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Abstract

Simplicial surfaces encode the incidence relationships between vertices, edges, and faces

of triangulated surfaces, providing a combinatorial description of these structures. By

assigning a three-dimensional point to each vertex, we again obtain a triangulation,

which we view as an embedded simplicial surface in the context of this thesis.

The primary aim of this thesis is the construction of simplicial surfaces under spec-

ified geometric constraints, with a particular emphasis on symmetry. Symmetry, in

mathematical terms, can be expressed using the language of group theory. Starting

with a geometric object, we can determine its automorphism group by identifying all

transformations that leave the object invariant. Conversely, from a group theoretic per-

spective, we can study groups independently and explore whether a geometric object

exists such that its automorphism group matches a given group.

Our first main result demonstrates that for any given finite group, we can construct

a simplicial surface whose automorphism group is isomorphic to that group. In specific

instances, these vertices can be embedded to produce embedded simplicial surfaces

with given symmetry.

Additionally, embedded simplicial surfaces can characterise other symmetric prop-

erties. For example, we explore systems of interlocked three-dimensional bodies, known

as topological interlocking assemblies, which rely solely on their geometric properties.

We demonstrate that the theory of planar crystallographic groups can be applied to

construct a wide variety of interlocking assemblies. Moreover, we develop the math-

ematical foundations of interlocking assemblies containing a definition, a method for

verifying the interlocking property and many examples. Furthermore, extending the

action of planar crystallographic groups allows the creation of surfaces with doubly

periodic symmetry.

Embedded simplicial surfaces can be useful in various applications. In the final

chapter, we illustrate how the theory of simplicial surfaces can be applied in the con-

text of 3D printing: even if an initial model exhibits degenerations, we can modify

it to produce a 3D printable file. Through these explorations, we highlight the prac-

tical and theoretical significance of simplicial surfaces in both mathematical research

and technological applications, underscoring their versatility and potential for future

developments.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

To understand our surroundings and the world, it is essential to comprehend surfaces,

as they describe the exterior of any geometric object. These objects can be as small

as molecules or as large as cars, buildings, landscapes, or even planets.

Surfaces come in various shapes: smooth (like a sphere), non-orientable (such as

a Möbius strip), or simple (like pyramids). One of the most basic surfaces is a trian-

gle, which we encounter in school when studying trigonometry and congruent shapes.

Triangulated surfaces, which consist only of triangles, can approximate any smooth or

piecewise continuous surface. The main advantage of a triangulated surface lies in the

simplicity of its basic components: triangles.

A research question, inspired by Prof. M. Trautz, a professor of architecture at

RWTH Aachen, is: “How can we approximate a surface using only a few types of

congruent triangles?” (see [Bra+17]). This question is complex and requires developing

an understanding of how to encode these properties. The mathematical language used

to describe triangulated surfaces in this work is that of embedded simplicial surfaces.

A simplicial surface describes the combinatorial structure of a triangulated surface,

specifically the incidence relations between vertices, edges, and faces (triangles) on the

surface, such that certain local regularity conditions are satisfied. For instance, any

edge should be incident to at most two triangles, and the triangles incident to a vertex

should be ordered in a particular way.

In this work, we address the challenge of constructing simplicial surfaces with given

geometric constraints and demonstrate how properties such as symmetry can provide

a better understanding of the underlying surface. Symmetry, a natural phenomenon,

is key to beauty and can be observed in many aspects of our world. In terms of

mathematics, group theory is the natural language for describing symmetries. We aim

to connect the concepts of symmetry and surfaces in various ways. One approach to

identifying the symmetry of a surface is to consider all transformations of the surface

that leave it invariant, known as the automorphism group of the surface.
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Simplicial Surfaces with Given Finite Automorphism Group Using the au-

tomorphism group of a simplicial surface with a finite number of triangles, we obtain

a finite group encoding the symmetries of the surface. Conversely, starting with an

(abstract) finite group G, we can ask:

Q1: Can we always find a simplicial surface automorphism group isomorphic to G?

The answer to this question is affirmative, as demonstrated in Chapter 2 of this

work. We provide an explicit construction based solely on the given finite group and

its generators. This construction leverages the connection between simplicial surfaces

and cubic graphs, i.e. graphs where each node is incident to exactly three edges. The

face graph of a simplicial surface is a cubic graph formed by representing faces of the

surface as nodes and creating edges between nodes if and only if the corresponding

faces of the surface are connected by an edge of the surface. Assuming each edge of the

surface is incident to exactly two triangles (a property of closed surfaces), we derive a

cubic graph.

Conversely, starting with a cubic graph, determining whether it corresponds to a

simplicial surface is more challenging and translates to the problem of finding a cycle

double cover: a collection of simple cycles in the cubic graph such that each edge in

the graph belongs to exactly two cycles. The correspondence to simplicial surfaces

is established by associating a vertex with each cycle. One key property of the face

graphs of closed simplicial surfaces is the absence of bridges—edges that, when deleted,

increase the number of connected components. The following conjecture, first posed

by Szekeres in [Sze73], remains open:

Conjecture. Does every cubic bridgeless graph have a cycle double cover?

Frucht [Fru49], provides a construction for cubic graphs with a given finite auto-

morphism group. In Chapter 2, we demonstrate that these cubic graphs possess a

variety of cycle double covers, which can be employed to construct simplicial surfaces

with the given automorphism group.

In some cases, simplicial surfaces can be embedded into three-dimensional space

using only equilateral triangles, ensuring that the symmetry group (isometries leaving

the surface invariant) matches the automorphism group. These resulting surfaces often

feature self-intersecting faces.

Other geometric constraints in this work are motivated by the need to develop geo-

metric objects applicable in various scenarios. This thesis is part of subproject A04 of

the larger research project SFB/TRR 280, funded by the DFG (Project-ID: 417002380),

which aims to develop “Design Strategies for Material-Minimized Carbon Reinforced

Concrete Structures—Principles of a New Approach to Construction”. The challenge

of finding design strategies for such structures is motivated by the pressing issue of cli-

mate change, with the building industry being a significant contributor to greenhouse

2



gas emissions. Revolutionary approaches are required, and a modular design approach

presents a viable solution. This work explores the principle of interlocking assemblies,

enabling modular construction without mortar, allowing building blocks to be easily

disassembled and reused.

Interlocking Assemblies The idea of interlocking assemblies is based on building

“flat-vaults”. Conventional masonry structures can be used to construct curved sur-

faces only, and if we were to flatten these structures, they would simply collapse. In

interlocking assemblies, we have a number of blocks, which mathematically can be seen

as compact subsets of R3 satisfying certain relations, that are in contact with each other

such that restraining a subset of blocks from moving leads to the immovability of all

other blocks within the assembly.

Among the first examples of such assemblies are the ones by Abeille and Truchet

given in [Gal35]. Interlocking assemblies are also studied under the names topological

interlocking assemblies, Abeille vaults, or flat-vaults in the literature. The study of

these assemblies in engineering applications gained momentum with the studies by

Dyskin, Estrin, Kanel-Belov, and Pasternak, starting with the work [Dys+01]. In

[Dys+03b; Bel+09], construction methods for different types of blocks based on curved

or convex shapes are given. Initial formal treatments of these types of assemblies can

be found in [Bel+09] and [Wan+19; Wan21]. In the context of this thesis, we deal with

the following questions:

Q1: Can we develop a mathematical theory of interlocking assemblies?

Q2: Can we exploit “symmetry” to construct interlocking assemblies?

Q3: Is there a way to evaluate and predict the performance of interlocking assemblies?

In Chapter 3 of this thesis, we establish a mathematical theory and also provide a

construction method for interlocking assemblies based on crystallographic symmetries.

We give a mathematical definition and prove that a criterion based on infinitesi-

mal motions introduced in [Wan21] can be used to verify the interlocking properties

for assemblies such that the surface of all blocks can be triangulated. Following this,

we provide a construction method for candidates of interlocking assemblies with tri-

angulated blocks using the theory of planar crystallographic groups. Here, the main

idea is to place two fundamental domains of the same planar crystallographic group in

parallel planes and interpolate between them to obtain a block. Indeed, we show that

under certain assumptions, the resulting assemblies give rise to interlocking assemblies.

Certain blocks that appear in this construction can be assembled in many ways char-

acterized by the theory of Truchet tiles, and we give a combinatorial model predicting

how the interlocking takes effect when applied as ceiling construction.
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Doubly Periodic Landscapes When constructing interlocking assemblies with a

planar crystallographic group, we extend its natural action on the Euclidean plane

R2 to R3. Similarly, we exploit this extension in Chapter 4 in order to create doubly

periodic landscapes which are based on triangles in R3 such that their projection onto

R2 gives rise to a fundamental domain.

For this construction, we show that for a fixed triangle F in R2 and any similarity

type of triangle determined by the inner angles, we can find a triangle T with a given

similarity type such that T projects onto F .

3D-Printing of Simplicial Surfaces 3D-printing of surfaces has become an estab-

lished tool that allows a better understanding of surfaces. In engineering applications,

this tool is especially useful for prototyping. However, when considering embedded

simplicial surfaces, certain degenerations can appear, such as self-intersecting surfaces

or so-called non-manifold parts, which present challenges when trying to produce a

3D-printable file.

In Chapter 5, we show how to detect such degenerations first and then provide

algorithms that produce a 3D-printable file for a given embedded simplicial surface.

For detecting self-intersecting surfaces and providing a refined retriangulation of the

surface, we demonstrate how to exploit the symmetries of the given surface, leading to

a simplification and resulting speed-up in the algorithms.

The creation of images and figures displayed throughout this work employed various

software systems, see [Tan24; Nie+23b; Nie+23a; Rid21; Pro24].

1.2 Basic Definitions

In this section, we present the foundational definitions used throughout this thesis.

Definitions specific to individual chapters are addressed in their respective chapters.

1.2.1 Simplicial Surfaces

The primary definition relevant to this work is that of simplicial surfaces. This defini-

tion provides a combinatorial perspective on a triangulated surface, considering only

the incidence relations between vertices, edges, and faces. The following definitions are

based on the work presented in [NPR24].

Definition 1.2.1. A simplicial surface (X,<) is a countable set X partitioned into

non-empty sets X0, X1, and X2 such that the relation <, called the incidence, is a

subset of the union X0 ×X1 ∪X1 ×X2 ∪X0 ×X2, satisfying the following conditions.

We call the elements of X0, X1, and X2 vertices, edges, and faces, respectively.

1. For each edge e ∈ X1, there are exactly two vertices V ∈ X0 with V < e.

4



2. For each face F ∈ X2, there are exactly three edges e ∈ X1 with e < F and three

vertices V ∈ X0 with V < F . Moreover, any of these three vertices is incident to

exactly two of these three edges.

3. For any edge e ∈ X1, there are exactly two faces F ∈ X2 with e < F .

4. Umbrella condition: For any vertex V ∈ X0, the number n = deg(V ) of faces

Fi ∈ X2 with V < Fi satisfies 3 ≤ deg(V ) < ∞ and is called the degree of the

vertex V . The faces Fi can be arranged in a sequence (F1, . . . , Fn) such that Fi+1

and Fi share a common edge ei with V < ei for i = 1, . . . , n and we set Fn+1 = F1.

This sequence can be viewed as a cycle (F1, . . . , Fn) called the umbrella of V .

The above definition requires each edge to be incident to exactly two faces. We

can relax the definition by differentiating between closed surfaces, where each edge is

incident to two faces, and open surfaces, containing an edge which is only incident to one

face. Furthermore, we can generalize the definition by allowing vertices with degree 2.

From now on, when we speak of surfaces, we mean simplicial surfaces in the sense above

and omit the incidence relation, whenever it is clear from the context. Definition 1.2.1

allows that two distinct edges share common vertices, and we reintroduce conventional

simplicial complexes by introducing vertex-faithful simplicial surfaces as defined below.

A related concept to simplicial surfaces commonly found in the literature are sim-

plicial complexes. In this context, one could ask how far a simplicial surface is “away”

from a simplicial complex. The following definition relates a simplicial complex to a

simplicial surface.

Definition 1.2.2. A surface X is called vertex-faithful if its edges and faces are

uniquely described by its incident vertices, i.e. the following map is injective:

X → P (X0) := {S ⊆ X0}, x 7→ X0(x) := {V ∈ X0 | V < x or V = x}.

The image of the above map always yields a simplicial complex in the conventional

way.

We define properties such as orientability and the Euler characteristic in the usual

sense.

Definition 1.2.3. For a simplicial surface X, we can compute its Euler characteristic

χ(X) as

χ(X) = |X0| − |X1|+ |X2|.

For example, a simplicial sphere has Euler characteristic 2 and a simplicial torus

has Euler characteristic 0.

Definition 1.2.4. A simplicial surface X is called connected if for all faces f, f ′ ∈ X2

there exists a path connecting them, i.e., there exist n ∈ N and edges e1, . . . , en ∈ X1

and faces f0, . . . , fn ∈ X2 with f0 = f, fn = f ′ such that ei < fi−1, f for all i = 1, . . . , n.

5
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Figure 1.1: Three depictions of simplicial surfaces: (a) projective plane; (b) tetrahedron
(c) icosahedron with embedding as the great icosahedron see [Bra+20]

Example 1.2.5. The following are examples of simplicial surfaces:

1. Three of the five Platonic solids, i.e., the tetrahedron, the octahedron, and the

icosahedron, give rise to examples of simplicial surfaces.

2. For a given (closed, connected) simplicial surface X, we can take a (closed, con-

nected) subsurface Y such that each face in Y has exactly two inner and one

outer edge. Such surfaces are called simplex rings.

3. The projective plane shown in Figure 1.1a gives an example of a simplicial surface

which is not vertex-faithful.

Definition 1.2.6. An orientation of a simplicial surface X is given by a cyclic ordering

of the vertices of each face, such that for any given edge e with vertices v1, v2 < e which

is incident to two distinct faces f1, f2 with vertices v1, v2, v < f1, v1, v2, v
′ < f2, we have

that either the ordering of f1 is (v, v1, v2) and the one of f2 is (v
′, v2, v1) or the ordering

of f1 is (v, v1, v2) and f2 is (v
′, v1, v2). If an orientation for a simplicial surface X exists,

we say that X is orientable.

Definition 1.2.7. An embedding of a vertex-faithful simplicial surface X with vertices

V into R3 is given by an injective map

ϕ : V → R3.

We write (X,ϕ) for a simplicial surface X with embedding ϕ and we refer to (X,ϕ) as

an embedded simplicial. If a given simplicial surface X is embedded into R3, we often

omit the map ϕ whenever it is clear from the context and identify the vertices, edges,

and faces with their respective images under ϕ.

1.2.2 Planar Crystallographic Groups

This section covers the basic concepts of planar crystallographic groups, also known

as wallpaper groups, including fundamental domains. Here, a wallpaper group is an

infinite subgroup of the Euclidean group E(2). The Euclidean group E(2) is isomorphic
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to a semidirect product of the orthogonal group O(2) and the free abelian group R2.

Moreover, an element g of the Euclidean group E(2) can be viewed as an isometric map

g : R2 → R2, i.e. g is bijective and for all x, y ∈ R2 we have ∥x− y∥2 = ∥g(x)− g(y)∥2,
and we can write g(x) = Rx+ v, for all x ∈ R2, for some orthogonal matrix R ∈ O(2)

and some vector v ∈ R2.

Definition 1.2.8. A planar crystallographic group or wallpaper group is an infinite

group G ≤ E(2) of Euclidean motions acting on the plane R2 whose orbits

G(x) := {g(x) | g ∈ G} for x ∈ R2

satisfy the following two conditions:

1. The orbit of any point in R2 under the action of G is a discrete subset of R2.

2. There exists a compact subset F ⊂ R2, called fundamental domain, such that

the plane R2 can be tessellated by the orbits of F under G, i.e.

(a)
⋃

g∈G g(F ) = R2 and

(b) there exists a subset V ⊂ R2 with F̊ ⊂ V ⊂ F and V is a transversal of the

action of G on R2, i.e. each orbit of a point x ∈ R2 intersects V in exactly

one point, i.e. |G(x) ∩ V | = 1.

The definition of planar crystallographic groups extends to higher dimensions by

replacing all occurrences of 2 by n in the definition above, yielding the definition of

crystallographic space groups. One can prove that there always exists a finite number of

isomorphism types of groups. In general, the structure of crystallographic groups can

be characterised by the extension of free abelian groups corresponding to translations

extended by a finite group, see [Ple96].

Remark 1.2.9. Any wallpaper group G contains a normal subgroup T of translations

isomorphic to Z2 such that the factor group G/T , called point group, is finite and can

be viewed as a finite group of orthogonal transformations. Each wallpaper group is

generated by a finite set of matrices corresponding to a generating set of the point

group and two translations spanning a lattice isomorphic to Z2. This yields a doubly

periodic structure of the tessellation of R2 with a given fundamental domain. For a

given fundamental domain F of G the point group acts on F , yielding a translational

cell that tessellates the Euclidean plane using translation only.

There are 17 wallpaper groups up to isomorphism, see for instance [CBG08], and

we refer to them by their Hermann–Mauguin notation also known as international

notation describing certain generating elements of the underlying group, see [IUC02].

This notation refers to special elements with non-trivial representative in G/T , such

as 3-fold rotations (in the name p3) or glide reflections (in the name pg). Other well-

7



known notations include the orbifold notation, see [CBG08]. For more on the general

theory on wallpaper groups, we refer to [Cox69].

The following examples give the generators for one of the seventeen wallpaper

groups. Generators for each of the groups can be found in [IUC02].

Example 1.2.10. A group wallpaper group G of type p3 can be generated by the

rotation

R =

(
−1

2
−

√
3
2√

3
2
−1

2

)
∈ E(2)

and the translations given by the vectors

(0, 1)⊺,

(√
3

2
,−1

2

)⊺

∈ E(2).

Different fundamental domains F for G are illustrated in Section 3.4 of Chapter 3.
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Chapter 2

Simplicial Surfaces with given finite

Automorphism Group

2.1 Summary

In [Fru49] Frucht shows that for any finite group G, there exists a cubic graph such that

its automorphism group is isomorphic to G. For groups generated by two elements, we

simplify his construction to a graph with fewer nodes. In the general case, we address an

oversight in Frucht’s construction. We prove the existence of cycle double covers of the

resulting graphs, leading to simplicial surfaces with given finite automorphism group.

For almost all finite non-abelian simple groups, we give alternative constructions based

on graphic regular representations. In the general cases Cn, Dn, A5 for n ≥ 4, we provide

alternative constructions of simplicial spheres. Furthermore, we embed these surfaces

into the Euclidean 3-Space with equilateral triangles such that the automorphism group

of the surface and the symmetry group of the corresponding polyhedron are isomorphic.

2.2 Introduction

Combinatorial structures such as graphs and simplicial complexes are ubiquitous in

mathematical research. The identification and study of these fundamental structures

provides a unifying view of phenomena from a wide range of diverse mathematical

disciplines. In particular, cubic graphs have been the focus of many studies in graph

theory such as the cycle double cover conjecture, see Section 2.3. In this chapter, we

investigate the relationship between cubic graphs and simplicial surfaces, with a focus

on their respective automorphism groups. Simplicial surfaces describe the incidence

relations of triangulated surfaces, and they can be linked to cubic graphs by observing

the incidence between faces and edges only.

This chapter is based on research originally published at [AG23].
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Figure 2.1: (a) Petersen graph, (b) Surface with face graph isomorphic to the Petersen
graph (edges and vertices with the same labels are identified).

In particular, we show in Section 2.7 that a construction by Frucht in [Fru49]

yielding a cubic graph with given automorphism group leads to the following result:

Theorem. Let G be a finite group generated by a set S. There exists a simplicial

surface XG,S such that Aut(XG,S) ∼= G.

Furthermore, for cyclic groups and dihedral groups we show the following result in

Section 2.8:

Theorem. For G = Cn and n ≥ 3 or for G = Dn and n ≥ 4 there exists a simplicial

surface XG with automorphism group isomorphic to G and XG can be embedded into

R3 with equilateral triangles.

As an example of a cubic graph consider the Petersen graph shown in Figure 2.1a.

A natural question that arises from examining this graph is:

Q1 How can we link a cubic graph to a simplicial surface, i.e. the combinatorics of

a triangulation of a three dimensional polyhedron?

This question was answered by Szekeres in [Sze73] by interpreting a cubic graph as the

graph describing the incidence structure between the faces and edges of a simplicial

surface. In this case, the vertices of the surface correspond to the cycles in a cycle double

cover of the cubic graph, i.e. a collection of cycles that passes every edge exactly twice.

Three cycle double covers of the Petersen graph are given by

{(1, 5, 4, 3, 2), (1, 6, 9, 7, 2), (1, 6, 8, 3, 2, 7, 10, 5), (4, 9, 6, 8, 10, 5), (3, 8, 10, 7, 9, 4)},

{(1, 5, 4, 3, 2), (1, 6, 9, 7, 2), (2, 7, 10, 5, 4, 9, 6, 8, 3), (1, 6, 8, 10, 5), (3, 8, 10, 7, 9, 4)},

{(1, 5, 4, 3, 2), (1, 6, 9, 7, 2), (4, 9, 7, 10, 5), (3, 8, 6, 9, 4), (1, 6, 8, 10, 5), (2, 7, 10, 8, 3)}.

Here, the third cycle double cover above corresponds to the surface illustrated in

Figure 2.1b. If a surface can be constructed from computing a cycle double cover of a

given cubic graph, we can compare the automorphism groups:

10



Q2 What is the automorphism group of the resulting simplicial surface?

For the surface in Figure 2.1b, the automorphism group is isomorphic to A5. This

automorphism group corresponds to a subgroup of the automorphism group of the

Petersen graph, which leaves the corresponding cycle double cover invariant. Note

that the automorphism group of a surface is always isomorphic to a subgroup of the

automorphism group of the underlying cubic graph, see Section 2.3.1 for a proof. As

a next step, we can try to compute an embedding of the simplicial surface with equi-

lateral triangles, i.e. realize the surface as a polyhedron built from equilateral triangles

in the Euclidean 3-space. Computing embeddings by solving a system of equations

determined by a given simplicial surface turns out to be a task of high complexity. In

[Bra+20] the complexity of solving this system of equations is demonstrated by com-

puting all embeddings of a combinatorial icosahedron with equilateral triangles and

non-trivial symmetry groups. The symmetry group of an embedding of a surface is

the maximal subgroup in the Euclidean group E(3) leaving the embedding invariant.

Such a symmetry group can be embedded into the group of orthogonal transformation

O(3). In general, the symmetry group of an embedded surface is a subgroup of the

automorphism group of the underlying simplicial surface. Here, we aim to compute

embeddings of a simplicial surface with a high number of symmetries as described in

the following question:

Q3 Given a simplicial surface, can we compute an embedding into R3 such that the

symmetry group of the surface is isomorphic to the automorphism group of the

underlying simplicial surface?

In this chapter, we elaborate on the translation of cubic graphs with given automor-

phism group into simplicial surfaces, analyse corresponding embeddings in some cases

and therefore give answers to the questions Q1-Q3 for certain classes of cubic graphs

and surfaces.

We show that there exists a simplicial surface XG with Aut(XG) ∼= G by giving a G-

invariant cycle double cover of a cubic graph based on Frucht’s construction in [Fru49]

or a cubic graph that forms a vertex transitive graph also known as generalized orbital

graph. We define a 3-edge colouring to obtain this cycle double cover by applying the

methods given in [Sze73] and show that contracting nodes that lie on a 3-cycle can

lead to smaller graphs with given automorphism group, see Figure 2.2b.

Note that cubic graphs do not necessarily admit 3-edge colouring. For instance, the

Petersen graph, shown in Figure 2.1a, is a well-known example of a vertex-transitive

graph that does not admit a 3-edge colouring. Furthermore, for G = Cn, Dn, A5 we

provide a simplicial surface XG with automorphism group isomorphic to G and XG

can be embedded with equilateral triangles. This is shown by exploiting the structure

of the groups Cn, Dn, A5 interpreted as subgroups of O(3). For the cyclic and dihedral

cases, we show in Section 2.8.1 that it suffices to consider group orbits of points in R3

in order to find embeddings with equilateral triangles.
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Figure 2.2: (a) We can obtain cycle double colours in 3-edge coloured graphs by defining
cycles that alternate between two colours. (b) We can reduce vertices that lie on a 3-
cycle inside a 3-edge coloured cubic graph to obtain a smaller cubic graph.

In Section 2.3, we introduce the theory of simplicial surfaces and their connections

to cubic graphs. Moreover, we observe that a cubic graph has to be bridgeless in order

to associate it to a surface. Section 2.4 deals with Frucht’s cubic graph construction

from [Fru49] yielding a cubic graph with given automorphism group. Here, we modify

the construction for groups with n > 2 generators, where Frucht missed a case, see

[Fru82; Bab81]. In Section 2.5 we present the graphs with cyclic automorphism group

that arise from Frucht’s construction and provide an alternative construction that yields

cubic graphs with dihedral automorphism groups. We then introduce the construction

of vertex-transitive cubic graphs in Section 2.6. In Section 2.7, we show that we can

associate a surface to each of the cubic graphs given in the previous sections. Finally,

in Section 2.8, we compute infinite families of surfaces based on the cubic graphs

presented in Section 2.5 such that the automorphism groups and symmetry groups of

these surfaces are isomorphic. All the graph constructions discussed in this chapter,

along with the software for the visualization of surfaces and graphs, are implemented in

the GAP4 package, SimplicialSurfaces [Nie+23b]. We verify the automorphism groups

of the given examples using the algorithms provided in [MP14], which are implemented

in GAP4 [GAP].

2.3 Simplicial Surfaces and Graphs

In this section, we introduce the basic notion of simplicial surfaces and their relation

to cubic graphs.

Simplicial surfaces describe the incidence structure of triangulated surfaces. Com-

pared to a simplicial complex, where each element is uniquely described by its corre-

sponding vertices, the definition of a simplicial surface allows different faces and edges

to have the same vertices by introducing an incidence relation between vertices, edges

and faces, see Definition 1.2.1.

Definition 2.3.1. A homomorphism between two simplicial surfaces (X,<X) and

(Y,<Y ) is a map π : X → Y satisfying the following two conditions.
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1. For A,B ∈ X with A <X B, we have that π(A) <Y π(B).

2. For every face F ∈ X2, the restriction of π to the vertices and edges incident to

F is an isomorphism onto the set of vertices and edges that are incident to π(F ).

Auto-, mono- and epimorphisms are defined in the usual way, and we can define

the category of simplicial surfaces.

By observing that the degree of a vertex is invariant under an isomorphism of a

simplicial surface, we can define invariants of isomorphic surfaces. One is the vertex-

counter of a surface X which counts the degrees of the vertices and is defined as a

polynomial in the indeterminates {vn | n ≥ 3}, i.e.∏
v∈X0

vdeg(v).

2.3.1 Graphs of Simplicial Surfaces

There are several ways of linking a graph Γ to a surface X. We present some of

these graphs based on partial incidence structures of a given simplicial surface, see also

[NPR24]. In the rest of the chapter, we refer to the vertices of a graph as nodes in

order to distinguish between vertices of a surface and those of a graph.

Definition 2.3.2. Let (X,<) be a simplicial surface.

1. The incidence graph, denoted by I(X), of a surface X has nodes X and there

exists an edge between two nodes A,B ∈ X, whenever we have A < B in X.

2. The vertex(-edge) graph of X, denoted by V(X), has nodes X0 and edges X1 such

that an edge e ∈ X1 connects the two vertices in X0(e).

3. The face(-edge) graph or face graph of X, denoted by F(X), has nodes X2 and

edges X1 such that an edge e ∈ X1 connects the two faces in X2(e) = {F ∈ X2 |
e < F}.

Since each face of a (closed) surfaceX has three edges, the face graph F(X) is cubic.

Typically, vertex-edge graphs are used to associate a graph with a given surface, see

for instance [Sze73]. Here, we primarily make use of the graph in (3) as it gives us a

strong connection between the theory of cubic graphs and simplicial surfaces. Here,

the umbrella condition in Definition 1.2.1 enforces the face graph F(X) of a surface X

to be bridgeless, since each edge must lie on a cycle that is induced by the umbrella

of a vertex V ∈ X. Furthermore, it is straightforward to show that a vertex-faithful

surface yields a 3-connected graph. The following lemma demonstrates our key tool in

establishing a connection between the theory of simplicial surfaces and cubic graphs.

Lemma 2.3.3. F(·) is a functor from the category of (closed) simplicial surfaces to

the category of bridgeless cubic graphs.
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Proof. Let X, Y be two simplicial surfaces and π : X → Y a homomorphism between

them. By restricting π to X1 ∪ X2 we get a map π|X1∪X2 : F(X) → F(Y ) which is a

graph homomorphism, since π(e) < π(f) holds for all e ∈ X1, f ∈ X2 with e < f .

Since an automorphism of a simplicial surface yields an automorphism of its face

graph we obtain the following result.

Lemma 2.3.4. For a simplicial surface X we have that Aut(X) ↪→ Aut(F(X)). More-

over, we have Aut(X) ∼= Aut(F(X)) if and only if for all π ∈ Aut(F(X)) and all

vertices v ∈ X0, the isomorphism π maps the umbrella (F1, . . . , Fn) at v onto an um-

brella of another vertex of X via π((F1, . . . , Fn)) = (π(F1), . . . , π(Fn)). Thus, each

automorphism of F(X) can uniquely be extended to an automorphism of X.

Hence, the task of constructing a simplicial surface X with given group G as auto-

morphism group can be reduced to finding a cubic graph Γ with automorphism group

isomorphic to G and a surface X with F(X) = Γ such that Aut(X) ∼= Aut(F(X)).

In [Sze73], Szekeres describes how to compute F−1(Γ) for a cubic graph Γ, i.e. the

simplicial surfaces with a given face graph. This can be achieved by computing a cycle

double cover.

Definition 2.3.5. A cycle double cover or polyhedral decomposition (see [Sze73]) of a

cubic graph Γ consists of a collection of cycles (Ci)i∈I such that for each edge in Γ lies

on exactly two cycles.

A simplicial surface can be recovered from its face graph with a cycle double cover,

where a cycle Ci corresponds to the umbrella of a vertex of the surface. It follows that

a simplicial surface X is vertex-faithful if and only if no two cycles of its corresponding

cycle double cover share two common edges. It is still an open problem, whether all

cubic bridgeless graphs admit a cycle double cover.

Conjecture 2.3.6 (Cycle double cover conjecture). In [Sze73], Szekeres conjectures

that any cubic graph containing no bridges has a cycle double cover or equivalently is a

face graph of a simplicial surface. Moreover, it is conjectured that any bridgeless graph

admits a cycle double cover, see [Jae85].

For the graphs presented in the following sections, we always give a cycle double

cover. One of the main tools for finding cycle double covers is the following observation

for 3-edge colourable cubic graphs.

Remark 2.3.7. In [Sze73], Szekeres shows that a 3-edge colouring, also called Tait

colouring, of a cubic graph leads to a cycle double cover. Any cycle of the double cover

is obtained by choosing two colour classes and alternating between them. The resulting

surface, has a Grünbaum colouring of its edges corresponding to this 3-edge colouring.
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To show Conjecture 2.3.6 it would suffice to consider cubic graphs that do not

admit a 3-edge colouring which are known as snarks in the literature, see [Jae85]. The

Petersen graph can be obtained from the graph in Figure 2.3 by contracting three

cycles into one node, and both yield examples of non 3-edge colourable cubic graphs.

On the other hand, one can subdivide each face into three faces of the surface given in

Figure 2.1b to obtain a surface with face graph shown in Figure 2.3.

Figure 2.3: Face graph of a surface with automorphism group isomorphic to A5.

2.3.2 Embedding Simplicial Surfaces with Equilateral Trian-

gles

In order to translate a simplicial surface into a polyhedron with equilateral triangles,

one has to solve the embedding problem. Solving the embedding problem is equivalent

to finding an embedding of a simplicial surface, as defined below.

Definition 2.3.8. Let X be a simplicial surface. A map ϕ : X0 → R3 such that all

neighbouring vertices v1 and v2 satisfy

∥ϕ(v1)− ϕ(v2)∥2 = 1

in the Euclidean norm is called an embedding of X with equilateral triangles.

More general, for 3-edge coloured simplicial surfaces, we can identify each colour

with an edge length and ask for embeddings with a given congruence class of triangles.

The question of computing an embedding with congruent triangles introduces a

system of quadratic equations, see also [Bra+20; Bra+17]. In general, it remains an

unsolved problem whether there exists an embedding of a given simplicial surface,

constructed from triangles of a certain congruence type.

Example 2.3.9. If X is a simplicial surface, whose vertex graph V(X) contains a

clique of size n ≥ 5, there cannot exist an embedding of X constructed from equilateral
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triangles. This can be seen as follows: Assume X has an embedding constructed

from equilateral triangles. Let v1, . . . , v5 be 3-dimensional coordinates corresponding

to vertices of the given clique. It follows that, the embedded vertices v1, v2, v3 give rise

to an equilateral triangle. Without loss of generality we can assume that this triangle

with edge lengths 1 is given by

(v1, v2, v3) =

(
(0, 0, 0)⊺, (1, 0, 0)⊺, (

1

2
,

√
3

2
, 0)⊺

)
.

Clearly, v4 and v5 have to be on the intersection of the unit spheres with centres at the

points v1, v2, v3. Since the intersection equals{(
1

2
,

1

2
√
3
,

√
2

3
)⊺, (

1

2
,

1

2
√
3
,−
√

2

3

)⊺}

and v4 ̸= v5, we can assign v4 to the first and v5 to the second coordinate in the set.

However, it follows that ∥v4 − v5∥ = 2
√

2
3
which contradicts the existence of such an

embedding.

For example, the minimal triangulation of the torus T consisting of 7 vertices, 21

edges and 14 triangles and incidence relations depicted as in Figure 2.4 does not have an

embedding consisting of equilateral triangles, since the graph V(T ) is isomorphic to the

complete graph on 7 vertices. Although this simplicial surface cannot be embedded

into the Euclidean space as a polyhedron constructed from equilateral triangles, its

combinatorial structure can be visualized in a folding plan as seen in Figure 2.4.
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Figure 2.4: A minimal triangulation of the torus.

Even when considering simplicial spheres, it remains unknown if an embedding

constructed from equilateral triangles always exists. General non-existing results are

for instance known for tori obtained from iteratively gluing together the faces of regular

tetrahedra, see [Mas72].

In the context of this chapter, we aim to also find embedded simplicial surfaces such

that their embedding also has a prescribed symmetry. The symmetry group Aut(ϕ(X))

of an embedded simplicial surface X with embedding ϕ is defined as the group of all
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orthogonal transformations π ∈ O(3) leaving ϕ(X) invariant, i.e. π(ϕ(X)) = ϕ(X). For

a simplicial surface X with an embedding ϕ, the following holds:

Aut(ϕ(X)) ↪→ Aut(X) ↪→ Aut(F(X)).

2.4 Frucht’s cubic graphs

In this section, we recall Frucht’s cubic graph construction introduced in [Fru49]. For a

given finite group G with generators S = {g1, . . . , gn}, Frucht constructs a cubic graph

with the property that the automorphism group of the obtained graph is isomorphic

to G. In his construction he distinguishes between cyclic and non-cyclic groups. Here,

we give a slightly simplified construction for a group G generated by two elements.

Furthermore, we present a modified construction for a group G generated by more

than three elements, as in this case, Frucht’s construction in general does not yield

a graph with the given group as automorphism group. Moreover, we show that our

constructed graph has a three-edge colouring and hence yields a cycle double cover, as

described in [Sze73]. Other constructions for cubic graphs with given automorphism

group can be found in [Lov07; Bab81]. For a general finite group G generated by n

elements g1, . . . , gn ∈ G, the cubic graph constructed by Frucht has 2(n+2)|G| nodes.
For n = 2, we can modify the graph by contracting 3-cycles such that the resulting

graph has 2(2 + 1)|G| = 6|G| nodes and still has the same automorphism group.

Frucht’s construction is based on Cayley graphs, which are directed edge coloured

graphs.

Definition 2.4.1. LetG be a finite group generated by S = {g1, . . . , gn} with S−1 = S.

The nodes of the Cayley graph CG,S are given by the elements of G and its edges by

{(g, gs) | g ∈ G, s ∈ S}. The n-edge colouring is given as follows: {(g, g ·s) | g ∈ G, s ∈
S} → {1, . . . , n}, (g, g · gi) 7→ i.

In Figure 2.5a, we see a corresponding uncoloured and undirected version of a Cay-

ley graph with 2 generators. The automorphism group of a Cayley graph corresponds

to the left-action of the group G on itself.

Lemma 2.4.2. The automorphism group of a Cayley graph CG,S respecting its edge

colouring is isomorphic to G and is given by the maps πg : G → G, h 7→ g · h, for all

g ∈ G.

For a finite group G generated by n elements, Frucht defines a cubic graph based

on the construction of a Cayley graph by splitting the nodes corresponding to a group

element g ∈ G into several nodes xi,g, i = 1, . . . , 2n+ 4, as shown in Figure 2.5b.
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Figure 2.5: (a) Undirected Cayley graph, (b) Part of Frucht’s original cubic graph
construction.

To formalise this, we make use of quadratic forms to define cubic graphs.

Remark 2.4.3. A cubic graph can be defined by a quadratic form, which is related

to the adjacency matrix of the graph in the following way: Let x = (x1, . . . , xn) denote

formal variables corresponding to the nodes of a graph Γ with n nodes. Let A = (aij)

denote the adjacency matrix of Γ, and define

Q =
1

2
xAx⊺.

Each monomial of Q corresponds to an edge in Γ and we can obtain A from Q via

aij = Q(e), with e = ei + ej, where ei denotes the vector with a 1 at the ith position

and 0’s everywhere else. The importance of this point of view is the observation that

the automorphism group of the graph Γ is isomorphic to the group of permutations of

the variables that preserve the quadratic from Q.

Let h = |G| and S = {g1, . . . , gn} such that ⟨S⟩ = G and 1G ∈ S. We denote

the other elements of G by gn+1, . . . , gh and define a graph via a quadratic form with

nodes corresponding to the indeterminates xi,gj , with i = 1, . . . , 2n + 4, j = 1, . . . , h.

For i ̸= j we define the quadratic form

Qij =
h∑

k=1

xi,gkxj,gk .

Based on Qij, Frucht defines the quadratic forms Q and R that yield a cubic graph:

Q = Q1,2+Q1,4+Q1,5+Q2,3+Q2,4+Q3,5+Q3,6+Q4,2n+4+
n∑

i=2

Q2i+3,2i+4+
n∑

i=2

Q2i+2,2i+3+R,

R =
h∑

k=1

n∑
j=1

x2j+3,gkx2j+4,gj ·gk .
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For two generators S = {g1, g2}, Frucht proves in [Fru49] that the automorphism

group of the resulting cubic graph is isomorphic to G. However, for three generators

this is not true in general. For instance, consider G = A5 with generators {g1 =

(1, 5)(2, 4), g2 = (1, 2, 4, 3, 5), g3 = (2, 5, 3)}. The automorphism group of the resulting

cubic graph is isomorphic to C2×A5 and thus does not lead to a cubic graph with given

automorphism group. Note that the order of the generators matters in the construction

by Frucht, i.e. in general reordering generators yields a non-isomorphic graph.

We modify Frucht’s construction slightly to correct his proof and, in the case |S| =
2, simplify the graph as illustrated in Figure 2.6b and Figure 2.6a. Both of these

constructions are based on contracting 3-cycles.

x1,gx2,g

x3,g

x4,g

x5,g

x6,g

x4,g·g1

x3,g·g−1
1

x6,g·g2

x5,g·g−1
2

(a)

x1,g
x2,g

x3,g

x4,g

x5,gx6,g

x7,g

x8,g

x2n+5,g

x2n+6,g

x8,g·g1

x7,g·g−1
1

x2n+6,g·gn

x2n+5,g·g−1
n

(b)

Figure 2.6: (a) Simplified construction for two generators, (b) Modified construction
for more than two generators.

In his proof, Frucht uses the notion of a cycle triplet of a node v in a cubic graph

Γ.

Definition 2.4.4. Let e1, e2, e3 be the edges incident to v in Γ and ci,j the length of

a minimal cycle passing through the edges ei, ej. Then the cycle triplet of v is defined

as the multi-set {c1,3, c2,3, c1,2}.
Next, Frucht shows that for a given finite group G with generators S the constructed

graph ΓG,S has an automorphism group isomorphic to G by using the following lemma.

Lemma 2.4.5. For a given automorphism π : ΓG,S → ΓG,S, nodes have to be mapped

to nodes with the same cycle triplet, since cycles are mapped to cycles with the same

length by graph automorphisms.

For n = 2 resp. n > 2 we can define the cubic graph obtained from the Cayley

graph by substituting each node with a component of the form as shown in Figure

2.6a resp. Figure 2.6b. We set h = |G| and for n = 2 resp. n > 2 we define a graph

with nodes corresponding to the variables xi,gj ,with j = 1, . . . , h and i = 1, . . . , 6 resp.

i = 1, . . . , 2n+ 6.
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For n = 2, we define a cubic graph ΓG,S by the quadratic forms

Qsimp = Q2,1+Q2,3+Q1,3+Q1,4+Q2,6+Q5,6+Q4,5+Rsimp,

Rsimp =
h∑

k=1

x3,gkx4,gk·g1 + x5,gkx6,gk·g2 .

For n > 2, the graph ΓG,S is given by the following quadratic forms

Qmod =Q1,6+Q1,2+Q1,3+Q2,3+Q3,7+Q2,4+Q4,5+Q4,6

+Q5,7+Q5,8+Q6,2n+6+
n∑

i=2

Q2i+5,2i+6+
n∑

i=2

Q2i+4,2i+5+Rmod,

Rmod =
h∑

k=1

n∑
j=1

x2j+5,gkx2j+6,gk·gj .

In Figure 2.6a, both nodes x1,g and x2,g have the same cycle triplet {3, 5, 6}. How-
ever, the node x4,g is incident to two nodes that lie on a three-cycle, i.e. x1,g and x3,g·g−1

1
,

but node x6,g is only incident to a single node that lies on a three-cycle, i.e. x2,g. Thus,

for an automorphism π and a node xi,g we have that π(xi,g) = xi,g′ for some g′ ∈ G.
Similarly, in Figure 2.6b, components are mapped onto components, since x6,g is the

only node that has cycle triplet {4, 6, 2 + 2n} and the rest follows, from the incidence

structure of the underlying cubic graph. The remaining part of the proof is analogous

to the proof given by Frucht in [Fru49] and is based on showing that the automorphism

group of the cubic graphs is isomorphic to the automorphism group of the correspond-

ing edge-coloured Cayley graphs. Altogether, we have the following theorem due to

Frucht. Note that Frucht handles cyclic groups and the trivial group separately in

[Fru49], as described in the following section.

Theorem 2.4.6. Let G = ⟨g1, . . . , gn⟩ be a finite group. Then there exists a cubic

graph Γ with Aut(Γ) ∼= G. Moreover, using the modified construction above, the graph

Γ has 6|G| nodes for n = 2 and (2n+ 6)|G| nodes for n > 2.

Frucht’s original cubic graphs can be 3-edge coloured using a function c : E(Γ) →
{r, g, b}, where we identify the quadratic form Q with the edges of Γ as follows:

c (R ∪Q1,4 ∪Q2,3) = r, c

(
Q1,5 ∪Q2,4 ∪Q3,6 ∪

n⋃
i=2

Q2i+3,2i+4

)
= g,

c

(
Q1,2 ∪Q3,5 ∪Q4,2n+4 ∪

n⋃
i=2

Q2i+2,2i+3

)
= b.

(2.1)

We can obtain 3-edge colouring for the simplified and modified graphs by contract-

ing and adding 3-cycles, respectively. For our simplified graph, i.e. in the case of n = 2
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generators, this yields a 3-edge colouring csimp for Qsimp as follows:

csimp (Rsimp ∪Q2,1) = r, csimp (Q2,3 ∪Q1,4 ∪Q5,6) = g, csimp (Q1,3 ∪Q2,5 ∪Q4,5) = b.

It is straightforward to check that the quadratic forms Q and Qsimp define three-edge

coloured cubic graphs with edge colouring c and csimp, respectively.

In Figure 2.7a an example of Frucht’s original construction for Q8 with two gener-

ators is shown.

(a) (b)

Figure 2.7: Cubic graphs with automorphism groups isomorphic to Q8: (a) Frucht’s
original construction on 64 nodes, (b) Our modified construction on 48 nodes.

The graph shown in Figure 2.7a has 8 vertices of degree 3 and contracting these

vertices corresponds to the simplification of Frucht’s graph construction for groups

generated by two elements. In Figure 2.7b, we see the resulting cubic graph on 48 nodes

corresponding to our simplified construction with automorphism group isomorphic to

Q8. Iterating the process of contracting vertices of degree 3 leads to a cubic graph with

larger automorphism group on 32 nodes.

2.5 Cubic Graphs with Cyclic or Dihedral Auto-

morphism Group

For a cyclic group Cn with n > 2, Frucht defines a graph ΓCn with 6n vertices and cyclic

automorphism group of order n. Let ai, bi, ci, di, ei, fi for i = 1, . . . , n be indeterminates

corresponding to the nodes of the graph ΓCn , where the edges are given by the following
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quadratic form:

QCn =
n∑

i=1

(aibi+aiei+aifi+bifi+cidi+cifi+ciei)+
n−1∑
j=1

(bj+1ej+djdj+1)+b1en+d1dn.

In Figure 2.8a a planar embedding of this graph construction is shown for n = 4.

Theorem 2.5.1 (Frucht,[Fru49]). For n > 2, the quadratic form QCn defines a cubic

graph ΓCn with automorphism group isomorphic to Cn.

The dihedral groups Dn of order 2n are covered by Frucht’s more general construc-

tion, as presented in the previous section. However, for n ≥ 4, we can define a cubic

graph ΓDn with 4n instead of 6n nodes such that Aut(ΓDn)
∼= Dn as follows. For this,

let ai, bi, ci, di for i = 1, . . . , n denote indeterminates corresponding to the nodes of the

graph ΓDn , where the edges are given by the following quadratic form:

QDn =
n∑

i=1

(aibi + aici + cidi + bici) +
n−1∑
j=1

(ajbj+1 + djdj+1) + anb1 + d1dn.

Proposition 2.5.2. For n ≥ 4, the automorphism group of the cubic graph ΓDn ,

defined by the quadratic form QDn above, is isomorphic to Dn.

Proof. Let π be an automorphism of ΓDn . The graph ΓDn has exactly n cycles of length

3, i.e.

(a1, b1, c1), . . . , (an, bn, cn).

Since the image of a cycle under π has to be a cycle of the same length, π permutes the

cycles of length 3 and there exists an i = 1, . . . , n with π((a1, b1, c1)) = (ai, bi, ci). It fol-

lows that the vertices d1, . . . , dn must be permuted in such a way that (π(d1), . . . , π(dn))

corresponds to the cycle (d1, . . . , dn). We conclude that for all j = 1, . . . , n, we have

π(d1+j) = di+j or π(d1+j) = di−j, where read the subscripts 1 + j, i + j, i − j modulo

n. If π(d1+j) = di+j, then π(c1+j) is equal to ci+j and thus it follows that ai+j = ai+j

and bi+j = bi+j. Therefore, π can be written as the i-th power of the permutation

ω = (a1, . . . , an) . . . (d1, . . . , dn). If π(d1+j) = di−j, we deduce that π maps ai+j, bi+j,

ci+j onto bi−j, ai−j ci+j, respectively, using the same argument. Thus, π is given by

the product of ωi and the involution

s =

⌊n
2
⌋∏

j=0

(a1−j, b1+j)(d1−j, d1+j)(c1−j, c1+j).

Hence, it follows that Aut(ΓDn) = ⟨ω, s⟩ ∼= Dn.

Next, we compute straight-line embeddings of the cubic graphs ΓCn for n ≥ 3 and

ΓDn for n ≥ 4. For simplicity, we denote the set of vertices of the graphs ΓCn and ΓDn

by V and V ′, respectively.
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We make use of the following remark to construct the corresponding embeddings

of the graphs above.

Remark 2.5.3. Let n ≥ 3 be a natural number. The permutation

π = (a1, . . . , an) . . . (f1, . . . , fn)

yields an automorphism of ΓCn with πn = id. Thus, we conclude that Aut(Γ) = ⟨π⟩
and that the automorphism group of the graph satisfies

Aut(ΓCn)
∼= ⟨

(
cos(α) − sin(α)

sin(α) cos(α)

)
︸ ︷︷ ︸

Mα:=

⟩ ≤ GL2(R),

where α = 2π
n
.

We can embed the vertices of V into R2 such that we obtain an embedding of ΓCn

that is invariant under the action of Mα defined in the remark above.

Remark 2.5.4. Let n ≥ 3 be a natural number. We define v, w1, w2 ∈ R2 by v :=

(1, 0)⊺, w1 := (cos(α) − 1, sin(α))⊺ and w2 := (sin(α), 1 − cos(α))⊺, and define the

function ϕ : V → R2 as follows

ϕ(a1) = v +
1

2
w1, ϕ(b1) = v +

1

4
w1, ϕ(c1) = v +

1

2
w1 + 2w2,

ϕ(d1) = v +
1

2
w1 + 3w2, ϕ(e1) = v +

3

4
w1, ϕ(f1) = v +

1

2
w1 + w2,

and

ϕ(ai+1) = (Mα)
iϕ(a1), ϕ(bi+1) = (Mα)

iϕ(b1), ϕ(ci+1) = (Mα)
iϕ(c1),

ϕ(di+1) = (Mα)
iϕ(d1), ϕ(ei+1) = (Mα)

iϕ(e1), ϕ(fi+1) = (Mα)
iϕ(f1)

where α = 2π
n

and i ∈ {1, . . . , n− 1}. Then it is straightforward to see that ϕ induces

a planar straight line embedding of ΓCn .

In Figure 2.8a and 2.8b, we see the constructed planar graph embeddings for ΓCn

with n = 4 and n = 7. The group ⟨Mα⟩ in Remark 2.5.3 can be also embedded into the

automorphism group of ΓDn and we can also use it to construct a planar embedding

of ΓDn .

Remark 2.5.5. Let n ≥ 4 be a natural number. Let v, w1, w2 ∈ R2 be defined as

v := (1, 0)⊺, w1 := (cos(α) − 1, sin(α))⊺ and w2 := (sin(α), 1 − cos(α))⊺ and define the
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Figure 2.8: (a) Planar embedding of ΓC4 , (b) Planar embedding of ΓC7 .

function ϕ : V ′ → R2 as

ϕ(a1) = v +
3

4
w1, ϕ(b1) = v +

1

4
w1,

c1) = v +
1

2
w1 + w2, ϕ(d1) = v +

1

2
w1 + 2w2

and

ϕ(ai+1) = (Mα)
iϕ(a1), ϕ(bi+1) = (Mα)

iϕ(b1),

ϕ(ci+1) = (Mα)
iϕ(c1), ϕ(di+1) = (Mα)

iϕ(d1),

where α = 2π
n

and i ∈ {2, . . . , n}. As before, it is straightforward to show that ϕ yields

to a planar straight line embedding of ΓDn .

In Figure 2.9a and Figure 2.9b we see the graph embeddings of ΓDn for n = 4, 7.

In [Tut63], Tutte introduces a crossing-free embedding for any simple planar 3-

vertex-connected graph Γ into the Euclidean plane, such that the outer face of the

graph forms a convex polygon, and each vertex is positioned at the barycentre of its

neighbouring vertices. The linear system of equations that arises from enforcing the

above properties on the embedding of Γ has a unique solution, and this embedding

is known as the Tutte-Embedding. As an example, we consider the graph Γ = (V,E)

given by

V = {1, 2, 3, 4, 5, 6, 7, 8}
E = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 6}, {3, 4},

{3, 7}, {4, 8}, {5, 6}, {5, 8}, {6, 7}, {7, 8}}
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Figure 2.9: (a) Planar embedding of ΓD4 , (b) Planar embedding of ΓD7 .

which can be obtained as the face graph of an octahedron. Enforcing the face given by

the vertices {1, 2, 3, 4} to form a square, given by (0, 0)⊺ , (0, 1)⊺ , (1, 1)⊺ , (1, 0)⊺, leads

to the embedding identified by the following ordered list of coordinates:[
(0, 0)⊺ , (0, 1)⊺ , (1, 1)⊺ , (1, 0)⊺ ,

(
1

3
,
1

3

)⊺

,

(
1

3
,
2

3

)⊺

,

(
2

3
,
2

3

)⊺

,

(
1

3
,
2

3

)⊺]
.

Here, the coordinates of vertex i, in the Tutte Embedding, are given by the i-th

entry in the above list. Figure 2.10 shows the resulting visualisation of Γ. For a non-

1

2 3

4

5

6 7

8

Figure 2.10: Planar embedding of the face graph of the octahedron.

planar cubic graph, see for instance Figure 2.11a, the existence of a unique embedding

with all the vertices positioned at the barycentre of their neighbouring vertices is not

guaranteed. However, we still obtain a system of linear equations, which can be solved,

yielding a highly symmetric embedding of a given graph.
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2.6 Cubic Vertex-Transitive Graphs

Frucht’s construction yields a cubic graph that has a given group as automorphism

group. More precisely, for a given group G generated by two resp. n elements we

obtain a cubic graph Γ on 6|G| resp. (2n + 6)|G| nodes with Aut(Γ) ∼= G. In general,

these graphs are not G-vertex-transitive, i.e. G does not act transitively on the vertices

of Γ. Therefore, we focus on the construction of G-vertex-transitive graphs in this

section. In the mathematical literature, such graphs are also known as (generalised)

orbital graphs, see [LS16].

If a group G acts transitively on a given vertex-transitive graph Γ it can be shown

that Γ is isomorphic to a Schreier coset graph, such that the nodes of Γ correspond

to the right-cosets G/Gv, where Gv is the stabilizer of an arbitrary node in Γ. Since

such a orbital graph has exactly |G|/|Gv| = |G/Gv| vertices, it follows that this graph
has considerably less nodes than the graph based on Frucht’s construction. Note that

if Gv is trivial, then the graph Γ is a Cayley graph. In the following two sections, we

distinguish between the two cases Gv
∼= {1} and Gv ̸∼= {1}.

For a subgroup H of a given group G, we define the generalized orbital graph as

follows:

Definition 2.6.1. Let G be a finite group and H ≤ G be a subgroup of G. Let

S = {g1, . . . , gn} ⊂ G. Then the graph with nodes G/H and edges
⋃

i{H, giH}G is

called a generalized orbital graph, denoted by ΓG/H,S. If H = {id} we call it a Cayley

graph. A Cayley graph with automorphism group isomorphic to G is called a graphic

regular representation (short GRR).

2.6.1 Cubic Cayley Graphs

Here, we discuss possible constructions based on cubic Cayley graphs. Moreover, we

illustrate these constructions for the group G = A5 as an example.

Theorem 2.6.2 ([XZZ22]). Except for a finite number of cases, all finite non-abelian

simple groups have a cubic GRR.

Combined with the following conjecture, we can find cycle double covers of cubic

GRRs by 3-edge colourings.

Conjecture 2.6.3 ([HKM14]). Every cubic Cayley graph admits a 3-edge colouring.

Below, we see that Conjecture 2.6.3 can be easily verified in many cases. Alterna-

tively, we can obtain cycle double covers of a Cayley graph as shown below.

Remark 2.6.4. 1. Let S = {s1, s2, s3} ⊂ G be a set of three distinct involutions

such that G = ⟨S⟩. By colouring the edges accordingly to the corresponding

involutions, we see that the Cayley graph given by G and S is a cubic 3-edge

colourable graph.
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2. Let S = {s, x, x−1} ⊂ G be a set of an involution s and an element x with even

order such that G = ⟨S⟩. Then the Cayley graph given by G and S is 3-edge

colourable by colouring the edges corresponding to the involution s in one colour

and the edges obtained by the even cycles of x in alternating colours. More

general, we can define a cycle double cover, via the cycles generated by x and

sx: for g ∈ G we have that g lies on the cycle (g, g · x, g · x2, . . . , g · x−1), where

x−1 = x|x|−1 and on the cycle (g, g · s, g · s · x, . . . , g · sx−1, g · sx−1 · s). The union
of these cycles for all elements g ∈ G yields a cycle double cover invariant under

the action of G.

Let G = A5 and S = {(1, 2)(4, 5), (1, 5)(3, 4), (1, 5)(2, 4)}. Then we have that

G = ⟨S⟩ and we can verify that the Cayley graph CA5,S is a GRR, as shown in Figure

2.11a. The 3-edge colouring obtained as in the remark above leads to a simplicial

surface with Euler characteristic 1.

2.6.2 Cubic Orbital Graphs

Next, we focus on the case that |Gv| > 1. We construct a cubic vertex-transitive graph

Γ on |G|/|H| nodes for subgroups H ≤ G, giving rise to candidates for small cubic

graphs with given automorphism group. However, in general we have that G < Aut(Γ).

For generalized orbital graphs, we need to be more careful. For 1 ̸= H ≤ G it

is possible that for an element g ∈ G, the orbit {H, gH}G contains other elements

of the form {H, g′H} for g′ ̸= g ∈ G. A (generalized) orbital graph is defined by

H ≤ G and S = {g1, . . . , gn} ⊂ G with vertices G/H and edges given by the orbit

of G (with element-wise actions) on the set {{H, g1H}, . . . , {H, gnH}}. Let g1, . . . , gm
with m minimal such that {{H, g1H}, . . . , {H, gnH}}G = {{H, g1H}, . . . , {H, gmH}}.
Then the resulting orbital graph is regular of degree m. We can use this construction,

to obtain all vertex-transitive graphs Γ, with G acting transitively on the nodes of Γ.

It is still unknown whether any vertex-transitive graph Γ admits a cycle double cover.

Remark 2.6.5. Let Γ denote a cubic vertex-transitive graph as above. If the edges of

Γ are given by three orbitals, we can define a 3-edge colouring by colouring each orbital

in a different colour and thus obtain a cycle double cover by alternating colour-cycles.

If the edges are given by less than three orbitals, it is no longer guaranteed that we

obtain a 3-edge colourable graph.

Let H = ⟨(2, 3)(4, 5)⟩ ≤ A5 and consider generators S = {(1, 5)(3, 4), (1, 4, 2, 3, 5)}
with ⟨S⟩ = A5. We obtain a cubic orbital graph Γ on 30 nodes with automorphism

group isomorphic to A5 which admits exactly one 3-edge colouring (up to interchanging

colours) and thus it is not a snark, see Figure 2.11b. By considering all vertex-transitive

graphs of A5, we find that this graph is the smallest vertex-transitive cubic graph with

automorphism group isomorphic to A5. Furthermore, a G-invariant cycle double cover

consisting of 10 cycles of length 6 and 6 cycles of length 5, which is respected by its
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automorphism group, is given as follows:

(14, 27, 28, 24, 19, 17),(9, 30, 25, 18, 13, 10), (8, 26, 29, 20, 23, 11),(7, 15, 16, 21, 22, 12),

(3, 28, 27, 12, 7, 4),(3, 13, 18, 23, 20, 4), (2, 11, 8, 17, 14, 5),(2, 25, 30, 21, 22, 5),

(1, 9, 10, 24, 19, 6),(1, 16, 15, 29, 26, 6), (3, 28, 24, 10, 13),(2, 25, 18, 23, 11),

(1, 16, 21, 30, 9),(6, 26, 8, 17, 19), (5, 22, 12, 27, 14),(4, 20, 29, 15, 7)
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Figure 2.11: Two vertex-transitive graphs with automorphism group A5 (a) 3-edge
colourable GRR, (b) Orbitalgraph on 30 nodes.

2.7 Cycle Double Covers and Simplicial Surface Con-

structions

In this section, we show that we can obtain a simplicial surface with a given group G

as automorphism group. In both, Frucht’s construction and the construction of cubic

generalized orbital graphs, we achieve this by computing a G-invariant cycle double

cover. Such a cycle double cover can be constructed by exploiting 3-edge colourings

or the structure of the group G. Here, the number of faces (triangles) of the resulting

surface equals the number of nodes of the given cubic graph. For certain groups, we

can obtain smaller surfaces (in the number of faces) by considering vertex-faithful cubic

graphs.

2.7.1 Frucht surfaces

We show that Frucht’s cubic graphs defined in Section 2.4 give rise to simplicial surfaces.

Note that the cyclic case G = Cn for n > 2 is covered by Theorem 2.7.5. Furthermore,

for |G| ≤ 2 Frucht gives two cubic graphs with automorphism group of order 2 and 1
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(see Fig. 1 and Fig. 2 in [Fru49]) which both yield simplicial spheres with isomorphic

automorphism groups.

Theorem 2.7.1. Let G be a finite non-cyclic group generated by a set S. There exists

a simplicial surface XG,S such that Aut(XG,S) ∼= G.

Proof. Using Theorem 2.4.6, we obtain a cubic graph Γ = ΓG,S with Aut(Γ) ∼= G.

Moreover, Γ has a 3-edge colouring as shown in (2.1). This yields a cycle double cover

by considering all cycles defined by alternating between two colours, see [Sze73]. We

obtain a simplicial surface XG,S, where faces and edges are given by the graph and

vertices by the cycles such that F(XG,S) = Γ and Aut(XG,E) ≤ Aut(Γ). In order to

show equality it suffices to show that the given cycle double cover is G-invariant. The

automorphism group of the graph Aut(Γ) is isomorphic to G via the automorphisms

of type

σm(xi,gk) = xi,gmgk ,

for m = 1, . . . , h = |G|. We have that σm(Qi,j) = Qi,j and for |S| = 2 resp. |S| > 2

we have σm(Rsimp) = Rsimp resp. σm(Rmod) = Rmod. Hence, the cycle double cover is

invariant under σm and thus vertices of XG,S are mapped onto each other. It follows

that Aut(XG,S) ∼= G.

For the surface construction based on the 3-edge coloring of the graphs given in

Figure 2.6a and Figure 2.6b, we give the vertex degrees corresponding to the cycle-

lengths.

Remark 2.7.2. Let G = ⟨S⟩ be a finite group with generators S = {g1, . . . , gn}. Then
we can give the length of the cycles in the cycle double cover above as follows: For

n = 2 or n > 2 the blue-green cycles yield |G| cycles of length 6 or 6+2n, respectively.

For the blue-red cycles, we have |G|/|g1 · g2| cycles of length 6|g1 · g2| for n = 2 and

|G|/|g1 · · · gn| cycles of length 6|g1 · · · gn| for n > 2. The green-red cycles yield |G|/|gi|
cycles of length 2|gi| for i = 2, . . . , n and |G|/|g1| cycles of length 4|g1|. In total we

have the vertex counters

v
|G|
6 · v

|G|/|g1·g2|
6|g1·g2| · v|G|/|g1|

4|g1| · v|G|/|g2|
2|g2| ,

for n = 2 and

v
|G|
2n+6 · v

|G|/|g1···gn|
6|g1···gn| · v|G|/|g1|

4|g1| ·
n∏

i=2

v
|G|/|gi|
2|gi| ,

for n > 2. Knowing the number of vertices it is straightforward to compute the Euler
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characteristic of the resulting simplicial surface XG,S as follows:

χ (XG,S) =


|G| ·

(
1

|g1g2| +
1

|g1| +
1

|g2| − 2
)
, n = 2

|G| ·

(
1

|g1···gn| +
n∑

i=1

1

|gi|
− n− 2

)
, n > 2.

The surfaces obtained from the 3-edge colouring are not vertex-faithful, i.e. do not

describe a simplicial complex in the usual sense, since the blue-red cycle shares at

least two edges with every green-red cycle. Likewise, the blue-green cycle shares all its

blue-edges with the blue-red cycle.

However, we can define an alternative cycle double cover, leading to a vertex-faithful

surface in many cases.

Remark 2.7.3. Let G be a group with generators {g1, . . . , gn} such that for all i =

1, . . . , n we have that ⟨gi⟩ ∩ ⟨g1 · · · gn⟩ = 1 is the trivial group. Considering Figure

2.6a, we can define a vertex-faithful surface XG with given automorphism group G.

Therefore, we give a cycle double cover of the graphs given in Section 2.4 and show

that the group of graph automorphisms which are isomorphic to G leave this cover

invariant. Furthermore, the cover has the additional property that no two cycles share

two edges. For the rank 2 case, the cover is given as follows:(
x1,g, x2,g, x3,g

)
,
(
x1,g, x2,g, x6,g, x5,g, x4,g

)
,

for all g ∈ G, (
x6,g, x5,g, x6,g·g2 , x5,g·g2 , . . . , x6,g·g|g2|−1

2
, x

5,g·g|g2|−1
2

)
,

for all orbit representatives g of the right action of ⟨g2⟩ on G,(
x4,g, x1,g, x3,g, x4,g∗g1 , x1,g·g1 , x3,g·g1 , . . . , x4,g·g|g1|−1

1
, x

1,g·g|g1|−1
1

, x
3,g·g|g1|−1

1

)
,

for all orbit representatives g of the right action of ⟨g1⟩ on G, and the cycles(
x6,g, x2,g, x3,g, x4,g·g1 , x5,g·g1 , x6,g·g1·g2 , . . . , x6,g

)
,

for all orbit representatives g of the right action of ⟨g1 · g2⟩ on G. It is straightforward
to show that automorphisms of the underlying graph leave this cycle basis invariant

since elements of the form xi,g are mapped onto elements of the form xi,g·h for h ∈ G.
We can also describe the vertex-counter of the resulting surface as follows:

v
|G|
3 · v

|G|
5 · v

|G|/|g2|
2|g2| · v|G|/|g1|

4|g1| · v|G|/|g1g2|
5|g1g−1

2 | .

For rank n > 2, we can analogously define a cycle double cover and obtain the
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following result.

Theorem 2.7.4. For every finite group G = ⟨g1, . . . , gn⟩, there exists a simplicial

surface X with Aut(X) ∼= G. Furthermore, X is vertex-faithful (a simplicial complex)

if ⟨gi⟩ ∩ ⟨g1 · · · gn⟩ = {1} for all i = 1, . . . , n.

In some cases, we can give alternative cycle double covers of Frucht’s graph to

get a vertex-faithful surface. Consider the quaternion group Q8 = ⟨i, j|i4 = j4 =

1, i2 = j2, ij = j−1i⟩ with generators g1 := i, g2 := j as an example. In [Bab72], it is

shown that no graph with automorphism group Q8 can be embedded onto a sphere.

Below, we describe a cycle double cover of the graph shown in Figure 2.7b yielding a

vertex-faithful simplicial surface of Euler characteristic 0:(
x1,g, x2,g, x3,g

)
,
(
x1,g, x2,g, x6,g, x5,g, x4,g

)
,

for all g ∈ Q8 and(
x3,g, x1,g, x4,g, x3,g·i−1 , x2,g·i−1 , x6,g·i−1 , x5,g·i−1·j−1 , x6,g·i−1·j−1 , x5,g·i−1·j−1·j−1 , x4,g·i−1·j−1·j−1

)
,

for all g ∈ Q8 (note that some elements g ∈ Q8 are yielding the same cycle).

2.7.2 Surface with Cyclic or Dihedral Automorphism Group

In Section 2.5, cubic graphs with cyclic or dihedral automorphism group are introduced.

Here, we present cycle double covers for the two families of cubic graphs giving rise

to spherical surfaces. Moreover, these constructions show that the underlying cubic

graphs are planar.

Theorem 2.7.5. For n > 2, there exists a vertex-faithful simplicial sphere XCn with

face graph ΓCn and automorphism group isomorphic to Cn. Furthermore, the graph

ΓCn is a 3-connected planar cubic graph.

Proof. We fix n > 2. For i = 1 . . . , n, we define a cycle double cover of the graph ΓCn

as follows:

(ai, bi, fi), (ai, fi, ci, ei), (ei, ci, di, di+1, ci+1, fi+1, bi+1),

(d1, . . . , dn), (b1, a1, e1, . . . , bn, an, en),

with addition modulo n. The automorphism group of the graph is leaving the cycle

cover invariant and thus the resulting surface has the same automorphism group as their

underlying face graph. We obtain a surface XCn with automorphism group isomorphic

to Cn. The corresponding vertex-counter of XCn is then given by vn3 v
n
4 v

n
7 vnv3n. It

follows that the surface XCn is spherical, since its Euler characteristic is given by

(n + n + n + 2) − 9n + 6n = 2 and thus XCn is a vertex-faithful simplicial sphere.
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Steinitz Theorem says that a 3-connected cubic graph is planar if and only if it is the

face graph of a simplicial sphere. It follows that the graph ΓCn is planar.

For n > 3, we give an analogous result for the dihedral group Dn.

Theorem 2.7.6. For n > 3, there exists a vertex-faithful simplicial sphere XDn with

face graph ΓDn and automorphism group isomorphic to Dn. Furthermore, the graph

ΓDn is a 3-connected planar cubic graph.

Proof. Analogously to the proof above, we construct a cyclic double cover

(ai, bi, ci), (ai, ci, di, di+1, ci+1, fi+1, bi+1), (d1, . . . , dn), (a1, b1, a2, b2, . . . , an, bn),

for i = 1, . . . , n with addition modulo n. We obtain a simplicial surface XDn with

vertex counter vn3 v
n
6 vnv2n and due to 4n+ (n+ n+ 2)− 6n = 2 it follows that XDn is

a vertex-faithful simplicial sphere and thus the graph ΓDn is planar.

2.7.3 Face-Transitive Surfaces

The cubic graphs that arise from Frucht’s construction yield simplicial surfaces by

introducing suitable cycle double covers. Note that in general, the automorphism group

of such a surface is a proper subgroup of the automorphism group of the underlying face

graph. Thus, we do not necessarily obtain face-transitive surfaces, i.e. surfaces whose

automorphism group acts transitively on the set of faces of the surface. However, for

a graphic regular representation of a given group G, we can always associate a face-

transitive surface. Here, we give an example construction for G = A5 that leads to a

surface XG based on such a GRR with Aut(XG) = G.

In [HLM91], it is shown that Cayley graphs possess a cycle double cover. In the

cubic case, this can be linked to 3-edge colourings as follows:

Remark 2.7.7. Let G be a finite group with generators S and assume that CG,S is a

cubic Cayley graph. Then one of the following two cases is true:

1. The group G is generated by three distinct involutions S = {s1, s2, s3} corre-

sponding to a 3-edge colouring (each involution has a distinct colour). As before,

we can obtain a cycle double cover of CG,S by alternating between colours.

2. The group G is generated by one involution s and another element x with |x| > 2.

We have seen that if |x| is even, we can obtain a 3-edge colouring of CG,S. However,

we can always obtain a cycle double cover using the cycles (g, g · x, . . . , g · x|x|−1)

and (g, g · s, g · sx, . . . , g · (sx)|sx|−1, g · (sx)|sx|−1 · s), for g ∈ G.

In both cases the defined cycle double covers are invariant under the action of

G ≤ Aut(CG,S) and in the case Aut(CG,S) ∼= G we always obtain a simplicial surface

XG,S with |G| faces and automorphism group isomorphic to G.
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Remark 2.7.8. To obtain a simplicial surface from a 3-edge coloured Cayley graph,

we can use the same construction as in the previous chapters. Note that for involutions

s1, s2, s3, the length of the cycles are given by |si ·sj|·2. In the case that S = {s, x, x−1},
with |s| = 2 and |x| = 2n for n > 1 the lengths of the cycles are given by |x|, |s · x| · 2
and |s · x−1| · 2.

The surface XG,S is vertex-faithful if and only if any two cycles in the corresponding

cycle double cover do not share two edges. Using the cycle double cover given in Remark

2.7.7 we can formulate the following criterion.

Proposition 2.7.9. The surface X = XG,S is vertex-faithful if and only if

1. We have S = {s1, s2, s3} with three distinct involutions or

2. S = {s, x, x−1} as in Remark 2.7.7 and ⟨sx⟩ ∩ ⟨x⟩ = {1}.

Using the techniques from the previous sections, we get a surface with Euler char-

acteristic 1 and automorphism group isomorphic to A5. Its face graph is shown in

Figure 2.11a. For general vertex-transitive graphs which are not Cayley graphs it is in

general an open problem to determine a cycle double cover. In Figure 2.11b, we see

an example of such a graph yielding a surface on 30 vertices with automorphism group

isomorphic to A5.

2.7.4 Surfaces with Automorphism Group A5

In the previous sections, three surfaces with automorphism group isomorphic to A5

are shown. The corresponding face graphs are given in Figure 2.1a, Figure 2.11a and

Figure 2.11b. The resulting surfaces are all face-transitive and of Euler characteristic

1. In this section, we see that there exists a simplicial sphere with automorphism

group isomorphic to A5 together with an embedding with equilateral triangles such

that resulting automorphism group in O(3) is isomorphic to A5. The well-known

snub dodecahedron, an Archimedean solid, has an automorphism group isomorphic to

G = A5 and its vertex-edge graph is isomorphic to a Cayley graph of A5, obtained

via the generators S = {(1, 2)(3, 4), (1, 2, 3, 4, 5), (1, 3, 5)}. Replacing the pentagonal

faces with 5 triangles, see kis operator, see [CBG08], we get a triangulated sphere with

automorphism group isomorphic to A5, called pentakis snub dodecahedron, see Figure

2.12a. In Figure 2.12b we see the face graph of the pentakis snub dodecahedron, a

planar cubic graph with automorphism group isomorphic to A5.

2.8 Embeddings of Simplicial Surfaces

In this section, we construct two infinite families of simplicial surfaces with cyclic

and dihedral symmetry. These families contain the simplicial surfaces with cyclic or
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(a) (b)

Figure 2.12: (a) Snub dodecahedron and pentakis snub dodecahedron, (b) Face graph
of the pentakis snub dodecahedron.

dihedral automorphism groups constructed in Section 2.7, and we show that we can

embed any surface in this family with equilateral triangles such that their symmetry

group is isomorphic to their automorphism group as simplicial surfaces. In particular,

we show the following:

Theorem 2.8.1. For G = Cn with n ≥ 3 or for G = Dn with n ≥ 4, there exists a

vertex-faithful simplicial sphere XG with automorphism group isomorphic to G and XG

can be embedded into R3 with equilateral triangles. More precisely, for n ≥ 3 and n ≥ 4

we construct families (X(n,k))k∈N0 and (Y (n,k))k∈N0, respectively, such that for each n, k

there exist embeddings ϕ, ψ with

Cn
∼= Aut(ϕ(X(n,k))) ∼= Aut(X(n,k)) ∼= Aut(F(X(n,k))),

Dn
∼= Aut(ψ(Y (n,k))) ∼= Aut(Y (n,k)) ∼= Aut(F(Y (n,k))).

Since we aim to construct vertex-faithful surfaces, we can define the surfaces by

constructing a subset S of the faces, such that the remaining faces are given by a

suitable group action on the vertices. For example, the action of the group G =

⟨(2, 3, 4, 5)⟩ ≤ S6 can be used to obtain a combinatorial octahedron by computing the

union of the following orbits:

{1, 2, 3}G ∪ {2, 3, 6}G ={{1, 2, 3}, {1, 3, 4}, {1, 4, 5}, {1, 2, 5},
{2, 3, 6}, {3, 4, 6}, {4, 5, 6}, {2, 5, 6}}.

Here, the group G acts on a subset by permuting the elements of the subset.
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(a) (b)

Figure 2.13: (a) Two different embeddings of the surface X(7,0) by choosing different
values for l in the construction above. (b) Two different embeddings of the surface
Y (7,0).

Remark 2.8.2. In the following, we identify a face f of a vertex-faithful simplicial

surface X with its set of incident vertices, i.e. we write f = {v1, v2, v3}, if v1, v2, v3 are

the three vertices in the surface X that are incident to f.

2.8.1 Constructing a Family of Surfaces with Cyclic Symme-

try

In this subsection, we give a detailed construction of the simplicial surfaces XCn whose

face graphs have cyclic automorphism groups. Here, we define the surfaces by com-

puting the corresponding vertices of faces instead of a cycle double cover, as seen in

Section 2.7. Furthermore, we present embeddings of these surfaces consisting of equi-

lateral triangles and prove that these surfaces and their computed embeddings also

allow cyclic symmetries.

Let therefore n ≥ 3 be a natural number, k be a non-negative integer and Γ = GCn

be the cubic graph, constructed in Section 2.5, satisfying Aut(Γ) ∼= Cn. Since π =

(a1, . . . , an) . . . (f1, . . . , fn) is an automorphism of Γ with ord(π) = n, the automorphism

group of Γ is given by ⟨π⟩.
In the following, we use the action of the cyclic group

G = ⟨ g := (1, . . . , n) . . . ((k + 2)n+ 1, . . . , (k + 3)n) ⟩

to obtain the vertices of faces of the simplicial surface X(n,k), which fully determine

the incidence structure of the surface.

Definition 2.8.3. Let n ≥ 3 be a natural number, k be a non-negative integer. We

define the (vertex-faithful) simplicial surface X(n,k) as the simplicial surfaces with faces

{fai , fbi , fci , fdi , fei , ffi | i = 1, . . . , n} ∪ {fi,j, fi,j | i = 1, . . . , n, j = 1, . . . , k}.
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and vertices incident to the faces fa1 , fb1 , fc1 , fd1 , fe1 , ff1 are given by

fa1 = {(k + 1)n+ 1, (k + 2)n+ 1, (k + 3)n+ 2},
fb1 = {kn+ 1, (k + 2)n+ 1, (k + 3)n+ 2}, fc1 = {kn+ 1, kn+ 2, (k + 1)n+ 1},
fd1 = {1, 2, (k + 3)n+ 1}, fe1 = {kn+ 2, (k + 1)n+ 1, (k + 3)n+ 2},
ff1 = {kn+ 1, (k + 1)n+ 1, (k + 2)n+ 1}

and for 0 < j ≤ k the vertices of faces of f1,j and f1,j are given by

f1,j = {(j − 1)n+ 1, (j − 1)n+ 2, jn+ 1} and f1,j = {(j − 1)n+ 2, jn+ 1, jn+ 2}.

The remaining vertices of faces by the action of G on the above faces. In particular, the

vertices of the faces fai+1
, . . . , ffi+1

, are given by (fa1)
gi , . . . , (ff1)

gi respectively. In the

case k > 0, we define the vertices of the faces fi+1,j and fi+1,j by (f1,j)
gi and (f1,j)

gi

,

respectively.

We can compute that the surfaces X(n,k) always have Euler characteristic 2 and

the face graph of the simplicial surface X(n,0) is isomorphic to GCn . Next, we seek

to embed these simplicial surfaces into R3 as polyhedra constructed with equilateral

triangles, see Definition 2.3.8.

Let l be a natural number with gcd(n, l) = 1 and cos(α) ≤ 1
2
, where α := 2πl

n
.

Furthermore, let ρ and h be scalars defined by

ρ :=

(∥∥∥∥∥
(

cos(α)

sin(α)

)
−

(
cos(2α)

sin(2α)

)∥∥∥∥∥
2

)−1

=
1√

2 (1− cos(α))
,

h :=

∥∥∥∥∥
(

cos(α)

sin(α)

)
−

(
cos(α

2
)

sin(α
2
)

)∥∥∥∥∥
2

=

√
1− ρ(2− cos(

α

2
)).

Similar to the construction of the vertices of faces of X(n,k), we embed a subset of

the vertices of the surface such that the embedding of the remaining vertices is then

obtained by a suitable group action.

Remark 2.8.4. We can embed the simplicial surface X(n,k) with equilateral triangles

by means of the function ϕ : X
(n,k)
0 → R3 as follows:

ϕ(jn+ 1) =− jh (0, 0, 1)⊺ + ρ
(
cos
(
j
α

2

)
, sin

(
j
α

2

)
, 0
)⊺
,

ϕ(jn+ 2) =− jh (0, 0, 1)⊺ + ρ
(
cos
(
(j + 1)

α

2

)
, sin

(
(j + 1)

α

2

)
, 0
)⊺
,
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for j = 0, . . . , k and

ϕ((k + 3)n+ 1) =
√

1− ρ2 (0, 0, 1)⊺ ,
ϕ((k + 3)n+ 2) =− (kh+

√
1− ρ2) (0, 0, 1)⊺ ,

ϕ((k + 1)n+ 1) =
1

3
(ϕ(kn+ 1) + ϕ(kn+ 2) + ϕ((k + 3)n+ 2))

+
(ϕ((k + 3)n+ 2)− ϕ(kn+ 1))× (ϕ(kn+ 2)− ϕ((k + 3)n+ 2))

∥(ϕ((k + 3)n+ 2)− ϕ(kn+ 1))× (ϕ(kn+ 2)− ϕ((k + 3)n+ 2))∥2
,

ϕ((k + 2)n+ 1) =
1

3
(ϕ(kn+ 1) + ϕ((k + 1)n+ 1) + ϕ((k + 3)n+ 2))

+
(ϕ(kn+ 1)− ϕ((k + 3)n+ 2))× (ϕ(kn+ 1)− ϕ((k + 1)n+ 1))

∥(ϕ(kn+ 1)− ϕ((k + 3)n+ 2))× (ϕ(kn+ 1)− ϕ((k + 1)n+ 1))∥2
.

The images of the remaining vertices of X(n,k) under ϕ are then given by

ϕ((jn+ (i+ 1))) = ϕ((jn+ 1)g
i

) = (Mα)
iϕ(jn+ 1),

where i = 1, . . . , n, j = 0, . . . , k and Mα is given by cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 . (2.2)

Since the Euclidean norm is invariant under the multiplication with orthogonal matri-

ces, it suffices to show the edges that are incident to the faces fa1 , . . . ff1 , f1,j, f1,j all

have length 1. Since these edges have length 1 by construction, ϕ yields an embedding

of X(n,k) constructed from equilateral triangles. If clear from the context, we denote

this embedding of X(n,k) by ϕ
(n,k)
l = ϕl.

For n ≥ 3 the above procedure yields∣∣∣∣{l | 1 ≤ l ≤ n

2
, gcd(n, l) = 1, cos

(
2πl

n

)
≤ 1

2

}∣∣∣∣
non-congruent embeddings of X(n,k), i.e. embeddings that cannot be transformed into

each other by using rigid Euclidean motions. For example, the procedure above yields

two different embeddings of the surface X(7,0) as polyhedra consisting of equilateral

triangles, see Figure 2.13a. Next, we further analyse the automorphism group of X(n,k)

and prove that the automorphism group of X(n,k) and the symmetry group of ϕl(X
(n,k))

are both cyclic groups of order n.

Proposition 2.8.5. Let n, k, l be defined as in the above construction and ϕl be an

embedding of the simplicial surface X(n,k). Then

Aut(ϕl(X
(n,k))) ∼= Aut(X(n,k)) ∼= Cn.
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Proof. By construction ⟨Mα⟩, where Mα is given in (2.2), is a subgroup of the sym-

metry group Aut(ϕl(X
(n,k))). Since we have ⟨Mα⟩ ∼= Cn, it suffices to show that the

automorphism group of X(n,k) is also cyclic of order n. Let therefore ϕ be an automor-

phism of X(n,k) and (k + 2)n + 1, . . . , (k + 3)n the vertices of degree 3 in X(n,k). Note

that there is exactly one vertex of degree 3n, namely (k+3)n+2 and that the image of

a vertex under ϕ has to be a vertex with the same vertex degree. Thus, we conclude:

ϕ((k + 2)n+ 1) = (k + 2)n+ i for some i ∈ {1, . . . , n} and
ϕ((k + 3)n+ 1) = (k + 3)n+ 1.

Since {(k + 1)n + 1, (k + 2)n + 1, (k + 3)n + 1} is a face of X(n,k), the same holds for

its images under ϕ. Hence, ϕ((k + 1)n + 1) has to be a vertex of degree 4, such that

{ϕ((k+1)n+1), (k+2)n+ i, (k+3)n+1} forms a face of the simplicial surface. This

leads to ϕ((k+1)n+1) = (k+1)n+ i. The restriction of ϕ to the vertices of the surface

is given by ((1, . . . , n) . . . ((k + 2)n+ 1, . . . , (k + 3)n))i. Thus, we obtain

Cn
∼= ⟨Mα⟩ ≤ Aut(ϕl(X

(n,k))) ↪→ Aut(X(n,k)) ∼= Cn.

2.8.2 Constructing a Family of Surfaces with Dihedral Sym-

metry

In this subsection, we present the detailed construction of the simplicial surfaces Y (n,k).

We compute the incidence structure of the surfaces and the corresponding embeddings

consisting of equilateral triangles, as in the cyclic case. Let therefore n ≥ 4 and

k, l, α, ρ, h,Mα be defined as in previous section and let ΓDn the cubic graph with

dihedral automorphism group constructed in Section 2.5.

Definition 2.8.6. Let n ≥ 4 and k natural numbers. The set of faces of the simplicial

surface Y (n,k) is defined by

{fai , fbi , fci , fdi | i = 1, . . . , n} ∪ {fi,j, fi,j | i = 1, . . . , n, j = 1, . . . , k}.

Moreover, let the vertices of the faces fa1 , . . . , fd1 be defined by

fa1 = {kn+ 1, (k + 1)n+ 1, (k + 2)n+ 2}, fb1 = {kn+ 2, (k + 1)n+ 1, (kn+ 2) + 2},
fc1 = {kn+ 1, kn+ 2, (k + 1)n+ 1}, fd1 = {1, 2, (k + 2)n+ 1}.

and for 0 < j ≤ k the vertices of the faces f1,j and f1,j be given by

f1,j = {(j − 1)n+ 1, (j − 1)n+ 2, jn+ 1} and f1,j = {(j − 1)n+ 2, jn+ 1, jn+ 2}.
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We can apply the permutation h = (1, . . . , n) . . . ((k + 1)n+ 1, . . . , (k + 2)n) to obtain

the vertices of the remaining faces of Y (n,k): The vertices of the faces fai+1
, . . . fdi+1

,

are given by (fa1)
hi

, . . . , (fh1)
hi

, respectively. If k > 0, the vertices of the faces fi+1,j

and fi+1,j are given by (f1,j)
hi

and (f1,j)
hi

, respectively.

As in the case of the simplicial surfaces X(n,k), we have that the simplicial surfaces

Y (n,k) have Euler characteristic 2 and the face graph of the simplicial surface Y (n,0) is

isomorphic to GDn .

Next, we embed the simplicial surface Y (n,k) into R3 by assigning 3D-coordinates

to the vertices of the simplicial surface as follows:

Remark 2.8.7. If cos(α) ≤ 1
2
, an embedding ψ of the simplicial surface Y (n,k) is given

as follows: For 0 < j ≤ k we define the following images:

ψ(j · n+ 1) = −j · h (0, 0, 1)⊺ + ρ
(
cos
(
j
α

2

)
, sin

(
j
α

2

)
, 0
)⊺

and

ψ(j · n+ 2) = −j · h (0, 0, 1)⊺ + ρ
(
cos
(
(j + 1)

α

2

)
, sin

(
(j + 1)

α

2

)
, 0
)⊺
.

Furthermore, the images of the other vertices are given by

ψ((k + 2)n+ 1) =
√

1− ρ2 (0, 0, 1)⊺ ,
ψ((k + 2)n+ 2) =− (kh+

√
1− ρ2) (0, 0, 1)⊺ ,

ψ((k + 1)n+ 1) =
1

3
(ψ(kn+ 1) + ψ(kn+ 2) + ψ((k + 3)n+ 2))

+
(ψ((k + 3)n+ 2)− ψ(kn+ 1))× (ψ(kn+ 2)− ψ((k + 3)n+ 2))

∥(ψ((k + 3)n+ 2)− ψ(kn+ 1))× (ψ(kn+ 2)− ψ((k + 3)n+ 2))∥
.

Hence, we can define the images of the other vertices by

ψ(in+ j) = ψ((in+ 1)g
j

) =Mα
jψ(in+ 1)

where i ∈ {1, . . . , k}, j ∈ {1, . . . , n}. Here, it suffices to show the edges of the con-

structed surfaces that are incident to the faces fa1 , fb1 , fc1 , fd1 , f
i
1, f

i
2 all have length

1. These edges have length 1 by construction. This construction therefore yields an

embedding of Y (n,k) constructed from congruent triangles.

As presented in the cyclic case, the above construction gives rise to∣∣∣∣{l | 1 ≤ l ≤ n

2
, gcd(n, l) = 1, cos

(
2πl

n

)
≤ 1

2

}∣∣∣∣
different embeddings of Y (n,k) that can not be transformed into each other by using

rigid Euclidean motions. So for example, the construction above yields two different

embeddings of the simplicial surface Y (7,0), see Figure 2.13b. Next, we show that the

surfaces and the embeddings have dihedral automorphism groups.
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Proposition 2.8.8. Let n, k, l be defined as in the construction above, and let ψ =

ψ
(n,k)
l be the corresponding embedding of the simplicial surface Y (n,k). We have

Aut(ψ(Y (n,k))) ∼= Aut(Y (n,k)) ∼= Dn.

Proof. Let α be defined by 2πl
n
. The matrix

S =

1 0 0

0 −1 0

0 0 1


defines a symmetry of the embedding of Y (n,k) with S2 = I3. Thus, ⟨Mα, S⟩ is a

subgroup of the symmetry group Aut(ψl(X
(n,k))). Since ⟨Mα, S⟩ ∼= Dn, it suffices to

show that the automorphism group of Y (n,k) is also dihedral of order 2n. Let ψ be an

automorphism of the surface Y (n,k), and consider the vertices (k+1)n+1, . . . , (k+2)n,

which are the vertices of degree 3 in the simplicial surface. Since vertices mapped onto

each other under an automorphism must have the same vertex degree, ψ permutes the

vertices of degree 3. Thus, there exists an i = 1, . . . , n such that ψ((k + 1)n + 1) =

(k + 1)n + i. Furthermore, the image of the face {kn + 1, kn + 2, (k + 1)n + i} under
ψ must again be a face of the surface Y (n,k). By examining the vertex degrees, we find

that ψ(kn + 1) = kn + i or ψ(kn + 1) = kn + i + 1. If ψ(kn + 1) = kn + i, then

ψ(kn+ 2) = kn+ i+ 1 and the restriction of ψ to the vertices is given by

((1, . . . , n) . . . ((k + 2)n+ 1, . . . , (k + 3)n))i.

If ψ(kn+ 1) = kn+ i+ 1, then ψ(kn+ 2) = kn+ i and the restriction of ψ to the

vertices of the surface is given by

((1, . . . , n) . . . ((k + 2)n+ 1, . . . , (k + 3)n))iψS,

where ψS is an involution that arises from S by embedding the symmetry group of

the embedding into the automorphism group of the simplicial surface. Hence, the

automorphism group of Y (n,k) is dihedral.
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Chapter 3

Mathematical Foundations of

Interlocking Assemblies

3.1 Summary

In this chapter, we establish a mathematical theory and a construction method for

interlocking assemblies. First, we develop a mathematical theory around interlocking

assemblies, i.e. give a definition and a method of proving the interlocking property

based on infinitesimal motions. Afterwards, we give a method of constructing candi-

dates based on planar crystallographic symmetries for interlocking assemblies. For the

wallpaper group consisting only of translational symmetries, we prove that the resulting

assemblies are translationally interlocked. For certain blocks that can be assembled in

numerous ways, characterised by the combinatorial theory of generalised Truchet tiles,

we prove the interlocking property. The main idea is to exploit the symmetries of the

underlying assembly to simplify the proof of interlocking. Lastly, we present a method

to evaluate interlocking assemblies.

3.2 Introduction

Consider the assembly of blocks shown in Figure 3.1d consisting of several congruent

copies of the same convex block, the Abeille block, which are in contact with each other.

The assembly in Figure 3.1d has the property that restraining a subset of blocks,

called the frame, from moving implies that all other blocks cannot move in any direc-

tion. For instance, one can see intuitively that for each block, two neighbours restrain

it from moving upwards and two neighbours from moving downwards. Such an assem-

bly is known as (topological) interlocking assembly, [EKA21]. The assembly in Figure

3.1d was first presented by Joseph Abeille as a way of cutting blocks out of stone in

order to give a construction method for a “flat-vault”, see [Gal35]. This assembly can

This chapter is based on research originally published at [Goe24a; Goe24b].
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(a) (b) (c) (d)

Figure 3.1: (a,b,c) Several views of the Abeille block, (d) assembly of Abeille blocks
with frame consisting of outer blocks in red.

be continued in a doubly periodic way by the means of a certain wallpaper symmetry,

i.e. one block can be rotated by 0, 90, 180, 270 degrees yielding four blocks which can

be translated in a doubly periodic way to form an infinite assembly of Abeille blocks.

Truchet and Frézier also give assemblies with non-convex blocks with the same sym-

metry in [Gal35; Fré38]. Wallpaper symmetries are omnipresent in nature, the arts,

and engineering applications. For instance, M.C. Escher incorporated wallpaper sym-

metries into many of his artworks. His approach was to approximate a given shape by

a tile, such that the resulting tile gives rise to a fundamental domain of a wallpaper

group that tiles the Euclidean plane. The approach of obtaining new fundamental

domains is also studied by Heesch and Kienzle in [HK63]. We call this approach of

deforming fundamental domains the Escher Trick which is detailed in Section 3.4. For

more background on the general theory of periodic tilings, we refer to [DH87; GS89].

The assembly by Abeille can be linked to an assembly of copies of a regular tetra-

hedron (a Platonic solid) by considering the intersection of half-spaces given by the

planes of the tilted faces of the Abeille blocks. This tetrahedra assembly is considered

by Glickman in [Gli84] and by Dyskin et. al in [Dys+01]. Dyskin et. al continued the

study of such assembly and show that all Platonic solids [Dys+03a] yield interlocking

assemblies, and also generalised the generation of such assemblies to convex blocks

[Bel+09]. Moreover, they present a family of non-convex blocks, called osteomorphic

blocks in [Dys+03b] which can be assembled in a variety of “non-planar” ways. For

a recent overview on the research and numerous applications of these assemblies, we

refer to [DEP19; EKA21].

In [Wan21], Wang presents an approach to check whether an assembly of blocks with

given frame has the interlocking property. This is modelled by infinitesimal versions of

contact inequalities leading to a large system of linear inequalities, i.e. for each contact

face of two blocks we obtain three inequalities.

In this work, we drop the prefix “topological” and simply refer to the assemblies

above as interlocking assemblies. In a mathematical context, the definition of interlock-

ing assemblies presented in this work is purely geometric, and topologically speaking

all blocks will be homeomorphic to spheres.

In Section 3.3, we give a mathematical description of interlocking assemblies and
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establish a connection between the mathematical definition of interlocking assemblies,

first presented in [GNP22], and an infinitesimal definition of such assemblies formu-

lated by Wang in [Wan21]. In Section 3.4, we give a method for constructing candidates

for interlocking assemblies by exploiting planar crystallographic symmetries. In Sec-

tion 3.5, we prove that with additional restrictions on the construction in the previous

section, we obtain the interlocking assemblies. In Section 3.6, we show that we can

construct blocks that can be assembled in non-unique ways, leading to several inter-

locking assemblies. In Section 3.7, we provide a heuristic tool for evaluating the load

distribution within an assembly and formulate an optimisation problem for finding in-

terlocking assemblies. Throughout this work, we employ methods from crystallographic

group theory, Euclidean geometry and analysis.

3.3 Mathematical Foundations of Interlocking As-

semblies

In this section, we define the notion of interlocking assemblies. Intuitively speaking,

an interlocking assembly is an assembly of blocks such that a subset of blocks, the

frame, is fixed and no block outside the frame can be removed from the assembly

by continuous motions without intersecting other blocks. Before giving the formal

definition of interlocking assemblies, we first have to define what an assembly of blocks

is and what a motion is. We present several examples of assemblies which either possess

the interlocking property or do not. In the last part of this section, we demonstrate how

to prove that an assembly possesses the interlocking property based on infinitesimal

motions. Parts of this section are based on the work presented in [GNP22].

3.3.1 Rigid and Continuous Motions

Given a subset X ⊂ R3, we want to describe motions of X in three-dimensional Eu-

clidean space. It is well-known that a rigid (non-continuous) motion can be obtained

by composing a rotation and a translation given by a three-dimensional vector. Alto-

gether, these motions form the so-called special Euclidean group. Note that, a rotation

in three-dimension space around the origin corresponds to a matrix R ∈ R3×3 such

that R is orthogonal and has determinant equal to 1, i.e. R · R⊺ = I and detR = 1.

The set of all rotational matrices of this form is denoted by SO(3).

Definition 3.3.1. The special Euclidean group also known as the set of rigid mo-

tions, denoted by SE(3), consists of elements which can be represented as pairs (R, v),

where R ∈ SO(3) is a rotation matrix and v a translation vector. The group SE(3)

is isomorphic to the semidirect product SO(3) ⋉ R3 with multiplication given by

(R, v) · (R′, v′) = (R ·R′, R · v′ + v).

The special Euclidean group acts on R3 as summarised in the next remark.
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Remark 3.3.2. The special Euclidean group acts naturally on R3 via the following

group action

SE(3)× R3 → R3, ((R, v), x) 7→ R · x+ v,

where R · x is the vector x rotated by the rotation matrix R. The following matrix

representation of SE(3) for a fixed basis of R3 can be used to encode the above action

ρ : SE(3)→ GL(4), (R, v) 7→

(
R v

0 1

)
. (3.1)

For this, we identify R3 with the set Aff (R3) =

{(
x

1

)
| x ∈ R3

}
⊂ R4, also known as

the affine space, and SE(3) then acts on R3 as follows

SE(3)×R3 → R3,

(
(R, v),

(
x

1

))
7→ ρ ((R, v))·

(
x

1

)
=

(
R v

0 1

)
·

(
x

1

)
=

(
R · x+ v

1

)
.

From now on, we identify SE(3) with its image of the above mentioned matrix rep-

resentation into GL(4). By I ∈ GL(4), we denote the identity matrix and call it the

trivial motion. If the context allows, we refer to certain elements in SE(3) just by

their corresponding rotation matrices or translation vectors. The set of rigid motions

SE(3) inherits a topology as an isomorphic image of a subset of R4×4 equipped with

the operator norm |||·|||2 which, for a given matrix A ∈ R4×4, is defined via

|||A|||2 = max
x∈R4,∥x∥2=1

∥A · x∥2,

where A · x ∈ R4 is the matrix-vector product of A and x, and

∥x∥2 =
√
x21 + x22 + x23 + x24

is the Euclidean norm on R4.

As shown in the previous remark, the elements of the special Euclidean group act

on R3 as rigid motions. In order to define immovability of blocks in an assembly, we

continue with the more applicable definition of continuous motions.

Definition 3.3.3. A continuous motion is a map γ : [0, 1]→ SE(3) ⊂ GL(4) such that

γ is continuous (using the topology given in Remark 3.3.2) and γ(0) = I is the identity
matrix in SE(3). Furthermore, we say γ is admissible if γ is a continuous motion and

differentiable in 0. We say that γ is trivial if γ(t) = I for all t ∈ [0, 1] and we write

γ ≡ I. For admissible motions, we further enforce that for non-trivial maps γ the

derivate at zero is non-zero, i.e. γ̇(0) ̸= 0.

The assumption that the first derivative of a non-trivial admissible motion does not
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vanish is needed to establish a connection between the usual definition of interlocking

assemblies and the infinitesimal version, see proof of Proposition 3.3.18.

Remark 3.3.4. The group SE(3) is a Lie group. An admissible motion γ can be

differentiated in 0 to obtain an element in the corresponding Lie algebra se(3). This

is due to the fact, that we can extend the map γ to a differentiable map γ̃ : [−1, 1]→
SE(3) by

γ̃ (t) =

γ (t) , t ≥ 0,

γ (−t)−1 , t < 0

and the definition of the Lie algebra as the tangent space at the identity element

of the underlying Lie group, see [KN96, Chapter 1.4]. The Lie algebra se(3) is a

6−dimensional vector space with elements of the form (ω, t) = (ω1, ω2, ω3, t1, t2, t3)

which can be embedded into the R4×4 matrix-space as follows
0 −ω3 ω2 t1

ω3 0 −ω1 t2

−ω2 ω1 0 t3

0 0 0 0


and thus we can define a multiplication of elements (ω, t) ∈ se(3) with elements in

p ∈ R3 via

(ω, t) .p =


0 −ω3 ω2 t1

ω3 0 −ω1 t2

−ω2 ω1 0 t3

0 0 0 0

 ·
(
p

1

)
=

(
ω × p+ t

1

)
,

where × : R3 × R3 → R3 denotes the cross product given by

ω × p =

ω2p3 − ω3p2

ω3p1 − ω1p3

ω1p2 − ω2p1

 .

For more on the correspondence of SE(3) and se(3), we refer to [CK16, Chapter 6].

3.3.2 Assemblies of Blocks

In order to define interlocking assemblies, we first need to define the notion of an

assembly of blocks.

Definition 3.3.5. Let ∅ ≠ X ⊂ Rn be a connected, compact set (in the standard

Euclidean topology) with X̊ = X, i.e. X equals the closure of its interior. We call X

a block with boundary denoted by ∂X.
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The constraints applied to a block X are inspired by practical applications and

the geometric shapes of objects in three-dimensional space. Additionally, the use of

the condition X̊ = X serves to exclude any type of degenerations. Frequently, extra

restrictions are imposed on X. For example, when n = 3, we focus on blocks X that

have a polyhedral boundary.

Next, we define assemblies of blocks.

Definition 3.3.6. An assembly is a family of blocks (Xi)i∈I for a non-empty countable

index set I such that Xi ∩Xj = ∂Xi ∩ ∂Xj for all i, j ∈ I with i ̸= j.

This condition enforces that two distinct blocks of an assembly only touch at their

boundary and do not “penetrate” each other, i.e. their interiors do not intersect. Fur-

thermore, we allow infinite assemblies of blocks, which is compatible with the assemblies

constructed in Section 3.4 that carry a doubly-periodic symmetry.

In the following, we provide several intuitive examples of interlocking and non-

interlocking assemblies before giving the formal definition of an interlocking assembly

in the following section. We start with two ways of assembling cubes.

Figure 3.2a displays a canonical way of assembling cubes in a doubly-periodic way,

i.e. we translate a given cube in two directions using two vectors x, y ∈ R3. When

assembling cubes, as shown in Figure 3.2a, it is always possible to move cubes by

shifting them upwards, even when neighbouring cubes are constrained from moving. In

Figure 3.2b, we see an alternative way of assembling cubes in a doubly-periodic fashion.

We can place the assembly between two parallel planes such that the midsection of each

cube, i.e. its intersection with the plane going through the middle of the assembly, is

given by a hexagon. This assembly can be generated with the method presented in

[Bel+09], which is based on the well-known statement that any convex body can be

constructed by a finite intersection of half-spaces, see [Grü03]. In Example 3.3.14, we

show the assembly in Figure 3.2b indeed gives rise to an interlocking assembly.

(a) (b)

Figure 3.2: Two ways of assembling cubes in a doubly-periodic fashion: (a) a simple
cube assembly where grey cubes can be moved even when fixing the red cubes from
moving. (b) An interlocking assembly of cubes which can be generated by the methods
presented in [Bel+09].

An assembly of regular tetrahedra as shown in Figure 3.3a (see [Dys+03a; Gli84])

gives another example of an interlocking assembly by choosing a frame consisting of
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the red tetrahedra to be fixed. Then it follows that the grey blocks cannot be removed

from the assembly by continuous motions without causing penetrations with other

blocks. Figure 3.3b and 3.3c show similar assemblies with non-regular tetrahedra, i.e.

tetrahedra whose faces are not equilateral triangles. A frame is not shown in Figure 3.3b

and 3.3c, and a possible frame could consist of the outer tetrahedra. All the assemblies

shown in Figures 3.2b-3.3c are based on regular tessellations of the plane with wallpaper

symmetries and can be obtained by the intersections of half-spaces as described in

[Bel+09]. In Section 3.4 we describe an alternative approach to construct similar

assemblies by deforming fundamental domains of planar crystallographic groups.

(a) (b) (c)

Figure 3.3: Collection of assemblies with tetrahedra: (a) regular tetrahedra interlock-
ing with p4-symmetry frame in red, see [Gli84; Dys+01], (b) non-regular tetrahedra
assembly with p3-symmetry, see [Pie20] for a similar block, (c) and p6-symmetry.

Before we define interlocking assemblies formally, we provide another example of

an assembly of modified cubes which does yield an interlocking assembly, even though

a single block cannot be removed from the assembly while fixing all other blocks and

especially its neighbouring blocks. This block is obtained by modifying a cube in such

a way that on one side a pyramid is added, which is removed from a different side of

the cube, see Figure 3.4a.

(a) (b)

Figure 3.4: (a) Modified cube. (b) Exploded view of assembling four copies of the
modified cube.

We can assemble this block in groups of four similarly to the cube assembly given

in Figure 3.2a. However, the assembly shown in Figure 3.5a is not an interlocking

assembly, as interlocking only occurs in groups of four blocks. The set consisting of
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the four gray blocks can simultaneously be moved without causing intersections by

applying the admissible motion [0, 1] → SE(3), t 7→ (R3 → R3, x 7→ x+ (0, 0, t)⊺), see

Figure 3.5c.

(a) (b) (c)

Figure 3.5: (a,b) An assembly with modified cubes. (c) Even though each block is
restrained by its neighbours, four blocks can be moved simultaneously.

3.3.3 The Definition of Interlocking Assemblies

The following definition ensures that in an interlocking assembly, moving any finite

subset of blocks leads to a violation of the assembly condition.

Definition 3.3.7. An interlocking assembly is an assembly of blocks (Xi)i∈I together

with a subset J ⊂ I, called frame, such that for all finite non-empty sets ∅ ≠ T ⊂ I \J
and for all non-trivial admissible motions (γi)i∈T there exists t ∈ [0, 1] and i, j ∈ I (set

γℓ ≡ I if ℓ /∈ T for ℓ ∈ {i, j}) with

γi(t)(Xi) ∩ γj(t)(Xj) ̸= ∂γi(t)(Xi) ∩ ∂γj(t)(Xj). (▷◁)

If we restrict the motions to translations, we say that the assembly is a translational

interlocking assembly.

This definition is equivalent to saying that we cannot move a finite number of blocks

not contained in the frame without causing intersections of blocks.

Remark 3.3.8. The term topological interlocking assembly is commonly used in the

engineering and architecture literature to describe interlocking assemblies with a pe-

ripheral frame or “force” holding together the blocks, see [EKA21]. In a mathematical

context, this terminology may lead to confusion, as it implies a topological classification

(e.g., spheres or tori based on their genus) that diverges from the primarily geometric

nature of these assemblies. To avoid such confusion and ensure clarity, we employ

the term interlocking assembly, omitting the prefix topological. This decision puts an

emphasis on the geometric aspects of these structures and aims to avoid the potential

confusion between topological and geometric concepts.

Moreover, the concept of interlocking puzzles is also compatible with our definition

above. Here, a special block in the assembly labelled as the “key” is used to lock the
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whole assembly, i.e. the key viewed as an element inside the block together with any

other block yields the frame of an interlocking assembly as given in Definition 3.3.7.

The concepts of topological interlocking and interlocking puzzles both deal with the

potential for assembly and disassembly. Specifically, if the frame is no longer fixed, the

parts of the assembly can be taken apart. This idea is connected to assembly planning,

which focuses on the possibility of moving blocks from a starting position to an ending

position without causing any penetrations, as outlined in [Wil92].

3.3.4 Infinitesimal Interlocking Criterion

In this section, we build on the observation that the definition of interlocking assemblies

incorporates admissible motions which are differentiable maps of the form

γ : [0, 1]→ SE(3), γ(0) = I

and we can differentiate γ in 0 to obtain an element in the Lie algebra se(3), also

known as the algebra of infinitesimal motions acting on R3, see Remark 3.3.4. This

action can be exploited in order to give a linearised version of Definition 3.3.7 based

on infinitesimal motions, which turns out to be the one given in [Wan21]. For this,

we consider two blocks Xi, Xj inside an assembly of blocks with polyhedral boundary

(Xi)i∈I and assume that the common boundary of the two blocks, i.e. ∂Xi∩∂Xj can be

triangulated by contact triangles. For each contact triangle f given by three vertices,

we compute a normal vector n pointing towards the block Xj. Let p be one of the

vertices of the given contact triangle f . When given two admissible motions γi, γj

for the blocks Xi, Xj, we can differentiate them in 0 to obtain elements in γ̇i(0) =

(ωi, ti), γ̇j(0) = (ωj, tj) ∈ se(3) and act with them on the point p. In Proposition

3.3.18, it is shown that the interlocking criterion (▷◁) translates into the inequality

((ωj, tj).p− (ωi, ti).p) · n = (ωj × p+ tj − (ωi × p+ ti)) · n ≥ 0,

which, using the rule that for all ω, p ∈ R3, (ω×p) ·n = (p×n) ·ω, can be equivalently

formulated as

((−p× n)⊺,−n⊺, (−p× n)⊺,−n⊺) ·


ωi

ti

ωj

tj

 ≥ 0. (3.2)

The system of inequalities of the form above for a whole assembly are given in Defi-

nition 3.3.11 and in Proposition 3.3.18, we show that these inequalities indeed enforce

the interlocking property, as given in Definition 3.3.7. In Figure 3.6, we see a schematic

illustration of this approach of modelling face to face contact using infinitesimal mo-

tions.
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Figure 3.6: Schematic figure for interlocking criteria (after [Wan21]): For two blocks
Xi, Xj and a contact point p at a contact face with normal n pointing towards the
block Xj, we can derive an inequality corresponding to a non-penetration rule. Here,
the motions of each block are associated with a tuple of infinitesimal motions, consisting
of an angular momentum ω and a translation t.

Remark 3.3.9. In [Wan+19] an alternative infinitesimal interlocking criteria for con-

vex blocks is presented. The idea is to replace the contact point p in Inequality (3.2) by

p−ci and p−cj, where ci and cj are the centres of the two convex blocks Xi and Xj, re-

spectively. Moreover, it is shown in [Wan+19] that this criterion can be translated into

an equilibrium analysis using Farkas lemma, which gives a connection between linear

inequalities and linear equalities. This approach of relying on the centres of blocks is

generalised to non-convex blocks in [Stü+23]. In this work, we focus on the definition

of infinitesimal interlocking assemblies as presented in [Wan21], which does not use the

centres of each block. This method can be also used for assemblies with non-convex

blocks, and we establish a connection to the definition of interlocking assemblies in

Proposition 3.3.18.

Since, we also consider infinite assemblies, we first define matrix-vector multiplica-

tions of infinite matrices.

Remark 3.3.10. Let (aij) = A ∈ RN×N be an infinite dimensional matrix such that

for all i ∈ N the set {j | aij ̸= 0} is finite, i.e. in each row there are only finitely many

non-zero entries. Then we can define the matrix-vector multiplication with a vector

x ∈ RN in the usual way. In some cases, we restrict to vectors with finite support. Here,

we write supp (x) = {i | xi ̸= 0} and say that x has finite support if |supp (x)| <∞.

The following definition, based on the work [Wan21], establishes a connection be-

tween an assembly of blocks with triangulated polyhedral boundary and a set of in-

equalities described by a matrix modelling face-to-face contacts.

Definition 3.3.11. Let X = (Xi)i∈I be an assembly of polyhedra with triangulated

polyhedral boundary, such that if the intersection of two blocks at their boundary
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has area larger than zero it is already given by common triangular faces. Let J ⊂ I

be a subset of I (possibly empty). Let C be the number of contact triangles between

blocks inside the assembly, which are each defined by three vertices. Then we define the

infinitesimal interlocking matrix AX,J with 3·C rows indexed by the defining vertices of

all contact triangles and 6 · |I \J | columns corresponding to possible admissible motions

(ω, t) ∈ R6 for each block not contained in the frame. For each contact triangle F of

blocks i, j ∈ I \ J , where p is a defining vertex of F and n is a normal vector of F

pointing towards the block j, we obtain a row of AX,J of the form(
0, . . . , (−p× n)⊺,−n⊺︸ ︷︷ ︸

i

, 0, . . . , 0, (p× n)⊺, n⊺︸ ︷︷ ︸
j

, 0, . . . , 0
)
.

For a block i ∈ I \ J having contact with a block j ∈ J , we obtain a row of the form(
0, . . . , (−p× n)⊺,−n⊺︸ ︷︷ ︸

i

, 0, . . . , 0, . . . , 0
)
.

The assembly is called infinitesimally interlocked with frame J if

AX,J · x ≥ 0 implies x = 0,

for any x with finite support (the inequality ≥ 0 is understood componentwise). Here,

we identify x with the family (γi)i∈I of infinitesimal motions, where γi ∈ se(3) is of

the form γi = (ωi, ti) ∈ R6. By considering identical rows only once, we can reduce

the system into an equivalent system with fewer inequalities and call the resulting

matrix the reduced infinitesimal interlocking matrix. We define the assembly to be

infinitesimal translational interlocked if there are no translational admissible motions,

i.e. we set ωi = 0 for each block and thus only consider for each block Xi infinitesimal

motions of the form (0, ti). In this case, we only need one row for each face-to-face

contact, as we no longer dependent on the points p. The infinitesimal interlocking

space is defined as the (convex) set of vectors x with finite support and AX,J · x ≥ 0

(componentwise equal or larger than 0).

Using the cross product in the definition above is tied to the three-dimensional case

as the dimension of SE(3) equals 3, and for general values n the dimension of SE(n)

equals n(n−1)
2

.

Remark 3.3.12. Both the interlocking and infinitesimal interlocking definition can be

generalised to any dimension. In the case of the infinitesimal interlocking definition, we

have to adapt the definition of the rows of the interlocking matrix by changing the part

corresponding to infinitesimal rotations ω which is derived from the fact (p× n) · ω =

(ω × p) · n, see Proposition 3.3.18.

Before showing that the infinitesimal definition implies the regular definition of an
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interlocking assembly, we give several examples of how to compute the interlocking

matrix and showcase that even for assemblies with relatively few blocks, the matrix A

can be quite large. We start with the simple cube assembly given in Figure 3.2a, and

show that its interlocking matrix has a non-trivial kernel with elements corresponding

to admissible motions.

(a) (b) (c)

Figure 3.7: (a) Cube with vertex labels, (b) 3×3 assembly of cubes, (c) 3×3 assembly
of cubes with middle cube shifted by the translation (0, 0, 1

2
)⊺.

Example 3.3.13. We consider a 3 × 3 assembly of cubes as shown in Figure 3.7b.

The outer cubes are fixed and only the inner cube is allowed to move. This cube in

the middle can be obtained as the convex hull of the coordinates in the ordered list:

[(0, 0, 1)⊺ , (0, 0, 0)⊺ , (0, 1, 0)⊺ , (0, 1, 1)⊺ , (1, 1, 1)⊺ , (1, 1, 0)⊺ , (1, 0, 0)⊺ , (1, 0, 1)⊺]

and the other cubes are obtained by translations of this cube in the directions (1, 0, 0)

and (0, 1, 0). The contact-faces of the middle cube to its neighbouring cubes are given

by the faces

[1, 2, 3, 4], [1, 2, 7, 8], [3, 4, 5, 6], [5, 6, 7, 8],

see Figure 3.7a. The corresponding outer normals of the faces above are given by

(−1, 0, 0)⊺ , (0, 1, 0)⊺ , (0,−1, 0)⊺ , (1, 0, 0)⊺ .

By fixing a triangulation of the cube, we can use Definition 3.3.11 to obtain the in-

finitesimal interlocking matrix with rows of the form (−(p × n)⊺,−n⊺), where n is an

outer normal and p is a point belonging to a corresponding face. Note, that we only

need four inequalities for each contact square, as a triangulation leads to redundant

inequalities (some triangles share points and normals). Thus, we only obtain 16 instead

of 24 rows and the reduced infinitesimal interlocking matrix is given as follows:

A⊺ =

 0 0 0 0 1 0 0 1 0 −1 0 −1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 −1
0 0 −1 −1 0 0 −1 −1 0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 −1 −1 −1 −1
0 0 0 0 −1 −1 −1 −1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.
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The computationA·(0, 0, 0, 0, 0, 1)⊺ = 0 implies that an element of the form (ω, t)⊺ =

(0, 0, 0, 0, 0, 1)⊺ lies in the kernel of A. This can be interpreted as shifting a cube outside

the assembly along the translation t = (0, 0, 1)⊺, see Figure 3.5c. Indeed, we can use

the map γ : [0, 1] → SE(3), t 7→ (R3 → R3, x 7→ x+ (0, 0, t)⊺) to shift out the cube in

the middle, and it holds that γ̇(0) = (0, 0, 1)⊺. In general, we observe that for the

matrix A to have a trivial kernel, a necessary condition is that there have to be at least

three normal vectors of faces n1, n2, n3 with ⟨n1, n2, n3⟩ = R3.

Next, we consider the assembly of stacked cubes as given in Figure 3.8.

(a) (b) (c)

Figure 3.8: (a) 3 × 3 Interlocking assembly of cubes, (b) contact faces of the middle
cube with its neighbours, (c) orientation of cubes with integer coordinates.

Example 3.3.14. In order to describe the example shown in Figure 3.8 geometrically,

we again consider the unit cube given by the points and faces, as in the previous

example.

In order to embed the assembly shown in Figure 3.8a in a way that the coordinates

of all cubes are integers, we scale the unit cube by a factor 2 such that its side length

are all equal to 2. Hence, we get the coordinates

[(0, 0, 2)⊺ , (0, 0, 0)⊺ , (0, 2, 0)⊺ , (0, 2, 2)⊺ , (2, 2, 2)⊺ , (2, 2, 0)⊺ , (2, 0, 0)⊺ , (2, 0, 2)⊺].

Now, we obtain the assembly shown in Figure 3.8c by applying the translations v1 =

(1, 1, 2)⊺, v2 = (−1, 2, 1)⊺ to the cube above by translating the cube with i · v1 + j · v2
and i, j ∈ {0, 1, 2}. The contact faces of the grey cube in the middle are shown in

Figure 3.8b and the resulting interlocking matrix determined by the contact faces is

then given as follows:

A⊺ =

 −3 −3 −4 −4 4 4 5 5 0 0 0 0 0 0 0 0 4 4 3 3 −5 −5 −4 −4
0 0 0 0 0 0 0 0 3 3 4 4 −4 −4 −5 −5 0 −1 −1 0 1 2 2 1
1 2 2 1 0 −1 −1 0 −5 −4 −4 −5 4 3 3 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

.
Using a linear program solver such as the one available in [JOP+24], one can compute

that the kernel of the matrix is trivial and there is no 0 ̸= x ∈ R6 with Ax ≥ 0.

Alternatively, we can centre the middle cube at the origin to receive the following

matrix
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B⊺ =

 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 0 0
0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 −1 1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1 −1 0 0 −1 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

.
With this matrix, it is straightforward to see that a vector x⊺ = (ω, t) with Bx ≥

0 has to satisfy t = 0 and similarly ω = 0. Thus, the assembly is infinitesimally

interlocked.

In the following example, we see how admissible motions translate into infinitesimal

motions.

(a) (b) (c)

Figure 3.9: Two Versatile Blocks and application of an admissible motion: (a) Initial
placement (b,c) views of applying γ(0.5) to the right block.

Example 3.3.15. In this example, we consider two copies of a block, called Versatile

Block, defined in Section 3.6. We consider the two blocks shown in Figure 3.9a with a

contact triangle given by the points (0, 0, 0)⊺ , (0,−1, 1)⊺ , (0, 1, 1)⊺ . The map

γ : [0, 1]→ SE(3), t 7→

R3 → R3, x 7→

cos(t) 0 − sin(t)

0 1 0

sin(t) 0 cos(t)

 ·
x+

 0

0

t− 1


+

0

0

1




applied to the right (blue) block in Figure 3.9a rotates and shifts it along the upper

edge of the contact triangle with the left (red) block, and can be also written as follows:

γ (t) (x) =


cos (t) 0 − sin (t) − sin (t) · (t− 1)

0 1 0 0

sin (t) 0 cos (t) cos (t) · (t− 1) + 1

0 0 0 1

 · x,

where x lies in the affine space Aff(R3). We see that γ(0) = I is the identity map and

differentiating entrywise in 0 yields:

γ̇ (0) =


0 0 −1 1

0 0 0 0

1 0 0 2

0 0 0 0

 ∈ se(3).

The map γ is a continuous motion that applied to the right block in Figure 3.9a
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does not lead to any intersections, assuming that the left block in Figure 3.9a is re-

strained from moving. However, the points γ(t) ((0,−1, 1)⊺) , γ(t) ((0, 1, 1)⊺) do not

lie on the right side of the left block for any t > 0. In order to show that this

example is compatible with Definition 3.3.11, we have to show that for the points

p ∈ {(0, 0, 0)⊺ , (0,−1, 1)⊺ , (0, 1, 1)⊺} and the normal vector n = (1, 0, 0)⊺ of the con-

tact triangle of the two blocks pointing towards the block on the right, the following

inequality is satisfied

(p× n, n) · γ̇ (0) ≥ 0,

where we identify γ̇ (0) with (0,−1, 0, 1, 0, 2). Indeed, for p = (0,−1, 1) we have

((p× n)⊺, n⊺) · γ̇ (0) = (0, 1, 1, 1, 0, 0)⊺ · (0,−1, 0, 1, 0, 2) = 0,

for p = (0, 0, 0)⊺ we get

((p× n)⊺, n⊺) · γ̇ (0) = (0, 0, 0, 1, 0, 0)⊺ · (0,−1, 0, 1, 0, 2) = 1

and for p = (0, 1, 1)⊺ we obtain

((p× n)⊺, n⊺) · γ̇ (0) = (0, 1,−1, 1, 0, 0)⊺ · (0,−1, 0, 1, 0, 2) = 0.

In order to show that the infinitesimal interlocking property implies the usual in-

terlocking property, we need to define the positive side of a plane which depends on a

fixed choice of a vector normal to the plane.

Definition 3.3.16. The positive side of a plane P = (n, d) given by a normal vector n

and a point d ∈ R3 which is contained in P is defined as all points p that are obtained

by summing a point of the plane together with its normal multiplied by a non-negative

factor, i.e. there exists a ≥ 0 such that p = a · n+ d+ v with n · v = 0.

We can reformulate Definition 3.3.16 as shown in the following lemma.

Lemma 3.3.17. Let P = (n, d) be a plane given by its normal vector n and a point

d ∈ R3 which is contained in P . Let p ∈ R3 be a point. Then p is contained on the

positive side of P if and only if (p− d) · n ≥ 0.

Proof. The point p is contained on the positive side of P if and only if there exists a ≥ 0

such that p = a · n+ d+ v with n · v = 0. It follows that p · n = a · ∥n∥22 + d · n ≥ d · n
and thus (p − d) · n ≥ 0. The point p lies on the other side of P , if a < 0 and in this

case we can show analogously that (p− d) · n ≤ 0.

As highlighted in Remark 3.3.4, the Lie algebra of the Lie group SE(3) is given by

se(3). The 6-dimensional algebra (ω, t) ∈ se(3) acts on a point p ∈ R3 via SE(3)×R3 →
R3, ω×p+ t. The main difficulty of relating the infinitesimal definition to the definition

of an interlocking assembly is translating the condition (▷◁) in Definition 3.3.7 into an

infinitesimal version.
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Proposition 3.3.18. Let (Xi)i∈I be an assembly together with a subset J ⊂ I. If for

all finite subsets ∅ ≠ T ⊂ I \ J and infinitesimal motions x = (γi)i∈I , with γi ∈ R6 and

γi = 0 for all i ∈ I \ T (x has finite support) with

AX,J · x ≥ 0

implies that x = 0, then (Xi)i∈I is an interlocking assembly with frame J .

Proof. If there is an admissible family of non-trivial motions (γi)i∈T for a non-empty

finite subset of the blocks T ⊂ I \ J , we can assume that for at least one i ∈ T , we
have that γ̇i(0) ̸= 0. Now, let p be a contact point of a contact face with vertices

p, p′, p′′ of the blocks Xi, Xj with normal ni pointing towards Xj. Since the motions γi

for i ∈ T do not lead to penetrations, it follows that for all admissible motions γi, γj of

the underlying assembly there either exists ε > 0 such that for all t ∈ [0, ε) the point

γj(t)(p) is contained in the positive side of the plane P = (γi (t) (ni) , γi (t) (p)) and

with Lemma 3.3.17 this is equivalent to

(γj (t) (p)− γi (t) (p)) · γi (t) (ni) ≥ 0,

or if there is no such ε (see Example 3.3.15), we instead consider the points p− v
k
for

k ∈ N, v = (p′−p)+(p′′−p)
3

and get(
γj (t)

(
p− v

k

)
− γi (t)

(
p− v

k

))
· γi (t) (ni) ≥ 0,

for t ∈ [0, εk) and take the limit k →∞. It follows that

0 ≤ (γj (t) (p)− γi (t) (p)) · γi (t) (ni)

= (γj (t) (p)− p− (γi (t) (p)− p)) · γi (t) (ni)

which is equivalent to the following by multiplying with 1
t
for t > 0:

0 ≤ 1

t
(γj (t) (p)− p− (γi (t) (p)− p)) · γi (t) (ni)

=

(
γj (t) (p)− p

t
− γi (t) (p)− p

t

)
· γi (t) (ni) .

Since γi, γj are differentiable and thus continuous we have

lim
t→0

γi (t) (ni) = ni

and thus it follows that

0 ≤ (γ̇j (0) (p)− γ̇i (0) (p)) · ni.
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For an admissible motion γ, the derivative at 0 given by γ̇ (0) is an element in the Lie

algebra se (3) and can be represented as a 6−dimensional vector (ω, t), see Remark

3.3.4. If γ̇j (0) corresponds to (ωj, tj) and γ̇i (0) to (ωi, ti) we get

0 ≤ (ωj × p+ tj − (ωi × p+ ti)) · ni.

For vectors a, b, c ∈ R3, we have that

(a× b) · c = (b× c) · a,

since the determinant of the matrix (a, b, c) ∈ R3×3 can be expressed as (a× b) · c and
thus it follows that

(a× b) · c = det (a, b, c) = det (b, c, a) = (b× c) · a.

With this we can compute the following:

0 ≤ (ωj × p+ tj − (ωi × p+ ti)) · ni

= ωj × p · ni + tj · ni − ωi × p · ni − ti · ni

= p× ni · ωj + tj · ni − p× ni · ωi − ti · ni

= −p× ni · ωi − ni · ti + p× ni · ωj + ni · tj
= (−p× ni,−ni, p× ni, ni) · (ωi, ti, ωj, tj) .

In total, we conclude that

0 ≤ (−p× n,−n, p× n, n) · (ωi, ti, ωj, tj) .

It follows that we obtain the infinitesimal interlocking matrix AX,J of the underlying

assembly in this way. If we assume that there is no x ̸= 0 with finite support such that

AX,J · x ≥ 0, then there is no non-trivial admissible motion γ since we enforce that for

such motions the corresponding infinitesimal motion given by the derivate of γ in 0 is

non-trivial, i.e. γ̇(0) ̸= 0.

Given this infinitesimal criterion, the question arises how it can be used to prove

the interlocking property given in Definition 3.3.7. In general, we proceed as follows

with a given interlocking matrix A:

1. Show that for any x, the existence of a row index i with (Ax)i > 0 implies that

|supp(x)| =∞.

2. Show that the kernel of A is trivial.

This proves that the only admissible infinitesimal motion is the zero vector.
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In general, we need to consider not only inequalities arising from face-to-face con-

tacts.

Remark 3.3.19. In Definition 3.3.11, we only consider contacts of face pairs. In

Section 3.5, we show that this suffices to prove the interlocking property for certain

assemblies.

In general, restricting to face pairs only is not sufficient to prove the interlocking

property, see [Wan+19; Stü+23]. In these situations one needs to model further contact

types leading to further inequalities, i.e.

• vertex-vertex contact,

• vertex-edge contact,

• vertex-face contact,

• edge-edge contact,

• edge-face contact,

• face-face contact.

Considering these additional contact types increases the complexity of the problem im-

mensely. In certain situations, we can simplify these contact relations using symmetries

of the underlying assembly.
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3.4 Constructing Assemblies with Wallpaper Sym-

metries

In the literature, many known examples of (topological) interlocking assemblies ad-

mit planar crystallographic symmetries, also known as wallpaper symmetries. These

symmetries correspond to doubly-periodic tilings, such that the neighbours of each tile

are arranged the same. Well-known examples include assemblies with Platonic solids

(tetrahedra, octahedra, cubes, icosahedra and dodecahedra) [Dys+03a] that can be

generated using the method presented in [Bel+09]. Wallpaper symmetries are om-

nipresent in nature, arts and engineering applications. For instance, M.C. Escher

incorporated wallpaper symmetries in many of his artworks. His approach was to ap-

proximate a given shape by a tile, such that the resulting tile gives rise to a fundamental

domain of a wallpaper group that tiles the Euclidean plane.

In this section, we describe how we construct candidates for interlocking assemblies

with wallpaper symmetries based on an “Escher-like approach”.

(a) (b) (c) (d)

Figure 3.10: Example of steps for generating interlocking blocks exploiting a wallpaper
group of type p6. (a) Applying the Escher Trick, i.e. deforming fundamental domains
into each other, (b) related tessellations of the two domains, (c) block obtained by
interpolating between the two domains, (d) resulting assembly with blocks coloured
according to their arrangement.

Example 3.4.1. For the example in Figure 3.10, we consider a wallpaper group G

of type p6 (using the international notation [IUC02]). This group is generated by the

following isometries acting on the Euclidean plane R2: a rotation matrix

R60 =

(
1
2
−

√
3
2√

3
2

1
2

)
,

which rotates points by 60 degrees around the origin, and two translations correspond-

ing to the vectors t1 = (2, 0)⊺ and t2 =
(
1,
√
3
)⊺
. A kite F , upper domain in Fig-

ure 3.10a, given by the points (0, 0)⊺ , (1, 0)⊺ ,
(
1,−

√
3
3

)⊺
,
(
1,−

√
3
2

)⊺
, yields a funda-
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mental domain for this group. The domain F tiles the plane by repeatedly applying

the rotation matrix R60 and the translations t1, t2, i.e. for i = 1, . . . , 6 the six kites

Ri
60(F ) = R60·i(F ) which are obtained by rotations around the origin yield a hexagon

which tiles the plane by applying the translations t1, t2, see the top part of Figure 3.10b.

Edges of the kite that are identified under this group action are coloured the same in

Figure 3.10b, and we can choose intermediate points defining a piecewise linear path to

deform these edges. This yields a new fundamental domain F ′, shown at the bottom

of Figure 3.10a, and we call this method of obtaining a new domain the Escher Trick,

which is described in more detail in the following sections. Finally, we can place the

two domains F, F ′ in different parallel planes and interpolate between them to obtain

a block X, shown in Figure 3.10c. This interpolation corresponds to a triangulation of

the boundary of the block X. The block X can be assembled by extending the action

of the motions R60, t1, t2 onto the Euclidean space R3 by acting only on the first com-

ponents of each vector, see Remark 3.4.3. This block is first introduced in [Vak+22] to

develop shell structures based on interlocking blocks.

We can generalise this construction for any given wallpaper group G, by considering

the set of all fundamental domains of G, i.e.

F = {F | F is a fundamental domain of G}

and considering a continuous (with regard to the Hausdorff metric) map λ : [0, 1]→ F
such that the set

Xλ = {(x1, x2, t) ∈ R3 | (x1, x2) ∈ λ(t), t ∈ [0, 1]} ⊂ R3

gives rise to a block. Each intersection ofXλ with planes parallel to {(x, y, 0) | x, y ∈ R}
corresponds to an element of F . Copies of the block Xλ can be arranged by the action

of G such that we obtain an assembly, see Theorem 3.4.17. Note that, the map λ can

be recovered from the block Xλ using the projection map π : R3 → R2, (x1, x2, x3) 7→
(x1, x2) by taking λ(t) = π(Xλ∩{x ∈ R3 | x3 = t}). In this section, we restrict ourselves

to blocks with piecewise linear boundary and polygonal fundamental domains. For that

reason, we describe a triangulation of the surface of a block X, as in the example above.

Remark 3.4.2. In [Sub+19; Akl+20] a similar construction considering only Voronoi

domains is presented which can be described as follows. Given a curve γ : [0, 1] → R2

such that γ(t) is a point in general position for all t ∈ [0, 1], one can obtain Xλ as

above by setting λ(t) = D(γ(t)), where D(γ(t)) is the Voronoi domain of the point

γ(t). This construction based on Voronoi Domains can be generalised to settings

independent of wallpaper groups and leads to many blocks which are candidates for

interlocking assemblies, see [Ebe+24; Mul+22]. In [Pie20], several constructions of

interlocking blocks are given which are inspired by Frézier blocks [Fré38] that can be

also constructed by using the methods presented in this section.
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The main goal of this section is to construct three-dimensional assemblies with

wallpaper symmetries. Thus, we need to extend the canonical action of a wallpaper

group G ≤ E(2) onto R3.

Remark 3.4.3. Each element in g ∈ E(2) can be written as follows: g : R2 → R2, x 7→
R · x + v, where R ∈ O(2) is an orthogonal matrix, v ∈ R2 a translation vector and

R · x is a matrix-vector-product. The element g can be identified with a matrix of

the form

(
R v

0 1

)
∈ GL(3) acting by vector matrix-multiplication on the affine space

Aff(R2) =

{(
x

1

)
| x ∈ R2

}
. Using this identification, we can embed such matrices

into E(3) via the following map

E(2)→ E(3),

(
R v

0 1

)
7→

R 0 v

0 1 0

0 0 1

 .

Thus, we can extend the action of a wallpaper group G onto the space R3.

In the following, we illustrate the construction of blocks as in Example 3.4.1. For

this, we review the basic concepts of fundamental domains for planar crystallographic

groups. We then explain the details of the Escher Trick, which allows us to derive a new

fundamental domain, F ′, from an initial one, F , by deforming its edges. Subsequently,

we introduce the method for constructing interlocking blocks based on this approach.

Finally, we extend this method to create additional blocks.

3.4.1 Fundamental Domains and the Escher Trick

In this section, we give examples of fundamental domains and describe how we can

obtain new fundamental domains from a given one. Before we introduce so-called

Dirichlet domains, we start by giving an example of fundamental domains for wallpaper

groups of type p3.

Example 3.4.4. Consider the wallpaper group G of type p3 with generators given as

in Example 1.2.10. In Figure 3.11, we see several examples of fundamental domains

for this group. In Figure 3.11a, the point x is chosen to be the centre of the given

fundamental domain. Moreover, it has the property that no non-trivial element I ̸=
g ∈ G fixes x, i.e. g(x) ̸= x. The fundamental domain can then be obtained by

considering all points that are closer to x, than any other point in the orbit G(x). Such

a domain is known as Dirichlet domain or Voronoi domain (see the definition below).

The two domains depicted in Figure 3.11b and Figure 3.11c can be obtained from the

first one, by “deforming” its edges. This method, called the Escher Trick after the

Dutch artist M.C. Escher, is detailed below.
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(a) (b) (c)

Figure 3.11: Several examples of fundamental domains for a wallpaper group G of type
p3 (see Example 1.2.10): (a) Dirichlet domain defined by a point x with trivial sta-
biliser (in red) and orbit (in green) (b,c) Escher Trick used to obtain new fundamental
domains from the domain in (a) by deforming edges. Edges that are mapped onto each
other by the action of the underlying group G are coloured the same.

In the following, let G be a planar crystallographic group.

Definition 3.4.5. We say that a point x ∈ R2 is a point in general position if x

satisfies g(x) ̸= x for all I ̸= g ∈ G. The Dirichlet domain or Voronoi domain for a

point x in general position is defined to be the set of all points y ∈ R2 which are closer

to x than to any other point in the orbit G(x), i.e.

D(x) :=
{
y ∈ R2 | ∥x− y∥2 ≤ ∥g(x)− y∥2 for all g ∈ G

}
.

Dirichlet domains exists for all crystallographic groups and yield examples of fun-

damental domains with a polyhedral boundary.

Lemma 3.4.6 ([Ple96]). The Dirichlet domain D(x), for a point x in general position,

is a bounded convex polyhedral fundamental domain.

We can cut one fundamental domain into several parts to obtain a new one. In

Figure 3.12, this process is exemplified with two of the three domains given in Figure

3.11. Note that the two domains have the same area.

(a) (b)

(c)

Figure 3.12: (a) The fundamental domain depicted in Figure 3.11a can be subdivided
into different coloured regions corresponding to the coloured paths in Figure 3.11c. (b)
This process yields multiple pieces. (c) These pieces are then assembled respecting
identified edges to form the fundamental domain shown in Figure 3.11c.
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In the proof of the following lemma, we see that the process of cutting up one

fundamental domain to obtain another one is intuitive and can be generalised to crys-

tallographic groups of any dimensions.

Lemma 3.4.7. Any two fundamental domains of an n−dimensional crystallographic

group G have the same volume.

Proof. We sketch a simple proof of this lemma. Let F1, F2 be two fundamental domains

for G. Then we can write F2 =
⋃

g∈G(F2 ∩ gF1) and since the domain F2 is compact

and G acts discretely there exist finitely many g1, . . . , gk ∈ G with F2 ∩ giF1 ̸= ∅ and
we have F2 =

⋃
g∈G(F2 ∩ gF1) =

⋃k
i=1(F2 ∩ giF1). If vol denotes the n-dimensional

volume, it follows that

vol(F2) =
k∑

i=1

vol(F2 ∩ giF1) =
k∑

i=1

vol(g−1
i F2 ∩ F1) = vol(F1),

since the group elements are volume preserving.

In the following, we restrict our attention to wallpaper groups G such that G does

not fix any lines. If an edge of a fundamental domain F for G is fixed under the action

of G it would make the fundamental domain rigid, i.e. it is not possible to deform

the domain. Therefore, using crystallographic notation (see [IUC02]), G can be one of

the following types: p1, p2, pg, p2gg, p3, p4 or p6 (see [IUC02] for generators of the

groups).

In order to deform edges of a given fundamental domain for a wallpaper group of

the above type, we identify edge pairs of fundamental domains. This is summarised in

the following lemma.

Lemma 3.4.8. Let G be a wallpaper group of type p1, p2, pg, p2gg, p3, p4 or p6 and

F a polyhedral fundamental domain for G such that F̊ = F . Then it follows that the

edges of F can be grouped into pairs such that the edges of each pair lie in the same

orbit under the action of G, i.e. we can order the edges e1, . . . , en of F such that we

have n = 2m and there exist g1, . . . , gm with gi(ei) = ei+m. Here, we identify each edge

ei as a set containing two vertices vi, wi ∈ R2 with e = ei = {vi, wi}.

Proof. Since G does not fix any line, it follows that no edge of F is left invariant under

G. Now, assume that for a given edge e = {v, w} of F there exist I ̸= g′, g′′ ∈ G

and e′, e′′ edges of F such that e′ = g′(e), e′′ = g′′(e). Take a point p on conv(e) =

{λv+(1−λ)w | λ ∈ [0, 1]} such that there exists ε > 0 with Bε(p) is divided by e into

two non-empty sets B,B′ such that B ⊂ F . Such a point p exists by the assumption

F̊ = F and the fact that G acts discretely. Then it follows that g′(B′), g′′(B′) ⊂ F

since h(B) ̸⊂ F for all h ∈ G with g ̸= h and thus g′ = g′′. It follows that the edges of

F can be paired under the action of G.
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The existence of Dirichlet domains for any wallpaper group allows us to start with

a given fundamental domain and deform the edges in such a way that we obtain a new

fundamental domain. This method can be also used to approximate a given set by

a fundamental domain, see [KS00]. For a visualisation of wallpaper groups and this

method, we refer to the software [SHC].

Remark 3.4.9. The Escher Trick can be summarised in the following steps:

1. Start with a given fundamental domain F for a wallpaper group G, for instance

a Dirichlet domain.

2. Identify edge pairs of F , i.e. edges that are identified under the action of the

underlying group.

3. For each edge pair (e, e′), choose an edge e and an injective curve γe with values

in R2 and same endpoints as e such that the orbit under the action of G of all

curves γe do not “cross” but are allowed to “touch” (this condition is precisely

stated for piecewise linear paths defined by three points in Definition 3.4.11).

4. We obtain a new fundamental domain with boundary given by the orbit of the

curves γe.

In Figure 3.13, we see an example of the Escher Trick. Here, we exploit the sym-

metries of p1 to create a free-form fundamental domain resembling a bird. The initial

domain is given by a rhomb, i.e. a quadrilateral with all side lengths the same, which is

a Dirichlet domain (choose its centre as defining point as in Figure 3.11a). Edges that

are identified are coloured the same, and we can define a curve for each such edge.

Since, we enforce that the curves start and end at the defining points of the edges,

we obtain a closed curve by concatenating all curves. Due to Jordan’s curve theorem,

proved by Jordan in [Jor87], we obtain a bounded set, yielding a fundamental domain

for the underlying wallpaper group G.
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(a) Dirichlet domain and corresponding tiling for wallpaper group of type p1.

(b) Steps of the Escher Trick for wallpaper group of type p1 using non-linear deformations.

(c) Resulting tiling from Figure (b) with one tile highlighted in green.

Figure 3.13: Example for the construction steps of the Escher Trick for wallpaper
group of type p1: (a) We start with a given fundamental domain; (b) Identify edge
pairs and deform edges using paths to obtain a new fundamental domain. (c) The
acquired domain also gives rise to a tesselation of the plane.

The condition in step 3. above that the paths do not cross is enforced in order to

obtain a unique fundamental domain. For two differentiable curves, γ, γ′, we can define

crossing points for t, t′ with γ(t) = γ′(t′) by checking if γ̇(t) ̸= γ̇′(t′) holds. Since we

neither want to restrict ourselves to differentiable curves nor want to allow all curves,

we reformulate this condition for piecewise linear curves defined by three points, two

of which are the endpoints of a given edge. First, we define piecewise linear paths.

Definition 3.4.10. For v1, v2 ∈ R2, we define the piecewise linear path or line segment

connecting v1, v2 as the continuous map γv1,v2 : [0, 1]→ R2, 7→ v1+t·(v2−v1). Moreover,

we define the piecewise linear path defined for n ≥ 3 points v1, . . . , vn as the continuous

map γv1,...,vn : [0, 1]→ R2 defined inductively via

γv1,...,vn (t) =

γv1,...,vn−1 (2 · t) , t ∈ [0, 1
2
],

γvn−1,vn

(
2 ·
(
t− 1

2

))
, t ∈ [1

2
, 1]

.

In Figure 3.14, we see several examples of crossing and non-crossing piecewise linear

paths defined on three points. In the following definition, we formalise these observa-

tions.

Definition 3.4.11. Let v1, p1, v2, v3, p2, v4 ∈ R2 and consider the piecewise linear paths

γ1 = γv1,p1,v2 , γ2 = γv3,p2,v4 . We say that the two piecewise linear maps defined by three
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(a)

(b)

Figure 3.14: (a) Non-crossing or touching paths, (b) crossing paths.

points cross if they share a common point other than their endpoints, and for the line

segment L of the first path γ1 that intersects the second path γ2, we have that γ2 lies

on both sides of L. This can be formalised as follows:

1. there exist t1, t2 ∈ (0, 1) with γ1(t1) = γ2(t2) (shared point);

2. there exist t, t′ ∈ (0, 1) such that γ2(t) can be written as γ2(t) = p1 + a · (v1 −
p1) + b · (v2 − p1) with a, b ≥ 0, a + b > 0 and γ2(t) can be written as γ2(t

′) =

p1 + a′ · (v1 − p1) + b′ · (v2 − p1) with a < 0 or b < 0.

In the following section, we see that this approach is consistent with the goal of

obtaining triangulated surfaces.

Lemma 3.4.12. Let F be a polyhedral fundamental domain for a wallpaper group G

of type p1, p2, pg, p2gg, p3, p4 or p6 with F̊ = F (as in Lemma 3.4.8). Let v1, . . . , vn

and e1, . . . , en be the vertices and edges of F , respectively, such that ei is incident to

the vertices vi and vi+1 for i = 1, . . . , n − 1 and en is incident to the vertices vn and

v1. Then we have that n = 2m is even, and we can reorder the edges such that all

edges can be obtained from the edge representatives e1, . . . , em under the action of G.

Choose points p1, . . . , pm such that the paths G({γvi,pi,vi+1
| i = 1, . . . ,m}) do not cross

(Definition 3.4.11). Then we obtain a new fundamental domain F ′ with boundary given

by the path γv1,p1,v2,...,vn,pn,v1.

In the following, we often refer to the points p1, . . . , pm above as intermediate points,

as they define piecewise linear paths of the form γvi,pi,vi+1
. Moreover, we say that an

edge e is deformed by an intermediate point p, if p is not contained in the convex hull

of e, i.e. does not lie on the edge.

Proof. Jordan’s curve theorem states that for a closed continuous curve in R2, γ :

[0, 1]→ R2 with γ(0) = γ(1) and γ[0,1) injective, we obtain a unique bounded domain.

If the concatenation of the paths has this property, we are done. If two paths touch, we

can split the resulting path into two disjoint paths that both define a bounded region.

Since no paths cross, this domain is a fundamental domain.
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Before we go to the main goal of this section, defining three-dimensional interlocking

blocks, we show that we can interpolate between the domains F and F ′ defined in the

previous lemma.

Lemma 3.4.13. Consider the two domains F, F ′ as defined in Lemma 3.4.12. We

can interpolate between the boundaries of F and F ′ with closed paths such that every

path in between is the boundary of a fundamental domain, i.e. there exists a continuous

map λ : [0, 1]× [0, 1] → R2 with λ(0, [0, 1]) = ∂F and λ(1, [0, 1]) = ∂F ′, and for every

z ∈ [0, 1] we have that λ(z, [0, 1]) is the boundary of a fundamental domain.

Proof. Before we define the map λ, we define a continuous map Γi : [0, 1]× [0, 1]→ R2

for each path, γi = γvi,pi,vi+1
, such that Γi(0, [0, 1]) = ei Γi(1, [0, 1]) = γi for all i =

1, . . . ,m. For a piecewise linear path γv1,p,v2 defined by three points v1, p, v2 ∈ R2, the

map Γ = Γv1,p,v2 is given as follows:

Γv1,p,v2 : (0, 1)× [0, 1]→ R2,

(z, t) 7→


v1 +

(
2t
z

)
z (p− v1) , t ∈ [0, z

2
],

z (p− v1) + v1 +
((
t− z

2

)
1

1−z

)
(z (v1 − v2) + v2 − v1) , t ∈ [ z

2
, 1− z

2
],

z (p− v2) + v2 −
((
t−
(
1− z

2

))
2
z

)
z (p− v2) , t ∈ [1− z

2
, 1].

For each z ∈ (0, 1), the map t 7→ Γ(z, t) can be viewed as a reparametrisation of the

piecewise linear path γv1,v1+z(p−v1),v1+z(p−v1),v2 . We can extend Γ continuously to a map

on [0, 1]× [0, 1] by setting

Γ(0, t) = v1 + t · (v2 − v1)

and

Γ (1, t) =

v1 + 2t (p− v1) , t ∈ [0, 1
2
],

p+ (2t− 1) (v2 − p) , t ∈ [1
2
, 1].

We define λ as the concatenation of all paths Γi. Next, it follows similarly as in the

proof of Lemma 3.4.12, that the maps Γi(t) lead to a fundamental domain for all

t ∈ [0, 1] such that the boundary is transformed continuously.

Instead of considering piecewise linear paths with a single intermediate point, we

can generalise the approach by also considering other types of non-crossing paths. For

this, let F be a fundamental domain with edge representatives given by e1, . . . , em. We

consider paths γi for i = 1, . . . ,m with the following properties: assume that for each

edge ei the path γi is obtained by a map Γi : [0, 1]× [0, 1]→ R2 such that

1. Γi is continuous,

2. for all x ∈ [0, 1], the map Γi(x) : [0, 1]→ R2 is injective,
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3. Γi(0) parameterises ei and Γi(1) = γi,

4. {Γi(x)(0),Γi(x)(1)} = ei for all x ∈ [0, 1] and

5. for all x ∈ [0, 1] any paths in G({Γi(x) | i = 1, . . . ,m}) do not cross,

where for x ∈ [0, 1], Γi(x) is defined as the map [0, 1]→ R2, t 7→ Γi(x, t). Then we can

define for each x ∈ [0, 1] a fundamental domain Fx with boundary given by the orbit

G({Γi(0)}). Since the maps Γi are continuous, we obtain a three-dimensional manifold⋃
x∈[0,1] Fx.

3.4.2 Assemblies with Wallpaper Symmetries

Using the map λ as defined in Lemma 3.4.13, we can associate a fundamental domain

Fz for each z ∈ [0, 1] to λ(z) and define the following set

Xλ = {(x1, x2, x3 · c)⊺ ∈ R3 | (x1, x2) ∈ Fx3 for x3 ∈ [0, 1]}, (3.3)

for some c ∈ R>0. In this section, we show that we can triangulate the boundary

of this block Xλ, i.e. ∂Xλ is a polyhedron. For this, we define the surface of a

block by a triangulation X such that its intersection with planes of the form Pz =

{(x, y, z)⊺ | (x, y)⊺ ∈ R2} is the boundary of a fundamental domain for z ∈ [0, c] for

some c > 0. It turns out that the boundary of the fundamental domains X ∩ P0 and

X ∩ Pc corresponds to the boundary of F and F ′, respectively, as defined in Lemma

3.4.12.

v1 v2

(a)

v1

p

v2

(b)

v1
v2

p′v′1
v′2

P0

Pc

(c)

Figure 3.15: Deforming an edge and a corresponding triangulation: (a) initial edge
with vertices v1, v2, (b) introducing intermediate point p (as in Lemma 3.4.12) resulting
in two edges with vertices v1, p and v2, p, (c) interpolating between edges by setting
v′1 = v1 + (0, 0, c)⊺, v′2 = v2 + (0, 0, c)⊺, p′ = p+ (0, 0, c)⊺ for some c > 0. Note that the
points p′, v′1, v

′
2 and the points v1, v2, p lie in the planes Pc and P0, respectively.

The points p in the construction shown in Figure 3.15c can be chosen in the same

way as in Lemma 3.4.12 in order to obtain a triangulation given below.

Definition 3.4.14. Let F, F ′ be as in Lemma 3.4.12. We place F and F ′ in parallel

planes and defineXF,F ′ as a triangulation with embedded triangles of the following type:
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For each edge e of F with vertices v1, v2 and corresponding intermediate point p ∈ R2

we have the triangle {v1, v2, p′} called tilted face and the triangles {v1, v′1, p′}, {v2, v′2, p′}
called vertical faces. Additionally, we add a fixed triangulation of the domains F, F ′.

This triangulation can be viewed as an embedded simplicial surface described by

the embedded vertices {v1, . . . , vn} ∪ {v′1, . . . , v′n} ∪ {p′1, . . . , p′m} ⊂ R3 and faces given

by the triangulation XF,F ′ as defined above. We have vertical faces of the form

{vi, p′i, v′i}, {vi+1, p
′
i, v

′
i+1} and tilted faces of the form {vi, p′i, vi+1}. By omitting the

triangulation of F and F ′, the vertical and tilted faces yield an embedded simplex

ring.

v1
v2

p′v′1
v′2

(a) (b)

Figure 3.16: (a) Intersection of the triangulation with the plane Pz. (b) Intersection is
given by a piecewise linear path given by Γv1,p,v2(z) as defined in the proof of Lemma
3.4.13

Lemma 3.4.15. The boundary of the block Xλ is given by the triangulation XF,F ′.

Proof. This follows immediately from the fact, that the intersection of the triangles of

XF,F ′ with the plane Pz are given by λ(z).

Remark 3.4.16. We can summarise the steps to construct a block Xλ with boundary

XF,F ′ based on a wallpaper group G as follows:

1. Start with a polygonal fundamental domain F of G, for instance, a Dirichlet

domain.

2. Identify the edge pairs, i.e. edges of F that are mapped onto each other by group

elements of G.

3. For each edge pair, choose an “intermediate” point satisfying certain conditions

leading to a piecewise linear path.

4. Merge these paths to obtain a new fundamental domain F ′.

5. Place the two domains F, F ′ ⊂ R2 in parallel planes in R3 and interpolate between

them with a function λ such that the boundary of the resulting block Xλ is given

by a triangulation XF,F ′ .

Theorem 3.4.17. We can act with G on the blocks X = Xλ constructed as described

in Remark 3.4.16 to obtain an infinite assembly with symmetry group given by G.
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Proof. This follows immediately from the construction of Xλ, since “slices” with planes

Pz correspond to fundamental domains whose images under G only meet at their

boundary. We need to check that for two group elements g, g′ we have that g(X) ∩
g′(X) = ∂g(X) ∩ ∂g′(X). Since the boundary of the block X is characterised by the

intermediate layers which are fundamental domains of G, this follows immediately from

the definition of planar crystallographic groups, see Definition 1.2.8.

We can compute the volume of Xλ as described in the following remark.

Remark 3.4.18. The volume of Xλ is given by c · vol(F ), where F is the initial

fundamental domain and c is the height of Xλ. This follows immediately from the

facts that each fundamental domain has the same volume (Lemma 3.4.7), the block

Xλ is a polyhedron and Cavalieri’s principle.

Next, we give several examples of the construction presented so far.

Example 3.4.19. An equilateral triangle gives a fundamental domain for the wallpa-

per group G of type p6. However, we view this triangle as a quadrilateral since one

edge is split as it contains a point fixed by G. In Figure 3.17, we see how we construct

an interlocking block based on this domain.

(a) (b) (c)

Figure 3.17: (a) An equilateral triangle can be viewed as a fundamental domain of a
wallpaper group G of type p6. (b) One edge of the triangle is split into two, and we
can construct a block using intermediate points. (c) The resulting assembly (without
top and bottom faces) is obtained by using the action of G.

Example 3.4.20. In this example, we start with a tiling of the plane by fundamental

domains of a wallpaper group G of type p3.

(a) (b) (c) (d)

Figure 3.18: (a) Fundamental domain of wallpaper group G of type p3. (b,c) Views of
constructed block. (d) Assembly based on this block using the action of G.

As a final step in processing the geometry of Xλ and its triangulation, we focus on

eliminating any irregularities or non-manifold elements. These are features that could
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interfere with subsequent analyses or computations. To accomplish this, we apply a

set-theoretic approach by considering the closure of the interior of Xλ, expressed as

X̊λ. This method ensures that every point defined as part of Xλ also encompasses

those on its boundary, effectively removing problematic areas without changing the

essential structure of the shape. For certain choices of intermediate points, we can do

this directly as given below.

Remark 3.4.21. If pi = pj for some i, j we identify the corresponding vertices and if

pi = pi+1 we omit the faces that appear two times. In Section 3.6, we see several ex-

amples of the latter type: one being the Versatile Block and one being the RhomBlock.

The other case, when an intermediate point equals the starting point of another

edge, can be treated using the methods presented in Chapter 5. Below, we give an

example of this case.

Example 3.4.22. Consider a wallpaper group G of type p4 generated by the rotation

matrix

(
0 1

−1 0

)
that rotates a point by 90 degrees and translations given by the vec-

tors (2, 0)⊺, (0, 2)⊺. A square with coordinates given by (0, 0)⊺ , (0,−1)⊺ , (1,−1)⊺ , (1, 0)⊺

is a fundamental domain F for G. The edge pair representatives are given by e1 =

{(0, 0)⊺ , (0,−1)⊺} and e2 = {(0,−1)⊺ , (1,−1)⊺}. For e1 and e2 we choose (1,−1)⊺ and

(0,−2)⊺ as intermediate points, respectively. We obtain a new fundamental domain

F ′ according to Lemma 3.4.12 with height c = 1. The resulting block X interpolating

between F and F ′ is shown in Figure 3.19a. Note that, it contains a triangle that

vanishes when considering the closure of the interior of X, shown in Figure 3.19b. In

Figure 3.19e, we see an assembly of the blocks, where all blocks are shifted away from

the centre of the assembly.

(a) (b) (c)

(d) (e)

Figure 3.19: (a) Block based on construction with wallpaper group of type p4, (b,c)
different views after removing artefacts, (d) view of the assembly, (e) exploded view of
the assembly of the resulting block.

As demonstrated in the following remark, the block Xλ acts as a fundamental

domain for a three-dimensional crystallographic group G̃. Consequently, this structure

71



enables the construction of space-filling assemblies, indicating that multiple instances

of Xλ, when appropriately arranged according to an action given by G̃, can completely

fill three-dimensional space without gaps or overlaps.

Remark 3.4.23. The block Xλ is a fundamental domain for the three-dimensional

crystallographic group generated by the embedding of G into SE(3), as given in Remark

3.4.3, together with the translation (0, 0, 2c)⊺ and the element

1 0 0

0 1 0

0 0 −1

 ∈ O(3).

Proof. This follows from the fact that each planar crystallographic group can be ex-

tended to a space group in this way, [IUC02].

The generation of an assembly (g(X))g∈G with wallpaper symmetry leads to several

questions:

1. Does it yield an interlocking assembly?

2. Can we put together the assembly by adding one block after another?

3. What are its structural benefits?

In Section 3.5, we show in Theorem 3.5.7 that as long as for each edge representative

e the piecewise linear path γe mentioned above is not a line, the block created above

yields a translational interlocking assembly if G is of type p1 as all the edges of the

original fundamental domain are deformed. In general, for constructions of blocks

based on other wallpaper groups, we can rule out certain motions corresponding to

the kernel of the infinitesimal interlocking matrix. The other two questions are briefly

discussed in Section 3.7.

3.4.3 Extensions of Block Constructions

We can obtain several new blocks by iterating the approach, mirroring at planes or

deforming the initial domain F which is placed in the plane P0 into both positive and

negative direction by setting c > 0 and c < 0, respectively.

Iterating and Mirroring For instance, instead of assuming that we have a map Γ

which deforms a straight edge e into a path γ. We can approximate arbitrary paths γ

by piecewise linear paths and iterate this construction to obtain an approximation γ̃

of γ. Moreover, we can extend the method from the previous section in several ways

to form new assemblies, e.g. by

1. iterating the steps of deforming edges of fundamental domains or

2. mirroring at the bottom or top plane.
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These processes can be formalised as follows: Given λ1 : [0, 1] → F , λ2 : [0, 1] → F
such that λ1(1) = λ2(0) we can define the following interpolation functions:

1. iterating: λ : [0, 1]→ F , λ(t) =

λ1(2 · t) t ∈ [0, 1/2],

λ2(2 · (t− 1/2)) t ∈ [1/2, 1]
and

2. mirroring: λ : [0, 1]→ F , λ(t) =

λ1(1− 2 · t) t ∈ [0, 1/2],

λ1(2 · (t− 1/2)) t ∈ [1/2, 1]
.

Figure 3.20: We can modify the block given in Figure 3.10c by iterating the construction
starting with the mid-section given by a kite and deforming it in both positive and
negative direction.

Figure 3.21: Schematic illustration of pushing points towards the interior: we use the
Escher Trick to obtain a new fundamental domain F ′ from a fundamental domain F .
The intermediate points are chosen in a way such that they lie on a line. We can
modify F ′ by replacing its vertices vi by vertices v′i on this line.

Subsets of Fundamental Domains Another approach is to deform blocks along

the z-axis by means of a growth-function, i.e. a bijective increasing continuous map

f : [0, 1] → [0, 1], and considering the block given by Xλ◦f . We can also generalise

our construction by allowing certain geometrically defined subsets λ̃(t) of fundamental

domains, i.e. instead of considering the set of all fundamental domains F , we consider

the set of all subsets of fundamental domains F̃ . Deforming a fundamental domain

into a subset of another fundamental domain can be achieved, by modifying the points

v′1, v
′
2 of the triangulation given in Definition 3.4.14 by replacing them by points inside

the fundamental domain F ′ placed in the plane Pc. This generalisation leads to more

possible candidates for interlocking assemblies, and the examples of assemblies with

tetrahedra given in Figures 3.2b-3.3c, obtained using the method given in [Bel+09],

can be constructed this way.
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Example 3.4.24. Consider the block in Figure 3.20. In the previous section, we de-

formed an edge with endpoints v1, v2 of a fundamental domain F using an intermediate

point p, leading to a new fundamental domain F ′ containing edges with points v1, p

and p, v2. Instead, we can also consider subsets of fundamental domains that can be

obtained by shifting the points v1, v2 in the F ′ towards the interior such that the subset

still contains the intermediate points, see Figure 3.21. In this example, the intermediate

points are chosen in such a way such that we can choose a line as a subset containing

the intermediate points. We can keep the triangulation of the underlying block and

obtain a new block with smaller surface area and still sharing “tilted faces” with their

neighbours, see Figure 3.22.

In [Pie20; GNP22], similar constructions for several examples are presented. Note

that, we can obtain several well-known assemblies in this way. For instance, the tetra-

hedra assembly presented in [Gli84; Dys+01] can be obtained by a block presented by

Frézier in [Fré38].

(a) (b) (c)

Figure 3.22: (a) The block shown in Figure 3.20 can be further modified by taking
subsets to obtain another block. (b) Resulting block by shifting points towards the
interior. The block shown in (b) is completely contained inside the block (a). In (c)
we see an assembly using the block in (b).

As illustrated above, we can classify and construct assemblies admitting a wallpaper

symmetry in numerous ways, by also considering subsets of fundamental domains.

Next, we show how to approximate fundamental domains with smooth boundary

curves.

Approximating Curves and Smooth Surfaces We can approximate any curve

by piecewise linear paths. For instance, consider the curve given by the function

f : [0, 1] → R2, t 7→ (t, sin(2πt)), approximated by piecewise linear paths in Figure

3.23.
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Figure 3.23: Approximating f : [0, 1]→ R2, t 7→ (t, sin(2πt)) by piecewise linear paths,
see Definition 3.4.25.

We can iterate the Escher Trick n-times while simultaneously modifying the method

slightly with the goal of approximating smooth surfaces. The aim is to define a homo-

topy deforming the function f above, into the curve defining the line segment [0, 1]×{0}
and to use this as a parametrisation of piecewise linear curves with the Escher Trick.

In the following, we observe one way of approximating a continuous curve f : [0, 1]→
R2 with piecewise linear function in a compatible way with the Escher Trick.

Definition 3.4.25. For a given continuous and injective function f : [0, 1]→ R2 with

f(0) = (0, 0)⊺ and f(1) = (1, 0)⊺, we define the following piecewise functions f0, . . . , fn

for given a,N ∈ N: let n = 1, . . . , N then fN
n : [0, 1] → R2 is the piecewise linear

path interpolating between the points f(0), ( n
N
)a · (f( i

2n
) − ( i

2n
, 0)) + ( i

2n
, 0), f(1) for

i = 1, . . . , 2n − 1.

These piecewise linear paths approximate f as shown in the following lemma.

Lemma 3.4.26. For a function f as given above, the functions fN
N converge uniformly

to f .

Proof. This follows immediately from the fact that f is uniformly continuous on the

compact interval [0, 1] and the way fN
N is defined.

Remark 3.4.27. The series of functions are chosen in a way to be compatible with

iterating the Escher Trick. The setup is as follows: we deform the edge with points

(0, 0)⊺, (1, 0)⊺ ∈ R2 by applying the Escher Trick iteratively with functions fN
n . The

outline of the fundamental domain in the nth step is then given by fN
n . For the

resulting block, we set the height of each layer to ( n
N
)a for a fixed a ∈ N. Such ways

of approximating curves are known as polygonal approximation in the literature, and

other ways of approximating curves with piecewise linear functions can be found, for

instance in [II88].

75



Example 3.4.28. In this example, we give a construction of a block for a wallpa-

per group G of type p4 by deforming straight edges of a square into segments of

the sine function. We start with a square given by (0, 0)⊺, (1, 0)⊺, (1, 1)⊺, (0, 1)⊺ ∈ R2

such that the edges given by the points (0, 0)⊺, (1, 0)⊺ and (0, 0)⊺, (0, 1)⊺, respectively

(1, 0)⊺, (1, 1)⊺ and (1, 1)⊺, (0, 1)⊺ are identified under the action of G. We deform the

edge (0, 0)⊺, (1, 0)⊺ using the function f(t) = (t, sin(2π·t)
π

)⊺ and obtain the block in Figure

3.24 as described in Remark 3.3 by setting N = 10, a = 3. In this way, we obtain a

block whose outer perimeter approximates a piecewise smooth surface.

(a) (b) (c)

Figure 3.24: Views of the constructed block in Example 3.4.28 from (a) below, (b)
front and (c) above.
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3.5 Interlocking Property of Assemblies with Wall-

paper Symmetry

In this section, we establish interlocking properties of assemblies constructed with the

methods based on continuously deforming fundamental domains of a given wallpaper

group G into each other, as presented in the previous section. From these infinite

assemblies, we can also obtain interlocking assemblies with finitely many blocks by

only considering finite portions, see Corollary 3.5.9. For this purpose, we first show

that the infinitesimal interlocking property (Definition 3.3.11) of the infinite assem-

blies construction in Section 3.4 can be decoded into a convex set living in infinite

dimensional space carrying the same symmetries as the underlying assembly. This ob-

servation allows a simplification for proving the interlocking property. Next, we show

that no “sliding” motions are possible for any constructed assemblies satisfying certain

conditions.

Definition 3.5.1. Let (Xi)i∈I be an assembly of blocks and γ = (γi)i∈I be admissible

motions such that γi ≡ 0 for almost all i ∈ I. We say that γ consists of sliding motions

if the infinitesimal interlocking matrix A of the assembly (Xi)i∈I satisfies

Ax = 0,

where x = (γ̇i(0))i∈I .

In Example 3.3.13 we show that assembling cubes can lead to sliding motions which

can be viewed as motions such that contact faces remain in contact when applying

the motion. In Proposition 3.5.6, we establish that the assemblies constructed in

the previous section do not admit any sliding motion if we assume sufficient edge

deformations specified as Criterion 3.5.3.

Using this, we show that we can classify assemblies with a translational interlocking

property and p1 symmetry using the notion of “infinite interlocking chains”.

Definition 3.5.2. Let (Xi)i∈I be an assembly of blocks, A its infinitesimal interlocking

matrix and let γ = (γi)i∈I be admissible motions. The infinitesimal motion x =

(γ̇i(0))i∈I is an infinite interlocking chain if Ax ≥ 0 and x has infinite support.

Consider an assembly coming from the construction in Section 3.4 by continuously

deforming a fundamental domain F of a wallpaper group G into another domain F ′ of

the same group leading to a blockX that can be assembled using the extended action of

G onto R3, i.e. we consider the infinite assembly of blocks (Xg)g∈G = (g(X))g∈G. If there

exists a finite set H ⊂ G such that H(F ) = H(F ′) it follows that we can simultaneously

shift the blocks corresponding to H upwards using the admissible motion γ : t 7→
(
x 7→

(x1, x2, x3 + t)
)
. This leads to the following interlocking criterion.

Criterion 3.5.3. The assembly (Xg)g∈G is a translational interlocking assembly with
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Figure 3.25: We can deform two neighbouring edges with vertices {v1, v2} and {v2, v3}
of an initial fundamental domain F by introducing intermediate points p1, p2. The
choices of p1, p2 determine the contact of the resulting block X = XI to other blocks
Xg, Xg′ inside the assembly. (a) If p1 ̸= p2 then the resulting triangles associated to the
edges meet with a single block. (b) If p1 = p2, we obtain a contact triangle between
the blocks Xg, Xg′ .

empty frame if and only if there is no finite set ∅ ̸= H ⊂ G such that
⋃

h∈H h(F ) =⋃
h∈H h(F

′). This is equivalent to saying that for each finite set ∅ ≠ H ⊂ G the edges

on the boundary of
⋃

h∈H h(F ) are deformed (see discussion after Lemma 3.4.12).

Indeed, we prove the following for wallpaper groups of type p1 in Theorem 3.5.7.

Theorem. If G is of type p1, the assemblies (Xg)g∈G are translational interlocked if

and only if Criterion 3.5.3 holds.

The general interlocking property is harder to prove, since we have to consider

translations as well as rotations. For a special block, called the “RhomBlock”, we

show this full interlocking property in Section 3.6, where we use the fact that the

vertical walls of the RhomBlock come in parallel pairs. Furthermore, the translational

interlocking property for blocks coming from wallpaper groups of type p1 carries on

for other assemblies with certain blocks such as the Versatile Block, see Section 3.6.

3.5.1 A Convex Set with Wallpaper Symmetry

Let X be a block coming from the construction in Section 3.4 which can be assembled

using the action of a planar crystallographic group G, see Theorem 3.4.17. Hence, there

is an assembly of the form (Xg)g∈G with X = XI, where I is the identity element of G.

In the construction of X we consider edge representatives e1, . . . , en ⊂ R2 of an initial

fundamental domain F together with intermediate points p1, . . . , pn ∈ R2 determining

a triangulation of the surface of X. For a given edge ei of F , we distinguish between

the two cases pi−1 ̸= pi ̸= pi+1 and pi−1 = pi or pi = pi+1, see Remark 3.4.21.

The contact faces of the block X to the neighbouring blocks can be determined by

considering each edge independently. For an edge with intermediate point satisfying the

first case above (see Figure 3.25a), we obtain rows in the interlocking matrix (Definition
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3.3.11) of the following form, since the resulting triangles all are in contact with a single

block Xg:

X Xg ∗ ∗
∗ ∗
∗ ∗

This means that the three triangles coming from the deformation of the given edge

are all in contact with another block. For the special case pi = pi+1 (see Figure 3.25b)

we have fewer faces, see Remark 3.4.21, and for each edge ei, there are two blocks

Xg, Xg′ that intersect with X at the faces defined at ei leading to a matrix of the form

X Xg Xg′ ∗ ∗ 0

∗ ∗ 0

0 ∗ ∗

.

Each block contact is contained in the matrices of the form above. Since we assumed

that the block X is constructed with the techniques given in the previous section, its

boundary is given by the triangulationXF,F ′ , where F, F ′ are two fundamental domains.

For each vertical or tiled face T with normal vector n of XF,F ′ that is in contact with

another block in the assembly corresponding to a group element g ∈ G, we can find

an edge representative e ∈ {e1, . . . , em} of F such that T is obtained w.l.o.g. by the

deformation of e as in Figure 3.15. For each vertex p of T , we obtain a quadruple

(e, p, n, g), which we call an edge representing quadruple. In order to put together all

contacts of blocks within the assembly, we define the following set:

IAX,G ={(γg)g∈G ∈ R6×G | (e, p, n, g) edge representing quadruple, |supp((γg)g∈G)| <∞

(−((R(p) + t)×R(n))⊺,−R(n)⊺, ((R(p) + t)×R(n))⊺ , R(n)⊺) · (γg′ , γg′·g) ≥ 0,

∀g′ = (R, t) ∈ G}.

Since each contact triangle comes from an edge, we have described all contact faces

that determine the inequalities in the set above and thus have the following result.

Proposition 3.5.4. The set IAX,G is the infinitesimal interlocking space as defined in

Definition 3.3.11.

Proof. We need to show that the inequalities defining the set IAX,G are exactly those

coming from the interlocking matrix A in Definition 3.3.11. Let p be a contact point

of a contact face with normal n two blocks Xg′ , Xg′′ coming from a deformed edge e. It

follows that g′−1(e) ∈ {e1, . . . , en} and we write g = g′−1 · g′′. By the definition of the
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underlying assembly, we have that (R(e) + t, R(p) + t, R(n), g) is an edge representing

quadruple, where g′−1 = (R, t) ∈ G. Thus, we obtain all inequalities of A and vice

versa, each inequality in the definition of IAX,G comes from A.

3.5.2 The Kernel of the Infinitesimal Interlocking Matrix

In this section, we show that no sliding motions are possible for the blocks constructed

in Section 3.4 as long as they fulfil Criterion 3.5.3. For this, let (Xg)g∈G be an assembly

constructed with the methods in Section 3.4 and fulfilling Criterion 3.5.3. Then we

compute its infinitesimal interlocking matrix, which we call A.

Lemma 3.5.5. Let (γg)g∈G ∈ R6×G be a vector (with finite support) of infinitesimal

motions for each block. A “deformed side” of a block means that for the bottom plane

corresponding to the tiling with F there is an edge with corresponding intermediate point

deforming, the edge leading to three faces with distinct normal vectors having contact.

Assume that one “deformed side” of a block X has contact to another block X ′, which

is not moving. Then we can simplify the computation of the kernel to a reduced matrix.

Proof. Let e ⊂ R2 be an edge with vertices v1, v2 ∈ R2, and let p ∈ R2 be a point. We

embed the vertices v1, v2 into R3 by appending a 0 and let v′1, v
′
2 be the points which

are obtained by appending 1 instead of 0 and also embed p into R3 by appending a 1.

We then consider the three triangles in R3 given by the points T2 := {v1, v′1, p}, T1 :=
{v1, v2, p}, T3 := {v2, v′2, p} and normal vectors ni of Ti given by n1 := (v2 − v1)× (p−
v1), n2 := (v′1− v1)× (p− v1), n3 := (v′2− v2)× (p− v2). We obtain the following 9× 6

sub-matrix of A of the form corresponding to the contacts of blocks X and X ′:

Ae =



(p× n1)
⊺ n⊺

1

(v1 × n1)
⊺ n⊺

1

(v2 × n1)
⊺ n⊺

1

(p× n2)
⊺ n⊺

2

(v1 × n2)
⊺ n⊺

2

(v′1 × n2)
⊺ n⊺

2

(p× n3)
⊺ n⊺

3

(v2 × n3)
⊺ n⊺

3

(v′2 × n3)
⊺ n⊺

3


.

Since we need to show that Ae has rank 6, we can use row operation on Ae to obtain
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the following matrix with the same rank

A′
e =



(p× n1)
⊺ n⊺

1

((v1 − p)× n1)
⊺ 0

((v2 − p)× n1)
⊺ 0

(p× n2)
⊺ n⊺

2

((v1 − p)× n2)
⊺ 0

((v′1 − p)× n2)
⊺ 0

(p× n3)
⊺ n⊺

3

((v2 − p)× n3)
⊺ 0

((v′2 − p)× n3)
⊺ 0


.

Now, it suffices to show that n1, n2, n3 are linearly independent and one of the following

matrices have rank 3:((v1 − p)× n1)
⊺

((v1 − p)× n2)
⊺

((v2 − p)× n3)
⊺

 or

((v2 − p)× n1)
⊺

((v1 − p)× n2)
⊺

((v2 − p)× n3)
⊺

 .

For a 3× 3 matrix M with detM ̸= 0 it holds that

(Ma)× (Mb) = cof (M) · (a× b),

where cof (M) = det (M) · (M−1)⊺ is the cofactor matrix of M . Hence, we can assume

that v1 = (0, 0)⊺, v2 = (1, 0)⊺ and the matrices simplify to

M1 =

 −p22 − 1 p1 p1

− (1− p1) p2 p2 p2

p1 − 1 −p21 − p22 − (1− p1)2 − p22

 ,

M2 =

−p22 − 1 p1 p1 − 1

p1p2 p2 p2

p1 −p21 − p22 − (1− p1)2 − p22

 .

Then we obtain the following determinants of the matrices dependent on the values of

p:

detM1 = −p2(p1 − 1)(p21 + p22 + 1), detM2 = −p1p2(p21 + p22 − 2p1 + 2).

Since p is not contained on the line v1, v2, we can assume that p2 ̸= 0 and if p1 = 1 it

follows thatM2 has non-zero determinant and if p1 ̸= 1 it follows thatM1 has non-zero

determinant.

Proposition 3.5.6. The infinitesimal interlocking matrix A has trivial kernel if and

only if Criterion 3.5.3 holds.
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Proof. In the discussion preceding Criterion 3.5.3, it is shown that we can find a non-

trivial admissible motion shifting out blocks if there is a finite set ̸= H ⊂ G with

H(F ) = H(F ′). Moreover, this motion correspond to the translation (0, 0, 1) and

indeed gives rise to a sliding motion.

Assuming the opposite, we show that there are no sliding motions, i.e. the matrix

A has trivial kernel. Let x with finite support and Ax = 0, we identify x with the

family of infinitesimal motions (γg)g∈G such that γg = 0 for almost all g ∈ G. We show

by induction that x = 0. For this, we need to prove that there is always an edge in the

sense of Lemma 3.5.5. But since there is always at least one block having contact to a

block which is moved by x, such an edge exists. For each non-open edge e, there is at

least one block with points “above” e. Since the number of blocks that are considered

is finite, we find an open edge e, since at least one edge admits deformations.

3.5.3 Interlocking Chains

From the infinitesimal interlocking space formulation, we obtain a matrix A such that

vectors x with finite support and Ax ≥ 0 correspond to admissible infinitesimal mo-

tions. We show that, in the case where G is of type p1 and only translations are

considered, the inequality (Ax)i > 0 for some row index i implies that x has infinite

support. Therefore, it suffices to consider x with Ax = 0. This can be demonstrated

by proving the existence of an infinite intersection chain.

Theorem 3.5.7. Any assembly (Xg)g∈G coming from the construction of the previous

section with G of type p1 is translational interlocked if and only if Criterion 3.5.3 is

fulfilled.

Proof. If there exists a set H as in Criterion 3.5.3, we can simply shift out the cor-

responding blocks using upward translations. Proposition 3.5.6 implies that there are

no non-trivial motions inside the kernel of the interlocking matrix. Thus, it suffices to

rule out motions γ such that there exists k with (A · γ)k > 0. If there exists such an

entry, it follows that there exists a block Xi with non-trivial motion ti and a normal n

of a face with ti · n > 0. Then for any face of the block Xi with normal n′ such that

ti · n′ < 0 implies that the neighbouring block at this face has to move as-well. This

automatically leads to an infinite chain.

Remark 3.5.8. The proof above can be extended to assemblies such that each neigh-

bouring block has the same normals. In Section 3.6, this leads to infinitely many

translational interlocking assemblies for several blocks.

Corollary 3.5.9. Let (Xi)i∈I be an infinite interlocking assembly and J ⊂ I a finite

subset in I, such that the elements in J can be written as a tuple (j1, . . . , jn) such

that the blocks Xjl , Xjl+1
for l = 1, . . . , n − 1 and the blocks Xj1 , Xjn share a common

face. Then there is a finite subset J ⊂ Ĩ ⊂ I such that
(
(Xi)i∈Ĩ , J

)
is a topological
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interlocking assembly. Moreover, this subset can be chosen to be the blocks inside the

region spanned by the blocks corresponding to the elements in J .
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3.6 VersaTiles - Versatile Block and RhomBlock

In this section, we introduce a construction method for tiles and interlocking blocks,

characterised by generalised Truchet tiles, which can be assembled in numerous ways.

We employ the theory of wallpaper groups and fundamental domains (see Section 3.4)

to derive the tile construction method. The deformation of tiles leads to a family of

tiles with combinatorially equivalent tiling rules.

A block arising from this construction is the Versatile Block, initially introduced in

[GNP22]. This block can be assembled in various planar and non-planar configurations,

as first discussed in [Akp+23].

As an illustrative example, we demonstrate the continuous deformation of a lozenge

into a hexagon, resulting in a polyhedron in three-dimensional space. This polyhedron

gives rise to interlocking assemblies corresponding to tilings with lozenges, and we refer

to this block as the RhomBlock, given its rhombic bottom shape.

3.6.1 Wallpaper Groups with Equilateral Quadrilateral Fun-

damental Domains

In the following, we primarily focus on the following wallpaper groups: p1, pg, p3 and

p4 (see Section 3.4). In general, there is no canonical choice of a fundamental domain

for a given wallpaper group G. Convex constructions of fundamental domains include

Dirichlet domains, also known as Voronoi domains, leading to a fundamental domain

for any point x ∈ R2 in general position, i.e. x has a trivial stabiliser in G, see Definition

3.4.5.

For a given wallpaper group G of type p1= ⟨t1, t2⟩ ∼= Z2, it is necessary to give a

lattice basis. If we choose t1 = (0, 1)⊺ and t2 = (cosα, sinα)⊺, for 0 < α < π, there

exists a fundamental domain in the form of a rhombus (all side lengths are the same)

displayed in Figure 3.26. For different angles α, the rhombus yields an example of a

fundamental domain for several wallpaper groups, as described in the following.

Figure 3.26: Fundamental domain for p1 in the form of a rhombus with α + β = π.

In general, the fundamental domain in Figure 3.26 also gives a fundamental domain

for the group pg, generated by the glide reflection defined by first applying the reflection

matrix

(
−1 0

0 1

)
and the translations defined by the vectors (1, 0)⊺, (0, sinα)⊺. Hence,
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the group pg can be generated by the translations t1, 2 · t2 and the glide reflection

above. The two groups lead to two periodic ways of assembling a rhombus, as shown

in Figure 3.27c and Figure 3.27d. For the special choices α = β = π/2 respectively

α = π/3, β = 2π/3, we obtain two more periodic tilings, where the rhombi have the

form of squares respectively lozenges and the underlying wallpaper groups have a point

group of 4-fold respectively 3-fold rotations, see Figure 3.27. These choices give rise to

fundamental domains for p1 and pg as well as for p4 respectively p3.

(a) (b) (c) (d)

Figure 3.27: Rhombi tiled periodically: (a) p4-symmetry (α = β = π
2
) (squares), (b)

p3-symmetry with lozenges (α = π
3
, β = 2π

3
) (c) p1-symmetry, (d) pg-symmetry.

The different periodic ways of tiling rhombi, shown in Figure 3.27, can be combined

to obtain aperiodic tilings. In the next subsection, we show that we can generalise this

construction to obtain fundamental domains leading to tiles with a rich combinatorial

way of assembling them.

3.6.2 Constructing VersaTiles

In this section, we formulate a versatility condition leading to the construction of

VersaTiles and blocks like the Versatile Block, introduced in [GNP22], that can be

assembled in non-unique ways.

The VersaTile Condition

In this subsection, we provide a method for obtaining fundamental domains which

can be assembled in non-unique ways. Starting with a parallelogram as in Figure

3.26 which is always a fundamental domain for a certain wallpaper groups of type p1

and pg. We identify the edges using the group action of a wallpaper group G on the

plane and deform them using two curves γ1, γ2 connecting the vertices of the two edge-

representatives such that any two curves in the G-orbit of γ1, γ2 can touch but do not

cross. This leads to a new fundamental domain defined by the two curves γ1, γ2, as

described in Section 3.4. In order to create VersaTiles, we consider the following three
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sets of domains, which are fundamental domains for more than one wallpaper group:

F1 = F1(α, β) ={F |F is a fundamental domain for p1 and pg},
F4 = F4(α, β) ={F |F is a fundamental domain for p1, pg and p4} and
F3 = F3(α, β) ={F |F is a fundamental domain for p1, pg and p3}.

Note that we use compatible groups in the respective sets, i.e. the translational lattice

has to be the same, defined by the angles α, β of the respective parallelogram (see

Figure 3.26) and for F4(α, β) it follows that α = β = π/2 and for F3(α, β) it follows

that α = π/3, β = 2π/3. With this choice of angles, the inclusions F3 ⊂ F1 and

F4 ⊂ F1 hold. Moreover, a rhombus with certain angles is contained in each set.

Remark 3.6.1. The idea of the VersaTiles construction is to apply the Escher Trick on

the rhombus shown in Figure 3.26 while respecting the symmetries of several wallpaper

groups simultaneously. This can be formulated for p1 and pg as the first versatility

condition, as follows:

(1) The paths for the edges e1 and e2 (see Figure 3.26) are axis-symmetric, i.e. for

e ∈ {e1, e2} and γe a path with the same endpoints v, w as e, the image of γe in

R2 is invariant under reflection along the perpendicular bisector of the edge e.

Moreover, the paths for e3 and e4 are determined by the paths of e1 and e2 under

the translations v4 − v1 and v3 − v2, respectively.

This condition is enforced by the two ways the edges are identified. For respecting the

symmetries of p4 or p3, we also need to consider a dependence between the edges e1

and e2. This is formulated in the following second versatility condition:

(2) The path for the edge e2 is determined by the path of e1 by rotating it around

the angle α.

This way, we can construct infinitely many combinatorially equivalent tiles, which we

call VersaTiles. Furthermore, the path approach in Section 3.4, Lemma 3.4.26, yields

three-dimensional blocks that give rise to candidates for interlocking assemblies. Both

steps together yield a region that contains a path segment determining the whole

boundary of the resulting tile, see red triangle in Figure 3.28. In the special cases

p4 and p3 these construction steps can be also understood as operations inside the

wallpaper groups p4gm and p3m1, respectively.

In the following subsection, we consider the special cases F4,F3 of this construction

to construct both VersaTiles and interlocking blocks.

Generalised Truchet Tiles and Combinatorics

In this subsection, we propose a generalised version of Truchet tiles made from par-

allelograms with unit side lengths in order to classify tilings with VersaTiles. This
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Figure 3.28: Construction steps for generalised Truchet tilings with versatility condi-
tions enforced on paths visualised by dashed lines: 1. Start with a rhombus; 2. Identify
regions to draw a path segment; 3. Draw a path segment; 4. Mirror it to enforce con-
dition (1); 5. Rotate it to enforce condition (2); 6. Obtain the remaining paths by
translations; 7. Put together all paths to obtain a VersaTile.

approach is strongly related to the theory of dimer models which are polygons that

consist of two atoms, where an atom can be an equilateral triangle, a square, a cube

or a similar shape. For further reading on dimer models, we refer to [KO05] for an

introduction and [Ken09] for the fundamental theory.

In [Tru04], Truchet describes square tiles with a diagonal, where one triangle is

coloured black and the other triangle is coloured white. Moreover, he proves the exis-

tence of infinitely many possible assemblies. Smith and Boucher explore the connection

of Truchet tiles to other tiles and provides additional insights into their combinatorics

in [SB87]. We can generalise Truchet tiles to rhombs in two canonical ways, see Figure

3.29.

(a) (b)

Figure 3.29: (a,b) Two ways of generalising Truchet tiles.

The generalisation of Truchet tiles is motivated by the following tiling/assembling

rule, see [Akp+23]:

Two different Truchet tiles only touch at different colours.

In Figure 3.30, we see how we can assemble such tiles for different angles.

(a) (b) (c)

Figure 3.30: Generalised Truchet tilings based on wallpaper symmetries (a) p1 and pg,
(b) p1,pg and p4, (c) p1,pg and p3.

For α = β = π/2, we obtain a square and for α = π/3, β = 2π/3 a lozenge as
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Truchet tile. These choices of angles lead to two more possible planar assemblies,

corresponding to the wallpaper groups p4 and p3. In the extreme case p4 which is

handled in [Akp+23] it is straightforward to understand the combinatorics behind

Truchet tiles and the tiling rule given above.

Lemma 3.6.2. There are 2n+m tilings in an n×m grid.

Proof. This follows directly from the fact that the tiling is uniquely determined by the

upper and left boundary colours. For an alternative proof, see Lemma 1 in [Akp+23].

In the other extreme case, corresponding to the wallpaper group p3, tilings are

classified by the theory of lozenge tilings, see [Gor21]. For the theory of lozenges, it is

much harder to classify tilings. However, the following result is well-known.

Lemma 3.6.3 ([Gor21]). A hexagon with side lengths a, b, c ∈ Z>0 has

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2

-many tilings with lozenges.

(a) (b) (c)

Figure 3.31: (a) Tiling of hexagon with lozenge tiles (b,c), same tiling with generalised
lozenge tiles. The black parts in (c) indicate the initial orientation of the equivalent
tilings in (a,b).

3.6.3 Limit Case p4 - The Versatile Block

We now describe the construction of the Versatile Block, which was first introduced in

[GNP22]. We can tile the plane R2 with unit squares with edges identified based on

the wallpaper group p4. Afterwards, we deform the square with side length
√
2 into a

rectangle with side lengths 2 and 1, which are also known as Aztec tiles in the literature,

see [Gor21]. We can still rotate the resulting block and put an assembly together by

shifting groups of four blocks using translations. Note that both the square and the

rectangle given above are fundamental domains for the wallpaper groups pg, p4 and

p1.
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Figure 3.32: Versatile Block construction.

Since, we are using piecewise linear paths with a single intermediate point in Figure

3.32, we can apply the methods presented in Section 3.4. Thus, we can interpolate

between the square and the rectangle to obtain intermediate domains, see Figure 3.33,

together with a block, called Versatile Block, see Figure 3.34.

Figure 3.33: Combinatorial equivalent tilings based on VersaTile construction in Figure
3.32.

Figure 3.34: Different views of the Versatile Block constructed above, see [GNP22].

The Versatile Block described in Figure 3.32 is called versatile as it admits different

periodic assemblies based on the groups pg, p4 and p1 as shown in Figure 3.35.

Figure 3.35: The Versatile Block described in Figure 3.32 admits different assemblies
with wallpaper symmetries. Blocks of the same colour are obtained by applying trans-
lations, see [GNP22].

The list of coordinates in R3 for the nine vertices of the Versatile Block is given by:

v1 v2 v3 v4 v5

(0, 0, 0)⊺ (1, 1, 0)⊺ (2, 0, 0)⊺ (1,−1, 0)⊺ (0, 1, 1)⊺

v6 v7 v8 v9

(1, 1, 1)⊺ (1, 0, 1)⊺ (1,−1, 1)⊺ (0,−1, 1)⊺.
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We refer to a particular vertex by its position in this ordered list, indicated by the

index of vi for i = 1, . . . , 9. For the underlying incidence structure of the triangulation

the faces are given by the following lists of incident vertices.

[[1, 2, 3], [1, 2, 5], [1, 3, 4], [1, 4, 9], [1, 5, 9], [2, 3, 7], [2, 5, 6],

[2, 6, 7], [3, 4, 7], [4, 7, 8], [4, 8, 9], [5, 6, 7], [5, 7, 9], [7, 8, 9]].

Remark 3.6.4. The height of the Versatile Block is chosen to be 1. In this way,

we can also assemble two copies in a non-planar way. In total, there are six ways of

assembling two copies of the Versatile Block up to symmetry, shown in Figure 3.36.

Figure 3.36: There are exactly 6 possible ways, up to isomorphism, to assemble two
copies of the Versatile Block such that inclined faces of one block meet declined faces
of the other, see [Akp+23].

Assembling two copies of the Versatile Block between the planes z = 0 and z =

1 given by ⟨(1, 0, 0), (0, 1, 0)⟩ and ⟨(1, 0, 0), (0, 1, 0)⟩ + (0, 0, 1) = {(x, y, 1) | x, y ∈
R} as displayed in the left-most pictures in Figure 3.36, leads to a wide range of

possible assemblies, called planar assemblies. Since the Versatile Block construction is

based on VersaTiles, the planar interlocking assemblies with the Versatile Block can be

classified by square Truchet tiles. Apart from planar tilings, the Versatile Block admits

different space-tessellations. In Figure 3.37 we see some of those tessellations with

their corresponding translation cells. Given that all coordinates of the Versatile Block

Figure 3.37: Space-filling assemblies of copies of the Versatile Block, see [Akp+23].

are in Z3, the natural question arises regarding whether the coordinates of potential

assemblies also belong to the integer lattice.

Remark 3.6.5. Let A be an assembly with copies of the Versatile Block, such that

contact faces are as shown in Figure 3.36. For two blocks, it can be shown that all

coordinates lie in Z3: we can proceed by induction, where we remove blocks from an
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assembly with n > 3 blocks. It follows that all coordinates have integer components

by checking the coordinates of the starting configurations in Figure 3.36.

We can also employ the construction method presented in Section 3.4 to approx-

imate a smooth surface. For this, we consider the VersaTile constructed in Figure

3.38.

Figure 3.38: Smooth VersaTile construction.

We can approximate the smooth curve by piecewise linear paths and iterate the

block construction to obtain the block in Figure 3.39.

(a) (b) (c)

Figure 3.39: Several views of the resulting block from the VersaTile construction in
Figure 3.38: (a) front view, (b) side view, and (c) top view.

3.6.4 Limit Case p3 - The RhomBlock

In this subsection, we describe a block coming from the deformation of a lozenge tile

(rhomb) into a hexagon and yielding a candidate to an interlocking block, thus the

name RhomBlock which can be also seen as a hexagonal version of the Versatile Block.

The interlocking property of assemblies with copies of RhomBlocks is proved in the

following sections.

Construction

Using the construction described in Section 3.4, we can construct a block based on

Figure 3.40.

Figure 3.40: Construction steps for VersaTile with p3 symmetriy with linear path and
black lozenge implying former orientation.
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The surface of the resulting block can be triangulated using the coordinates

v1 v2 v3 v4 v5

(0, 0, 0)⊺
(

1
2
,
√
3
2
, 0
)⊺

(1, 0, 0)⊺
(

1
2
,−

√
3
2
, 0
)⊺ (

0, 0,
√

2
3

)⊺
v6 v7 v8 v9 v10(

1
2
,
√
3
6
,
√

2
3

)⊺ (
1, 0,

√
2
3

)⊺ (
1,−

√
3
3
,
√

2
3

)⊺ (
1
2
,−

√
3
2
,
√

2
3

)⊺ (
0,−

√
3
3
,
√

2
3

)⊺
and corresponding vertices of faces:

[[1, 2, 3], [1, 3, 4], [1, 5, 6], [1, 2, 6], [2, 3, 6], [3, 6, 7], [3, 7, 8], [3, 4, 8], [4, 8, 9], [4, 9, 10],

[1, 4, 10], [1, 5, 10], [5, 6, 7], [5, 9, 10], [7, 8, 9], [5, 7, 9]].

In Figure 3.41 we see the resulting block.

Figure 3.41: Two views of the RhomBlock.

Similarly, as in the p4-case, we can construct a smooth version of the RhomBlock.

Figure 3.42: Smooth VersaTile construction for p3.

(a) (b) (c)

Figure 3.43: Several views of the resulting block from the VersaTile construction in
Figure 3.42: (a) front view, (b) side view, and (c) top view.

Combinatorics of the RhomBlock

Since lozenges carry a C2×C2 symmetry, we can associate a lozenge tiling to a VersaTile

tiling in two ways by switching between the two bipartite colouring of the hexagonal
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plane.

Lemma 3.6.6. Each lozenge tiling leads to two VersaTile tilings.

There are various ways of associating a graph to a lozenges tiling. One way is to con-

sider the regular hexagonal tiling of the plane, where each hexagon can be subdivided

into six equilateral triangles. Then, a lozenge tiling corresponds to a perfect matching

when considering the face graph, also called standard graph (see below), of this equi-

lateral triangle tiling. In the following definition, we present some graph construction

with examples in Figure 3.45.

Definition 3.6.7. Given a lozenge tiling T , we define the following graphs with addi-

tional information:

1. The standard graph GT of T is defined to be the undirected graph with nodes

corresponding to equilateral triangles contained in the lozenges tiling (place T

inside the hexagonal plane) and the edges of GT correspond to edges of T con-

necting two triangles. In order to recover T from GT , we can define a perfect

matching connecting two triangles whenever they belong to the same lozenge

tile. In the language of simplicial surfaces, a lozenge tiling can be recovered as a

perfect matching of parts of the face graph of the hexagonal plane.

2. The edge graph ET of T is defined to be the undirected graph with nodes cor-

responding to the edges of GT and two nodes are connected by an edge if they

belong to the same triangle. The tiling T can be recovered with a maximal

independent set which correspond to the perfect matching of GT .

3. The directed graph DT of T is defined to be the directed graph with nodes cor-

responding to the lozenges and arcs corresponding to neighbouring tiles. The

direction is based on the underlying bipartite hexagonal lattice, where two tiles

t1, t2 are connected with an arc (t1, t2) if the black part of t1 neighbours the white

part of t2.

Here, we associate a lozenge to a single hexagon, according to the RhomBlock

construction whose upper face is given by a hexagon, and it only remains to say how

it is oriented regarding it bottom face. In Figure 3.44a, we see a lozenge tiling based

on a substitution rule and its embedding in the bipartite hexagonal plane. Here, the

substitution starts with an initial placement of the 6 lozenges in the middle and then

lozenges are added for each tile iteratively at their tip.
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(a) (b)

Figure 3.44: (a) Lozenge tiling, (b) lozenge tiling embedded bicoloured.

In Figure 3.45, we see three graphs with additional information that encode the

tiling from Figure 3.44a.

(a) (b) (c)

Figure 3.45: Three graphs representing tiling shown in Figure 3.44a (a) standard graph
with perfect matching (in red), (b) edge graph with maximal independent set (in red),
(c) directed graph.

The graph, in Figure 3.45a, has nodes corresponding to the equilateral triangles

and edges corresponding to the edges of the hexagonal plane. The lozenge tiling then

corresponds to a so-called perfect matching, i.e. a subset of the edges such that each

node is contained in exactly one edge. The graph, in Figure 3.45b, has three nodes for

each white face of the bipartite hexagonal plane corresponding to the edges. Here, a

maximal independent set of nodes directly corresponds to the perfect matching of the

graph shown in Figure 3.45a yielding the corresponding lozenge tiling. The directed

graph in Figure 3.45c, can be obtained from the graph in Figure 3.45b as follows: for

each white triangle we have exactly one node and arcs pointing from black towards red

nodes. In Section 3.7, we define a cost function on the arcs of such directed graphs,

yielding a flow network with applications for evaluating interlocking assemblies.

Below we summarise the interplay between the defined graphs above.

Proposition 3.6.8. Each graph together with its additional data yields a unique tiling

with lozenges up to isomorphism.

Proof. Each graph is uniquely determined by the other graphs. We can embed the

vertices of the standard graph inside the hexagonal plane, such that two neighbouring

triangles are connected by an edge. In this way, we obtain a lozenge tiling via a perfect

matching.
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Remark 3.6.9. The standard graph GT is often used to enumerate lozenges in the

literature, see [Gor21] as it links lozenge tilings to perfect matchings of certain planar

graphs. Kasteleyn theory, see [Gor21], gives a way of counting perfect matchings in a

planar graph and enables the enumeration of lozenge tilings of certain domains, such

as given in Lemma 3.6.3.

RhomBlock Interlocking

In this section, we prove that any infinite tiling with lozenges leads to an interlocking

assembly with RhomBlocks.

Theorem 3.6.10. For a given infinite tiling of the plane with lozenges, we can associate

two infinite interlocking RhomBlock assembly.

Proof. By Lemma 3.6.6, we can associate two RhomBlock assemblies to a given lozenges

tiling. We can proceed similarly as in Theorem 3.5.7. However, since the vertical walls

of the RhomBlock come in parallel pairs, we can create interlocking chains even when

considering infinitesimal rotational motions. In order to prove that this assembly is

indeed an interlocking assembly, we consider its infinitesimal interlocking matrix A and

show that for any γ with finite support, and A · γ ≥ 0 it follows that γ = 0. This is

proven in two steps: first we show that for any such γ there is no i with (A ·γ)i > 0 and

then we show that the kernel of the matrix A is trivial. So assume that, there exists a

row index i with (A · γ)i > 0. If i is associated to a vertex of a vertical face, we can

construct an infinite chain as follows: The entry (A·γ)i > 0 corresponds to an inequality

of the form (−(p× n)⊺,−n⊺, (p× n)⊺, n⊺) · (γ′, γ) > 0 according to Definition 3.3.11. If

((p×n)⊺, n⊺) ·γ > 0 it follows that ((p×−n)⊺,−n⊺) ·γ = (((p−n)×−n)⊺,−n⊺) ·γ < 0

and thus there must be γ′′ with (((p − n) × n)⊺, n⊺) · γ′′ > 0, where p − n is a point

of the face of another block. Proceeding iteratively, we obtain an infinite chain of

moving blocks in direction −n, which is not possible as we assumed that γ has finite

support and thus (A · γ)i = 0 for any point associated to a vertical face. This already

implies that γ consists only of upward translations (otherwise a row index i with the

above would exist). If i with (A · γ)i > 0 then belongs to a tilted face, it follows

that upward translation lead to another infinite chain by chosing opposing tilted faces.

Hence, the case Aγ = 0 remains which follows from the more general Proposition in

Section 3.5.
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3.7 Evaluation Criteria for Interlocking Assemblies

When considering and comparing interlocking assemblies, two questions naturally arise:

1. Why do we consider interlocking assemblies?

2. How can we compare interlocking assemblies?

Answers to the first question, i.e. motivation and reason for considering interlocking

assemblies are listed in the literature as interlocking assemblies have several real-world

applications, see [EKA21]. For us, it suffices that we can look at these assemblies from

a pure mathematical point of view, while real-world applications provide us with a

clear conscience to do so. In this section, we focus on the second question, which is

about comparing several assemblies. Requirements on interlocking assemblies are given

by real-world applications and lead to evaluation criteria which can be applied to find

optimal interlocking assemblies. Here, are several typical requirements on interlocking

assemblies:

1. There shall be only a few types of blocks (easier manufacturing).

2. Blocks shall be “easy” to assemble (fast and efficient assembly methods).

3. Blocks can be used in various situations (modular building approach).

4. The assembly shall be tolerant to missing blocks (safety concerns).

5. Interlocking assemblies shall be “stable” (what stable means is discussed below).

The first four requirements can be formulated mathematically in various ways and can

be already implemented in the construction of interlocking blocks. For instance, the

method in Section 3.6 yields candidates satisfying the first three requirements, such

as the Versatile Block and RhomBlock. Moreover, we can construct blocks leading to

assemblies which are tolerant to missing blocks, i.e. after removing blocks the resulting

assembly is still an interlocking assembly. Additionally, we can relate this problem to

creating interlocking assemblies with identical blocks such that the number of blocks

belonging to the frame is relatively small. The fifth requirement is vague as it is not

clear what “stable” means and the same interlocking assembly could be useful in certain

real-world applications, for instance as a ceiling construction, and bad in certain other

situations, for instance as wall-construction. In this section, we focus on the following

evaluation criteria:

1. How are “forces” distributed within the assembly?

2. How to deform the assembly to remove a block?
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For this, we consider planar assemblies, i.e. interlocking assemblies which are placed

between two parallel planes. The force distribution is then modelled using flow networks

where the nodes of the network correspond to the blocks and the arcs to neighbouring

blocks which support a block from below and the cost function to the fraction the

block is supported. This model is called “interlocking flows” and is first introduced

in [Goe+23] for considerations of assembly strategies with the Versatile Block. In

the following, we start by defining the cost function for this network. We show that

the second question leads to an optimisation problem with the goal of computing an

optimal block geometry with a given surface area.

3.7.1 Projection and Cost Function on Contact Areas

In this section, we introduce a cost function for all pairwise block contacts within a

specified assembly (Xi)i∈I . We assume that all blocks within the assembly are con-

gruent to a single block X with polyhedral boundary, assembled using the action of a

wallpaper group G leading to planar assemblies. Consequently, each block, along with

its neighbours, behaves locally in the same manner. The neighbours of a block X,

supporting it from both below or above upon shifting X in direction (0, 0,±ε), yield
intersections with neighbouring blocks.

Remark 3.7.1. It suffices to consider supporting blocks only from below, as the block

X itself supports such blocks from above, and the rest follows using the action of G.

To be more specific, let X1, . . . , Xn denote the n neighbours of the block X = X0,

where n is a natural number. The intersection of X with its neighbours is given by

X ∩Xi = ∂X ∩ ∂Xi.

Example 3.7.2. When considering assemblies based on the Versatile Block, there are

exactly two blocks supporting it from below. Moreover, when considering the projection

of the respective contact areas onto the plane R2, this region is one half of the area of

the bottom square.

We aim to quantify how X is supported from below through its neighbours. To

achieve this, we associate a real number ci ∈ [0, 1] with each neighbour, satisfying∑
ci = 1.

Definition 3.7.3. Let F1, . . . , Fn be sets such that Fi ⊂ X ∩ Xi = ∂X ∩ ∂Xi is

maximal and each Fi is the union of triangles {f i
1, . . . , f

i
mi
} with non-empty area and

associated normals {ni
1, . . . , n

i
mi
} ⊂ R3 pointing towards X and n3 > 0 for all n ∈

{ni
1, . . . , n

i
mi
} ⊂ R3 such that f i

l ∩ f i
k has empty area for l ̸= k. We consider the

projection π(fj) = {(x1, x2) | x ∈ fj ⊂ R3} ⊂ R2 of the faces fj onto R2 and define a
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function c : {1, . . . , n} → R, i 7→ ci, for i ∈ {1, . . . , n} as follows:

ci =

mi∑
j=1

Area(π(f i
j))

n∑
i=1

mi∑
j=1

Area(π(f i
j))

, (3.4)

where Area(·) gives the area of a measurable set in R2.

Consider the projection of the contact area of all neighbouring blocks of X onto

a given plane. For a given block Xi neighbouring X, the quantity ci measures the

relative contact area of Xi. Thereby, ci simulates the load transferred from block X

onto Xi (see the following section).

Remark 3.7.4. For the construction of a block X together with an assembly using the

methods presented in Section 3.4, we can maximise the contact area to neighbouring

blocks A =
∑

i Area(π(Fi)) by carefully choosing the intermediate points.

Below, we see several examples of computing the cost function.

Example 3.7.5. For several examples presented in Section 3.4 and Section 3.6, we

can compute the values ci as follows:

1. Versatile Block and RhomBlock: ci =
1
2
, i = 1, 2.

2. Block based on wallpaper group of type p6 in Example 3.4.1: c1 =
4
5
, c2 =

1
5
.

3. Block based on wallpaper group of type p3 in Example 3.4.20: ci =
1
2
, i = 1, 2.

4. Block based on wallpaper group of type p4 in Example 3.4.22: ci =
1
2
, i = 1, 2.

It appears that most blocks in the previous example are not distinguishable in terms of

the values ci. However, we note that the projected contact area of the Versatile Block

equals 1
2
, whereas the projected contact area of the block given in Example 3.4.22

equals 1.

3.7.2 Interlocking Flows

In this section, we present a tool, called Interlocking Flows, which simulates how load

is distributed within a planar interlocking assembly (Xi)i∈I with a frame given by the

set J ⊂ I. This tool is based on the cost function presented in the previous section

and the concept of Directional Blocking Graphs and is first introduced in the context of

assemblies with the Versatile Block in [Goe+23], where it is shown that the predictions

obtained from the Interlocking Flow method agrees with the results of an FEM analysis.

Directional Blocking Graphs (short DBG) are a discrete tool to study interlocking

assemblies. These graphs are introduced in [Wil92; WL94] and investigated in the
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context of interlocking assemblies in [WSP18]. The nodes of a DBG correspond to the

blocks of the assembly, and the edges to the contacts of the blocks (connect two blocks

when they “support” each other). Below, we give an adapted version of the definition

of such a graph for interlocking assemblies by treating blocks that lie on the frame

differently. In order to define DBG, we first need to define when two blocks restrain

each other from moving.

Definition 3.7.6. Let (Xi)i∈I be a planar interlocking assembly with a frame given

by the set J ⊂ I. We say that a block Xi is restrained in direction d by another block

Xj if shifting the X in the direction d leads to an intersection with Xj. This means

that for i ∈ I \ J and j ∈ I, the translated block Xi − d := {x− d | x ∈ Xi} intersects
with Xj, i.e.

(Xi − d) ∩Xj ̸= ∂(Xi − d) ∩ ∂Xj.

Furthermore, we say that a block in the frame restrains itself from moving (independent

of the choice of d).

Definition 3.7.7. For d ∈ R3, the Directional Blocking Graph (short DBG), denoted

by G((Xi)i∈I , d), is defined as the directed graph with

1. nodes given by the set I and

2. arcs of the form i→ j if the block Xi is restrained by Xj in direction d for i, j ∈ I.

We use a DBG G to model how a given load is transferred onto the frame of the

underlying assembly. This is facilitated by using the cost function c defined in the

previous section, yielding a flow network where the sinks are nodes that represent the

blocks on the frame.

Example 3.7.8. We can extend the graph shown in Figure 3.45c, by introducing loops

to the outer nodes, in order to obtain such a DBG for a RhomBlock assembly.

From now on, we consider the more specific situation where d = (0, 0,−ε) for a small

positive value 0 < ε ≪ 1. In the previous section we have associated real numbers

to neighbours of blocks which can be used to define a cost function on the edges of a

DBG resulting in a flow network.

Definition 3.7.9. For an assembly (Xi)i∈I of blocks Xi ⊂ R3 with frame J ⊂ I, we

define its interlocking flow network as the following flow network:

1. The directed graph structures is given by the DBG G = G((Xi)i∈I , d) with d =

(0, 0,−ε) for a small positive value 0 < ε≪ 1;

2. Each arc a = i → j of G is labelled c(a) as follows: if i ∈ I \ J we can compute

the cost function c (Equation 3.4 in Section 3.7.1) of the block X = Xi with its

neighbouring block Xj within the assembly, and we associate the value cj to the

given arc. If i ∈ J , it follows that i = j and we give a the the value 1.
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We define the interlocking flow matrix as the matrix B ∈ RI×I with entries given by

Bij =

c (i→ j) , i→ j is an arc,

0, otherwise,

for i, j ∈ I.
The interlocking flow matrix can be viewed as a weighted adjacency matrix of a

DBG G, yielding a flow network with capacity function c. It turns out, that this matrix

is a stochastic matrix, as shown in the following lemma.

Lemma 3.7.10. The interlocking flow matrix B is a right stochastic matrix.

Proof. This follows immediately from the fact that the values c are chosen in a way

that the rows of B sum up to 1.

The following example is based on the work presented in [Goe+23] and deals with

the special case that the underlying assembly is given by copies of the Versatile Block,

see Section 3.6. It exemplifies how we can model load distribution within an assembly

with a frame given by J ⊂ I composed of Versatile Blocks. The load onto the assembly

is modelled as a vector x ∈ RI
≥0 with xj = 0, for all j ∈ J , and the distribution is based

on the interlocking flow network with interlocking matrix B defined below.

Example 3.7.11. Planar assemblies based on the Versatile Block can be classified by

Truchet tiles, as shown in Section 3.6. We assume that the set I corresponds to an

m× n grid of Truchet tiles and the set J ⊂ I of the most-outer tiles. In the following,

we identify I with the set {1, . . . , n ·m}. It follows that the interlocking flow and the

associated interlocking flow matrix can be computed as follows: the nodes correspond

to Truchet tiles and the arcs are of the form i → j for two tiles i, j which meet at

different colours, such that i is coloured white and j is coloured black. The value on

an arc a = i→ j is given as presented in Example 3.7.5, i.e.

c(a) =

1
2
, if i ̸= j,

1, if i = j.

We can interpret this model as a discretisation of load distribution in the following

way: let x ∈ RI
≥0 be a vector with xj = 0, if j ∈ J and xi ∈ R≥0 for i ∈ I \J . Thus, we

can interpret the entries of x as the applied loads in direction d on each block. Below,

x is chosen to be xi = 1 for i ∈ I \ J and xj = 0 for j ∈ J . The model of load transfer

can then be discretised by considering the matrix-vector multiplication

Bk · x

for discrete time steps k = 0, . . . , ℓ, where ℓ≫ k is chosen to be large with Bn ·x being

close to the convergence load transfer on the frame given the initial load x. Since B
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is a stochastic matrix, it follows that the sum over all entries of Bk · x equals the sum

over the entries of x, i.e.
n×m∑
i=1

(Bk · x)i =
n×m∑
i=1

xi,

which can be interpreted as a discrete version of a conservation of energy law. The

matrix vector multiplication Bk · x can be computed by exploiting the flow structure

as follows:

1. Create an n×m grid corresponding to the underlying Truchet tiling of I.

2. Fill the square corresponding to i ∈ I with the value xi (initialise vector x).

3. Add 1/2 times the value of square i ∈ I \J to square j if the white part of square

i touches the black part of square j (this corresponds to the matrix multiplication

B · x).

4. Iterate the second and third step k − 1 times with the updated squares.

(a) Truchet tiling. (b) p1 assembly with frame.

(c) p1 DBG.

0 6.43 5.93 5.32 4.61 3.81 2.92 1.98 1.00 0

6.43 0 0 0 0 0 0 0 0 0

5.93 0 0 0 0 0 0 0 0 0

5.32 0 0 0 0 0 0 0 0 0

4.61 0 0 0 0 0 0 0 0 0

3.81 0 0 0 0 0 0 0 0 0

2.92 0 0 0 0 0 0 0 0 0

1.98 0 0 0 0 0 0 0 0 0

1.00 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

(d) Bℓ · x with entries rounded to two digits
for 1≪ ℓ large.

Figure 3.46: Combinatorial Interpretation for p1 experiments.
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(a) Truchet tiling. (b) pg assembly with frame.

(c) pg DBG.

0 4.44 0 3.71 0 2.82 0 1.66 0 0

4.44 0 0 0 0 0 0 0 0 0

5.52 0 0 0 0 0 0 0 0 0

6.10 0 0 0 0 0 0 0 0 0

6.27 0 0 0 0 0 0 0 0 0

6.05 0 0 0 0 0 0 0 0 0

5.42 0 0 0 0 0 0 0 0 0

4.30 0 0 0 0 0 0 0 0 0

2.55 0 0 0 0 0 0 0 0 0

0 0 4.10 0 3.31 0 2.31 0 1.00 0

(d) Bℓ · x with entries rounded to two digits
for 1≪ ℓ large.

Figure 3.47: Combinatorial Interpretation for pg experiments.
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(a) Truchet tiling. (b) p4 assembly with frame.

(c) p4 DBG.

0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0

(d) x ∈ RI ∼= R100 ∼= R10×10.

0 1
2 0 1

2 0 1
2 0 1

2 0 0

0 1
2

1
2 1 1

2 1 1
2 1 1

2
1
2

1
2 1 1 1 1 1 1 1 1

2 0

0 1
2 1 1 1 1 1 1 1 1

2

1
2 1 1 1 1 1 1 1 1

2 0

0 1
2 1 1 1 1 1 1 1 1

2

1
2 1 1 1 1 1 1 1 1

2 0

0 1
2 1 1 1 1 1 1 1 1

2

1
2

1
2 1 1

2 1 1
2 1 1

2
1
2 0

0 0 1
2 0 1

2 0 1
2 0 1

2 0

(e) B · x.

0 2.58 0 4.38 0 4.88 0 4.16 0 0

0 0 0 0 0 0 0 0 0 2.58

4.16 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4.38

4.88 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4.88

4.38 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4.16

2.58 0 0 0 0 0 0 0 0 0

0 0 4.16 0 4.88 0 4.38 0 2.58 0

(f) Bℓ · x with entries rounded to two digits
for 1≪ ℓ large.

Figure 3.48: Combinatorial Interpretation for p4 experiments.

Indeed, modelling load distribution using interlocking flows promises to be a reliable

tool of predicting the distribution of load onto the frame, as is it consistent with the

results obtained by the FEM analysis presented in [Goe+23]. Thus, we obtain a fast

and discrete evaluation criterion which allows a fast impression how forces distribute

in order to pick candidates of numerous interlocking assemblies based on certain ap-

plications. For instance, in an 10× 10 interlocking assembly with 100 Versatile Blocks,

there are 210+10−3 = 217 = 131072 possible assemblies (up to rotation and mirroring)

using the Versatile Block, see Section 3.6, and for an initial prediction, we can evaluate

the load distributions onto the frame for all 131072 assemblies in a matter of seconds

as it only revolves around matrix-vector multiplications with relatively small matrices.
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3.7.3 Homeomorphisms and Stability

In this section, we associate a real value to an assembly, indicating how much we need

to “deform” it before it is no longer an interlocking assembly.

Definition 3.7.12. Let (Xi)i∈I be an interlocking assembly with frame J ⊂ I. Let

φ : R3 → R3 be a homeomorphism such that the family (φ(Xi))i∈I is no longer an

interlocking assembly with frame J . The deformation value DX of (X = (Xi)i∈I , J) is

then defined to be the infimum of

∥I− φ∥L2 =

∫
R3

∥x− φ(x)∥2dx

over all above φ, i.e.

DX = inf
φ : R3→R3 hom.

∥I− φ∥L2 .

This leads to the following optimisation problem:

Remark 3.7.13. Let Area(X) be the surface area of a block X and let c ∈ R>0 be

a constant positive real number. We seek to find X such that Area(X) = c and the

deformation value is as large as possible. In other words, given a surface area, the goal

is to find an interlocking block with the largest possible deformation value, i.e.

Area(X) = c, DX → sup .

For future research, one can combine this approach with the construction of inter-

locking blocks using wallpaper groups.

The following questions naturally arise:

1. What additional properties are required for φ ?

2. Can homeomorphisms be used to create new interlocking assemblies?

3. Is the L2-norm suited for the definition above?

4. Is there a discrete way to estimate the deformation number?
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Chapter 4

Doubly Periodic Landscapes

4.1 Summary

We show that for any prism with a triangular domain and any similarity type of

triangle, we can find a plane through the origin whose intersection with the prism

has the desired domain. This result can be combined with the theory of wallpaper

groups with a triangular fundamental domain to obtain a doubly periodic structure.

We demonstrate that known structures, such as the Miura-Ori pattern, can be obtained

in this way. Moreover, we can extend this construction by either using the concept of

layer groups or by acting on several triangles at once.

4.2 Introduction

Thirteen of the seventeen types of wallpaper groups can have a triangle as a fundamen-

tal domain. Given such a triangle F which is the fundamental domain of a wallpaper

group G, we can describe F by three points in the xy-plane P0, P1, P2, we consider

the set C := F + ⟨e3⟩, where e3 = (0, 0, 1)⊺. We show in Theorem 4.3.1, that for any

given triple of angles (α, β, γ) of an equivalence type of triangles, there exists a plane

P through the point P0 such that T := P ∩ (F + ⟨e3⟩) forms a triangle with angles

(α, β, γ).

Next, we can “lift” the natural group action of G such that G acts on R3 and thus

on the newly created triangle T . The orbit of T under the action of G yields an infinite

doubly-periodic embedded simplicial surface in 3D space such that the projection onto

the xy-plane is again a wallpaper pattern.

As an extension, we consider the intersections of C with multiple planes and in this

way we can find doubly-periodic surfaces with self-intersecting faces. These constructed

surfaces can be then applied, for instance, as candidates for shell structures in civil

engineering, see [Vak+22].
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4.3 Column Plane Cut Theorem

The following theorem is formulated using the terminology of projections. Instead, we

can also view it as framed in the introduction, i.e. cutting a prism with a plane.

Theorem 4.3.1. Suppose F is a triangle determined by three points Pi ∈ R2, where we

identify Pi with its image under the map R2 → R3, (p1, p2) 7→ (p1, p2, 0). Then for all

α, β ∈ (0, π) with α + β < π, there exist t, r ∈ R such that the triangle T given by the

points P̃0 = P0, P̃1 = P1 + (0, 0, t), P̃2 = P2 + (0, 0, r) has inner angles α, β, π − α− β.

Proof. We show the statement with the following steps:

(1) Show that, we can assume that P0 = (0, 0, 0)⊺, P1 = (1, 0, 0)⊺, P2 = (y1, y2, 0)
⊺ for

some y1, y2 ∈ R.

(2) Show that, we can assume α ∈ (0, π
2
).

(3) Show that, we can write t as an expression in r and cos(α) and P2.

(4) Show that, all possible values for β ∈ (0, π − α) are achieved for a fixed α using

the intermediate value theorem.

Without loss of generality, we can assume that the base triangle is given by three points

of the form P0 = (0, 0, 0)⊺ , P1 = (1, 0, 0)⊺ and P2 = (y1, y2, 0)
⊺. This can be done by

applying a suitable affine transformation given by a scalar a ∈ R>0, an orthogonal

matrix R and a translation t, i.e. translate P0 into the origin and rotate and scale

P1 into the point as given above. Such transformations map triangles onto triangles

with same angles, and thus we can continue with the points as above, see (1). Since

γ = π − α − β > 0, it follows that either γ, α, β lies inside the interval (0, π
2
). Thus,

we can assume (2). Now, for t, r ∈ R denote the side lengths of the triangle given by

the points P̃i by a, b, c such that a = ∥P̃1 − P̃2∥2, b = ∥P̃2 − P̃0∥2, c = ∥P̃0 − P̃1∥2. We

compute

a =

√
(y1 − 1)2 + y22 + (r − t)2 =

√
y21 − 2y1 + 1 + y22 + r2 − 2rt+ t2,

b =
√
y21 + y22 + r2,

c =
√
1 + t2.

Then by the cosine law, it follows that the inner angles of the triangle given by the
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points P̃i are given by

cosα =
b2 + c2 − a2

2bc
=
y21 + y22 + r2 + 1 + t2 − (y21 − 2y1 + 1 + y22 + r2 − 2rt+ t2)

2
√
1 + t2

√
y21 + y22 + r2

,

cos β =
a2 + c2 − b2

2ac
=
y21 − 2y1 + 1 + y22 + r2 − 2rt+ t2 + 1 + t2 − (y21 + y22 + r2)

2
√
1 + t2

√
(y1 − 1)2 + y22 + (r − t)2

,

cos γ =
a2 + b2 − c2

2ab
=
y21 − 2y1 + 1 + y22 + r2 − 2rt+ t2 + y21 + y22 + r2 − (1 + t2)

2
√
y21 + y22 + r2

√
(y1 − 1)2 + y22 + (r − t)2

.

This simplifies to

cosα =
y1 + rt

√
1 + t2

√
y21 + y22 + r2

,

cos β =
−y1 +−rt+ t2

√
1 + t2

√
(y1 − 1)2 + y22 + (r − t)2

,

cos γ =
y21 − y1 + y22 + r2 − rt√

y21 + y22 + r2
√

(y1 − 1)2 + y22 + (r − t)2
.

The first equality implies (later, we see that we can assume that both sides are non-

negative for certain values of t, r and thus also equivalence holds)

cos2 α =
(y1 + tr)2

(1 + t2) (y21 + y22 + r2)
,

this expression is quadratic in t and is equivalent to

0 = cos2 α
(
1 + t2

) (
y21 + y22 + r2

)
− (y1 + tr)2

=
(
cos2 α

(
y21 + y22 + r2

)
− r2

)
t2 + (−2y1r) t+

(
cos2 α

(
y21 + y22 + r2

)
− y21

)
.

Solving this quadratic equation for t yields

t =
1

D

(
y1r ±

√
y21r

2 −DC
)
,

where D = cos2 α (y21 + y22 + r2)−r2, C = cos2 α (y21 + y22 + r2)−y21. Thus, we obtained
an expression for t dependent only on cosα, r and y1, y2. In the following, we only

consider the expression

t =
1

D

(
y1r +

√
y21r

2 −DC
)
,

and show that all possible values for cos β can be achieved by appropriate choices of

r. This expression is well-defined and continuous in r unless D = 0 or y21r
2 −DC < 0.
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We have D = 0 if and only if

|r| =

√
cos2 α (y21 + y22)

1− cos2 α

and y21r
2 −DC < 0 if and only if

|r| <

√
cos2 α (y22 + y21)− y21

1− cos2 α
<

√
cos2 α (y21 + y22)

1− cos2 α
.

Moreover, if cos2 α (y22 + y21) < y21 then the discriminant is always non-negative. Thus,

we have that the expression of t above is defined in the intervals−∞,−
√

cos2 α (y21 + y22)

1− cos2 α

 ,

(
−

√
cos2 α (y21 + y22)

1− cos2 α
,−

√
cos2 α (y22 + y21)− y21

1− cos2 α

]
,

[√
cos2 α (y22 + y21)− y21

1− cos2 α
,

√
cos2 α (y21 + y22)

1− cos2 α

)
,√cos2 α (y21 + y22)

1− cos2 α
,∞

 .

We want to understand the values of cos β on the intervals above, where we view

cos β as a function of r, using the expression of t. Now, we can compute the following

limit

lim
r→±∞

cos β = lim
r→±∞

∓
y1−1
r

+ t
(
1− t

r

)
√
1 + t2 ·

√
(y1−1)2+y22

r2
+
(
1− t

r

)2
= ∓

√
cos2 α−cos4 α
cos2 α−1√

1 +
(√

cos2 α−cos4 α
cos2 α−1

)2
= ± cosα.

Moreover, we see that the values of cos β agree on r = ±
√

cos2 α(y22+y21)−y21
1−cos2 α

. It remains

to check the limits of cos β for r → ±
√

cos2 α(y21+y22)
1−cos2 α

. Since both the nominator and

denominator of t vanish for r → −sgn(y1)
√

cos2 α(y21+y22)
1−cos2 α

we can use L’Hospital rules to

show that the limit exists in R and thus extend cos β as a function in r continuously.
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Additionally, we compute

lim

r→sgn(y1)

√
cos2 α(y21+y22)

1−cos2 α

cos β = 1.

Putting everything together, it follows that cos β is continuous on the intervals and by

the intermediate value theorem it follows that cos β achieves all values in the interval

(− cosα, 1) (we assumed cosα > 0 in the beginning). Since cos : [0, π] → [−1, 1] is
bijective and strongly decreasing, it follows that possible values for β are exactly given

by the interval (0, π−α) using the fact − cosα = cos (π − α). It remains to show that

the expression of cosα is positive on a region, where cos β achieves all possible values.

In terms of the expression of cosα, we have

cosα > 0 if and only if y1 + rt > 0,

where we assume the expression t = 1
D

(
y1r +

√
y21r

2 −DC
)
. For this, we distinguish

between the two cases y1 < 0 and y1 ≥ 0 and show that for y1 < 0, we have that

cosα > 0 holds on

(
−∞,−

√
cos2 α(y21+y22)

1−cos2 α

)
and for y1 ≥ 0 we have that cosα > 0

holds on the intervals

(
−∞,−

√
cos2 α(y21+y22)

1−cos2 α

)
,

(
−
√

cos2 α(y21+y22)
1−cos2 α

,−
√

cos2 α(y22+y21)−y21
1−cos2 α

]
and

[√
cos2 α(y22+y21)−y21

1−cos2 α
,

√
cos2 α(y21+y22)

1−cos2 α

)
. By the computations above, cos β achieves all

values in (− cosα, 1) in both cases. In the case y1 < 0, we have

0 <y1 + t · r

=
Dy1 + y1r

2 + r
√
y21r

2 −DC
D

,

which is equivalent to the expression below, obtained by multiplying with 0 < −D

0 <−Dy1 +−y1r2 − r
√
y21r

2 −DC

= y1r
2 − cos2 α

(
y21 + y22 + r2

)
y1 − y1r2 − r

√
y21r

2 −DC

= − cos2 α
(
y21 + y22 + r2

)
y1︸ ︷︷ ︸

≥0

−r
√
y21r

2 −DC︸ ︷︷ ︸
>0

on

(
−∞,−

√
cos2 α(y21+y22)

1−cos2 α

)
for sgn(y1) = −1.

In case y1 ≥ 0, we have to consider all other intervals. On

(
−∞,−

√
cos2 α(y21+y22)

1−cos2 α

)
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we have

0 <y1 + t · r

=
Dy1 + y1r

2 + r
√
y21r

2 −DC
D

=
cos2 α (y21 + y22 + r2) y1 + r

√
y21r

2 −DC
D

multiply with 0 < −D yields

0 <−Dy1 +−y1r2 − r
√
y21r

2 −DC

= y1r
2 − cos2 α

(
y21 + y22 + r2

)
y1 − y1r2 − r

√
y21r

2 −DC

= − cos2 α
(
y21 + y22 + r2

)
y1−r

√
y21r

2 −DC︸ ︷︷ ︸
≥0

and this holds if and only if

0 < cos2 α
(
y21 + y22 + r2

)
y1 < −r

√
y21r

2 −DC

⇔
(
cos2 α

(
y21 + y22 + r2

)
y1
)2
< r2 cos2 α

(
y21 + y22 + r2

) (
r2 + y21 − cos2 α

(
y21 + y22 + r2

))
⇔ cos4 α

(
y21 + y22 + r2

)2 (
y21 + r2

)
< r2 cos2 α

(
r2 + y21

) (
y21 + y22 + r2

)
⇔0 < r2 − cos2 α

(
y21 + y22 + r2

)
= −D

which holds true on the interval. Now for the remaining intervals we have D > 0

and thus

0 < cos2 α
(
y21 + y22 + r2

)
y1 + r

√
y21r

2 −DC

this clearly holds on

[√
cos2 α(y22+y21)−y21

1−cos2 α
,

√
cos2 α(y21+y22)

1−cos2 α

)
since both summands are non-

negative so it remains to consider

(
−
√

cos2 α(y21+y22)
1−cos2 α

,−
√

cos2 α(y22+y21)−y21
1−cos2 α

]
. Analogously

to the computation above, we have (using that D > 0 on this interval):

0 < cos2 α
(
y21 + y22 + r2

)
y1 + r

√
y21r

2 −DC

holds if and only if

0 < −r
√
y21r

2 −DC < cos2 α
(
y21 + y22 + r2

)
y1

which holds for 0 < D. In summary, we have shown for any possible value y1, and

given α, β with 0 < α < π
2
and 0 < α+ β < π we can find t, r the triangle given by the

points P̃0 = P0, P̃1 = P1 + (0, 0, t), P̃2 = P2 + (0, 0, r) has inner angles α, β, π − α− β.
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(a)

α

β

P0 = P̃0

P1

P2

P̃1

P̃2

(b)

Figure 4.1: We consider a column with base triangle F given by the points P0 =
(0, 0, 0)⊺, P1 = (1, 0, 0)⊺, P2 = (0.5,

√
3/2, 0)⊺ if T is a triangle projecting onto F with

points P̃0 = (0, 0, 0)⊺, P̃1 = (1, 0, t)⊺, P̃2 = (0.5,
√
3/2, r)⊺ such that the angle at P̃0 is

α = π
4
. (a) The angle β at P̃2 can be written as a function, depending on r if choosing

t such that we always have the angle α at P̃0. (b) Choosing α = β, we can compute
t =
√
2 and r = 1√

2
.

Example 4.3.2. We consider an equilateral triangle F with unit side lengths given

by the points P0 = (0, 0, 0)⊺, P1 = (1, 0, 0)⊺, P2 = (1/2,
√
3/2, 0)⊺. We want to find a

triangle T that projects onto F with inner angle α = π
4
. By Theorem 4.3.1, we know

that we can obtain such a triangle with angles α = π
4
, β, γ with points of the form

P̃0 = (0, 0, 0)⊺, P̃1 = (1, 0, t)⊺, P̃2 = (1/2,
√
3/2, r)⊺. Both t and cos β can be written as

terms dependent only on r, i.e.

t =
1

D

(
1

2
r +

√
1

4
r2 −DC

)
,

where D = 1
2
(1 + r2)− r2, C = 1

2
(1 + r2)− 1

4
since cosα = cos π

4
= 1√

2
. Now,

cos β =
−y1 +−rt+ t2

√
1 + t2

√
(y1 − 1)2 + y22 + (r − t)2

,

with y1 = 1/2 and y2 =
√
3/2 and we can plot the possible values of cos β depending

on the values of r by using the expression of t above, see Figure 4.1. For instance, we

find that a triangle with angles α, β = α, π/2 can be found using the values

r = ±

√
cos2 α (y22 + y21)− y21

1− cos2 α
= ± 1√

2

and compute t based on this. Since the base triangle F is equilateral, we can even
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exchange values for r and t. For instance, in Figure 4.1 we see the resulting triangle

for t =
√
2 and r = 1√

2
.

4.4 Doubly Periodic Landscapes

We consider a planar crystallographic group G with a fundamental domain F for G

such that F is a triangle, i.e. the convex hull of three points in R2. Using the Hermann-

Mauguin notation, also known as international notation (see [IUC02]), this is possible

for the following types of wallpaper groups: p2, pg, cm, p2mg, p2gg, c2mm, p4, p4mm,

p4gm, p3m1, p31m, p6, p6mm. We use the construction presented in the previous

section to obtain a triangle T in R3 such that the projection of T onto R2 equals F .

Next, the idea is to extend the action of G onto R in order to act on T , with the aim

of obtaining a doubly periodic surface.

(a)

(b)

Figure 4.2: Example construction based on the wallpaper group of type p3m1.

Example 4.4.1. Consider the triangle constructed in Example 4.3.2. We can use

reflections at each side of the prism to obtain the doubly periodic landscape depicted

in Figure 4.2. This corresponds to considering the wallpaper group of type p3m1 which

has an equilateral triangle as a fundamental domain and is generated by reflections

along each edge.

However, in some cases, i.e. p2, pg, p2mg, p2gg, c2mm, p4 and p6, we have that

for the corresponding triangles one of the following is true

1. a point lies on an edge other than a vertex is fixed under the action of the

underlying group is fixed or

2. a point is obtained by the vertices of another triangle in the tessellation given

the domain F .

Hence, in these cases the domain F can rather be understood as a quadrilateral with

one inner angle being equal to 180 degrees.

So we first restrict our attention to groups of type cm, p4mm, p4gm, p3m1, p31m

or p6mm, and consider a fundamental domain F in the shape of a triangle.
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In order to understand how to extend the action of G, we first investigate the edges

of the underlying triangular fundamental domains and distinguish between mirror and

rotation edges.

Mirror Edges If all edges are mirror edges, we can simply extend the action of G

by using the following map and understand G as a subgroup of SE(2)

SE(2)→ SE(3),

(
R t

0 1

)
7→

R 0 t

0 1 0

0 0 1

 .

Similarly, we can embed the other groups into SE(3) to obtain doubly periodic surfaces

with the additional requirement that rotations map edges to edges.

Rotation Edges If we are in the case that a point fixed under the action of G lies on

an edge it follows that there exists a 180-degree rotation in G around this point. Since

rotating a triangle T with points in R3 in this way does not necessarily map edges to

edges as long as both points of the rotation do not share the same third coordinate, we

need to extend the corresponding group element in a way different to the one above.

One idea is to rotate along the corresponding point in T in the plane containing T .

A question that naturally arise in these cases is: What does this do to the projection?

Lemma 4.4.2. Let T be a triangle in R3 and p ∈ R3 a midpoint of one of the edges of

T . Then we can compute the rotation of T by 180 degrees around p in the plane given

by T and project it on P0. It follows that the projection is the rotated projection of T

along the projected point p.

Proof. Let R ∈ R3×3 a rotation matrix and t ∈ R3 such that R(T ) + t is a triangle in

the plane. Then the rotation around p by 180 degrees can be written as

R−1R180R(T − p) + p = −(T − p) + p = −T + 2p,

where R180 is just the scalar matrix −I. We can assume that T is defined by points

A,B,C and p = A+B
2

. Then it follows that the triangle rotated around the point p by

180 degrees has the points

−(A− p) + p = B,−(B − p) + p = A,−(C − p) + p = −C + A+B.

When projected onto {(x, y, 0) | x, y ∈ R} this triangle is exactly the rotation of the

projection π(T ) around the points π(p) by 180 degrees.

Other type of rotations as present in the groups of type p4, p6 can be extended to

elements of E(3) in the same way as we have extended mirror symmetries. However, in
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this case, we need to put the additional restriction on T that edges are again mapped

onto each after repeatedly acting with the rotation. It follows that T has to be an

isosceles triangle.

Hence, we can put the extensions above together to embed G into E(3) given a

triangle T .

Proposition 4.4.3. Let G be a planar crystallographic group with fundamental domain

F in the shape of a triangle. If T is a triangle in R3 that projects onto F , we can extend

the action of G onto R3 such that we obtain a doubly periodic surface when acting on

T .

Figure 4.3: Fundamental domain for wallpaper group of type p2mg. The red edge is a
mirror edge and the blue and green edges are rotation edges.

In the following example, we illustrate that we can obtain the famous Miura-Ori

pattern, named after its inventor Koryo Miura [Miu85], using our presented methods.

Example 4.4.4 (Miura-Ori). We consider the planar crystallographic group G of type

p2mg which has a triangular fundamental domain with one mirror edge and two rota-

tion edges. A group presentation is given by

⟨a, b, c | a2, b2, c2, abcacb⟩,

see [NPR24; IUC02]. We use the following action: a mirrors, b rotates around the point

of its middle edge as in Lemma 4.4.2 and c rotates 180 degrees (also see Figure 4.3).

Then we can find a triangle such that the projection yields a fundamental domain for

G and the edge corresponding to c is parallel to the projection plane. The resulting

pattern yields an example of a Miura-Ori pattern and is foldable. In fact, allMiura-Ori

patterns can be obtained in this way.

4.5 Generalisations and Outlook

There are two immediate ways of generalising the construction given in the previous

section:

1. Use more than one triangle.

2. Extend the group action in order to obtain a larger structure.
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The first option can be used to construct so-called self-intersecting surfaces by choosing

self-intersecting triangles with the same projection. In the following chapter, we see

that we can obtain a retriangulation such that we no longer have self-intersecting faces,

i.e. faces only intersect at common edges or vertices. The second option can be linked to

the so-called layer groups (see [KL02]) which are doubly periodic subgroups of three-

dimensional crystallographic space groups. There are exactly 80 layer groups, and

those of interest arise exactly as group extensions of the wallpaper groups considered

in the previous section. In Figure 4.4, we see how to generalise the construction given

in Figure 4.2.

(a) (b) (c)

Figure 4.4: Generalising the construction.
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Chapter 5

3D Printing of Self-Intersecting

Surfaces

5.1 Summary

3D printing of surfaces has become an established method for prototyping and visuali-

sation. However, surfaces often contain certain degenerations, such as self-intersecting

faces or non-manifold parts, which pose problems in obtaining a 3D printable file.

Therefore, it is necessary to examine these degenerations beforehand.

Surfaces in three-dimensional space can be represented as embedded simplicial com-

plexes describing a triangulation of the surface. We use this combinatorial description,

and the notion of embedded simplicial surfaces (which can be understood as well-

behaved surfaces) to give a framework for obtaining 3D printable files. This provides

a new perspective on self-intersecting triangulated surfaces in three-dimensional space.

Our method first retriangulates a surface using a minimal number of triangles, then

computes its outer hull, and finally treats non-manifold parts. To this end, we prove

an initialisation criterion for the computation of the outer hull. We also show how

symmetry properties can be used to simplify computations. Implementations of the

proposed algorithms are given in the computer algebra system GAP4. To verify our

methods, we use a dataset of self-intersecting symmetric icosahedra. Exploiting the

symmetry of the underlying embedded complex leads to a notable speed-up and en-

hanced numerical robustness when computing a retriangulation, compared to methods

that do not take advantage of symmetry.

This chapter is based on research originally published at [AG24a]. We make code available at
[AG24b].
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5.2 Introduction

Triangulated surfaces in three-dimensional space are an essential tool in 3D printing

and in geometric modelling. These surfaces are usually described by their incidence

structure, consisting of vertices, edges and faces and coordinates for each vertex. For

applications like 3D printing, certain regularity properties are often assumed, such as

the absence of self-intersecting faces or non-manifold parts, as these lead to artefacts

in the printed models. These degenerations frequently appear in surfaces, and it is

thus necessary to treat them before obtaining a 3D printable file. In this context, non-

manifold parts are either non-manifold edges that are incident to more than two faces

or non-manifold vertices, where the incident faces cannot be ordered in a connected

face-edge path. Non-manifold edges in particular cause parts to be disconnected when

printing. For instance, when identifying two cubes at an edge, we obtain a surface with

a non-manifold edge as shown in Figure 5.1a. Common slicer software that prepares

a file for 3D printing often neglects these edges, leading to 3D printed cubes that no

longer share a common edge. Self-intersecting faces yield another problem, as they

hinder the computation of the outer-hull, which is necessary to determine a printing

path. This is because inner parts of the model are usually disregarded in the printing

process. In Figure 5.1b an example of this with two intersecting cubes is shown.

(a) (b)

Figure 5.1: (a) Identifying two cubes at an edge leads to a non-manifold edge. In 3D
printing applications, this edge is often neglected, leading to two separated cubes. (b)
Two intersecting cubes are shown together with a view of its interior. The interior part
can be omitted by reduction to the outer-hull.

In order to obtain 3D printable files that can be realised as models depicting the key

features of the original surface, it is necessary to address the aforementioned problems.

In Figure 5.2, two modified versions of these cubes are shown that are geometrically

as close as possible (for instance using the Hausdorff distance) such that 3D printed

copies do not display artefacts. Additionally, the underlying surface is well-behaved in

the context above, i.e. does not possess self-intersections or non-manifold parts.
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(a) (b)

Figure 5.2: (a) We can modify the two cubes in Figure 5.1a by operations replacing
the part containing the non-manifold edge. When 3D printing the adapted surface,
the two cubes are connected. (b) For 3D printing applications, only the outer-hull is
printed. Thus, we obtain a modified surface by neglecting inner parts.

In this chapter, we address these challenges by introducing a framework that mod-

ifies surfaces to obtain 3D printable files. To this end, we first introduce the notion of

(embedded) simplicial surfaces in Section 5.3, which are triangulated surfaces without

non-manifold parts. This notion is based on the work presented in [Bra+17; NPR24].

Next, we describe our method, which starts with a triangulated surface, containing self-

intersections or non-manifold parts and yields an embedded simplicial surface. Here,

we focus on methods allowing the exploitation of symmetries of the model, leading to

a robust way of detecting and rectifying self-intersections, see Section 5.6. The guiding

examples we consider in this work are the 35 symmetric icosahedra of edge length 1

classified in [Bra+20].

Our approach proceeds as follows:

1. Compute all self-intersections of the model in Section 5.4.

2. Retriangulate the original faces such that the resulting complex has no self-

intersections in Section 5.5.

3. Compute the outer hull, chambers and correctly (outward) oriented normals of

the retriangulated complex in Section 5.7.

4. Remedy non-manifold parts in Section 5.8.

Note that the order in which these steps are performed is essential for our approach:

for the outer hull, all self-intersections have to be removed, and for tackling non-

manifold parts, one needs to reduce to the outer hull with outward oriented normals.

More details on this can be found in the respective sections. In the following, we

highlight steps 1.-3. with the great icosahedron. In this case, step 4 is not necessary,

as no non-manifold parts are present.

The implementation of our methods in GAP4 [GAP] are available in our GAP4

package [AG24b].
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The Great Icosahedron A prominent example of a self-intersecting polyhedron is

the great icosahedron, shown in Figure 5.3. The great icosahedron is a non-convex reg-

ular polyhedron with icosahedral symmetry and part of the Kepler-Poinsot polyhedra,

see [Cox+82]. Like the regular icosahedron, a Platonic solid, it has 20 faces, 30 edges

and 12 vertices and thus Euler characteristic 2. Moreover, it is invariant under the full

icosahedral group of order 120. However, it has many self-intersections: each of the 20

faces intersects with 15 faces non-trivially. For processing this surface for applications

like 3D printing or meshing, it is natural to ask how the symmetry of the given surface

can be exploited to simplify our preprocessing. Specifically, we can investigate how

symmetry simplifies the computation of the outer hull or that of a retriangulation. For

the computation of a new triangulation that corresponds to the embedding of the great

icosahedron in R3, we can proceed as follows: we note that each face can be mapped

to any other face by at least one of the 120 symmetries, i.e. the symmetry group acts

transitively on the faces. It follows that it suffices to first retriangulate one face, and

in a second step transfer this retriangulation to the entire surface. Similarly, we can

use the symmetry group when computing self-intersections of face pairs. Without the

use of symmetry, one would need to consider all
(
20
2

)
= 190 face pairs when searching

for self-intersections. In the case of the great icosahedron, symmetry group acting on

pairs of faces has 5 orbits, meaning it suffices to consider 5 face pairs instead of all

190 to compute all self-intersections. Using an algorithm that guarantees to consider a

minimal number of triangles, see Section 5.5, we retriangulate one triangle, and trans-

fer this triangulation to all other triangles. This is shown in Figure 5.4. Next, we can

compute the outer hull to obtain a surface with 180 faces, 92 vertices and 270 edges

with icosahedral symmetry.

(a) (b) (c)

Figure 5.3: (a) The great icosahedron has 12 embedded vertices, 30 edges and 20 faces,
and the same incidence structure as the regular icosahedron (a Platonic solid). (b,c)
Each of the 20 faces intersects with 15 faces non-trivially, and we can compute the
intersections of all face pairs by only considering one face (face in red) and in a next
step use the symmetry group to compute the remaining intersections.

To be more specific, we can choose the coordinates of the vertices of the great
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icosahedron in such a way that all edge lengths are of unit length:

v1(
0,

1

2φ
,
1

2

)
,

v2(
0,

1

2φ
,−1

2

)
,

v3(
− 1

2φ
,−1

2
, 0

)
,

v4(
1

2φ
,−1

2
, 0

)
,

v5(
−1

2
, 0,− 1

2φ

)
,

v6(
1

2
, 0,− 1

2φ

)
,

v7(
1

2
, 0,

1

2φ

)
,

v8(
−1

2
, 0,

1

2φ

)
,

v9(
1

2φ
,
1

2
, 0

)
,

v10(
0,− 1

2φ
,
1

2

)
,

v11(
− 1

2φ
,
1

2
, 0

)
,

v12(
0,− 1

2φ
,−1

2

)
,

where φ = 1+
√
5

2
is the golden ratio. The vertices of the faces are then given by the

following list:

[v1, v2, v3] , [v1, v2, v4] , [v1, v4, v5] , [v1, v5, v6] , [v1, v3, v6] , [v2, v3, v7] ,

[v2, v4, v8] , [v4, v5, v9] , [v5, v6, v10] , [v3, v6, v11] , [v2, v7, v8] , [v4, v8, v9] ,

[v5, v9, v10] , [v6, v10, v11] , [v3, v7, v11] , [v7, v8, v12] , [v8, v9, v12] , [v9, v10, v12] ,

[v10, v11, v12] , [v7, v11, v12] .

For 3D printing purposes and other applications, it is essential to disregard inner

parts of a model by computing the outer-hull. In order to tackle this algorithmically, we

first identify all intersecting face pairs and disregard their parts that lie in the interior.

In Figure 5.4, we see the steps that are performed to compute the intersection of the

face marked in red in Figure 5.3.

We observe that the symmetry group of the great icosahedron is isomorphic to the

full icosahedral group which itself is isomorphic to C2 × A5 (a direct product of the

cyclic group of order 2 with the alternating group of order 5) and can be generated by

the following three reflection matrices−1 0 0

0 1 0

0 0 1

 ,


φ
2

−0.5 1
2φ

−0.5 − 1
2φ

φ
2

1
2φ

φ
2

0.5

 ,

1 0 0

0 1 0

0 0 −1

 .

As mentioned above, this group acts transitively on the faces. Thus, we can reduce

the number of face pair intersections that need to be considered, as the stabiliser of a

single face is isomorphic to a symmetry group of an equilateral triangle. This implies

that we can compute all intersections using only one face, which is shown in Figure

5.4.
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(a) (b) (c) (d)

Figure 5.4: (a) Intersections of one face of the great icosahedron with other faces up
to symmetry. (b) The stellation diagram of a face of the great icosahedron, showing
lines where other face planes intersect with this one [Cox+82], can be obtained from
(a) by rotations and reflections. (c) Computing all intersection points of intersection
within the face. (d) Triangulating non-triangle parts, yielding a simplicial disc. This
retriangulation can be carried over to all 20 faces of the great icosahedron using its
symmetry group in order to obtain a surface without self-intersections.

For understanding the internal structure, we have to find the chambers of the great

icosahedron given by the connected components of the following set

R3 \
⋃
f∈F

conv(f),

where conv(f) is the convex hull of the vertices defining f , see Definition 5.3.5. In

Figure 5.5, we show an exploded view of the 413 internal chambers of the great icosa-

hedron obtained using the retriangulation as described above. Each chamber is shifted

away from the centre with the same magnitude: let p ∈ R3 be the centre of the great

icosahedron and for a given chamber C with centre c ∈ R3, we shift the chamber C

using the translation m · (c− p) with magnitude m ∈ R>0.

(a) m = 1 (b) m = 2 (c) m = 4

Figure 5.5: Exploded views of the 413 internal chambers of the great icosahedron with
different magnitudes m.

The centre chamber of the great icosahedron with edge lengths 1 is given by the

regular icosahedron with faces corresponding to the central equilateral triangle of the
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stellation diagram in Figure 5.4 with edge lengths(
2

7 + 3
√
5

)
≈ 0.145898.

In fact, all but one (final stellation) of the 59 icosahedra presented in [Cox+82] can

be obtained by taking a subset of the chambers that is invariant under the icosahedral

group.

In this work, we mainly focus on another class of icosahedra, classified in [Bra+20],

which contain all icosahedra that are combinatorially equivalent to the regular icosahe-

dron, carry a non-trivial symmetry and have edge length 1. There are exactly 35 such

icosahedra, of which 33 possess self-intersections, and the regular icosahedron and the

great icosahedron are also among them.

Related Work Self-intersections and non-manifold parts of models are very active

fields of research. This is because of the obstructions they cause in many fields, such as

meshing, scanning of 3D models, and 3D printing [Att18; Chu+19; WLG03; ZHY19].

In [Att18], an algorithm, along with an initialization criterion, to compute the outer

hull of a complex is presented. In [ZHY19], a robust method is described to rectify

self-intersections of a complex using a subdivision based on Delaunay triangulation

with certain constraints to retriangulate the initial complex.

Focusing on self-intersections in triangulated complexes, there are several approaches

for finding all self-intersections or testing whether two given triangles intersect, for

instance [MG22; Möl97]. Also, see [Ska23] for a recent review on algorithms for the

detection of self-intersections. Repairing and retriangulation methods can be found in

[Att14] for a direct approach, which is also suitable for the computation of outer hulls,

[LB18] for a method using immersion techniques and [YS09] for a method employing

edge swap techniques. In [CK10], a method is presented to change the topology of a

polygonal mesh that combines an adaptive octree with nested binary space partitions

(BSP), i.e. subdivisions of a Euclidean space into convex sets using hyperplanes as

partitions. Alternative methods on remedying non-manifold parts can be found in

[DPH09; RC99; WLG03]. Another similar direction is the treatment of meshes and

their repair, as done in [Chu+19]. As an input to our model, we use the symmetries of

a given complex, which leads to simplification and speed up the algorithms. Of course,

this is an idea that can be applied to different settings, such as in model segmentation

in [GF09]. In conjunction with the ideas we present, one can consider detection of

symmetries in surfaces, as in [BBS23; Li+16].
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5.3 Embedded Simplicial Surfaces

In this section, we introduce the main terminology used in this work with a focus on

embedded simplicial surfaces, which yield well-behaved triangulations in the context of

meshing and 3D printing applications. We start by giving a definition of a version of

simplicial complexes adapted to a triangular surface, motivated by the combinatorial

theory of simplicial surfaces, see [Bau20; NPR24]. In the literature, an (abstract)

simplicial complex X is commonly defined as a subset X ⊂ P(V ) = {∅ ≠ A ⊂ V }
where V is a set, and we have that for all t ∈ X and for all ∅ ≠ x ⊂ t it follows

that x ∈ X. In the context of this chapter, we restrict ourselves to the case where the

maximal elements of X are sets of size 3 and the elements of X fulfil further conditions

which are natural in the context of triangulations.

Definition 5.3.1 (Simplicial Complex). Let V be a finite set. A (closed) simplicial

complex X with vertices V is a subset of P3(V ) = {A ⊂ V : |A| ≤ 3} such that the

following conditions hold.

(i) For all v ∈ V , {v} ∈ X. Additionally, ∅ ̸∈ X.

(ii) For all t ∈ X and ∅ ≠ x ⊂ t, it follows that x ∈ X.

(iii) For each t ∈ X with |t| < 3, there exists t′ ∈ X with t ⊂ t′ and |t′| > |t| .

(iv) For each f ∈ X with |f | = 3 and any v1, v2 ∈ f , we can find f ′ ̸= f such that

v1, v2 ∈ f ′.

We call the three-element sets in X the faces or triangles, the two-element sets in X

the edges and the one-element sets in X the vertices. The faces, edges and vertices

are denoted by X2, X1 and X0, respectively. We also say a vertex v ∈ X is incident

to an edge e ∈ X if v ⊂ e, and an edge e ∈ X is incident to a face f ∈ X if e ⊂ f .

Additionally, a vertex v ∈ X is incident to a face f ∈ X if v ⊂ f . Since we do not

consider complexes other than simplicial ones, we sometimes omit the word simplicial

in the following.

The conditions in the definition above all correlate to natural assumptions for a

simplicial complex consisting of triangles. For example, since we consider P3(V ), the

faces are triangles. The conditions (i)-(iv) in the definition above are interpreted as

follows:

(i) ensures that the vertex set, on which a complex is built, is part of the complex.

(ii) implies that if we take a face or edge, its parts are also included in the description

of the complex.

(iii) enforces that each vertex is part of an edge and each edge is part of a face.
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(iv) forces the surface to be closed, thus every edge has to be incident to at least two

faces.

In summary, we observe that a simplicial complex X is uniquely determined by the

incident vertices of its faces.

We give the following definition of faces associated to a given vertex.

Definition 5.3.2. Let X be a simplicial complex and take a vertex v of X. Define

the faces incident to v to be the set X2(v) := {f ∈ X : v ∈ f and |f | = 3}.
A more regular object is a (closed) vertex-faithful simplicial surface, see Definition

1.2.1, which enforces further properties compared to a simplicial complex, which cor-

responds to the absence of non-manifold parts. For example, the condition that each

edge is incident to exactly two faces directly corresponds to no non-manifold edges

being present in a given complex. Moreover, vertices in a simplicial complex that do

not fulfil the umbrella condition are called non-manifold vertices (see also Section 5.8

for this).

In Figure 5.6, we see several distinct embeddings of the same underlying simplicial

surface.

(a) (b) (c) (d)

Figure 5.6: One simplicial surface (icosahedron) with distinct embeddings of unit edge
length [Bra+20]: (a) platonic solid, (b) the great icosahedron, (c) icosahedron3,1, (d)
icosahedron3,2 (notation given in [Bra+]).

Remark 5.3.3. The map ϕ in Definition 1.2.7 can be represented as a list with |V |
entries in R3, or alternatively as a matrix in R|V |×3. Thus, one can switch from the

combinatorial structure of an embedded simplicial complex to one used in applica-

tion, such as a coordinate representation or an STL file. Here, it suffices to store the

embedding data suitably, for example, via a list of lists.

An orientation of a simplicial surface, see Definition 1.2.6, can be used to associate

a normal vector to each face of an orientable surface.

Remark 5.3.4. If an embedded surface is orientable, we can define the outer normals

for each face as follows: Let f = {v1, v2, v3} such that the vertices are ordered as

(v1, v2, v3), then the outer normal is given by the right-hand rule

(v2 − v1)× (v3 − v1).
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Note that if the outer hull of our surface is given as the boundary of an open set, it is

well-known to be orientable (one can use the outer normals). In applications such as

3D printing, this is to be expected after removing artefacts.

As an alternative to the combinatorial approach of defining an orientation and

related outer normals for an embedding, we give a geometric definition of chambers

and the outer hull for an embedded complex as follows.

Definition 5.3.5 (Chambers and outer hull). The chambers of an embedded complex

X are defined as the connected components of

R3 \
⋃

f∈X2

conv(f),

where conv(f) is the convex hull given by the vertices of f , i.e.

conv(f) = {λ1 · v1 + λ2 · v2 + λ3 · v2 | 0 ≤ λ1, λ2, λ3 ≤ 1,
3∑

i=1

λi = 1, f = {v1, v2, v3}}.

The outer hull Xout is defined as the boundary of the unique chamber with infinite

volume. The other chambers of X are called the finite chambers.

Note that since we require an embedded complex X to be finite, the outer hull in

Definition 5.3.5 exists and is non-empty.

With this in mind, we can also define when a point is contained inside the embedded

complex.

Definition 5.3.6. Let X be an embedded simplicial complex. We say that a point

p ∈ R3 is contained in X if p ∈ C for a finite chamber C of X or p ∈ conv(f) for a

face f ∈ X. More generally, we say that for two elements in the embedded complex

x, y ∈ X that x is contained in y if conv(x) ⊂ conv(y). This naturally extends to

points p ∈ R3: p is contained in an element x ∈ X if p ∈ conv(x).

Below, we define intersection points, which parameterise the intersection of two

faces of an embedded complex.

Definition 5.3.7 (Intersection points). Let (X,ϕ) be an embedded simplicial complex.

We say that X is a self-intersecting complex or has self-intersections if there exist two

faces f1 ̸= f2 and a point p ∈ R3 such that

p ∈ conv(ϕ(f1)) ∩ conv(ϕ(f2)) \ conv(ϕ(f1) ∩ ϕ(f2)),

i.e. p is not a common vertex of f1 and f2, does not lie on a common edge and lies

inside both faces. Since the intersection of convex sets is again convex, we have that

conv(ϕ(f1)) ∩ conv(ϕ(f2)) can be written as the convex hull of finitely many points,

called intersections points, contained in the edges of f1 and f2. We write I(X,ϕ) for

the collection of all intersection points and I(X,ϕ, f) := I(X,ϕ) ∩ conv(ϕ(f)) for the
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collection of all intersection points of a fixed face f . If the set of intersection points

I(X,ϕ) is empty, we call the embedded complex intersection-free, else we say that it

has self-intersections.

For computation of self-intersections of a complex, one can consider all possible

face-pairs and check if they intersect. One way to determine whether two faces have

an intersection is to check if any of the edges of one of the faces intersects with the

other face, and vice versa. By examining the computed intersection points, as seen in

Section 5.4, we determine if an intersection is present or not.

Definition 5.3.8. Let X,X ′ be two embedded complexes. We say that X,X ′ are

geometrically equivalent if they give rise to the same chambers and in this case we call

X ′ a retriangulation of X. We say that X ′ rectifies X if both embedded complexes are

geometrically equivalent and X ′ has no self-intersections.

In Section 5.7, we show that we can compute the outer-hull of a complex X without

self-intersections. Then together with the embedding, the normal vectors are sufficient

to create a 3D model of the simplicial complex, as seen in [SM03]. But if an embedding

has a self-intersection, the following needs to be considered.

Remark 5.3.9. The outer hull of an embedded complex X is well-defined, even in the

case that the embedding has self-intersections. However, then our description of X via

coordinates of vertices is not sufficient to compute the outer hull, as can be seen in

Figure 5.7.This is because faces can lie in multiple chambers simultaneously, making it

impossible to use normals to infer information about the outer hull. In this example,

computing the outer hull using normal vectors, as described in Remark 5.3.4, is not

possible.

(a) Cut open view of two intersecting cubes.
(b) Cut open view of two retriangulated in-
tersecting cubes.

Figure 5.7: Intersection of triangles in two intersecting cubes. In (b), each face can be
associated to exactly two chambers.
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5.4 Detecting Self-Intersections

In order to retriangulate a complex with self-intersections, we first need to detect its

intersection points (Definition 5.3.7). One objective of our framework lies in using a

robust way for detecting self-intersections. For this, we employ a well-known method to

check if two triangles intersect. It is sufficient to consider only two triangles at a time,

and compare all such face-pairs one after another. Here, efficiency can also be gained

using a-priori criteria to omit face-pairs that cannot intersect (for example based on

vertex coordinates).

As our methods are modular, one could also use state of the art intersection detection

algorithms such as PANG2 (see [MG22]) instead. Below, we present a numerical robust

method for detecting self-intersecting triangles.

For this, we assume our initial data is a simplicial complex X with embedding ϕ

and consider two faces fℓ = {vℓ1, vℓ2, vℓ3}, ℓ = 1, 2 in X. Here, we identify the vertices

and edges of X with their images under the embedding ϕ. We determine intersection

points by examining the edges of f1 via the normal equation of the plane P (f2) spanned

by v21, v
2
2 and v23. Afterwards, we check if the found point lies inside the triangle f2 or

not. Finally, after checking for all such intersection points of f1 and f2, we can use

them to determine if the two triangles intersect.

We first fix our definitions before presenting the method in more detail. There is an

alternative characterisation to Definition 5.3.6 (containment in edges and faces) for

points, which is more numerically robust. For this, we use the standard Euclidean dot

product ⟨·, ·⟩.

Proposition 5.4.1. Let f be a triangle with vertices v1, v2, v3 ∈ R3 and normal vector

nf , and consider the planes

P1 := span(nf , v1 − v2), P2 := span(nf , v2 − v3), P3 := span(nf , v3 − v1).

A point p lies inside f if and only if p lies on the same plane as f and satisfies the

following condition:

⟨p− vi, ñi⟩ ≥ 0, for i ∈ {1, 2, 3}, (5.1)

where ñi is a normal vector of the plane Pi, pointing towards the interior of f .

This is visualised for the planar case in Figure 5.8. In the sense of Inequality (5.1),

p1 has non-negative scalar product with all normal vectors, while p2 has negative scalar

product with ñ2.
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p1

p2

ñ1

ñ2ñ3

v1 v2

v3

Figure 5.8: Triangle f with vertices v1, v2, v3, normals ñi pointing inwards and point
p1 inside f and point p2 outside f .

Remark 5.4.2. Let P be a plane with normal vector n and let x be a point in P .

Proposition 5.4.1 is based on the observation that if a point p fulfils ⟨p−x, n⟩ ≥ 0, then

p lies above the plane (where the above direction is the one given by the orientation of

the normal vector).

Another important consideration are numerical errors.

Remark 5.4.3. Consider the equation determining whether a point p lies in a plane

P , with normal n and a fixed x ∈ P :

p ∈ P ⇐⇒ ⟨p− x, n⟩ = 0. (5.2)

Since numerical computations are not always precise, a point p that does lie in P will

only yield ⟨p − x, n⟩ ≈ 0. Thus, for implementation purposes, one actually needs to

check whether ⟨p− x, n⟩ ∈ [−ε, ε] for a small constant ε > 0. We apply this to all the

conditions mentioned in this section, as can be seen in the code in our package.

In the following, we give a detailed description of our method, in the setting as

described above. First, we examine the edges of f1. For an edge {v1i , v1j} = e ⊂ f1, we

have to distinguish the following two cases:

(i) e is not parallel to f2.

(ii) e is parallel to f2.

Case (i) holds if and only if ⟨v1j − v1i , n2⟩ ≠ 0, where n2 is a unit normal vector of the

face f2.

First, assume case (i). If n2 is a normal vector of the plane P (f2), containment of

a point p in the plane P (f2) can be described as in Equation (5.2). Letting ℓij denote

the line connecting v1i and v1j , parameterised by ℓij(α) := αv1j + (1− α)v1i , we thus get

ℓij(α) ∈ P (f2) ⇐⇒ α =
⟨v21 − v1i , n2⟩
⟨v1j − v1i , n2⟩

. (5.3)
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Equivalence (5.3) yields a criterion for deciding whether a point ℓij(α) on the line

ℓij lies in the plane P (f2). As we have assumed case (i), there exists α such that

ℓij(α) ∈ P (f2). This point ℓij(α) is part of f1 if α ∈ [0, 1]. In case this holds, we also

need to check if it is contained in the interior of the triangle f2. For this, we use the

geometric condition described in Proposition 5.4.1.

For case (ii), when the edge is contained in the plane P (f2), the problem reduces

to a two-dimensional one and the following subcases need to be differentiated:

(i) The edge is contained in a different but parallel plane as the triangle

(ii) The edge is contained in the same plane as the triangle and one of the following

holds

(a) does not intersect the triangle,

(b) intersects the triangle,

(c) lies inside the triangle.

For a theoretical treatment of these subcases, we refer to [Vin05], and for an imple-

mentation to our provided package [AG24b].

By using the methods described above, we compute all intersection points I2 of

edges of f1 with f2. We also need the reverse: the intersection points I1 of edges of f2

with f1, as seen in Figure 5.9a.

We also have to consider duplicates. Thus, we examine I := I1 ∪ I2, as comparison

of I with the vertices of f1 and f2 and its cardinality c := |I| determines if the faces

intersect.

(a) Two intersection points (b) Two intersection points
(c) Only one intersection
point

Figure 5.9: Intersection of triangles (a, b) vs no intersection (c).

An intersection is present if for instance c = 2 and (I \ (f1 ∪ f2)) ̸= ∅, as can be

seen in Figures 5.9a and 5.9b. The comparison with the original vertices of f1 and f2

is needed since adjacent triangles, compared along their joint edge, would also result

in c = 2. Thus, the intersection is parameterised by v1, v2 with I1 ∪ I2 = {v1, v2}.
If c = 1, and the intersection point is equal to a vertex of only one of the faces (or equal

to none), there is also an intersection. We then parameterise it by v, where I = {v}.
After identifying all intersection points as listed above, we show in the following

section how to retriangulate a face f based on its intersection points.
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5.5 Retriangulation of Self-Intersecting Complexes

In this section, we introduce an algorithm that yields a retriangulation X ′ of an em-

bedded complex X such that both complexes are geometrically equivalent and X ′ has

no self-intersections. The key idea is to give the retriangulation of each face a disc

structure, with vertices and edges determined by the intersection points with other

faces.

In Figure 5.10, we showcase how our method retriangulates a face f ∈ X with

self-intersections.

(a) (b) (c)

Figure 5.10: The steps of triangulating a face: (a) all intersections with other faces
given as line segments, (b) finding intersection points within the line segments of the
underlying face, (c) a simplicial disc giving a retriangulation of the original face.

Remark 5.5.1. It suffices to retriangulate one face after another to obtain a retrian-

gulation, see Definition 5.3.8. Hence, we restrict to the case of a single face f ∈ X

with intersections given by the set I(X,ϕ, f), where (X,ϕ) denotes the underlying

embedded complex.

We proceed as follows: first, we check whether two intersections within f with

two other triangles f ′, f ′′ intersect and introduce new vertices if they do. Then, we

retriangulate f to obtain a simplicial disc f̃ that is geometrically equivalent to f , i.e.

spans the same area.

Definition 5.5.2. A simplicial disc D is a simplicial surface with the following prop-

erties:

1. D is connected with a single boundary component;

2. D is orientable.

Lemma 5.5.3. A simplicial disc is uniquely described by the vertices of edges.

Proof. This follows from the fact that for three edges e1, e2, e3 that can be arranged in

a closed cycle such that (e1, e2), (e2, e3) and (e1, e3) share exactly one vertex, we obtain

a unique face f with incident edges given by e1, e2, e3.

Another characteristic of simplicial discs can be given as follows.
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Remark 5.5.4. For any simplicial disc D, there exists a simplicial sphere S such

that D can be obtained by cutting the sphere S into two parts along a simple closed

vertex-edge cycle.

We can compute the Euler Characteristic of a simplicial disc as follows.

Lemma 5.5.5. The Euler characteristic of a disc D is given by

V + (E + E ′)− E + (E + E ′)

3
= 1, (5.4)

where V is the number of vertices, E the number of inner edges and E ′ the number of

boundary edges of D.

Proof. Gluing together two identical discs along their boundary leads to a sphere with

2V +V ′ vertices and 2E+E ′ edges, where V ′ is the number of boundary vertices of the

disc D. The number of faces in a closed simplicial sphere equals 2E/3, and its Euler

characteristic is equal to 2. Using that the Euler characteristic of a simplicial sphere

equals 2, we obtain the following

2V + V ′ − (2E + E ′) +
2(2E + E ′))

3
= 2.

Since the number of boundary vertices V ′ of a disc equals the number of boundary

edges E ′, we arrive at the statement above.

Remark 5.5.6. Lemma 5.5.3 yields that we can represent an embedded disc only by

the vertices of edges and the coordinates of the given vertices. Thus, we introduce a

data structure D that contains all self-intersections of f with other faces as a list with

two entries:

1. The first entry is a list containing all coordinates of the embedded vertices V of

f , and all coordinates of the intersections with other faces.

2. The second entry records the edges in a list that connect two vertices of the first

list.

Assuming that we computed all intersections of a given face f with all other faces

in the underlying complex, the starting step is to search for edge intersections and

containment of vertices in edges inside D. For ease of notation, we define for a set

Y the set Y (k) := {g : {1, . . . , k} → Y injective} as the set of k-tuples with pairwise

distinct entries, for k ∈ N.
In the following algorithm, intersecting lines within the given face f are subdivided

if they intersect each other. For this, we assume that we can remove duplicates of

edges and vertices within f using a helper function CleanData. The output of the

algorithm contains the original face f and subdivisions of all its intersections with other

faces.
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Algorithm 1: RectifyDiscIntersections

input: Triangle together with intersection points given by

D[1] ⊂ R3,D[2] ⊂ V (2)

output: Modified D without self intersecting line segments

begin

D ← CleanData(l)

edges← D[2]
vertices← D[1]
for v ∈ vertices do

for e ∈ edges do

if v is contained in e then

edges← edges \ e ∪ {{v, e[1]}, {v, e[2]}}
/* edge e is split via vertex v */

end

end

end

D ← CleanData(D)
edgepairs← edges(2)

for edgepair ∈ edgepairs do

if edgepair[1] intersects edgepair[2] in v /∈ D[1] then
edges← edges \ {edgepair[1], edgepair[2]}
edges← edges ∪ {{v, edgepair[2][1]}, {v, edgepair[2][2]}
edges← edges ∪ {{v, edgepair[1][1]}, {v, edgepair[1][2]}}
/* edges edgepair[1], edgepair[2] intersect in a vertex v */

end

end

D ← CleanData(D)
return D

end

The output of RectifyDiscIntersections (Algorithm 1) yields a data structure

D that describes a non-intersecting polygon together with inner parts given as line

segments. Next, we want to triangulate this output. For this, it suffices to add non-self

intersecting edges until condition (5.4) on the Euler characteristic of a simplicial disc

is fulfilled. We add minimal non-intersecting edges until we obtain a triangulation.

It follows that the resulting triangulation has a minimal number of vertices, as only

necessary vertices are added. This algorithm can also be modified to consider more

general polygons instead of triangles.

In order to apply condition (5.4) for giving a termination criterion, we first compute

the number of boundary vertices V ′ of D, which equals the number of boundary edges

E ′, and then use that E + E ′ = |D[2]|, V = |D[1]|. Since we only need to add inner
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edges, we can compute the number of total internal edges as

E = 3V − 2E ′ − 3.

Therefore we only need to add 3 · |D[1]| − 2E ′ − 3 − |D[2]| edges. This yields an

improvement to the greedy algorithm of adding shortest edges, first proposed in [DG70].

Algorithm 2: DiscTriangulation

input: D without self intersecting line segments

output: A simplicial disc D
begin

possibleedges← V (2)

possibleedges← SortByLength(possibleedges)

while V − (E + E ′) + E+(E+E′)
3

̸= 1 do

e1 ← possibleedges[1]

possibleedges← possibleedges \ e1
foundnewedge← true

for e2 ∈ D[2] do
if e1 intersects e2 then

foundnewedge← false

/* edges e1 and e2 intersect */

break

end

end

if foundnewedge then
D ← D ∪ {e1}

end

end

return D
end

DiscTriangulation (Algorithm 2) gives an approximation of a minimal weight

triangulation, i.e. summing up all edge lengths of the resulting disc is minimal, see

[MR08]. In general, solving this problem proves to be NP-hard [MR08]. Since each

polygon without self-intersection in two dimensions can be triangulated without in-

troducing new vertices [Ber+00], DiscTriangulation (Algorithm 2) terminates for

arbitrary inputs.

5.6 Symmetric Optimisation for Retriangulation

In this section, we consider all orthogonal transformations that leave a given embedded

complex X invariant in order to optimise computing its retriangulation. For this, we
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need to define the orthogonal group O(3) that acts on R3.

Definition 5.6.1. The orthogonal group O(3) defined by rotation and reflection ma-

trices acting on the real-space R3 consists of 3 × 3-matrices A with Atr · A = I, i.e.
matrices A with inverse given by their transposed matrix.

The standard scalar product of two vectors x, y ∈ R3 is invariant under multiplica-

tion by an orthogonal matrix A, since we have

⟨Ax,Ay⟩ = (Ax)tr (Ay) = xtrAtrAy = xtry = ⟨x, y⟩.

Note that an embedded complex X is determined by the coordinate vectors of its

vertices V , together with the combinatorial information given by subsets of P3(V ).

From now on, we identify V with a subset of R3. The action of an element π ∈ O(3)

viewed as a map R3 → R3 on an embedded complex X is determined by applying π to

the 3D coordinates of each vertex. With this, we can define the symmetry group of X.

Definition 5.6.2. The symmetry group of X is defined as the group Sym(X) ≤ O(3)

of all orthogonal transformations leaving X invariant, i.e.

Sym(X) := {π ∈ O(3) | π(X) = X}.

In the context of this chapter, we choose the notion Sym(X) in order to distinguish

the symmetry group of the embedded complex from the automorphism group Aut(X)

of the underlying (combinatorial) complex. The symmetry group Sym(X), as defined

above, is not to be confused with the group of all bijective maps X → X, which is also

frequently called the symmetry group of X in the mathematical literature.

The symmetry group Sym(X) of a simplicial complex X acts on the embedded

vertices and this action can be extended to edges and faces in a canonical way, i.e. if

e is an edge with embedded vertices {v1, v2} and f is a face with embedded vertices

{v1, v2, v3}, we can define

π(e) = {π(v1), π(v2)} and π(f) = {π(v1), π(v2), π(v3)},

for π ∈ Sym(X). In this way, the group Sym(X) induces subgroups of the auto-

morphism group Aut(X) of the underlying simplicial complex X, i.e. permutation

subgroups acting on the vertices, edges and faces. These permutation groups can be

used when computing face and face-pair orbits. Switching to a discrete permutation

group allows both faster and more precise computations without the use of numerical

methods.

Before rectifying the self-intersections, as in Section 5.5, we can determine a transver-

sal (also called face transversal) of the orbits of Sym(X) on the set of faces, which is
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a minimal set of faces {f1, . . . , fn} with

n⋃
i=1

Sym(X)(fi) = X2.

Thus each face of the complex can be obtained by applying certain symmetries to a

face in the much smaller set {f1, . . . , fn}. For instance, if Sym(X) acts transitively on

X2, we have n = 1.

When computing self-intersection, we have to consider pairs of faces (f1, f2). We

can extend the action of Sym(X) on the faces X2 to the pairs of distinct faces, denoted

by X
(2)
2 . Hence, it suffices to consider the orbits defined by this group action instead

of considering all face pairs,

Sym(X)×X2
2 → X2

2 ,
(
π, (f1, f2)

)
7→ (π(f1), π(f2)).

Here, the faces f1 and f2 are mapped to π(f1) = f ′
1 and π(f2) = f ′

2, respectively, by

applying an element π in the symmetry group Sym(X). Now we can observe that the

faces f1, f2 intersect if and only if the faces f ′
1, f

′
2 intersect. Let If1,f2 = f1 ∩ f2 denote

the intersection of two faces. With the notation above, it follows that

π(If1,f2) = If ′
1,f

′
2
.

This means that it suffices to consider only one element of the orbit

Sym(X)((f1, f2)) := {(π(f1), π(f2)) | π ∈ Sym(X)}

to determine all intersections of face pairs in this set.

Combining both observations of the group actions of Sym(X) on the faces X2 and

face pairs X
(2)
2 , it suffices to consider only face pairs of the form (fi, f) with i = 1, . . . , n

and fi being part of the chosen face transversal. In order to obtain all such relevant

face pairs, we can compute the orbits of the stabiliser Stabfi(X
(2)
2 ) of the face fi on the

set of faces X2.

In summary, the symmetry group of an embedded complex X can be used in two

ways to simplify computations for self-intersections:

1. Finding self-intersections: given the self-intersections of a pair {f1, f2} of faces,
the self-intersections of all pairs of faces in the orbit of {f1, f2} under the sym-

metry group are also known.

2. Retriangulation: it is only necessary to fix self-intersections and retriangulate one

face in each orbit of the symmetry group acting on the faces.

These steps are summarised in SymmetricRetriangulation (Algorithm 3).
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Algorithm 3: SymmetricRetriangulation

input: Embedded complex X and Sym(X)

output: Embedded complex X ′ without self-intersection

begin

FaceRepresentatives= representatives of orbits of Sym(X) on the faces X2

FacePairRepresentatives= [ ]

for f ∈ FaceRepresentatives do

/* Add all face pair representatives containing f */

FacePairRepresentatives[f ] = representatives of orbits of Stabf acting

on face pairs (f, f ′)

end

FaceIntersectionsRepresentatives= [ ]

for f ∈ FaceRepresentatives do

for (f, f ′) ∈ FacePairRepresentatives[f ] do

if HasIntersection((f, f ′)) then

/* Find all representative face pair intersections */

Add Intersection((f, f ′) to the list

FaceIntersectionsRepresentatives[f ]

end

end

end

/* Transfer all representative face pair intersections */

FaceIntersections= [ ]

for f ∈ FaceRepresentatives do

for π ∈ Stabf do
FaceIntersections[f ] =Concatenate(FaceIntersections[f ],

π(FaceIntersectionsRepresentatives[f ]))

end

end

/* Fix intersections and retriangulate face representatives */

FaceRetriangulations= []

for f ∈ FaceRepresentatives do

FaceRetriangulations[f ] =Retriangulate(f)

/* transfer retriangulation to remaining faces */

for f ′ ∈ Orbit of f under action of Sym(X) do

π = π ∈ Sym(X) such that π(f) = f ′

FaceRetriangulations[f ′] = π(FaceRetriangulations[f ])

end

end

return FaceRetriangulations

end
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The resulting speedup compared to methods that do not exploit the symmetry of

the given complex is proportional in both steps to the number of orbits. The number

of orbits for a group acting on a given set can be computed using a well-known result

attributed to Cauchy, Frobenius and Burnside:

Lemma 5.6.3 (Cauchy-Frobenius-Burnside Lemma). The number of orbits |Ω/G| of
a finite group G acting on a finite set Ω equals the average amount of fixed points, i.e.

|Ω/G| = 1

|G|
∑
g∈G

Fixg(Ω),

where Fixg(Ω) = |{ω ∈ Ω | g(ω) = ω}| is the number of fixed points of a group element

g acting on Ω.

For example, if only the identity element of Sym(X) fixes elements of the set X,

we have exactly |X|/|Sym(X)|-orbits. In terms of SymmetricRetriangulation

(Algorithm 3), this would result in a speedup proportional to the order of Sym(X), i.e.

the number of symmetries leaving X invariant.

Another advantage of our approach is that we can preserve the symmetry of the

resulting self-intersection complex.

Remark 5.6.4. We can obtain an embedded complex X ′ without self-intersections

and

Sym(X) = Sym(X ′),

if we account for the preservation of local symmetries of faces, i.e. if f is a face in X and

Df is the resulting disc obtain by retriangulation f together with its intersection with

other faces we need to enforce for π ∈ Sym(X) with π(f) = f that π(Df ) = Df . This

can be combined with a more general approach describing local symmetry-preserving

operations, as given in [BGS17; GCV21].

5.7 Computation of Outer Hull and Chambers

For several purposes, such as 3D printing or surface modelling, it is necessary to com-

pute the outer-hull of a self-intersecting complex X to disregard inner parts. For this,

we consider an algorithm introduced in [Att18]. This algorithm relies on an initialisa-

tion, for which we provide a proof below, with an outer triangle t (so one that is part

of the outer hull of X) with normal n pointing outwards. Here, we also write (t, n) for

a pair of a triangle and its normal. Moreover, we show that this algorithm can be also

applied to obtain any chambers within the complex.

Lemma 5.7.1. Let X be a closed simplicial complex with vertices given by V and

embedding ϕ : V → R3 such that (X,ϕ) has no self-intersections. We identify vertices,
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edges and faces with their embedding under ϕ and for p ∈ R3, we write p = (px, py, pz).

Now, let ṽ be the vertex with maximal first-coordinate, i.e.

ṽx = max {vx | v ∈ V }

(we can assume uniqueness after rotating the complex). Let ẽ = {ṽ, v′} be the edge in

X incident to ṽ such that

|(ṽ − v′)x|
∥ṽ − v′∥

= min

{
|(ṽ − v)x|
∥ṽ − v∥

∣∣∣∣ ṽ ⊂ e = {ṽ, v′}
}
,

compare Figure 5.11 (we can also assume uniqueness here with the same argument as

above). Let t̃ be the face incident to ẽ with unit normal ñ = (ñ1, ñ2, ñ3) such that

|ñx| = max {|nx| | n is a unit normal of a face f with ṽ ⊂ ẽ ⊂ f} .

If ñx < 0, negate ñ. Then t̃ is an outer triangle with normal ñ pointing outwards.

x

y

ṽ

e1 = ẽ
e2

e3

e4

e5
e6
e7

Figure 5.11: Projection of unit edge vectors onto the plane z = 0.

Proof. Since the complex is intersection free, either ñ or −ñ is a corrected orientated

normal if we know that t̃ lies on the outer hull. Additionally, we may assume that, up

to rotation, the x-value of ṽ is a strict maximum.

So assume (t̃, ñ) to be incorrectly oriented, thus either t̃ is not part of the outer hull, or

ñ is pointing inwards. Then from all points p ∈ t̃, we hit another point hp ∈ X when

travelling along the line p + αñ, α ≥ 0. Since the complex is intersection-free, if p is

not a vertex, then hp ̸= p.

Label the vertices of t̃ such that the edge ẽ connects ṽ and v′, and call ê the edge

connecting the third vertex v2 to ṽ. Then take a sequence of points ℓn ∈ ê that

converges to ṽ. The corresponding sequence hℓn also converges to ṽ by maximality of

ṽ and positive x-coordinate of ñ. Since we only have finitely many faces in our model,
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there is a minimal face diameter, thus we can assume that without loss of generality,

hℓn ∈ t′ for some face t′. The fact that X is intersection-free forces ṽ ∈ t′ and since we

can hit t′ along ê via ñ, the other two vertices of t′ have to have x-value greater than

v2. Thus, ẽ can be reached via two edge-face paths from t′, since X is a closed surface.

In at least one direction, there can never be vertices that do not have x-value greater

than v1 as else there would need to be a self-intersection present. Thus, there exists a

vertex v with x-value greater than v1 that is incident to a face t′′ that contains ẽ (so

that v is not incident to ẽ). But this contradicts the choice of the normal ñ, so (t̃, ñ)

is correctly oriented.

The idea of computing the outer hull is based on depth-first search (DFS) on the

faces and edges of the outer hull. For this, we use the initialisation configuration given

in Lemma 5.7.1 above for a given face and a normal vector. Next, we need a criterion to

decide for each edge which face lies on the surface of the outer hull. In [Att18], Attene

introduces an algorithm for the computation of the outer-hull of a complex X without

self-intersections. For each edge e in the complex, a fan of faces Fan(e), consisting of

all faces incident to e in the complex, can be defined.

Definition 5.7.2. Let X be a complex and e an edge of X. We define the fan of e as

the set

Fan(e) := {f | e ⊂ f face in X}.

An ordering of Fan(e) can be obtained via a face f1 ∈ Fan(e) and its normal vector

n, see Figure 5.12. For this, we compute the upward continuation of the face f1, which

is defined as the next face f2 ∈ Fan(e) in direction of n. We can associate a normal to

f2 by rotating the normal vector n along the edge e and negating it. The concept of

a fan is also used in Section 5.8 when considering non-manifold parts after computing

the outer hull.

Since we start with a correct initialisation step and the surface is connected, we

can proceed inductively to cover the whole surface of the outer-hull. In [Att18], Attene

also covers sheets, i.e. faces that are contained with both sides inside the outer-hull.

Because the initial surface is closed, we do not need to consider this case here.

We extend the algorithm in [Att18] to compute not only the outer hull, but all

chambers of X given an initialization face t0 with normal n0.
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f1

f2

f3

f4

e

n

Figure 5.12: For the edge e, Fan(e) is given by four faces f1, f2, f3, f4. Using the
normal vector n of face f1, we can order the faces in a circle (f1, f2, f3, f4). The upward
continuation of the face f1 with normal n is then given by f2.

Algorithm 4: ExtractChamber

input: Intersection-free complex X, initial face t0 with normal n0

output: Chamber containing face t0 with side given by n0

begin

e1, e2, e3 = three edges of initialization face t0

B = [⟨t0, e1⟩, ⟨t0, e2⟩, ⟨t0, e3⟩]
mark t0 as outer

while B ̸= [] do

⟨ti, ej⟩ =first element of B

remove ⟨ti, ej⟩ from B

tnew = upward continuation of ti at ej

if tnew = is not tagged as outer then

mark tnew as outer

e1, e2 =two edges of face tnew not equal to ej

Add ⟨tnew, e1⟩, ⟨tnew, e2⟩ to the beginning of B

end

end

end

For any face f of X with given normal vector n, we obtain a closed connected

subcomplex Y of X using ExtractChamber (Algorithm 4), which is the boundary

of a chamber of X (see Definition 5.3.5). Here, ExtractChamber (Algorithm 4)

associates a set of faces to a chamber.

Lemma 5.7.3. The set X2 of faces of an embedded simplicial complex X together with

a two-sided orientation of each face can be partitioned using the notion of chambers

above, i.e. each side of each face belongs to a unique chamber. The outer-hull can be

obtained using the start configuration from Lemma 5.7.1.
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(a) m = 0 (b) m = 1 (c) m = 2

Figure 5.13: Exploded views of the retriangulation of the simplicial surface X23 with
cyclic symmetry C23 with different magnitudes m.

Proof. ExtractChamber (Algorithm 4) stays inside a given chamber. As a chamber

is connected and a depth-first search is conducted on the faces in a chamber, the output

is independent of the initialisation face of a given chamber.

Computing chambers and visualising them leads to a more profound understanding

of the involved complexes. Volumes and other invariants can be computed in parallel

for the whole complex by using a decomposition into chambers.

Example 5.7.4. Consider the self-intersecting complex X23, shown in Figure 5.13a,

with symmetry group isomorphic to C23 (cyclic group with 23 elements). It belongs to

an embedded family of simplicial surfaces with equilateral triangles and cyclic symme-

try, see Section 2.8Chapter 2 for exact coordinates. The complex X23 has 6 · 23 = 138

faces, 71 vertices and 207 edges and thus Euler characteristic 71 − 207 + 138 = 2.

The embedding of the vertices of X23 is chosen in a way that its symmetry group

G = Sym(X23) ≤ O(3) is given by elements of the formcos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 ,

where φ ∈ {2π·j
23
| 0 ≤ j < 23} and it is generated by the rotation matrixcos(2π

23
) − sin(2π

23
) 0

sin(2π
23
) cos(2π

23
) 0

0 0 1

 ,

which can be seen by matrix-multiplication and the addition theorem of cos and sin.

By labelling the 138 faces by f1 to f138, we obtain
(
138
2

)
= 9453 face pairs. There are

exactly 6 = 138
23

orbits of faces under the action of G, with representatives that we call

f1 to f6. We can find all face pair intersections by the action of G on pairs of the form
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(f ′
i , f), i = 1, . . . , 6, where f is a face of X23. Hence, it suffices to test intersection on

these orbit representatives, as every intersection can be obtained by applying a group

element to one of these face pairs (see Section 5.6). We retriangulate f1, . . . , f6 using

DiscTriangulation (Algorithm 2) and then apply G to obtain a retriangulation of

the entire surface X23. Transferring, i.e. applying group elements of G, can be achieved

in time linear in the number of faces. Thus, we obtain an approximate speedup in the

order of G, so by a factor of 23 = |G|. In Figure 5.13, we see an exploded view of the

internal chambers of X23.

5.8 Non-Manifold Parts

(a) (b)

Figure 5.14: (a) Remedying of two adjoint cubes. On the left, the original complex is
shown, while the complex on the right possesses only manifold edges. (b) Our remedy
algorithm shown for a single fan around the red edge. This example is taken from
icosahedron3,2, which can also be seen in Figure 5.15 below.

As illustrated in Figure 5.1 in the introduction, a common issue in models is the pres-

ence of non-manifold parts. In 3D printing, non-manifold parts cause issues or insta-

bilities during the printing process, as a 3D printer cannot print sets of zero measure.

These parts also occur naturally, such as in the dataset of embedded icosahedra with

edge length one, see [Bra+20]. We can deal with non-manifold parts by transforming

the complex slightly to obtain a similar but non-degenerate surface. Combinatorially,

the process of resolving non-manifold parts in an embedded complex involves convert-

ing it into a simplicial surface by modifying the parts that do not meet conditions

3. and 4. in Definition 1.2.1, i.e. edges that are incident to more than two faces and

vertices that do not satisfy the umbrella condition. We refer to this process as remedy-

ing the complex. Examples are provided in Figures 5.14a and 5.15. In order to avoid

unnecessary computations, we first fix self-intersections and compute the outer hull

(for instance, Figure 5.15a might represent part of an inner chamber). Additionally,

identifying non-manifold parts from our combinatorial data can only be done after com-

puting a self-intersection-free complex that is geometrically equivalent to the original,

as discussed in Section 5.3. Furthermore, to ensure correct information on modifying

edges and vertices, one must first guarantee the outward orientation of normals. There-

fore, in the following discussion, we assume a complex with embedding (X,ϕ) that is
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intersection-free and reduced to its outer hull.

Non-Manifold Edges

We first introduce some notation and describe our approach, before we illustrate the

assignment of new coordinates to vertices.

Definition 5.8.1. Non-manifold edges are edges which are incident to more than two

triangles, as shown in Figure 5.15a. We differentiate between three types:

(i) Inner non-manifold edges have both of their vertices incident to another non-

manifold edge;

(ii) Outer non-manifold edges are edges where only one vertex is incident to another

non-manifold edge;

(iii) Isolated non-manifold edges are edges which are not incident to any other non-

manifold edge.

It is important to note that one can treat isolated non-manifold edges by subdividing

the incident triangles, resulting in two outer non-manifold edges. We thus only discuss

the first two cases. Moreover, it follows that inner and outer non-manifold edges occur

in paths, with outer non-manifold edges at the start and end, respectively, and inner

ones in between. We thus proceed in a path-based framework: First, we gather all the

non-manifold edges and then treat edge-paths of non-manifold edges iteratively. This

is visualised in Figure 5.15.

(a) (b)

Figure 5.15: (a) Non-manifold edges marked in red. (b) Interior view that shows split
(prior non-manifold) edges.

To remedy an inner non-manifold edge e, we split the vertices v1, v2 incident to

e, resulting in new vertices vj1, v
j
2 for j = 1, 2. Additionally, we create another edge
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e′ = {v21, v22} and set e = {v11, v12}. For an outer non-manifold edge, we only split the

vertex incident to another non-manifold edge. Both cases can be seen in Figure 5.16.

The exact assignment of coordinates to the new vertices is described below.

v1 v2

v11

v21

v12

v22

v11

v21

v2

Figure 5.16: Splitting non-manifold Edges based on type: outer (left) and inner (right).

Every path of non-manifold edges of length ℓ that is not a circle starts and ends at

an outer non-manifold edge, and thus we only need to split ℓ− 1 vertices (one for each

edge except the last). For circles, one then has to split ℓ vertices.

One also needs to consider junctions inside the non-manifold edge paths, which are

defined as vertices where more than two non-manifold edges meet. If, while iterating,

we come upon a junction, we proceed via a depth first approach and split the remainder

up into disjoint paths, since the edges are already fixed by splitting the common vertex.

It is possible in certain configurations to produce a single non-manifold vertex after

all non-manifold edges are corrected, which is why we deal with edges first and then

consider vertices in the following. Our implemented algorithms in [AG24b] also rely

on this order, to correctly infer information about the surface.

We now describe the coordinate assignment when splitting vertices.

Definition 5.8.2. Let (X,ϕ) be an embedded simplicial complex, reduced to its outer

hull, and e ∈ X an edge. We call a pair of faces (f1, f2) in Fan(e) an outward oriented

butterfly if, when rotating f1 along its normal with rotation axis e, the next face in the

fan that one encounters is f2.

For manifold edges e, the above is not very interesting, since Fan(e) = {f1, f2}
holds for an outward oriented butterfly (f1, f2). Since the initial complex we started

with is closed we have the following:

Remark 5.8.3. For a closed embedded simplicial complex that has been reduced to

its outer hull, the fan of each non-manifold edge can be decomposed into |Fan(e)|/2
outward oriented butterflies.

To compute the new vertices, we shift them by a small value ε > 0 into a suitable

direction se, which is given as follows: Choose an outward oriented butterfly (f1, f2) ⊂
Fan(e) and taking for both f1, f2 the vertex wi that is not incident to e, and set

se := 1/2(w1 − v1) + 1/2(w2 − v1).

Then we replace v in f1 and f2 by v := v + εse.
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This procedure is iterated for all outward oriented butterflies of Fan(e), which thus

remedies e.

Remark 5.8.4. Note that the parameter ε > 0 above can be adapted based on the

considered application area. For example, for 3D printing, it can be chosen based on

the nozzle width, which guarantees that the resulting surface is printed correctly.

Non-Manifold Vertices

As noted above, it is possible, in certain configurations, for a non-manifold vertex

to appear after dealing with a junction of non-manifold edges. These can also be

present as artefacts in 3D modelling, for example when adjoining surfaces. Note that

it only makes sense to talk about non-manifold vertices here, not about non-manifold

points, as these would give rise to self-intersections which we dealt with beforehand.

A non-manifold vertex in a complex X is a vertex for which the umbrella condition

in Definition 1.2.1 fails. Thus, the incident faces cannot be ordered in a connected

face-edge path. To remedy such a vertex v, we first consider the family Cα of all local

umbrellas of v (indexed by α).

Definition 5.8.5 (Local Umbrella). For a complex X without non-manifold edges and

vertex v ∈ X, the local umbrellas Cα of v in X are defined as follows. Take F to be

all the faces incident to v and set Cα to be the equivalence classes of Pot(F ) under the

following relation:

f1 =v f2 ⇐⇒ f1 can be reached via an edge-face path

from f2 by only using edges incident to v.

Thus, the local umbrellas Cα are maximal sets of faces of v under the condition that

all faces in the set are edge-connected via edges that are incident to v.

It is important to first remedy non-manifold edges before considering vertices, since

if still non-manifold edges are present, the local umbrella could also switch between

different sides of the surface. For each local umbrella Cα, we take for all f ∈ Cα their

vertices vf1 and vf2 that do not equal v and compute an average direction vector

vα :=
1

|Cα|

(∑
f∈Cα

1

2
(vf1 − v0) +

1

2
(vf2 − v0)

)
.

Next, we replace v by v′ := v0 + vα · ε in all the f of our current Cα, where ε > 0 is a

small shift parameter.

We thus move v slightly in the direction of the local umbrella, and by doing this for

each of the local umbrellas, we obtain m-moved versions of v that are pairwise distinct

and manifold, where α = 1, . . . ,m is the number of v-edge-connected components of

the faces of v.
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5.9 Experiments on Self-Intersecting Icosahedra

Figure 5.17: 3D printed icosahedra with constant edge length.

In [Bra+20] all 35 symmetric embeddings of icosahedra with equilateral triangles of

edge length 1 are classified. This means that the underlying simplicial surface agrees

but the embedding varies, see [Bra+] for coordinates and visualizations of the resulting

surfaces. From these 35 embeddings, 33 have self-intersections and thus are candidates

for testing the algorithms presented in the previous sections. They are named as

icosahedroni,j, where i ∈ {1, . . . , 14} and j ∈ {1, . . . , k(i)} for certain numbers k(i) ∈ N.
The numbering comes from the classification based on 14 formal Gram-matrices that

give rise to different embeddings. Note that, for a given formal Gram-matrix, all

corresponding embeddings have the same symmetry, see [Bra+20].

In Figure 5.5, we see one such an icosahedron, also known as the great icosahedron,

with symmetry group isomorphic to the entire icosahedral group. Thus, we can use

symmetric optimization as proposed in Section 5.6. Table 5.1 in the Appendix shows

that applying our symmetry algorithm leads to large speedup by a factor of 14.68 when

first retriangulating the surface and subsequently computing the outer hull. In Figure

5.17 we show a collection of printed versions of the icosahedra, beforehand processed

by our algorithm.

The computations were performed on a MacBook Pro with Apple M1 Pro chip and

16GB memory, averaging over 10 run times. We observe a strong correlation between

the group sizes and the average speedup when comparing the time needed with or

without using the symmetry group.

5.10 Conclusion and Outlook

In Table 5.1 of the Appendix, we can see the speedup for retriangulating and computing

the outer hull of all 35 symmetric icosahedra with edge length 1. For an icosahedron

with symmetry group size of 2, which corresponds to just a single symmetry in the

complex, the average speedup in our data set is still 2.12. Even if no symmetries are

known a-priori, symmetry detection methods [BBS23; Li+16] can be used to compute

the symmetry group to allow the application of the presented symmetry-driven algo-

rithm in Section 5.6. The symmetry optimisation method can be also applied to infinite

147



structures if the face-orbits are finite. For instance, crystallographic groups give ex-

amples of doubly periodic symmetries with face-orbit representatives sitting inside a

fundamental domain, see [GNP22; Wie+23] for examples of such surfaces.

The study of chambers of an embedded complex can be used to compute various ge-

ometric properties such as the volume and has the potential of designing interlocking

puzzles [Che+22] by subdividing a given complex into its chambers and introducing

connectors. With this, we can also subdivide a given surface into chambers by intro-

ducing inner triangles leading to a complex inner structure.

The retriangulation method in this chapter is motivated by producing a complex

with a minimal number of triangles. The robustness of the underlying algorithm and

the possibility of applying symmetries leads to a numerically robust and fast method.

The results we obtained for embedded icosahedra and cyclic complexes show that

a speedup factor corresponding to the number of non-trivial symmetries is possible

without any loss of algorithmic stability.

For further research, optimisation of computing the outer hull of a self-intersecting

complex can be studied. For instance, one could consider finding alternative algorithms

that compute the outer hull before considering self-intersections, since only the outer

hull is relevant in many settings. Additionally, since we rely on the exploitation of

the mathematical structure of simplicial complexes, we need suitable assumptions on

initial data. One could, then, also consider addressing the problem of turning an

arbitrarily degenerate input (like a non-closed surface) into one that can be treated by

our framework. Another interesting goal would be to remedy non-manifold parts in a

way that preserves the symmetry group of the original complex. Then, algorithms for

further processing could benefit from symmetry as well. In general, additional research

is required to gain an understanding of how parameters need to be adjusted in order

to guarantee a model that satisfies the same properties as the underlying geometric

object.
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5.11 Appendix

Table 5.1: Timing of computing the outer hull of Icosahedra [Bra+]: run times of
algorithm on all 35 symmetric icosahedra with and without using their respective sym-
metry groups. The average speedup on our data set is approximately 3.17.

Icosahedron Group Size Time with Group (ms) Time without Group (ms) Speedup

Icosahedron1,1 4 30.6 83.0 2.71

Icosahedron2,1 120 715.4 10502.6 14.68

Icosahedron2,2 120 13.6 67.4 4.96

Icosahedron3,1 20 75.0 385.6 5.14

Icosahedron3,2 20 280.8 116.0 3.80

Icosahedron4,1 12 35.8 80.9 2.31

Icosahedron4,2 12 84.9 424.1 2.26

Icosahedron5,1 4 33.2 144.7 5.00

Icosahedron5,2 4 116.0 622.1 4.36

Icosahedron6,1 20 39.2 140.6 5.36

Icosahedron7,1 12 1090.5 2536.7 2.33

Icosahedron7,2 12 488.8 1343.2 2.75

Icosahedron7,3 12 212.8 517.5 2.43

Icosahedron8,1 4 111.5 325.1 2.92

Icosahedron9,1 4 229.8 409.1 1.78

Icosahedron9,2 4 2074.3 4097.2 1.98

Icosahedron9,3 4 89.8 149.2 1.66

Icosahedron9,4 4 136.8 241.9 1.77

Icosahedron9,5 4 58.3 99.3 1.70

Icosahedron10,1 2 679.9 3024.7 4.45

Icosahedron10,2 2 21.2 66.9 3.16

Icosahedron11,1 10 99.1 248.1 2.50

Icosahedron11,2 10 42.6 111.6 2.62

Icosahedron12,1 6 137.9 213.0 1.54

Icosahedron12,2 6 109.7 163.8 1.49

Icosahedron12,3 6 145.9 240.3 1.65

Icosahedron12,4 6 223.2 380.5 1.70

Icosahedron13,1 2 352.8 567.4 1.61

Icosahedron13,2 2 751.4 1130.4 1.50

Icosahedron13,3 2 460.7 703.2 1.53

Icosahedron13,4 2 467.0 780.6 1.67

Icosahedron13,5 2 153.2 236.4 1.54

Icosahedron13,6 2 243.9 373.4 1.53

Icosahedron14,1 10 57.3 182.9 3.19
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