,

the LLM suggests the following checks. For easier readability we provide a summary

of the responses instead of the JSON objects.

1. The built-in function str has to be used.

2. The code should define a class checksum with one parameter.

3. The code should define a function checksum with one parameter.

4. The code should use a while loop.

5. The code should use a for loop.

6. The code should define a lambda function checksum with one parameter.

7. The code should use a list comprehension.

8. The function checksum should be defined recursively.

Based on the task description, some of the checks above do not make sense, e.g.,

the description says nothing about defining a class (2) or using lambda functions

(6) or list comprehensions (7). Also, it is not a requirement to define the checksum

function recursively (8), but if doing so, the usage of for (5) and while (4) loops seems

inconsistent. The check creation behavior was similar for other tasks, leading to the

assumption that check creation using an LLM with this prompt set is not useful.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 25

5.1. Checks

The second approach, again using the Template Pattern, uses the LLM just to extract

the necessary information out of the task description. Then, a deterministic procedure

builds the tests based on this information. As a positive side effect this reduces the

number of requests to the LLM from one per check to one in total. Listing 5.4 shows

the prompt to the LLM, again following White et al.’s Template Pattern. A JSON object

describing both the output scheme and the needed information is sent to the LLM

with the task description. In a second step, this extracted information is then used to

automatically create the requested checks.

$ You are an assistant extracting relevant information for unit tests for

Python introductory problems.

$ Respond with a JSON object. You can use the following template, replace the

description with the relevant information.

$ {

"builtin": "If it is obligatory to use built-in function, insert an array of

their names, else leave this option.",

"functionName": "If a function is needed, insert the function name here,

else leave this option.",

"functionParamsCount": "If a function is needed, insert the number of

positional parameters here, else leave this option.",

"functionParamsArgs": "If a function is needed and should accept an

arbitrary number of positional arguments, insert true here, else leave

this option.",

"functionParamsKwargs": "If a function is needed and should accept an

arbitrary number of keyword arguments, insert true here, else leave

this option.",

"while": "If it is obligatory to use a while loop, insert true here, else

leave this option.",

"for": "If it is obligatory to use a for loop, insert true here, else leave

this option.",

"tryExcept": "If it is obligatory to use a try-except block, insert true

here, else leave this option.",

"recursive": "If the function should be recursive, insert true here, else

leave this option.",

"imports": "If it is obligatory to use imports, insert an array of their

names, else leave this option.",

}

$ <Task description created by the teacher>

Listing 5.4: Prompt set 2 for check generation

This time, the LLM suggests to create one check for the function name (it should

be checksum) and one for the number of positional arguments (it should be one),

which is everything that can be derived from the short task description. Pyrat then

automatically creates these checks for the teacher.

Code Convention Violation Hints Besides generating the checks for formal alignment

to the task, the teacher can add a number of checks for code convention violations

by one click. As code convention does not depend on the task description, no LLM

integration to extract information is used here. Instead, a pre-defined set of nine

checks is added. In the default case, these checks do not mark a student’s solution as

failed, but give a hint instead, i.e., they are of type warning. However, teachers are

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 26

5.1. Checks

free to select another check type after the checks are created and also remove checks

they do not want to use. Following checks are added to the task:

• Usage of top-level code (should be removed if solution should contain top-level

code)

• Usage of global variables

• Usage of unused imports

• Definition of unused variable names

• Usage of undefined variables

• Usage of the loop variable (in for-loops) outside the loop (which is possible in

Python but might introduce logical errors)

• Usage of loop keywords break and continue outside of loops

• Usage of the return statement outside of functions

• Existence of unreachable code

5.1.2 Check Execution

When executing the checks, security concerns have to be taken into account. While

checks such as those offered by PyCheckMate1 and PythonTA2 are static checks and

thus do not rely on execution of the student’s potentially harmful code, unit tests that

check for the correct result for a given input must execute the tests [3, 22]. In addition

to malicious attacks, unit tests might harm the system in an unintended manner, e.g.,

blocking the server with accidental infinity loops or overwriting important test files

or system resources.

To provide a secure environment for code execution, the docker container creates

a low-privileged user tester with an own home directory. On unit test execution, a

temporary subdirectory in this home directory is created and the code is placed inside

this directory. Using Python’s subprocess module, the unit test is then executed under

the tester user with a timeout configurable in the check definition. In case of a unit

test failure, the output of the code is captured, enabling the teacher to see failure

reasons when creating reference solutions and checking them [40, 5].

1 pycheckmate · PyPI, https://pypi.org/project/pycheckmate/, last accessed 07/25/2024
2 python-ta · PyPI, https://pypi.org/project/python-ta/, last accessed 07/25/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 27

5.2. Solution Generation

As checks executed by PyCheckMate and PythonTA are static, there is no necessity to

set up the environment expected by the student’s task, e.g., files to read from, before

those checks are executed. However, this is not the case for unit tests executing the

code to check the semantical correctness of the submission. As stated in section 4.2,

unit tests consist of a prefix and a suffix code. Using the prefix code it is thus possible

for the teacher to set up the testing environment in any required way. As both the

prefix and the suffix code are combined with the student’s submission in the same

Python file, all of those code fragments are executed under the low-privileged tester

user. Thus, setup of eventually needed files is only possible in the temporary directory

created for this single check execution, i.e., using relative paths. An advantage of this

is that all files that are created for the check execution are automatically removed

after the execution, removing the need of manual garbage collection by the teacher.

Also, this ensures that the execution of a check for a submission A cannot affect the

check execution for submission B.

5.2 Solution Generation
Pyrat’s code repair needs at least one reference solution to calculate differences and

generate feedback, but especially for more complex tasks multiple solutions following

different approaches improve the results (chapter 6). As writing multiple reference

solutions is time-consuming for the teacher, an LLM should be integrated into Pyrat to

ease this step.

For evaluation of the developed prompts, we use CodingBat3 developed at Standford

University, offering 72 exercises for Python novices. For each task, CodingBat

provides a task title, a short description of usually less than five sentences, a function

definition header and a few input/output examples. Besides a brief description of

the task and the requested function name, every task comes with a set of unit tests

executable by an Application Programming Interface (API). As an example, see the

front_times task: Given a string and a non-negative int n, we’ll say that the front of

the string is the first 3 chars, or whatever is there if the string is less than length 3.

Return n copies of the front. The calls in listing 5.5 are given as an additional aid for

the students to self-check the code.

front_times(’Chocolate’, 2) -> ’ChoCho’

front_times(’Chocolate’, 3) -> ’ChoChoCho’

front_times(’Abc’, 3) -> ’AbcAbcAbc’

Listing 5.5: Example input/output tests for the front_times task

A second source for evaluation is CodeCheck4. Similar to CodingBat, 165 tasks for

Python novices are offered for self training. 153 of the tasks come with a description

and the requested function name as well as a set of unit tests executable by an API.

The remaining 12 tasks do not use the concept of functions, what makes it impractical

to use the unit tests provided by CodeCheck. As an example, see the the following

description: Given a string s, return the string with adjacent duplicates removed. For

example, Mississippi yields Misisipi. You may assume there is at least one character

in the given string.

3CodingBat Python, https://codingbat.com/python, last accessed 04/14/2024
4CodeCheck, https://horstmann.com/codecheck, last accessed 04/14/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 28

5.2. Solution Generation

The initial test uses the prompt in listing 5.6. As both CodingBat and CodeCheck do

not include the expected function name in the description (it is shown in the code field

instead), it is added as an extra message.

$ You are an assistant writing sample solutions for Python introductory

problems.

$ Respond with a JSON object containing the code for the given problem as a

string with the key ’solution’.

$ <Task description from CodingBat or CodeCheck>

$ The function should be named <funcName>.

Listing 5.6: Prompt set 1 for solution generation

Figure 5.2 shows the performance of the prompts for CodingBat and CodeCheck.

Using these messages, ChatGPT fails to write fully working code for one CodingBat

task. From the 47 generated codes from CodeCheck that failed completely, 22 failed

because the function name was chosen incorrectly by ChatGPT. Another 20 codes

failed because ChatGPT included example function calls with print statements into

the solution, which breaks the unit tests. This is also the case for the one failing test

from the CodingBat dataset.

To reduce the number of failed checks, an improved prompt set (listing 5.7) was

designed. Figure 5.2 demonstrates that these prompts decrease the number of tasks

with a complete unit test failure by 85%, while the number of tasks with partial unit

test success remains constant. Eight tasks from CodeChef achieve a better test score

with the first prompt than they do with the second set. In total, only 25 tasks fail at

least one unit test with both prompt sets, of which five fail completely.

$ You are an assistant writing sample solutions for Python introductory

problems.

$ Respond with a JSON object containing the code for the given problem as a

string with the key ’solution’.

$ Do not add exemplary tests to your code and do not call the print function.

$ <Task description from CodingBat or CodeCheck>

$ The function should be named exactly ’<funcName>’, do not change this name.

Listing 5.7: Prompt set 2 for solution generation

These results match those of Kiesler and Schiffner, where ChatGPT-3.5 was able to

solve 94.4% of the CodingBat tasks[18]. However, Kiesler and Schiffner do not use

the API to ChatGPT, i.e., code has to be extracted manually by the study conductors

instead of being automatically parsed. Denny et al., who used Codex, the GPT-3 based

LLM used for code generation in Github’s Copilot, solved 47.6% of the tasks from

CodeCheck with the initial prompt. Another 31.9% of the tasks could be solved by

manually editing the description of the task, which leads to a total of 79.5% solved

tasks. [6]. Even without manual editing of the prompts shown here, Prompt Set 2

slightly outperforms the results of Kiesler and Schiffner and Denny et al. with 100%

and 81.0% solved tasks for CodingBat and CodeCheck, respectively. However, as

Pyrat tasks do not have an extra data field to store an expected function name (it

should be stated in the task description instead), we do not use the last sentence of

the prompt set in listing 5.7 in the implementation.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 29

5.3. Code Repair

trivial example for this is the semantic equivalence between single and double quotes

in Python [47].

Second, all Python features described in section 4.1 should be supported by the

algorithm. This applies in particular for features not yet supported by existing

tools like CLARA or Refactory, i.e., code outside of functions, object orientation or

exceptions.

Third, code repair should work also on code that is syntactically correct but not

completely executable. A reason for this could be the implementation of an infinity

loop or endless recursion. As described in section 3.2, this is not the case for existing

tools that rely on executing the code as fully executing code with an infinity loop or

similar is not possible for obvious reasons.

5.3.1 Creating the Abstract Syntax Tree and BaseNode Tree

In general, Pyrat’s repair algorithm works by comparing a buggy student submission

with one ore more correct reference solutions. To do this, it generates the Abstract

Syntax Tree (AST) for each code snippet using Python’s ast5 module (section 2.1).

While other third-party libraries with similar capabilities are available as well, using

a built-in library that is used by the compiler comes with the benefit of guaranteed

maintenance of the library, also for coming Python releases and new features.

Access to the most relevant information is given in the subclasses of the ast module.

However, they are not sufficient to be used in the tree edit distance directly. As every

Python element and feature has an own subclass in the ast, we need to define a cost

metric that includes if an update between objects of two subclasses is possible or

not (sections 5.3.3 and 5.3.4). With the data structure chosen for the ast module,

accessing the elements of the tree is only possible top-down. While every element

holds an ordered list of its children, these children have no link to their parent

or sibling nodes. However, this information is required in the feedback generation

process to describe the location of the error to the student (section 5.3.8).

To solve these problems, a new tree is constructed from the AST. As for the ast module,

each type of node is represented by an own class with suitable attributes. If multiple

AST nodes belong to a group, i.e., updates are possible between the different node

types (section 5.3.4), they are represented by one class in the new tree.

As every node of the tree needs some methods and attributes in the same way, a base

class BaseNode6 is created that the different subclasses for the ast nodes can inherit

from. First, this includes links to the parent, first child, predecessor and successor

as well as methods to add a child or sibling to the node to construct the tree. As the

feedback generation process will link two trees, i.e., the buggy tree and the reference

tree based on the generated tree edit distance operations (section 5.3.7), a link to the

equivalent node of the other tree is stored as well. To give students information on

where the error in their code is, location information, i.e., start and end line of the

element, is added to the node as well.

5 ast - Abstract Syntax Trees - Python 3.12.4 documentation, https://docs.python.org/3/library/

ast.html, last accessed 07/25/2024
6 pyrat/src/base_repair/nodes.py, lines 19 - 501

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 32

5.3. Code Repair

A public method7 is offered to calculate the update cost to another node. First, the

method checks if both node objects are of the same class, i.e., if an update is possible

between them. If this is the case, a protected abstract method8 that has to be defined

by each node class itself is called to get the correct value. Otherwise, twice the sum

of insertion and removal cost of the two nodes is returned to make an update more

expensive than a replacement. Using two methods, a public and a protected one, it is

possible to define the exact cost metric in each node separately while not overwriting

the check if both nodes are of the same class.

5.3.2 Repair Improvements

The created BaseNode tree now represents the logic of the submitted code exactly

and can be used to calculate the distance to all reference solutions and to compute

the necessary operations as described in section 5.3.3. However, some parts of the

code, e.g., debug outputs, top-level code or unused variables are irrelevant for the

output of the submission and thus for the repair [49].

Thus, Pyrat has the option to remove debug output9. However, not every print

statement can be removed without side effects. As an example, consider an

assignment where a function should be defined that takes a list as its only argument

and returns its penultimate element. All side effects, e.g., outputs and changes to the

input list, are not relevant for the assignment. While the code in listing 5.10 solves

this assignment, removing the print statement would result in an incorrect code as

the function would now return the last element.

1 def function(data):

2 print(data.pop())

3 return data.pop()

Listing 5.10: Example code of an output with side effects

Thus, it is necessary to only remove output statements that are guaranteed to be free

of any side effects. As the repair algorithm is static, i.e., it cannot execute the code, we

need to define a set of outputs that are guaranteed to be side-effect free in any case.

Clearly function calls are not guaranteed to be side-effect free, so output statements

that print the return value of a function cannot be removed. The same holds for

subscription and operators, as they can be defined for custom objects however the

author of an objects likes. Thus, Pyrat only removes print statements if all positional

arguments, i.e., the arguments that are printed, are either constants or plain variable

names. However, it should be noted that it is also possible to define the __str__

method of a class in a way that it is not side-effect free even if this contradicts a good

code style.

7 getUpdateCost, pyrat/src/base_repair/nodes.py, lines 382 - 395
8 _getSelfUpdateCost, pyrat/src/base_repair/nodes.py, lines 172 - 179
9 pyrat/src/base_repair/transfomers/removeDebugOutput.py

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 33

5.3. Code Repair

Additionally, Pyrat introduces another transformer that removes unused variables10.

The same constraints as above hold for variables, too – a variable can only be removed

if this removal is side-effect free, i.e., a constant or another variable is assigned.

Otherwise, it is possible to remove the assignment and add the value as an expression

instead, e.g., replacing myVar = myFunction() with just myFunction(). However,

this can lead to complicated feedback, e.g., if the expression has to be removed as

part of the code repair. Then, the student will just receive a message to remove the

function call instead of the complete variable assignment.

For assignments that require students to create a function and nothing else, it is also

possible to remove all top level code from the code11. Thereby, we define top level

code as every code that is not indented, e.g., not part of a function or class. The only

exception are constant assignments, function and class definitions and imports [22].

This way, outputs that print the result of a function call, i.e., the call of the function

that is to be defined by the student, can also be removed before clustering and thus

from the later saved reference solution.

5.3.3 Calculate Distance and Compute Operations

To find the differences between the buggy code and a reference solution, and, if

multiple reference solutions are available for a problem, to find the closest reference

solution, the APTED algorithm is used (section 2.2). To calculate the tree edit distance

between two trees, a cost metric is needed that assigns a deterministic cost to every

possible operation, i.e., inserts, removes and updates.

APTED’s default Levenshtein-based cost metric is not suitable for the difference

between two ASTs. While each node in the tree has a label, e.g., Module, ListComp,

Name or Pow, the string edit distance between them is not based on the effort a

student needs to put into repairing their code following this update operation. As an

example, the labels Is and If have a string edit distance of one, while Is and Lt (the

less-than operator) have a distance of two. Nevertheless, it is easier for a student to

exchange the is operator with a < operator than with an if-condition.

To make the APTED algorithm work with the ASTs, we need to define a cost metric

that (a) assigns a valid cost for insertions and removals, (b) assigns a valid cost for

updates and (c) defines between which elements an update is possible at all.

While the APTED algorithm in general uses updates instead of removing and

re-inserting, as this is always cheaper due to the calculation of the Levenshtein

distance [21], this is not possible for the feedback generation of Pyrat. Here, we

use updates if and only if the change of a node of the buggy tree to a node of the

reference tree can be described by a short description, e.g., changing the name of a

variable or a constant value. In any other case, e.g., if the student uses an if-condition,

but a while-loop has to be used instead, we use remove and insert operations. Thus,

the feedback generation algorithm creates separate messages for the removal and

the insertion instead of providing one update message. As both nodes have no

similarity, it is easier to provide separate messages for the algorithm and also easier to

understand for the student. Section 5.3.4 discusses between which AST nodes updates

are possible.

10 pyrat/src/base_repair/transfomers/removeUnusedVariable.py
11 pyrat/src/base_repair/transfomers/removeTopLevelCode.py

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 34

5.3. Code Repair

For the insertion and removal (a), the cost is defined as the size of the subtree for

every element. As an example, see the BinOp element in listing 5.11. It has three

children: a name, the power operator and a constant value. While the power operator

and the constant are leaves and thus have a size of 1, the name has a single child ctx

and has size 2. In total, the BinOp element in listing 5.11 has a size of 5, which is

used for insertion and removal.

Module(

body=[

Expr(

value=ListComp(

elt=BinOp(

left=Name(id=’i’, ctx=Load()),

op=Pow(),

right=Constant(value=2)),

generators=[

comprehension(

target=Name(id=’i’, ctx=Store()),

iter=Call(

func=Name(id=’range’, ctx=Load()),

args=[

Constant(value=10)],

keywords=[]),

ifs=[],

is_async=0)]))],

type_ignores=[])

Listing 5.11: Small ast example (revisiting listing 2.2)

The update cost for valid updates (b) is more individual due to the complexity of some

AST nodes. In general, two constraints must hold for every update cost. First, the cost

must be greater than zero to be noticed as an update. Second, it must be smaller than

the sum of the removal cost of the node in the buggy tree and the insertion cost of

the node in the reference tree. By this constraint it is ensured that updating the node

is cheaper than removing and re-inserting it with some values changed, which would

lead to more complex repair instructions.

Using the APTED library, it is not possible to define that updates between certain

types of nodes are not possible (c). As an alternative, we assign costs of two times

the sum of removal and insertion to all update operations that are not allowed. This

ensures that removing and installing is cheaper than the prohibited update.

5.3.4 Possible Updates

In general, updates are only possible between the same node type, e.g., a name can be

updated to another name, but not to a function definition. While an update does not

change the tree in a different way then removing the old node and creating a new one,

this difference is important for the feedback generation (section 5.3.8). Nevertheless,

some leaf nodes are grouped together as listed below. Nodes belonging to the same

group can be exchanged at a lower cost of usually one, as changing them can be

explained in a simple sentence and does not require multiple steps of work for the

student.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 35

5.3. Code Repair

• Binary operations like +, - and bitwise operations

• Unary operations not, ˜, + and -

• Boolean operations and and or

• Comparators for equality, less/greater than, is and in

• Loop keywords break and continue

• List-like structures list, set and tuple

• Comprehensions of list, set, tuple and dict

• global and nonlocal statement

The async keyword can be added to or removed from function definitions and

for-loops with a cost of one, even if the async and non-async variant are represented

by own nodes in the ast module. Another special case is the Expr node. It is used as

a wrapper for statements that appear by themselves if the return value is not used,

e.g., a function call without a variable assignment. As an expression has no syntax

that students can add or remove and an Expr node always has exactly one child, the

child is directly added to the tree instead.

For all other nodes an update cost is calculated only for updates between the same

node type. While some nodes need a more complex comparison logic, e.g., a function

definition needs to check for changes in the arguments or decorators, others like a

while loop need no comparison logic at all since all update costs are calculated on

child level.

5.3.5 Variable Matching and Renaming

The repair algorithm presented in this section works by making the buggy solution

equivalent to a known reference solution. While this will always result in a correct

code, it might introduce unnecessary feedback messages as parts of the reference

solution can be changed without altering the code’s behavior. A large source of

unnecessary feedback messages are differences between the naming of variables

in the buggy and the reference solution. As an example, see the buggy code and

the corresponding reference code in listings 5.12 and 5.13, respectively. While the

solely error is that the student multiplied the radius with three instead of two to

get the diameter for the circumference calculation, additional feedback is generated.

Two feedback messages tell the student to replace the variable rad with radius, once

in the function argument and once in the calculation in the second line. Another

two messages tell the student to replace the variable res with result, once in the

assignment in the second line and once in the return statement. However, as they

are all local variables of the function, their naming is irrelevant for the semantics of

the code.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 36

5.3. Code Repair

def circumference(rad):

res = 3 * rad * 3.141

return res

Listing 5.12: Buggy code for circle

circumference calculation

def circumference(radius):

result = 2 * radius * 3.141

return result

Listing 5.13: Reference code for circle

circumference calculation

To remove these feedback messages, the repair algorithm needs to find a match

between variables that are used in a similar, but not necessarily equivalent way. In

their paper and the included tool CLARA, Gulwani et al. trace the values of a variable

over the execution on a given input to find a variable bijection between both codes

[10]. Similar is done by Hu et al. for Refactory [14]. However, both algorithms rely

on executing the codes on a predefined input. As the repair algorithm of Pyrat should

run statically, this is not an option.

Another possible option is presented by Vogt in his analysis of programming

equivalence. To ignore the naming of variables when checking if two programs

are equivalent, Vogt’s algorithm renames all variable names following a predefined

scheme, i.e., in numeric order [49]. However, this algorithm relies on generating

the symbol tables to calculate the scope of every identifier in the code. As the line

numbers in the symbol tables and the AST have to match, it is not possible to apply

this algorithm if at least one of the improvements in section 5.3.2 has been executed

before [49]. Thus, we develop an own algorithm for Pyrat’s code repair to match

different variable names between the buggy and the reference solution.

With Python’s ast module, it is possible to retrieve a list of all variable definitions and

usages. Using this information and the repair operations generated by the APTED

algorithm, we can find variable names that match without executing the code.

As a preliminary we have to define which ast nodes are names that can be updated.

In the implementation, we use an interface class NameLike that enables access to

the name of such nodes. The ast.Name subclass "can be used to load the value

of a variable, to assign a new value to it, or to delete it" [33]. Class and function

definitions, represented by the subclasses ast.ClassDef and ast.FunctionDef, also

have names. When a class or function is called, the ast.Name subclass is used in

the tree, making it hard to determine if the node refers to a variable or to a class or

function definition. Thus, we include class and function definitions as well by making

their BaseNode subclasses also subclasses of the NameLike interface. Lastly, functions

can also get arguments that are not represented as name nodes, thus they inherit from

the NameLike interface as well.

The idea of the algorithm in Pyrat is to find a bijection of variables by iterating

over the computed list of operations for the buggy code against a reference solution.

Listing 5.14 shows the used algorithm as pseudocode.

In lines one and two, the algorithm instantiates two empty mappings, one mapping

variables from the buggy code to their matching variables in the reference solutions

and one mapping vice versa. The algorithm then iterates over all pairs of name-like

nodes in the list of operations. If the pair is not yet part of the mapping, it is added

to both lists. If a name from the buggy code maps to more than one name in the

reference code, e.g., one feedback message replaces name x by y and another one

replaces x by z, it cannot be part of a variable bijection. Thus, lines eight and nine

remove all mappings where a name maps to more than one name. Last thing is to

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 37

5.3. Code Repair

derive a bijection by selecting all names b from the reference solution that map to a

name a in the buggy code that maps back to b.

1 buggyToRef = new mapping

2 refToBuggy = new mapping

3

4 for NameLike a, NameLike b in operations:

5 buggyToRef[a.name] &= b.name

6 refToBuggy[b.name] &= a.name

7

8 buggyToRef = {k: v[0] if v has exactly one element}

9 refToBuggy = {k: v[0] if v has exactly one element}

10

11 bijection = {b: a for b, a in refToBuggy if buggyToRef[a] == b}

Listing 5.14: Pseudocode for the variable bijection finding algorithm

By this algorithm we can ensure that every occurrence of a name a in the buggy code

is replaced by a name b in the reference code while no other name c in the buggy code

is replaced by b. This makes it safe to replace every occurrence of b in the reference

solution by the student-chosen name a. When the repair algorithm for this pair is now

applied again, no feedback messages for changing the variable names are generated

as they now match.

However, this approach has problems when the names are important and cannot be

exchanged without changes in the semantics. Listing 5.16 lists a reference solution

for a function that calculates the sum of the three given attributes and returns it,

while listing 5.15 uses the built-in function len instead of sum. If variable matching

is applied on these two codes, the student receives no feedback as the name in the

reference solution is replaced and thus no differences between the two trees exist.

To solve this, names that match the name of a built-in of the Python Standard Library

are not renamed.

def total(a, b, c, d):

return len([a, b, c, d])

Listing 5.15: Buggy code for number

addition

def total(a, b, c, d):

return sum([a, b, c, d])

Listing 5.16: Reference code for circle

circumference calculation

5.3.6 Finding the Minimum Repair

With the defined cost metric it is now possible to use the APTED algorithm to find the

reference solution that is closest to a submitted buggy solution. To do this, the APTED

algorithm is executed once for each available reference solution and calculates the

edit cost between the buggy and the reference solution. Once the edit costs to

all reference solutions are calculated, the minimum one is picked to calculate the

necessary steps a student needs to apply to their buggy code in order to fix it, i.e.,

make it equivalent to the selected reference solution.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 38

5.3. Code Repair

The APTED algorithm provides the necessary steps as a list of two-tuples, returned

in unspecified order. Each tuple consists of a node of the buggy tree on the left

side and a node of the reference tree on the right side for updates and matches,

where matches mean that a node does not need to be changed and updates describe

a needed inner-node change as introduced in section 5.3.4. Insertions are represented

as tuples with a missing left node and a buggy node on the right side, removals vise

versa. As an example, see the example in listings 5.17 and 5.18. The generated list of

two-tuples of BaseNode subclasses is given in listing 5.19.

def function():

var_a = 5

print(var_a)

Listing 5.17: Sample code A for distance

and operations calculation

def function():

var_a = 7

return var_a

Listing 5.18: Sample Code B for distance

and operations calculation

[

(Constant(5), Constant(7)),

(None, Call(print)),

(Return, None),

]

Listing 5.19: Generated tree edit operations as list of tuples for the code in listings 5.17

and 5.18

For performance reasons, this task is distributed to all available kernels using

Python’s multiprocessing standard library [36]. As every APTED calculation is fully

independent from the others, no communication between the processes except from

returning the calculated result is necessary. To avoid running too long, especially

on a large set of student submissions, the repair algorithm can be configured to

terminate the search process after a predefined timeout and select the minimum

reference solution that is known so far using an environment variable. This ensures

that Pyrat always returns feedback for a buggy submission for a reasonable timeout,

i.e., a timeout that is longer than a single computation of the tree edit distance.

5.3.7 Linking the Trees

With the help of Python’s ast module, a code can then be converted to a tree of

BaseNode objects (more precisely objects of its subclasses). As an example, see the

buggy and the correct code in listings 5.20 and 5.21 respectively. The goal of the

codes is to calculate the surface of a circle with a given radius, while the buggy

code has three errors. First, the undefined variable name dia is used instead of the

functions argument rad in the calculation. Second, the power operation with the

exponent 2 is missing. Instead, the student used the variable dia directly, i.e., it is not

squared. Third, a print call is used for the variable res instead of a return statement.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 39

5.3. Code Repair

def surface(rad):

res = dia * 3.141

print(res)

Listing 5.20: Buggy code for circle

surface calculation

def surface(rad):

res = (rad ** 2) * 3.141

return res

Listing 5.21: Reference code for circle

surface calculation

When parsed to a BaseNode tree, the codes result in the trees in listings 5.22 and 5.23

respectively. Each node is given an identifier, i.e., the characters A to R in front of

the node names, that is not part of the tree in Pyrat but is added for reference here.

a: Module

b: FunctionDef (surface)

c: FunctionArgs

d: FunctionArg (rad)

e: Assign

f: Name (res)

g: BinOp

j: Name (dia)

m: BinOps (Mult)

n: Constant (3.141)

o: Call

p: Name (print)

q: CallArg

r: Name (res)

Listing 5.22: BaseNode tree for the

buggy code

A: Module

B: FunctionDef (surface)

C: FunctionArgs

D: FunctionArg (rad)

E: Assign

F: Name (res)

G: BinOp

H: BinOp

J: Name (rad)

K: BinOps (Pow)

L: Constant (2)

M: BinOps (Mult)

N: Constant (3.141)

S: Return

R: Name (res)

Listing 5.23: BaseNode tree for the

reference code

(a, A) => match

(b, B) => match

(c, C) => match

(d, D) => match

(e, E) => match

(f, F) => match

(g, G) => match

(-, H) => insert

(j, J) => update

(-, K) => insert

(-, L) => insert

(m, M) => match

(n, N) => match

(o, -) => remove

(p, -) => remove

(q, -) => remove

(r, R) => match

(-, S) => insert

Listing 5.24: Operations generated for the trees in listings 5.22 and 5.23

When the APTED algorithm is executed on the trees in listings 5.22 and 5.23, a

distance of 12 is calculated. In addition to the repair cost, the algorithm calculates

a list of operations given in listing 5.24 that need to be performed to transform the

buggy tree into the reference tree.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 40

5.3. Code Repair

In these update operations, node j is mapped to node J as an update, issuing the

message that the name of the variable has to be changed to rad. The nodes H, K, L

and S in the correct tree have no counterpart in the buggy tree, thus they are listed

alone in the operations list. For the feedback generation this means that those nodes

have to be inserted to fix the buggy solution. In the buggy tree, node o including its

two children p and q has to be removed. Only the leaf r, namely the variable res, has

a matching node R in the reference tree, the only child of the return statement. As

APTED does not remove all children of a removed node automatically, the leaf r is not

removed. All other nodes are matched to their corresponding node in the reference

tree without changes.

As one can see in this example, not only the values, e.g., the variable name, of a node

can change. In the buggy tree, node j has node g as its parent and node m as its

successor, while the corresponding node J in the reference tree has node H (a new

node) as parent and node K (another new node) as its successor. Node M, linked to

the successor of j in the buggy tree, is now the successor of the parent of J.

While the operations list could be used for feedback generation directly, this would

have one drawback. Not every operation that is included in the operations list has

to be translated to a feedback message. As an example, the feedback list from the

example above contains insert operations for the buggy nodes H, K and L. Creating a

feedback message for each of the insertions would instruct the student to add a binary

operation with the power operator (H), the power operator (K) and the constant 2 (L).

This is the case as the feedback messages include information about their children to

be more precise, i.e., it would not be helpful for students if a message just advises to

add a binary operation. To achieve this, the operations first have to be added to the

tree so that traversal is possible. If a feedback message is generated during traversal,

the message generating method can select whether further traversal is necessary or

not.

For this, it is now necessary to change the buggy tree in a way that its structure is

identical to the structure of the reference tree. This is done using the link property of

the BaseNode class, holding a reference to the equivalent node of the other tree and

the type of the link (match, update or insert). To set these links, the algorithm iterates

over the list of operations generated by the configured APTED algorithm (section 2.2).

Each element is a two-tuple of references, the first to the buggy node and the second

to the reference node. If both values are set, the operation is either a match or an

update operation, which can be determined by calculating the cost to update the

buggy node to the reference node. If this cost is zero, it is a match operation, else

an update operation. Both nodes are then linked and the link is marked with the

according link type, i.e., match, update, insert or remove.

If the left side of the two-tuple is empty, a new node needs to be created in the buggy

tree. To integrate this into the buggy tree, an empty BaseNode object, i.e., an object

of the superclass, is created and linked to the equivalent reference node. If the right

side of the tuple is empty, the node needs to be removed. As there is no counterpart

in the reference tree, the node is added to a list of nodes that need to be removed.

This list is later used for feedback generation.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 41

5.3. Code Repair

a: Module - m -> A: Module

b: FunctionDef (surface) - m -> B: FunctionDef (surface)

c: FunctionArgs - m -> C: FunctionArgs

d: FunctionArg (rad) - m -> D: FunctionArg (rad)

e: Assign - m -> E: Assign

f: Name (res) - m -> F: Name (res)

g: BinOp - m -> G: BinOp

h: BaseNode - i -> H: BinOp

j: Name (dia) - u -> J: Name (res)

k: BaseNode - i -> K: BinOps (Pow)

l: BaseNode - i -> L: Constant (2)

m: BinOps (Mult) - m -> M: BinOps (Mult)

n: Constant (3.141) - m -> N: Constant (3.141)

s: BaseNode - i -> S: Return

r: Name (res) - m -> R: Name (res)

Listing 5.25: Linked BaseNode tree for feedback generation based on the trees in listings 5.22

and 5.23. m, i and u are abbreviations for match, insert and update, respectively.

5.3.8 Generating Feedback

Based on the linked tree, Pyrat’s repair algorithm can now generate feedback for the

students. For this, the tree is traversed in a depth-first way, resulting in a list of

feedback messages that starts with the first line of code and ends with the last one.

For each update, insertion and removal, a feedback message describing the necessary

change is generated. For the linked tree in listing 5.25, the feedback consists of the

following messages.

1. Create a binary operation power (**).

2. Add a return statement.

3. Remove the call to the function print.

However, these feedback messages are not yet sufficient. While they describe what

change has to be performed by the student, there is not enough context to know

where the error is, especially in larger codes. Thus, location context is added to the

messages. For updates and removals, it is possible to add the line number of the

node in the buggy code, but this is not possible for insertions as they are not part

of the buggy code. Instead, the location is described by the type and line number of

its parent, predecessor and successor. For the three messages above, the following

location context is added.

1. As part of the binary operation multiplication (*) in line 2.

Before the constant value 3.141 in line 2.

2. As part of the function definition surface from line 1 to 3.

After the assign statement in line 2.

3. As part of the function definition surface from line 1 to 3.

After the assign statement in line 2.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 42

5.4. Clustering

As an additional aid the code that is to be removed and the code that needs to be

inserted are included in the feedback message as well. In case of an update, both – a

code to remove and a code to insert – are given to the student. However, in the Pyrat

web interface (section 5.5), this information is hidden by default and can be retrieved

by the student if they need further assistance. Thus, students can first try to solve the

error with the feedback on their own.

5.3.9 Extendability

One advantage of the chosen design is the easy extendability in case of new Python

features. In general, two changes to the Python language are possible. First, it might

be the case that one of the Python language elements that have an own subclass in

the ast module gets extended. In this case, the BaseNode subclass matching this

ast subclass has to be extended to be aware of the changes. However, there are no

Python Enhancement Proposals (PEPs) available yet that introduced such changes to

an existing ast subclass [45].

Thus, the remaining option for changes to the Python language is the introduction

of new subclasses to the ast module. One example for this is the introduction of

the structural pattern matching, i.e., the match statement, in PEP 634 [4]. To make

Pyrat’s repair algorithm aware of such changes, one must add a new subclass to the

BaseNode class12. This subclass, as any other existing subclass, receives the ast

node in the constructor and stores the relevant information. Additionally, methods

calculating the update cost to another node of the same type as well as methods

generating the feedback texts have to be defined. To make the new node known to

Pyrat, it is sufficient to add an entry to the node mapping13. By this, the factory

method14 can create objects for the new node when parsing the AST.

5.4 Clustering
If a student submission is correct, it does not necessarily align with an existing

reference solution added by a teacher. Also, this submission represents the way of

thinking of a novice solving this task, making it likely that another student uses a

similar approach without getting to a correct result. Because the repair algorithm

generates feedback by calculating the necessary changes to match a known reference

solution, the size of the feedback is drastically reduced if the reference solution used

is similar to the buggy submission (chapter 6). For this reason, Pyrat provides the

ability to use correct student submissions as reference solutions in the repair process

of later buggy submissions.

As described in section 5.3, the repair algorithm computes the tree edit distance

of the ASTs of the buggy submission and every stored reference solution. Thus,

the time needed to generate feedback increases linearly to the number of available

reference solutions, including correct student submissions. In his analysis for python

program equivalence, Vogt showed that depending on the exercise, up to 80% of the

submissions have "weak semantic equivalence" to another submission for this task

12 /pyrat/src/base_repair/nodes.py
13 AST2NODE, /pyrat/src/base_repair/nodes.py, lines 2301 - 2398
14 factory, /pyrat/src/base_repair/nodes.py, lines 2401 - 2402

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 43

5.4. Clustering

[49]. Weak semantic equivalence is thereby defined in a way that "two programs A

and B are weakly semantically equivalent if they produce similar output for every

possible input, assuming no undefined or generally unintended behavior" [49]. By

this definition and the implementation of Pyrat’s repair algorithm, this means that

feedback generated for a buggy submission using two different reference solutions as

a base that have weak semantic equivalence will be exactly the same.

As comparing a buggy submission against two reference solutions that are equivalent

will result in equivalent feedback, it is sufficient to use one exemplary reference

solution of each equivalence set. Thus, student submissions are clustered, i.e., a

new correct submission is checked to see if an equivalent reference solution already

exists for the problem. If this is the case, the submission is not added to the set of

reference solutions as this would introduce redundancy.

The key point now is to define equivalence between two codes in a way that

reduces the number of known reference solutions while offering a variety of different

approaches to solve a task, reducing the amount of feedback that is generated for

a buggy submission. A first way of clustering equivalent codes is used in CLARA by

Gulwani et al. [10]. They define a concept of dynamic equivalent where two codes

are dynamically equivalent when they have the same control flow and a total bijection

between their variables, i.e., "related variables take the same values, in the same

order, during the execution on the same inputs" [10]. The control flow is thereby

defined as the "looping structure", where two codes have the same looping structure

if they have the same loops. As an example, the programs in listings 5.26 and 5.27

would be considered dynamically equivalent as they both define one for loop and the

variables take the same values. Thus, only the one submitted first would be stored as

a reference solution, even if both produce a different print output. Also, tracing the

assignments of all variables to check for a total bijection requires the execution of the

code.

For the evaluation of program equivalence, Vogt developed an own static algorithm

that clusters codes. In the implementation, the algorithm is based on first

transforming the AST of a code according to certain rules to remove or align

unnecessary information. Then, the ASTs can be checked for equality. A first

transformer unifies all strings in Python’s input prompts to inputmessage, making

codes that prompt the user for a value in a different wording equivalent. The same

is done for string arguments of the print function to unify outputs, all strings are

changed to outputmessage. Applying these two transformers, the changes between

listings 5.26 and 5.27 in lines 2 and 11 would not affect equivalence between the

codes [49]. The next step is to rename the variable names. In contrast to CLARA,

where the clustering algorithm tries to find a bijection between variable names, the

name transformer for Vogt’s analysis renames variable names after a fixed scheme in

both codes. The scheme used in the provided transformer replaces every name by a

generic one that respects the scope of the variable, i.e., if a code uses the same local

variable name in two different functions, they would be renamed to different names

by the transformer. Lastly, a transformer for assignment inlining is provided. Using

this transformer, simple assignments to variables that are done in the line above the

single use of these variables are removed. The value is then used instead of the

variable directly [49].

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 44

5.4. Clustering

1 def function(a):

2 limit = int(input("Please provide your limit value: "))

3 total = 0

4

5 for i in a:

6 if i <= limit:

7 print(i)

8 total += i

9

10

11 print("The total is", total)

12 return total

Listing 5.26: Example code A for CLARA’s equivalence

1 def function(iterable):

2 limit = int(input("limit: "))

3 sumOfIterable = 0

4

5 for x in iterable:

6 if x >= limit:

7 print(i)

8 else:

9 sumOfIterable += x

10

11 print("The sum is", sumOfIterable)

12 return sumOfIterable

Listing 5.27: Example code B for CLARA’s equivalence

Both clustering approaches are not ideal for the clustering of correct student

submissions. As the example shows, the algorithm used in CLARA will put two codes

with different output in the same cluster. Also, the implementation is not static

and tasks that include randomness in variables cannot be clustered correctly as it

is unlikely that a variable bijection can be found. [10]

For the second algorithm, some features like the assignment inlining are not ideal as

well. While two codes that are equivalent except from a variable inlining are indeed

very similar and could form a cluster depending on the use case, this is not the case

for program repair in Pyrat. As an example, see the correct submissions for a task

in listings 5.28 and 5.29 as well as the incorrect submission in listing 5.30. If we

assume that the submissions were made in this order and clustering of correct student

submissions was done with the assignment inlining, submissions A and B would be

clustered together. Thus, only submission A would be stored as a reference solution,

assuming that there is no other equivalent code already stored. If now the incorrect

code C is submitted to the task, the only real mistake made by the student is the use

of the constant 3 instead of 2 in the list comprehension. Nevertheless, the student

would get feedback to also create a new variable tmp and assign the return value of

outside_ f unction to it. Another feedback message would then be to use the variable

tmp in the call of my_action [49]. This is an important difference to the clustering and

repair algorithm used in CLARA [10].

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 45

5.4. Clustering

1 def function():

2 tmp = outside_function()

3 res = my_action(tmp)

4

5 return [i ** 2 for i in res]

Listing 5.28: Example code A for inlining, correct

1 def function():

2 res = my_action(outside_function())

3

4 return [i ** 2 for i in res]

Listing 5.29: Example code B for inlining, correct

1 def function():

2 res = my_action(outside_function())

3

4 return [i ** 3 for i in res]

Listing 5.30: Example code C for inlining, incorrect

Nevertheless, the clustering algorithm by Vogt is implemented in a modular design,

thus it is possible to only use a subset of the transformations for clustering [49].

The combination of the modular design and the static execution make this cluster

algorithm better suited for Pyrat than CLARA, thus it is integrated into Pyrat with

some changes.

For the reasons shown beforehand, assignment inlining is not used in the clustering

for Pyrat. Another change is made at the output unification. Looking at the

assignments of a Python introductory lecture, they fall roughly into two categories:

those that use output as part of the assignment and those that do not. For the

assignments that use outputs, the correct output is usually necessary for grading,

thus it should be equal for all correct submissions and correct codes will not be split

into multiple clusters just because of different strings.

While submissions to assignments that do not need output usually should not contain

output, this does not work in practice, as students tend to add debug outputs to their

code. While unifying these outputs will help to reduce the number of clusters if two

solutions both use different output formats, it will not solve the problem completely.

When used as a reference solution, a code should not contain anything that is not

needed to solve the task. Otherwise, students would get feedback to add certain

debug outputs that are not required by the task if the reference solution used for

the repair contains debug output. To solve this issue, Pyrat removes debug output

while clustering instead of unifying it if it is not needed for the assignment. This is

done using the same algorithm that is also used in the program repair to remove the

debug output from the buggy submission (section 5.3.2). Teachers can configure the

cluster settings of a task to match the need of an assignment. The same is done for

the removal of top-level code and unused variables, also described in section 5.3.2.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 46

5.5. Web Interface

The unification of variable names is used without changes in the clustering process.

Nevertheless, the student submission is added to the set of reference solutions with

its original variable names, as the generic names are in general not a good choice for

variable names and would be displayed in case the submission is used as a reference

solution.

While the cluster algorithm offers some options for configuration and cleaning of the

submissions, it is not guaranteed that every correct student submission is a good

reference solution. As an example, consider a task where a list with all keys from a

given dictionary should be created where the respective dictionary value is False. To

get to know the different possibilities of while and for loops, students were required

to use a while loop for this task. Listing 5.31 gives an example of a real student

submission that fulfills the requirements of the task and was graded with all possible

points. However, the submitted solution is not of good quality. Even though if a while

loop is used, it is not used in the intended way, i.e., to replace the for loop, but to

replace an if statement.

1 results_oral_exam = {"154880": True, "379355": False, "437492": True,

2 "212711": True, "141777": True, "340407": False}

3 failed = list()

4 for key, value in results_oral_exam.items():

5 while value == False:

6 failed.append(key)

7 break

Listing 5.31: Real student submission using a while loop in an unconvenient way

As bad – but correct – student submissions can occur even with the best checks,

Pyrat offers multiple options for the teachers. The easiest ones are to use either

only reference solutions created by the teacher, which increases the feedback size

for buggy submissions, or to use all submissions, which might mean using bad

submissions as reference solution.

The third option is a mix of the other two options. In the settings of a task, the teacher

disables the usage of student submissions for the repair algorithm. Nevertheless,

Pyrat will cluster new student submissions and store them with a new flag. Teachers

can then review new student submissions and check if they are good enough to be

used as a reference solution. If this is the case, the code’s label is changed from

student to reference and it will be used as a reference solution for new submissions.

Otherwise, the flag is removed and the code’s label remains student. Thus, the code

is still known to Pyrat and will not pop up as a new correct submission every time a

student submits an equivalent code. Lastly, teachers have the option to make some

changes and then accept the code as a new reference solution.

5.5 Web Interface
Built with Next.js, the server offers both an API and a web interface by which tasks,

checks and reference solutions can be added and configured. To reduce duplication

of code, the web interface serves as an API-consumer, i.e., all access to the database

is done by querying the API.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 47

5.6. Storage System

2. Use the web interface to configure tasks, use the web API to check student

submissions.

3. Use solely the web API, i.e., for task configuration and student submissions.

4. Use only the functionality offered by the check and repair container.

While the first option is the easiest to set up, it lacks of flexibility. Students have to

use the web interface, thus extras like releasing tasks by a time condition or access

management are in general not available with the current implementation of Pyrat.

Using the second option brings more flexibility as teachers can omit the student

interface and implement an own solution instead, e.g., an integration into a Learning

Management System (LMS). Nevertheless, the web interface can still be used to add

and configure tasks instead of dealing with an API of nearly 30 endpoints (appendix C).

With the third option, this is what is done. Here, only the API is used to add and

configure tasks as well as to run the check and repair algorithm on the student

submissions with subsequent clustering of correct submissions. However, it is also

possible to use the API only for some parts, e.g., adding reference solutions using an

external source and still using the web interface to add checks to the tasks. As the API

which offers the endpoints accessing the storage is realized by the web interface, the

docker container for the Next.js application needs to be up and running either case.

Using the fourth option, the docker containers for storage and the web interface do

not need to be running. Instead, only the check and repair container offering three

endpoints for check execution, repair execution and submission clustering is required

(appendix C). Thus, the user of this API has to take care of the data structure and

storage themself. Additionally, it is also possible to omit the API offered by the check

and repair container and import the required functionality offered by different Python

classes directly.

5.6 Storage System
Persistent data storage is needed so that the different subsystems can access all the

necessary data. For each task, the data listed below has to be stored for different

purposes.

For Pyrat’s student interface, a detailed description of the task needs to be stored.

This description can then be shown to the students so they know what they have to

implement. In Pyrat, a description consists of an arbitrary number of blocks, each of

them either markdown formatted text or Python code.

From the teachers’ perspective, every information needed for the execution of the

code repair must be stored as well. This includes checks that need to be executed to

check if a submission is correct or not before it can be handed to code repair. Each

check can either be described by Python code that is executed (a unit test), which

offers an almost unlimited range of options, or by functions from other test libraries

like PythonTA [22] or PyCheckMate [3]. Every check function needs to store different

information used as attributes to the Python functions implementing the checks.

Pyrat needs at least one reference solution to repair the semantically incorrect

submissions. To further improve the results, it is also possible to add correct

submissions from students to the pool of known correct solutions for the task

(chapter 6).

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 50

5.6. Storage System

As described in chapter 5, every component of the resulting correction system should

run as an individual Docker container to remove obstacles in the setup process. By

this constraint, the storage system should be able to run in Docker out of the box and

accessing the data should be possible via network.

The most simple method in terms of setup is storing the data directly on the file

system, e.g., in Comma Seperated Values (CSV) or JSON files. Nevertheless, providing

access via network is more complicated here as a custom server script to read and

write the files, organize them and deliver the content via network access is needed.

Also, scalability issues can arise and have to be solved by custom code.

To avoid the manual structuring of the data on the file system, a database

management system can be used. Due to their prevalence, MariaDB and MongoDB

are considered an option. While MariaDB as a relational SQL-based database is good

for data that is always structured in the same way, MongoDB is more flexible. As every

check has different arguments that need to be defined, it is easier to store these in

MongoDB than in MariaDB. Also, n:n-relations defining dependencies between checks

can easier be stored in MongoDB.

As MongoDB provides an official docker image16, setup is possible across many

operating systems and environments.

A first collection tasks is used to store the task definition, including a title, a

description and possible other future values.

A second collection checks stores the single checks configured for each task. This

includes the id of the execution function, a title, feedback for the students, arguments

for the execution function and a list of other checks this one depends on. Even if it

was be possible to store the checks as a subdocument in the tasks collection, moving

them into an own collection improves the performance when editing them.

With a third collection solutions the database is able to store the reference files

created by the teacher as well as the correct student submissions.

16mongo - Official Image | Docker Hub, https://hub.docker.com/_/mongo, last accessed 07/25/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 51

Chapter 6 Evaluation

The evaluation of Pyrat is split into two parts. The first part contains a questionnaire

with Python experts, reviewing the feedback generated by Pyrat for eight real student

submissions to four different tasks. The second part of the evaluation analyzes the

repair improvements described in sections 5.3.2 and 5.3.5.

6.1 Building the Questionnaire
The goal of the questionnaire is to determine the quality of the feedback that Pyrat

generates and to detect possible improvements for the future. While the web interface

is used in the evaluation process, it is not part of the questionnaire to evaluate the

usability of the interface.

For practical reasons, i.e., no available Python course for novices at the time of the

evaluation, a questionnaire designed for students working with Pyrat as part of their

exercises was not possbile. Thus, we decided to design the questionnaire for Python

experts and educators. To evaluate the feedback generated for realistic buggy student

submissions, we reused real student submissions from an introductory Python course,

offered in winter semester 2021/2022.

The questionnaire was administered online using SoSci Survey1, the Pyrat tool was

also offered online, i.e., no setup was necessary for the participants. A Zoom2 meeting

was used to provide assistance with problems and questions.

6.1.1 Selecting the Tasks

From all the tasks and submissions available from the lecture, we selected the

following four tasks with eight buggy submissions for the evaluation. By selecting

these tasks, we can evaluate tasks that cannot be repaired with the tools listed as

Related Work in chapter 3. The Random List task cannot be checked by the simple

input-output tests used in Refactory due to randomness in the output. Also, the object

orientation required in the Vehicle Class cannot be repaired by CLARA or Refactory.

[10, 14].

1 SoSci Survey - professionelle Onlinebefragung made in Germany, https://www.soscisurvey.de/, last

accessed 08/04/2024
2One platform to connect | Zoom, https://zoom.us/, last accessed 08/04/2024

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 52

6.1. Building the Questionnaire

Average Price Define a function average_price_petrol. Your function should

accept an arbitrary number of keyword parameters and nothing else. You can assume

that every value passed as a keyword parameter is either of type int or float. Your

function may behave arbitrary if something else is passed to your function, including

a positional parameter of any type.

Your function should calculate the mean of the given values and return it, rounded to

three decimal digits. You may use the built-in round function, but you may not import

any modules.

Car Dictionary Create a dictionary, named cars, that includes cars from different

car brands as a set respectively.

• VW: Golf, Polo, up!

• Seat: Leon, Ibiza

• Daihatsu: Sirion

• Audi: A4, Q3, R7, Q2

Random List Create the function create_random_list(...), which has three

parameters: size, min_value, max_value. This function shall return a randomly

generated list of integers of length size where the list values are between min_value

and max_value. You can assume that only correct data is passed to the function.

For example, create_random_list(5, -85, 53) should return a list like [-83, 42,

53, -15, 0].

Vehicle Class A classic example of object-oriented programming are vehicles. Write

the class Vehicle with the following specifications:

• Attributes: colour, construction_year, mileage (the init function should get

them in this order)

• Example for string representation with colour = white, construction_year =

2000 and mileage = 123456: The vehicle is white, was manufactured in the year

2000 and has run 123456 kilometers so far.

• A method drive(...) which receives a distance in kilometers and adjusts the

vehicle’s mileage accordingly. In the case of negative distances, the vehicle’s

mileage is of course not changed.

The student submissions selected for these tasks are given in appendix B.

6.1.2 Repair Options

The feedback differs depending on which repair improvement options described in

sections 5.3.2 and 5.3.5 are used for a task. Due to the time needed for a teacher to

understand and evaluate a generated feedback, it is not possible to generate feedback

for every combination of the improvements and use it in the evaluation process. For

consistency reasons we thus decide to use all of the implemented improvements, as

section 6.3 shows a general reduction in the number of error messages.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 53

6.2. Evaluating the Results

quality as well. The fifth subquestion verifies the similarity between the participant’s

feedback and the repair suggestion.

As a five-point Likert-scale is not sufficient for detailed feedback, an additional

free-text field can be used to comment the feedback sets. Another free-text field can

be used to specify which feedback messages should be returned, if this was selected

in the according subquestion before.

In the end of the questionnaire, the participants are asked to rate their Python and

their teaching skills between none existant and excellent.

6.2 Evaluating the Results
A total of seven participants completed the questionnaire, taking an average of 64

minutes. As visualized in figure 6.3, the participants evaluate their Python skills

between average and excellent. However, teaching experience variates between

none existing and excellent, representing the range of participants from two master

students to a postdoctoral researcher.

Figure 6.4 shows the results of the Likert-scale questions, ranging from 1 strongly

disagree to 5 strongly agree. In every subgraphic, the result to one of the six

questions is given for all of the tasks and submissions. The stacked colored bars

represent the absolute number of votes for the five options of the Likert-scale.

Additionally, the blue bars represent the mean value. Every data set is labeled with

the task’s name, e.g., Average Price, and the feedback set, i.e., A or B for the repair

without or with the correct student submissions, respectively. If neither A nor B

is given, the repair suggestions are the same for both cases, so only one has been

provided for the participants. The numbers are only used to refer to the different

submissions for a task.

For the further evaluation of the questionnaire we categorize the solutions into three

categories. The first category contains submissions where both repair suggestions

receive mainly disagreement in the Likert-questions, i.e., the submissions Average

Price 2 and Vehicle Class 2. The second category contains submissions where the

acceptance of repair suggestions B could be significantly improved compared to

those for repair suggestions A, i.e., the submissions Average Price 1, Car Dictionary

1, Car Dictionary 3 and Random List 1. The last category contains submissions

where only one repair suggestion was used and received mainly agreement in the

Likert-questions, i.e., the submissions Car Dictionary 2 and Vehicle Class 1. In both

cases, we only used one repair suggestion in the evaluation because the provided

reference solution is also the minimal repair when the correct student solutions are

also available, i.e., both repair suggestions are built on the same reference and thus

equal.

6.2.1 Negative Feedback for Suggestions A and B

As Figure 6.4 shows, the acceptance of the feedback for the submission Average Price

2 consisting of 13 or 8 messages (feedback set A and B, respectively) is low. An often

mentioned cause for this rating is that the feedback completely rewrites the code

and "enforces a specific way of computing the output and iterating the input" [P5].

This is the case because the student approach completely differs from the approach

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 56

6.2. Evaluating the Results

used in the reference solution and also all correct student submissions. However,

the feedback says that "each feedback fragment itself is easy to understand" [P1]. In

total, all participants agree that only the message for the return statement should be

returned.

Another submission with negative feedback for both set A and B is Vehicle Class 2.

P2 states that "the addition of the if-statement in the drive function is realized by

suggestion [sic!] the complete removal of the function and the insertion of the fixed

version. This gets the student to the correct solution, but is not really helpful." As the

tree edit distance always computes the minimal edit to repair a buggy solution, this

indicates an error in the applied cost metric that prefers removing a small function

instead of adding an if condition into it. Another critic is that the repair suggestions

force the student to change the __str__ method of the class, even if the output is

correct.

6.2.2 Negative Feedback for Suggestion A, Positive for B

In contrast to the previous two submissions, the feedback could be improved by using

correct student submissions for the submissions in this section. The repair suggestion

set A for the submission Average Price 1 is described as "overly complicated" [P5]

with some of the messages being "hard to understand" [P6]. While the only reference

solution available for set A iterates directly over the values of the dictionary, the buggy

student submission iterates over the keys of the dictionary and uses subscription to

retrieve the values. Thus, two messages advise the student to change this behaviour,

one for the change in the loop head and one for the occurrence in the loop body.

However, the two messages are not listed together, but as the first and the fourth

messages. Repair suggestion set B, on the other hand, is computed with a reference

solution that also iterates over the dictionary keys, reducing the number of messages

to the necessary one telling the student to change the parameter of the round

function from 4 to 3. In the questionnaire, this is rated as "easy to understand and

helpful to fix the problem" [P4]. However, P6 states that this suggestion "solves

[the] obvious mistake" while the "solutions is still not perfect". Combined with the

subset of messages P6 wants to return from repair suggestion set A and the comment

that "it would be helpful to differentiate between errors and improvements" [P4],

this indicates that Pyrat needs to implement functionality to present the feedback

in a sensible sequence and extended with context information, i.e., whether it is a

mandatory fix or just an improvement.

Similar holds for the submissions Car Dictionary 1 and Car Dictionary 3, where repair

suggestion A rewrites the entire code to a single-step dictionary definition. However,

the error in the submissions is the spelling of the string "up!" and the sets all having

just one element, a comma-separated string of models, respectively. This is correctly

provided as feedback in the repair suggestion set B.

The submission for Random List 1 misses a return statement, thus the error is

very similar to the one in Average Price 2. However, using student submissions as

references now improves the repair suggestion B in a way that just a single suggestion

(adding a return statement) is provided to the student. As figure 6.4 shows, all

participants selected "strongly agree" on all Likert-questions that evaluate the quality

of the feedback. The only exception is P5 with a Likert score of 3 for the question

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 57

6.3. Evaluation of Prefiltering Functions

in figure 6.4(e). This indicates that the feedback provided by P5 differs from the

feedback generated in repair suggestion B. For comparison, the feedback for the

student provided is "Please retunr [sic!] your created list instead of printing it (which

is not the same!). Use ’return list’ instad [sic!] your last line." [P5]. While it can

be a helpful information to the student that there is a difference between printing

and returning a result, one can discuss if it is really necessary to remove the print

statement as the task description does not make any specifications regarding debug

outputs, i.e., it is also okay to have both a print statement and a return statement.

6.2.3 Positive Feedback for the Only Suggestion

Figure 6.4 shows overall acceptance for the submissions Car Dictionary 2 and Vehicle

Class 1. However, while the participants state that the repair suggestions for Car

Dictionary 2 focus on the required changes (figure 6.4(a)), the acceptance for the

question if the feedback is easy to understand is lower (figure 6.4(b)). This difference

is supported by the comments, e.g., it is criticized that "there are three suggestions

for the same change (tuple to set) but different lines" [P3]. The same is added by

P4 ("It could be shortened as it is the same for every line but I don’t think that is

necessary and it is helpful as it is.") and P6 ("Just make all of them as one message.")

For the submission Vehicle Class 1, on the other hand, no further critic is given. The

repair suggestion is described as "helpful and understandable" [P4], P5 states that

"The feedback is simple to understand and correct."

6.2.4 General Results

Interestingly, the answer to the question "The feedback is generated fast enough"

(figure 6.4(d)) differs between feedback sets A and B for three of the six tasks with

two feedback sets. However, the customized version of Pyrat for the questionnaire

first generates both feedback sets and then sends them to the web interface, where

both are displayed simultaneously for technical reasons. Thus, the perception of

whether the time needed is short enough or not seems to depend on the feedback

generated. Participants tolerate a higher repair time for the feedback that generally

is rated better and consists of fewer feedback messages, as shown in figure 6.5. On

the technical side, this feedback does indeed take more time to generate, because the

tree-edit distance has to be computed against more reference solutions compared to

just using the teacher-authored reference solutions.

6.3 Evaluation of Prefiltering Functions
Besides the questionnaire we perform an evaluation of the repair improvements. For

this evaluation, we select six tasks from an introductory Python lecture, i.e., the four

tasks already known from section 6.1 and the two tasks listed below. For these tasks,

1,358 student submissions are available in total, 407 or 29.97% of them failing at least

one of the configured unit tests, i.e., containing errors. Table 6.1 provides detailed

information about the number of submissions as well as the error and repair rate per

task. The difference between error and repair rate is caused by tasks that fail one

of the configured formal checks, e.g., do not compile or do not define the function

required by the task.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 58

6.3. Evaluation of Prefiltering Functions

Batch ID Student sub. Debug Top level Unused var. Match

A no no no no no

B yes no no no no

C yes yes no no no

D yes no yes3 no no

E yes no no yes3 no

F yes no no no yes

Table 6.2: Configurations used for the evaluation of the prefiltering options

6.3.1 Usage of Correct Student Submissions

The boxplot in figure 6.5 shows the comparison between the batches A and B, i.e., a

wider view on the tasks used for the questionnaire as well. As one can see, the cost

of the suggested repairs (using the metric presented in section 5.3) decreases as well

when using the correct student submissions. In detail, the cost is reduced from an

average of 69.3 in batch A to 28.0 in batch B, reducing the cost by 60%. However,

the number of generated repair messages is only reduced by 23%, i.e., from 8.9 to

6.8. This results in an average cost per repair message of 7.8 and 4.1 in batch A and

B, respectively, indicating that each feedback message is easier to understand as it

describes a smaller change.

As an example, see the feedback for the code 3 to the task Car Dictionary in

appendix B. The student’s approach is to first create an empty dictionary and then add

the four needed entries each by an own subscript. The sets are thereby created using

a list converted to a set with Python’s built-in set function. However, the student

created lists with a single string each containing the car models separated by comma

instead of an own string for each model.

Without using the known student submissions as references as well, feedback advises

the student to remove the dictionary and the assignments and instead create a new

dictionary containing all the data at once. This is caused by the fact that the solely

known reference solution defines the dictionary in one step and thus is not usable

for the approach of the student that is in general correct as well. Including the

correct student submissions as well, on the other hand, reduces the repair cost while

simultaneously increasing the number of repair messages. The student is now adviced

to change each of the four string constants to only the first model and then add

new string constants for the other models to the list. While this now results in nine

feedback messages, they are easy to understand as they are all similar. Nevertheless,

clustering similar messages can be useful to reduce the number here and is discussed

in chapter 7.

6.3.2 Removing Debug Output

While using correct student solutions reduces the feedback size by finding a more

similar reference solution for a buggy code, this and the following improvements

reduce the number of feedback messages by prefiltering and transforming the buggy

3 The tasks Exercise Set and Car Dictionary are not included here as they do not use functions, i.e., they

consist only of top level code and/or unused variables.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 61

6.3. Evaluation of Prefiltering Functions

of feedback messages over all submissions of the four remaining tasks is reduced by

31.4% or 27.5% (32.5 vs 22.3 or 6.7 vs 4.9, respectively).

6.3.4 Removing Unused Variables

As for the evaluation of removing top level code, the tasks Exercise Set and Car

Dictionary cannot be used as their goal is to define a variable that is not used. Results

in figure 6.6 (batches B and E) show that the average repair cost over all remaining

290 buggy codes can only be reduced by 0.05%, resulting in a reduction of the

average number of feedback messages by 0.23%. However, the ability to detect and

remove unused variables is still useful for Pyrat. As described for the implementation

of the clustering in section 5.4, variable names are unified to a predefined scheme to

cluster codes that are equivalent except from variable naming. Since the unification

algorithm is based on numbering variables in the order of their first occurrence, the

existence of unused variables will disturb the unification. An alternative to using this

option in the repair process is to enable the PythonTA check for unused variables

as a warning, issuing a feedback message also for correct submissions with unused

variables instead of forcing students to remove the variable in the repair process.

6.3.5 Variable Name Matching

The last one of the available improvements is the matching of variable names to

reduce messages that require the student to unnecessarily change the name of a

variable. It can be applied on all six selected tasks as this improvement does not

remove any code. Figure 6.6 (batches B and F) shows a general reduction of the

repair cost and the number of repair messages. In total, the average repair cost and

the average number of feedback messages over all submissions is reduced by 6.7%

or 23.8% (32.5 vs 30.3 or 6.7 vs 5.1, respectively). As variable name changes are

relatively cheap operations per feedback message, the reduction of the number of

messages compared to the reduction of cost is higher for this improvement than for

the others before.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 63

Chapter 7 Future Work

Based on the evaluation in chapter 6, we develop a number of aspects how the

functionality of Pyrat should be extended in the future. However, due to time

limitations, is is not possible to implement the extensions in this master’s thesis.

Message Ordering In the current version of Pyrat, insert and update instructions are

listed in the order of their occurrence in the code, i.e., starting with messages for the

first line. However, delete instructions are added after all other messages as they are

not part of the tree that is traversed for message generation. This can be confusing,

especially if a delete and insert refer to the same location.

Even when related insert and delete operations are displayed in a contiguous order,

the first-to-last line order used must not be ideal. As an example, P3 suggests to

"consider reordering the feedback messages: Show the mandatory ones (for the

correct solution) at first and group the ’performance’ messages (or clean code) at

the end of the list". Thus, further research is necessary on how the order of the

feedback improves the learning experience of the students.

Release Feedback Step by Step This is especially important for the suggested option

to not reveal all feedback messages at once, as requested by P1. One possibility would

be to start with general feedback providing an abstract description of what needs to

be changed. In case this does not help the student, more detailed feedback can be

revealed. This is a continuation of the already used approach of initially hiding the

concrete source code of the feedback messages and only showing it when the student

requests it. A positive side effect of this is a better feedback for empty solutions.

Using the repair algorithm in its current state, Pyrat would generate a set of insert

messages creating the shortest reference solution. By revealing only a subset of

messages, students could use them as a starting base and continue to work on the

code on their own instead of copying the reference solution step-by-step.

Keep Repair Context Over Multiple Executions To provide consistent feedback, Pyrat

can be extended to store session context when used by a student. Thus, the same

reference solution can be used as source of feedback generation over and over if a

student makes changes on their code, but the code still contains errors. This avoids

contradicting messages between multiple executions with changes on the code.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 65

Feedback Message Clustering Next, multiple feedback messages should be

combined together if they are very similar, e.g., if multiple messages advise the

student to change a tuple into a set (section 6.2). However, it is possible that this will

be solved by revealing the feedback messages step by step, as students may find that

the error occurs in several places on their own. Further research is necessary for

this.

Larger Code Snippets for Easier Repair In general, Pyrat traverses the Abstract

Syntax Tree (AST) tree up to the first node that contains location information to

provide this information and the code change to the student. However, this can result

in very small code snippets, e.g., if a constant has to be replaced by another constant,

only those two constants are given, making the additional information redundant to

the information already contained in the text. Thus, it is an alternative to always

traverse the AST tree up to the full line, i.e., display the line of code that is to be

removed or inserted.

Improved Variable Matching While the variable matching shows a positive affect

on the repair size and the number of repair messages especially for function- or

class-based tasks, it is not perfect. As a bijection has to be found to match two

variables, there will be situations where feedback messages are generated that

require the student to rename a variable while it is not necessary. This variant

is chosen for the current implementation of Pyrat as it guarantees correctness of

the refactored reference solution. However, a combination of an unsafer variable

matching algorithm and testing of the refactored reference solution might improve

the repair cost further as more variable names can be matched. Additionally, it is

necessary to enable the teacher to further restrict variable matching, i.e., define

names that are not allowed to change in the reference solution for external reasons.

Introduce Reordering to the Tree Edit Distance Algorithm The tree edit distance

algorithm used in Pyrat applies the three operations insert, remove and update to

describe the changes between two ASTs. However, this results in confusing feedback

messages in the case of wrong sequence, e.g., of function arguments. With the current

configuration, Pyrat will correct the argument sequence d, b, c, a to a, b, c, d by two

repair messages: one removing the argument a after the argument c, and another one

to create a missing argument a before b. While this problem can already be reduced

by clustering the two repair messages together or listing them contiguously (see the

possible improvements listed above), it is also an option to add a move operation to

the tree edit distance algorithm.

Another use case for a move operation is for code segments where the order of

elements in the AST is not relevant. As an example, this is the case for a ast.BinOp

operation with the addition operator. Due to the commutative law, the order of the

left and right expression is not revelant for the result here. Pyrat should be aware of

this to prevent unnecessary repair messages. The same holds for method definitions

in a class, as their ordering does not affect the execution as long as no method is

overwritten, i.e., two methods are defined with the same name.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 66

Multiple Reference Solutions for Single Repair In the context of classes or more

complex tasks with multiple functions, another improvement is the use of multiple

reference solutions for different parts of the submission. Thus, two buggy methods a

and b could use a different reference solutions if each of the reference solution is only

similar to the buggy submission in one of the methods. However, this needs further

checks before returning the feedback as it might generate erroneous feedback, e.g.,

if b is an auxiliary function and not covered by unit tests directly. If the reference

version of a is not compatible to the reference version of b, the overall feedback will

not result in a working code.

Restrict Repair to Buggy Subparts of the Submission Another option can be to enable

the repair algorithm on subparts of the submission, e.g., a single method of a defined

class, only if a specific unit test for this method failed. Thus, Pyrat could prevent

feedback that fixes a correct method of a class just because the nearest reference

solution used for another method choses another approach for this method. This is,

as an example, the case for the submissions to the Average Price task used in the

evaluation.

Final Remarks In conclusion, Pyrat is a tool that generates useful feedback for

small errors. However, for the correction of complex errors, further research and

testing with a larger number of students is necessary. Due to the modular design, the

availability of an Application Programming Interface (API) and the full Python support

of the submitted version, integration into existing courses for testing and evaluation

purposes is possible.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 67

Appendix A Bibliography

[1] M. Rifky I. Bariansyah, Satrio Adi Rukmono, and Riza Satria Perdana.

Semantic Approach for Increasing Test Case Coverage in Automated Grading

of Programming Exercise. In 2021 International Conference on Data and

Software Engineering (ICoDSE), pages 1–6, Bandung, Indonesia, November

2021. IEEE. URL: https://ieeexplore.ieee.org/document/9648439/, doi:

10.1109/ICoDSE53690.2021.9648439.

[2] Sahil Bhatia and Rishabh Singh. Automated Correction for Syntax Errors in

Programming Assignments using Recurrent Neural Networks, March 2016.

arXiv:1603.06129 [cs]. URL: http://arxiv.org/abs/1603.06129.

[3] Annabell Brocker and Ulrik Schroeder. pycheckmate – Addressing Challenges in

Automatic Code Evaluation and Feedback Generation for Python Novices. page

10.18420/abp2023. Gesellschaft für Informatik e.V., 2023. URL: https://dl.

gi.de/handle/20.500.12116/42565.

[4] Brandt Bucher and Guido van Rossum. PEP 634 – Structural Pattern Matching:

Specification | peps.python.org, July 2024. last accessed 07/21/2024. URL:

https://peps.python.org/pep-0634/.

[5] Cheat Sheets Series Team. Docker Security - OWASP Cheat Sheet Series, July

2024. last accessed 07/23/2024. URL: https://cheatsheetseries.owasp.org/

cheatsheets/Docker_Security_Cheat_Sheet.html.

[6] Paul Denny, Viraj Kumar, and Nasser Giacaman. Conversing with Copilot:

Exploring Prompt Engineering for Solving CS1 Problems Using Natural

Language, October 2022. arXiv:2210.15157 [cs]. URL: http://arxiv.org/abs/

2210.15157.

[7] Stephen H Edwards and Manuel A Pérez-Quiñones. Web-CAT: Automatically

Grading Programming Assignments. July 2008.

[8] Onyeka Ezenwoye. What Language? - The Choice of an Introductory

Programming Language. In 2018 IEEE Frontiers in Education Conference (FIE),

pages 1–8, October 2018. ISSN: 2377-634X. URL: https://ieeexplore.ieee.

org/abstract/document/8658592, doi:10.1109/FIE.2018.8658592.

[9] Michael H. Goldwasser and David Letscher. Teaching an object-oriented CS1 -:

with Python. ACM SIGCSE Bulletin, 40(3):42–46, August 2008. URL: https://

dl.acm.org/doi/10.1145/1597849.1384285, doi:10.1145/1597849.1384285.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 68

A Bibliography

[10] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Automated clustering and

program repair for introductory programming assignments. In Proceedings of

the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 465–480, Philadelphia PA USA, June 2018. ACM. URL:

https://dl.acm.org/doi/10.1145/3192366.3192387, doi:10.1145/3192366.

3192387.

[11] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos,

Jay Shah, Danielle Yucht, and Thu D. Nguyen. Providing Meaningful Feedback

for Autograding of Programming Assignments. In Proceedings of the 49th

ACM Technical Symposium on Computer Science Education, pages 278–283,

Baltimore Maryland USA, February 2018. ACM. URL: https://dl.acm.org/

doi/10.1145/3159450.3159502, doi:10.1145/3159450.3159502.

[12] Jack Hollingsworth. Automatic graders for programming classes.

Communications of the ACM, 3(10):528–529, October 1960. URL: https:

//dl.acm.org/doi/10.1145/367415.367422, doi:10.1145/367415.367422.

[13] Krystal Hu. ChatGPT sets record for fastest-growing user base -

analyst note. Reuters, February 2023. last accessed 07/03/2024. URL:

https://www.reuters.com/technology/chatgpt-sets-record-fastest-

growing-user-base-analyst-note-2023-02-01/.

[14] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik

Roychoudhury. Re-Factoring Based Program Repair Applied to Programming

Assignments. In 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 388–398, November 2019. ISSN: 2643-1572.

URL: https://ieeexplore.ieee.org/abstract/document/8952522, doi:10.

1109/ASE.2019.00044.

[15] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE

Std 610.12-1990, pages 1–84, December 1990. Conference Name: IEEE Std

610.12-1990. URL: https://ieeexplore.ieee.org/document/159342, doi:10.

1109/IEEESTD.1990.101064.

[16] Project Jupyter, Douglas Blank, David Bourgin, Alexander Brown, Matthias

Bussonnier, Jonathan Frederic, Brian Granger, Thomas Griffiths, Jessica

Hamrick, Kyle Kelley, M Pacer, Logan Page, Fernando Pérez, Benjamin

Ragan-Kelley, Jordan Suchow, and Carol Willing. nbgrader: A Tool for Creating

and Grading Assignments in the Jupyter Notebook. Journal of Open Source

Education, 2(11):32, January 2019. URL: https://jose.theoj.org/papers/10.

21105/jose.00032, doi:10.21105/jose.00032.

[17] Mohd. Ehmer Khan and Farmeena Khan. A Comparative Study of White Box,

Black Box and Grey Box Testing Techniques. In International Journal of Advanced

Computer Science and Applications, pages 22–25, June 2012.

[18] Natalie Kiesler and Daniel Schiffner. Large Language Models in Introductory

Programming Education: ChatGPT’s Performance and Implications for

Assessments, August 2023. arXiv:2308.08572 [cs]. URL: http://arxiv.org/

abs/2308.08572.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 69

A Bibliography

[19] Holger Krekel. pytest: helps you write better programs - pytest documentation,

June 2024. last accessed 06/03/2024. URL: https://docs.pytest.org/en/8.

2.x/.

[20] Angelo Kyrilov and David C Noelle. DO STUDENTS NEED DETAILED

FEEDBACK ON PROGRAMMING EXERCISES AND CAN AUTOMATED

ASSESSMENT SYSTEMS PROVIDE IT? 2016. URL: https://sites.ucmerced.

edu/files/dnoelle/files/kyrilov-noelle-2016.pdf.

[21] Wladimir Iossifowitsch Levenshtein. Binary Codes Capable of Correcting

Deletions, Insertions, and Reversals. Soviet Physics-Doklady, 10(8), February

1966.

[22] David Liu. PythonTA documentation, 2023. URL: https://www.cs.toronto.

edu/~david/pyta/index.html.

[23] David Liu, Jonathan Calver, and Michelle Craig. A Static Analysis Tool in

CS1: Student Usage and Perceptions of PythonTA. In Proceedings of the 26th

Australasian Computing Education Conference, ACE ’24, pages 172–181, New

York, NY, USA, January 2024. Association for Computing Machinery. URL:

https://dl.acm.org/doi/10.1145/3636243.3636262, doi:10.1145/3636243.

3636262.

[24] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North, and Stephen H.

Edwards. Auto-Grading Jupyter Notebooks. In Proceedings of the 51st

ACM Technical Symposium on Computer Science Education, pages 1139–1144,

Portland OR USA, February 2020. ACM. URL: https://dl.acm.org/doi/10.

1145/3328778.3366947, doi:10.1145/3328778.3366947.

[25] Leo A. Meyerovich and Ariel S. Rabkin. Empirical analysis of programming

language adoption. In Proceedings of the 2013 ACM SIGPLAN international

conference on Object oriented programming systems languages & applications,

pages 1–18, Indianapolis Indiana USA, October 2013. ACM. URL: https://dl.

acm.org/doi/10.1145/2509136.2509515, doi:10.1145/2509136.2509515.

[26] MongoDB Inc. MongoDB Database Scaling, June 2024. last accessed

06/09/2024. URL: https://www.mongodb.com/resources/basics/scaling.

[27] OpenAI. OpenAI Platform, June 2024. last accessed 06/12/2024. URL: https:

//platform.openai.com.

[28] Oracle. Java Development Kit Version 22 API Specification, June 2024. last

accessed 06/30/2024. URL: https://docs.oracle.com/en/java/javase/22/

docs/api/index.html.

[29] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and

memory-efficient. Information Systems, 56:157–173, March 2016. URL:

https://linkinghub.elsevier.com/retrieve/pii/S0306437915001611, doi:

10.1016/j.is.2015.08.004.

[30] Joao Felipe Pimentel. APTED documentation, November 2017. last accesses

05/31/2024. URL: https://github.com/JoaoFelipe/apted.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 70

A Bibliography

[31] Project Jupyter. Extensions — JupyterLab 4.2.2 documentation, June 2024. last

accesses 06/28/2024. URL: https://jupyterlab.readthedocs.io/en/stable/

user/extensions.html.

[32] Project Jupyter. Project Jupyter, June 2024. last accessed 07/23/2024. URL:

https://jupyter.org.

[33] Python Software Foundation. ast — Abstract Syntax Trees — Python 3.12.3

documentation, May 2024. last accessed 05/13/2024. URL: https://docs.

python.org/3/library/ast.html.

[34] Python Software Foundation. Built-in Functions, June 2024. last accesses

06/30/2024. URL: https://docs.python.org/3/library/functions.html.

[35] Python Software Foundation. Installing Packages - Python Packaging User

Guide, June 2024. last accessed 06/30/2024. URL: https://packaging.python.

org/en/latest/tutorials/installing-packages/.

[36] Python Software Foundation. multiprocessing, June 2024. last accessed

06/02/2024. URL: https://docs.python.org/3/library/multiprocessing.

html.

[37] Python Software Foundation. Python 3.12.4 Documentation, June 2024. last

accesses 06/30/2024. URL: https://docs.python.org/3/.

[38] Python Software Foundation. The Python Language Reference, June 2024. last

accessed 06/30/2024. URL: https://docs.python.org/3/reference/index.

html.

[39] Python Software Foundation. The Python Standard Library, June 2024. last

accesses 30/06/2024. URL: https://docs.python.org/3/library/index.html.

[40] Python Software Foundation. subprocess, June 2024. last accessed 06/04/2024.

URL: https://docs.python.org/3/library/subprocess.html.

[41] Python Software Foundation. unittest, June 2024. last accessed 06/03/2024.

URL: https://docs.python.org/3/library/unittest.html.

[42] Kelly Rivers and Kenneth R. Koedinger. Data-Driven Hint Generation

in Vast Solution Spaces: a Self-Improving Python Programming Tutor.

International Journal of Artificial Intelligence in Education, 27(1):37–64, March

2017. URL: http://link.springer.com/10.1007/s40593-015-0070-z, doi:

10.1007/s40593-015-0070-z.

[43] Valerie J. Shute. FOCUS ON FORMATIVE FEEDBACK. ETS Research

Report Series, 2007(1), June 2007. URL: https://onlinelibrary.wiley.

com/doi/10.1002/j.2333-8504.2007.tb02053.x, doi:10.1002/j.2333-8504.

2007.tb02053.x.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 71

A Bibliography

[44] Draylson M. Souza, Katia R. Felizardo, and Ellen F. Barbosa. A Systematic

Literature Review of Assessment Tools for Programming Assignments. In

2016 IEEE 29th International Conference on Software Engineering Education

and Training (CSEET), pages 147–156, April 2016. ISSN: 2377-570X. URL:

https://ieeexplore.ieee.org/document/7474479/?arnumber=7474479, doi:

10.1109/CSEET.2016.48.

[45] The PEP Editors. PEP 0 – Index of Python Enhancement Proposals (PEPs) |

peps.python.org, July 2024. last accesses 07/21/2024. URL: https://peps.

python.org/pep-0000/.

[46] @tiangolo. FastAPI, 2024. last accesses 05/13/2024. URL: https://fastapi.

tiangolo.com/.

[47] Guido van Rossum, Barry Warsaw, and Coghlan. PEP 8 – Style Guide for Python

Code, July 2001. last accessed 05/13/2024. URL: https://peps.python.org/

pep-0008/.

[48] Virginia Tech. What is Web-CAT? - Web-CAT, July 2024. last accessed 07/17/2024.

URL: https://web-cat.org/projects/Web-CAT/WhatIsWebCat.html.

[49] Marvin Vogt. Analyses for Python Program Equivalences. May 2023.

[50] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry

Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A

Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT, February

2023. arXiv:2302.11382 [cs]. URL: http://arxiv.org/abs/2302.11382.

[51] Juliette Woodrow, Ali Malik, and Chris Piech. AI Teaches the Art of Elegant

Coding: Timely, Fair, and Helpful Style Feedback in a Global Course. In

Proceedings of the 55th ACM Technical Symposium on Computer Science

Education V. 1, pages 1442–1448, Portland OR USA, March 2024. ACM. URL:

https://dl.acm.org/doi/10.1145/3626252.3630773, doi:10.1145/3626252.

3630773.

[52] Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and

Liang He. A survey of human-in-the-loop for machine learning. Future

Generation Computer Systems, 135:364–381, October 2022. URL: https://

linkinghub.elsevier.com/retrieve/pii/S0167739X22001790, doi:10.1016/

j.future.2022.05.014.

[53] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gustavo

Soares, and Gust Verbruggen. Repairing Bugs in Python Assignments Using

Large Language Models, September 2022. arXiv:2209.14876 [cs]. URL: http:

//arxiv.org/abs/2209.14876.

[54] Stanislav Zmiev. AutoGrader Documentation, July 2024. last accesses

07/03/2024. URL: https://zmievsa.github.io/autograder/#/?id=

installation.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 72

Appendix B Evaluation Codes

1 def average_price_petrol(*Name, **Preis):

2 summe=0

3 for i in Preis:

4 summe += Preis[i]

5 avg= summe/len(Preis)

6 return round(avg,4)

Listing B.1: Average Price 1

1 def average_price_petrol(**kwargs):

2 price_list=[]

3 price_total = 0

4 for station, price in kwargs.items():

5 price_list.append(price)

6 #print (price_list)

7 for item in price_list:

8 price_total = price_total + item

9 average_price = round(price_total / len(price_list), 3)

10 print(’The average petrol_price is:’, average_price)

Listing B.2: Average Price 2

1 cars=dict()

2 cars[’VW’]={’Golf’,’Polo’,’UP!’}

3 cars[’Seat’]={’Leon’,’Ibiza’}

4 cars[’Daihatsu’]={’Sirion’}

5 cars[’Audi’]={’A4’,’Q3’,’R7’,’Q2’}

Listing B.3: Car Dictionary 1

1 cars = { "VW" : ("Golf", "Polo", "up!"),

2 "Seat": ("Leon", "Ibiza"),

3 "Daihatsu" : ("Sirion"),

4 "Audi" : ("A4", "Q3", "R7", "Q2")}

Listing B.4: Car Dictionary 2

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 73

1 cars = dict()

2 cars["VW"] = set(["Golf, Polo, up!"])

3 cars["Seat"] = set(["Leon, Ibiza"])

4 cars["Daihatsu"] = set(["Sirion"])

5 cars["Audi"] = set(["A4, Q3, R7, Q2"])

Listing B.5: Car Dictionary 3

1 import random as rd

2

3 def create_random_list(size, min_value, max_value):

4 list = []

5

6 while len(list) < size:

7 list.append(rd.randint(min_value, max_value))

8 print(list)

Listing B.6: Random List 1

1 class Vehicle:

2

3 def __init__(self, colour, construction_year, mileage):

4 self.colour = colour

5 self.construction_year = construction_year

6 self.mileage = mileage

7

8 def __str__(self):

9 return f’The vehicle is {self.colour}, was manufactured in the year

10 {self.construction_year} and has run {self.mileage}

11 kilometres so far.’

12

13 def drive (self, distance):

14 self.mileage += distance

Listing B.7: Vehicle Class 1

1 class Vehicle:

2

3 def __init__(self, mileage, colour, construction_year):

4 self.colour = colour

5 self.construction_year = construction_year

6 self.mileage = mileage

7

8 def drive(self, distance):

9 self.mileage += distance

10

11 def __str__(self):

12 return f"The {self.__class__.__name__} is {self.colour}, was

13 manufactured in the year {self.construction_year} and has run

14 {self.mileage} kilometres so far."

Listing B.8: Vehicle Class 2

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 74

Appendix C Application Programming

Interface

Table C.2 shows a brief overview of the available Application Programming Interface

(API) routes offered by the web interface, table C.1 of those offered by the check

and repair container. A more detailed overview is available using the Swagger

documentation in the digital appendix D.

Type URL Description

POST /check Run a given list of checks on the provided

code

POST /cluster Cluster the provided code using the provided

reference solutions

POST /repair Run code repair on the provided code using

the provided reference solutions

POST /typecheck Check if a given literal is of a given type

Type URL Description

Table C.1: API endpoints of the check and repair container

Type URL Description

DELETE /api/admin/

check-templates/{id}

Delete a check template

PUT /api/admin/

check-templates/{id}

Edit a check template

POST /api/admin/

check-templates

Add a check template

PUT /api/admin/checks/

{id}/down

Move a check down

DELETE /api/admin/checks/

{id}

Delete a check

PUT /api/admin/checks/

{id}

Edit a check

PUT /api/admin/checks/

{id}/up

Move a check up

Type URL Description

Table C.2: API endpoints of the web interface (continued in table C.3)

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 75

Type URL Description

PUT /api/admin/checks/

{id}/verify

Mark a check as verified, arg types are

checked

POST /api/admin/checks/

convention-hints

Generate convention hints for a task

POST /api/admin/checks/

generate

Generate checks for a task using OpenAI

POST /api/admin/tasks/

checks

Create a check

DELETE /api/admin/exercises/

{id}

Delete exercise

PUT /api/admin/exercises/

{id}

Update exercise

POST /api/admin/exercises Create a new exercise

POST /api/admin/export Export exercises, tasks, and check templates

POST /api/admin/import Import data stored in a JSON file, including

tasks, exercises, and check templates

DELETE /api/admin/solutions/

{id}

Delete a solution

PUT /api/admin/solutions/

{id}

Update a solution

PUT /api/admin/solutions/

{id}/promote

Promote a new solution to a reference

solution

PUT /api/admin/solutions/

{id}/unvalidate

Mark a solution as "not validated" by

removing the "new" flag

POST /api/admin/solutions/

generate

Generate a solution for a task using the

OpenAI api

POST /api/admin/solutions Create a new solution

POST /api/admin/solutions/

validate

Validate a code snippet against a task’s unit

tests

PUT /api/admin/tasks/{id}/

cluster

Update the cluster settings of a task

DELETE /api/admin/tasks/{id} Delete a task

PUT /api/admin/tasks/{id} Update a task

PUT /api/admin/tasks/{id}/

repair

Update the repair settings of a task

POST /api/admin/tasks Create a new task

Type URL Description

Table C.3: API endpoints of the web interface (continuing table C.2)

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 76

Appendix D Digital Appendix

The digital appendix is submitted on a Micro SD card. To get access to this material,

please contact the author or LuFG i9.

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 77

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 78

Eidesstattliche Versicherung

Steffes, Leonard 394539

Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem

Titel

Contextual Automatic Code Repair for Python Programming Novices

ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting) erbracht habe.

Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. Für

den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre

ich, dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die

Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Aachen , August 5, 2024

Ort, Datum Unterschrift

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine

solche Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch

aussagt, wird mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit

begangen worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die

Vorschriften des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Aachen , August 5, 2024

Ort, Datum Unterschrift

Leonard Steffes – Contextual Automatic Code Repair for Python Programming Novices 79

	List of Figures
	List of Tables
	List of Listings
	Glossary
	Introduction
	Motivation
	Research Questions

	Preliminaries
	Abstract Syntax Trees
	APTED

	Related Work
	Code Assessment Tools
	Repair Tools
	Effects of Feedback

	Conceptual Approach
	Python Language Features
	Submission Validation
	Cold Start Problem
	Feedback Generation
	Technical Setup

	Implementation
	Checks
	Check Generation
	Check Execution

	Solution Generation
	Code Repair
	Creating the Abstract Syntax Tree and BaseNode Tree
	Repair Improvements
	Calculate Distance and Compute Operations
	Possible Updates
	Variable Matching and Renaming
	Finding the Minimum Repair
	Linking the Trees
	Generating Feedback
	Extendability

	Clustering
	Web Interface
	Student Interface
	Teacher Interface
	Application Programming Interface

	Storage System

	Evaluation
	Building the Questionnaire
	Selecting the Tasks
	Repair Options
	Evaluation Questions

	Evaluating the Results
	Negative Feedback for Suggestions A and B
	Negative Feedback for Suggestion A, Positive for B
	Positive Feedback for the Only Suggestion
	General Results

	Evaluation of Prefiltering Functions
	Usage of Correct Student Submissions
	Removing Debug Output
	Removing Top Level Code
	Removing Unused Variables
	Variable Name Matching

	Future Work
	Appendix
	Bibliography
	Evaluation Codes
	Application Programming Interface
	Digital Appendix

