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Abstract 

In agriculture, monitoring crop growth, and predicting crop yield in a timely manner are 

of great importance. Crop yield modelling and forecasting provide information to test 

various crop management options, guide crop breeding, understand and explore 

mitigation of environmental impacts, and optimise production. Process-based crop 

models, such as the Agricultural Production Systems sIMulator (APSIM), have been 

widely applied to simulate crop growth and predict yield because they incorporate the 

current understanding of complex crop-environment dynamics. However, models 

simplify complex processes and predict yield with uncertainty. Remote sensing 

technology provides spatially distributed and reliable quantitative estimation of crop 

status near real-time, which can be integrated with crop models by using data assimilation 

methods to mitigate prediction uncertainties and improve predictive performance. This 

thesis (1) reviews the performance of the APSIM-Wheat model and identifies the 

important factors that influence yield prediction uncertainty; (2) undertakes sensitivity 

analyses using the Sobol’ method to examine the sensitivity of crop yield prediction to 

six influential parameters identified in part (1); (3) determines the most suitable APSIM-

wheat state variables for data assimilation and develops an observation operator to 

facilitate model updating with remote sensing observations; and (4) develops a data 

assimilation scheme to integrate remotely sensed crop information into the APSIM-

Wheat model. The proposed scheme improves the wheat yield estimation performance 

and enables the model to better simulate spatial variability in yield. 

Chapter 2 reviews the performance of APSIM-Wheat, one of the most popular crop 

modules in APSIM, and identifies the factors that influence yield prediction uncertainty. 

Model evaluation results from 76 published studies across thirteen countries on four 

continents were analysed. In addition, a meta-database of modelled and observed yields 

was established from 30 papers within these studies. The analysis indicates that with site-

specific calibration, APSIM predicts yield with an RMSE typically smaller than 1 t/ha 

under a wide range of environments. For rainfed wheat, the review and meta-analysis 

found that estimated soil hydraulic characteristics, soil water conditions, nitrogen 

availability, heat and frost events, and some other abiotic stresses (lodging and root 

disease) lead to larger yield prediction residuals and uncertainty.  
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Integrating satellite observations into APSIM-Wheat is hypothesised to improve the yield 

prediction accuracy and robustness. As an important steppingstone towards the satellite-

APSIM integration, a global sensitivity analysis (using the Sobol’ method) was 

conducted to rank the sensitivity of influential parameters affecting yield prediction 

(Chapter 3). Results indicate that precipitation, initial soil nitrogen content, and soil 

parameters have the largest influence on yield variability. APSIM’s yield prediction 

becomes more sensitive to a factor when that factor becomes more limiting. These results 

are used to guide the design of data assimilation schemes for crop models. 

Green leaf area index (GLAI) was selected as the variable to assimilate into the APSIM-

Wheat model. Sentinel-2 was chosen to produce the observations due to its high spatial 

(10-20 m) and temporal (5 days) resolutions and its relevance to estimating GLAI. An 

observation operator, which provides the mathematical mapping from model state to 

observation space (or vice versa), was developed to link several vegetation indices with 

APSIM GLAI in Chapter 4. The results show that Sentinel-2 derived chlorophyll index 

(CI) calculated using red edge bands have the closest relationship with APSIM simulated 

GLAI. The uncertainty of the observation operator was also determined and used to 

represent the background prediction uncertainty in the observation space. 

Data assimilation (DA) is a set of statistical techniques that can be employed to combine 

external information (such as in situ measurements or remotely sensed observations) with 

a model to improve model prediction performance. It enables the updating of model time-

step state variables using available information. In Chapter 5, a synthetic data 

assimilation experiment was conducted to test the updated state variables, the updating 

periods, the updating intervals, and the uncertainties added to the model and observations. 

It was found that updating all biomass components in the wheat module (grain, leaf, stem, 

spike, and root) from the whole duration of sowing-harvest at a daily frequency resulted 

in the best yield prediction performance. A more realistic 5-day updating interval still 

resulted in noticeable improvement. The designed data assimilation strategy was 

validated for eight scenarios representing high-, medium-, and low-yield cases. The 

results show that updating all biomass states every 5 days across the whole growing 

season effectively corrected yield prediction residual by 51% - 85%, with the residual 

decreasing from 230 – 2134 kg/ha to 93 – 533 kg/ha. The standard deviation was also 

decreased by 41.7% – 66.7%.  
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After the synthetic experiment, the data assimilation scheme was applied to a rainfed 

winter wheat field located in north-western Victoria, Australia using Sentinel-2 and 

Planet Scope observations (Chapter 6). The field was segmented into 58 patches 

characterising yield spatial variability. Two open loop cases were used to assess the 

robustness of the data assimilation performance. The results show that for the high-yield 

open loop case, data assimilation corrected yield prediction residual by 37% – 97%, with 

a median correction efficiency of 73%. The uncertainty was decreased from 0.71 t/ha to 

a range of 0.52 – 0.60 t/ha. For the low yield open loop case, the residual was corrected 

by 18% – 94%, and a more significant uncertainty reduction was achieved, decreasing 

from 0.76 t/ha to between 0.29 and 0.40 t/ha.  

The developed data assimilation framework for the APSIM-Wheat model shows 

efficiency and robustness for improving model yield estimation. The improvement 

provides the potential to deliver quality yield predictions with credibility, enabling better 

planning of management practices and optimisation of food production. This work also 

provides a pipeline for the design process of a crop model data assimilation framework, 

which can serve as a guide for estimating model uncertainty, choosing appropriate 

observations, estimating their errors, and determining the state updating strategy. 
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Zusammenfassung 

In der Landwirtschaft ist das Monitoring des Pflanzenwachstums und die rechtzeitige 

Vorhersage des Ernteertrags von großer Bedeutung. Die Modellierung und Vorhersage 

des Ernteertrags liefern Informationen zur Prüfung verschiedener Möglichkeiten zur 

Bewirtschaftung von Kulturen, zur Lenkung der Pflanzenzüchtung, zur Erkenntnis und 

Erforschung der Minderung von Umweltauswirkungen und zur Optimierung der 

Produktion. Prozessbasierte Ertragsmodelle, wie der Agricultural Production Systems 

sIMulator (APSIM), wurden weit verbreitet eingesetzt, um das Pflanzenwachstum zu 

simulieren und den Ertrag vorherzusagen, da sie das aktuelle Verständnis komplexer 

Zusammenhänge zwischen Pflanzen und Umwelt integrieren. Modelle vereinfachen 

jedoch komplexe Prozesse und es gibt Unsicherheiten in den prognostizieren Erträgen. 

Die Fernerkundungstechnologie bietet eine räumlich verteilte und zuverlässige 

quantitative Schätzung des Pflanzenzustands in Echtzeit, die durch die Verwendung von 

Datenassimilationsmethoden mit Ertragsmodellen integriert werden kann, um 

Vorhersageunsicherheiten zu reduzieren und damit die Vorhersagequalität zu verbessern. 

Diese Dissertation (1) überprüft die Leistung des APSIM-Wheat-Modells und 

identifiziert wichtige Faktoren, die die Unsicherheit der Ertragsvorhersage beeinflussen; 

(2) führt Sensitivitätsanalysen mit der Sobol’-Methode durch, um die Empfindlichkeit 

der Ertragsvorhersage gegenüber sechs einflussreichen Parametern zu untersuchen, die 

in Teil (1) identifiziert wurden; (3) bestimmt die geeignetsten Zustandsvariablen des 

APSIM-Wheat für die Datenassimilation und entwickelt einen Beobachtungsoperator, 

um die Modellanpassung mit Fernerkundungsbeobachtungen zu erleichtern; und (4) 

entwickelt ein Datenassimilationsschema, um fernerkundliche Informationen zur 

Pflanzenentwicklung in das APSIM-Wheat-Modell zu integrieren. Dieses neue 

Datenassimilationsschema soll die Simulation der Weizenerträge sowie deren räumliche 

Variabilität mit dem APSIM-Wheat-Modell verbessern. 

Kapitel 2 überprüft die Vorhersagequalität von APSIM-Wheat, einem der gängigsten 

Getreide-Module von APSIM, und identifiziert die Faktoren, die die Unsicherheit der 

Ertragsvorhersage beeinflussen. Die Ergebnisse der Modellbewertung aus 76 

veröffentlichten Studien in dreizehn Ländern auf vier Kontinenten wurden analysiert. 

Darüber hinaus wurde eine Metadatenbank aus modellierten und beobachteten Erträgen 

aus 30 Arbeiten innerhalb dieser Studien erstellt. Die Analyse zeigt, dass APSIM mit 

standortspezifischer Kalibrierung den Ertrag unter einer breiten Palette von Umgebungen 

in der Regel mit einem RMSE kleiner als 1 t/ha vorhersagt. Für regenwassergespeisten 

Weizen ergab die Überprüfung und Metaanalyse, dass geschätzte bodenhydraulische 

Eigenschaften, Bodenfeuchtebedingungen, Stickstoffverfügbarkeit, Hitze- und 

Frostereignisse sowie einige andere abiotische Stressfaktoren (Lagerung und 
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Wurzelerkrankungen) zu größeren Abweichungen und Unsicherheiten in der 

Ertragsvorhersage führen. 

Kapitel 3 beschäftigt sich mich der Integration von Satellitenbeobachtungen in APSIM-

Wheat, um die Genauigkeit und Robustheit der Ertragsvorhersage zu verbessern. Als 

wichtiger Schritt hin zur Integration von Satelliten und APSIM wurde in Kapitel 3 eine 

globale Sensitivitätsanalyse (unter Verwendung der Sobol'-Methode) durchgeführt, um 

die Empfindlichkeit von Einflussparametern auf die Ertragsvorhersage zu bewerten. Die 

Ergebnisse zeigen, dass der Niederschlag, der Anfangsgehalt an Bodenstickstoff und die 

Bodenparameter den größten Einfluss auf die Ertragsvariabilität haben. Die Vorhersage 

des Ertrags durch APSIM reagiert empfindlicher auf einen bestimmten Faktor, wenn 

dieser Faktor limitierend wirkt. Diese Ergebnisse werden im Folgenden verwendet, um 

ein Datenassimilationsschemata für Ertragsmodelle zu entwickeln. 

Der Index der grünen Blattfläche (GLAI) wurde als die Variable ausgewählt, die in das 

APSIM-Wheat-Modell integriert werden sollte. Sentinel-2 wurde aufgrund seiner hohen 

räumlichen (10-20 m) und zeitlichen (5 Tage) Auflösung und seiner Relevanz für die 

Schätzung des GLAI für die Erstellung der Beobachtungen ausgewählt. Ein 

Beobachtungsoperator, der die mathematische Zuordnung vom Modellzustand in den 

Beobachtungsraum (oder umgekehrt) liefert, wurde entwickelt, um verschiedene 

Vegetationsindizes mit dem APSIM GLAI in Kapitel 4 zu verknüpfen. Die Ergebnisse 

zeigen, dass der aus Sentinel-2 abgeleitete Chlorophyllindex (CI) unter Verwendung von 

Red-Edge-Bändern die engste Beziehung zum APSIM-simulierten GLAI aufweist. Die 

Unsicherheit des Beobachtungsoperators wurde ebenfalls ermittelt und zur Darstellung 

der Hintergrundvorhersageunsicherheit im Beobachtungsraum verwendet. 

Datenassimilation (DA) ist eine Reihe von statistischen Techniken, die eingesetzt werden 

können, um externe Informationen (wie In-situ-Messungen oder fernerkundliche 

Beobachtungen) mit einem Modell zu kombinieren, um die Vorhersageleistung des 

Modells zu verbessern. Sie ermöglicht die Aktualisierung der Modellzeitschritt-

Zustandsvariablen mithilfe verfügbarer Informationen. In Kapitel 5 wurde ein 

synthetisches Datenassimilationsexperiment durchgeführt, um die aktualisierten 

Zustandsvariablen, die Aktualisierungszeiträume, die Aktualisierungsintervalle und die 

Unsicherheiten im Modell und in den Beobachtungen zu testen. Es wurde festgestellt, 

dass die Aktualisierung aller Biomassekomponenten im Weizenmodul (Korn, Blatt, 

Stängel, Ähre und Wurzel) über die gesamte Aussaat-Ernte-Dauer in täglicher Häufigkeit 

zu den besten Ergebnissen in der Ertragsvorhersage führt. Ein realistischerer 

Aktualisierungsintervall von 5 Tagen führte dennoch zu einer deutlichen Verbesserung. 

Die entwickelte Datenassimilationsstrategie wurde für acht Szenarien validiert, die hohe, 

mittlere und niedrige Ertragsfälle repräsentieren. Die Ergebnisse zeigen, dass die 

Aktualisierung aller Biomassezustände alle 5 Tage über die gesamte Wachstumsperiode 

hinweg die Vorhersageabweichung des Ertrags um 51% - 85% korrigierte, wobei die 

Abweichung von 230 - 2134 kg/ha auf 93 - 533 kg/ha reduziert wurde. Die 

Standardabweichung wurde ebenfalls um 41,7% - 66,7% reduziert. 
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Nach dem synthetischen Experiment wurde das Datenassimilationsschema auf ein 

regenwassergespeisten Weizenfeld im Nordwesten von Victoria, Australien, angewendet, 

wobei Sentinel-2- und Planet-Scope-Beobachtungen verwendet wurden (Kapitel 6). Das 

Feld wurde hierzu in 58 Patches unterteilt, die die räumliche Variabilität des Ertrags 

charakterisieren. Zwei Fälle von offenem Kreislauf wurden verwendet, um die 

Robustheit der Datenassimilationsleistung zu bewerten. Die Ergebnisse zeigen, dass für 

den Hochertragsfall die Datenassimilation die Abweichung der Ertragsvorhersage um 37% 

- 97% korrigierte, mit einer mittleren Korrekturleistung von 73%. Die Unsicherheit 

wurde von 0,71 t/ha auf einen Bereich von 0,52 - 0,60 t/ha reduziert. Für den 

Niederertragsfall wurde die Abweichung um 18% - 94% korrigiert, und es wurde eine 

signifikante Unsicherheitsreduktion erreicht, die von 0,76 t/ha auf einen Bereich von 0,29 

- 0,40 t/ha reduziert wurde. 

Es konnte die Effizienz und Robustheit des entwickelten Datenassimilationsschema für 

das APSIM-Wheat-Modell bei der Verbesserung der Ertragsabschätzung des Modells 

bezeigt werden. Diese Verbesserung bietet das Potenzial, qualitativ hochwertige 

Ertragsvorhersagen mit Glaubwürdigkeit zu liefern, um eine bessere Planung von 

Bewirtschaftungspraktiken und die Optimierung der Lebensmittelproduktion zu 

ermöglichen. Diese Arbeit bietet auch einen Leitfaden für den Designprozess eines 

Datenassimilationsframeworks für Ertragsmodelle, der als Anleitung zur Schätzung von 

Modellunsicherheit, zur Auswahl geeigneter Beobachtungen, zur Schätzung ihrer Fehler 

und zur Bestimmung der Zustandsaktualisierungsstrategie dienen kann.
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Preface 

The research presented in this thesis is primarily my own work completed during my 
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Chapter 2 has been published as Hao, S., Ryu, D., Western, A., Perry, E., Bogena, H., & 

Franssen, H. J. H. (2021). Performance of a wheat yield prediction model and factors 

influencing the performance: A review and meta-analysis. Agricultural Systems, 194, 

103278. 

Chapter 3 has been published as Hao, S., Ryu, D., Western, A. W., Perry, E., Bogena, H., 

& Franssen, H. J. H. (2024). Global sensitivity analysis of APSIM-wheat yield 

predictions to model parameters and inputs. Ecological Modelling, 487, 110551. 

Chapter 4 will be submitted as Hao, S., Ryu, D., Western, A., Perry, E., Bogena, H., & 

Franssen, H. J. H. Remotely sensed wheat GLAI model at field scale for assimilating 

Sentinel-2 imagery into a crop yield prediction model. Will be submitted to MethodsX 

and is currently under internal review. 

Chapter 5 has been submitted as Hao, S., Ryu, D., Western, A., Perry, E., Bogena, H., & 

Franssen, H. J. H. Assimilating remotely sensed vegetation observations for wheat yield 

estimates: a synthetic experiment. Submitted to European Journal of Agronomy and is 

currently under peer review. 

Chapter 6 will be submitted as Hao, S., Ryu, D., Western, A., Perry, E., Bogena, H., & 

Franssen, H. J. H. Assimilating remotely sensed vegetation observations for wheat yield 

estimates: a case study using satellite data. Will be submitted to Remote Sensing and is 
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Chapter 1 Thesis introduction 1 

1.1 Crop yield predictions by process-based crop models 2 

Agriculture is an important contributor to Australia’s economy (Hunt et al., 2014). In 3 

agriculture, monitoring crop growth and accurately predicting yield are important for 4 

optimising management decisions regarding crop inputs, climate variability and other 5 

environmental factors (Fritz et al., 2019). One example is matching fertiliser application 6 

to the crop requirements under the prevailing conditions (Smith et al., 1997). This helps 7 

improve both economic and environmental outcomes. Yield prediction also assists 8 

governments and policy-makers in reforming import/export plans and addressing food 9 

security issues (Resnick, 2020), among other applications. 10 

There are three main methods used for yield forecasting – field measurements and 11 

analysis of standing crops, the utilisation of remote-sensing technologies, and the 12 

implementation of crop models (Horie et al., 1992a). Field measurements assess crop 13 

conditions, such as tiller and spikelet numbers, damages due to diseases, pests and/or 14 

environmental stress impacts. Yield forecasts are subsequently made using rules of 15 

thumb or informal models based on local experience (Wisiol, 1987). Remote sensing data 16 

capture various measurements, including spectral reflectance, thermal radiation, and 17 

other electromagnetic spectra from crops. Empirical regression models can be developed 18 

by applying statistical methods to analyse the relationship between crop yield and the 19 

remote sensing-captured data. Additionally, both field measurements and remote sensing 20 

observations can be utilised to train machine learning-based models. The observations 21 

are divided into training and testing datasets, enabling the model to accurately predict 22 

crop yield by tuning hyperparameters. The trained models can subsequently be employed 23 

to forecast crop yield (Čorňák and Delina, 2022; Muruganantham et al., 2022). Among 24 

all three methods, process-based crop models, which simulate the biophysical processes 25 

linking environmental and management factors to crop yield outcomes (Roberts et al., 26 

2017), have been widely used to understand the complex interactions between crops and 27 

their environment (Horie et al., 1992b). These models estimate crop growth, water 28 

balance, and nutrient cycling on a daily basis, providing not only predictions but also 29 
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insights into the environmental impacts on crops, enhancing resource use efficiency and 1 

ensuring food production.  2 

Widely used process-based crop models include Simulateur mulTIdisciplinaire pour les 3 

Cultures Standard (STICS) (Brission et al., 2002; Brisson et al., 1998b; N. Brisson et al., 4 

2003), Environmental Policy Integrated Climate (EPIC) (Williams et al., 1989), Decision 5 

Support System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003), WOrld FOod 6 

Studies (WOFOST) (Supit et al., 1994), Soil Water Atmosphere Plant (SWAP) (Van 7 

Dam et al., 1997), AquaCrop (Hsiao et al., 2009; Raes et al., 2009a; Steduto et al., 2009a), 8 

and Agricultural Production System SIMulator (APSIM) (Brown et al., 2018; Holzworth 9 

et al., 2006, 2014a; Keating et al., 2003). 10 

The APSIM model, developed in Australia, has been widely used across the globe for 11 

research and practical purposes. It comprises modules that are interconnected and 12 

simulate the complex biophysical interactions between soil water, nutrients, organic 13 

matter, crops, weather, and management. APSIM is capable of simulating a wide range 14 

of crops and pastures, including wheat (Asseng et al., 2000, 1998a), sorghum (Carberry 15 

and Abrecht, 1991; Hammer and Muchow, 1991), maize (Archontoulis et al., 2014; 16 

Shamudzarira and Robertson, 2002), cotton (Hearn, 1994), canola (Robertson and Lilley, 17 

2016), rice (Oryza2000) (Bouman, 2001; Li et al., 2017), and various legumes 18 

(Robertson et al., 2002). Given its relevance to Australian agriculture and international 19 

application, this study will use APSIM-Wheat as an example to represent process-based 20 

crop models. 21 

The main APSIM modules used in this study include Wheat, Weather, SoilN, SoilWat, 22 

Surface organic matters (OM), and Management. Schematic depicting the main 23 

processes accounted for by APSIM are shown in Figure A. 1. These modules have their 24 

own processes and also interact with each other to account for the interaction of wheat 25 

with the environment and management. 26 

The Wheat module (Brown et al., 2014; Zheng et al., 2014) simulates crop growth by 27 

modelling states such as phenological development, leaf development and senescence, 28 

radiation interception, plant morphology, biomass, and nitrogen accumulation in 29 

different wheat components. This is based on state variables and parameters including 30 

thermal time, available water and nutrient content, radiation use efficiency, stress factors, 31 

and carbon dioxide factor. The state variables are provided by other modules. 32 
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The SoilWat module (Jones and Kiniry, 1986; Littleboy et al., 1992) calculates soil water 1 

movement using a cascading water balance model. Key parameters describing soil water 2 

holding characteristics include the lower limit of 15 bar (LL15, the wilting point), drained 3 

upper limit (DUL, the field capacity), crop lower limit (CLL), and saturation (SAT). It 4 

provides available water and nutrient content across the soil profile for each soil layer to 5 

the Wheat module, allowing it to determine the amount of water and nutrient uptake. 6 

The SoilN module considers three organic matter pools (fresh, biom, and hum) to 7 

simulate the conversion of nitrogen and carbon in each soil layer through processes 8 

including nitrification, denitrification, mineralisation, and immobilisation. This module 9 

thereby calculates the available nitrogen in soils based on the crop residuals and fertiliser 10 

inputs. The available nitrogen content is provided to SoilWat to determine the 11 

distribution and movement of nitrogen content for each soil layer. 12 

The Surface OM module (Probert et al., 1998; Thorburn et al., 2001) simulates the 13 

dynamics of organic materials, such as crop residues and other plant debris, on the soil 14 

surface. It calculates the decomposition and incorporation of organic matter into the soil, 15 

providing information to the three organic matter pools in SoilN. 16 

The Weather module provides daily meteorological information such as precipitation, 17 

global radiation, maximum and minimum temperature. The Management module uses 18 

user-defined scripts for activities such as sowing, fertilisation, and irrigation to specify 19 

the amount and timing of these management measures. 20 

1.2 Crop model yield prediction uncertainty 21 

Although the APSIM-Wheat is a process-based crop model, it is subject to uncertainties 22 

that arise from widely known sources such as the model structure, climate forcing, 23 

parameters, and observations (Vrugt et al., 2008). It is crucial to have a comprehensive 24 

understanding of these uncertainties as they can negatively impact the performance of 25 

crop system yield predictions and introduce risk to cropping decisions (Challinor and 26 

Wheeler, 2008; Ramirez-Villegas et al., 2017; Seidel et al., 2018).  27 

Crop model structural uncertainties are mainly due to an inadequate understanding of the 28 

biophysical processes and the varying levels of detail that modellers attempt to represent. 29 

Model algorithms may also be oversimplified or mischaracterise the complex 30 

interactions between climate, soil, and crops. Concern about structural uncertainty has 31 
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increased in the last decade (Asseng et al., 2015, 2013; Martre et al., 2015b; Palosuo et 1 

al., 2011; Rötter et al., 2011). Parameter uncertainties stem from a lack of high-quality 2 

experimental measurements under sufficiently diverse conditions and from unmapped 3 

heterogeneities in various properties, especially soils. Many studies have investigated the 4 

impact of parameter uncertainty on model performance (Dzotsi et al., 2015; Iizumi et al., 5 

2009; Post et al., 2008; Ran et al., 2022; Wallach et al., 2002). Calibration, which 6 

iteratively adjusts parameter values to bring model predictions closer to observations, 7 

can reduce parameter uncertainties. However, calibration efficacy depends on the 8 

uncertainties in the observations and the identifiability of individual parameters, which 9 

can be impacted by parameter interactions, for example. Observation uncertainty refers 10 

to errors in measurements that are used for model calibration and validation. It is often 11 

ignored in crop modelling studies, but has received increasing attention in recent years 12 

(Confalonieri et al., 2016; Kersebaum et al., 2015; Zhao et al., 2015). The uncertainty 13 

associated with climate forcing data, such as measurement and estimation errors of 14 

weather conditions, has been shown to significantly affect model prediction (Ojeda et al., 15 

2021; Rötter et al., 2012; Tao and Zhang, 2013). The impact of future climate change on 16 

crop models has also gained attention from researchers. Chapagain et al. (2022) reviewed 17 

277 published articles and reported that a majority of the studies (52%) were focused on 18 

assessing uncertainty related to model inputs. Among these studies, the projected 19 

changing climate was found to be the most frequently considered source. In contrast, 20 

only 28% and 20% of the articles focused on uncertainties arising from model parameters 21 

and model structure, respectively. 22 

APSIM-Wheat yield prediction accuracy has been extensively evaluated for research 23 

purposes and as a decision support tool for providing advice to policymakers and 24 

stakeholders. A large dataset for validating model yield predictions under a wide range 25 

of environmental and management conditions is available on the APSIM website 26 

(https://www. apsim.info/). Multiple studies have also evaluated the model’s accuracy 27 

before it was applied in various regions, including Australia (Asseng et al., 1998b; Bryan 28 

et al., 2014; Hunt et al., 2006; O’Leary et al., 2016; Phelan et al., 2018), New Zealand 29 

(Asseng et al., 2004; Bell et al., 2009), Asia (Chen et al., 2010a; Gaydon et al., 2017; Liu 30 

et al., 2016a; Wang et al., 2014; Zhang et al., 2013; Zhao et al., 2017), Africa (Araya et 31 

al., 2020, 2017), Europe, and America (Asseng et al., 2000; Brown et al., 2018, 2014; 32 

Holzworth et al., 2018, 2014a). The details of the literature review on APSIM yield 33 
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prediction accuracy are presented in Chapter 2. The APSIM yield prediction exhibited 1 

varying levels of performance when validated under different environmental and 2 

management conditions and for various cultivars. Despite extensive work has been done 3 

to evaluate the accuracy of the model’s yield prediction, each evaluation was limited to 4 

a few sites. Therefore, a more comprehensive understanding of the model’s behaviour 5 

under various conditions is necessary to improve the understanding of the model’s 6 

prediction uncertainty and the factors that affect its performance. This highlights the need 7 

to find effective methods for diagnosing uncertainties in crop models.  8 

1.3 Improving crop model yield prediction 9 

Researchers have been actively seeking approaches to identify and quantify the 10 

modelling uncertainties from various sources (Asseng et al., 2013; Dokoohaki et al., 2021; 11 

Rosenzweig et al., 2013; Rötter et al., 2011; Tao et al., 2018) to improve model yield 12 

prediction performance.  13 

Comparison of multi-model ensembles is a common approach to understanding model 14 

structural uncertainty. It involves analysing the variability between predictions from 15 

different models (Asseng et al., 2015; Bai et al., 2022; Iizumi et al., 2018; Maiorano et 16 

al., 2017a; Osman et al., 2022; Rettie et al., 2022; Wallach et al., 2017; Wallach and 17 

Thorburn, 2017). It has been found that the ensemble mean or median predictions are 18 

more accurate than individual model results (Martre et al., 2015b). Ensemble 19 

intercomparison information can also assist in incorporating and/or modifying the 20 

functions describing biophysical processes in crop models to reduce prediction 21 

uncertainty and improve performance (Wang et al., 2017). However, this approach 22 

requires extensive collaboration from multiple crop modelling teams and can be time-23 

consuming to implement (Asseng et al., 2013; Rötter et al., 2011). Another option is to 24 

directly improve inadequate simulations of the biophysical processes by developing new 25 

modules or modifying relevant existing functions. These methods require extensive field 26 

work and laboratory experiments, which can be costly and long-term solutions. 27 

Uncertainty analysis and sensitivity analysis are used to evaluate the influence of 28 

uncertain parameters and inputs on model outcomes and to guide model improvement. 29 

Uncertainty analysis examines how the uncertainty from possible parameter and input 30 

values propagates through the model and produces results with a probability of 31 
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occurrence. Sensitivity analysis aims to identify the factors that significantly affect crop 1 

model predictions (Jain and Singh, 2003). In prior research, this approach has been 2 

utilised to identify the primary influential factors across multiple crop models (Laluet et 3 

al., 2023; Liang et al., 2017; Lu et al., 2021a; Ma et al., 2023; Makowski et al., 2006; 4 

Richter et al., 2010; Varella et al., 2010; Wang et al., 2013a; Xing et al., 2017; Yu et al., 5 

2023). Existing uncertainty and sensitivity analyses on APSIM mostly focused on 6 

analysing the impacts of crop genetics (Casadebaig et al., 2016; Collins et al., 2021; He 7 

et al., 2015; Zhao et al., 2014), soil parameters (Dokoohaki et al., 2018; Vogeler et al., 8 

2022; Wu et al., 2019), and climate conditions (Luo and Kathuria, 2013) on key model 9 

outputs such as yield, biomass, phenological stage, soil moisture, drainage, and nitrogen 10 

leaching. A detailed literature review on sensitivity analysis of the APSIM model can be 11 

found in Chapter 3. 12 

Once the influential factors are identified, a calibration can be performed to adjust their 13 

values and improve the fit of model simulations to observations. However, it is important 14 

to note that calibration can only improve the accuracy of model predictions and does not 15 

reduce the model’s structural uncertainty. The influential factors can also be useful for 16 

targeting algorithm improvements by identifying the parts of the model that are most 17 

critical for prediction accuracy.  18 

1.4 Crop model data assimilation 19 

Data assimilation is a technique that combines model simulations with observations to 20 

improve the accuracy of predictions. This technique involves adjusting the model’s initial 21 

conditions, parameters, and/or state variables, based on the available observations, to 22 

enhance the agreement between the model’s output and the in situ data. There are several 23 

approaches to integrating observations with crop model simulations, as categorised by 24 

Dorigo et al. (2007) and Jin et al. (2018) as “calibration”, “forcing”, and “updating” 25 

methods. 26 

The “calibration” method, also referred to as model calibration, is regarded as a data 27 

integration technique by several authors (Dorigo et al., 2007; Eicker et al., 2014; Jin et 28 

al., 2018) because it serves the same purpose. Model calibration adjusts model 29 

parameters and/or initial states to find the optimal set of parameter values that minimise 30 

the difference between the model simulations and observations. It effectively combines 31 

the observed data and models to improve the model prediction performance. This aligns 32 
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with the aim and practice of data assimilation. Various algorithms have been applied to 1 

optimise simulations, such as Genetic Algorithms (GA) (Ines et al., 2006), the Simplex 2 

Search Algorithm (SRA) (Claverie et al., 2009; Guérif and Duke, 2000; Jégo et al., 2012; 3 

Launay and Guérif, 2005), Shuffled Complex Evolution (SCE-UA) (Huang et al., 2019b, 4 

2015b, 2015a; Jin et al., 2022; Ma et al., 2013; Ren et al., 2010, 2009; Tian et al., 2013), 5 

Annealing Algorithms (AA) (Dong et al., 2013; Jin et al., 2016; Morel et al., 2014), and 6 

Particle Swarm Optimization Algorithms (PSO) (Guo et al., 2018; Jin et al., 2015, 2022, 7 

2020, 2017; Z. Li et al., 2015b, 2015a; Liu et al., 2015; Silvestro et al., 2017; Wagner et 8 

al., 2020). 9 

The “forcing” method, also known as direct insertion (Bernard et al., 1981; Jackson et 10 

al., 1981; Manivasagam et al., 2021; Ramos et al., 2018; Robinson and Lermusiaux, 2000; 11 

Walker and Houser, 2005) or Newtonian nudging (Houser et al., 1998; Paniconi et al., 12 

2003) method, involves the direct substitution of model-simulated state variables with 13 

corresponding observations at each time step of the model. Remotely sensed vegetation 14 

indices are commonly used as observations to update corresponding variables in crop 15 

models. Bouman (1995), Schneider (2003), Hadria et al. (2006), Jongschaap (2006), 16 

Tripathy et al. (2013), Thorp et al. (2010), Morel et al. (2014), Yao et al. (2015), Ban et 17 

al. (2019), and Abi Saab et al. (2021) estimated indices such as normalised difference 18 

vegetation index (NDVI), leaf area index (LAI), fraction of absorbed photosynthetically 19 

active radiation (fAPAR), aboveground nitrogen accumulation (AGN), and water stress 20 

factor from various satellite sensors and directly replaced the corresponding model value 21 

with the observation during simulations. This improved predicted LAI, aboveground 22 

biomass (AGB), and yield. The “forcing” method is easy to implement. However, its 23 

efficacy largely depends on the accuracy of the observations. 24 

Both “calibration” and “forcing” methods provide ways to blend model simulations and 25 

observations. However, these two techniques tend to over-correct the model simulations 26 

due to its inherent assumption that observations are error-free. In contrast, statistical or 27 

stochastic updating methods consider uncertainties in both observations and simulations 28 

to continuously update model state variables in an optimal manner. The Kalman Filter 29 

(KF) is a widely used statistical updating data assimilation technique (Kalman, 1960; 30 

Welch et al., 1995) with variants such as the Extended Kalman Filter (EKF) (Julier and 31 

Uhlmann, 2004), Ensemble Kalman Filter (EnKF) (Evensen, 2003, 1994), Particle Filter 32 

(PF) (Del Moral, 1997; Liu and Chen, 1998), Three-Dimensional Variational Data 33 
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Assimilation (3DVar) (Lorenc, 1986; Sasaki, 1970), and Four-Dimensional Variational 1 

Data Assimilation (4DVar) (Le Dimet and Talagrand, 1986; Talagrand and Courtier, 2 

1987). 3 

Variational methods, such as 3DVar and 4DVar, have been successfully applied in 4 

weather forecasting (Lorenc, 1986; Lorenc et al., 2000). 3DVar assimilates observations 5 

into models at a single analysis time, while 4DVar assimilates observations over a time 6 

window that typically extends throughout the forecast period, providing a more accurate 7 

representation of the model outputs’ temporal evolution. (Le Dimet and Talagrand, 1986; 8 

Talagrand and Courtier, 1987). However, these methods require the use of all 9 

observations within the data assimilation time window to adjust model predictions by 10 

minimising the error between observations and model analysis, as measured by 11 

constructed cost functions. Furthermore, the adjoint method is required to compute the 12 

gradient of the cost function with respect to the model states, which can be challenging 13 

to construct and modify for changes in the model (Altaf et al., 2013; Courtier et al., 1994; 14 

Elbern et al., 1997). These methods can be computationally demanding and may not be 15 

suitable for applications that require rapid assimilation of large volumes of data, such as 16 

predicting harvest yield during the growing season. 17 

The KF equations are only applicable to linear simulation models and linear observation 18 

operators, with an assumption that all statistics follow a Gaussian distribution (Aubert et 19 

al., 2003; Huang et al., 2019a). The strict requirements of the KF limit its applicability 20 

in crop model data assimilation as most dynamic crop models are nonlinear. To address 21 

the limitations, the EKF was developed. EKFs use a local linear approximation to 22 

propagate the model error covariance matrix based on Taylor series expansion (Jazwinski, 23 

2007). A challenge with this method is that it can lead to instabilities or divergences due 24 

to the linear approximation of nonlinear processes (Clark et al., 2008). The EnKF was 25 

developed to deal with high-dimensional non-linear model systems and is widely used in 26 

environmental models. Essentially, the EnKF is a stochastic version of the KF, which 27 

enables explicit error representations to be propagated through the non-linear model 28 

using a Monte Carlo approach. It utilises an ensemble of model simulations to effectively 29 

capture both model nonlinearity and interdependence between model multiple states. The 30 

PF allows for the propagation of non-Gaussian distributed observations and model 31 

simulations by representing the model state’s probability distribution with a set of 32 



9 

 

weighted particles, the weights of the particles are adjusted at each time step based on 1 

how well they match the observations (Hartig et al., 2011; Huang et al., 2019a). 2 

1.5 Assimilating observations into crop models using EnKF 3 

The EnKF is one of the most popular sequential data assimilation techniques used with 4 

non-linear models due to its computational efficiency and ease of implementation (Luo 5 

et al., 2023; Zhang et al., 2021a). It has been widely used in land surface models and 6 

hydrological models, including for the assimilation of microwave-derived soil moisture 7 

(SM), thermal infrared image-based evapotranspiration retrievals, and remote sensing-8 

based soil moisture proxy into land surface models (Crow and Ryu, 2009; Draper and 9 

Reichle, 2015; Hain et al., 2012; Pipunic et al., 2008; Reichle et al., 2002; Reichle and 10 

Koster, 2005), and the assimilation of stream discharge and/or soil moisture into 11 

hydrological models (Alvarez-Garreton et al., 2014; Li et al., 2015, 2013; Y. Li et al., 12 

2014; Massari et al., 2014; Vrugt et al., 2006). These studies have demonstrated the 13 

efficacy of EnKF in improving model simulation and prediction capability by integrating 14 

remote sensing observations. EnKF is also broadly applied in crop model data 15 

assimilation. Table 1-1 summarises the studies that have used EnKF to assimilate 16 

observations into various crop models. 17 

Table 1-1. Summary of studies assimilating observations into crop models with EnKF 18 

Crop 

models 
Crops Observations 

Updated state 

variables 
References 

DSSAT 

Wheat LAI, SM 

Biomass weights, 

canopy height, leaf 

area 

Nearing et al. 

(2012) 

Maize LAI, SM LAI, SM 
Ines et al. 

(2013) 

Soybean SM SM 
Chakrabarti et 

al. (2014) 

Maize SM SM 
Mishra et al. 

(2021) 

WOFOST 

Wheat, 

Maize 
SM SM 

De Wit and 

van Diepen 

(2007) 

Wheat LAI, SM LAI, SM 
Pauwels et al. 

(2007) 

Wheat LAI LAI 
Curnel et al. 

(2011) 

Maize LAI LAI 
Wang et al. 

(2013a) 
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Maize LAI LAI 
Zhao et al. 

(2013) 

Wheat LAI LAI 
Huang et al. 

(2016) 

Wheat 
Gross primary 

production (GPP) 
GPP 

Zhuo et al. 

(2022) 

Wheat LAI LAI 
Huang et al. 

(2023) 

AquaCrop 

Maize 

Evapotranspiration 

(converted from 

latent heat flux), 

SM, canopy cover 

(converted from 

LAI) 

Canopy cover, SM 
Lu et al. 

(2021) 

Rice 

Canopy cover 

(CC), biomass, 

phenological 

observations 

CC, biomass, 

growing degree day 

(GDD), parameters 

related to canopy 

development, water 

transformation, and 

phenology 

development 

Yang et al. 

(2023) 

SAFY 

Wheat LAI LAI 
Silvestro et al. 

(2017) 

Maize LAI LAI 
Silvestro et al. 

(2021) 

Maize LAI LAI 

Kang and 

Özdoğan 

(2019) 

Wheat LAI LAI 
Zhang et al. 

(2021a) 

APSIM 

Wheat 

LAI, leaf biomass, 

stem biomass, 

aboveground 

biomass, 

phenology, SM, 

soil nitrate-nitrogen 

LAI, leaf biomass, 

stem biomass, 

aboveground 

biomass, phenology, 

SM, soil nitrate-

nitrogen 

Zhang et al. 

(2021) 

Wheat 

LAI, leaf weight 

and nitrogen, stem 

weight and 

nitrogen, spike 

nitrogen, SM, soil 

nitrate-nitrogen, 

soil ammonium-

nitrogen 

LAI, leaf weight and 

nitrogen, stem 

weight and nitrogen, 

spike nitrogen, SM, 

soil nitrate-nitrogen, 

soil ammonium-

nitrogen 

Zhang et al. 

(2022) 

Maize, 

Soybean 
SM SM 

Kivi et al. 

(2022) 

LAI: leaf area index, SM: soil moisture 

 1 
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The application of EnKF in crop model data assimilation has shown mixed outcomes. 1 

Some studies found that integrating observations and models using an EnKF has 2 

improved model yield prediction performance. Ines et al. (2013) used an EnKF to 3 

incorporate AMSR-E soil moisture and Moderate Resolution Imaging Spectroradiometer 4 

(MODIS) LAI data, both independently and simultaneously, into the DSSAT-CSM-5 

Maize model to develop an effective DA framework for improving crop yield prediction 6 

at the county-level in Story County, Iowa, USA. The results showed that the correlation 7 

between observed and simulated yields improved more when both SM and LAI were 8 

assimilated into the model, compared to assimilating either variable. However, the 9 

assimilation of LAI alone may be more suitable in extremely wet conditions, while the 10 

simultaneous assimilation of both SM and LAI is recommended under more nominal 11 

conditions. Chakrabarti et al. (2014) used EnKF to assimilate downscaled 1 km Soil 12 

Moisture and Ocean Salinity (SMOS) soil moisture observations into the DSSAT-13 

Soybean model to improve model yield prediction in a rain-fed agricultural region of the 14 

lower La Plata Basin in Brazil during two growing seasons. The yields obtained after 15 

assimilation were improved in both seasons, with a larger improvement during the 16 

drought-affected season. Mishra et al. (2021) assimilated coupled microwave and 17 

thermal infrared SM profiles into the DSSAT-Maize model over the Southeast United 18 

States. In both irrigated and non-irrigated scenarios, the EnKF was demonstrated to 19 

significantly reduce the model’s yield prediction errors. Zhao et al. (2013), Wang et al. 20 

(2013a), Huang et al. (2016), and Huang et al. (2023) used an EnKF to integrate satellite-21 

derived LAI observations from PROBA/CHRIS, MODIS, Landsat, and Global LAnd 22 

Surface Satellite (GLASS) into the WOFOST model using the EnKF to improve maize 23 

and wheat yield predictions at the regional scale in north-western and north-eastern China. 24 

The results showed that the EnKF can provide accurate regional estimates of crop growth 25 

and final yield. Zhuo et al. (2022) assimilated accumulative GPP from a satellite-based 26 

vegetation photosynthesis model into the WOFOST model at both site and regional 27 

scales in the south-central United States. The results highlighted the data assimilation’s 28 

capacity to enhance the model’s accuracy in estimating wheat yields at both scales. Lu 29 

et al. (2021) introduced an EnKF-based framework that assimilates separate and 30 

combined in situ SM and canopy cover observations into the AquaCrop model. To 31 

evaluate the effectiveness of the approach, the researchers applied it to a rain-fed maize 32 

field in Nebraska, USA over six growing seasons. The study found that the joint 33 

assimilation of both variables outperformed assimilation of a single variable, and the 34 
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system was able to predict yield around three months prior to harvest with improved 1 

accuracy (RMSE = 1.7 t/ha, nRMSE = 15.74%) compared to the no-assimilation case 2 

(RMSE = 2.01 t/ha, nRMSE = 18.61%). Silvestro et al. (2021, 2017) and Zhang et al. 3 

(2021a) used an EnKF to assimilate LAI observations into the SAFY model across 4 

central Italy, central China, and north-western China. These LAI observations were 5 

derived from field spectral measurements and various satellite images, including Landsat 6 

8 Operational Land Imager (OLI), Huan Jing (HJ) HJ1A/B, and Sentinel-2. The 7 

assimilation results demonstrated the ability of EnKF to improve wheat and maize yield 8 

predictions at both the field and district levels. 9 

Some other studies found limited improvements in prediction performance when using 10 

EnKF. Nearing et al. (2012) used an EnKF to assimilate MODIS LAI and SMOS SM 11 

observations into the DSSAT wheat model in energy-limited and water-limited 12 

environments in the UK and Canada. The results indicated that the potential for data 13 

assimilation to improve yield estimates was low, due to a lack of correlation between leaf 14 

and grain growth. The correction in LAI state values did not translate into improved yield 15 

estimates. Pauwels et al. (2007), Zhang et al. (2022, 2021), and Kivi et al. (2022) also 16 

found that the lack of correlation between different state variables limited the 17 

effectiveness of data assimilation. The updating of wheat state variables, such as LAI, 18 

leaf or stem biomass, did not improve soil moisture estimation or nitrogen cycle 19 

simulation using the WOFOST or APSIM models, and vice versa. 20 

To improve the accuracy of yield prediction through data assimilation, it is important to 21 

consider the simulation of grain development, as simulated yield typically refers to the 22 

simulation of harvested grain. Simulated grain development is controlled by multiple 23 

factors such as cultivar characteristics, resource availability, weather conditions, and soil 24 

parameters. Updating limited state variables is inadequate for correcting yield estimates. 25 

Nearing et al. (2012) reported that the assimilation of LAI observations into the DSSAT 26 

model had low potential for improving wheat yield estimation due to the lack of root-27 

zone soil moisture data. Insufficient information about available water content failed to 28 

inform the model about water stress situations. Curnel et al. (2011) found that the 29 

WOFOST model simulated phenological development disagreed with observed 30 

development, so updating only LAI in WOFOST led to poor results. To address the 31 

mismatch between simulated and observed phenological development, Chen et al. (2018) 32 

adjusted the MCWLA-Wheat simulated phenology using remote sensing data retrieved 33 



13 

 

phenology information before implementing data assimilation. This assimilation scheme 1 

substantially improved model yield prediction. Zhang et al. (2022, 2021) corrected the 2 

phenology estimates simulated by APSIM-Wheat with in situ phenological development 3 

information. With this phenology constraint, data assimilation showed improved results 4 

in estimating final yield. Yang et al. (2023) developed an EnKF-based data assimilation 5 

method to incorporate phenological observations into the AquaCrop model, subsequently 6 

adjusting model parameters to maintain phenological consistency. The proposed strategy 7 

significantly improved yield estimation, particularly in cases with high phenological 8 

heterogeneity among plots, thereby highlighting the potential of assimilating 9 

phenological observations for enhancing in-season yield forecasting. 10 

Accurately quantifying model and observation errors is crucial for the effectiveness of 11 

an EnKF (Kivi et al., 2022; Tandeo et al., 2020). De Wit and van Diepen (2007) found 12 

that underestimating errors in the WOFOST model and satellite SM observation resulted 13 

in insignificant improvements in wheat and maize yield predictions. Nearing et al. (2012) 14 

conducted an experiment where they examined how observation uncertainty affected 15 

assimilation results by testing eight sets of satellite LAI and SM observation errors. The 16 

study found that assimilating LAI into the DSSAT model was successful in water-limited 17 

situations when the standard deviation of LAI observation errors ranged from 0.05 to 18 

0.30 m2/m2. Silvestro et al. (2021) tested six LAI observation errors ranging from 0.05 19 

to 0.30. The results showed that data assimilation performed best when the observation 20 

error was 0.05, and filter performance decreased with increasing error. Zhang et al. (2022) 21 

confirmed that reducing observation uncertainty led to greater improvements in yield 22 

estimation. It is essential to consider and incorporate model and observation errors in 23 

designing an effective EnKF-based data assimilation strategy. 24 

A variety of data sources, including field measurements and remote sensing data, can 25 

provide observations and be assimilated into crop models. Remote sensing data have 26 

been widely used in recent decades to improve model predictions due to their ability to 27 

provide spatially distributed and regular (under favourable atmospheric conditions) 28 

observations of land surface characteristics. Satellite imagery provides repeated 29 

observations to estimate crop growth attributes and soil properties. Current practices in 30 

crop model data assimilation use a variety of observations to adjust model simulations, 31 

including LAI (Baret et al., 2007; Bouman, 1995; Dente et al., 2008; Dong et al., 2013; 32 

Fang et al., 2011, 2008; Hadria et al., 2006; Huang et al., 2015b, 2015a; Jiang et al., 33 
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2014b, 2014a; Li et al., 2014; Ma et al., 2013; Pagani et al., 2018; Prévot et al., 2003; 1 

Ren et al., 2010), FAPAR (Clevers, 1997; Gobron et al., 2000; Morel et al., 2014), AGB 2 

(Claverie et al., 2009; Jin et al., 2015), phenological stage (Chen et al., 2018; Xu et al., 3 

2021; Zhang et al., 2021), evapotranspiration (ET) (Bastiaanssen and Ali, 2003; Huang 4 

et al., 2015a; Hurtado et al., 1994), and SM (Bach and Mauser, 2003; Chakrabarti et al., 5 

2014; Dente et al., 2008). Vegetation observations are mainly from open-access satellite 6 

products such as the Advanced Very High Resolution Radiometer (AVHRR), MODIS, 7 

MEdium-spectral Resolution Imaging Spectrometer (MERIS), Landsat EM, ETM+, OLI, 8 

Sentinel-2 MSI, RapidEye, and PlanetScope. These products have spatial resolutions 9 

ranging from 2 km to 3 m. Soil moisture observations come from sources such as 10 

ENVISAT Advanced Synthetic Aperture Radar (ASAR), SMOS, and Soil Moisture 11 

Active Passive (SMAP). The selection of data sources is based on the scale of the study 12 

area and the required observation revisit time. With the multiple options of easily 13 

accessible satellite observations, the integration of crop models and remote sensing 14 

observations provides valuable spatial information on crop yields for both crop 15 

management and market strategy adjustment (Lobell, 2013a). 16 

1.6 Research questions and objectives 17 

Accurate crop model yield predictions provide reliable information to stakeholders and 18 

policymakers to manage crops, maximise crop productivity, and reform import/export 19 

plans to ensure food security. Data assimilation is a promising approach for improving 20 

model yield prediction performance. However, accurately predicting crop yield by 21 

integrating remotely sensed observations still presents challenges. Most studies 22 

assimilated multiple sources of observations into crop models, such as soil moisture, soil 23 

nutrient content, biomass, and indices representing leaf growth. Some studies also used 24 

field-measured yield data, soil hydraulic parameters, or observed phenological stages to 25 

calibrate the model and ensure the performance of data assimilation. However, obtaining 26 

multiple sources of information can be time-consuming and labour-intensive, making it 27 

challenging to implement in a real-world application. The efficacy of incorporating a 28 

single-source and simply obtained observation from satellite into APSIM has not been 29 

thoroughly assessed. Additionally, current studies have indicated that accurately 30 

quantifying model and observation errors is crucial for the performance of data 31 

assimilation. However, knowledge about APSIM-Wheat yield prediction uncertainty and 32 

the factors that affect the model’s performance is limited. The appropriate satellite 33 
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observation to be fused into the model also need to be investigated. Lastly, an effective 1 

data assimilation strategy for varying updating intervals, phenological stages, and 2 

updated biomass state variables needs to be explored and designed under controlled 3 

conditions. 4 

The goal of this thesis is to design, implement, and evaluate an effective data assimilation 5 

strategy for improving field-level yield prediction performance and providing spatial 6 

variability information of crop yield by integrating simply obtained remotely sensed 7 

observations into APSIM-Wheat using EnKF. Therefore, the following research 8 

questions are proposed to achieve the overarching research objective. 9 

1.6.1 Research question 1 (Chapter 2) 10 

How accurate is the APSIM-Wheat yield prediction, and what are the more influential 11 

factors that affect the model’s yield prediction accuracy and uncertainty? 12 

Previous studies have primarily focused on evaluating the accuracy of APSIM-Wheat 13 

yield predictions at a limited number of sites, with limited research investigating the 14 

uncertainty of these predictions. Therefore, research question 1 aims to assess the 15 

accuracy and uncertainty of APSIM-Wheat yield predictions, as well as to explore the 16 

underlying factors that affect the model’s performance and estimate their contributions 17 

to the prediction uncertainty. This question is addressed by conducting an extensive 18 

literature review and meta-analysis on the performance of APSIM-Wheat under various 19 

environmental conditions, fertilisations, and model calibrations to provide a more 20 

comprehensive understanding of the model’s behaviour. 21 

1.6.2 Research question 2 (Chapter 3) 22 

How sensitive are APSIM-Wheat yield predictions to the influential factors identified in 23 

research question 1? How do changing environment and management conditions affect 24 

the sensitivity of yield variability to these influential factors?  25 

Previous studies have examined the sensitivity of APSIM crop yield to cultivar 26 

parameters, soil hydraulic parameters, and forcing inputs. Studies focusing on the 27 

interplay of water availability, nitrogen fertilisation, weather conditions, and soils on 28 

crop growth and yield has not yet been thoroughly analysed. To address research question 29 

2, a sensitivity analysis was conducted to measure the contribution of uncertain input 30 
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variations to the variability of APSIM-Wheat yield predictions under various climate 1 

conditions, soil types, and nitrogen fertilisation rates. 2 

1.6.3 Research question 3 (Chapter 4) 3 

What satellite observation is most suitable for updating the APSIM-Wheat model, and 4 

how should it be converted through an observation operator for use in data assimilation? 5 

There are multiple satellite sources and observations available for crop model data 6 

assimilation, but the selected observation should be both accessible and closely related 7 

to the state variable in the APSIM-Wheat model. It is also necessary to establish the 8 

connection between the observation and the state variable, so that the state can be 9 

converted to be comparable with the observation. 10 

1.6.4 Research question 4 (Chapters 5 and 6) 11 

How can crop biomass information from satellite be integrated into APSIM-Wheat to 12 

effectively improve yield prediction? More specific questions are: 13 

1. Which model state variables should be updated, and how can the non-leaf biomass of 14 

wheat be effectively updated by assimilating leaf biomass information? 15 

2. What is the influence of the timing and frequency of updates? 16 

3. How uncertain is the satellite observation? Will data assimilation with real satellite 17 

data improve the model’s yield prediction performance? 18 

The first two sub-questions are answered through a synthetic experiment. By testing and 19 

comparing the efficacy of updating various state variables at different frequencies and 20 

growth stages, the most efficient data assimilation strategy can be determined. The third 21 

sub-question is addressed by conducting data assimilation with real satellite observations 22 

and comparing the results to within-field yield measurements to assess the data 23 

assimilation performance. 24 

1.7 Thesis structure and publications 25 

This thesis consists of five main chapters (Chapter 2 to Chapter 6). Chapter 2 to 4 26 

correspond to research question 1 to 3, while Chapter 5 and 6 correspond to research 27 

question 4. Chapter 2 to 6 are presented in a journal article style, including an abstract, 28 

introduction, methods and materials, results, discussions, and conclusions. Chapter 7 is 29 
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a conclusion chapter, which integrates the main methods and findings, acknowledges the 1 

limitations, identifies future opportunities, and concludes the thesis.2 
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Chapter 2 Performance of APSIM-Wheat and 1 

factors influencing the performance: A 2 

review and meta-analysis 3 

2.1 Abstract 4 

Process-based crop models provide ways to predict crop growth, evaluate environmental 5 

impacts on crops, test various crop management options, and guide crop breeding. They 6 

can be used to explore options for mitigating climate change impacts when combined 7 

with climate projections and explore mitigation of environmental impacts of production. 8 

The Agricultural Production Systems SIMulator (APSIM) is a widely adopted crop 9 

model that offers modules for simulation of various crops, soil processes, climate, and 10 

grazing within a modelling system that enables robust addition of new components. This 11 

study uses APSIM Classic-Wheat as an example to examine yield prediction accuracy of 12 

biophysically based crop yield modelling and to analyse the factors influencing the model 13 

performance. We analysed yield prediction results of APSIM Classic-Wheat from 76 14 

published studies across thirteen countries on four continents. In addition, a meta-15 

database of modelled and observed yields from 30 studies was established and used to 16 

identify factors that influence yield prediction uncertainty. Our analysis indicates that, 17 

with site-specific calibration, APSIM predicts yield with a root mean squared error 18 

(RMSE) smaller than 1 t/ha and a normalised RMSE (NRMSE) of about 28%, across a 19 

wide range of environmental conditions for independent evaluation periods. The results 20 

show increasing errors in yield with limited modelling information and adverse 21 

environmental conditions. Using soil hydraulic parameters derived from site-specific 22 

measurements and/or tuning cultivar parameters improves yield prediction accuracy: 23 

RMSE decreases from 1.25 t/ha to 0.64 t/ha and NRMSE from 32% to 14%. Lower model 24 

accuracy was found where APSIM overestimates yield under high water deficit condition 25 

and when it underestimates yield under nitrogen limitation. APSIM severely over-26 

predicts yield when some abiotic stresses such as heatwaves and frost affect the crop 27 

growth. This paper uses APSIM-Wheat as an example to provide perspectives on crop 28 



19 

 

model yield prediction performance under different conditions covering a wide spectrum 1 

of management practices, and environments. The findings deepen the understanding of 2 

model uncertainty associated with different calibration processes or under various 3 

stressed conditions. The results also indicate the need to improve the model’s predictive 4 

skill by filling functional gaps in the wheat simulations and by assimilating external 5 

observations (e.g., biomass information estimated by remote sensing) to adjust the model 6 

simulation for stressed crops. 7 

2.2 Introduction 8 

Biophysical models, as agricultural simulation systems, are widely used to simulate crop 9 

growth, test management options, assess environmental trade-offs, and explore ways to 10 

cope with climate change impacts. The key strength of process-based biophysical models 11 

is their embodiment of our understanding of the dynamic interactions among crop, soil, 12 

water, atmosphere, and solar radiation within the agricultural system (Horie et al., 1992a). 13 

In essence, they simulate the biological and physical processes linking environmental 14 

effects to crop yield outcomes (Roberts et al., 2017). These models can assist in 15 

quantifying the impacts of changing climate on crop yield, designing efficient 16 

management practices, and informing crop breeding (Bustos-Korts et al., 2019; Chapman 17 

et al., 2003; Luo et al., 2009) to secure food production. But deficiencies in the models 18 

and their implementations (e.g., calibration and weather inputs) can introduce random or 19 

systematic errors leading to uncertain yield predictions. While current efforts are 20 

underway to improve biophysical schemes, model inputs and implementation, 21 

understanding the current state of process-based model performance and sources of 22 

uncertainty can guide us to more effective strategies. 23 

There exist several widely used process-based crop models that include Agricultural 24 

Production System SIMulator (APSIM) (Brown et al., 2018; Holzworth et al., 2014b; 25 

Keating et al., 2003; McCown et al., 1996, 1995), Simulateur mulTIdisciplinaire pour les 26 

Cultures Standard (STICS) (Brisson et al., 2002, 1998a; Nadine Brisson et al., 2003), 27 

Environmental Policy Integrated Climate (EPIC) (Williams et al., 1989), The Soil & 28 

Water Assessment Tool (SWAT) (Neitsch et al., 2011), Decision Support System for 29 

Agrotechnology Transfer (DSSAT) (Jones et al., 2003), World Food Studies (WOFOST) 30 

(Van Diepen et al., 1989; van Ittersum et al., 2003), Soil Water Atmosphere Plant (SWAP) 31 

(Van Dam et al., 1997), and AquaCrop (Hsiao et al., 2009; Raes et al., 2009b; Steduto et 32 
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al., 2009b). This work focuses on APSIM Classic as an example to explore a biophysical 1 

model’s performance in predicting yield and the factors influencing the performance.  2 

APSIM has been used for research and practical applications globally for over 25 years. 3 

It is also available as an online commercial agricultural decision-support tool, named 4 

Yield Prophet®, to serve Australian growers (Carberry et al., 2009; Hochman et al., 5 

2009b). APSIM consists of interconnected modules describing the biophysical roles of 6 

soil water, soil nutrients, organic matter, crops, weather, and management. It can simulate 7 

various crop types and pastures. Simulated crops include wheat (Asseng et al., 2000, 8 

1998a), maize (Archontoulis et al., 2014; Shamudzarira and Robertson, 2002), canola 9 

(Robertson and Lilley, 2016), and various legumes (Robertson et al., 2002). Previous 10 

studies have used it as a tool to reproduce the biophysical processes of the cropping 11 

system from paddock to regional level (Araya et al., 2020; Gaydon et al., 2006; Keating 12 

et al., 2002), including representing the role of soils (Connolly et al., 2002; Probert and 13 

Dimes, 2004; Thorburn et al., 2001), the influence of climate (Asseng et al., 2015; Bahri 14 

et al., 2019), and animal grazing (Bosi et al., 2020; Holzworth et al., 2014b). It has also 15 

been used to guide genotype design of future cultivars (Rötter et al., 2015) and to 16 

understand genotype, environment and management interactions (Casadebaig et al., 2016; 17 

Hammer et al., 2010; Manschadi et al., 2006; Martre et al., 2015a; Zheng et al., 2015). 18 

Researchers have also combined APSIM with various climate projection models to 19 

investigate future food security challenges and explore solutions to mitigate 20 

environmental impacts on production (Akinseye et al., 2020; Anwar et al., 2020; Asseng 21 

et al., 2011, 2004; Liu et al., 2016a; Ludwig and Asseng, 2006). It has been coupled with 22 

economic models to develop profit maximisation strategies and to study the effectiveness 23 

of crop insurance (Hansen et al., 2009; Van Wijk et al., 2014). As a cropping system tool, 24 

the accuracy and uncertainty of APSIM simulations under different environmental and 25 

input resources conditions are important to model users, as they need to be aware of the 26 

uncertainty in model outputs under the circumstances of their interest. 27 

Globally, wheat is the fourth most-produced crop and provides 20% of the calories 28 

consumed by people (FAO, 2020; Shiferaw et al., 2013). APSIM-Wheat yield prediction 29 

accuracy has been extensively evaluated for research applications and as a decision 30 

support tool for farmers. In addition to evaluations of APSIM-Wheat at field or regional 31 

scales with particular management practices or wheat cultivars, several APSIM 32 
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developers and researchers have also collected assessment datasets covering a broader 1 

spectrum of management practices, environments, and cultivars to analyse model 2 

strengths, weaknesses, and identify aspects for further development. An extensive set of 3 

the model validation data and descriptions are available on the APSIM website 4 

(https://www.apsim.info/). Holzworth et al. (2011) presented part of the wheat final yield 5 

validation results from those datasets, reporting a coefficient of determination (R2) of 6 

0.93 and root mean squared error (RMSE) of 0.46 t/ha. Brown et al. (2014) compared the 7 

predicted against observed yields for 164 simulations under a wide range of 8 

environments and treatments, resulting in an R2 =0.92. Gaydon et al. (2017) reviewed 9 

APSIM performance across various cropping systems in Asia and identified its strengths 10 

and weaknesses with 43 experimental datasets from 12 countries. They concluded that 11 

the model could be further improved in aspects related to harsh environments, 12 

conservation agriculture, and low input systems. Brown et al. (2018) validated the model 13 

with experimental datasets from 8 countries covering a broad range of crop treatments. 14 

The results demonstrated that the model performed well overall with an R2≥0.84 and 15 

Nash-Sutcliffe Efficiency (NSE)≥0.81. 16 

While extensive work has been done to evaluate the model yield prediction accuracy, 17 

factors that affect the model’s yield prediction uncertainty remain to be investigated 18 

comprehensively. In general, model prediction uncertainty originates from 19 

deficient/inaccurate model structure, input forcing data, parameter specification, and 20 

observations used for model calibration/validation (Vrugt et al., 2008). In this paper, we 21 

review and quantify APSIM Classic (which hereafter is referred to as “APSIM”)-Wheat 22 

yield prediction accuracy by compiling existing evaluation datasets from the literature 23 

and analysing the contribution of environmental and input resource factors to the model 24 

prediction uncertainty. The objective of the study is to review the performance of 25 

process-based crop model yield prediction and identify influential factors affecting 26 

prediction accuracy, with APSIM-Wheat used as an example. Firstly, an overview of the 27 

APSIM-Wheat yield prediction accuracy and uncertainty is provided by collating the 28 

model evaluation results from published studies. Next, a meta-analysis based on existing 29 

literature is performed to identify the factors influencing uncertain yield prediction, 30 

which include model specification and calibration, heat and frost stresses, water, and 31 

nitrogen availability. The uncertainties in yield prediction associated with the above-32 

mentioned factors are discussed. Finally, suggestions are provided for improving the 33 
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accuracy of crop models such as APSIM-Wheat prediction under circumstances of high 1 

prediction uncertainty. 2 

2.3 Methods and materials 3 

2.3.1 Overview of the APSIM Classic and Wheat module 4 

APSIM is an agricultural modelling platform equipped with various biophysical and 5 

management modules to simulate cropping systems (Holzworth et al., 2014b; Keating et 6 

al., 2003). The model is composed of multiple modules that simulate soil water, nutrients 7 

(carbon, nitrogen, and phosphorus), and crop growth processes under different 8 

environmental and management conditions. For example, the SoilWat (Jones and Kiniry, 9 

1986; Littleboy et al., 1992) calculates soil water movement using a cascading water 10 

balance model, and it is used by most APSIM users (all studies reviewed in this work 11 

used SoilWat). Soil Water Infiltration and Movement (SWIM) is another option to 12 

simulate the soil-water-solute balance based on Richards’ equation and the advection-13 

dispersion equation but is not adopted by most model users. This is likely because 14 

SoilWat was developed earlier than SWIM within the APSIM framework. It has been 15 

traditionally favoured by the APSIM user community due to its familiarity and the 16 

availability of extensive historical data. Its alignment with widely used soil measurement 17 

guidelines for APSIM (Dalgliesh et al., 2016) and the APSoil database enhances its 18 

compatibility and ease of use. SoilWat’s capacity for calibration across a wide range of 19 

soil types enables flexible parameterisation, allowing customisation for specific soil and 20 

climatic conditions. This adaptability makes SoilWat highly versatile for various 21 

agricultural systems and environmental contexts. The SoilN module simulates the 22 

transformations of carbon and nitrogen in the soil. SoilWat and SoilN interact with each 23 

other and together provide plant available soil water and nitrogen information to the 24 

Wheat module (Zheng et al., 2014) for simulating crop growth. The Wheat module 25 

simulates phenological development, plant morphology, biomass, and nitrogen 26 

concentration of different wheat components, grain number and grain size on a daily 27 

basis (Keating et al., 2001). Here we use APSIM-Wheat to collectively represent the 28 

wheat growth simulation model which consists of the required APSIM modules 29 

including SoilWat, SoilN, and Wheat. A detailed description of the Wheat module is 30 

provided by Zheng et al. (2014). We only provide an overview of the stress factors 31 



23 

 

considered in Wheat since they are used to better understand the factors influencing yield 1 

prediction performance. 2 

Water stress: The Wheat module accounts for water stress impacts in simulating 3 

photosynthesis and leaf expansion. The water stress factors affecting photosynthesis 4 

(𝑓𝑊_𝑝ℎ𝑜𝑡𝑜) and leaf expansion (𝑓𝑊_𝑒𝑥𝑝𝑎𝑛) is calculated as follows: 5 

 
𝑓𝑊_𝑝ℎ𝑜𝑡𝑜 =

𝑊𝑢

𝑊𝑑
 (2-1) 

 
𝑓𝑊_𝑒𝑥𝑝𝑎𝑛 = ℎ𝑤_𝑒𝑥𝑝𝑎𝑛(

𝑊𝑢

𝑊𝑑
) (2-2) 

where 𝑊𝑢 and 𝑊𝑑 are crop water uptake and water demand, respectively. 𝑓𝑤_𝑝ℎ𝑜𝑡𝑜 is a 6 

water stress factor ranging from 0 (complete stress) to 1 (no stress). This factor is then 7 

directly multiplied by the daily potential biomass accumulation to determine the actual 8 

biomass accumulation. ℎ𝑤_𝑒𝑥𝑝𝑎𝑛 is a water stress factor piecewise linearly related to 
𝑊𝑢

𝑊𝑑
. 9 

At 
𝑊𝑢

𝑊𝑑
= 0.1, the water stress factor 𝑓𝑊_𝑒𝑥𝑝𝑎𝑛 is 0, indicating complete stress on leaf 10 

expansion, the water stress factor increases linearly to 1 (no stress) as 
𝑊𝑢

𝑊𝑑
 approaches 1. 11 

Equations (2-1) and (2-2) indicate that both biomass accumulation and leaf expansion 12 

are scaled by the ratio of total daily water uptake to crop water demand, with leaf 13 

expansion more sensitive to the water stress. 14 

Nitrogen stress: The Wheat module accounts for nitrogen stress on phenology (not 15 

applied), biomass accumulation, leaf appearance and expansion, and grain filling. The 16 

stress for these aspects is determined by the difference between organ nitrogen 17 

concentration and minimum and critical nitrogen concentration. 18 

Heat stress: The Wheat module takes temperature as a factor affecting the crop into 19 

account in many ways (Zheng et al., 2014). The daily maximum temperature is 20 

considered as the temperature stress in calculating LAI senescence. The daily mean 21 

temperature (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2 is considered as the stress factor affecting wheat growth 22 

in (1) crop phenology via the thermal time; (2) root depth growth; (3) biomass 23 

accumulation; (4) biomass demand of grain and the rate of grain filling. 24 
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Frost stress: The Wheat module incorporates the leaf area senescence effect using a frost 1 

stress function; however, the default parameterisation of the stress factor results in zero 2 

impact during the whole simulation, which means it is not in application. 3 

2.3.2 Literature search and selection criteria 4 

We performed a literature search for peer-reviewed journal articles focused on APSIM-5 

Wheat performance evaluation using Scopus, ISI Web of Science, and Google Scholar. 6 

The following keywords in English were employed to search the literature: APSIM, 7 

wheat, Triticum aestivum, yield prediction, validation, evaluation, verification, and 8 

performance. A total of 108 articles published between September 1997 and February 9 

2020 are reviewed. Among these, only the 76 articles that included independent 10 

validation datasets (independent growing seasons/fields from calibration) of APSIM-11 

Wheat grain yield prediction using in situ yield data at field scale are used for the meta-12 

analysis of APSIM-Wheat yield uncertainty. The APSIM-Wheat validation datasets from 13 

these papers are across thirteen countries in four continents, including Australia (41 14 

studies), New Zealand (2 studies), United States of America (1 study), Belgium (1 study), 15 

The Netherlands (1 study), Turkey (1 study), China (20 studies), India (3 studies), 16 

Pakistan (2 studies), Syria (1 study), Iran (2 studies), Ethiopia (3 studies), Tunisia (1 17 

study) (some papers include locations from several countries, Figure 2-1). It has to be 18 

noted that the studies and collated data sets used in our meta-analysis are not 19 

representative of the full range of climates and management practices worldwide due to 20 

the limited spatial application of the model. Nevertheless, ninety-five percent of these 21 

studies cover arid and temperate Köppen-Geiger climate types while the other five 22 

percent are located in tropical and cold climates (Peel et al., 2007). The dataset we 23 

compiled covers mainly Australia, China, and North Africa, five papers also feature 24 

global data collections that include North American and European sites. The number of 25 

studies reflects the level of acceptance and popularity of APSIM in the respective 26 

countries. Although the wheat regions of Europe and North America are 27 

underrepresented in our data, wheat production in Australia and China accounts for a 28 

significant proportion (approx. 22% according to FAOSTAT Statistical Database, 2017) 29 

of global wheat production. In addition, situations such as extreme temperatures, 30 
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different water and nitrogen availability, various soil types, and hydraulic conditions are 1 

well covered by our dataset. 2 

 3 

Figure 2-1. Number of articles for each country (the dataset of United States of America is in the 4 

conterminous United States) 5 

2.3.3 APSIM-Wheat calibration and evaluation metrics 6 

The model evaluation datasets in reviewed papers contain calibration and validation 7 

processes. Here calibration refers to all processes to improve the model fit to data, while 8 

validation refers to testing models against independent data not used in calibration to 9 

ensure the rigour of the model evaluation. In model calibration, variables that are related 10 

to crop growth, such as physiological dates, leaf area index (LAI), biomass, yield, soil 11 

water content, and evapotranspiration are typically considered as the benchmarks for 12 

calibration and validation. Based on different data sources used, three calibration (or 13 

parameter setting) methods were defined in this paper: (1) Manual/automatic tuning of 14 

parameters to make the model simulations better fit the observations; (2) Direct 15 

specification of parameters using field measurements of these parameters; (3) Parameter 16 

specification using available databases (e.g., APSoil) or estimated data such as estimating 17 

lower limits from soil texture. The first two methods are collectively referred to as a fully 18 

site-specific calibration. If only one of them is adopted, it is partially site-specific 19 

calibration. The third method is classified as non-site-specific calibration (Table 2-1). 20 



26 

 

Table 2-1. Calibration methods defined in this paper 1 

Manual tuning of parameters 
Site-specific calibration 

Parameter specification using ground observations. 

Parameter specification using APSoil or estimated data. Non-site-specific calibration 

 2 

Many researchers specify the specific cultivar used in the simulation or manually adjust 3 

genetic parameters, especially those controlling wheat phenology and yield development 4 

by trial-and-error to improve the model predictions against field observations. The 5 

genetic parameters used to characterise the cultivar and their calibrated value ranges are 6 

summarised in Table 2-2. The details of reported calibrated values of these parameters 7 

are summarised in Table B. 1. Some coefficients listed in Table B. 1 were derived from 8 

results for multiple soil types, sowing dates, sites, and growing seasons, which should 9 

help ensure the model robustness. 10 

Table 2-2. Definition of the genetic parameters 11 

Generic parameter name Unit Definition Value range 

tt_end_of_juverile °C 

The thermal time from 

end of juvenile to 

terminal spikelet stage 

590 – 680 

(North China 

Plain, China) 

380 (North-

eastern Iran) 

tt_floral_initiation °C 

The thermal time 

target for floral 

initiation 

500 (North-

eastern Iran) 

tt_start_grain_fill °C 

The thermal time 

target to start grain 

filling stage 

545, 707 (Iran) 

tt_startgf_to_mat °C 

The thermal time 

target from beginning 

of grain filling to 

maturity 

420 – 650 

(North China 

Plain, China, 

Iran) 

750 (India) 

potential_grain_filling_rate g/(grain °Cd) 
Potential grain filling 

rate 

0.002 – 0.003 

(North China 

Plain, China) 

0.00129 (Iran) 

grain_per_gram_stem grain 
Numbers of grain per 

gram stem 

22 – 33 (North 

China Plain, 

China, Iran) 

max_grain_size g Maximum grain size 

0.038 – 0.05 

(North China 

Plain, China) 
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vern_sens N/A 
Sensitivities to 

vernalisation 

1.0 – 3.1 (North 

China Plain, 

China, India, 

Iran) 

photop_sens N/A 
Sensitivities to 

photoperiod 

1.8 – 3.5 (North 

China Plain, 

China) 

3.8 (India) 

3.5, 4.7 (Iran) 

phyllochron °Cd Phyllochron interval 
85 (North China 

Plain, China) 

95 (India, Iran) 

 1 

Soil parameters such as soil texture, soil hydraulic, and chemical parameters were usually 2 

specified in studies using laboratory test data (soil samples were taken from study fields), 3 

APSoil soil database (Dalgliesh et al., 2012, 2009), semblable objects or estimated data, 4 

such as estimating lower limits from soil texture (Sadras et al., 2003). 5 

Several statistical criteria are commonly selected to evaluate model performance: the 6 

coefficient of determination (R2), root mean square error (RMSE, also referred to as root 7 

mean square difference, RMSD), normalised RMSE (NRMSE), model efficiency (EF), 8 

and/or index of agreement (d) defined as:  9 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

 
(2-3) 

 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/𝑂 (2-4) 

 
𝐸𝐹 = 1 −

∑ (𝑃𝑖 − 𝑂𝑖)
2𝑁

𝑖=1

∑ (𝑂𝑖 − 𝑂)
2

𝑁
𝑖=1

 (2-5) 

 
𝑑 = 1 −

∑ (𝑃𝑖 − 𝑂𝑖)
2𝑁

𝑖=1

∑ (|𝑃𝑖 − 𝑂| + |𝑂𝑖 − 𝑂|)
2

𝑁
𝑖=1

 (2-6) 

where 𝑃𝑖 and 𝑂𝑖 represent ith predicted and observed values, respectively, 𝑂 the mean 10 

observed values, and N the sample size. R2 measures the goodness-of-fit of a linear 11 

relationship between simulated and observed values, and hence ignores model bias. R2 is 12 

also sensitive to the variance of the samples. RMSE and NRMSE represent the mean 13 

difference of predictions and observations, and they include measures of both bias and 14 
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random errors. EF and d assess the degree of model prediction and are similar to R2, 1 

except they are influenced by both bias and random errors. The index of agreement d is 2 

normalised by a measure of combined spread in observations and predictions, while EF 3 

(and R2) are normalised by the spread in observations. The model reproduces 4 

experimental data perfectly when R2=1, RMSE=0, NRMSE=0, EF=1 and d=1. 5 

2.3.4 Description of reviewed datasets 6 

Table 2-3 presents basic information on each paper validation datasets – location, 7 

reference, APSIM version, APSIM performance, and influential factors affecting the 8 

model performance. All reviewed works used APSIM Classic (version 1.X – version 7.9). 9 

The model has been applied mostly at plot or paddock, and sometimes regional, scales 10 

as a cropping system tool solely to assess the environmental impacts on food production, 11 

or combined with other models (e.g., climate projection models, economic models) to 12 

investigate future food security challenges and explore solutions or to develop profit 13 

maximisation strategies and study the effectiveness of crop insurance. A full version of 14 

Table 2-3 with detailed information is shown in Table B. 2.15 



29 

 

Table 2-3. List of validation datasets from the literature used in this study (* Data were used to compose the meta-database for further analysis in Chapter 2.4) 

Country Region Reference APSIM version APSIM performance Influential factor  

Australia 

Western Australia 

(Asseng et al., 2004, 2002, 2001, 1998b, 

1998a; Bell et al., 2009*; Bryan et al., 

2014*; Fisher et al., 2001; Fletcher et al., 

2020*; Lawes et al., 2009; Oliver et al., 

2006*, 2009; Oliver and Robertson, 

2009; Wang et al., 2003*; Wong and 

Asseng, 2006) 

NWheat, 5.2, 5.4, 

7.3, 7.8, N/A 

Yield-RMSE=0.31 to 1.2 t/ha 

Yield-R2=0.69 to 0.86 

Biomass-RMSE=0.8 to 2.8 t/ha 

Biomass-R2=0.80 to 0.94 

LAI-RMSE=0.6 to 1.3 

LAI-R2=0.53 to 0.73 
Model calibration (Hunt et al., 

2006; Lilley et al., 2003; Sadras et 

al., 2003) 

Soil cracking (Paydar et al., 2005) 

 

Water stress (Fletcher et al., 2020; 

Peake et al., 2014; Zeleke and 

Nendel, 2016) 

 

Nitrogen stress (Peake et al., 

2014) 

 

Heat stress (Hochman et al., 

2009a; Peake et al., 2014) 

 

Lodging (Peake et al., 2014) 

 

Root-lesion nematode (O’Leary et 

al., 2016; Probert et al., 1995) 

 

Subsoil constraints (Hochman et 

al., 2007) 

 

Queensland 

(Bell et al., 2009*; Hochman et al., 

2007; Mielenz et al., 2016*; O’Leary et 

al., 2016*; Peake et al., 2014*; Probert 

et al., 1998, 1995; Wang et al., 2003*) 

1.X, 5.0, 5.4, 7.4, 

7.5, 7.6, N/A 

Yield-RMSE=0.50 to 1.62 t/ha 

Yield-R2=0.30 to 0.92 

New South Wales 

(Bryan et al., 2014*; Hochman et al., 

2007; Innes et al., 2015; Lilley et al., 

2003; Lilley and Kirkegaard, 2008*; 

O’Leary et al., 2016*; Paydar et al., 

2005*; Zeleke and Nendel, 2016*) 

2.1, 5.0, 7.3, 7.5, 

7.6, N/A 

Yield-RMSE=0.40 to 1.39 t/ha 

Yield-NRMSE=18.9% (Innes et 

al., 2015) 

Yield-R2=0.69 to 0.92 

Victoria 

(Anwar et al., 2009; Bryan et al., 2014*; 

Hochman et al., 2013; O’Leary et al., 

2015; Sadras et al., 2003*) 

5.3, 7.3, 7.4, N/A 
Yield-RMSE=0.19 to 1.29 t/ha 

Yyield-R2=0.6 to 0.96 

South Australia 
(Bryan et al., 2014*; Luo et al., 2005; 

Yunusa et al., 2004) 

1.4 Patch 2, 2.0, 

7.3 

Yield-RMSE=0.45 t/ha 

Yield-R2=0.69 

Yield-residuals=~0.4 t/ha 

Tasmania (Acuña et al., 2015; Phelan et al., 2018*) 7.1, 7.8 

Yield-RMSE=1 t/ha 

Yield-R2=0.83 to 0.84 

Yield-EF=0.82 

Australia assembled data 
(Carberry et al., 2013, 2009; Hochman et 

al., 2009a; Hunt et al., 2006*) 
Yield Prophet 

Yield-RMSE=0.19 to 0.80 t/ha 

Yield-R2=0.52 to 0.89 

New 

Zealand 
Lincoln (Asseng et al., 2004; Bell et al., 2009*) NWheat, 5.4 

Yield-RMSE=0.5 to 1.2 t/ha 

Yield-NRMSE=~18% 

Yield-R2=0.72 to 0.77 

Biomass-RMSE=1.1 to 2.8 t/ha 

Biomass-NRMSE=~17% 
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Biomass-R2=0.86 to 0.94 

LAI-RMSE=0.9 to 1.3 

LAI-R2=0.53 to 0.73 

China 

North China 

Plain, Loess 

Plateau, 

Gongzhuling, 

Ürümqi, 

Zhengzhou, 

Xuzhou, Inner 

Mongolia 

(Bai et al., 2020; Chen et al., 2010c*, 

2010b*, 2010a*; He et al., 2014; Li et 

al., 2016, 2014; Liu et al., 2016a*; Sun 

et al., 2015; Van Oort et al., 2016; Wang 

et al., 2009*, 2014*, 2013*; Xiao and 

Tao, 2014*; Yan et al., 2020*; Zhang et 

al., 2013*, 2012*; Zhao et al., 2017*, 

2015*, 2014a, 2014b*) 

5.1, 5.3, 6.1, 7.0, 

7.4, 7.5, N/A 

Yield-RMSE=0.29 to 1.26 t/ha 

Yield-NRMSE=7% to 22% 

Yield-R2=0.46 to 0.97 

Yield-d=0.85 to 0.97 

Biomass-RMSE=0.88 to 1.4 t/ha 

Biomass-R2=0.62 to 0.91 

Model calibration (Zhao et al., 

2014b) 

 

Water stress (Balwinder-Singh et 

al., 2011; Deihimfard et al., 2015) 

 

Nitrogen stress (Zhao et al., 

2014a) 

 

Heat stress (Hussain et al., 2018; 

Liu et al., 2016a; Lobell et al., 

2012; Zhang et al., 2012) 

 

Frost stress (Chen et al., 2010a, 

2010c; Wang et al., 2009; Zhang 

et al., 2013, 2012) 

 

Soil cracking (Moeller et al., 

2007; Mohanty et al., 2012) 

India 

Punjab, Indo-

Gangetic Plains, 

Bhopal 

(Balwinder-Singh et al., 2011*; Lobell et 

al., 2012; Mohanty et al., 2012) 
5.1, 6.0, N/A 

Yield-RMSE=0.44 to 0.55 t/ha 

Yield-NRMSE=12.4% to 16.5% 

Yield-R2=0.86 to 0.91 

Biomass-RMSE=0.3 to 0.8 t/ha 

Biomass-NRMSE=3.6% to 

10.8% 

Biomass-R2=0.92 to 0.99 

(Balwinder-Singh et al., 2011) 

Iran 

Grogan region 

and Khorasan 

province 

(Deihimfard et al., 2015*; Soltani and 

Sinclair, 2015) 
7.X, 7.2 

Yield-RMSE=0.62 to 0.71 t/ha 

Yield-R2=0.81 to 0.83 

Syria 

Dry areas at Tel 

Hadya, north-

western Syria 

(Moeller et al., 2007) 4.2 

At pre-anthesis stage, the model 

overestimated leaf-area, nitrogen 

uptake and biomass 

accumulation (Moeller et al., 

2007). 

Pakistan 

Islamabad; 

Faisalabad and 

Layyah in Punjab-

Pakistan 

(Ahmed et al., 2016; Hussain et al., 

2018) 
7.8, N/A 

Phenology-RMSE=2.0 to 5.1 

days 

Phenology-R2=0.8 

LAI-RMSE=0.14 to 0.32 

LAI-R2=0.83 

Biomass-RMSE=0.15 to 0.40 

t/ha 

Biomass-R2=0.92 

Yield-RMSE=0.12 to 0.31 t/ha 
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Yield- R2=0.82 (Ahmed et al., 

2016) 

The model overestimated yield 

with late planting dates (Hussain 

et al., 2018). 

Asia assembled data (Twelve 

Asian countries, total of 43 

experimental datasets, 966 

crops, 326 of them were 

wheat) 

(Gaydon et al., 2017)* Multiple versions 

Yield-RMSE=0.845 t/ha 

Yield-R2=0.79 

Yield-standard deviation=1.794 

t/ha 

APSIM underestimated LAI, 

biomass, and yield in NCP, 

China due to incorrect 

temperature response of 

physiological processes. 

Ethiopia Northern Ethiopia (Araya et al., 2020*, 2017) 7.4, 7.7 

Yield-NRMSE=7.7% to 22.8% 

Yield-R2=0.63 

Days of flowering-

NRMSE=3.1% to 4.3% 

Days of flowering-R2=0.91 

Days of maturity-NRMSE=7.5% 

to 8.3% 

Days of maturity-R2=0.81 

 

Tunisia 

semiarid (Kef) 

and sub-humid 

(Bizerte) 

(Bahri et al., 2019) N/A 
Yield-RMSE=1.647 t/ha 

Yield-d=0.83 (Bahri et al., 2019) 

The Netherlands, Australia, 

Belgium, China, Ethiopia, 

Iran, New Zealand, Turkey, 

United States of America 

(Asseng et al., 2000; Brown et al., 2018, 

2014; Holzworth et al., 2018, 2014b) 
Multiple versions 

Yield-RMSE=0.46 to 1 t/ha 

Yield-R2=0.84 to 0.93 

More validation results can be 

found in the model fields. 
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Overall, researchers report that site-specifically calibrated APSIM-Wheat provides a 1 

useful yield prediction tool for a wide range of environments. Nevertheless, while the 2 

model incorporates stress functions to account for limitations of water, nitrogen, heat, 3 

and frost (Zheng et al., 2014), it sometimes fails to capture these stress effects sufficiently 4 

(Barlow et al., 2015). Each of the stress effects will be discussed in more detail in Chapter 5 

2.4.  6 

2.3.5 Building database for meta-analysis and performance metrics 7 

All papers listed in Chapter 2.3.4 that had data that were extractable from tables, figures, 8 

text, or provided by the authors were included in the meta-database. In total, data from 9 

30 studies were used to compose the meta-database for further analysis. These 30 studies 10 

are marked with asterisks in Table 2-3. Digitising the data from published scatter plots 11 

in the literature was performed with the WebPlotDigitizer tool 12 

(https://automeris.io/WebPlotDigitizer/). The database includes 1895 pairs of observed 13 

and simulated grain yields expressed in tons per ha. All these points were for validation 14 

simulations. The data originated from seven countries and included 51 wheat cultivars 15 

(see Table 2-3). These data were assembled and categorised according to different crop 16 

stresses and model initialisations. The conditions captured were: 17 

• Crop stresses: water availability, nitrogen availability, heat stress, lodging, disease. 18 

• Model initialisations: fully site-specific calibration, partially site-specific calibration, 19 

non-site-specific calibration.  20 

APSIM Classic (model version please refer to Table 2-3) performance was evaluated for 21 

the whole dataset and subsets corresponding to various conditions using the performance 22 

metrics in Chapter 2.3.3. To obtain R2
, a linear regression was fitted to the observed and 23 

simulated grain yield pairs. Residuals (simulated – observed yield) were also calculated 24 

and box plots drawn for different conditions. Comparisons between predicted yield 25 

residuals and observed yields were also plotted to visually investigate model capability 26 

and limitations. Statistics of coefficient of determination (R2), RMSE (equation (2-3)), 27 

NRMSE (equation (2-4)), and EF (equation (2-5)) were utilised to quantify the model 28 

performance. 29 
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2.4 Factors affecting APSIM yield prediction 1 

Several factors affecting APSIM-Wheat yield prediction were distilled and presented in 2 

the following chapter after all papers in Table 2-3 were reviewed and the meta-database 3 

composed with 30 papers was analysed (Chapter 2.3.5). Identified influencing factors 4 

include model calibration, crop resources (water, nitrogen), temperature, and other biotic 5 

or abiotic stresses. 6 

Overall, the model performed well. Figure 2-2 compares the predicted yield with the 7 

observed yield from the meta-database. APSIM-Wheat predicted grain yield with 8 

R2=0.68, RMSE=1.06 t/ha, NRMSE=28.89%, EF=0.63. This result is consistent with the 9 

findings from most papers reviewed in Chapter 2.3. To put these results in context of 10 

practical cropping decisions, Yield Prophet® users reported that discrepancies between 11 

the predicted and observed yields exceeding 0.5 t/ha reduced their confidence in using 12 

the model for decision support (Hochman et al., 2009a), indicating that factors 13 

contributing to the uncertainty and potential solutions should be explored. The deviation 14 

of observed vs. simulated yields scatters from the 1:1 line in Figure 2-2 (black dashed 15 

line) denotes model simulation deficiencies. The discrepancy between the regression line 16 

(grey dashed line) and the 1:1 line indicates existence of bias that varies from positive to 17 

negative values with yield. Potential causes of this bias include not fully site-specific 18 

calibration, water stress, nitrogen stress, heat stress, lodging, root-lesion nematode. The 19 

variation of yield prediction error and uncertainty under different environments, 20 

treatments, and model initialisations will be analysed in the following chapters separately. 21 
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 1 

Figure 2-2. Comparison between observed and APSIM-Wheat simulated grain yields (black 2 

dashed line: 1:1 line; grey dashed line: regression line) 3 

2.4.1 Model calibration 4 

APSIM-Wheat performs optimally when reliable and accurate soil information is 5 

available and biotic/abiotic stresses are absent (Dalgliesh et al., 2012). Accurate 6 

specification of soil water holding characteristics affects APSIM-Wheat prediction 7 

performance (Lilley et al., 2003; Sadras et al., 2003). Specifying lower limits of plant 8 

available water with field measurements rather than using estimations from soil texture 9 

can improve simulation accuracy. In one study, the R2 of the relationship between 10 

simulated and observed yields increased from 0.60 to 0.74, and the RMSE decreased from 11 

0.31 t/ha to 0.19 t/ha when using lower limits of extractable water derived from field 12 

gravimetric soil water measurements , compared with texture based estimates (Sadras et 13 

al., 2003). Hunt et al. (2006) indicated that when the model was initialised with 14 

appropriate soil water holding characteristics and input data, 68% of the yield predictions 15 

were within ±0.5 t/ha of the observed yields.  16 

Figure 2-3 shows APSIM-Wheat validation results of the studies that used site-specific 17 

calibration. As described in Chapter 2.3.3, site-specific calibration is done by (1) 18 

manually tuning parameters to make the simulations correspond well with the 19 

observations or (2) specifying parameters with field measurements (usually soil texture, 20 
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soil hydraulic, and/or chemical parameters. The results indicated that the model, once 1 

site-specifically calibrated ((1), (2) individually or simultaneously), was able to estimate 2 

the harvest yield with an R2 of 0.90, RMSE=0.64 t/ha, and a NRMSE of 14.08%. The 3 

model performance improved when model cultivar parameters were manually tuned and 4 

soil parameters were initialised with ground observations simultaneously (fully site-5 

specific calibration), resulting in RMSE smaller than 0.5 t/ha, NRMSE of 10.15%, and an 6 

EF of 0.85, indicating that the model is performing well. When only the cultivar 7 

parameters were calibrated, the model maintained the EF of 0.8, with RMSE and NRMSE 8 

slightly increased to 0.7 t/ha and 12.93%, and an R2 of 0.82. The yield prediction 9 

performance began to decline when only the soil parameters were specified with field 10 

measurements without adjusting other model parameters, both R2 and EF decreased to 11 

0.77, with an NRMSE=20.82%. The RMSE was only 0.51 t/ha since the yield range in 12 

this case were lower than in other cases. 13 

Across the Australian dryland cropping area, the crucial challenge for predicting 14 

commercial wheat yield is to accurately describe the soil characteristics, soil water, and 15 

nitrogen sources (Carberry et al., 2009). This requirement motivated the development of 16 

the APSoil soil database (Dalgliesh et al., 2012, 2009), which provides representative 17 

soil parameters for major Australian soils. For Australian paddocks, if field measured 18 

soil parameters are not available, APSoil can provide soil information such as the Plant 19 

Available Water Capacity (PAWC) based on approximate soil type information (Innes 20 

et al., 2015; Phelan et al., 2018). 21 

Figure 2-4 shows results when soil parameters were specified using a soil database – 22 

APSoil or estimated soil hydraulic characteristics. Model default genotype parameters 23 

were utilised for specific cultivars. Compared to cases in Figure 2-3, these initialisation 24 

methods led to decrease the model accuracy and uncertainty, resulting in RMSE 25 

increasing from 0.64 to 1.25 t/ha and NRMSE increasing from 14.0% to 32.46%. When 26 

estimated soil hydraulic parameters were used, the RMSE of yield prediction was 1.37 27 

t/ha and the NRMSE was 40.45%. Performance improved using the APSoil database to 28 

specify soil parameters resulting in model predictions with lower RMSE and NRMSE of 29 

0.7 t/ha and 13.0%, compared with the model performance when using soil texture-30 

derived soil parameters. 31 
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Results in Figure 2-3 and Figure 2-4 indicate that manually tuning cultivar parameters, 1 

and/or specifying the soil characteristics with ground observations can substantially 2 

improve the model performance. Convincing evidence is presented to demonstrate that 3 

APSIM-Wheat is able to simulate wheat grain yield within 0.5 t/ha when fully site-4 

specific calibration implemented. When field measured data is not available, using a 5 

look-up-table approach that uses APSoil to specify the soil hydraulic properties can 6 

achieve yield prediction accuracy of RMSE=0.7 t/ha. Setting soil parameters with 7 

estimated data is still acceptable, but not ideal. The estimated soil parameters largely 8 

affect the yield prediction accuracy and uncertainty since they cannot appropriately 9 

describe the soil properties. 10 

 11 

Figure 2-3. Comparison between observed and APSIM-Wheat simulated grain yields when 12 

cultivar parameters were manually tuned, and/or soil parameters were specified with ground 13 

observations (green circle: both cultivar and soil parameters were calibrated, R2=0.87, 14 

RMSE=0.44 t/ha, NRMSE=10.15%, EF=0.85; blue dot: only cultivar parameters were tuned, 15 

R2=0.82, RMSE=0.7 t/ha, NRMSE=12.93%, EF=0.8; orange square: only soil parameters were 16 

specified using field measurements, R2=0.77, RMSE=0.51 t/ha, NRMSE=20.82%, EF=0.77) 17 
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 1 

Figure 2-4. Comparison between observed and APSIM-Wheat simulated grain yields when soil 2 

parameters specified using APSoil or estimated data (blue dot: estimated soil characteristics, 3 

R2=0.45, RMSE=1.37 t/ha, NRMSE=40.45%, EF=-0.27; orange square: soil parameters were 4 

specified using APSoil, R2=0.78, RMSE=0.7 t/ha, NRMSE=13.0%, EF=0.76) 5 

Some other parameters and functions in APSIM have been modified by authors to 6 

achieve better performance. The maximum and critical nitrogen concentration in leaves 7 

used in the APSIM-Wheat model was too low when compared to the observed data 8 

collected from North China Plain (NCP) fields. Adjustment of these two parameters can 9 

improve the model simulation, especially under low nitrogen input (Zhao et al., 2014a). 10 

Root growth parameters were modified to better simulate the root biomass and its 11 

distribution (Zhao et al., 2015, 2014b). The soil moisture factor used for the 12 

denitrification rate calculation was modified by Mielenz et al. (2016), instead of using 13 

drained upper limit (DUL) as the threshold, the authors modified it to be decided by the 14 

water-filled pore space and saturation (SAT). Brown et al. (2018) pointed out that the 15 

phenology model needs careful parametrisation for different cultivars. 16 

2.4.2 Water availability 17 

To assess the impacts of water availability on APSIM yield prediction, only site-18 

specifically calibrated datasets from irrigated or water limited fields have been selected. 19 

Figure 2-5 shows box plots of prediction residuals. The cases are presented in the order 20 



38 

 

of water stress, from highest (1) to lowest (3). Case 1 shows datasets for crops under 1 

water limited conditions. Datasets from two papers were included (Fletcher et al., 2020; 2 

Peake et al., 2014). Wheat from Case 2 was irrigated at critical growth stages with 3 

different amounts of water (Balwinder-Singh et al., 2011; Chen et al., 2010a; Deihimfard 4 

et al., 2015; Wang et al., 2013c; Xiao and Tao, 2014; Yan et al., 2020; Zhang et al., 2013; 5 

Zhao et al., 2014b). Wheat from Case 3 was also irrigated, but not at specific growth 6 

stages. The irrigation amount and scheduling were adapted to the actual water demand 7 

(Gaydon et al., 2017; Mielenz et al., 2016; Yan et al., 2020). 8 

Wheat in Case 1 suffered from water stress. Peake et al. (2014) observed mild water stress 9 

during the pre- and post-anthesis, while the model was also used to predict water-limited 10 

yield (Fletcher et al., 2020). 50% of the predicted yield residuals were within the range 11 

of 0.2–1 t/ha, 99.3% of them were within the range -0.4–2.4 t/ha, while the median was 12 

approximately 0.33 t/ha. From the datasets we analysed, yield overestimation was more 13 

obvious than underestimation under water stressed conditions. In Case 2, the fields were 14 

mainly from Punjab, India, NCP, China, and North-eastern Iran. They were irrigated at 15 

critical growth stages, e.g., sowing, jointing, flowering, and grain filling, with total 16 

irrigation amounts between 75 and 450 mm. The accuracy of modelled yields was 17 

acceptable with RMSE around 0.65 t/ha. The median of residuals of modelled yields did 18 

not exceed -0.5 t/ha. Approximately 50% of the predicted yield residuals were within the 19 

range of -0.65–0.15 t/ha, and 99.3% of them were within the range of -1.7–1.25 t/ha. 20 

Underestimation was more obvious than overestimation. The model was examined by 21 

Balwinder-Singh et al. (2011) in India for six irrigation scheduling treatments. The 22 

results indicated that it underpredicted grain yield by 0.6–1 t/ha when crops were subject 23 

to water deficit. Case 3 shows crops irrigated according to their water demand. Irrigation 24 

scheduling and amount were adjusted according to rainfall amount, soil water content, 25 

and crop requirement. Crops in this case barely experienced water limitation and the 26 

model performance was more accurate and stable. The residual medians were less than 27 

0.2 t/ha, and 99.3% of the residuals were within ±0.7 t/ha. 28 

Case 1 demonstrated that APSIM-Wheat tend to overestimate yield with more significant 29 

uncertainty under water-limited conditions. It seems that the constraint on wheat growth 30 

by limited water is not well accounted for by APSIM-Wheat, leading to overly optimistic 31 

grain yield prediction. The mechanism that APSIM-Wheat uses to handle water stress 32 
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was described in Chapter 2.3.1. The model only accounts for water deficit impacts on 1 

biomass production and leaf expansion. It does include a function intended to account 2 

for water stress on phenology, but the default parameterisation results in no effect on 3 

phenology. Consequently, proper parametrisation to correctly estimate drought impact 4 

on phenology under water-limited condition is needed. For example, Chauchan et al. 5 

(2019) accounted for soil water effect to modulate APSIM Classic (version 7.10) 6 

predicted flowering time. But the proposed method can only reduce the daily thermal 7 

time and delay the flowering time when the soil water is sufficient (fractional available 8 

soil water>0.65). A proper scheme to directly simulate the impact of soil water stress on 9 

flowering time is yet to be developed. Greater water limitations result in higher canopy 10 

temperatures, which reduce the duration of biomass accumulation. The increased canopy 11 

temperatures under water deficit conditions should be considered to improve the 12 

performance of yield prediction (Asseng et al., 2004). Asseng et al. (1998b) also 13 

attributed the underpredicted yield to insufficient re-translocation of stored pre-anthesis 14 

carbohydrates to the grain by APSIM. They suggested the model can be improved by 15 

including functions to remobilise additional carbohydrates of stem into the grain when 16 

crops experience severe drought conditions. Case 2 showed that with critical-stage 17 

irrigation the model can predict yield with acceptable accuracy (RMSE=0.65 t/ha), while 18 

the uncertainty is still obvious. These datasets demonstrated that once extra water was 19 

supplied (in addition to rainfall), APSIM-Wheat could capture the additional water 20 

resource. Case 3 showed that supplying irrigation water according to crop demand to 21 

avoid water limitation was associated with better modelling performance. 22 

Users operating APSIM in a water-limited situation should be aware of uncertainty and 23 

possible yield overestimation. Most researchers validate the model using real-world 24 

datasets to create confidence in its performance before using it in combination with 25 

climate projections for predicting food production under climate change scenarios. The 26 

frequency and intensity of droughts are projected to increase (Zhou et al., 2019) and the 27 

water availability for rain-fed agriculture is decreasing, and the crop model will probably 28 

underestimate yields under those conditions. Larger prediction uncertainty should be 29 

considered when utilising cropping system as a tool to assess future food production and 30 

security. 31 
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 1 

Figure 2-5. Boxplot of APSIM predicted yield residuals under different irrigation practices 2 

2.4.3 Nitrogen availability 3 

We selected site-specific calibrated datasets to assess the impacts of nitrogen availability 4 

on APSIM yield prediction, in the absence of other stresses. Figure 2-6 shows box plots 5 

of prediction residuals of six cases, which were ordered from the largest to the smallest 6 

nitrogen stress. Case 1 shows datasets when crops experience nitrogen limitation. 7 

Datasets from two papers were included (Peake et al., 2014; Wang et al., 2014). Case 2 8 

was also composed of datasets from two papers (Sadras et al., 2003; Zhao et al., 2014b). 9 

The authors did not specify the nitrogen rate in these datasets but declared no nitrogen 10 

stress was observed. Wheat from Cases 3–6 was fertilised with different rates of nitrogen. 11 

The application amount increased from 64 kg N/ha to 195 kg N/ha. Data for Case 3 were 12 

collected from three papers (Araya et al., 2020; Paydar et al., 2005; Phelan et al., 2018), 13 

while Cases 4–6 used datasets from Xiao and Tao (2014) and Yan et al. (2020). 14 

Case 1 reported nitrogen stress symptoms (leaf yellowing) at DC31 (early stem 15 

elongation) (Peake et al., 2014), while the model was also used to predict yield when no 16 

fertiliser was applied in fields (Wang et al., 2014). Both overestimation and 17 

underestimation were observed with the median of residuals approximately -0.3 t/ha. In 18 

some cases, the underestimation was even more than 3 t/ha. Case 2 collected datasets 19 

with not specified fertilisation amounts, but no nitrogen stress was observed in the fields. 20 

The model predicted yield with acceptable accuracy and uncertainty. The median of 21 

residuals was close to zero. 50% of the predicted yield residuals were within the range 22 

of -0.5–0.2 t/ha, and 99.3% of them were within the range of -1.25–1 t/ha. Case 3 23 

contained datasets with nitrogen rates of 64, 75, 100, and 128 kg N/ha. The distribution 24 

of the prediction residuals was similar to those in Case 2. With the increasing nitrogen 25 

application rate, the predicted yield residuals were less scattered, ranging within ±1.0 26 
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t/ha to ±0.5 t/ha while the medians tended towards 0 t/ha. The model was well-performed 1 

to catch the fertilisation differences. 2 

Under nitrogen limited conditions (Case 1), APSIM-Wheat showed the largest 3 

uncertainties and more severe yield underestimation and the model tended to 4 

underestimate yield when crops suffered from nitrogen limitation. The reason as 5 

indicated by Peake et al. (2014) is that APSIM-Wheat overrated the nitrogen stress 6 

duration by two weeks longer compared to observed nitrogen stress in the paddocks. 7 

Cases 2–6 showed that once extra nitrogen was supplied, the model captured the 8 

increasing trend and tended to predict yield with better accuracy and lower uncertainty. 9 

The residuals were contained within ±1.0 t/ha when sufficient nitrogen was applied. 10 

An additional parametrisation of the nitrogen impacts on phenology would be able to 11 

better address potential simulation problems. Zhao et al. (2014a) assessed the nitrogen 12 

concentration parameters used in the model, the results indicated that the higher leaf 13 

maximum and critical nitrogen concentrations led the model to overrate the nitrogen 14 

stress impacts on biomass accumulation and underrate the impacts on leaf expansion. 15 

They suggested to adjust and verify these parameters to increase the prediction accuracy 16 

of the model for grain yield. 17 

 18 

Figure 2-6. Boxplot of APSIM predicted yield residuals under different nitrogen application rates 19 

(* fertiliser amount was not specified) 20 

2.4.4 Other stresses 21 

Figure 2-7 illustrates the model predicted yield residuals against the observed yield for 22 

datasets under irrigated and fertilised conditions. We intentionally included datasets for 23 

wheat without stress and under some abiotic stresses such as heat and lodging, to compare 24 

the model performance under stressed and stress-free situations (Deihimfard et al., 2015; 25 
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Liu et al., 2016b; Mielenz et al., 2016; Peake et al., 2014; Xiao and Tao, 2014; Yan et 1 

al., 2020; Zeleke and Nendel, 2016; Zhao et al., 2015, 2014b). The model showed a good 2 

performance for all stress-free cases, with RMSE=0.66 t/ha and NRMSE=12.49%. 3 

However, when the stressed cases are included, RMSE increased to around 1.03 t/ha and 4 

NRMSE to 20.26%, respectively. The mean residual is 0.3 t/ha and standard deviation is 5 

0.99 t/ha. Most of the residuals are between the range of ± 1.96 times of the standard 6 

deviation around the mean. The outliers are from the cases where the crops were under 7 

heat stress and impacted by lodging. 8 

Heat stress. Heat stress during wheat growth, especially at anthesis and grain filling 9 

stages, affects APSIM yield prediction significantly (Liu et al., 2016a). Hochman et al. 10 

(2009) reported that a widespread unseasonal heatwave, followed by a frost in the 11 

Wimmera and Mallee regions of Victoria, Australia in 2004 caused the model to 12 

overestimate yields by 0.9 t/ha with a mean simulated yield of 1.8 t/ha. Lobell et al. (2012) 13 

found that the shortening of the green season (by +2°C warming) was underrated by 14 

APSIM by up to eight days, and yield losses were underestimated by up to 50% after 15 

comparing the model simulation with a regression model based on nine years of wheat 16 

phenology (from satellite observations) and daily temperature data. Liu et al. (2016a) 17 

conducted environment-controlled chamber experiments to test the model response when 18 

heat stress happened at anthesis and grain filling stages. Wheat is more sensitive to heat 19 

at anthesis (orange squares in Figure 2-7) with RMSE=1.5 t/ha and NRMSE=35.47% 20 

since both grain number and size are affected, while heat during grain filling (green 21 

circles in Figure 2-7) only decreased the grain size, due to a shorter grain filling duration, 22 

resulting in RMSE=1.14 t/ha and NRMSE=22.75%. Barlow et al. (2015) also emphasised 23 

the need to define response functions for calculating extreme temperatures impacts, with 24 

a priority on the response during anthesis and grain filling stages. Hussain et al. (2018) 25 

evaluated performance of APSIM simulations of winter wheat sown at different times, 26 

from early to extremely late. The model poorly predicted yield for late planting dates due 27 

to high temperature during grain filling. Even a short-term exposure of wheat to extreme 28 

high temperatures at early grain filling can reduce the duration of grain filling and hence 29 

the cumulative degree days and resulting in smaller harvest yield (Stone and Nicolas, 30 

1995). Lobell et al. (2012) also detected greater senescence from extreme heat, beyond 31 

the impacts of increased average temperatures. 32 
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In summary, the quality of grain number and size simulation exerts a critical influence 1 

on the accuracy of yield prediction. Only using the daily mean temperature to apply heat 2 

stress is not effective in accounting for heat wave impacts. In addition, short periods (1–3 

3 days) of extremely high temperatures (> 33˚C) can also affect the crop growth and 4 

ultimately result in a significant reduction in grain yield (Barlow et al., 2015). 5 

Accounting for high daily maximum temperatures as another variable to determine the 6 

heat stress impact would help the model better respond to heat waves. 7 

Frost damage. Barlow et al. (2015) summarised three crucial physiological damages that 8 

have impacts on yield production in response to a frost event: seedling death during the 9 

vegetative stage, sterility at anthesis and death of formed grains during grain filling. Frost 10 

during the vegetative stage has smaller impact on harvest yield than during later stages 11 

as it mainly affects seedling survival (Fuller et al., 2007) and causes leaf senescence 12 

(Shroyer et al., 1995). The greatest yield production impacts resulting from frost are at 13 

the reproductive stage, and this frost sensitivity increases from heading to the end of 14 

anthesis (Frederiks et al., 2012). 15 

Hochman et al. (2013) found that the APSIM-Wheat (with the model default frost 16 

parameters) could not account for extreme events such as severe frosts and might 17 

overestimate harvest yields under those conditions, based on an assessment of the model 18 

with data collected from the Wimmera region of Victoria, Australia. In 1998 the crops 19 

on one farm of this region were severely damaged by stem frost and the model 20 

overestimated the harvest yield by more than 5 t/ha. Hochman et al. (2009) also reported 21 

an occurrence of both frost and heat damages in October 2004, late anthesis or early grain 22 

filling stages (the period when the crops are sensitive to extreme temperatures) in the 23 

Wimmera and Mallee regions of Victoria that caused the model to over-predict yield. For 24 

varieties with strong cold tolerance in the North China Plain, the minimum temperature 25 

threshold to cause leaf senescence was changed from -15°C to -20°C to eliminate the 26 

underestimation of LAI, biomass, and yield (Chen et al., 2010a; Wang et al., 2009; Zhang 27 

et al., 2013, 2012). The modified temperature response of thermal time calculation and 28 

the temperature response of radiation use efficiency (RUE) led to further improve model 29 

simulations (Chen et al., 2010a, 2010c). 30 

Lodging. The brown triangular points from Figure 2-7 represent the model predicted 31 

residuals against the observed yield when crops were impacted by lodging (the data is 32 
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from Peake et al. (2014)). Yield is severely over-estimated with RMSE=3.26 t/ha, 1 

NRMSE=76.77%. The reviewed APSIM-Wheat version does not consider effects of crop 2 

lodging, while lodging can be caused by many factors, e.g., excessive nitrogen 3 

fertilisation and irrigation, heavy rain, wind, or hailstorm. The development of functions 4 

in APSIM-Wheat that accounts for the effects of lodging would be desirable although it 5 

would require collection of extensive databases of crops affected by lodging. 6 

 7 

Figure 2-7. Comparison between predicted yield residuals and observed yield under irrigated and 8 

fertilised condition 9 

Other abiotic stresses. Some other factors APSIM-Wheat fails to simulate have been 10 

identified in model validation. The effect of soil cracking on soil evaporation is not taken 11 

into account in the reviewed model version, which leads the model to incorrectly simulate 12 

the water movement and further decreases yield prediction accuracy (Moeller et al., 2007; 13 

Mohanty et al., 2012; Paydar et al., 2005). Hochman et al. (2007) mentioned there was 14 

potential to improve yield prediction if a suitable function could be developed to describe 15 

the effects of subsoil constraints. When crops suffered hail damage in 1997 on one farm 16 

in the Wimmera region of Victoria, Australia, the model totally missed the hail storm 17 

damage and still predicted grain yield over 7 t/ha (Hochman et al., 2013). O’Leary et al. 18 
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(2015) tested the APSIM-Wheat under two water regimes (irrigation and rain-fed), two 1 

nitrogen fertilisation regimes (0 and 53 – 138 kg N/ha), and two sowing dates for daytime 2 

ambient (365 µmol/mol) and elevated (550 µmol/mol) CO2 environments at Horsham, 3 

Australia. The results indicated that the model showed a tendency to overestimate early 4 

biomass (DC31, stem elongation) (Zadoks et al., 1974), biomass at DC65 (anthesis), LAI 5 

at DC65, and grain yield under the normal CO2 conditions; the resulting RMSE values 6 

were 1.592 t/ha, 1.542 t/ha, 0.70 m2/m2, and 1.294 t/ha, respectively. Under the elevated 7 

CO2 condition, the model overcompensated the CO2 effect and over predicted early 8 

biomass and harvest yields. 9 

Biotic Stress. Crops in most of the reviewed papers were well managed, with no 10 

significant insects, weeds, pests, or plant diseases observed. O’Leary et al. (2016) 11 

examined the performance of the APSIM-Wheat model under different stubble, tillage, 12 

and nitrogen application management scenarios. Some large predictive errors were found 13 

when the model predicted yields for fields of Warwick, Australia, where the wheat was 14 

heavily infected with the root-lesion nematode. Biotic stress such as root disease load 15 

can have major impacts that are not represented in APSIM-Wheat yet. The simulated 16 

yield deviated more from the observed (RMSE=1.54 t/ha) when high nitrogen fertiliser 17 

was applied. 18 

2.4.5 Implications of the influential factors in changing climate 19 

Under future climate scenarios, both mean and variance of temperatures are projected to 20 

increase, along with precipitation variability. This will lead to increased heat waves, frost 21 

risk, and changing risk of drought and flood (Kundzewicz et al., 2014; Meehl et al., 2000; 22 

Perkins et al., 2012; Rigby and Porporato, 2008; Trenberth, 2011; Zeppel et al., 2014). 23 

The changing climate may also be favourable to certain wheat diseases, e.g. stripe rust 24 

(Luck et al., 2011) which have not been represented in the model yet. APSIM-Wheat, as 25 

a major cropping system tool used to study climate change impacts and seek solutions to 26 

address them (Deihimfard et al., 2018; Yang et al., 2014), needs improvement in the 27 

representation of heat stress, frost stress, water deficit, and the effects of pests, 28 

particularly when it is adopted to predict wheat production under the projected climate 29 

scenarios.  30 

In addition to daily mean temperature, maximum temperature could be included as a 31 

variable to determine heat stress impact. The underestimation of heat stress impacts will 32 
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lead to over-optimistic simulations of the future wheat production. Meanwhile, 1 

increasing mean temperatures accelerate crop growth and shorten the growing season, 2 

resulting in crops reaching the frost-sensitive anthesis stage more rapidly (Zheng et al., 3 

2015). The absence of parameter values for functions to account for frosts can potentially 4 

lead to overestimation of harvest yields. Parameterising the frost damages of leaf 5 

senescence, seedling death, or death of formed grains will improve the model simulation 6 

capability. The variable precipitation intensity and probability may reduce users’ 7 

confidence in simulation accuracy since the model showed uncertainty in predicting 8 

water-limited yield. Improved functioning and parametrisation to correctly estimate 9 

water deficit impacts on wheat growth is warranted. Apart from using the model to study 10 

future climate impacts on production, when users apply the model to a new study area or 11 

cultivar, accurate soil parameters and site-specifically calibrated cultivar parameters 12 

improve the model performance. 13 

2.5 Summary and conclusion 14 

In this work, we have reviewed 76 articles and conducted a meta-analysis of 30 15 

applications of the APSIM model (APSIM Classic, version 1.X – version 7.9) to obtain 16 

detailed information on the process-based model's performance in predicting wheat 17 

yields. Our study shows that the model provides reasonably accurate wheat grain yields 18 

across a wide range of varieties, environments, and management practices around the 19 

world with an overall uncertainty of about 1 t/ha. However, we found a large variation 20 

in uncertainties within the modelling studies considered, especially between studies with 21 

site-specific calibration and non-site-specific calibration.  22 

Furthermore, we found that factors such as heat and frost stress, water and nitrogen 23 

availability, soil parameterisation, calibration of genotype parameters, soil cracking, 24 

lodging, increased atmospheric CO2 concentration and plant diseases are important 25 

factors affecting model performance. Heat and frost stresses, in particular, caused large 26 

discrepancies in the prediction of grain yield. One reason for this is that the reviewed 27 

model versions use only daily mean temperature as a heat factor to calculate the effects 28 

on biomass accumulation, although wheat is particularly sensitive to shorter-term heat 29 

stress during the anthesis and grain filling phases. Therefore, APSIM tended to 30 

overestimate crop yield that experienced heat wave conditions. Frost stress functions are 31 

already implemented in the reviewed model but without default parametrisation which 32 
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negates their effect (impact factor = 0), so APSIM overestimates yield in crops subject 1 

to frost damage. The applications of APSIM to situations with water stress and nitrogen 2 

limitation led to greater uncertainties (overestimation for water stress and 3 

underestimation for nitrogen stress). Like the frost stress function, the effects of water 4 

and nitrogen stress on phenology are not yet parameterised. Therefore, suggestions to 5 

improve the model include: (1) incorporating daily maximum and minimum 6 

temperatures as impact factors to account for their effects on crop growth, (2) 7 

parameterising frost stress, water stress, and nitrogen stress functions in relation to 8 

phenology. 9 

A fully or partial site-specific calibration resulted in crop yields being predicted with 10 

higher accuracy (on average, RMSE and NRMSE were 0.64 t/ha and 14.08%, 11 

respectively). A fully site-specific calibration, including the determination of soil 12 

hydraulic parameters, initial soil conditions from field measurements and adjustment of 13 

other parameters (such as crop parameters), resulted in the lowest uncertainty in crop 14 

prediction (RMSE=0.44 t/ha, NRMSE=10.15%). If only soil parameters, and not cultivar 15 

parameters, are calibrated, the yield prediction accuracy slightly decreases, resulting in 16 

RMSE=0.51 t/ha and NRMSE=20.8%. This paper has summarised tuned cultivar 17 

parameters where available, with Table 2-2 lists the parameters and their calibrated value 18 

ranges and Table B. 1 provides detailed parameter values reported by individual studies. 19 

These calibrated values reflect the effect of genetic differences under differing 20 

management or environmental scenarios. Future model users could start setting the 21 

parameters using values from Table B. 1 when calibrating identical cultivars and running 22 

the model under similar conditions. If soil parameters are not available, using a soil 23 

database such as APSoil to specify soil hydraulic properties is a good alternative, leading 24 

to yield predictions on average with RMSE=0.7 t/ha and NRMSE=13.0%. Soil texture-25 

derived soil parameterisation is also acceptable but with comparatively lower accuracy 26 

and uncertainty with an RMSE=1.37 t/ha and an NRMSE=40.45%.  27 

The reviewed APSIM-Wheat version is not equipped with functions that account for 28 

other abiotic and biotic influences like soil cracking, lodging, or crop disease. Improving 29 

the model functionally to consider all these factors could lead to better crop predictions; 30 

however, a major challenge is that there is often a significant stochastic component to 31 

these influences. The most practical suggestions to reduce the errors in predicting would 32 
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be (1) fully calibrating the model to local conditions by tuning soil and cultivar 1 

parameters; (2) developing a database sharing cultivar parameter sets which could help 2 

in specifying the genetic characteristics under various conditions, similar to the APSOIL 3 

database; and (3) applying frost-heat damage functions like Bell et al. (2015) developed 4 

to adjust grain yields when encountering temperature stresses. An alternative would be 5 

to pursue methods such as assimilating external observations into the model to 6 

continuously adjust certain model state variables and properties to improve model 7 

performance. Remote sensing data can provide timely information on the crop or 8 

environment status and could be used to update the model simulation regularly during 9 

the simulation. Another option is to use multi-model ensembles to account for model 10 

uncertainty in describing the impact of climate change on agricultural productivity 11 

(Asseng et al., 2015, 2013; Iizumi et al., 2018; Maiorano et al., 2017b; Martre et al., 12 

2015b; Wang et al., 2017).  13 

This work did not assess the model’s ability of simulating other crop states such as 14 

biomass, leaf area, water use, or fertility dynamics. The simulation quality of these 15 

dynamics is still largely unknown and worth further investigation. 16 

The meta-database in this paper was composed of datasets from separate papers. In our 17 

meta-analysis, datasets from existing papers were compiled to analyse the impact of 18 

certain factors, while other factors could not be held constant, which may have led to 19 

some bias. The model validations considered in our study were all point-based, the plant 20 

models are usually used at the plot, field scales or even larger. However, the effects of 21 

spatial heterogeneity were not considered in our study. Finally, we did not consider the 22 

uncertainties embedded in the forcing inputs. According to Tao et al. (2018), when 23 

coupling climate models with crop models, the uncertainty from downscaled climate 24 

projections could be larger than those from crop models.  25 

Crop models like APSIM are not just predictive tools, but also exploratory tools in 26 

conjunction with future scenarios. The vision for agricultural systems models is to 27 

accelerate progress of finding ways to address the global food security challenges. This 28 

paper aims to provide the perspectives on the model outputs credibility and uncertainty 29 

under various conditions covering a wide spectrum of management practices, 30 

environments, and wheat varieties. We expect that our analysis of APSIM-Wheat model 31 
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performance will assist users to have appropriate interpretations and avoid misuse of the 1 

model. 2 

 3 
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Chapter 3 Sensitivity of APSIM-Wheat yield 1 

predictions to model parameters and inputs 2 

3.1 Abstract 3 

The performance of cropping system models is often limited by uncertainties in model 4 

parameters and inputs. This study aims to explore how model yield prediction responds 5 

to these uncertainties under various environmental and management conditions. The 6 

Sobol’ method was used to investigate the sensitivity of the Agricultural Production 7 

Systems SIMulator (APSIM)-Wheat yield prediction to the following factors: air 8 

temperature (maximum and minimum), precipitation, initial soil nitrogen content, 9 

nitrogen fertilisation amount, and soil hydraulic parameters. Eighteen scenarios were 10 

defined to consider a combination of three weather conditions (wet, normal, and dry 11 

growing season, based on the historical climatology of the Wimmera district of Victoria, 12 

Australia), three soil types (sandy, loamy, and clayey soils), and two nitrogen fertilisation 13 

applications (50 and 100 kg N/ha). Eight thousand APSIM simulations were used to 14 

calculate the first order and total sensitivity indices for each scenario. The effects of 15 

weather, soil water characteristics, and nitrogen availability were estimated by measuring 16 

their impacts on sensitivity indices. Our results show that yield was more sensitive either 17 

to variables that control water availability (precipitation and soil type) or variables that 18 

control nitrogen availability, depending on which was more limiting to wheat growth 19 

under the scenario. For example, in case of low nitrogen fertilisation scenario, the initial 20 

nitrogen content sensitivity ranked first. Variation of this factor contributed 64% to 79% 21 

to the variance in simulated yield for clayey soils, nearly four times higher than the 22 

second-ranked factor (nitrogen fertilisation amount). Soil hydraulic parameters and 23 

precipitation were most important when the crop growth was more constrained by water 24 

availability than by nitrogen availability. In the case of sandy soils in dry years with high 25 

nitrogen fertilisation level, soil parameters and precipitation accounted for 83% of the 26 

yield variability. Maximum and minimum temperatures were consistently ranked as the 27 

least important factors under all scenarios. This work will help researchers better 28 

understand the model inputs’ impacts on the simulated yield variability under various 29 
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soil, management, and weather conditions. The results also support agronomists and 1 

practitioners in the optimal use of the APSIM-Wheat model as a management tool. 2 

3.2 Introduction 3 

Process-based biophysical models are widely used to simulate crop growth, test 4 

management practices, and explore the impacts of environmental conditions on yields 5 

due to their simulation of the dynamic interactions among crop, soil, water, nutrient, and 6 

weather variables. They can assist in mitigating climate change impacts on crop yield by 7 

designing efficient management practices and improving food production by guiding 8 

crop breeding. The Agricultural Production Systems sIMulator (APSIM) (Holzworth et 9 

al., 2014b), as one of the popular process-based crop models, has been utilised for 10 

research and practical applications for over 25 years. It is also available as an online 11 

commercial tool – Yield Prophet®, to support crop growers with management decisions 12 

(Hunt et al., 2006). APSIM model consists of modules describing weather, management, 13 

soil hydrology and soil nutrient impact, and growth of various crops. APSIM-Wheat is 14 

one of the most utilised modules within APSIM due to the fundamental role of wheat in 15 

global food security (Shiferaw et al., 2013). 16 

APSIM-Wheat yield predictions contain errors that vary with, for example, available soil 17 

water, heat, fertilisation, and model calibration (Ahmed et al., 2017; Asseng et al., 2015, 18 

2013; Collins et al., 2021; Hao et al., 2021; Hussain et al., 2020; Kawakita et al., 2020; 19 

Wang et al., 2020; Zhao et al., 2014). Hao et al. (2021) investigated APSIM-Wheat yield 20 

prediction uncertainties by analysing model evaluation results from the extensive 21 

APSIM-Wheat literature. They found that, on average, APSIM-Wheat predicted yield 22 

with a root mean squared error (RMSE) of approximately 1 t/ha. Prediction uncertainty 23 

increased with limited soil information and adverse environmental conditions, such as 24 

water and/or nitrogen deficit, heatwave, and frost conditions. Zhao et al. (2014) showed 25 

that the grain yield uncertainty derived from the variation of the cultivar parameters was 26 

large. Their results emphasised the importance of well-calibrated cultivar parameter 27 

values. 28 

Understanding the sources of uncertainty in yield prediction and their influences is 29 

important to estimate and reduce yield prediction uncertainty under diverse conditions. 30 

Sensitivity analysis is usually applied to evaluate the importance of uncertain information 31 
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such as model inputs and parameters on the target model outputs. Previous studies 1 

employed the method to determine the key influential parameters in a variety of crop 2 

models (Laluet et al., 2023; Liang et al., 2017; Lu et al., 2021a; Ma et al., 2023; 3 

Makowski et al., 2006; Richter et al., 2010; Varella et al., 2010; Wang et al., 2013a; Xing 4 

et al., 2017; Yu et al., 2023). Most existing studies investigating APSIM-Wheat yield 5 

prediction sensitivity to model parameters have focused on crop genetics, soil hydraulic 6 

parameters, and climate (Casadebaig et al., 2016; Collins et al., 2021; He et al., 2015; 7 

Luo and Kathuria, 2013; Wu et al., 2019; Zhao et al., 2014).  8 

For crop genetics, Zhao et al. (2014), He et al. (2015), Casadebaig et al. (2016), and 9 

Collins et al. (2021) examined the sensitivity of several APSIM-Wheat outputs, including 10 

yield, to cultivar and phenological parameters under different fertilisation rates or 11 

climate-soil conditions. They found that yield is mainly influenced by parameters 12 

controlling thermal time, photoperiod, grain formation, and the duration of crucial 13 

reproductive stages. 14 

In terms of soil hydraulic parameters, Dokoohaki et al. (2018) investigated the sensitivity 15 

of model simulated soil water content to soil hydraulic parameters using the APSIM-16 

SOILWAT module at a farm near Lewis, Iowa, USA. The results indicated that under 17 

the tested conditions, field capacity and saturated hydraulic conductivity were the most 18 

crucial parameters in determining total soil water content. Wu et al. (2019) conducted a 19 

sensitivity analysis of the water-limited potential yield (Yw) to the variation of soil 20 

hydraulic parameters at two contrasting sites with high and low rainfall and for two soil 21 

types (shallow sandy duplex and clay). Among the soil properties, change in plant 22 

available water capacity (PAWC) was the main source of variation in Yw. The impact of 23 

PAWC estimation error was marginal when the error was within 20 mm, while yield 24 

predictions were more sensitive to underestimation than overestimation of PAWC 25 

outside this range. Vogeler et al. (2022) carried out a sensitivity analysis using the 26 

APSIM-SWIM3 module to determine the impact of soil hydraulic properties on various 27 

model outputs, including soil moisture, drainage, nitrogen leaching, and pasture 28 

productions. The results revealed that for well-drained soils under high precipitation 29 

conditions with no water limitation, the model shows low sensitivity to soil hydraulic 30 

parameters. However, the authors emphasised the need for further analysis to consider 31 

different soil types and weather conditions. 32 
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APSIM-Wheat yield prediction sensitivity to changing climate conditions has also been 1 

studied by Luo and Kathuria (2013). They used correlation and regression analysis to test 2 

the yield sensitivity to temperature, rainfall, and atmospheric carbon dioxide 3 

concentration under two different soil types at six locations. The results showed that the 4 

median yield was positively related with rainfall and atmospheric CO2, but negatively 5 

correlated with temperature. The yield response to changes in meteorology was affected 6 

by soil types and locations. Soil type was the most influential factor among all these 7 

environmental factors, followed by climate, changes in atmospheric CO2 concentration, 8 

amount of rainfall, and temperature. 9 

The abovementioned studies investigated APSIM-Wheat yield sensitivity to key 10 

variables and parameters including cultivar parameters, soil hydraulic parameters, and 11 

changing climate under different management or environmental conditions. Our recent 12 

review work revealed that the model’s yield predictions exhibit an overall root mean 13 

square error (RMSE) of about 1 t/ha (Hao et al., 2021). Prediction uncertainties tend to 14 

increase under circumstances characterised by limited soil information and challenging 15 

environmental conditions, including water and/or nitrogen deficits, heatwaves, and frost 16 

events. This observation is grounded in a comprehensive overview of 76 published 17 

studies spanning thirteen countries across four continents. To gain a deeper 18 

understanding of how these factors influence the model and to obtain clear insights into 19 

reducing uncertainties during model calibration, we need to focus on studying the 20 

interplay of water availability, nitrogen fertilization, weather conditions, and soils on 21 

crop growth and yield, which is currently lacking. This also underscores the need to 22 

quantify and differentiate the contribution of variables related to weather conditions 23 

(precipitation, temperature) and nutrient supply to crop growth, as modulated by soil 24 

conditions. In light of this context, our study aims to investigate the sensitivity of the 25 

APSIM wheat yield to the variabilities in these crop growth factors. We examined the 26 

model response of rain-fed winter wheat yield to six input variables with the Sobol’ 27 

method: daily maximum and minimum temperature (Tmax and Tmin), precipitation, 28 

initial nitrogen content, nitrogen fertilisation amount, and soil parameters. These 29 

sensitivities were evaluated for a broad range of conditions in eighteen scenarios 30 

comprising three representative weather conditions (wet, normal, dry growing seasons), 31 

three soil types (sandy, loamy, and clayey soils), and two fertilisation applications (50 32 

and 100 kg N/ha over the cropping cycle) to assess their impact on yield variability. The 33 
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results of the Sobol’ analysis were analysed and discussed to quantify the yield prediction 1 

sensitivity to the factors. The yield prediction variability was quantified using the outputs 2 

from the sensitivity analysis. Main finding of this work will enable a more realistic 3 

representation of APSIM-Wheat yield uncertainty via a Monte-Carlo-based ensemble 4 

simulation approach and to provide insights for putting calibration efforts to the key 5 

parameters most influential to yield under various soil-nutrient-weather conditions.  6 

3.3 Materials and methodology 7 

3.3.1 The study area 8 

The Wimmera district of Victoria, Australia was selected to study the sensitivity of the 9 

APSIM-Wheat yield prediction. From 2015 to 2019, the Wimmera region accounted for 10 

approximately 30 percent of the total wheat production in Victoria (ABS, 2020). The 11 

soils in the region show large variability in plant available water capacity (PAWC), 12 

ranging from 50 mm to 170 mm (Hochman et al., 2013). To match the variable soil 13 

characteristics, especially with respect to its water holding capacity, three soil types were 14 

specified (Chapter 3.3.4). Peel et al. (2002) found that Australia has relatively higher 15 

variability in precipitation other than other continents due to ENSO. Therefore, it is also 16 

important to consider the effect of climatic variability on model sensitivity. The climate 17 

type of the Wimmera region is temperate with warm summers and cool, wet winters 18 

(Nuttall et al., 2010; Peel et al., 2007). Over the past 120 years the annual rainfall 19 

decreased in the region while the temperature increased with frost and heatwave 20 

occurring more often (Bureau of Meteorology, 2020). To account for the inter-annual 21 

variability in weather impacts on the rainfed cropping lands, three weather scenarios 22 

based on the historic weather data are selected to perform the sensitivity analysis 23 

(Chapter 3.3.4). 24 

3.3.2 APSIM and wheat module 25 

The APSIM model (Holzworth et al., 2018, 2014b) is a modular modelling platform to 26 

simulate biophysical processes in agricultural systems. In this work, the most recent 27 

version of the model, called APSIM Next Generation, is used. Processes such as crop 28 

growth, soil hydrology, nutrient cycling, the effects of weather conditions, and 29 

management practices are represented by various modules. Five main modules, namely 30 

Wheat, SoilWat, SoilN, Met, and Fertilisation (a self-defined script to specify the amount 31 

and timing of nitrogen fertiliser) were linked within APSIM for simulations in this paper. 32 
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The Wheat module in APSIM (APSIM-Wheat) simulates wheat growth on a daily basis 1 

(Keating et al., 2001). The SoilWat module is used to calculate the soil water dynamics 2 

based on a multi-layer, cascading water balance model (Jones and Kiniry, 1986; Littleboy 3 

et al., 1992). The water holding characteristics of the soil are specified with several soil 4 

parameters: lower limit of 15 bar (LL15 or wilting point), drained upper limit (DUL or 5 

field capacity), crop lower limit (CLL), and saturation (SAT). The SoilN module 6 

simulates the conversion of nitrogen and carbon in each soil layer and thereby calculates 7 

the nitrogen supply available to crops based on the previous residual nitrogen situation 8 

and fertiliser inputs (Probert et al., 1998). The Met module is used to specify daily 9 

meteorological information such as precipitation, global radiation, daily maximum and 10 

minimum temperature, and to calculate potential evapotranspiration. All these modules 11 

interact with each other within an APSIM simulation to update the water and nitrogen 12 

status and to determine the wheat growth. The model yield prediction is well-validated 13 

around the world with an overall RMSE of 1 t/ha (Hao et al., 2021). 14 

Six variables representing weather conditions, soil conditions, and nitrogen conditions 15 

are considered for the Sobol’ sensitivity analysis of the APSIM-Wheat model for yield 16 

simulations. The selection of the six variables was based on the important factors 17 

affecting APSIM wheat yield prediction performance identified in Hao et al. (2021). 18 

Please note that the maximum and minimum temperatures were considered as two 19 

separate variables since we intended to distinguish the possible effects of heat stress and 20 

frost respectively. Precipitation, initial nitrogen content, and nitrogen fertilisation amount 21 

were also considered individually. Due to strong cross-correlation between individual 22 

soil parameters, key soil parameters (porosity (PO), DUL, and LL15) were treated as one 23 

group of variables to produce varied soil water holding capacity. Saltelli (2002) described 24 

this as a closed sensitivity measure within a subset of factors. We measured the model 25 

yield’s sensitivity to the soil parameters group by calculating the closed effects of 26 

porosity, DUL, and LL15. 27 

3.3.3 The Sobol’ sensitivity analysis and resampling by bootstrap 28 

The Sobol’ method (Sobol’, 1990) is a global sensitivity analysis method that is based 29 

on variance decomposition. The method decomposes the variance of the model output to 30 

estimate the importance of individual input factors or the interaction between those 31 

factors. Here “factors” is used to encompass all model inputs and parameters that are 32 
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included in the Sobol’ analysis. The resulting sensitivity indices represent an average 1 

sensitivity across the joint domain of all the factors (Pianosi et al., 2016). First order 2 

sensitivity index (𝑆𝑖 ) and total sensitivity index (𝑆𝑇𝑖 ) are computed to represent the 3 

importance fractions: 4 

 
𝑆𝑖 =

𝑉𝑖

𝑉
=

𝑉[𝐸(𝑌|𝑋𝑖)]
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 5 

The first order index 𝑆𝑖, which is also called the ‘main effect’ of the individual input 6 

factor 𝑋𝑖  on a model output 𝑌 , measures the contribution of 𝑋𝑖  to the model output 7 

variance 𝑉. 𝑉𝑖 is the partial variance associated with the main effect of the input 𝑋𝑖. 𝑆𝑇𝑖 8 

quantifies the overall contribution of 𝑋𝑖  on the model output. It estimates the effect 9 

involving 𝑋𝑖 and all its interactions with the other input factors. 𝑆𝑖𝑗 denotes the impact 10 

on the model output variance from the second order interaction between 𝑋𝑖 and 𝑋𝑗, 𝑆𝑖𝑗𝑘 11 

represents the third order interaction between 𝑋𝑖, 𝑋𝑗, and 𝑋𝑘, etc. The calculation of 𝑆𝑇𝑖 12 

can be based on the variance 𝑉~𝑖 that results from the variation of all factors, except 𝑋𝑖 13 

(𝑋~𝑖  indicates all the other factors except factor 𝑋𝑖 .). Higher 𝑆𝑖  values mean that the 14 

variation of that factor directly affects the output variance more. Higher 𝑆𝑇𝑖 values mean 15 

that the combined direct and indirect impacts of that factor are greater. The total 16 

interactions between 𝑋𝑖 and other factors can be determined by calculating the difference 17 

between 𝑆𝑇𝑖  and 𝑆𝑖 , with larger values denoting greater effects of that factor in 18 

combination with variations in other factors on the model outputs. Glen and Isaacs (2012) 19 

pointed out that the sum of 𝑆𝑖 and the sum of 𝑆𝑇𝑖 from all input factors equal one only if 20 

there is no interaction among these factors. Interactions lead main effects summing to 21 

less than one as interactions are omitted, while total indices sum to more than one as 22 

individual interactions are considered multiple times (see equation (3-2)). 23 

Sobol’ original method to estimate Si and STi requires 𝑛 ∙ (2𝑘 + 1) model simulations to 24 

calculate the high-order interactions between factors, where k is the number of input 25 

factors and n is the sample size. We used a method proposed by Saltelli (2002) that 26 

reduces the model runs to 𝑛 ∙ (𝑘 + 2) instead.  27 



57 

 

Bootstrapping was used to estimate confidence intervals for the sensitivity indices. The 1 

𝑛 samples were used to estimate the sensitivity index. Each bootstrap sample was created 2 

by selecting n points from the n model runs with replacement, and then calculating Si and 3 

STi. This was repeated 5000 times and the 95% confidence intervals for Si and 𝑆𝑇𝑖 were 4 

calculated by finding the 2.5 and 97.5 percentiles. A narrow range between the 2.5 5 

percentile and 97.5 percentile represents a high level of confidence in getting a stable 6 

result. 7 

In this work, k is the number of tested factors and equals six, which is the number of the 8 

tested factors as described in Chapter 3.3.2. The evolution of Si and STi with increasing 9 

sample size (10<n<10,000) was investigated, to assess the convergence of results. The 10 

perturbed input factors were used to initialise the ensemble APSIM-Wheat model 11 

simulations, and the output yield variance was analysed to estimate each input factor’s 12 

contribution. 13 

3.3.4 Weather, soil, and nitrogen fertilisation scenarios 14 

Sensitivity analyses was performed for eighteen scenarios selected based on rainfed 15 

conditions in the Wimmera district of Victoria, Australia. These scenarios considered 16 

combinations of three climatic conditions, three soil types, and two fertilisation amounts, 17 

resulting in 18 scenarios (Figure 3-1). The key model inputs, tested output, and their units 18 

are also specified in Figure 3-1. The values of the perturbed parameters are reported in 19 

Chapter 3.3.4. Using these scenarios enabled us to assess the sensitivity of APSIM wheat 20 

yield prediction to within season variations across a broader range of weather, soil, and 21 

fertilisation conditions. 22 

 
 

a U: first stage evaporation-amount of cumulative evaporation before soil supply falls below atmospheric demand 
b ConA: second stage evaporation-coefficient of cumulative second stage evaporation against the square root of 

time 



58 

 

c SWCON: saturated Flow- proportional daily drainage of water from above DUL into adjacent soil layers 

 

Figure 3-1. The 18 simulation scenarios used in this study, the key model inputs, and the main 1 

outcomes of the sensitivity analysis. The scenarios are a combination of three weather conditions, 2 

three soil types, and two nitrogen fertiliser applications. 3 

The scenarios were chosen based on the historic daily weather data from the 4 

meteorological station Nhill (station number: 078040) in Woorak (Bureau of 5 

Meteorology, 2020): wet, normal, and dry growing season (Table C. 1). The average 6 

values of maximum, minimum temperatures, and precipitation of chosen weather 7 

scenarios represented approximately the 10th percentile, median, and 90th percentile of 8 

120-year historic weather data (Table C. 2). From the wet to the dry growing season, the 9 

average maximum and minimum temperatures increased from 20.5 °C to 22.7 °C, and 10 

from 7.4 °C to 8.6 °C, respectively, while precipitation decreased from 546.2 mm to 11 

253.4 mm. 12 

To account for the variable soil hydraulic properties, three soil types were selected based 13 

on different soil textures: sandy soils, loamy soils, and clayey soils. See Table C. 3 for 14 

more details. For all soil types we assumed six layers (from the top layer, three layers 15 

with a thickness of 10 cm, one layer with a thickness of 30 cm, and two layers with a 16 

thickness of 40 cm), resulting in a total soil depth of 140 cm. Please note that the first 17 

layer of each soil type is allocated with a different soil texture than the deeper soil layers 18 

(Table C. 3). 19 

The most common nitrogen application amount for wheat in Australia is between 50 and 20 

80 kg N/ha (ABARE-BRS, 2003). Accordingly, two fertilisation levels were set in this 21 

work: a normal level of 50 kg N/ha, and a high level of 100 kg N/ha. The fertiliser was 22 

applied around the start of seedling growth described by Zadoks growth stages (GS11 – 23 

GS13) (Zadoks et al., 1974). 24 

3.3.5 Perturbation of weather inputs, soil texture and nitrogen 25 

parameters 26 

To run Sobol’ analysis, perturbations were applied to all six variables representing 27 

weather conditions, soil conditions, and nitrogen conditions. The perturbations led to 28 

variations in air temperature, water availability and nitrogen availability. Perturbation 29 

methods are described below, and key values are summarised in Table 3-1. 30 
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Table 3-1. The perturbation sampling parameters of uncertain sources (e: Euler’s number, was 1 

used as the base of natural logarithm, approximately equals to 2.71828) 2 

Uncertain sources Error distribution type Error magnitude 
Autocorrelation 

coefficienta 

Precipitation 
Log-normal distributed 

(mean=1, additive error) 
Std=40% 1/e 

Daily maximum air 

temperature (Tmax) 

Normal distributed 

(mean=0, multiplicative 

error) 

Std=3℃ 1/e 

Daily minimum air 

temperature (Tmin) 

Normal distributed 

(mean=0, multiplicative 

error) 

Std=3℃ 1/e 

Soil textures 

Normal distributed 

(mean=0, multiplicative 

error) 

Specific std values are 

listed in Table C. 4 
/ 

Initial nitrogen 

content (61 kg N/ha) 

Normal distributed 

(mean=0, multiplicative 

error) 

Std=20 kg N/ha / 

Nitrogen fertilisation 

amount (50/100 kg 

N/ha) 

Normal distributed 

(mean=0, multiplicative 

error) 

Std=8.5 kg N/ha / 

aFirst-order autocorrelation coefficient assumes a daily time series. 

 3 

3.3.5.1 Perturbation of weather inputs 4 

Like all measured values, weather data are subject to inaccuracies, which is an important 5 

component of the crop model uncertainty (Lobell, 2013b; Nonhebel, 1994). Weather 6 

input uncertainty was stochastically simulated by adding error to daily measured weather 7 

data. Perturbation of precipitation was assumed to follow a lognormal distribution with 8 

a mean of 1 and standard deviation of 40%. Perturbations of maximum and minimum 9 

temperatures were generated as additive errors using Gaussian random numbers with 10 

zero mean and a standard deviation of 3 ℃. Perturbing the temperatures consequently 11 

led to perturbations in evapotranspiration. To account for the temporal correlation of the 12 

weather input errors, a first-order autoregressive process, AR(1), with a correlation 13 

coefficient of 1/e was implemented on a daily basis to each weather factor, following 14 

Reichle et al. (2007) and Li et al. (2014). The perturbations for the different 15 

meteorological variables were assumed to be independent from each other. 16 
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3.3.5.2 Perturbation of soil information 1 

Soil parameters were perturbed by adding cross-correlated (correlation coefficient=0.5 2 

between each pair of variables) and normally distributed errors to PO, DUL, and LL15. 3 

Table C. 4 specifies the mean and standard deviation of each soil texture for each soil 4 

type (Ratliff et al., 1983). These values were used to perturb the soil parameters. The 5 

main purpose of soil parameter perturbation was to generate difference in plant available 6 

water capacity so that the model simulated soil moisture would show uncertainty. Other 7 

parameters including SAT, CLL, and bulk density (BD) were then calculated using the 8 

following equations (Dalgliesh et al., 2016). These soil hydraulic parameters were used 9 

to specify the soil water holding properties: 10 

 𝑆𝐴𝑇 =  𝑃𝑂 − 𝐸𝐴 (3-3) 

   

 𝐶𝐿𝐿 = 𝐷𝑈𝐿 × 𝑓𝐶𝐿𝐿 (3-4) 

   

 𝐵𝐷 = 2.65 × (1 − 𝑃𝑂) (3-5) 

 11 

where the SAT is the soil saturation value and EA is the entrapped air. EA depends on soil 12 

texture: clay: 3%, loam: 5%, and sand: 7%. CLL defines the crop lower limit. The 13 

estimation of it relates to the DUL and the soil depth. 𝑓𝐶𝐿𝐿 is soil depth dependent and 14 

was assumed to be: layers 1 – 3: 50%, layer 4: 60%, layer 5, 70%, and layer 6: 80%. The 15 

assumed particle density used in calculating BD is 2.65 g/cm3, the value is suggested by 16 

Dalgliesh et al. (2016). 17 

Initial nitrogen content of 61 kg N/ha was set from a 100-year model spin up (1918 – 18 

2018) with fertilisation of 80 kg N/ha across all growing seasons. Considering that the 19 

most common nitrogen application amount rate for wheat in Australia is between 50 and 20 

80 kg N/ha (ABARE-BRS, 2003), fertilisation of 35 kg N/ha and 95 kg N/ha across all 21 

growing seasons for spin-ups were also tested. The resulting soil nitrogen contents were 22 

approximately between 10 kg N/ha and 117 kg N/ha. Therefore, an additive Gaussian 23 

error with a mean of 0 and standard deviation of 20 kg N/ha was added to the 61 kg N/ha 24 

base value to represent the uncertainty, which resulted in initial soil nitrogen content 25 

enveloped approximately between 0 and 121 kg N/ha. 26 
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3.3.5.3 Perturbation of fertilisation amount 1 

For a given fertilisation level, the actual application of nitrogen fertiliser can be spatially 2 

variable due to machinery variations. However, the APSIM model is one-dimensional. 3 

Therefore, an additive error was added to nitrogen fertilisation to represent the spatial 4 

heterogeneity in fertilisation. The error was assumed to be Gaussian with a standard 5 

deviation of 8.5 kg N/ha. For fertilisation level of 50 kg N/ha, 99.7% of perturbed 6 

fertilisation amounts were therefore within the range of 24.5 to 75.5 kg N/ha, and this 7 

range was between 74.5 and 125.5 kg N/ha for 100 kg N/ha fertilisation level. The 8 

perturbation of these two fertilisation levels can provide uncertainties at both normal and 9 

excessive levels of fertilisation. 10 

3.4 Results 11 

3.4.1 Effect of sample size 12 

Figure 3-2 shows the evolution of the first order index 𝑆𝑖  and total index 𝑆𝑇𝑖  with 13 

increasing sample size, selected from the Scenario of normal weather, loamy soil, 100 14 

kg N/ha fertilisation amount as an example. Confidence intervals (CI) for the Sobol’ 15 

indices were also calculated via bootstrapping. In general, the 𝑆𝑖 and 𝑆𝑇𝑖 for each factor 16 

reach stable values within a sample size of 10,000. The 𝑆𝑖 values of the various factors 17 

featured small fluctuations for sample sizes greater than 7000. The evolution of the Sobol’ 18 

sensitivity indices with increasing sample size suggests that the total sensitivity indices 19 

may require a larger sample size to reach stable values. The standard deviation of the 𝑆𝑖 20 

and 𝑆𝑇𝑖 across all parameters were calculated for sample sizes between 30 and 3000, 30 21 

and 6000, 30 and 9000, and 30 and 10,000 (Table C. 5). For precipitation, Tmax, Tmin, 22 

and soil parameters, the total index showed relatively noticeable fluctuations since the 23 

standard deviation in the total index is twice as large as the standard deviation in the first 24 

order index. Factors with larger 𝑆𝑖  and 𝑆𝑇𝑖  values usually required a larger sample to 25 

converge to their final values. The 95% confidence intervals for all factors’ 𝑆𝑖 and 𝑆𝑇𝑖 26 

were calculated. Table C. 6 shows that the 95% CI widths of 𝑆𝑇𝑖 values for precipitation 27 

and soil parameters are suitably narrow at 0.0012 and 0.0017. The CI widths for all 28 

coefficients in Table C. 6 are between 0.2% and 0.8% relative to their absolute sensitivity 29 

index values, indicating acceptably low levels of sampling uncertainty. 30 

For this research, a sample size of 10,000 (n) was used for each of eighteen scenarios. 31 

The Sobol’ method requires n∙(k+2) runs for each scenario, where k = 6 in this case, 32 
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resulting in 80,000 model realisations for one scenario to calculate the first order and 1 

total sensitivity indices. Therefore, a total of 18*80,000 = 1,440,000 model simulations 2 

were required for all scenarios. 3 

 4 

Figure 3-2. Evolution of (a) the first order index and (b) total index values for uncertain factors 5 

under Scenario Norm _Lm_100 (normal weather, loamy soil, 100 kg N/ha) when the sample size 6 

increased from 10 to 10,000. Different colours represent different uncertain factors. Blue: 7 

Precipitation; orange: Tmax; green: Tmin; red: Fertilisation Amount; purple: Initial Nitrogen 8 

Content; brown: Soil Parameters. 9 

3.4.2 Ranking of the influential input parameters 10 

Figure 3-3 shows the first order index (𝑆𝑖) and the total index (𝑆𝑇𝑖) ranks of the six factors 11 

in terms of yield sensitivity. The 𝑆𝑖 show similar clusters in ranks to the corresponding 12 

ranks in the 𝑆𝑇𝑖 across the factors and scenarios. The specific 𝑆𝑖 and 𝑆𝑇𝑖 values for all 13 

eighteen scenarios are listed in Table C. 7 and Table C. 8. Figure C. 1 shows the 14 
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distribution of ranks for each parameter under all eighteen scenarios. From both main 1 

effect and total effect perspectives, initial nitrogen content, soil parameters, and 2 

precipitation were the most influential factors. Temperatures were typically the least 3 

important factors, although Tmax ranked second or third when the weather turned 4 

warmer and drier, and fertilisation was higher. Tmin was always in the last two ranks. 5 

The low ranks of the temperature values may be due to the relatively small range of 6 

temperature variation between warm and cold years in the experimental region.  7 

Sensitivity to initial nitrogen content and fertilisation amount tended to be higher when 8 

the fertilisation amount was 50 kg N/ha instead of 100 kg N/ha, especially under wet and 9 

normal weather conditions, implying stronger control of nitrogen stress on yield under 10 

limited soil nitrogen availability. In contrast, the water availability-related factors (soil 11 

parameters and precipitation) are more important for high fertilisation applications or 12 

under drier weather conditions. 13 

 14 

Figure 3-3. The first order index ranks (left panel) and the total index ranks (right panel) of the 15 

six influencing factors in terms of yield sensitivity under eighteen scenarios. The six parameters 16 

are listed on the horizontal axis; the eighteen scenarios are ordered along the vertical axis 17 

depending on their weather conditions, soil properties, and fertilisation amount; each grid cell 18 

shows the output sensitivity via a colour scale, where white denotes the largest influence in 19 

affecting the yield prediction and dark blue represents the minimum influence. 20 
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3.4.3 Fertilisation amount effects on sensitivity 1 

Figure 3-4, Table C. 7, and Table C. 8 show the first order index (𝑆𝑖) and total index (𝑆𝑇𝑖) 2 

values of all six factors for all eighteen scenarios. Considering 𝑆𝑖  under a nitrogen 3 

fertilisation of 50 kg N/ha, the prediction of wheat yield was most sensitive to initial 4 

nitrogen content, with the 𝑆𝑖 of this factor ranking first in 7 out of 9 scenarios (Table C. 5 

7). By comparing the 𝑆𝑖 values for initial nitrogen content in Figure 3-4, we can see that 6 

for given weather and soil conditions, crop growth relies more on the initial soil nitrogen 7 

amount when nitrogen provision by fertilisation is limited. Its importance was greatest 8 

for clay soil for which 𝑆𝑖 ranged from 0.62 to 0.79 (Figure 3-4), nearly four times more 9 

than the fertilisation amount. Figure 3-4 also shows that wheat yield was more sensitive 10 

to nitrogen factors at low fertilisation levels, as nitrogen has a stronger limiting effect 11 

here than soil water supply. 12 

With a nitrogen fertilisation of 100 kg N/ha, the importance of initial nitrogen content 13 

and fertilisation amount decreased. Instead, soil parameters and precipitation became the 14 

predominant influences, especially for sandy soils and under dry weather conditions, 15 

both featuring limited plant available water content via fast drainage (sandy soil) or 16 

reduced input (dry weather), with these factors occupying the first two places for 6 out 17 

of 9 scenarios in case of Si (Table C. 8). Figure 3-4(g) show that Si for soil parameters 18 

was highest under dry conditions and for sandy soils, while the Si for precipitation was 19 

highest for the normal year with sandy soils (Figure 3-4(d)). Soil parameters and 20 

precipitation were the most important factors affecting yield in terms of total effect. 𝑆𝑇𝑖 21 

was largest for sandy and loam soils under all three weather conditions with precipitation 22 

STi = 0.41 to 0.67, and soil parameter 𝑆𝑇𝑖 = 0.41 to 0.73 (Figure 3-4(j, k, m, n, p, and q)). 23 

An exception to this pattern for high nitrogen applications (100 kg/ha) was under wet 24 

and normal weather conditions and clay soils when the wheat was more sensitive to initial 25 

nitrogen content and fertilisation amount, as under those conditions water supply was 26 

sufficient due in part to high water holding capacity (enabling the soil to store the higher 27 

precipitation more effectively) (Figure 3-4(l and o)). 28 

3.4.4 Weather condition effects on sensitivity 29 

We compared the Si and STi values in Figure 3-4 for both 50 kg N/ha and 100 kg N/ha 30 

fertilisation level groups, we found that the main and total effects of initial nitrogen 31 

content decreased dramatically when under dry conditions, especially for sandy soils. 32 
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The Si dropped to 0.079 and 0.029 for both fertilisation levels under this specific weather 1 

and soil conditions (Table C. 7). At the same time, soil parameters and precipitation 2 

replaced the nitrogen availability-related factors as the most important, with Si = 0.40 3 

and 0.21 for these two factors and Si < 0.08 for the other factors when the fertilisation 4 

level is 50 kg N/ha. This is because water becomes more limiting on yield under a dry 5 

weather, especially for sandy soils with low water holding capacity. Reduced soil water 6 

also influences the amount of dissolved soil nitrogen consumed by the crop. The same 7 

tendency was observed for the total effect. Overall, the impact of soil parameters and 8 

precipitation was higher for the 100 kg N/ha case as crop growth was constrained more 9 

by water availability than nitrogen availability. Under the most extreme scenario – high 10 

fertilisation level, dry weather, and sandy soils (Figure 3-4(g)) – the soil parameters and 11 

precipitation showed their largest contribution to the yield variability with Si = 0.41 and 12 

0.26 respectively. 13 

Unlike the factors controlling available soil nitrogen and water, temperature is generally 14 

the least important factor, with Tmin always ranked among the two least important 15 

factors. Exceptions occur for Tmax under 100 kg N/ha fertilisation in the dry year, when 16 

it ranked number three (Figure 3-4(g, h, and I for Si), Figure 3-4(p, q, and r for STi)). The 17 

dry weather scenario selected in this study not only had lower precipitation but also had 18 

higher temperatures, and the perturbed Tmax in this case could exceed 40 °C in October 19 

and November, during the anthesis and grain filling stages. Wheat is sensitive to high 20 

temperatures at these stages and the final yield is reduced (Liu et al., 2016a; Stone and 21 

Nicolas, 1995). 22 

3.4.5 Interactions between factors 23 

The orange bars in Figure C. 2 show the total interactions for all factors. Results show 24 

that soil parameters and precipitation have the largest interactions. The largest total 25 

interactions for these two factors occurred under the 100 kg N/ha, wet weather and loamy 26 

soil scenario, the increments from 𝑆𝑖  to 𝑆𝑇𝑖  were 0.53 and 0.56 (Figure C. 2). Under 27 

higher fertilisation availability, wheat growth was more sensitive to the water supply. 28 

Wet weather and loamy soils retain more water which is more accessible to the plants. 29 

The interactions between soil parameters and precipitation reduced dramatically for all 30 

clay soils scenarios since the large water holding capacity reduced drainage and provided 31 

a higher reserve of water to supply plants between rainfall events. 32 
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In contrast to the soil and precipitation factors, the total interactions for the initial 1 

nitrogen content and fertilisation factors were marginal under all scenarios, being less 2 

than 0.07 and 0.04 (Figure C. 2). 𝑆𝑇𝑖 for Tmax and Tmin increased, implying interactions 3 

between the two temperature factors and other factors. The total interactions for Tmax 4 

were always larger than those for Tmin. We suspect that this was due to the interaction 5 

between Tmax and water-related factors. Higher daily maximum temperature increases 6 

the wheat water demand, reducing soil water, and causing a stronger interaction. Tmax 7 

even ranked number two (after precipitation) for 100 kg N/ha fertilisation, dry weather 8 

conditions and clayey soils.  9 

It is also worth noting that the sum of all first order indices from Figure 3-4 is less than 10 

one, while the sum of total indices for all scenarios is larger than one. It is clear that the 11 

sum of Si and the sum of 𝑆𝑇𝑖  deviate most from one for the precipitation and soil 12 

parameter factors and that these sums for other factors are with 0.9 to 1.1 (Table C. 7 and 13 

Table C. 8). This implies that most of the interactions occur between the precipitation 14 

and soils factors. 15 

 16 

 17 

Figure 3-4. Comparison of first order and total sensitivity indices under low and high nitrogen 18 

fertilisation scenarios for six soil and weather combinations. The three subplots in the left column 19 



67 

 

show first order sensitivity indices, the three subplots in the right column are for the total 1 

sensitivity indices. Plots are grouped horizontally by soil type and vertically by weather 2 

conditions as indicated by the headings. Each sub-plot shows a pair of columns the values of the 3 

sensitivity indices for the six factors as indicated in the legend under nitrogen fertilisation levels 4 

of 50 kg N/ha and 100 kg N/ha. 5 

3.4.6 Yield prediction variability 6 

The sensitivity analysis above gives insight into the contribution to yield variance of the 7 

factors considered. This chapter investigates the simulated yield variability under 8 

different environmental and management conditions. The ensemble mean yield (𝜇) and 9 

standard deviation (𝜎) under all eighteen scenarios are shown in Figure 3-5 and Table C. 10 

9. 11 

The mean estimated yield increased when fertilisation increased from 50 kg N/ha to 100 12 

kg N/ha. This increase in mean yield was more pronounced under wetter weather 13 

conditions and for the loamy and clayey soils. With more fertiliser, yield increased by 14 

38% on average for the wet year on loamy and clayey soils and the normal year for clayey 15 

soils, while it increased by only 6 % for the dry year and sandy soils. It means that higher 16 

fertilisation is more effective with sufficient water supply, moderate air temperatures, 17 

and soils with higher water holding capacity. This matches our findings from the Sobol’ 18 

sensitivity analysis.  19 

The mean yield declined when the weather conditions were drier, with the yield reduction 20 

being greater for lighter soils. For the two fertilisation amounts, yield decreased by 44% 21 

and 56% for the sandy soils, while it decreased by 22% and 34% for the clayey soils. 22 

Thus, yields from light soils with lower water holding capacity were more susceptible to 23 

declining precipitation. The effect of soil on mean yield varied with weather conditions 24 

(Figure 3-5). For the wet year, the yield barely changed with soil type for either fertiliser 25 

amount. For the normal year, yield increased from sandy to clay soils for the 100 kg N/ha 26 

fertilisation level, while for the dry year, the mean yield increased markedly from sandy 27 

to clayey soils for both fertilisation amounts. For the 100 kg N/ha level, yield increased 28 

by 0%, 28 %, and 51 %, from sandy to clayey soils. Thus, soil texture had little impact 29 

on yield under favourable weather conditions, but yield was more sensitive to the soil 30 

texture under dry weather, matching our sensitivity results. 31 
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 1 

Figure 3-5. The mean estimated yield (bars) with ± standard deviation (whiskers) under all 2 

scenarios. The horizontal axis shows nine different scenario groups, each of which contains the 3 

nitrogen fertilisation level of 50 kg N/ha (blue) and 100 kg N/ha (orange). The first three groups 4 

are for the wet weather condition and each of the three soil types, the middle three groups are for 5 

normal weather conditions, and the last three for dry weather conditions. 6 

3.5 Discussion 7 

In Chapter 3.4, we presented the Sobol’ sensitivity indices under different environmental 8 

and management conditions. We also quantified the yield prediction variability resulting 9 

from the variation of the tested factors. This chapter discusses the effects of nitrogen, 10 

water availability, and weather conditions on yield sensitivity. In addition, the 11 

implications of these results for modellers and crop managers are discussed. 12 

3.5.1 Effects of water and nitrogen availability 13 

APSIM-Wheat yield prediction performance was affected by factors including water and 14 

nitrogen deficit, temperature stress, and the quality of soil information. To improve 15 

confidence in our results and offer robust information for decision making under these 16 

circumstances, the model requires a site-specific calibration process to reduce 17 

uncertainty. Prioritising smaller subsets of influential parameters should reduce the 18 

model calibration workload. This sensitivity analysis tries to understand which key 19 

parameters contribute the most to uncertainties in yield under various weather, soil, and 20 

fertilisation scenarios. 21 

Nitrogen-related factors were more important than other factors under conditions of low 22 

nitrogen supply with yield variability being more sensitive to variations in initial nitrogen 23 

content and fertilisation amount. Furthermore, the importance of these two factors 24 

decreased with high nitrogen application. The high sensitivity to nitrogen when nitrogen 25 
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supply is low is likely attributed to the fact that when water supply is sufficient, nutrients 1 

such as nitrogen become more important in affecting photosynthesis. Inadequate nitrogen 2 

availability can reduce chlorophyll content in leaves, thereby hindering the plant’s ability 3 

to capture light energy and convert it into carbohydrates through photosynthesis. 4 

Consequently, limited nitrogen can directly limit a plant’s capacity for energy production 5 

and biomass accumulation. Additionally, during the reproductive growth stage, 6 

inadequate nitrogen can also result in a decrease in grain number, smaller grain size, and 7 

therefore lower crop yields. The increasing importance of nitrogen-related factors in low 8 

nitrogen conditions resonates with previous research, such as the work of Pardon et al. 9 

(2017) and Zhao et al. (2014), which emphasise the dynamic nature of model parameters 10 

in response to changing conditions. Specifically, nitrogen fertilisation becomes 11 

increasingly influential, exhibiting more pronounced interactions with groundcover 12 

vegetation and legume fraction in nitrogen-deficient scenarios (Pardon et al., 2017). 13 

Conversely, under conditions of high fertilisation levels, the location (climate-soil 14 

condition), takes on greater importance in determining the sensitivities of APSIM-Wheat 15 

cultivar parameters (Zhao et al., 2014). 16 

Conversely, the influence of water-related factors gains prominence under high water 17 

stress conditions, a similar trend was also identified by Sexton et al. (2017), Pardon et al. 18 

(2017), and Ojeda et al. (2021). Notably, parameters such as transpiration efficiency, root 19 

conductance, maximum root depth, and soil water lower limit exhibit increased 20 

interactions and importance in water-stressed environments. This can be attributed to 21 

crops undergoing critical physiological alterations when faced with a deficit in water 22 

supply. These changes encompass reduced water uptake by the roots, reduced rates of 23 

photosynthesis and transpiration, and constrained leaf expansion, which collectively 24 

exert substantial and detrimental effects on crop growth and overall production. Irrigation 25 

strategies can mitigate the impact of water-related factors, as seen in the study by Ojeda 26 

et al. (2021), where the availability of irrigation altered the influential variables from 27 

water-related parameters to non-water-related ones. 28 

 29 

 30 
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3.5.2 Implications for modellers 1 

The results of this study indicate that the factors that most limit crop yield are the primary 2 

sources of model sensitivity. Thus, calibration or improvement efforts should focus on 3 

different subsets of parameters under different conditions. For water-limited and high-4 

temperature conditions, accurate characterisation of precipitation, maximum temperature, 5 

and soil hydraulic parameters is crucial for accurate yield predictions, while factors 6 

affecting nitrogen content should be carefully calibrated in other conditions. Prioritising 7 

smaller subsets of influential parameters could effectively reduce the model calibration 8 

workload. 9 

With the growing interest in assimilating ground-based and remotely sensed observations 10 

into crop growth models (Jin et al., 2018; Machwitz et al., 2014; Zhang et al., 2021), 11 

understanding the key sensitivities will assist in the optimal choice of observations to be 12 

assimilated and the design of data assimilation schemes. The detailed insights gained 13 

from this sensitivity analysis will also inform the selection and perturbation of model 14 

inputs and parameters, enabling us to effectively implement “stochastic” data 15 

assimilation techniques. By understanding the sensitivity of the model outputs to the 16 

selected parameters, we can more accurately introduce perturbations that reflect the 17 

inherent uncertainties in the system, thereby enhancing the reliability and robustness of 18 

the data assimilation process. In the case of rainfed conditions that considered, with 19 

sufficient water and nitrogen resources, among the factors included in our study (rainfall, 20 

temperature, soil properties, nitrogen), the main driver of yield variance are the factors 21 

controlling water availability. This implies that the data assimilation scheme design 22 

should focus on addressing the uncertainty in the water supply to reduce yield prediction 23 

uncertainty. However, when soils have a higher water holding capacity or nitrogen 24 

becomes more limiting to crop growth, the uncertainty in nitrogen availability should be 25 

addressed to decrease prediction uncertainty. 26 

3.5.3 Implications for crop managers 27 

The simulated yields in this study are similar to those observed overall in the region. This 28 

gives some confidence that the findings of this Sobol’ sensitivity analysis are transferable 29 

to real-world applications. According to the Australian Bureau of Agricultural and 30 

Resource Economics and Sciences (ABARES, 2022), the state-wide average wheat yield 31 

in Victoria, Australia, was approximately 3.5 t/ha in 2022, which is consistent with the 32 
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average yield of 3.3 t/ha (from all eighteen scenarios shown in Table C. 9) reported in 1 

this study. Hochman et al. (2013) collected data on water-limited wheat fields from Yield 2 

Prophet subscribers in the Wimmera region of Victoria, Australia and reported an 3 

average yield of 1.98 t/ha. This data corresponds with our yield prediction results under 4 

dry weather condition, where the average yield is 1.93 t/ha for sandy soils and 2.14 t/ha 5 

for loamy soils (Table C. 9). 6 

The analysis of the variability of yield prediction confirm that agricultural production is 7 

particularly sensitive to decreasing precipitation and increasing temperature trends 8 

potentially induced by changing climate. The dry weather condition restricted the final 9 

yield to less than 3 t/ha, even with clay soils and/or high fertilisation levels. Light soils 10 

are particularly susceptible to low yields under drier and warmer weather conditions. The 11 

resulting yield is likely to be lower than 2 t/ha, regardless of nitrogen fertilisation amount. 12 

Conversely, under wet weather conditions, grain yield appears to be less influenced by 13 

soil types. When under wet or normal weather conditions, the expected yield is 14 

approximately 3.2 t/ha, regardless of soil type. Instead, crop production becomes more 15 

dependent on nitrogen availability. The sensitivity analysis found that yield is more 16 

sensitive to nitrogen availability-related factors under a fertilisation level of 50 kg N/ha, 17 

compared with 100 kg N/ha. Since 50 – 80 kg N/ha is the most common nitrogen 18 

application amount in Australia (ABARE-BRS, 2003), the amount of nitrogen 19 

fertilisation should be adjusted more carefully in management practice. Given the 20 

interplay between weather and nitrogen suggesting greater nitrogen fertilisation is more 21 

valuable under wetter conditions, while reduced fertilisation could be considered under 22 

dry weather conditions.  23 

The initial soil nitrogen content is another important factor affecting yield variance, 24 

which also requires careful estimation. This study estimated the value based on a 100-25 

year model spin up (1918 – 2018) as a substitute for the field measurements. Soil 26 

parameters always show a large total effect on the yield variability, and the accuracy of 27 

the estimated soil parameters will materially affect the yield prediction performance, 28 

especially under dry weather conditions and/or for light soils. Thus, good soil parameter 29 

estimation is needed prior to model usage. Hao et al. (2021) found that soil databases 30 

such as APSoil provide a reasonable alternative for specifying soil parameters if field 31 

measurements are not available. 32 
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3.5.4 Limitation and future work 1 

One limitation of the research is the input factors’ variation ranges, as the results of the 2 

sensitivity test can change depending on the magnitude and error model for perturbation. 3 

Wang et al. (2013) found that the parameter sensitivity in the WOFOST model showed 4 

significant differences depending on whether the parameter variation ranges were 5 

determined using a fixed ±10% perturbation or they were based on observations, the 6 

literature, and statistical crop data. The sensitivity of crop yield to perturbations added to 7 

key meteorological input data and parameters can guide the realistic representation of 8 

yield prediction errors when assimilating ground-based or remotely sensed observations 9 

into the model (e.g., Li et al., 2015, 2014; Nearing et al., 2012; Reichle et al., 2010, 2007). 10 

This research determined the parameter and input variation ranges based on south-eastern 11 

Australian dryland cropping conditions. Factor perturbation ranges may change under 12 

different environmental conditions. Comparing sensitivity results determined for 13 

different ranges of factor perturbation could further improve the understanding of the 14 

model behaviour. 15 

Another limitation of this study lies in the use of single years to represent different 16 

weather conditions (wet, normal, and dry years). This does not account for variations in 17 

rainfall patterns between years with similar rainfalls. While historical wheat yields 18 

indicate total rainfall is a strong driver of interannual yield variation (French and Schultz, 19 

1984), future studies could extend this analysis to more years to account for scenarios 20 

involving long-term variations in rainfall patterns. 21 

The selection of the six factors considered in this paper was based on a recent review 22 

(Hao et al., 2021). Our study was specifically designed to focus on a scenario within the 23 

Wimmera district of Victoria, Australia. In the context of sensitivity analysis conducted 24 

in different scenarios, it is important to consider other influential factors affecting 25 

APSIM-Wheat yield prediction (Liu et al., 2023). For example, factors such as water 26 

logging and root disease identified as detrimental to crop yield and associated uncertainty 27 

were not considered in this work since the current version of the model does not account 28 

for their impacts. Cultivar parameters have not been tested here since Zhao et al. (2014) 29 

and Casadebaig et al. (2016) have already conducted thorough investigations of the 30 

sensitivity of APSIM-Wheat outputs (including yield) to cultivar parameters under 31 

various environmental conditions in Australia. When evaluating model prediction 32 
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sensitivity in alternative scenarios, such as different weather regimes and/or wheat 1 

cultivars, the model’s sensitivity analysis should be reperformed to capture the 2 

differences in model behaviour brought about by different cultivars. Additionally, the 3 

influence of other factors, including global radiation, organic matter content, organic N, 4 

mineralization, and nitrification rate need to be further investigated.  5 

The Sobol’ method, utilising Saltelli’s (2002) efficient numerical approach, was used to 6 

evaluate the sensitivity of yield predictions due to its ability to handle non-linear and 7 

non-monotonic systems. Although the Sobol’ method requires a large sample size to 8 

achieve convergence of results, in our case, we used 10,000 samples for each parameter 9 

to obtain reliable outputs. It provides a more detailed and comprehensive sensitivity 10 

analysis, including main effects and higher-order interactions. Methods such as Fourier 11 

Amplitude Sensitivity Test (FAST) or extended FAST may be used to reduce the sample 12 

size and optimise computational efficiency, as they generally converge faster than Sobol’ 13 

(Pianosi et al., 2016; Zhao et al., 2014). However, these methods provide a less detailed 14 

understanding of the contributions of individual input variables and their interactions to 15 

the output variance. 16 

3.6 Conclusion 17 

This paper presented the results of a Sobol’ sensitivity analysis for APSIM-Wheat yield 18 

prediction for rainfed conditions in the Wimmera district of Victoria, Australia. The 19 

sensitivity of predicted yield was analysed for six factors based on the review by Hao et 20 

al. (2021). These were: daily precipitation, maximum and minimum temperature, initial 21 

nitrogen content, nitrogen fertilisation amount, and soil water parameters. Sensitivity was 22 

analysed for eighteen scenarios which were combinations of three weather conditions 23 

(wet, normal, and dry years), three soil types (sandy, loamy, and clayey soils), and two 24 

fertilisation levels (50 and 100 kg N/ha). Convergence checks and bootstrap-based 25 

confidence intervals showed that estimated sensitivity indices were very reliable. 26 

The Sobol’ sensitivity indices revealed that the ranking of factors was significantly 27 

affected by environmental and management conditions. APSIM-Wheat yield prediction 28 

tended to be more sensitive to the variability of limiting factors. Under dry weather 29 

conditions, the water deficit and high temperatures affected yield more, with 30 

precipitation and soil parameters having the highest sensitivity indices. When the weather 31 
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became wetter, the stress gradually transferred to nitrogen availability, particularly in the 1 

lower fertilisation cases and the sensitivity of nitrogen factors increased. Precipitation 2 

and soil parameters have larger total interactions for sandy and loamy soils. The 3 

interactions are more noticeable under 100 kg N/ha. Tmax and Tmin also showed 4 

interaction effects but of a smaller magnitude, while the total interactions of initial 5 

nitrogen content and fertilisation amount were marginal. The larger total interactions of 6 

the two water-related factors increased their influences on the yield variability. The 7 

analysis of ensemble mean yield showed that clay soils were less affected by changes 8 

between wet and dry conditions. Yield also showed less variability under dry weather 9 

and higher fertilisation levels. In contrast, more humid weather conditions resulted in 10 

higher yields, but with greater yield variability, regardless of soil type. We anticipate that 11 

our results can help to reduce uncertainty in the application of the APSIM crop model as 12 

well as other crop models. 13 

 14 

 15 
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Chapter 4  Remote sensing observations for 1 

updatable state variables in APSIM-Wheat 2 

model 3 

4.1 Abstract 4 

The relationship between satellite observations and model state variables is crucial within 5 

the data assimilation framework. To facilitate this, an observation operator is needed to 6 

map predicted state variables to equivalent remote sensing observations. In this study, 7 

various vegetation indices with different band combinations derived from Sentinel-2 8 

were evaluated for suitability in developing an observation operator for the APSIM-9 

Wheat model data assimilation. Indices such as the green leaf area index (GLAI), wide 10 

dynamic range vegetation index (WDRVI), chlorophyll index (CI), and normalised 11 

difference vegetation index (NDVI) were linked with APSIM-Wheat simulated GLAI by 12 

using the LOWESS curve-fitting method for a rainfed winter-wheat field located in 13 

north-western Victoria, Australia. The linearity of the fitted curves was evaluated to 14 

determine the most suitable index. RMSE of the developed model was computed as the 15 

observation uncertainty. The results indicated that distinct observation operators are 16 

necessary for the pre- and post-GLAI peak periods, as the trends observed during these 17 

growth stages differed. The most appropriate candidate for an observation operator is the 18 

CI calculated using the red edge and near-infrared bands, as the corresponding models 19 

exhibited the closest approximation to linearity. The NDVI exhibited saturation at 20 

moderate to high GLAI values. However, if only developing an observation operator for 21 

the post-GLAI peak period, it is recommended to use green NDVI due to its minimal 22 

uncertainty and the most linear curve. 23 

4.2 Introduction 24 

Process-based crop models, such as APSIM, are widely used as predictive tools to 25 

provide information for crop management to optimise sources utilisation and improve 26 

productivity. However, as reported by Hao et al. (2021), poor calibration and stresses 27 
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related to water, nitrogen, heat, and frost, can negatively impact the performance of 1 

APSIM-Wheat yield predictions. Remote sensing data has the potential to provide 2 

insights into crop growth status in response to spatial and temporal variability. 3 

Integrating crop model simulations and remote sensing observations through data 4 

assimilation can enhance in-season crop growth modelling and ultimately lead to 5 

improved yield estimates. However, satellite observations are not directly comparable to 6 

model states as they characterise surface reflectance measurements. Therefore, an 7 

observation operator, which translates model state variables into equivalent remotely 8 

sensed observations, is needed as a crucial component of the data assimilation system. 9 

When assimilating satellite observations into crop models, the observation operator can 10 

be presented in various forms, such as empirical relationships or radiative transfer models. 11 

De Wit and van Diepen (2007) assimilated volumetric soil moisture estimated from the 12 

soil water index data into the WOrld FOod STudies (WOFOST) model, updating the soil 13 

moisture state by using an identity matrix as the observation operator, since the model 14 

state is observed directly. Jiang et al. (2014) used a leaf area index (LAI) function as the 15 

observation operator to assimilate LAI into the Crop Environment Resource Synthesis 16 

(CERES)-Wheat model. The function calculated LAI with model state variables 17 

including plant leaf area, senesced leaf area, growth plant area, and reduced leaf area. 18 

Thorp et al. (2012), Wu et al. (2013), Machwitz et al. (2014), and Huang et al. (2019) 19 

applied the combined PROSPECT leaf optical properties model and SAIL canopy 20 

bidirectional reflectance model (PROSAIL) as an observation operator to associate 21 

spectral reflectance with model state variables. Surface reflectance measurements from 22 

a portable field spectroradiometer (Thorp et al., 2012), a portable chlorophyll meter (Wu 23 

et al., 2013), RapidEye (Machwitz et al., 2014), and MODIS (Huang et al., 2019b) were 24 

assimilated into crop models such as Decision Support System for Agrotechnology 25 

Transfer (DSSAT), WOFOST, and Agricultural Production Systems sIMulator (APSIM). 26 

In this work, we develop empirical models to link Sentinel-2 retrieved vegetation indices 27 

(VIs) with the green leaf area index (GLAI) simulated by the APSIM-Wheat model 28 

(Holzworth et al., 2018). The suitability of various vegetation indices is evaluated based 29 

on the model’s linearity. Additionally, uncertainty is calculated for the developed models. 30 

The methodology of this study enables the assimilation of satellite-derived vegetation 31 

observations into crop models. 32 
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4.3 Methods 1 

4.3.1 Study area 2 

Figure 4-1 shows the geographic location and yield map of a 2019 winter wheat (Triticum 3 

aestivum L.) paddock in north-western Victoria, Australia. The field was rainfed and 4 

managed with nitrogen fertilisation, with urea applied at 50 kg N/ha and 60 kg N/ha on 5 

July 1st and 31st, respectively. Wheat was sown on May 12th and harvested in mid-6 

December. The climate in the study area is semiarid, with an average annual rainfall of 7 

240-520 mm in the past 30 years, most of which falls between May and October. The 8 

paddock had an average yield of 5.9 t/ha for the 2019 season. The blue rectangles in 9 

Figure 4-1 represent seven selected regions of interest (ROIs) with yields ranging from 10 

3 to 8 t/ha and an average yield of 5.5 t/ha. These ROIs were chosen to represent the 11 

within-field yield variability and the overall paddock yield level. The APSIM-Wheat 12 

model was calibrated for each ROI to ensure that the predicted yields matched the 13 

observed yields. 14 

 15 

Figure 4-1. The geographical location of the study area and selected ROIs (blue rectangle: 16 

selected ROIs) 17 
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4.3.2 Vegetation indices 1 

APSIM-Wheat simulated green leaf area index (GLAI) was chosen as the state variable 2 

to be mapped to the observation space. Sentinel-2 was selected as the observation source 3 

due to its high spatial resolution of 10/20 m and temporal resolution of 5 days, which is 4 

sufficient to capture within-field variability and provide timely observations of crop 5 

status. 6 

Four Sentinel-2 derived vegetation indices (VIs) with different band combinations were 7 

nominated for the development of the observation operator: GLAI, wide dynamic range 8 

vegetation index (WDRVI), chlorophyll index (CI), and normalised difference 9 

vegetation index (NDVI). The band settings and calculations for these VIs are listed in 10 

Table 4-1. These indices were selected based on their close relationship to chlorophyll 11 

content (Gitelson et al., 2003a, 2003b) and the fact that chlorophyll content has been 12 

shown to be closely related to GLAI (Boegh et al., 2013). Therefore, the nominated VIs 13 

are potentially closely related to APSIM-Wheat simulated GLAI. 14 

Table 4-1. Multispectral vegetation indices investigated in this study (S: Sentinel-2, 𝛼, 𝑎, 𝑏, 𝑐 15 

used in calculating WDRVI and GLAI follow values proposed by Nguy-Robertson et al. (2014) 16 

Index 

category 

Vegetation 

index 
Equations (for Sentinel-2) Resolution Reference 

WDRVI 

Red 

WDRVI 

(𝛼 ∙ 𝑁𝐼𝑅𝑆8 − 𝑅𝑒𝑑𝑆4)/(𝛼 ∙ 𝑁𝐼𝑅𝑆8 + 𝑅𝑒𝑑𝑆4) + (1
− 𝛼)/(1 + 𝛼) 

10 m 
Gitelson 

(2004), 

Peng and 

Gitelson 

(2011) 

Green 

WDRVI 

(𝛼 ∙ 𝑁𝐼𝑅𝑆8 − 𝐺𝑟𝑒𝑒𝑛𝑆3)/(𝛼 ∙ 𝑁𝐼𝑅𝑆8 + 𝐺𝑟𝑒𝑒𝑛𝑆3)
+ (1 − 𝛼)/(1 + 𝛼) 

10 m 

Red edge 

WDRVI 

(𝛼 ∙ 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆7 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆5)/(𝛼
∙ 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆7 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆5)
+ (1 − 𝛼)/(1 + 𝛼) 

20 m 

GLAI 

Green 

GLAI 
𝑎 ∙ 𝐺𝑟𝑒𝑒𝑛 𝑊𝐷𝑅𝑉𝐼2 + 𝑏 ∙ 𝐺𝑟𝑒𝑒𝑛 𝑊𝐷𝑅𝑉𝐼 + 𝑐 10 m 

Nguy-

Robertson 

et al. 

(2014) 
Red edge 

GLAI 

𝑎 ∙ 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 𝑊𝐷𝑅𝑉𝐼2 + 𝑏
∙ 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 𝑊𝐷𝑅𝑉𝐼 + 𝑐 

20 m 

CI 

Green CI (𝑁𝐼𝑅𝑆8𝐴/𝐺𝑟𝑒𝑒𝑛𝑆3) − 1 20 m Gitelson et 

al. (2005, 

2003) 
Red edge 

CI 
(𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆7/𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆5) − 1 20 m 

NDVI 

Red NDVI (𝑁𝐼𝑅𝑆8𝐴 − 𝑅𝑒𝑑𝑆4)/(𝑁𝐼𝑅𝑆8𝐴 + 𝑅𝑒𝑑𝑆4) 20 m 
Rouse et 

al. (1973) 

Green 

NDVI 
(𝑁𝐼𝑅𝑆8𝐴 − 𝐺𝑟𝑒𝑒𝑛𝑆3)/(𝑁𝐼𝑅𝑆8𝐴 + 𝐺𝑟𝑒𝑒𝑛𝑆3) 20 m 

Gitelson 

and 

Merzlyak 

(1994) 
Red edge 

NDVI 

(𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆7 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆5)/(𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆7

+ 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒𝑆5) 
20 m 

 17 
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4.3.3 Observation operator development 1 

The APSIM model was first calibrated for each ROI to ensure that the simulated yields 2 

matched the observed yields, and the APSIM GLAI curve was derived. The 3 

atmospherically corrected Sentinel-2 satellite imagery was used to generate VI time 4 

series at each ROI. The APSIM GLAI curve and Sentinel-2 VI time series were then 5 

compared. The LOcally WEighted Scatterplot Smoothing (LOWESS) method was used 6 

to establish a model connecting APSIM GLAI and Sentinel-2 VIs over the growing 7 

season. The root mean squared error (RMSE) between LOWESS-predicted VIs and 8 

Sentinel-2 VIs were calculated to assess the fit of the LOWESS curves. The RMSE value 9 

was also treated as the observation operator uncertainty. APSIM GLAI and VI values 10 

were normalised to calculate the slope, which was used as a measure of the curve linearity 11 

to select the ideal VI candidate. 12 

4.3.3.1 Calibration of APSIM 13 

To match the APSIM simulation with satellite observations, the APSIM model needs to 14 

be calibrated at each ROI. Model calibration involves adjusting soil hydraulic parameters 15 

and fertilisation amounts due to their variability within the field. The lower limit of 15 16 

bar (LL15), drained upper limit (DUL), crop lower limit (CLL), and saturation (SAT) were 17 

tuned to determine the soil water holding capacity. The total fertilisation amount was 18 

adjusted from 90 to 120 kg N/ha. Daily weather data was obtained from the nearest 19 

climate station, Nhill (Woorak) (Bureau of Meteorology). The base initial nitrogen 20 

content was initialised from a 100-year model spin up (1918 – 2018) with a fertilisation 21 

rate of 80 kg N/ha during every growing season. The APSIM simulated yield and in situ 22 

yield measurements were used as benchmarks for calibration. 23 

4.3.3.2 Processing of Sentinel-2 VIs data 24 

All available and cloud-free surface reflectance data from Sentinel-2A and -2B for 2019 25 

were used to calculate pixel-scale vegetation indices for each ROI on the Google Earth 26 

Engine cloud platform (Gorelick et al., 2017). The VIs baseline for each pixel was then 27 

calculated and subtracted from each VI value to ensure the reflectance properties from 28 

objects other than crops are excluded. The baseline was defined as the minimum VI value 29 

throughout 2019 that was larger than zero (Perry et al., 2014). The adjusted VIs (= 30 

Original VIs - Baseline VIs) of all pixels within each ROI were averaged to obtain VI 31 

time series data. 32 
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4.3.3.3 Consideration of growing periods 1 

The LOWESS regression lines between APSIM GLAI and Sentinel-2 VIs showed 2 

different trends at the increasing and decreasing sides of the growth cycle, which were 3 

defined as the pre- and post-APSIM GLAI peak periods (Figure 4-2). Therefore, the 4 

observation operator should be developed separately for these two growing periods. 5 

September 21st was identified as the GLAI peak time based on calibrated APSIM 6 

simulations for all seven ROIs. 7 

The LOWESS curve-fitting method was used to develop the model. At each point in the 8 

data set, a polynomial is fit to a subset of the data using weighted least squares, with 9 

more weight assigned to points near the point whose response is being estimated and less 10 

weight to points further away. There were 163 and 96 data points at the pre- and post-11 

APSIM GLAI peak growing periods, respectively. The number of points used as the 12 

subset of the data to fit the polynomial was 27 and 16, respectively. Figure 4-2 shows the 13 

fitted LOWESS curves, which will be considered as the developed observation operators. 14 

 15 

Figure 4-2. The LOWESS function and the different trends at the pre- and post-GLAI peak 16 

growth periods (a: pre-GLAI peak period; b: post-GLAI peak period) 17 

4.3.3.4 Uncertainty assessment 18 

Properly accounting for observation uncertainty in data assimilation is important. In our 19 

case, the observation uncertainty can be estimated by calculating RMSE between the 20 

APSIM GLAI simulation and satellite VI observations along the LOWESS fitting curves 21 
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to assess the average difference between them. RMSE will be used as the measure of the 1 

observation uncertainty in the following data assimilation. 2 

The orange shaded areas along the LOWESS curves in Figure 4-2 denote the ±RMSE. 3 

The RMSE calculation started from where the APSIM GLAI value was equal to one. A 4 

window of size two was set, and all points within the window were used to calculate the 5 

RMSE value for the centre point. The window moved forward with a step of 0.1 to 6 

calculate the RMSE along the entire LOWESS curve. 7 

4.3.3.5 Curve linearity 8 

To find a suitable vegetation index for use as an observation, the slope of the LOWESS 9 

curve between APSIM GLAI and each VI candidate was evaluated as a measure of the 10 

curve linearity. Researchers have found that normalised difference VIs are sensitive to 11 

low to moderate GLAI values but tend to saturate at moderate to high GLAI values 12 

(Gitelson et al., 2003b; Huete et al., 2002). This insensitivity can cause VIs to show 13 

minimal variation with varying APSIM GLAI values, with almost the same value of VIs 14 

corresponding to GLAI values ranging from 4 to over 6 m2/m2 (Nguy-Robertson et al., 15 

2012). Therefore, it is necessary to calculate the curve slope at the GLAI=4 m2/m2 point 16 

and find the VI candidate with the most linear fitted curve (the curve slope most 17 

proximate to one). To ensure that VIs with different value ranges can be compared with 18 

each other, the normalised APSIM GLAI and VI values were calculated for the 19 

comparison. 20 

4.4 Results 21 

4.4.1 The selection of ideal observation candidate 22 

The selection of a suitable vegetation index was based on the slope of the fitted curve 23 

between APSIM GLAI and VI candidates. Figure 4-3 shows the fitted curves and their 24 

slopes between the rescaled APSIM GLAI and rescaled red edge-based vegetation 25 

indices during the pre-GLAI peak period. The values were rescaled using the equation 26 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
. The turning point, a vertical line of GLAI=4 m2/m2 (corresponding to a 27 

rescaled GLAI value of 0.58 m2/m2), served as the baseline reference for estimating the 28 

curve slope. This slope represents the change in satellite VI observations with respect to 29 

the variations in APSIM GLAI. We only evaluated the linearity of the fitted curves during 30 

the pre-GLAI peak period since all fitted curves developed during the post-GLAI peak 31 
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period exhibited more linear tendencies, with slopes ranging from 0.95 to 1.41 (Table 1 

4-2). 2 

The red edge-based indices were found to have the most linear curves among all three 3 

band combinations during the pre-GLAI peak period, and the red edge CI was the most 4 

suitable candidate for developing an observation operator with a slope value of 0.21 5 

(Table 4-2). Some VIs exhibit a negative slope with APSIM GLAI due to a temporal 6 

shift between the APSIM GLAI and VI curves. When the VI values are increasing, the 7 

APSIM GLAI has already peaked and started to decrease. This likely results from using 8 

only yield data to calibrate the model. APSIM was calibrated to match the simulated 9 

yield with the observed yield. However, this approach does not ensure alignment between 10 

the APSIM GLAI and the observed GLAI. NDVI with all three different band 11 

combinations exhibited saturation at moderate to high APSIM GLAI values, making it 12 

the least suitable candidate. This saturation has also been reported by Gitelson et al. 13 

(2003b) and Huete et al. (2002). 14 

 15 

Figure 4-3. The comparison of curve slope among red edge CI, GLAI, WDRVI, and NDVI (with 16 

positive slope values). Only the slope of the fitted curves during the pre-GLAI peak period is 17 

displayed. The vertical line of rescaled GLAI=0.58 m2/m2 (corresponding to GLAI value=4 18 

m2/m2) served as the baseline reference for estimating the curve slope. 19 

 20 

Table 4-2. The fitted curve slope for all candidate vegetation indices during the pre- and post-21 

GLAI peak period 22 

Vegetation index 
The slope at pre-

GLAI peak period 

The slope at post-

GLAI peak period 

Red WDRVI -0.13 1.16 

Green WDRVI -0.11 1.13 

Red edge WDRVI 0.14 1.36 

Green GLAI -0.06 1.17 
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Red edge GLAI 0.15 1.41 

Green CI -0.02 1.22 

Red edge CI 0.21 1.41 

Red NDVI -0.14 0.95 

Green NDVI -0.12 0.98 

Red edge NDVI 0.06 1.37 

 1 

4.4.2 Operator uncertainty 2 

Red edge CI was selected as the observation to develop an observation operator for data 3 

assimilation. The RMSE of the fitted curve was used as the measure of the observation 4 

uncertainty. Equations (4-1) – (4-7) list the observation uncertainty during the pre- and 5 

post-GLAI peak periods. The uncertainty was represented by piecewise functions for 6 

both periods. 7 

(1) Observation uncertainty for the pre-GLAI peak period: 8 

 𝑦 = 0.69𝑥 + 0.32     (0 ≤ 𝑥 < 2) (4-1) 

 𝑦 = 1.7     (2 ≤ 𝑥 < 3) (4-2) 

 𝑦 = −0.49𝑥 + 3.16     (3 ≤ 𝑥 < 5.6) (4-3) 

 𝑦 = 0.25𝑥 − 0.93     (5.6 ≤ 𝑥) (4-4) 

 9 

(2) Observation uncertainty for the post-GLAI peak period: 10 

 𝑦 = 0.29𝑥 + 0.28     (0 ≤ 𝑥 < 3.53) (4-5) 

 𝑦 = −0.09𝑥 + 1.62     (3.53 ≤ 𝑥 < 6.41) (4-6) 

 𝑦 = 0.15𝑥 + 0.05     (6.41 ≤ 𝑥) (4-7) 

 11 

4.4.3 Method validation 12 

The method for developing the observation operator is validated within the data 13 

assimilation framework to enhance yield prediction using APSIM-Wheat and satellite 14 

vegetation observations. The LOWESS curves fitting results for red edge CI from 15 

Sentinel-2 and PlanetScope, compared against APSIM-simulated GLAI, are utilised in a 16 

synthetic experiment (Chapter 5) to demonstrate its efficacy in improving model yield 17 

estimates. Furthermore, this observation operator development method is applied in real 18 

case data assimilation (Chapter 6) and confirms its reliability in establishing the 19 

relationship between observations and model states, leading to improved model yield 20 

estimates.  21 
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4.5 Conclusion 1 

This work developed an approach for establishing observation operators that connect 2 

satellite observations to model simulated states for use in a data assimilation framework. 3 

Ten vegetation indices with different band combinations were tested. The LOWESS 4 

curve-fitting method was used to develop the model and the RMSE was computed along 5 

the curve as the observation operator uncertainty. We found that individual observation 6 

operators should be developed for the pre- and post-GLAI peak periods, as the curves 7 

showed different trends during these two growth stages. The red edge CI was 8 

demonstrated to be the most suitable candidate, as the curve fitted between it and the 9 

APSIM GLAI was closest to linear during the pre-GLAI peak period. Therefore, it was 10 

selected as the observation in the following data assimilation work. In contrast, NDVI-11 

based vegetation indices tend to saturate at moderate to high GLAI values. If only 12 

developing an observation operator during the post-GLAI peak period, green NDVI is 13 

recommended to be the observation as it has the least uncertainty and the most linear 14 

curve. 15 

 16 
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Chapter 5 Assimilating remotely sensed green 1 

leaf area index for wheat yield estimates: a 2 

synthetic experiment 3 

5.1 Abstract 4 

Accurate crop yield prediction is crucial for adapting farm management, especially given 5 

an increase in extreme weather conditions related with climate change and other 6 

environmental influences. While crop growth models or remote sensing methods can be 7 

used to predict yield, their respective yield prediction skills can be improved by 8 

integrating them via data assimilation. In this study, a synthetic experiment was designed 9 

using the Ensemble Kalman filter (EnKF) method to investigate the potential 10 

improvement in wheat yield estimation by assimilating green leaf area index (GLAI) 11 

observations into crop growth model, APSIM-Wheat. The experiment compared the 12 

results from (1) updating only the leaf biomass and all biomass components; (2) updating 13 

at a 5-day and 1-day frequency; and (3) updating across the whole season, only prior to 14 

the GLAI peak, and only the post-GLAI peak growth stages. The resulting field-level 15 

APSIM-Wheat yield prediction performance for a rainfed winter-wheat condition in 16 

north-western Victoria, Australia is focussed on. The most effective data assimilation 17 

strategy was determined and validated for eight representative cases spanning high, 18 

median, and low yield estimates. The results showed that updating all biomass 19 

components across the whole growing season at a daily frequency resulted in the best 20 

yield prediction performance while a 5-day updating frequency was more realistic 21 

considering the availability of currently operational satellite observations. For the eight 22 

validation cases, the updating every 5 days for the whole season decreased the yield 23 

prediction residual from 230-2134 kg/ha to 93-533 kg/ha. The standard deviation was 24 

also decreased by 41.7-66.7%. This work provides a detailed exploration of the efficacy 25 

when assimilating GLAI observations into APSIM-Wheat to improve the model yield 26 

prediction performance. The findings provide guidance for crop model data assimilation 27 
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practices more generally in choosing suitable observations in connection with model 1 

state variables and determining the updating frequency and stage. 2 

5.2 Introduction 3 

Climate changing including the increase of weather extremes as well as a growing 4 

population pose threats to food security and socioeconomic stability. Timely prediction 5 

of crop yield can contribute to efficient farming practice decisions, optimising resource 6 

usage efficiency, and securing food production (Boas et al., 2021; Horie et al., 1992a). 7 

Various tools are used to monitor agricultural systems and predict yield, such as 8 

biophysical crop models and remote sensing techniques (Bouman, 1995; Jin et al., 2018). 9 

Process-based biophysical models are widely used to provide in-season crop growth 10 

simulation and yield estimation (Basso et al., 2013; Basso and Liu, 2019; Boas et al., 11 

2021; Togliatti et al., 2017). In essence, these models simulate the biological and physical 12 

processes linking soil, climate conditions, and other factors to crop yield outcomes. 13 

However, due to the complexity of climate-soil-crop interactions, prediction 14 

uncertainties originate from model structure, forcing inputs, parameters, and 15 

observations (Vrugt et al., 2008). These modelling uncertainties limit cropping system 16 

predictability (Challinor and Wheeler, 2008; Ramirez-Villegas et al., 2017; Seidel et al., 17 

2018). On the other hand, remote sensing data allows for large-scale crop monitoring and 18 

yield forecasting. The empirical method is widely used for this purpose. It is based on 19 

the correlation between remote sensing measurements and field-measured yield data, 20 

which is utilised to train statistical models or machine learning models (Čorňák and 21 

Delina, 2022; Muruganantham et al., 2022). However, these developed models also have 22 

inherent uncertainties (Foody and Atkinson, 2002; Povey and Grainger, 2015). 23 

Integrating remote sensing data into crop models can reduce the uncertainties from both 24 

sources and provides a way to simulate crops and predict yields with spatial variability. 25 

Remote sensing observations can be integrated into crop modelling in different ways: 26 

“calibration”, “forcing”, and “updating” methods (Jin et al., 2018). The calibration 27 

method relies on remote sensing observations to adjust model initial conditions or 28 

calibrate parameters to minimise the difference between model simulations and 29 

observations (Claverie et al., 2009; Clevers et al., 1994; Jégo et al., 2012; Liu et al., 2014; 30 

Ma et al., 2013). The forcing method directly replaces some model state variables with 31 

the remote sensing observations (Bouman, 1995; Jongschaap and Schouten, 2005; Thorp 32 
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et al., 2010; Yao et al., 2015). One obvious drawback of these two methods is considering 1 

remote sensing observations as the truth without accounting for their biases. The 2 

updating method, also known as data assimilation, explicitly takes into account 3 

uncertainties in both model simulations and observations in order to continuously update 4 

the state variables of the model. 5 

Among the available data assimilation algorithms, the Ensemble Kalman Filter (EnKF) 6 

(Evensen, 2003) is one of the most popular methods used for improving model 7 

performance due to its computational efficiency and ability to deal with non-linear and 8 

high-dimensional model systems. It has been widely adopted in other environmental 9 

models, such as land surface, hydrological, meteorological, and climate models (Carrassi 10 

et al., 2018; Helmert et al., 2018; Lahoz and Schneider, 2014; Moradkhani and 11 

Sorooshian, 2009; Sun et al., 2016). The filter weighs the uncertainties from both 12 

observations and background predictions to update the values of certain state variables. 13 

For crop modelling, the EnKF has already been applied to DSSAT (Chakrabarti et al., 14 

2014; Ines et al., 2013; Nearing et al., 2012), WOFOST (Curnel et al., 2011; de Wit and 15 

van Diepen, 2007; Huang et al., 2016; Pauwels et al., 2007; Wang et al., 2013b; Zhao et 16 

al., 2013), AquaCrop (Lu et al., 2021b), SAFY (Kang and Özdoğan, 2019; Silvestro et 17 

al., 2021, 2017) and Agricultural Production Systems sIMulator (APSIM) (Kivi et al., 18 

2022; Zhang et al., 2021; Zhang et al., 2022) with varying assimilation performance. 19 

Some studies using the EnKF have shown improved accuracy of the final yield estimates 20 

by integrating remotely sensed vegetation and/or soil observations with model 21 

simulations. Wang et al. (2013) and Zhao et al. (2013) integrated satellite-derived leaf 22 

area index (LAI) observations into the WOFOST model using an EnKF to effectively 23 

reduce maize yield prediction errors at regional scale in north-western and north-eastern 24 

China. Kang and Özdoğan (2019) used satellite LAI observations and yield statistics to 25 

calibrate the SAFY maize model at a county level. Then LAI observations were 26 

assimilated into the calibrated model using the EnKF to improve the yield prediction at 27 

a paddock level. In the abovementioned studies, the ground measured soil parameters, 28 

GLAI, and/or yield data were used to calibrate the model prior to data assimilation. These 29 

site-specific calibration measures ensured the model to have a smaller uncertainty. 30 

The performance of data assimilation can be inconsistent under different conditions. Lu 31 

et al. (2021) found that jointly-assimilating in situ canopy cover and soil moisture (SM) 32 
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observations into AquaCrop improved maize yield prediction performance at the field-1 

level. Ines et al. (2013) showed that DSSAT-Maize yield predictions were generally 2 

improved when both MODIS LAI and AMSR-E SM observations were integrated into 3 

the model at a county-level aggregated scale. But the results also suggested that under 4 

extremely wet conditions, integrating only LAI might be more effective. Chakrabarti et 5 

al. (2014) found that when the rainfed soybean crop was affected by drought, the 6 

accuracy of the DSSAT yield prediction was improved more by assimilating the 7 

downscaled 1-km SM observations from the SM and Ocean Salinity (SMOS) mission. 8 

Some other studies found limited improvement in prediction performance at times using 9 

an EnKF. The lack of correlation between different state variables constrained the 10 

efficacy of the filter. Pauwels et al. (2007) and Zhang et al. (2022, 2021) found that 11 

updating wheat state variables did not improve the soil water and soil nitrogen state 12 

estimation accuracy using WOFOST and APSIM, and vice versa. In a separate study, 13 

Kivi et al. (2022) concluded that by assimilating daily in situ SM observations into the 14 

APSIM, the soil water and the soil nitrogen cycles were better characterised, while the 15 

impact on LAI and yield was negligible. Nearing et al. (2012) reported that assimilating 16 

LAI observations into the DSSAT model did not transfer into improving the wheat yield 17 

estimation.  18 

Grain development is controlled by multiple factors such as weather conditions, cultivar 19 

characteristics, and soil parameters, updating only the leaf state variable(s) is inadequate 20 

in correcting grain growth. Curnel et al. (2011) found that the assimilation of the LAI in 21 

WOFOST led to poor results, as the phenological development simulated by the model 22 

and the observed development did not match. Zhang et al. (2022) indicated that 23 

correcting the phenological stage simulation could lead to a better yield estimation. 24 

However, the phenological stage observations are difficult to obtain.  25 

Various studies have also underlined that accurately quantifying model and observation 26 

errors is decisive in the effectiveness of the EnKF (Kivi et al., 2022; Tandeo et al., 2020). 27 

De Wit and van Diepen (2007) found that if the errors of the WOFOST model and the 28 

SM satellite observations were underestimated, this could lead to an insignificant 29 

improvement in the predictions for wheat and maize yields. 30 
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Past studies have tested the efficacy of EnKFs or particle filters (PF) to assimilate 1 

observations at different growth stages for improving APSIM model estimates. Zhang et 2 

al. (2022, 2021) explored the potential improvements due to assimilating wheat and/or 3 

soil observations in APSIM during various phenological stages. The results suggested 4 

that assimilating only leaf area index, or aboveground biomass, or surface SM could 5 

avoid over-correction and resulted in a better yield estimation. The correction of 6 

simulated phenological stage led to an improved yield estimation due to the reduced 7 

uncertainties caused by temperature and cultivar parameters. Kivi et al. (2022) 8 

effectively improved the soil water and soil nitrogen estimates by integrating daily SM 9 

measurements into APSIM, which improved the estimated tile drainage flow and annual 10 

NO3 load. However, differing from Zhang et al. (2022), they did not find obvious 11 

improvements in LAI or yield estimates. This was likely due to the limited potential of 12 

SM updates to improve wheat state variables for a site without water stress. Machwitz et 13 

al. (2014), Ziliani et al. (2022), and Lei et al. (2020) all employed PFs to assimilate 14 

satellite-derived aboveground biomass, LAI, and surface SM observations into APSIM 15 

to effectively improve the yield and soil moisture estimates. The results demonstrated 16 

the ability of the PF to handle the nonlinear relationship between model simulations and 17 

observations. 18 

To summarise, achieving robust crop yield estimation by integrating crop models and 19 

remotely sensed observations using an EnKF still faces challenges. Most studies on data 20 

assimilation in crop models evaluated performance by integrating multiple sources of 21 

observations, such as soil moisture, and biomass/LAI, into crop models. Some studies 22 

used field measurements, including soil hydraulic parameters, yield data, and 23 

phenological observations, to calibrate the model prior to or during data assimilation to 24 

ensure its efficacy. However, obtaining multiple sources of observations and field-25 

measured data necessitates additional resources. Additionally, the lack of correlation 26 

between different state variables limited the efficacy of the filter. The effectiveness of 27 

incorporating a single-source vegetation observation from optical satellite imagery into 28 

APSIM has not yet been assessed under controlled conditions for varying updating 29 

intervals, phenological stages, and updated biomass state variables. A comprehensive 30 

synthetic experiment should be conducted to validate the performance of various 31 

updating strategies and identify the most effective data assimilation scheme. 32 
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In this study, we will explore the efficacy of integrating simply obtained remote sensing 1 

vegetation observations into the APSIM model to improve the field-level wheat yield 2 

prediction. Considering the importance of accurately quantifying model and observation 3 

errors, a comprehensive uncertainty estimation is carried out. Based on a synthetic 4 

experiment, we propose to identify which observations are more suitable to update the 5 

model states, and to explore different updating strategies in terms of interval, 6 

phenological stage, and the wheat biomass components updated. The proposed 7 

observations are selected to be easily acquired from satellite sources, with well-8 

developed retrieval algorithms available, and closely related to the wheat biomass state 9 

variables. The biophysically determined cross-correlation among all simulated biomass 10 

components is discussed in order to analyse if updating all components can achieve a 11 

higher efficacy other than updating only the leaf biomass. The developed data 12 

assimilation strategy is validated using various cases with high, median, and low yield 13 

estimates. 14 

5.3 Materials and methods 15 

5.3.1 Study site 16 

The study site is a rainfed winter-wheat (Triticum aestivum L.) field located in north-17 

western Victoria, Australia during 2019 (Figure 5-1). The climate type in this area is 18 

semiarid, with an average annual rainfall varying from 240 to 520 mm over the past 30 19 

years, with most rainfall occurring between May and October (Bureau of Meteorology, 20 

2020). The area under cultivation was 106 ha, with an average yield of 5.9 t/ha and large 21 

spatial variations due to different soil properties. For example, the clay content in the top 22 

30 cm of the soil decreases from the northeast to the southwest (ASRIS, 2011). 23 
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 1 

Figure 5-1. The study site location, (a) the paddock is located in north-western Victoria, Australia, 2 

(b) a satellite image of the paddock, and (c) ground measured yield data shown in tonnes per 3 

hectare (t/ha). 4 

5.3.2 APSIM-Wheat and input datasets 5 

The APSIM-Wheat model (Next Generation) (Holzworth et al., 2018, 2014b) was used 6 

to simulate biophysical processes of daily wheat growth. The Wheat, SoilWat, SoilN, 7 

Weather, and Fertilisation modules are the main components linked within APSIM to 8 

account for the interaction of wheat with the environment and management. The SoilWat 9 

module calculates the soil water dynamics based on a multi-layer cascading water 10 

balance model. The key parameters describing the soil water holding characteristics 11 

include lower limit of 15 bar (LL15, the wilting point), drained upper limit (DUL, the 12 

field capacity), crop lower limit (CLL), and saturation (SAT). The SoilN module 13 

considers three organic matter pools (fresh, biom, and hum) to simulate the conversion 14 

of nitrogen and carbon in each soil layer through processes including nitrification, 15 

denitrification, mineralisation, and immobilisation, thereby calculating the available 16 

nitrogen in soils based on the crop residuals and fertiliser inputs. The Weather module 17 

takes in daily meteorological information, including precipitation, global radiation, 18 

maximum and minimum temperature, and feeds the information to other modules, such 19 

as Wheat, SoilWat, and SoilN. The Fertilisation module is a self-defined script specifying 20 

the amount and timing of nitrogen fertilisation. 21 



92 

 

The Wheat module accounts for biomass supply from four sources: fixation 1 

(photosynthesis), uptake, retranslocation, and reallocation. Fixation is based on a 2 

radiation use efficiency model. The income biomass is determined by the leaf area index 3 

(LAI), solar radiation, and radiation use efficiency. Water, nitrogen, and temperature 4 

stress are considered to affect the actual biomass accumulation. Uptake is mostly relevant 5 

to nitrogen (N) and carbon. The root organ absorbs mineral N and carbon substrates from 6 

the soil, the leaf organ uptakes foliar-applied N. Retranslocation and reallocation supply 7 

biomass from a “live” or a “senescing” organ. The total biomass supply is then allocated 8 

to form five wheat organs: leaf, stem, spike, grain, and root biomass (Brown et al., 2019). 9 

The allocation to each organ is determined by their relative demands (g g-1) for biomass: 10 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑚𝑎𝑛𝑑[𝑜] =
𝐷𝑒𝑚𝑎𝑛𝑑[𝑜]

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑
 (5-1) 

where [𝑜] represents the particular organ. 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑 is the sum of 𝐷𝑒𝑚𝑎𝑛𝑑[𝑜] for 11 

all organs. Organs with a greater relative demand receive a greater share of the biomass 12 

supply. The 𝐷𝑒𝑚𝑎𝑛𝑑[𝑜] for each organ is determined by specific parameters and stress 13 

factors that vary with phenological stages and environmental conditions. As a result, 14 

biomass allocation changes accordingly. 15 

APSIM requires a range of information to be specified. The management information 16 

was collected from the crop grower. Wheat was sown on 12 May 2019 at a rate of 120 17 

plants/m2, a depth of 30 mm and a row spacing of 300 mm. Urea was applied at the rate 18 

of 50 kg N/ha and 60 kg N/ha on 1 July and 31 July, respectively. Soil information was 19 

obtained by selecting a suitable soil profile from the APSoil database (Oliver and 20 

Robertson, 2009) (Table D. 1). The selection was based on the soil profile’s similarities 21 

to ground-based soil textures and soil moisture measurements. Seven soil layers were 22 

considered, with 10 cm thickness in each of the top five soil layers and 40 cm in the 23 

deepest two layers. The rooting depth is 130 cm. Hao et al. (2021) reported that 24 

parameters derived from APSoil lead to acceptable performance in APSIM-Wheat yield 25 

predictions (RMSE=0.7 t/ha). The amount of initial soil water content in each layer was 26 

defined as the value between LL15 and DUL. Other initial model states were specified 27 

from a 100-year model spin up (1918 – 2018) with fertilisation of 80 kg N/ha across all 28 

growing seasons. The initial nitrogen content after the spin up was 52 kg N/ha. The daily 29 

weather data are from the nearest meteorological station to the study site (Nhill station) 30 
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(Bureau of Meteorology, 2020). The annual precipitation in 2019 was 268 mm, with 1 

about 241 mm of precipitation falling in the growing season (May - November). The 2 

information was used to initialise the single-member open loop (OL) model simulation 3 

(Chapter 5.3.3.1). 4 

Figure 5-2 shows the time series of biomass amount and proportion of each biomass 5 

organ to the total biomass from the open loop simulation. Initially, the leaf organ emerges 6 

and continues to grow, along with the roots. The leaf proportion increases until the flag 7 

leaf is visible (stage 38) (Zadoks et al., 1974). Root biomass increases together with the 8 

leaf organ, but its proportion decreases until the start of the reproductive stage, followed 9 

by an increase and stabilisation before the harvest. Stem biomass starts to accumulate 10 

after the leaf organ. Its proportion increases gradually, reaching a peak at the middle of 11 

the reproductive stage (stage 71) and then declining to zero. The spike organ shows up 12 

at the start of the reproductive stage (stage 50), the proportion reaches a peak soon after 13 

the onset of the grain organ and decreases to a relatively stable value (approximately 10% 14 

of the total biomass). The grain organ is the last organ to begin growing and its proportion 15 

to the total biomass increases rapidly during the reproductive stage until the harvest 16 

(stage 90). 17 

 18 

Figure 5-2. The (a) biomass amount and (b) proportion of each biomass organ in total biomass 19 

predicted by APSIM-Wheat. 20 

The green leaf area index (GLAI) is used to quantify the ratio of live leaf area per unit 21 

ground area in APSIM-Wheat. It is calculated as the sum of the total “live” leaf areas of 22 

all leaf cohorts. As a result, it is strongly correlated with the “live” leaf biomass output 23 
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from the wheat module. Figure 5-3 compares the leaf biomass with GLAI across the 1 

whole crop growth period, as simulated by APSIM-Wheat. 2 

 3 

Figure 5-3. Comparison between leaf biomass and GLAI simulated by APSIM-Wheat (different 4 

point colour represent different month). 5 

5.3.3 Synthetic twin experiment 6 

The synthetic twin experiments performed here were designed to investigate the 7 

influences of updating different model states, updating during different growth stages, 8 

and updating at different frequencies. The experiments are based on the 2019 rainfed 9 

winter-wheat field described in Chapter 5.3.1. This provides realistic growing conditions 10 

for the experiments. The model simulation with ground-based inputs (Chapter 5.3.2) is 11 

deployed as the single-member open loop (OL) simulation and is also used for model 12 

perturbation to represent modelling uncertainty (Chapter 5.3.3.1). Some specific 13 

ensemble member can be assumed to be the “TRUE” simulation and used to generate 14 

synthetic observations (Chapter 5.3.3.2 and 5.3.3.3). The synthetic observations were 15 

assimilated into the ensemble perturbed simulations (DA) with different experiment 16 

configurations for updating the model states (Chapter 5.3.3.4). The OL and DA were 17 

then compared to the TRUE simulation to determine each experiment’s ability to recover 18 

the TRUE scenario. Figure 5-4 is a schematic representation of the used synthetic twin 19 

experiment approach. 20 
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 1 

Figure 5-4. Schematic diagram of the synthetic twin experiment 2 

5.3.3.1 Model uncertainties 3 

The open loop simulation can be viewed as a “first guess” of the true parameters and 4 

states available and is initialised with information as described in Chapter 5.3.2. Like all 5 

models (Vrugt et al., 2008), it should consider uncertainties resulting from 6 

deficient/inaccurate model structure, forcing inputs, and parameters. This work 7 

considered uncertainties in weather forcing data, soil-related parameters, and soil 8 

nitrogen states. We perturbed maximum and minimum air temperature, soil hydraulic 9 

parameters, precipitation, fertilisation amount, and initial nitrogen content to emulate the 10 

uncertainties in temperature, water, and nitrogen availability. These aspects were 11 

identified as important factors contributing to APSIM-Wheat yield uncertainty (Hao et 12 

al., 2021). Table 5-1 specifies the perturbation type and error magnitude added to each 13 

uncertain input/parameter/state. 14 

Perturbation of precipitation was multiplicative, and lognormally distributed with a mean 15 

of 1 and standard deviations of 40%. Perturbations of maximum and minimum 16 

temperatures were assumed to be additive and Gaussian with zero mean and a standard 17 

deviation of 3 ℃. To include temporal autocorrelation, each weather input error was 18 

implemented with a first-order autoregressive process, AR(1), with a correlation 19 

coefficient of 1/e on a daily basis, following Reichle et al. (2007) and Li et al. (2014). 20 

The perturbations for the different weather inputs were not cross correlated. 21 
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Soil parameters were perturbed by adding cross-correlated and normally distributed 1 

errors to LL15, DUL, SAT, and CLL. A correlation coefficient of 0.5 is assumed between 2 

each pair of parameters. The mean and standard deviation of each soil parameter and for 3 

each soil layer were obtained from Ratliff et al. (1983) as the selected APSoil profile 4 

only provided the base value for soil hydraulic parameters (Table D. 1). The purpose of 5 

the perturbation was to realistically represent the uncertainty in soil parameter 6 

configuration and also generate difference in water holding capacity. 7 

Nitrogen resources were perturbed in two ways: the initial nitrogen content and the 8 

fertilisation amount. For the initial nitrogen content, an additive Gaussian error with a 9 

standard deviation of 30% of the base value was added to the base value, which was 52 10 

kg N/ha. The nitrogen fertilisation amounts of 50 kg N/ha and 60 kg N/ha were perturbed 11 

to represent the spatial variability of fertiliser application due to machinery variations. 12 

The error was assumed to be Gaussian with a standard deviation of 15%. The perturbed 13 

fertilisation amounts were between 29 kg N/ha and 70 kg N/ha, and 35 and 88 kg N/ha, 14 

respectively.  15 

An ensemble size of 100 was used to represent the model uncertainty. An ensemble size 16 

of 50 was recommended for APSIM (Kivi et al., 2022; Zhang et al., 2022) and the 17 

WOFOST model (Curnel et al., 2011; de Wit and van Diepen, 2007) after ensemble size 18 

tests. A number of 100 ensemble members was recommended by Nearing et al. (2012) 19 

for the CERES-Wheat model. Lu et al. (2021) proved that 50 is an adequate ensemble 20 

size to achieve stable results in crop model data assimilation. The standard deviation of 21 

the resulting ensemble yield predictions was 0.76 t/ha, which is close to the uncertainty 22 

of 0.7 t/ha found by Hao et al. (2021) when soil parameters were specified with APSoil 23 

and no other stresses was considered. 24 

Table 5-1. The perturbation of uncertain input variables 25 

Uncertain sources Error type Error magnitude 

Temporal 

autocorrelation 

coefficienta 

Precipitation 
Log-normal 

distributed (mean=1) 
Std=40% 1/e 

Daily maximum air 

temperature (Tmax) 

Normal distributed 

(mean=0) 
Std=3℃ 1/e 

Daily minimum air 

temperature (Tmin) 

Normal distributed 

(mean=0) 
Std=3℃ 1/e 
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Soil parameters 
Normal distributed 

(mean=0) 

Specific std values 

are listed in Table D. 

1 

NA 

Initial N content (52 kg 

N/ha) 

Normal distributed 

(mean=0) 
Std=30% NA 

Nitrogen fertilisation 

amount 

Normal distributed 

(mean=0) 
Std=15% NA 

aFirst-order autocorrelation coefficient assumes a daily time series. 

 1 

5.3.3.2 The selection of TRUE simulations 2 

In the synthetic twin experiment, a TRUE simulation is required to generate synthetic 3 

observations and is also used as the benchmark to evaluate the ability of the data 4 

assimilation to retrieve the TRUE scenario. After the open loop simulation was perturbed 5 

to generate 100 ensemble members with the uncertainties considered above, we first 6 

selected two ensemble members as TRUE simulations – those with the highest and the 7 

lowest yield predictions and used these to explore and design the DA strategy. Following 8 

that, eight representative ensemble members spanning high, median, and low yields were 9 

chosen to assess and analyse the efficacy of the designed DA strategy. These were the 10 

highest, 95th, 90th, the larger 50th, the smaller 50th, 10th, 5th percentiles, and the lowest 11 

yield cases. The ensemble size of 100 is an even number so we show two realisations for 12 

the median (smaller and larger) instead of averaging them. Figure 5-5 shows the daily 13 

grain biomass from the OL simulation, all perturbed ensemble members, and the chosen 14 

TRUE simulations. The yield predictions for the OL simulation, mean of perturbed 15 

ensembles, and standard deviation of perturbed ensembles are 4451.6 kg/ha, 4182.7 16 

kg/ha, and 756.7 kg/ha, respectively. 17 
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 1 

Figure 5-5. Daily yield from the open loop (OL) simulation, perturbed ensemble members, and 2 

the chosen TRUE simulations. 3 

5.3.3.3 Synthetic observations 4 

GLAI was selected as the observation to update biomass states in the APSIM-Wheat due 5 

to its stable relationship with the leaf biomass and its observability via remote sensing 6 

techniques. Figure 5-3 shows that the correlation between them was always close to 1. 7 

The synthetic observations were generated based on the synthetic TURE simulations 8 

with observation errors. The observation error was randomly generated based on the 9 

RMSE between APSIM GLAI and satellite VIs (Chapter 5.3.4.3). At each state update 10 

timestep, we generated a single synthetic observation by adding the observation error to 11 

the GLAI extracted from the TRUE simulation. The observation error added represents 12 

random errors embedded in typical real observations. 13 

5.3.3.4 Experimental design 14 

The efficacy of the data assimilation may be influenced by the updated state variables, 15 

the assimilation interval, as well as the specific phenological stages where observations 16 

are assimilated. Therefore, this work explored and designed three aspects of a DA 17 

strategy: 18 
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(1) Choice of state variables: Two different sets of model state variables were updated. 1 

One approach updated leaf biomass only, the other one updated all biomass 2 

components (leaf, stem, spike, grain, and root biomass). The leaf biomass shows a 3 

direct connect with GLAI in the APSIM-Wheat (Figure 5-3), which implies that leaf 4 

biomass has the potential to be effectively updated by assimilating GLAI. The 5 

efficacy of updating other biomass parts relies on their correlations with leaf biomass. 6 

If the embedded correlations approximate those in reality, updating all biomass 7 

components should improve performance more than updating leaf biomass only. 8 

(2) Phenological stages: Assimilation of observations over three periods has been tested: 9 

(1) Full Season - the whole growing season from sowing to harvest; (2) pre-GLAI 10 

peak - from sowing to the GLAI peak time; and (3) post-GLAI peak - from GLAI 11 

peak time to harvest. 12 

(3) Assimilation frequency: Assimilation intervals of 5 days and 1-day were investigated. 13 

The 5-day interval was chosen to match the temporal resolution of Sentinel-2. The 1-14 

day interval was tested given the APSIM model estimates states on a daily basis. 15 

5.3.4 APSIM-Wheat data assimilation 16 

5.3.4.1 Ensemble Kalman filter 17 

The ensemble Kalman filter (EnKF) is an extension of the Kalman filter, where the 18 

forcing data, parameters, and/or model states are perturbed in a Monte Carlo method to 19 

generate an ensemble of stochastic model simulations (Evensen, 2003, 1994). The EnKF 20 

is implemented in forecast and update steps. The forecast step estimates the ensemble of 21 

model state vector 𝑋𝑡 at time 𝑡 from the previous timestep 𝑡 − 1. When an observation 22 

𝑂𝑡 is available at time 𝑡, the ith member in state vector 𝑋𝑖
𝑡 is updated as: 23 

 𝑋𝑖
𝑡+ = 𝑋𝑖

𝑡− + 𝐾𝑡[𝑂𝑡 + 𝜀𝑖
𝑡 − 𝐻(𝑋𝑖

𝑡−)] (5-2) 

where 𝑋𝑖
𝑡+ refer to the posterior state vector following the update, 𝑋𝑖

𝑡− is the prior state 24 

vector, 𝜀𝑖
𝑡  represents the observation error, and 𝐻(∙) is the observation operator that 25 

maps the state vector from the model space to the observation space. 𝐾𝑡 is the Kalman 26 

gain, which weights relative uncertainties of forecast and observation based on the 27 

covariance matrices: 28 

 𝐾𝑡 = 𝐶𝑋𝑌
𝑡(𝐶𝑌𝑌

𝑡 + 𝑅𝑡)−1 (5-3) 
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where 𝐶𝑋𝑌
𝑡  is the error cross-covariance between model state vector 𝑋𝑡−  and the 1 

corresponding model forecasted observation 𝐻(𝑋𝑡−). The model forecasted observations 2 

are generated by passing model state vector through the observation operator. 𝐶𝑌𝑌
𝑡 is the 3 

error covariance of 𝐻(𝑋𝑡−), It is to quantify how the observed values vary with respect 4 

to their mean across ensemble members. 𝑅𝑡 is the observation error covariance. 5 

5.3.4.2 Perturbation bias correction 6 

Due to the nonlinearity of the APSIM-Wheat model (Hao et al., Chapter 3), the state 7 

perturbation using mean-zero Gaussian noise can induce biased background predictions 8 

in the ensemble model simulations, leading to cumulative errors. To correct this bias, a 9 

perturbation bias correction model developed by Ryu et al. (2009) was applied during 10 

the state update step. The mean bias of the perturbed state variable is: 11 

 
𝛿𝑡 =

1

𝑛
∑(𝑋𝑖

𝑡− − 𝑋𝑂𝐿
𝑡)

𝑛

𝑖=1

 (5-4) 

where 𝑋𝑂𝐿
𝑡 is a single APSIM-Wheat simulation without any perturbation (the so-called 12 

open loop). The mean perturbation bias calculated in equation (5-4) is then subtracted 13 

from each perturbed 𝑋𝑖
𝑡− to produce an unbiased forecast. 14 

5.3.4.3 Observation operator 15 

𝐻 in equation (5-2) is the observation operator required in the DA framework. It projects 16 

the state vector from the model space to the observation space. In this work, we 17 

developed the observation operator based on some sub-field patches from the 2019 18 

rainfed winter-wheat paddock described in Chapter 5.3.1. Sentinel-2 derived time series 19 

vegetation indices (VIs) from each patch were compared with the APSIM simulated 20 

GLAI. The APSIM simulation for each patch was calibrated against the field measured 21 

yield data. The LOcally WEighted Scatterplot Smoothing method (LOWESS) was 22 

employed to establish the observation operator connecting APSIM GLAI and Sentinel-2 23 

VIs over the growing season. The RMSE between APSIM GLAI and Sentinel-2 VIs was 24 

used to represent the prescribed error of the observations, which is the 𝑅𝑡 in equation 25 

(5-3). The details of the observation operator development are included in the MethodsX 26 

article related to this paper (Hao et al., submitted to MethodsX; Chapter 4 in this thesis). 27 
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5.3.5 Evaluation of data assimilation performance 1 

The performance of the data assimilation was evaluated in terms of accuracy and 2 

uncertainty. The Residual indicates the difference between the predicted and observed 3 

yield after data assimilation. The Efficiency represents the proportional correction due to 4 

the data assimilation, compared with the open loop. These two metrics were calculated 5 

as: 6 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑌𝐷𝐴
̅̅ ̅̅̅ − 𝑌𝑇𝑟𝑢𝑡ℎ (5-5) 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 −
|𝑌𝐷𝐴
̅̅ ̅̅̅ − 𝑌𝑇𝑟𝑢𝑡ℎ|

|𝑌𝑂𝐿 − 𝑌𝑇𝑟𝑢𝑡ℎ|
 (5-6) 

where 𝑌𝐷𝐴
̅̅ ̅̅̅ is the ensemble mean of the final yield estimation after data assimilation. 7 

𝑌𝑇𝑟𝑢𝑡ℎ  and 𝑌𝑂𝐿  represent the predicted final yield from the truth and the open loop 8 

simulations, respectively. 9 

The standard deviation (𝜎) and the root mean squared error (RMSE) were used to evaluate 10 

the prediction uncertainty after data assimilation. These were calculated as: 11 

 12 

 𝜎 = √
1

𝑛
∑(𝑌𝑖 − 𝑌𝐷𝐴

̅̅ ̅̅̅)2

𝑛

𝑖=1

 (5-7) 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌𝑇𝑟𝑢𝑡ℎ)2

𝑛

𝑖=1

 (5-8) 

 13 

where 𝑛 is the number of ensemble members and 𝑌𝑖 is the predicted final yield from the 14 

ith ensemble model simulation. 15 

Innovation is a commonly used tool to evaluate filter performance. It can diagnose the 16 

appropriateness of the model perturbation and observation uncertainty. The innovation 17 

sequence 𝑣𝑡 = 𝑂𝑡 − 𝐻(𝑋𝑖
𝑡−) describes the difference between the observation and the 18 

corresponding model forecasted observation at time 𝑡. If all assumptions underlying the 19 

application of the EnKF are met, including that the system is linear, both model 20 
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perturbations and observation errors are uncorrelated and Gaussian distributed. 𝑣𝑡 1 

should have a Gaussian distribution with a mean of zero and a variance of 𝐶𝑋𝑌
𝑡 + 𝑅𝑡. 2 

Therefore, the normalised filter innovation 𝑣𝑡̂  is defined by normalising 𝑣𝑡  with its 3 

expected variance should have a standard normal distribution: 4 

 
𝑣𝑡̂ =

〈𝑂𝑡 − 𝐻(𝑋𝑖
𝑡−)〉

√𝐶𝑋𝑌
𝑡 + 𝑅𝑡

 ~ 𝑁(0, 1) (5-9) 

where the angle brackets denote averaging over the ensemble. A biased mean over the 5 

time series of 𝑣 can result from observation errors or from the observation operator when 6 

the developed operator does not fully represent all scenarios in the experiment. When the 7 

variance of the time series of 𝑣  is larger than one, the assumed model error and/or 8 

observation error are underestimated, and when it is smaller than one, the assumed errors 9 

are overestimated (Crow and Van Loon, 2006; Kumar et al., 2008; Reichle et al., 2002). 10 

5.4 Results  11 

5.4.1 Performance of different data assimilation strategies 12 

The two perturbed open loop ensemble members with the highest (5573.0 kg/ha) and the 13 

lowest (2317.3 kg/ha) yield predictions were selected as the TRUE simulations to 14 

generate synthetic observations. DA was run for each of these two cases using a variety 15 

of DA strategies and the results evaluated. Table 5-2 summarises the performance of the 16 

different assimilation strategies for the two TRUE scenarios. All DA strategies listed in 17 

Chapter 5.3.3.4 provided improved yield prediction performance. The mean ensemble 18 

yield prediction moved towards the TRUE yield predictions after data assimilation. The 19 

𝜎  and RMSE of ensembles reduced compared to the ensemble uncertainty before 20 

assimilation. However, the degree of improvement depended on the DA strategy. 21 

5.4.1.1 Updating different biomass components 22 

Updating all biomass components with an interval of five days across the whole growing 23 

season resulted in a greater improvement than updating only leaf biomass. The evaluation 24 

metrics values of Table 5-2 show that for the high yield case, when all biomass 25 

components were updated, the residual between the yield ensemble mean after data 26 

assimilation and TRUE yield prediction was only 172.1 kg/ha, producing an efficiency 27 

of 0.85. The accuracy was substantially improved compared with the difference between 28 
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the OL and TRUE yield prediction of 1121.4 kg/ha. The prediction uncertainty also 1 

decreased compared with the ensemble spread prior to data assimilation, with the 2 

ensemble standard deviation reduced by 43.6%, and RMSE reduced by 66.3%. 3 

When only the leaf biomass was updated (Table 5-2), the DA performance was poorer 4 

than when updating all the biomass components, in terms of both accuracy and 5 

uncertainty. The residual between the DA ensemble mean and TRUE was 435.7 kg/ha, 6 

with an efficiency of 0.61. Data assimilation decreased the ensemble standard deviation 7 

by 41.4%, and the RMSE by 54.7%. 8 

The low yield case produces similar results in that updating all the biomass components 9 

was more effective than updating only leaf biomass (Table 5-2). However, the improved 10 

accuracy was lower than the high yield case, with residual values of 533.1 and 866.2 11 

kg/ha, and efficiency values of 0.75 and 0.59. The uncertainty was decreased by a larger 12 

extent, with the reduced percentage of standard deviation reaching 74.4% and 66.7%, 13 

and for RMSE 71.8% and 55.2%, respectively. 14 

Table 5-2. The DA performance of different assimilation strategies (TRUE: the TRUE model 15 

simulation; OL: the open loop model simulation; DA: data assimilation; std: standard deviation; 16 

RMSE: root mean squared error; LAI: leaf area index) 17 

TRUE 

member 

Yield 

prediction 

from the 
TRUE 

(kg/ha) 

Residual 

between 

TRUE 
and OL 

(kg/ha) 

Settings 

DA 

ensemble 

mean 
(kg/ha) 

Residual 

(kg/ha) 
Efficiency 

DA 

ensemble 

std (σ) 
(kg/ha) 

% 

change 
of stda 

RMSE 

before 

DA 
(kg/ha) 

RMSE 

after 

DA 
(kg/ha) 

Ensemble 
member 

with the 

highest 

yield 

5573.0 -1121.4 

All biomass updated, from 

sowing to harvest, 5-day 
5400.9 -172.1 0.85 426.5 -43.6% 

1582.9 

534.1 

Leaf biomass updated, from 

sowing to harvest, 5-day 
5137.3 -435.7 0.61 443.3 -41.4% 717.2 

All biomass updated, from 

sowing to 𝐿𝐴𝐼𝑝𝑒𝑎𝑘, 5-day 
4519.6 -1053.4 0.06 568.9 -24.8% 1197 

All biomass update, from 

𝐿𝐴𝐼𝑝𝑒𝑎𝑘to harvest, 5-day 
5054.4 -518.6 0.54 452.6 -40.2% 701.2 

All biomass updated, from 

sowing to harvest, 1-day 
5402.8 -170.2 0.86 422.3 -44.2% 529.8 

Ensemble 

member 

with the 

lowest 

yield 

2317.3 2134.3 

All biomass updated, from 

sowing to harvest, 5-day 
2850.3 533.1 0.75 193.4 -74.4% 

2013.0 

567.1 

Leaf biomass updated, from 

sowing to harvest, 5-day 
3183.4 866.2 0.59 252.6 -66.7% 902.2 

All biomass updated, from 

sowing to 𝐿𝐴𝐼𝑝𝑒𝑎𝑘, 5-day 
3869.6 1552.4 0.27 571.3 -24.5% 1658.3 

All biomass update, from 

𝐿𝐴𝐼𝑝𝑒𝑎𝑘to harvest, 5-day 
3686.8 1369.5 0.36 298.9 -60.5% 1401.8 

All biomass updated, from 

sowing to harvest, 1-day 
2620.8 303.6 0.86 152.5 -79.9% 339.7 

a % change of std=(𝜎𝑎𝑓𝑡𝑒𝑟−𝐷𝐴 − 𝜎𝑏𝑒𝑓𝑜𝑟𝑒−𝐷𝐴)/𝜎𝑏𝑒𝑓𝑜𝑟𝑒−𝐷𝐴 

 18 
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5.4.1.2 Updating at different growth stages 1 

For both high and low yield cases, updating through the whole growth season resulted in 2 

better model performance than updating only from the 𝐺𝐿𝐴𝐼𝑝𝑒𝑎𝑘 time to harvest (late-3 

stage updates), (see evaluation metrics results in Table 5-2, rows 2, 4, 5 and rows 7, 9, 4 

10, respectively). Updating from sowing to the 𝐺𝐿𝐴𝐼𝑝𝑒𝑎𝑘 time (early-stage updates) led 5 

to even poorer results. The early-stage updates barely shifted the ensemble yield mean 6 

towards the TRUE yield prediction, with efficiency values of only 0.06 and 0.27 for high 7 

and low yield cases. The ensemble uncertainty decreased to a smaller extent. The 8 

standard deviation reduced by 24.8% and 24.5%, while the RMSE reduced by 24.4% and 9 

17.6%. The late-stage updates corrected more than half of the difference between the OL 10 

and TRUE simulations for the high yield case and one third of the difference for the low 11 

yield case. The reduced ensemble uncertainty was also noticeable for both cases. The 12 

late-stage updates are more effective in correcting yield prediction than the early-stage 13 

updates, but updating across the whole growth season is best, indicating that assimilation 14 

during the early-stage updates was still useful. 15 

5.4.1.3 Update Interval 16 

Updating all biomass components daily across the whole growing season shows 17 

improved performance compared with updating with an interval of five days (Table 5-2). 18 

The improvement was more noticeable for the low yield case, both in terms of accuracy 19 

and uncertainty, with the efficiency increased from 0.75 to 0.86, and the standard 20 

deviation reduction increased from 74.4% to 79.9%. The improvement for the high yield 21 

case was minor but still detectable. Updating biomass state variables in APSIM-Wheat 22 

at a daily time step is a better strategy. However, due to the satellite optical remote 23 

sensing data limitation regarding the revisit frequency and possible cloud contamination, 24 

daily observation is challenging in reality. Given the temporal resolution of Sentinel-2 25 

observations, updating at an interval of five days is more realistic. 26 

5.4.2 Performance of the designed data assimilation 27 

The data assimilation strategy presented in Chapter 5.4.1 shows that updating all biomass 28 

components at a 5-day assimilation interval across the complete growing season is the 29 

more applicable and better performing scheme. Table 5-3 summarises the performance 30 

of this data assimilation strategy for the eight representative TRUE cases (Chapter 31 

5.3.3.2). The DA strategy corrected the discrepancies between the OL and TRUE 32 
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simulations to varying degrees, as reflected by residual values between 93 and 530 kg/ha. 1 

Six out of eight cases achieved efficiency scores above 0.70. The other two cases have 2 

efficiency scores of 0.62 and 0.51. The smallest of these (50th larger) had a small residual 3 

between the OL and TRUE simulations. The residual of these two cases was acceptable, 4 

with 320 and 110 kg/ha, respectively. The reduction in ensemble uncertainty increased 5 

as TRUE yield decreased. The lowest yield case showed the largest reduction in standard 6 

deviation (66.7%), while the 95%ile yield case had the smallest reduction (41.7%). This 7 

was likely due to the smaller observation uncertainty for the lower yield cases, as the 8 

uncertainty is proportional to the synthetic truth observation. APSIM-Wheat simulations 9 

with smaller yield predictions usually show smaller GLAI values during crop growth, 10 

which results in smaller observation uncertainties (Chapter 5.3.4.3). The reduction in 11 

RMSE increased as efficiency increased. The highest and 5%ile yield cases had the 12 

highest efficiency and largest decreases in RMSE, which were greater than 65%. This is 13 

because RMSE captures both bias and ensemble spread. 14 

The final data assimilation scheme had a consistent outcome for all cases as seven out of 15 

eight schemes showed the variance of time series innovations smaller than one, 16 

indicating that the assumed model error and/or observation error were overestimated. All 17 

innovations mean deviated from zero, the absolute deviation ranged from 0.04 to 0.49. 18 

The biased mean values were caused by the model’s non-linearity. The highest yield case 19 

has the mean and variance of innovations of 0.18 and 1.06, fairly close to 0 and 1, 20 

suggesting that this case approaches the theoretically optimal condition for the EnKF 21 

with the best performance. 22 

Table 5-3. The performance of the selected representative ensemble members to assess the 23 

designed DA strategy (TRUE: the TRUE model simulation; OL: the open loop model simulation; 24 

DA: data assimilation; std: standard deviation; RMSE: root mean squared error; LAI: leaf area 25 

index) 26 

Case 

Yield 

prediction 

from the 
TRUE 

(kg/ha) 

Residual 

between 

TRUE 
and OL 

(kg/ha) 

DA 

ensemble 

mean 
(kg/ha) 

Residual 
(kg/ha) 

efficien
cy 

DA 

ensemble 
std (σ) 

(kg/ha) 

% 

change 

of std 

RMSE 

before 
DA 

(kg/ha) 

RMSE 

after 
DA 

(kg/ha) 

Innovations 
mean 

Innovati

ons 

variance 

highest 5573.0 -1121.4 5400.9 -172.1 0.85 426.5 -43.6% 1582.9 534.1 0.18 1.06 

95th 5486.5 -1035.0 5175.9 -310.7 0.70 441.3 -41.7% 1507.6 603.8 0.04 0.66 

90th 5289.8 -838.2 4973.2 -316.6 0.62 422.2 -44.2% 1341.0 585.0 -0.14 0.86 

50th-
larger 

4221.3 230.3 4333.1 111.8 0.51 335.4 -55.7% 757.7 353.6 -0.28 0.88 

50th-

smaller 
4146.1 305.5 4239.3 93.2 0.70 291.7 -61.5% 757.6 306.2 -0.09 0.51 

10th 3208.2 1243.4 3524.8 316.7 0.75 275.7 -63.6% 1233.8 485.6 -0.33 0.81 

5th 3034.2 1417.4 3263.6 229.4 0.84 261.2 -65.5% 1375.3 347.6 -0.45 0.77 
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Lowest 2317.3 2134.3 2850.3 533.1 0.75 193.4 -66.7% 2013.0 902.2 -0.49 0.77 

 1 

5.5 Discussion 2 

5.5.1 The influence of updating different biomass components in the 3 

APSIM-Wheat 4 

Updating all biomass components shows better performance than updating leaf biomass. 5 

Figure 5-6 is an example from the highest yield case when all biomass components were 6 

updated across the whole growth season at an interval of five days. Aboveground 7 

biomass is the sum of leaf, grain, spike, and stem biomass organs. The results of the 8 

updating with GLAI synthetic observations are that both aboveground and belowground 9 

biomass (root biomass) approach the true biomass. Updating resulted in a grain biomass 10 

(yield) of 5400.9 kg/ha, with only 172.1 kg/ha compared with the TRUE yield at harvest. 11 

Figure 5-7 shows the same yield case but where only the leaf biomass was updated. In 12 

this case, leaf biomass still approached the true value, while aboveground biomass moved 13 

only halfway and belowground biomass just shifted slightly towards the truth. The 14 

difference between grain biomass and the TRUE yield was 435.65 kg/ha, obviously 15 

larger than the difference when updating all biomass components. 16 

 17 

Figure 5-6. Time-series of aboveground biomass (a) and root biomass (b) variations for the high 18 

yield case when all biomass components were updated across the whole growth season at in an 19 

interval of five days. 20 



107 

 

 1 

Figure 5-7. Time-series of aboveground biomass (a) and root biomass (b) variations for the high 2 

yield case when only leaf biomass was updated across the whole growth season at in an interval 3 

of five days. 4 

Updating all biomass components contributed to a better yield prediction, which implies 5 

that the model correctly simulated the correlations between GLAI and stem, spike, root, 6 

and grain biomass components. The assimilation weighed the corrective impact of the 7 

GLAI observation by calculating the error covariance, which effectively avoided any 8 

internal inconsistency that may be induced by updating multiple biomass components. 9 

Figure 5-8 presents the time series of correlations between GLAI and the other biomass 10 

component, as estimated from the ensemble. Before the start of booting (stage 37), spike, 11 

stem and root biomass showed positive correlations with GLAI of over 0.8, followed by 12 

negative correlations until the middle of flowering (stage 65), and then positive 13 

correlations until harvest. Grain biomass began to develop at the start of the reproductive 14 

stage (stage 50), and its correlation with GLAI increased from -0.2 to nearly 0.6 in the 15 

middle of the dough development stage (stage 84), then quickly dropped to zero at 16 

harvest. 17 

The correlations between GLAI and the biomass components can also be demonstrated 18 

by the time series of the amount of the different biomass components (Figure 5-9). Figure 19 

5-3 demonstrates that GLAI is highly correlated with leaf biomass. Therefore, the 20 

correlations between leaf biomass and other biomass components are almost the same as 21 

the correlations between GLAI and those biomass components. Figure 5-9 shows that 22 

leaf, stem, and root organs emerged first, followed by the spike organ. They continued 23 

to increase until the leaf biomass reached its peak value. From emergence to this stage 24 

(37), leaf maintained a positive relationship with stem, root, and spike (Figure 5-8 a-c). 25 

After peak leaf biomass, leaf started to senesce while stem, spike, and root continued to 26 
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grow. This resulted in a negative relationship between leaf and stem/spike/root biomass 1 

until the latter three reached their peak amounts (around stage 65). Then their correlation 2 

with leaf became positive again until the harvest. Grain biomass developed continuously 3 

from the reproductive stage while leaf biomass amount decreased. Theoretically, the 4 

relationship between leaf and grain biomass should stay negative; however, Figure 5-8(d) 5 

shows a short period of positive correlation before harvest time. A likely explanation is 6 

that when approaching harvest time, ensemble members with a larger leaf biomass 7 

usually developed a larger grain biomass, and vice versa. This positive correlation lasted 8 

until leaf biomass decreased to zero or the simulation ended at harvest time. 9 

The integration of GLAI into the APSIM-Wheat was shown to be effective in improving 10 

yield estimation by updating all biomass components. Zhang et al. (2022) also confirmed 11 

the ability of assimilating aboveground biomass in yield prediction. Future research 12 

could examine the feasibility of incorporating remotely sensed biomass estimates into 13 

the APSIM-Wheat model. However, acquiring biomass observations remains a challenge 14 

as remote sensing biomass retrieval still requires the development of statistical regression 15 

models between in situ biomass measurements and vegetation indices (Asrar et al., 1985; 16 

Perry et al., 2014). 17 

 18 

Figure 5-8. Time series of ensemble correlations between GLAI and (a) spike, (b) stem, (c) root, 19 

and (d) grain biomass components (vertical dashed lines indicate updating time points). 20 
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 1 

Figure 5-9. The ensemble of biomass amounts for the different plant organs before (pink lines) 2 

and after data assimilation (blue lines). 3 

5.5.2 The influence of updating APSIM-Wheat biomass states at 4 

different growth stages 5 

The period of data assimilation is important. Updating all biomass components from 6 

sowing to harvest outperforms updating from the 𝐺𝐿𝐴𝐼𝑝𝑒𝑎𝑘 time to harvest (late-stage 7 

updates), and they showed significant improvements compared to updating from sowing 8 

to the 𝐺𝐿𝐴𝐼𝑝𝑒𝑎𝑘 time (early-stage updates). The greater impact of late-stage updates can 9 

be attributed to several factors: (1) The effects of early-stage updates are likely to 10 

gradually diminish over time, with the state values trending back towards the simulations 11 

without data assimilation. (2) The late-stage state update was applied to the grain biomass, 12 

whereas early-stage updates were not because no grain biomass exists early in the 13 

simulations (Figure 5-9). Nevertheless, early-stage updates still improved the yield 14 

estimation, as shown by updating across the full season outperforming updates only after 15 

peak GLAI. 16 
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5.5.3 The updating interval and observation availability 1 

The synthetic experiments only considered the updating intervals of 5 days and 1 day. 2 

This was motivated by the temporal resolution of Sentinel-2 datasets. The daily 3 

frequency was tested to investigate the largest potential of the designed data assimilation 4 

scheme. The evaluation metrics (Table 5-2) show that, daily assimilation improves the 5 

yield estimate compared to the 5-day updates, with efficiency scores increased to 0.86 6 

both for the high and low yield cases. The performance improvement was larger for the 7 

low yield case. The greater improvement for the low yield case was likely due to the 8 

larger difference between it and the OL, compared with the high yield case. Figure 5-10 9 

compares the differences of the leaf biomass variations for the low yield case when 10 

updating the state variables at a 5-day and a 1-day interval. The state variables trended 11 

back towards their original simulated values after each assimilation for the 5-day interval, 12 

while the daily updates kept the state values closer to the TRUE simulation. The issue of 13 

state variables trending back towards their original simulated values can be improved by 14 

(1) elaborating model calibration to ensure that the model parameters more accurately 15 

represent the real-world system, which can reduce model systematic biases; (2) ensuring 16 

that the perturbations of the model and observations reflect realistic uncertainties in the 17 

system, by applying perturbations consistent with the statistical properties of the 18 

observed data; and (3) monitoring innovation statistics to detect and avoid excessive 19 

biases. 20 

 21 

Figure 5-10. Time-series of leaf biomass variations for the low yield case when updating the 22 

model states at a (a) 5-day interval and a (b) 1-day interval. 23 

The synthetic experiments demonstrated that the largest potential of assimilating GLAI 24 

could be achieved by updating all biomass states in the APSIM-Wheat at a daily time 25 
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step. However, at present, assuming application with satellite data, the acquisition of 1 

daily remote sensing observations is difficult. For paddock-level work, Sentinel-2 is an 2 

obvious potential data source, as it provides up to 10 m spatial resolution spectral 3 

reflectance data with sufficient revisit frequency and spectral coverage. PlanetScope is 4 

another option, with a daily temporal resolution and approximately 3 m spatial resolution, 5 

but the equipped DOVE-R sensor only has four spectral bands (blue, green, red, and near 6 

infrared) which limits the retrieval of vegetation indices. For larger spatial scale 7 

application, MODIS could be used as the observation source, with its 500 m spatial 8 

resolution and daily acquisition intervals. However, significant spatial heterogeneity 9 

exists within MODIS pixels, which often contain a mixture of crops and other surfaces. 10 

Further investigation is necessary to assess the impact of these issues on assimilating 11 

MODIS. Another issue in realistic situations is the availability of the observations, which 12 

are subject to cloud contamination leading to missing imagery during critical stages of 13 

the crop development. 14 

5.5.4 Adequacy of uncertainty estimation 15 

Table 5-3 summarises the mean and variance of the innovation time series for all eight 16 

cases. All mean values of the normalised innovations deviated from zero, implying 17 

APSIM-Wheat is a non-linear dynamic simulation system. The finding is consistent with 18 

sensitivity analyses of the APSIM model (Casadebaig et al., 2016; Zhao et al., 2014). Six 19 

out of eight cases showed negative mean values while the other two had mean values 20 

close to zero, indicating that on average the GLAI was overestimated by the model. From 21 

the 90%ile to the lowest yield case, the absolute deviation of mean values showed an 22 

increasing trend from 0.14 to 0.49, indicating greater GLAI overestimation for lower 23 

yield cases. 24 

The variance values of the normalised innovations were generally smaller than one, with 25 

a range of 0.51 to 0.88, suggesting that the actual difference between the background 26 

prediction (prior to update) and observation is smaller than the assumed errors 27 

(perturbations) for them. After incorporating the assumed uncertainty in daily 28 

temperature, water, and nitrogen availability (Chapter 5.3.3.1) into the APSIM-Wheat 29 

model, the standard deviation of the perturbed ensemble model simulations was 30 

approximately 0.75 t/ha. This spread was smaller than the 1 t/ha model yield prediction 31 

uncertainty when compared to field-measured yield data (Hao et al., 2021). The 32 
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observation operator developed in Chapter 5.3.4.3 used a LOWESS fitting curve between 1 

the calibrated APSIM GLAI simulation and the Sentinel-2 derived vegetation index. The 2 

observation uncertainty was calculated as the RMSE for windows along the curve. The 3 

difference between the APSIM GLAI simulation and the remotely sensed vegetation 4 

index defined the observation error, which was estimated based on reality but may have 5 

been overstated for the synthetic experiment. These factors may cause the actual 6 

difference between model prediction and observation to be overestimated. 7 

The innovation-based diagnostics have been widely applied in land surface model data 8 

assimilation (Crow and den Berg, 2010; Crow and Van Loon, 2006; Kumar et al., 2008) 9 

and crop model data assimilation (de Wit and van Diepen, 2007; Kivi et al., 2022), with 10 

the performance successfully improved. In future real-world applications with satellite 11 

data, we could use the innovation statistics to modulate the model and observation error 12 

covariances and maximise the performance of the EnKF. 13 

5.6 Conclusion 14 

This paper presented an effective and robust data assimilation scheme that helps to 15 

improve APSIM-Wheat yield prediction. Using a comprehensive synthetic experiment, 16 

we evaluated the potential of integrating GLAI observations to update various biomass 17 

state variables during different growth stages and at various assimilation intervals. 18 

The synthetic experiment showed that the selection of updated model states, updating 19 

periods and intervals is crucial for the performance of data assimilation. Assimilating 20 

synthetic GLAI observations into the APSIM-Wheat model demonstrated its greatest 21 

potential for improving yield prediction when all five wheat biomass components (leaf, 22 

stem, spike, grain, and root organs) were updated daily from sowing to harvest. In 23 

contrast, limiting updates to only leaf biomass or reducing updating periods to only 24 

before or after the GLAI peak time resulted in weaker data assimilation performance. 25 

Given the availability of satellite observations, a 5-day update interval was recommended 26 

for data assimilation in real-world applications, and its performance was found to not be 27 

significantly impacted. The proposed data assimilation scheme effectively reduced the 28 

residuals of yield predictions in eight representative cases to a range of 93-533 kg/ha, 29 

compared to residuals without data assimilation of 230-2134 kg/ha. However, the non-30 

Gaussian distribution of the normalised filter innovations suggests that the EnKF did not 31 
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perform optimally because the assumptions underlying its use were not fully fulfilled. 1 

Additionally, the variance values of the normalised innovations were generally smaller 2 

than one, suggesting that the imposed model error and/or observation error may have 3 

been overestimated. 4 

Future work could focus on better estimating the model and/or observation uncertainty 5 

to improve the EnKF performance. It would also be interesting to apply a particle filter 6 

(PF) since it does not require a linearity assumption in the data assimilation process. 7 

Machwitz et al. (2014) and Lei et al. (2020) demonstrated the efficacy of PF when 8 

assimilating satellite data into APSIM coupled with a radiative transfer model to update 9 

biomass simulations of maize, and assimilating thermal and radar remote sensing 10 

retrievals into APSIM for soil moisture monitoring. We anticipate that our data 11 

assimilation framework can also be extended to real case applications with satellite 12 

observations to improve yield estimation and produce yield maps displaying detailed 13 

spatial variability at a paddock scale. Furthermore, another potential direction for future 14 

work is the application of data assimilation to a larger spatial scale, where satellite 15 

sources such as Landsat or MODIS can be utilised. However, the mixed reflectance from 16 

crops and other surfaces within each pixel requires the incorporation of spatial 17 

heterogeneity into the estimation of observation uncertainty. 18 

 19 
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Chapter 6 Real case study and spatial yield 1 

prediction based on satellite data 2 

6.1 Abstract 3 

Accurate prediction of within-field crop yield variations is crucial for farm management 4 

to enhance food production and optimise resource utilisation. The use of high 5 

spatiotemporal resolution remote sensing data to gain insight into crop growth status 6 

allows for the integration of crop models with remote sensing observations, thereby 7 

improving crop yield predictions. In this study, the performance of a data assimilation 8 

framework based on Ensemble Kalman filter (EnKF) was evaluated by assimilating 9 

Sentinel-2 and PlanetScope derived vegetation observations into the APSIM-Wheat 10 

model. The appropriate observational uncertainty was determined by tuning the relative 11 

uncertainties between model forecasts and satellite observations based on the innovation 12 

indicator. A rainfed winter-wheat field located in north-western Victoria, Australia was 13 

segmented into 58 patches characterising different levels of harvest yield. Two open loop 14 

cases were used to examine the robustness of the data assimilation strategy: a high yield 15 

and a low yield scenario. The results from the patch-based evaluation showed that data 16 

assimilation effectively improved yield estimates by increasing accuracy and reducing 17 

uncertainty. For the high-yield open loop case, the residuals between ground 18 

measurements and model simulations decreased to a range of 0.01 to 1.24 t/ha with a 19 

median value of 0.09 t/ha. The efficiency scores for this case ranged between 0.37 and 20 

0.97, with a median value of 0.73. The uncertainty decreased from 0.71 t/ha to a range 21 

of 0.52 – 0.60 t/ha. The accuracy improvement for the low-yield open loop case was less 22 

significant, with the efficiency scores ranging between 0.18 and 0.94 and a median value 23 

of 0.24. The uncertainty reduction in this case was more significant, decreasing from 0.76 24 

t/ha to between 0.29 and 0.40 t/ha. The different performances for both cases are likely 25 

due to their different model uncertainties. To improve performance in the low-yield case, 26 

the observation uncertainty should be adaptively increased. This study provides insights 27 

into the importance of accurate estimation of the relative uncertainties of model forecasts 28 
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and observations, and it also provides guidance for future agricultural modelling data 1 

assimilation practices. 2 

6.2 Introduction 3 

Process-based biophysical models, such as the Agricultural Production Systems 4 

sIMulator (APSIM), require careful calibration and initialisation to achieve accurate crop 5 

growth simulation and yield estimation (Basso and Liu, 2019). Otherwise, uncertainties 6 

arising from model structure, forcing inputs, and parameters limit the predictive ability 7 

of crop models (Seidel et al., 2018; Vrugt et al., 2008). Remote sensing data provide 8 

repeated monitoring of crop growth and environmental conditions over large spatial and 9 

regular temporal scales, enabling yield estimates, such as through remote sensing-based 10 

models (Donohue et al., 2018). However, they also carry uncertainties due to instrument 11 

inaccuracy and imperfect data retrieval (Povey and Grainger, 2015). 12 

Data assimilation provides an opportunity to address the uncertainty challenges by 13 

combining the model simulations and remote sensing observations to produce better crop 14 

yield predictions. The potential for improving wheat yield predictions with vegetation 15 

observations assimilation has been demonstrated through synthetic experiments in 16 

Chapter 5. The designed data assimilation strategy showed its efficacy by assimilating 17 

synthetic Green Leaf Area Index (GLAI) observations into the APSIM-Wheat model. 18 

However, synthetic observations were generated by adding pre-defined observation 19 

errors to the GLAI observations, which were extracted from the assumed “TRUE” model 20 

simulations. Two assumptions were made during this procedure: (1) the pre-defined 21 

observation errors were estimated from the observation operator developed in Chapter 4. 22 

The estimated errors cannot represent the real remote sensing observational uncertainties 23 

from imperfect instrument and data retrievals; (2) the “TRUE” simulation was attained 24 

by running an assumed “perfect” APSIM-Wheat model, where the extracted synthetic 25 

vegetation observations are likely not consistent with the real satellite observations. 26 

Therefore, a real case study utilising remote sensing data was performed to further 27 

investigate the complexity of data assimilation systems in real-world applications and 28 

understand the effects brought by satellite observations. 29 

Various satellite-derived vegetation observations were assimilated into crop models to 30 

improve APSIM yield predictions. Machwitz et al. (2014) assimilated RapidEye spectral 31 

reflectance data (with a spatial resolution of 6.5 m and up to daily temporal resolution) 32 
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(RapidEye, 2016) into the coupled APSIM-Maize and PROSPECT and SAIL (PROSAIL) 1 

models to increase the accuracy of maize biomass predictions and enable the production 2 

of biomass maps displaying spatial variability in central Luxembourg. The results 3 

highlighted the suitability of incorporating RapidEye data into crop models to enhance 4 

model prediction abilities. Zhang et al. (2022, 2021) presented a data assimilation 5 

framework for integrating both ground measured and remotely sensed data into the 6 

APSIM-Wheat model at a farm near Cora Lynn in Victoria, Australia. The remote 7 

sensing data included (1) 3 m leaf area index (LAI) images produced by fusing Sentinel-8 

2 LAI and PlanetScope surface reflectance (Sadeh et al., 2021), and (2) surface soil 9 

moisture retrieved from tower-based microwave brightness temperature. The results 10 

found that the assimilation of remotely sensed LAI effectively corrected the model’s 11 

underestimation of wheat grain yield by improving the relative difference (RD) from -12 

38.8% to -7.6%. Ziliani et al. (2022) integrated daily 3 m CubeSat-based LAI (Johansen 13 

et al., 2022) into the APSIM-Maize model to provide end-of-season yield maps for a 14 

rainfed maize field located in Nebraska, USA. The proposed framework demonstrated 15 

its ability by reducing yield prediction error from 1 t/ha to 0.2 t/ha. 16 

The challenges faced by this study include accurately estimating the real remote sensing 17 

observational uncertainties and modulating the designed data assimilation framework to 18 

work with spatially and temporally limited optical satellite observations. This chapter 19 

extends the synthetic experiments of Chapter 5 by using satellite and field datasets 20 

collected during the 2019 winter wheat growing season. The relative uncertainties 21 

between model forecasts and observations were tuned based on the innovation indicator. 22 

Successively, the patch-based assimilation of Sentinel-2 and PlanetScope data into the 23 

APSIM-Wheat model was performed to evaluate the efficacy of the designed data 24 

assimilation strategy. 25 

6.3 Methods and materials 26 

6.3.1 Study site 27 

This work used the same study site as in Chapter 5 – a rainfed winter-wheat (Triticum 28 

aestivum L.) field located in north-western Victoria, Australia. The area under cultivation 29 

was 106 ha, with an average yield of 5.9 t/ha and large spatial variations. The paddock 30 

was segmented into 58 patches to characterise different levels of harvest yield. The yield 31 
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of each patch varies from 4.67 t/ha to 6.60 t/ha (Figure 6-1). The data assimilation 1 

strategy designed in Chapter 5 will be applied on a patch basis to examine its performance.  2 

Observation operators were determined following the method described in Chapter 4. As 3 

indicated by the dark blue line in Figure 6-1, the paddock was evenly separated into two 4 

parts. The left-part developed observation operator will be applied to the patches in the 5 

right part and vice versa to ensure independent model evaluation. 6 

 7 

Figure 6-1. The study site location. The paddock was segmented into 58 patches (indicated by 8 

the black lines) and also separated into two parts (indicated by the dark blue line). Four patches 9 

covering a range of low to high harvest yields were selected as test scenarios to evaluate the 10 

performance of data assimilation with varying observation errors (highlighted by light blue 11 

rectangles). The left part of the paddock consists of 31 patches, while the right part contains 27 12 

patches. (a) shows the patch number and (b) shows the ground measured yield data for each patch 13 

(t/ha). 14 

6.3.2 APSIM-Wheat data assimilation framework 15 

The APSIM-Wheat data assimilation framework applied in this case study was 16 

developed and described in Chapter 5. We explored data assimilation strategy in three 17 

aspects and concluded that the most applicable and best-performed strategy is updating 18 

all biomass components (leaf, stem, spike, grain, and root biomass) at a 5-day time step 19 

across the complete growing season. The details of APSIM-Wheat model and its input 20 

datasets, ensemble Kalman filter (EnKF), and the perturbation bias correction can be 21 

found in Chapters 5.3.2, 5.3.4.1, and 5.3.4.2. 22 
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6.3.2.1 The open loop simulations and model uncertainties 1 

To examine the robustness of the developed data assimilation strategy applying with 2 

satellite observations, two open loop simulations were used: a low-yield open loop with 3 

the predicted yield of 4.45 t/ha and a high-yield open loop with the yield prediction of 4 

6.85 t/ha. The measured yield of the 58 patches varied from 4.67 t/ha to 6.60 t/ha, and 5 

the residuals between the two open loop simulations and the field measurements are 6 

between 0.22 and 2.15 t/ha and between -0.25 and -2.18 t/ha respectively. Both open loop 7 

scenarios were used as the benchmark to evaluate to which degree the data assimilation 8 

can improve the open loop predictions to approach the field measurements. 9 

The open loop simulation is seen as a “first guess” of the true parameters and initial states. 10 

Ideally, open loop simulation considers uncertainties from deficient/inaccurate model 11 

structure, forcing inputs, and parameters (Vrugt et al., 2008). This work considered the 12 

same sources of uncertainty as described in Chapter 5.3.3.1 to emulate the uncertainties 13 

in temperature, water, and nitrogen availability. We perturbed maximum and minimum 14 

air temperature, precipitation, soil hydraulic parameters, initial nitrogen content, and 15 

fertilisation amount. Table 6-1 specifies each uncertain source’s perturbation type and 16 

error magnitude for the low-yield and high-yield open loop simulations. The perturbation 17 

details can be found in Chapter 5.3.3.1. 18 

An ensemble size of 100 was used to represent the model uncertainty. After the 19 

perturbation, the standard deviation of the resulting ensemble yield prediction for the 20 

low-yield open loop was 0.76 t/ha, and the ensemble standard deviation for the high-21 

yield open loop was 0.71 t/ha. Both ensemble uncertainties are close to the uncertainty 22 

of 0.7 t/ha found by Hao et al. (2021) when soil parameters were specified with APSoil 23 

(Oliver and Robertson, 2009) and no other stresses was considered. 24 

Table 6-1. The perturbation of uncertain input variables 25 

Uncertain sources Error type 

Error magnitude Temporal 

autocorrelation 

coefficienta 
Low-yield open 

loop 

High-yield open 

loop 

Precipitation 

Log-normal 

distributed 

(mean=1) 

Std=40% 1/e 

Daily maximum air 

temperature (Tmax) 

Normal 

distributed 

(mean=0) 

Std=3℃ 1/e 

Daily minimum air 

temperature (Tmin) 

Normal 

distributed 

(mean=0) 

Std=3℃ 1/e 
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Soil parameters 

Normal 

distributed 

(mean=0) 

Specific mean and 

std values are listed 

in Table E. 1 

Specific mean and 

std values are listed 

in Table E. 2 

NA 

Initial N content 

Normal 

distributed 

(mean=0) 

Base value=52 kg 

N/ha 

Std=30% 

Base value=61 kg 

N/ha 

Std=30% 

NA 

Nitrogen 

fertilisation amount 

(two-time 

fertilisation) 

Normal 

distributed 

(mean=0) 

Base value=50+60 

kg N/ha 

Std=15% 

Base value=60+65 

kg N/ha 

Std=15% 

NA 

aFirst-order autocorrelation coefficient assumes a daily time series. 

 1 

6.3.2.2 Satellite observation data 2 

Chapter 4 nominated four Sentinel-2 derived vegetation indices with different spectral 3 

band combinations to develop the observation operator connecting APSIM-Wheat 4 

simulated green leaf area index (GLAI) and satellite observations. We analysed the 5 

linearity of the developed operators and found that the red edge chlorophyll index (RECI) 6 

is the most suitable candidate to be assimilated into APSIM-Wheat model. 7 

In this study, satellite-based remote sensing observations were derived from Sentinel-2 8 

and PlanetScope. Sentinel-2 is a constellation of two satellites carrying optical sensors 9 

that provide images with high spatial resolution (10/20 m) and temporal resolution (5 10 

days). However, cloud contamination limited the availability of Sentinel-2 imagery, and 11 

only 15 cloud-free Sentinel-2 RECI images were acquired and processed on the Google 12 

Earth Engine platform (Gorelick et al., 2017), with a resolution of 20 m. These images 13 

covered the period from sowing (May 12th, 2019) to harvest (November 15th, 2019). 14 

To fill the gaps caused by cloud contamination, PlanetScope data was used. The 15 

PlanetScope constellation, consisting of 130+ satellites with imaging radiometers, is able 16 

to image nearly all of Earth’s land every day with a spatial resolution of 3 m. PlanetScope 17 

imagery includes four spectral bands: read, green, blue, and near infrared. Due to the lack 18 

of red edge bands, it is not able to retrieve RECI for assimilation into APSIM-Wheat 19 

model. Therefore, we calculated the normalised difference vegetation index (NDVI) for 20 

PlanetScope as a surrogate and rescaled it to be comparable with Sentinel-2 RECI. The 21 

3 m PlanetScope NDVI images were resampled to 20 m to match the spatial resolution 22 

of Sentinel-2 RECI. All cloud-free Sentinel-2 RECI and PlanetScope NDVI from 2019 23 

were compared against each other at a pixel-scale, as shown in Figure 6-2. The fitted 24 

curve shown in Equation (6-1) was used to rescale PlanetScope NDVI to be equivalent 25 

to Sentinel-2 RECI. The coefficient of determination (R2) for the fitted curve was 0.98. 26 
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The rescaling equation was developed using cloud-free images from both data sources 1 

and applied only to retrieve equivalent Sentinel-2 RECI when it was cloud contaminated. 2 

The rescaling and application datasets were independent. 3 

 𝑅𝐸𝐶𝐼𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙−2 = 0.05 ∗ 𝑒5.6∗𝑁𝐷𝑉𝐼𝑃𝑙𝑎𝑛𝑒𝑡𝑆𝑐𝑜𝑝𝑒 + 0.05 (6-1) 

 4 

 5 

Figure 6-2. Cloud-free Sentinel-2 red edge chlorophyll index (RECI) plotted against cloud-free 6 

PlanetScope normalised difference vegetation index (NDVI). The solid red line indicates the 7 

exponential fitted equation. The R2 for the fitted curve is 0.98. 8 

In this study, 13 cloud-free PlanetScope surface reflectance data were acquired from 9 

Planet Labs (Planet Labs Inc, 2021) and processed to create equivalent Sentinel-2 RECI 10 

images to fill in the Sentinel-2 cloud gap from 2019. With the 15 Sentinel-2 images, a 11 

total of 28 RECI observations for the entire growing season were used. Figure 6-3 shows 12 

the time series averaged RECI values for the whole paddock as an example to illustrate 13 

the dates for both data sources. The specific dates are listed in Table E. 3. 14 
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 1 

Figure 6-3. The time series averaged RECI values for the whole paddock from 2019. PlanetScope 2 

was used to fill in the Sentinel-2 data gap. Orange points represent Sentinel-2 data, blue points 3 

represent PlanetScope data. 4 

6.3.2.3 Observation operator 5 

The EnKF requires an observation operator that projects model states to equivalent 6 

observations. Chapter 4 presented the detailed steps for developing the observation 7 

operator. In this study, we used the same methods to develop two observation operators 8 

for the left and right parts of the paddock respectively (Figure 6-1) and applied them to 9 

the other part to ensure independence. Specifically, the APSIM simulation was calibrated 10 

on a patch-by-patch basis to align its yield prediction with the field-measured yield data 11 

obtained from the 31 patches in the left part of the paddock. The comparison between the 12 

calibrated APSIM GLAI simulations and the satellite-based time series RECI 13 

observations for each patch contributed to the formulation of the observation operator 14 

used in data assimilation for the right part of the paddock. Similarly, an observation 15 

operator was independently established utilising field-measured yield data from each 16 

patch in the right part of the paddock. This operator was subsequently employed in the 17 

data assimilation process for the left part of the paddock. Figure 6-1 provides a visual 18 
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representation of the field-measured yield data for each patch. The LOcally WEighted 1 

Scatterplot Smoothing method (LOWESS) was used to establish the observation operator.  2 

6.3.2.4 Observation uncertainty experiments 3 

Accurate estimation of observation uncertainty is important for the efficacy of data 4 

assimilation. Satellite-based observation uncertainty mainly inherits from instrument 5 

inaccuracy and imperfect data retrieval. In this work, we investigated the effects of 6 

different types and magnitudes of observation uncertainty on data assimilation results. 7 

The perturbed observations were generated by adding Gaussian-distributed errors with 8 

certain standard deviation values. The evaluated magnitudes include 0.2, 0.5, 0.8, and 9 

1.1 for additive observation error, and 10%, 20%, and 30% for multiplicative observation 10 

error.  11 

6.3.3 Evaluation of data assimilation performance 12 

Following the diagnostic indicator and evaluation metrics used in Chapter 5, we 13 

continued to use the normalised innovation 𝑣𝑡 as an indicator to diagnose and determine 14 

the appropriate observation uncertainty. Once the type and magnitude of observation 15 

uncertainty were tuned, the Increment, Residual, and Efficiency were used to assess the 16 

improvement of yield prediction by data assimilation. The standard deviation (𝜎) was 17 

used to evaluate the uncertainty of yield prediction. Detailed descriptions of the Residual, 18 

Efficiency, and standard deviation (𝜎) can be found in Chapter 5.3.5. The Increment 19 

measures the difference between the predicted yield after data assimilation and the open 20 

loop simulation. The metric was calculated as: 21 

 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 𝑌𝐷𝐴
̅̅ ̅̅̅ − 𝑌𝑂𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 (6-2) 

where 𝑌𝐷𝐴
̅̅ ̅̅̅ is the ensemble mean of the final yield estimation after data assimilation. 22 

𝑌𝑂𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 represents the open loop simulated yield. 23 

6.4 Results and discussion 24 

6.4.1 Observation uncertainty experiments 25 

We used four patches from the paddock (highlighted by light blue rectangles in Figure 26 

6-1) as test scenarios to evaluate the performance of data assimilation with varying 27 

observation errors. The patches covered a range of low to high harvest yields, with 28 

ground truth yields of 4.67, 5.2, 5.87, and 6.47 t/ha, respectively. We first tested the low-29 

yield open loop case with four different levels of additive and three levels of 30 



123 

 

multiplicative observation errors. The results showed that data assimilation with 1 

multiplicative observation error outperformed the assimilation with additive observation 2 

error. 3 

Figure 6-4(a) and Table E. 4 show the comparison and metric values of data assimilation 4 

with different observation errors for the low-yield open loop case. All four levels of 5 

additive observation error resulted in lower yield estimates than the open loop, which is 6 

the opposite of what data assimilation should achieve. The negative effects of data 7 

assimilation when the observation error was additive may be due to the observation 8 

uncertainty being comparatively smaller than the model uncertainty during the middle of 9 

the growth stage, causing the filter to over-trust the observations. However, the 10 

observation error was relatively small compared to the model uncertainty at other stages 11 

leading the filter to over-trust the observations. We also observed that the performance 12 

of yield estimation deteriorated with decreasing additive observation errors, with the 13 

largest Residual values found when the error magnitude was 0.2 or 0.5. This also suggests 14 

that underestimated observation errors during the middle growth stages caused the filter 15 

to mistakenly trust the observations and led to failed yield prediction. 16 

The multiplicative observation error is more appropriate for this data assimilation 17 

framework, as the error proportionally changes with the observation values. In the low-18 

yield open loop case, the yield estimation was improved at all three levels of 19 

multiplicative observation error, with the greatest improvement observed when the 20 

observation uncertainty was 10% or 20%. The largest Increment in yield estimates for 21 

the four patches were 0.14, 0.23, 0.37, and 0.52 t/ha, respectively (Table E. 4). Overall, 22 

the 20% observation error was found to be the most suitable for use in our data 23 

assimilation scheme, as it resulted in improving yield estimates by 0.14, 0.21, 0.37, and 24 

0.45 t/ha for the four patches. This improvement was close to the best performance 25 

observed among all tested observation errors. In addition to the prediction results, the 26 

variance of normalised innovations was also used to decide the observation error 27 

magnitude. As described in Chapter 5.3.5, the desired value for the innovation variance 28 

is one, as it ensures a correct sum of forecast and observation uncertainty and optimal 29 

filter performance. At the 20% error magnitude, the innovation variance for the four 30 

patches was within the range of 1.19 to 1.56, approaching the desired value of one. In 31 

contrast, the 10% error magnitude resulted in significantly larger innovation variance 32 

between 2.79 and 3.07. 33 
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In the high-yield open loop case, only the three levels of multiplicative observation error 1 

were tested (Figure 6-4(b) and Table E. 4) based on our findings in the low-yield open 2 

loop case. Similar to the low-yield open loop case, the best performance was found when 3 

the observation error level was 10% or 20%. The largest Increment in yield estimates 4 

was 0.98, 0.96, 0.74, and 0.39 t/ha, respectively. The patch with a ground truth yield of 5 

6.47 t/ha showed the best performance at the 20% error level, with a Residual value of -6 

0.1 t/ha. For patches with ground truth yields of 4.67, 5.2, and 5.87 t/ha, the yield 7 

estimates by data assimilation with 10% and 20% error levels were similar, with a better 8 

performance observed at the 10% error level. However, the largest difference between 9 

the two levels was only 0.07 t/ha, occurring in the patch with a ground truth yield of 5.87 10 

t/ha. Given the marginal performance differences between these two levels, we also 11 

included innovation variance as a selection criterion. The innovation variance for the four 12 

patches ranged between 1.8 and 2.56 for the 10% error level and between 0.79 and 1.19 13 

for the 20% error level. Therefore, the 20% error magnitude was selected to perturb the 14 

observations, as it resulted in normalised innovations with a variance closest to one. 15 

 16 

Figure 6-4. Performance of data assimilation for different types and magnitudes of observation 17 

error with (a) the low-yield open loop case and (b) the high-yield open loop case. The grey points 18 

represent the open loop model estimated yields. Different colours of plus signs and cross marks 19 

represent the data assimilation results with different levels of additive and multiplicative 20 

observation error, respectively. The specific colours for the varying levels of error are indicated 21 

in the legend (DA: data assimilation; obs error: observation error). 22 
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6.4.2 Data assimilation performance 1 

A multiplicative observation error with an error level of 20% was applied to perturb the 2 

observations and used in the data assimilation. We evaluated the performance of the data 3 

assimilation using all 58 patches from the paddock (Figure 6-1) in both low-yield and 4 

high-yield open loop cases. The results are presented in Figure 6-5, Table E. 5, and Table 5 

E. 6. 6 

Figure 6-5(a) shows that data assimilation slightly improved yield estimates for the low-7 

yield open loop case. For all 58 patches, the increment of yield estimates ranged between 8 

0.14 and 0.58 t/ha. The improvement in yield estimates demonstrated an increasing trend 9 

as the absolute residual between the ground truth yield and open loop simulated yield 10 

increased from 0 to 2.5 t/ha (Figure 6-6(a)). However, the residual after data assimilation 11 

remained large, ranging from 0.02 to 1.63 t/ha, with a median value of 1.26 t/ha. The 12 

mediocre performance for the low-yield open loop case was also indicated by the 13 

efficiency score, which ranged between 0.18 and 0.94, with a median value of 0.24. An 14 

improvement in yield estimates uncertainty was observed. The ensemble standard 15 

deviation (𝜎) for all patches decreased from 0.76 t/ha (pre-data assimilation) to between 16 

0.29 and 0.40 t/ha.  17 

Figure 6-5(b) shows an improvement in yield estimates by data assimilation for the high-18 

yield open loop case. The increment ranged between 0.22 and 1.22 t/ha, with the 19 

magnitude of improvement being more significant than in the low-yield open loop case. 20 

This case also displayed the same increasing trend with an increasing absolute residual 21 

between the ground truth yield and the open loop (Figure 6-6(b)). Data assimilation 22 

effectively improved the yield estimates, with the residual ranging from 0.01 to 1.24, and 23 

a median residual value of 0.09 t/ha. Our designed data assimilation strategy showed its 24 

best performance for patches with ground truth yields larger than 5.43 t/ha, with all 25 

residual values smaller than 0.48 t/ha. The efficiency score for this case ranged between 26 

0.37 and 0.97, with a median value of 0.73. However, the decrease in yield estimates 27 

uncertainty was not as pronounced as in the low-yield open loop case. The standard 28 

deviation (𝜎) decreased from 0.71 t/ha to a range of 0.52 – 0.60 t/ha. 29 

The designed data assimilation strategy performed better for the high-yield open loop 30 

case compared to the low-yield open loop case. Both cases used the same observation 31 

ensemble throughout the entire model state updating process. The only distinction 32 
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between the two cases was the open loop simulations and the perturbations applied to 1 

them. Despite using the same type and magnitude of errors in both open loop models, the 2 

two model simulations with different configurations behaved differently, resulting in 3 

varying model uncertainties. The EnKF weights relative uncertainties of model forecasts 4 

and observations based on their covariance matrices and tends to place more trust in the 5 

one with lower uncertainty. Therefore, the different performances in both cases are likely 6 

attributed to the effects caused by the differing relative uncertainties of the model and 7 

observations. 8 

Figure 6-7 compares the variance of observations with the variance of model-predicted 9 

states corresponding observations (model forecasts mapped to the observation space via 10 

the observation operator) at all updating occasions for both cases. For updates prior to 11 

growth stage 50 (reproductive stage) (Zadoks et al., 1974), the relative uncertainties 12 

between the model forecasts and observations were similar in both cases, with the 13 

variance of observations consistently larger than the variance of model forecasts. This 14 

indicates that the filter placed more trust in the model forecasts and performed similarly 15 

for both cases at these updating occasions. For updates between growth stage 70 (kernel 16 

extending) and stage 82 (early dough development), the variance of model forecasts in 17 

the high-yield open loop gradually increased and became larger than observations 18 

variance. The largest model forecasts variance was approximately 0.9 and the largest 19 

ratio between the variance of model forecasts and that of observations was 4. In contrast, 20 

the model forecasts variance in the low-yield open loop increased abruptly during this 21 

stage, reaching a maximum value of 2.9 and a ratio of 5.7 with respect to the variance of 22 

observations. The increase in model forecasts variance during this stage, particularly in 23 

the low-yield open loop case, leading to greater reliance on observations and a higher 24 

weight assigned to observations in the low-yield case compared to the high-yield case. 25 

The effects of the different assigned observation weights can also be observed in the 26 

reduction of uncertainty in yield estimates. The uncertainty of yield estimates in the low-27 

yield case decreased to a range of 0.29 – 0.40 t/ha after data assimilation, whereas the 28 

uncertainty in the high-yield case ranged from 0.52 to 0.60 t/ha. The greater trust placed 29 

in observations resulted in a decrease in the spread of model forecasts. However, based 30 

on the results of yield estimate accuracy, we found that placing excessive trust in 31 

observations during the late growth stage may result in less accurate yield estimates, as 32 

the data assimilation showed poorer performance for the low-yield open loop case. To 33 
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improve the performance in this case, the observation uncertainty should be slightly 1 

increased. On the other hand, the promising performance of the filter in the high-yield 2 

case highlighted the significance of correctly estimating the uncertainty of model 3 

forecasts and observations. 4 

 5 

Figure 6-5. Performance of data assimilation for all 58 patches in the paddock with (a) the low-6 

yield open loop case and (b) the high-yield open loop case. The multiplicative observation error 7 

with an error level of 20% was used to perturb the observations. The grey points represent the 8 

open loop model estimated yields. The blue points represent the data assimilation results (DA: 9 

data assimilation).  10 

 11 

Figure 6-6. The comparison between the residual (= open loop – ground truth yield) and 12 

increment obtained through data assimilation for (a) the low-yield open loop and (b) the high-13 
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yield open loop results. The blue points represent the results from the 58 patches (DA: data 1 

assimilation). 2 

 3 

Figure 6-7. The comparison between the observation variance and model forecasted states 4 

equivalent observations variance for (a) the low-yield open loop and (b) the high-yield open loop 5 

results. The specific point colours for the growth stages are indicated in the legend. 6 

6.5 Conclusion 7 

In this study, satellite-based vegetation observations from Sentienl-2 and PlanetScope 8 

during 2019 were assimilated into the APSIM-Wheat model for a rainfed winter-wheat 9 

field located in north-western Victoria, Australia. For this, the paddock was segmented 10 

into 58 patches with varying levels of harvest yield. A total of 28 red edge chlorophyll 11 

index (RECI) imageries were used to represent the wheat growth status throughout the 12 

entire growing season. The low-yield and high-yield open loop cases were employed to 13 

evaluate the robustness of the designed data assimilation strategy. The results 14 

demonstrated that the system can effectively improve the accuracy of yield estimates and 15 

constrain uncertainty by integrating vegetation observations and crop models. 16 

Different types and levels of observation errors were evaluated to explore the accurate 17 

estimation of observation uncertainty. The Gaussian-distributed multiplicative 18 

observation error with a magnitude of 20% was determined to be the most suitable for 19 

the data assimilation framework. For the low-yield open loop case, the data assimilation 20 

framework improved the accuracy of yield estimates by a less significant increment 21 

ranged from 0.14 to 0.58 t/ha. The residual after data assimilation were between 0.02 22 

and 1.63 t/ha, with a median value of 1.26 t/ha. In contrast, the correction for the high-23 
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yield open loop case was more effective, with the residual ranging from 0.01 to 1.24 t/ha 1 

and a median value of 0.09 t/ha. However, the reduction of yield estimates uncertainty 2 

for the low-yield case was more significant than that for the high-yield case, with a 3 

decrease of the standard deviation from 0.76 t/ha to between 0.29 and 0.40 t/ha, compared 4 

to a decrease from 0.71 t/ha to a range of 0.52 to 0.60 t/ha. 5 

The different performances for both cases are likely due to the different relative 6 

uncertainties of model forecasts and observations. The model uncertainty in the low-7 

yield open loop case was found to be greater than that in the high-yield case, particularly 8 

during the late growth stage. The largest ratio of the variance between model forecasts 9 

and observations for the low-yield case was 5.7, while it was 4 for the high-yield case. 10 

The larger model forecasts uncertainty caused the filter to assign higher weights to 11 

observations. From our results, we found that placing excessive trust in observations may 12 

lead to poorer yield estimates. To improve performance in the low-yield case, the 13 

observation uncertainty should be adaptively increased. 14 

This study only utilised data from a yield monitor in one paddock during a single season 15 

as the evaluation dataset. The utilisation of a small dataset for evaluation presented a 16 

limitation for the comprehensive assessment of the data assimilation framework. While 17 

the results provided useful insights, the analysis could benefit from the inclusion of more 18 

data from a greater number of paddocks and seasons to test the robustness of the 19 

approach. Furthermore, the use of actual harvest cuts as the “ground truth” may also 20 

enhance the accuracy of the evaluation as it could provide a more accurate and reliable 21 

reference compared to data from the yield monitor. These measures could lead to a more 22 

thorough and reliable evaluation of the data assimilation framework, ultimately 23 

contributing to its improvement and broader applicability. 24 
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Chapter 7 Discussions and conclusions 1 

The literature review in Chapter 1 identifies the main objective of this thesis as 2 

developing an effective data assimilation strategy to improve the performance of within-3 

field crop yield prediction. Several aspects are critical and challenging in designing the 4 

data assimilation framework, starting with the accurate estimation of model and 5 

observation uncertainty. Estimating model uncertainty involves identifying sources of 6 

model uncertainty and quantifying their contributions to yield prediction variability. To 7 

address these challenges, Chapter 2 and Chapter 3 present an uncertainty analysis and a 8 

sensitivity analysis. The influential factors affecting wheat yield prediction performance 9 

were identified through a thorough literature review and meta-analysis. The Sobol’ 10 

method was then applied to measure the influence of these factors under various 11 

environmental and management conditions. Chapter 4 discusses the quantification of 12 

observation uncertainty by selecting suitable satellite-based vegetation observations for 13 

assimilation and establishing an observation operator. The operator enables direct 14 

comparison between observations and model states while allowing for the estimation of 15 

observation uncertainty. Chapter 5 designs an effective state updating strategy using a 16 

synthetic experiment. The designed framework is then applied in a real case study as 17 

presented in Chapter 6, utilising Sentinel-2 and PlanetScope data for a rainfed winter-18 

wheat field located in north-western Victoria, Australia, to evaluate its performance. 19 

7.1 Research findings 20 

1. The APSIM-Wheat yield prediction performance and the factors affecting the 21 

performance were investigated. A review of yield prediction results from 76 22 

published studies across four continents was conducted to obtain detailed 23 

information about the model’s yield prediction performance. A meta-database 24 

composed of model evaluation datasets from 30 articles was established to 25 

identify influential factors contributing to yield prediction uncertainty. The 26 

results showed that the model predicts yield with an uncertainty of approximately 27 

1 t/ha across a wide range of varieties, environments, and management practices 28 

worldwide. The calibration of genotype and soil parameters, water and nitrogen 29 
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availability, heat and frost stress, lodging, soil cracking, increased atmospheric 1 

CO2 concentration, and plant diseases were identified as influential factors 2 

affecting model performance. The most practical suggestions to enhance the 3 

model’s simulation performance would involve fully calibrating the model to 4 

local conditions by fine-tuning soil and cultivar parameters or incorporating 5 

observations through data assimilation into the model to continuously adjust 6 

specific model state variables and properties. Additionally, suggestions to 7 

improve APSIM include: (1) incorporating daily maximum and minimum 8 

temperatures as impact factors to account for their effects on crop growth, (2) 9 

parameterising frost stress, water stress, and nitrogen stress functions in relation 10 

to phenology. 11 

2. In relation to the first contribution, a sensitivity analysis work was conducted to 12 

quantify the influential factors’ contribution to the final yield prediction 13 

variability. The Sobol’ method was used to investigate the sensitivity of the 14 

APSIM-Wheat yield prediction to factors such as maximum and minimum air 15 

temperature, precipitation, initial soil nitrogen content, nitrogen fertilisation 16 

amount, and soil hydraulic parameters. Eighteen scenarios were considered to 17 

characterise varying environmental and management conditions, including the 18 

combination of three weather conditions (wet, moderate, and dry), three soil types 19 

(sandy, loamy, and clayey soils), and two nitrogen fertilisation levels (50 kg N/ha 20 

and 100 kg N/ha). The results revealed that yield was more sensitive to variables 21 

controlling water availability (precipitation and soil hydraulic parameters) or 22 

variables controlling nitrogen availability (initial nitrogen content and nitrogen 23 

fertilisation amount), depending on which was more limiting to wheat growth 24 

under the scenario. Clay soils were less affected by changing weather conditions. 25 

Yield exhibited less variability under dry weather and higher fertilisation levels. 26 

In contrast, more humid weather conditions resulted in higher yields, but with 27 

greater yield variability, regardless of soil type. 28 

3. APSIM-Wheat simulated GLAI was selected as the state variable to be linked 29 

with satellite-derived observations during the data assimilation process, as it has 30 

strong associations with both observed crop growth status and model-simulated 31 

wheat biomass components. An observation operator was developed to map 32 

APSIM-Wheat GLAI to equivalent remote sensing observations, enabling direct 33 

comparisons between them. Ten vegetation indices derived from Sentinel-2 were 34 
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evaluated, and each index was linked with the model-simulated GLAI using the 1 

LOWESS curve-fitting method. The linearity of the fitted curves was evaluated 2 

to determine the suitability of the index. The results found that individual 3 

observation operators were necessary for the pre- and post-GLAI peak periods 4 

due to the different trends observed during these two stages. Among the indices 5 

evaluated, the chlorophyll index calculated using the red edge and near infrared 6 

bands was the most suitable candidate for assimilation into the model, as the 7 

corresponding observation operator exhibited the closest approximation to 8 

linearity. Additionally, NDVI showed saturation at moderate to high GLAI 9 

values. 10 

4. An EnKF-based data assimilation framework was developed by evaluating the 11 

efficacy of different state updating strategies, including (1) choice of state 12 

variables: updating only the leaf biomass or all biomass components, (2) 13 

assimilation interval: updating at a 5-day or 1-day frequency, and (3) 14 

phenological stages: updating across the entire growing season, only prior to the 15 

GLAI peak time, or only during the post-GLAI peak period. The design of this 16 

synthetic experiment was based on the characteristics of the APSIM-Wheat 17 

model and Sentinel-2 data. In the APSIM-Wheat model, the leaf biomass is 18 

directly linked to the GLAI, suggesting that the leaf biomass can be effectively 19 

updated by assimilating vegetation observations. The efficacy of updating other 20 

biomass components relies on their correlation with the leaf biomass. The most 21 

effective data assimilation strategy was determined and validated through eight 22 

representative cases spanning high, median, and low yield estimates. The results 23 

indicated that updating all biomass components across the entire growing season 24 

at a daily frequency resulted in the greatest improvement in yield prediction. 25 

However, giving the temporal resolution of satellite observations, a 5-day 26 

frequency was deemed more realistic. For the eight validation cases, updating 27 

every 5 days for the entire season effectively decreased the yield prediction 28 

residual from between 230 and 2134 kg/ha to between 93 and 533 kg/ha. 29 

Updating all biomass components outperformed updating only the leaf biomass, 30 

suggesting that the model-simulated correlations between the biomass 31 

components are reasonably accurate.  32 

5. The designed data assimilation strategy was applied to a real case study for a 33 

rainfed winter-wheat field located in north-western Victoria, Australia during 34 
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2019. The field was divided into 58 patches with varying levels of harvest yield. 1 

PlanetScope data was used to supplement the Sentinel-2 data, which was affected 2 

by cloud contamination. A total of 28 red edge chlorophyll index (RECI) images 3 

were acquired to track the wheat growth status throughout the growing season. 4 

Different types and magnitudes of observation uncertainty were evaluated. The 5 

Gaussian-distributed multiplicative observation error with a magnitude of 20% 6 

was found to be the most suitable for this data assimilation case. The low-yield 7 

and high-yield open loop cases were used to evaluate the robustness of the data 8 

assimilation. The results demonstrated that the system is effective in improving 9 

the accuracy of yield estimates and limiting uncertainty by integrating vegetation 10 

observations and crop models. The proposed data assimilation framework also 11 

provides the potential to estimate yield spatially using crop models. Combining 12 

spatial continuous remote sensing data with one-dimensional crop models allows 13 

for predicting within-field yield variability. The level of spatial detail depends on 14 

the spatial resolution of the remote sensing imagery. 15 

7.2 Research limitations and extension opportunities 16 

Chapter 2 through Chapter 6 have presented individual discussions of limitations and 17 

recommendations for future work. This Chapter provides an overview of the limitations 18 

and future research directions regarding all the research works presented in this thesis. 19 

1. This thesis only focused on the APSIM-Wheat model, the performance of the 20 

data assimilation framework when applied to other models and/or crops requires 21 

further examination. Different crop models, characterised by distinct 22 

parameterisations and configurations, may exhibit varying levels of simulation 23 

uncertainty. Various crops, with unique phenological and morphological 24 

characteristics, may require the assimilation of observations other than RECI at 25 

different updating timings and intervals (Lei et al., 2020; Machwitz et al., 2014; 26 

Nearing et al., 2012). Guided by this work, future crop model data assimilation 27 

practices can be extended to more models and/or crops by selecting appropriate 28 

model states to be updated, determining assimilated observations, developing 29 

corresponding observation operators, and designing effective updating strategies. 30 

2. This thesis aimed to improve yield prediction performance by developing a data 31 

assimilation framework. Other aspects of model simulation, such as crop 32 
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phenology, crop evapotranspiration, and soil-related properties were not explored 1 

in this work. The efficacy of assimilating vegetation observations in improving 2 

these aspects remains unknown. As reviewed in Chapter 1, researchers have 3 

found that the lack of correlations between different state variables can limit the 4 

ability of data assimilation (Kivi et al., 2022; Pauwels et al., 2007; Zhang et al., 5 

2021; Zhang et al., 2022). Therefore, to improve the model’s prediction ability in 6 

other aspects, additional observations may be required. 7 

3. The data assimilation framework developed in this work aims to enhance crop 8 

yield predictions by accounting for spatial and temporal variability within fields. 9 

It was applied at the field scale. The paddock was segmented into multiple 10 

patches, where within each patch, the land surface was considered homogeneous. 11 

The weather data was point-based measurements taken at the nearby 12 

meteorological station. 13 

The performance of this framework may vary if it is directly applied at other 14 

scales, such as region or global scales, as the heterogeneity of the land surface 15 

within each grid may introduce spatial uncertainty into both model simulations 16 

and observations (Huang et al., 2015a; Jongschaap and Schouten, 2005; Moulin 17 

et al., 1998; Yao et al., 2015). Developing a data assimilation framework at larger 18 

scales requires the consideration of additional factors when estimating 19 

uncertainties. The development of an observation operator and the 20 

characterisation of observation uncertainty necessitate the consideration of 21 

topography, land use, and meteorological conditions. The use of geostatistical 22 

methods for capturing the spatial autocorrelation of observations can significantly 23 

aid in addressing spatial uncertainty. Customisation of observation operators to 24 

align with the specific characteristics of the region is necessary. This 25 

customisation may entail fine-tuning the observation operators to account for 26 

variations in crops, soils, and land use patterns within the region. APSIM, a one-27 

dimensional crop model, requires adaptation to interact with regional climate 28 

models or to effectively utilise reanalysis datasets for obtaining more precise 29 

meteorological inputs at larger scales.  30 

4. The availability of satellite-based observations is another challenge faced by data 31 

assimilation. In Chapter 5, we demonstrated the potential of assimilating 32 

synthetic GLAI observations on a 5-day basis in improving yield estimates of the 33 

APSIM-Wheat model. Chapter 6 extends the application to a real case study using 34 
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remotely sensed observations. Despite supplementing PlanetScope data to fill in 1 

the gap of Sentinel-2 due to its cloud contamination, we were only able to find 2 

28 images available during the entire growing season. Observations were missing 3 

between growth stage 50 (the start of the reproductive stage) (Zadoks et al., 1974) 4 

and 70 (the start of kernel extending), which proved to be a critical period for 5 

improving the performance of data assimilation (as discussed in Chapter 5.5.2). 6 

In addition, PlanetScope only has four bands available, which required calibration 7 

with Sentinel-2 before being applied to data assimilation. In the future, acquiring 8 

more frequent and cloud-free remote sensing observations with sufficient spatial 9 

resolution and accuracy will further enhance the performance of data assimilation 10 

with remotely sensed observations, including synthetic aperture radar (SAR) data, 11 

as an observation source to meet the requirements of data assimilation (Arai et 12 

al., 2022; Bürgi and Lohman, 2021). 13 

5. This thesis used wheat growth information from a single growing season in one 14 

field. The data assimilation framework was evaluated under specific weather and 15 

soil conditions. The performance of the framework when applied to other 16 

environmental and management conditions remained untested. The sensitivity 17 

analysis in Chapter 3 revealed that varying weather, soil, and nitrogen fertilisation 18 

conditions affect the sensitivity of the model yield to influential parameters and 19 

initial states. Therefore, when applying the framework to other fields with 20 

different conditions, it may be necessary to adjust the uncertainty of model 21 

forecasts and observations to achieve an appropriate relative uncertainty between 22 

them to ensure optimal data assimilation performance. In the future, methods 23 

such as adaptive Kalman filtering that can automatically tune the relative 24 

uncertainty based on changing conditions can be considered and examined to 25 

improve the computational efficiency of the data assimilation process for crop 26 

models (Crow and Reichle, 2008; Gruber et al., 2019; Shokri et al., 2019). 27 
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Appendix A Supplementary material for Chapter 1 

 

Figure A. 1. Schematic of the APSIM model’s main processes used in this study 
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Appendix B Supplementary material for Chapter 2 

Table B. 1. Calibrated cultivar parameters of APSIM-Wheat 

Reference Cultivar Location tt_end_of_juverile tt_floral_initiation 
tt_start_grain

_fill 

tt_startgf_to_

mat 

potential_grain_

filling_rate 

grain_per_gram

_stem 
max_grain_size vern_sens photop_sens phyllochron 

(Wang et al., 

2009; Chen 

et al., 2010b; 

Chen et al., 

2010c) 

Gaoyou 503 NCP, China / / / 500 0.0023 23 / 1.7 2.3 85 

(Wang et al., 

2009; Chen 

et al., 2010c) 

Xifeng 24 NCP, China / / / 500 0.0025 22 / 1.5 2 85 

(Wang et al., 

2009; Chen 

et al., 2010c) 

Keyu 13  NCP, China / / / 420 0.0023 22 / 1.5 2 85 

(Wang et al., 

2009; Chen 

et al., 2010c) 

Zhengmai 

9023 
NCP, China / / / 420 0.0025 26 / 1.8 2 85 

(Chen et al., 

2010d) 
Not specified Not specified / / / / / / / / / / 

Balwinder-

Singh et al., 

2011) 

PBW343 Punjab, India / / / 750 / / / 1.7 3.8 95 

(Zhang et al., 

2012; 2013) 
Nongda211  NCP, China / / / 540 0.0028 27 / 3.4 3.2 / 

(Zhang et al., 

2012; 2013) 
Han6172  NCP, China / / / 560 0.0025 33 / 3.1 3.3 / 

(Zhang et al., 

2012; 2013) 

Yanzhan411

0  
NCP, China / / / 550 0.0028 33 / 2.9 3.3 / 

(Wang et al., 

2013) 
Not specified Not specified / 

Calibrated, value 

was not specified. 
/ / / / / 

Calibrated, 

value was not 

specified. 

Calibrated, 

value was not 

specified. 

/ 

(He et al., 

2014) 

Changwu891

34  

Loess 

Plateau, 

China 

/ / / 650 0.0025 25 / 2 3 / 

(Wang et al., 

2014) 
Not specified Not specified / / / / / / / / / / 

(Zhao et al., 

2014a) 
SJZ15  NCP, China / / / 530 / / / 2.3 3.5 / 

(Zhao et al., 

2014b, 2015) 
SJZ15  NCP, China / / / 530 0.003 / 0.05 2.3 3.5 / 
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(Zhao et al., 

2014b, 2015) 
SJZ8  NCP, China / / / 540 0.003 / 0.046 2.3 3.3 / 

(Xiao et al., 

2014) 

Fengkang7, 

Jingdong8  

Tangshan, 

China 
 680, 660  / /  590, 630   0.0020, 0.0025   21.0, 26.0  0.041, 0.045  1.8, 1.6  2 85 

(Xiao et al., 

2014) 

Hengshui741

, Shimai12  

Nangong, 

China 
 620, 590  / /  600, 650   0.0021, 0.0025   20.0, 25.0  0.038, 0.042  1.7, 1.6  2 85 

(Xiao et al., 

2014) 

Boai7422, 

Zhengmai90

23  

Zhumadian, 

China 
 620, 600  / /  580, 600   0.0020, 0.0025   24.0, 27.0  0.039, 0.046  1.7, 1.6  2 85 

(Xiao et al., 

2014) 

Fu63, 

Lumai23  

Huimin, 

China 
 620, 620  / /  570, 590   0.0022, 0.0025   24.0, 28.0  0.042, 0.046  1.8, 1.7  2 85 

(Li et al., 

2014) 

Nine local 

varisties  
NCP, China / / /  420-610   0.0022-0.0032   22.0-30.0  / 1.0-3.0   1.8-3.3  / 

(Soltani et 

al., 2015) 

Local 

varieties  
Grogan, Iran / / 707 580 0.00129 28 / 1.5 4.7 95 

(Sun et al., 

2015) 

Jimai7, 

Jimai36, 

Shi733  

NCP, China / / / 550 0.0025 28.5, 29.5  / 1.3, 1.4  2 / 

(Deihimfard 

et al., 2015) 

Chamran 

(early 

maturing)  

North-eastern 

Iran 
380 500 545 / / 22 0.044 2.5 3.5 / 

 

Table B. 2. Detailed Information of validation datasets 

 
APSIM 

version 
Study area 

Validation 

datasets year 
Cultivar (cv.) Environmental condition Management condition PAWC APSIM performance 

Model main 

application 

(Probert et 

al., 1995) 

APSIM 

1.X 

Warwick, 

Queensland, 

Australia 

1969-1992 

Timgalen 

(1969-1974, 

1978-1981), 

Cook (1983-

1984), Kite 

(1985-1987), 

Hartog (1990), 

QT4118 (1992) 

In some seasons, crops suffered from 

diseases like root-lesion nematodes 

and crown rot. 

Two tillage managements: 

conventional and no tillage. Two 

residue managements: stubble 

burned, and stubble retained. 

Three rates of N application: 0, 

23, 69 kg N/ha. 

N/A R2=0.30, RMSE=0.937 t/ha 
Model development 

and validation 

(Probert et 

al., 1998) 

APSIM 

1.X 

Gatton, 

Queensland, 

Australia 

1992-1995 N/A N/A 
A range of nitrogen inputs and 

irrigation regimes. 
N/A 

Predicted yield = 1.03 * observed 

yield - 0.27 (t/ha), R2=0.78 
Model evaluation 

(Asseng et 

al., 1998b) 

APSIM 

NWheat 

Beverley, 

Merredin, Moora, 

and Wongan Hills, 

Western Australia, 

Australia 

Beverley (1990-

1993), Merredin 

(1973, 1986), 

Moora (1994-

1995), Wongan 

Hills (1983, 

1994) 

Dagger, 

Gamenya, 

Gutha, Kulin, 

Spear 

Beverley: average annual rainfall=421 

mm, growing season rainfall=352 mm, 

soil type: duplex. Merredin: average 

annual rainfall=310 mm, growing 

season rainfall=234 mm, soil type: 

duplex. Moora: average annual 

rainfall=458 mm, growing season 

rainfall=388 mm, soil type: deep sand. 

Wongan Hills: average annual 

rainfall=386 mm, growing season 

Different nitrogen supply, 

irrigation, sowing date, sowing 

density, and deep ripping. 

N/A 

Observed yield range=1.0 - 4.0 

t/ha, R2=0.77, RMSD=0.4 t/ha. 

Observed biomass range=0.1 - 

11.0 t/ha, R2=0.90, RMSD=0.8 

t/ha. Observed LAI range=0 - 3.8 

m2/m2, R2=0.59, RMSD=0.6 

m2/m2. 

Model evaluation 
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rainfall=318 mm, soil type: loamy 

sand. 

(Asseng et 

al., 1998a) 

APSIM 

NWheat 

Moora, Western 

Australia, 

Australia 

1994-1995 Spear 

Deep sand, average annual 

rainfall=459 mm, ranged from 203 to 

790 mm. 

Nitrogen fertiliser applied of 0, 

50, and 90 kg N/ha. 
N/A 

Discrepancies between observed 

and predicted yields are less than 

0.4 t/ha. 

Establish the 

probability of yield 

(Asseng et 

al., 2000) 

APSIM 

NWheat 

The Eest, PAGV, 

The Bouwing, The 

Netherland 

1983-1984 Arminda 

The Eest and PAGV: Soil type: silty 

loam, average annual rainfall=646 

mm. The Bouwing: soil type: silty 

clay loam, average annual 

rainfall=763 mm. 

Nitrogen fertiliser applications: 

The Eest: 0, 60, 110, 150, 160 kg 

N/ha. PAGV: 80, 140, 180, 240 

kg N/ha. The Bouwing: 0, 60, 70, 

160, 170, 230 kg N/ha. 

N/A 

Observed yield range=0.4-8.3 

t/ha, R2=0.90, RMSD=0.8 t/ha. 

Observed biomass range=0.03-20 

t/ha, R2=0.97, RMSD=1.2 t/ha. 

Observed LAI range=0-5.5 

m2/m2, R2=0.65, RMSD=1.2 

m2/m2. 

Explore the 

relationship 

between yield and 

N-fertiliser 

application 

(Fisher et al., 

2001) 

APSIM 

Nwheat 

(1.55) 

Balla, Wongan 

Hills, Merredin, 

East Beverley, 

Katanning, 

Newdegate, 

Esperance, and 

Salmon Gums, 

Western Australia, 

Australia 

1989-1992 Spear, Kulin 

Wongan Hills: based on 1900-1999 

historical weather data, the weather 

was dominated by summer 

rainfall<=45 mm, annual 

rainfall<=390 mm, early season (April 

to May)<=140 (n=46) and summer 

rainfall>45 mm, annual rainfall>390 

mm, early season>140 (n=47). 

Fertiliser application: 90 kg at 

sowing, 60 kg 4 weeks after 

sowing. Total of 111 sowing 

dates between 9th April and 19th 

July. 

N/A 

Spear: dates of anthesis-

RMSD=12.1days, R2=0.76, 

bias=-1.0%. Kulin: dates of 

anthesis-RMSD=9.5days, 

R2=0.86, bias=1.4%. 

Provide 

information on 

choice of cultivar 

and sowing date 

(Asseng et 

al., 2001) 

APSIM 

NWheat 

Moora, Wongan 

Hills, Merredin, 

Western Australia, 

Australia 

Up to 87 

continuoud 

years. 

Spear, Amery 

Sand, clay soil. Average annual 

rainfall: Moora: 461 mm, Wongan 

Hills: 386 mm, Merredin: 310 mm. 

Growing season rainfall: Moora: 392 

mm (mean), 165 - 648 mm (range), 

Wongan Hills: 322 mm (mean), 112 - 

535 mm (range), Merredin: 235 mm 

(mean), 102 - 418 mm (range). 

Fertiliser N was aaplied: 0, 30, 

60, 90, 150, 210 kg N/ha. Three 

sowing dates: DOY 135 (15 

May), DOY 155 (4 June), DOY 

175 (24 June). 

Sand 

PAWC=

55 mm, 

clay soil 

PAWC=

109 

mm. 

The yield in the Mediterranean 

climatic region of Western 

Australia depends on soil water-

holding capacity, nitrogen 

management, rainfall amount and 

especially, seasonal rainfall 

distribution. 

Explore the water- 

and nitrogen-use 

efficiency 

(Asseng et 

al., 2002) 

APSIM 

NWheat 

New South Wales, 

Australia; 

Wongan Hills and 

Cunderdin, 

Western Australia, 

Australia 

1997 (Western 

Australia) 
Spear, Amery 

Average annual rainfall: Wongan 

Hills=391 mm, Cunderdin=367 mm, 

New South Wales=436, 536 mm. Soil 

Type: Wongan Hills: sand (PAWC=55 

mm), Cunderdin: Clay (PAWC=109 

mm), New South Wales: loam 

(PAWC=159 mm).  

Fertiliser N was applied: 0, 30, 

60, 90 kg N/ha at Wongan Hills 

experiment. 

Sand 

PAWC=

55 mm, 

clay soil 

PAWC=

109 

mm, 

loam 

PAWC=

159 

mm. 

Western Australia: grain protein-

RMSD=1.9 - 2.0%. New South 

Wales: the slight overestimation 

of grain protein by the model was 

primarily a result of 

overestimating available nitrogen. 

Model development 

and validation 

(Lilley et al., 

2003) 

APSIM 

2.1 

Near Harden, 

NSW, Australia 
1989-2000 Janz 

Soil: red brown earth with total carbon 

in the surface of 1.3%. C:N ratio = 10. 

Growing season rainfall=179-539mm 

(April to mid-November). Mean 

annual temperature=14.7°C and the 

difference between the highest and 

lowest mean monthly 

teperatures=16°C. 

Fertiliser N application in 1993, 

1994, 1996, 1998, 1999 and 2000 

at rates of 97, 23, 22, 114, 130, 

and 110 kgN/ha, respectively.  

PAWC=

169 mm 
Corresponded well in dynamics. Model evaluation 

(Lilley et al., 

2003) 

APSIM 

2.1 

Near Condobolin, 

NSW, Australia 
1991-1993 

Rosella (1991-

1992), 

Soil: red brown earth with total carbon 

in the surface of 1.3%. C:N ratio = 13. 

During the three years, growing 

In 1991 and 1993, 25 kg N/ha 

was applied at sowing, while in 

PAWC=

145mm 

In 1991, the model failed to 

simulate the effects of 

environmental stresses. The 

Model evaluation 
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Dollarbird 

(1993) 

season rainfall = 234, 341 and 324 mm 

respectively. Mean annual 

temperature=17.5 °C. 

1992, 10 kg N/ha was applied at 

sowing. 

simulation of yield and biomass 

doubled the observed values. 

(Sadras et al., 

2003)* 
N/A 

Mallee region of 

Southeastern 

Australia 

1998-2002 Hartog 

Soil: sandy regolithic, hypocalcic, 

calcarosols. 

Sand, 29.7–95.5%; clay, 1.5–21.4%; 

pH 7.6–10.2; Na concentration: 11-

2439 mg/kg; B concentration: 0.56-

29.0mg/kg; EC: 0.05-1.31 dS/m. 

Growing season rainfall=218-351mm, 

maximum temperature =18-19.5 °C 

Fertilised (no nitrogen stress) N/A 

RMSE of yield is from 0.31t/ha 

to 0.19 t/ha, R2 is from 0.60 to 

0.74. R2 of soil water content 

simulation is from 0.47 cm3/cm3 

to 0.72 cm3/cm3, RMSE is from 

2.1-3 to 9.3-4). Both yield and 

SWC simulations improved while 

field-measured soil water 

properties were used instead of 

estimates based on soil texture. 

Quantify the effect 

of environmental 

factors 

(Wang et al., 

2003)* 
N/A 

Queensland 

(QLD) and 

Western Australia 

(WA) 

1987-1995 Five cultivars 
Soil types: duplex, deep sand, loamy 

sand. 

Four experiments with fertilised 

(4 N treatments), some with 

water treatments or residue 

treatments 

N/A 

Simulation of biomass 

(RMSD=1.62 t/ha) and yield 

(RMSD=0.74 t/ha) with R2>0.80 

and nitrogen uptake (R2>0.75, 

RMSD=0.02 t/ha). Could 

explain >80% of the total 

biomass/yield/maximum LAI 

variations. 

Model evaluation 

(Asseng et 

al., 2004) 

APSIM 

Nwheat 

Obregon, Mexico; 

Maricopa, USA; 

Lincoln, New 

Zealand; Wongan 

Hills and 

Cunderdin, 

Western Australia, 

Australia 

1989-1990 and 

1994-1995 

(Obregon); 

1991 (Lincoln); 

1997 (Western 

Australia); 

1992-1994, 

1995-1997 

(Maricopa) 

Yecora70, 

Batten, Amery, 

Wilgoyne, 

Spear 

Clay loam, sandy loam, sand, and clay 

Rising temperature (Obregon), 

increased levels of water deficit 

(Lincoln), late water deficit 

(Western Australia), elevated 

atmospheric CO2 (Maricopa). 

N/A 

Obregon: yield-RMSD=1.0 t/ha, 

biomass-RMSD=2.8 t/ha; 

Lincoln: yield-RMSD=1.2 t/ha, 

biomass-RMSD=1.9 t/ha, 

R2=0.90, LAI-RMSD=1.3 

m2/m2, LAI-R2=0.53; Western 

Australia: yield-RMSD=0.5 t/ha, 

yield-R2=0.77, biomass-

RMSD=1.1 t/ha, R2=0.86; 

Maricopa: yield-RMSD=1.1 t/ha, 

yield-R2=0.72, biomass-

RMSD=1.6 t/ha, R2=0.94, LAI-

RMSD=0.9 m2/m2, LAI-

R2=0.73. 

Assess the effects 

of climate change 

on crop yield. 

(Yunusa et 

al., 2004) 

APSIM 

1.4 

Patch 2 

Roseworthy, 

Minnipa, and 

Wunkar, South 

Australia, 

Australia 

1995-1996 

(Roseworthy), 

1997 (Minnipa, 

Wunkar) 

Janz 

(Roseworthy, 

Minnipa, 

Wunkar), 

Excalibur 

(Roseworthy) 

Roseworthy: average annual 

rainfall=420 mm, growing season 

rainfall=320 mm, minimum and 

maximum temperatures=8.2 and 

18.8°C. Soil: red brown earth. 

Minnipa: growing season rainfall=230 

mm, minimum and maximum 

temperatures=7.9 and 19.1°C. Soil: 

sandy loam topsoil underlayed by 

calcareous subsoil. Wunkar: growing 

season rainfall=170 mm, minimum 

and maximum temperatures=5.5 and 

18.8°C. Soil: loamy sand, grading into 

calcareous sandy clay and heavy clay. 

Roseworthy: nitrogen fertiliser 

applied of 0, 50, 75, 100 kg N/ha. 
N/A 

Yield-R2=0.69, RMSD=0.447 

t/ha; grain weight-R2=0.31, 

RMSD=7.0 mg; grain protein-

R2=0.03, RMSD=5.7%. 

Evaluate yield 

response to 

environmental 

factors 

(Luo et al., 

2005) 

APSIM 

2.0 

Cummins, Keith, 

Lameroo, 

Minnipa, 

Continuous 100 

years 
Janz, Excalibur 

Cummins, Keith, Naracoorte, and 

Roseworthy: wetter climates with an 

average annual rainfall=430 - 580 mm. 

Fertilised to ensure no nitrogen 

stress. Changing rainfall, 

PAWC=

76 - 157 

mm 

Rainfall is by far the most 

influential factor on change in 

Assess the effects 

of climate change 

on crop yield. 
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Naracoorte, 

Orroroo, 

Roseworthy, and 

Wanbi, South 

Australia, 

Australia 

Growing season rainfall=292 - 397 

mm. The other four sites: drier with an 

average annual rainfall=304 - 388 mm, 

growing season rainfall=186 - 251 

mm. Cummins: clay loam, 

PAWC=140 mm, Keith: loamy sand, 

PAWC=76 mm, Lameroo: fine sandy 

loam, PAWC=111 mm, Minnipa: 

sandy loam, PAWC=157 mm, 

Naracoorte: sandy clay loam, 

PAWC=125 mm, Orroroo: sandy 

loam, PAWC=134 mm, Roseworthy: 

loam, PAWC=122 mm, Wanbi: sandy 

loam, PAWC=132 mm. 

temperature, and CO2 

concentration conditions. 

median grain yield in the medium 

to low rainfall areas. 

(Paydar et 

al., 2005)* 
N/A 

APSIM was 

validated using a 

field experiment 

carried out in the 

southern area of 

the Liverpool 

Plains catchment, 

located in northern 

New South Wales, 

Australia. 

1995-1998 N/A 
Black vertosol, average annual 

rainfall=684mm 

Nitrogen fertiliser was applied at 

a rate of 100 kg N/ha. 

The soil 

moisture 

holding 

capacity 

is 505 

mm for 

a 3 m 

depth. 

In general, the model provides a 

satisfactory representation of the 

key biological and hydrological 

processes. Yield estimations are 

typically accurate for wheat, 

barley, and sorghum, but less 

accurate for legumes. 

Assess the impacts 

of various crop 

management 

techniques on the 

water equilibrium. 

(Oliver et al., 

2006)* 
N/A 

Two paddocks in 

Buntine, on the 

northern sandplain 

of the Western 

Australia 

wheatbelt. 

1997, 1999, 

2002-2005 
N/A 

Annual cumulative rainfall less than 

400mm 

The crops received fertilisation, 

with N applied at sowing ranging 

from 0 to 150 kg/ha, and an 

additional 50 kg/ha N present in 

the soil profile. 

PAWC=

32-

110mm 

RMSD=0.518 t/ha 

Explore the 

importance of 

PAWC as a driver 

of yield variation 

(Hunt et al., 

2006)* 

Yield 

Prophet 

338 paddocks of 

236 growers in 

Australia 

2005 N/A N/A N/A N/A 

Paddocks with appropriate 

measured soil characterisation 

and soil profile samples: R2=0.68, 

68% of simulated results were 

found to fall within 0.5 t/ha. or 

fields lacking sufficient soil data: 

R2=0.54, 49% of the model 

outputs were within 0.5 t/ha. 

Explore the 

importance of 

PAWC as a driver 

of yield variation 

(Wong and 

Asseng, 

2006) 

APSIM 

NWheat 

70 ha field near 

Three Springs, 

Western Australia, 

Australia 

1998-2002 

Blade, 

Brookton, 

Carnamah 

The annual average rainfall in this 

region was 445 mm, with 370 mm 

occurring during the growing season 

from May to October. 

In the simulations, the nitrogen 

application rates were set at 0, 60, 

150, and 210 kg N/ha. 

PAWC=

140-

162mm 

RMSE=1.0 t/ha 

Develop an method 

to use APSIM 

spatially 

(Moeller et 

al., 2007) 

APSIM 

4.2 

Dry Areas at Tel 

Hadya, north-

western Syria 

1998-2000 Cham3 

Continental Mediterranean climate 

that is semi-arid, with cool and wet 

winters and hot and dry summers. 

Average annual rainfall = 340 mm, 

average annual temperature = 17.6 °C. 

Growing season: early/mid November 

- early/late May. Soil: vertisol and 

Inceptisol. pH is around 8. The soil 

organic matter content is mostly lower 

than 1% in the top 0.20 m layer. 

Nitrogen fertiliser applied of 0, 

60 and 100 kg N/ha. Irrigation: 0 

and 342 mm 

N/A 

For all treatments, APSIM 

overestimated leaf area growth, 

crop N uptake, and biomass 

accumulation during pre-anthesis 

growth at 90-130 days after 

sowing. The overestimation of 

leaf area could be a contributing 

factor to the slight over-

prediction of pre-anthesis 

biomass growth. Additionally, the 

Model 

parameterisation 

and validation 
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more rapid biomass growth could 

result in overestimation of crop N 

uptake. 

(Hochman et 

al., 2007) 

APSIM 

5.0 

A total of 33 

paddocks, 

consisting of grey, 

brown, and red 

cracking clays. 

6 sites in southern 

Queensland, 13 

sites in northern 

New South Wales 

in 2003, and 14 

sites in southern 

Queensland in 

2004. 

2003-2004 

Baxter, H45, 

Wollaroi, 

Yallaroi, 

Babbler, Hybrid 

Meteor, 

Strzelecki, and 

Sunbrook 

N/A 
No significant weeds, pests, 

diseases, or nutrient stresses. 

PAWC=

93-

120mm 

When measured PAWC data are 

used. The simulated results 

accounted for 82% of observed 

variation in grain yield, R2=0.82, 

RMSD=0.5 t/ha. When CLL 

(PAWC=DUL-CLL) were 

calculated instead of measured, 

the model account for 70% of the 

observed variability in grain yield 

with R2=0.69 and a RMSD of 

0.78 t/ha. When CLL were 

calculated and kl is adjusted 

using Cl, the model accounted for 

84% of the observed wariability 

in grain yield with R2=0.84 and a 

RMSD of 0.53 t/ha. 

Evaluate yield 

response to 

environmental 

factors 

(Lilley and 

Kirkegaard, 

2008)* 

APSIM 

5.0 

Gundibindyal, 

NSW, Australia. 

PAWC=175mm 

2000-2004 Rosella, Janz In-crop rainfall=440 mm 
Nitrogen fertiliser applied of 178 

kg N/ha 

PAWC=

175mm 
R2=0.90, RMSD=0.4 t/ha 

Evaluate yield 

response to 

environmental 

factors 

(Lawes et al., 

2009) 

APSIM 

5.2 

Two fields 

situated near 

Buntine, Western 

Australia. 

1997-2005 

Calingiri, 

Brown 

manured, 

Westonia, 

Wyalkatchem 

Average annual rainfall = 300 - 400 

mm 

Sowing dates ranged from 15th 

May to 2nd June. Nitrogen 

fertiliser applied from 20 to 60 kg 

N/ha. 

PAWC=

52-

131mm 

R2=0.86, RMSE=0.31 t/ha 
Explore the yield-

PAWC relationship 

(Oliver et al., 

2009) 

(assembled 

datasets) 

APSIM 

5.2 

146 wheat crops 

collected from 

Northern 

wheatbelt of WA, 

the eastern 

wheatbelt of WA, 

the south coast 

WA region, and 

the upper Eyre 

Peninsula of SA, 

Australia. 

1996-2006 
Various 

varieties 

Average annual rainfall=300 - 

500mm, growing-season rainfall 

243mm ± 88mm. 

Not nitrogen limited 

PAWC=

33-434 

mm 

The model showed wheat yield 

overestimation: RMSE=0.455 

t/ha, slope of 0.92, intercept 226, 

R2=0.78. Simulated yields 

matched the observed yield 

within 10% in 48% of cases. 

Yield was overestimated by more 

than 10% in 29% of cases, while 

in 23% of cases, the yield was 

underestimated by more than 

10%. 

As a predictive tool 

benchmark 

(Wang et al., 

2009)* 

APSIM 

5.3 

North China Plain 

(NCP) 

1998-2001 at 

Luancheng, 

1997-2001 and 

2002-2005 at 

Yucheng, 2004-

2006 at Fengqiu 

Gaoyou 503, 

Zhixuan 1, 

Keyu 13, 

Zhengmai 9023 

Luancheng: AAR=481 mm. 

PAWC=335 mm. Yucheng: 

PAWC=341 mm. Fengqiu: 

PAWC=204 mm. 

Luancheng: Irri of 202 – 404 mm. 

Yucheng: N treatments: 182 – 

215 kg N/ha, irri of 110, 152, 

230, 400 mm. 

Luanche

ng: 

335mm, 

Yuchen

g: 341 

mm, 

Fengqiu

: 204 

mm 

R2=0.66, RMSD=0.8 t/ha 

Evaluate yield 

response to 

environmental 

factors 

(Anwar et al., 

2009) 

APSIM 

5.3 

The area of 

interest is a 90 ha 

section of a 167-

2004 (wheat), 

2005 (barley), 

and additional 

Yitpi 

The region receives an annual average 

rainfall of 354 mm, of which 239 mm 

occurs during the growing season 

Nitrogen treatments: 0, 14, 26, 50 

kg/ha (2004), 0, 25, 33, 50 kg/ha 

(2005) 

PAWC=

219-

294mm 

R2=0.96, RMSE=0.31 t/ha 
Evaluate yield 

response to 
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ha paddock 

located in Birchip, 

Victorian Mallee, 

Australia. 

Additional data 

from Lubeck, 

southern 

Wimmera of 

Victoria 

validation data 

in 2004-2006. 

(April-October). The surface soil 

texture ranges from loamy sand to 

sandy clay loam, while the subsoil 

texture varies from sandy loam to 

sandy clay. 

environmental 

factors 

(Bell et al., 

2009)* 

(assembled 

datasets) 

APSIM 

5.4 

Western Australia 

includes 

experimental data 

of different soil 

types, nitrogen 

rates, sowing 

dates and growing 

seasons. And 

crops in 

Queensland and 

New Zealand. 

2002-2005, 

1980s-1990s 
Wyalkatchem 

Average anuual rainfall ranged from 

300 to 595 mm. Soil types: red loam, 

deep sand and shallow gravel. 

rainfed, Nitrogen fertiliser 

treatment of 100 kg N/ha. 

PAWC=

0-75mm 

The standing biomass variation 

was explained by the model with 

an accuracy of 95%, while for the 

grain yield, the variation was 

explained with an accuracy of 

89%. The model had a slight 

tendency to underestimate yield 

and biomass in high-yield sites. 

The RMSD was 0.537 t/ha for 

yield and 1.27 t/ha for biomass, 

representing 18% and 17%, 

respectively, of the mean 

observed values. 

Compare the profits 

of yield harvesting 

and sacrificing the 

crop to grazing 

(Oliver and 

Robertson, 

2009) 

N/A 

31 fields across 

two catchments 

(Mingenew-Irwin 

region and 

Wallatin-O'Brien 

region) in Western 

Australia 

wheatbelt 

2004-2006 

Wyalkatchem, 

Carnamah, 

Bonnie Rock, 

Westonia, 

Yitpi, Calingiri 

Average annual rainfall=308 - 446 

mm (growing season 75% - 86%) 

(check Table 1-1) 

N applied from 10 to 74 kg N/ha. 

PAWC=

59-

208mm 

R2=0.80, RMSE=0.538 t/ha 

Evaluate yield 

response to 

environmental 

factors 

(Hochman et 

al., 2009a) 

(assembled 

datasets) 

Yield 

Prophet 

(based 

on 

APSIM 

6.1) 

A total of 344 

winter wheat sites 

in Australia. 

Victoria (176 

sites), South 

Australia (75 

sites), New South 

Wales (43 sites), 

Western Australia 

(38 sites) and 

Queensland (4 

sites) 

2004-2007 
Various 

varieties 

A variety of soil types were present, 

including shallow sands with a PAWC 

of 22 mm, as well as deep Vertosols 

with a PAWC of 279 mm. 

Soil N was between 32 and 588 

kg N/ha, with a mean of 124 kg 

N/ha). 11 crops were irrigated. 

PAWC=

22–

279mm 

R2=0.71, RMSD=0.8 t/ha 

(n=334) 

Model evaluation 

based on a large 

dataset from on-

farm crops 

(Carberry et 

al., 2009) 

(assemble 

datasets) 

Yield 

Prophet 

There are more 

than 700 

commercially 

grown crops, 

including barley, 

canola, maize, 

wheat, and others 

in Australia. 

Wheat n=495. 

1992-2007 
Various 

varieties 
Different sowing dates, soil types N/A N/A 

R2=0.52 - 0.89, RMSD=0.19 - 

0.80 t/ha 
Model evaluation 
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(Chen et al., 

2010b)* 

APSIM 

5.1 

Luancheng, North 

China Plain 

(NCP), wheat-

maize double 

cropping system 

2000-2001 Gaoyou503 

The soil at the Luancheng site is 

composed of loam, with the texture 

ranging from sandy loam in the top 

layers to light/medium loam between 

40-80 cm depth, and light clay below 

80 cm. 

Irrigated (80-118 mm) and 

fertilised (urea 150 kg N/ha) 
N/A 

The model demonstrated an 

ability to account for over 90% of 

the variability in crop biomass 

and yield, as well as over 84% of 

the variability in soil water 

content. 

Explore optimal 

water management 

strategies 

(Chen et al., 

2010a)* 

APSIM 

5.3 

APAIM was 

calibrated and 

tested using field 

data from three 

experimental 

stations in the 

wheat-maize 

double cropping 

system in the 

North China Plain 

(NCP): 

Luancheng (1998-

2001), Yucheng 

(1997-2002), 

Fengqiu (2004-

2006)) 

1997-2002, 

2004-2006 

(calibration: 

Luancheng) 

Gaoyou503, 

Zhixuan1, 

Keyu13, 

Zhengmai9023 

Average annual rainfall=481-615 mm 

Rainfed/Irrigated (0-420 mm at 

critical stages) and fertilised (No 

nitrogen stress) 

Luanche

ng=350 

mm, 

Yuchen

g=263 

mm, and 

Fengqiu

=204 

mm 

Although the model tended to 

overestimate maximum LAI, it 

did not necessarily result in 

overestimation of biomass as 

biomass production is not highly 

sensitive to LAI beyond a value 

of three. The RMSE for biomass 

and yield simulations were 1.40 

t/ha and 0.83 t/ha, respectively. 

Evaluate yield 

response to 

environmental 

factors 

(Chen et al., 

2010c)* 

APSIM 

5.3 

North China Plain 

(NCP). Three 

stations: 

Luancheng (1998-

2001), Yucheng 

(1997-2001, 2002-

2005) and Fengqiu 

(2004-2006). 

1997-2006 Zhixuan1 Average annual rainfall=481-615 mm 

Rainfed/Irrigated and fertilised 

(lacked accurate irrigation and 

fertilisation records) 

Luanche

ng=350 

mm, 

Yuchen

g=263 

mm, and 

Fengqiu

=204 

mm 

No significant systematic over- or 

under-estimations was found 

when predicting LAI, biomass 

and yield. LAI-d index=0.85, 

biomass-d=0.92, yield-d=0.96. 

LAI-R2=0.61, biomass-R2=0.62, 

yield-R2=0.88. 

Evaluate yield 

response to 

environmental 

factors 

(Holzworth 

et al., 2014b) 

(assembled 

datasets) 

N/A 
Assembled 

datasets 
N/A 

Various 

varieties 

Range of soil types, locations, sowing 

dates. 
N/A N/A R2=0.93, RMSE=0.46 t/ha 

Model development 

and validation 

(Balwinder-

Singh et al., 

2011)* 

APSIM 

5.1 
Punjab, India 2006-2008 PBW343 

Clay loam soil. Growing season 

rainfall=88, 159 mm. 

Nitrogen fertiliser applied to 

ensure no nitrogen stress. With 

and without mulch. Six irrigation 

scheduling treatments, including 

75, 150, 225 mm. 

N/A 

The simulated and observed 

yields showed good consistency 

for the treatment that did not 

experience significant water 

deficit stress during the grain 

filling stage. Mulch: yield-

RMSE=0.443 t/ha, 

NRMSE=12.4%, R2=0.91. 

Biomass-RMSE=0.3 t/ha, 

NRMSE=3.6%, R2=0.99. Non-

mulch: yield-RMSE=0.55 t/ha, 

NRMSE=16.5%, R2=0.86. 

Biomass-RMSE=0.8 t/ha, 

NRMSE=10.8%, R2=0.92. 

Model calibration 

and evaluation 

(Lobell et al., 

2012) 
N/A 

A dataset on 

wheat phenology 

and daily 

2000-2009 Zippy 

March and April have averaged 20-30 

days of daily temperature exceeded 

34°C (grain filling period of wheat). 

Irrigated, average fertiliser rates = 

145 kg N/ha. 
N/A 

The datasets showed that a 2°C 

increase in temperature in the 

region would lead to a reduction 

Evaluate yield 

response to 
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temperatures in 

the Indo-Gangetic 

Plains (IGP) in 

India was 

developed by 

researchers using 

satellite data. 

of approximately nine days in the 

photosynthetically active part of 

the growing season. APSIM 

simulated less significant 

shortening of the growing season, 

especially for later sowing dates. 

environmental 

factors 

(Mohanty et 

al., 2012) 

APSIM 

6.0 
Bhopal, India 2002-2006 Sujata 

Annual rainfall: 2002: 763 mm; 2003: 

1113 mm; 2004: 863 mm; 2005: 917 

mm 

Three N treatments: (1) cotrol: no 

nutrient added, (2) inorganic: 100 

kg/ha N, 22 kg/ha P, 17 kg/ha K, 

(3) organic: 16 t/ha farmyard 

manure. Irrigated for 80 or 240 

mm. 

N/A 

Soil water content: R2=0.71-0.88, 

the performance was better for 0-

15 cm soil layer than 60-90 cm 

depth. Overall EF = 0.26 – 0.58, 

RMSE = 0.036 – 0.044. The 

model provided realistic 

predictions of wheat grain yield 

and N uptake. 

Model calibration 

and evaluation 

(Zhang et al., 

2012) 

APSIM 

6.1 

North China Plain 

(NCP) 
2009-2010 

Nongdan211, 

Han6172, 

Yanzhan4110 

Shangzhuang: AAR=104, 114 mm, 

AAT=8.0, 5.9°C. Quzhou: AAR=260, 

128 mm, AAT=9.8, 7.7°C. 

Huangfanqu: AAR=307, 313 mm, 

AAT=10.4, 9.6°C. 

N applied of 240 kg N/ha and 

irrigated of 120 mm. Delayed 

sowing dates. 

N/A 

Increased errors of simulated 

phenology and yield, with the 

average absolute RMSE of 2d, 3d 

and 3-4d in phenology, and the 

normalised RMSE of 7-12% 

(0.29 – 0.57 t/ha), 11-16% (0.65 

– 1.09 t/ha) and 16-22% (0.56 – 

0.97 t/ha) in yield. 

Model evaluation 

(Zhang et al., 

2012) 

APSIM 

6.1 

North China Plain 

(NCP) 
2009-2010 

Nongda211, 

Han6172, 

Yanzhan4110 

Shangzhuang: AAR=104, 114 mm, 

AAT=8.0, 5.9°C. Quzhou: AAR=260, 

128 mm, AAT=9.8, 7.7°C. 

Huangfanqu: AAR=307, 313 mm, 

AAT=10.4, 9.6°C. 

N applied of 240 kg N/ha and 

irrigated of 120 mm. Decreased 

Planting density. 

N/A 

With average normalised RMSE 

of 9-12% (0.54 – 0.56 t/ha), 11-

12% (0.72 – 0.90 t/ha) and 16-

19% (0.77 – 1.26 t/ha). The 

simulation of green leaf biomass 

and LAI were relatively poor. 

Model evaluation 

(Hochman et 

al., 2013) 
N/A 

Wimmera, 

Victoria, Australia 

Continuous 26 

years 
Yitpi 45 stations with 5 soil types 

If the soil N in the root zone 

dropped below 50 kg N/ha, a 

nitrogen fertiliser application of 

50 kg N/ha was carried out. 

N/A 

The estimated annual yield gaps 

are between 0.66 and 4.12 t/ha, 

with an average of 2.0 t/ha. 

Quantify yield gaps 

(Wang et al., 

2013c) 

APSIM 

5.3 

Six sites in North 

China Plain 
1980-2009 

Multiple local 

varieties 

Average annual temperatures at six 

sites were 13.0, 12.9, 13.0, 14.1, 14.5 

and 15.1°C, while annual rainfall 

totals were 515, 538, 535, 588, 550 

and 995 mm, respectively. 

The winter wheat received three 

to four flood irrigations, with a 

total of 250-300 mm of water 

applied. 

N/A 

The model made a slight 

overestimation of the days to 

jointing and flowering and a 

slight underestimation of the days 

to emergence and maturity dates. 

Explore the 

phenological trends 

(Zhang et al., 

2013)* 

APSIM 

6.1 

North China Plain 

(NCP) 
2009-2010 

Nongda211, 

Han6172, 

Yanzhan4110 

mean minimum temperature of −8·8 - 

−3.8°C in January 

The crops were irrigated and 

fertilised using basin irrigation in 

the 2008/09 and 2009/10 seasons. 

In the 2008/09 season, 60 mm of 

basin irrigation was applied 

before winter (GS20) and at the 

jointing (GS30) stage, while in 

the 2009/10 season, basin 

irrigation was applied at the 

jointing and flowering (GS60) 

stages. Nitrogen fertilisers were 

applied twice at the planting and 

N/A 
Underestimate yield of 0.4-0.6 

t/ha, RMSE=0.5-0.9 t/ha 

Assess the effects 

of climate change 

on crop yield. 
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jointing stages in both seasons, at 

a rate of 120 kg N/ha each time. 

(Carberry et 

al., 2013) 

(assembled 

datasets) 

Yield 

Prophet 

849 commercial 

wheat crops in 

Australia 

2004-2011, 849 

commercial 

wheat crops - 

Yield Prophet 

Various 

varieties 
Average annual rainfall=182 mm Rainfed (Australia) N/A 

APSIM was able to closely 

simulate commercial wheat yield. 
Quantify yield gaps 

(Brown et al., 

2014) 

(assembled 

datasets) 

N/A 

28 cropping sites 

in Australia, USA, 

New Zealand, and 

NCP, China 

N/A 
Various 

varieties 

Average anuual rainfall ranged from 

227 to 839 mm. 

N Fertiliser application ranged 

from 0 to 325 kg N/ha. Irrigated 

or rainfed. 

N/A 

Biomass-R2=0.93, grain yield-

R2=0.92, biomass nitrogen-

R2=0.87, grain nitrogen-R2=0.87 

Model development 

and validation 

(Bryan et al., 

2014)* 

APSIM 

7.3 

Northern NSW 

region, Western 

Australia, South 

Australia Victoria 

region 

2006 N/A N/A 
N fertiliser applied of 225 kg 

N/ha. 
N/A 

The means of the simulated 

yields did not differ significantly 

from the means of the yields 

reported by the census. Census-

reported yield=0.54 - 2.31 t/ha 

(median=1.26 t/ha), simulated 

yield=0.639 - 2.906 t/ha 

(median=1.553 t/ha). 

Evaluate yield 

response to 

environmental 

factors 

(Peake et al., 

2014)* 

APSIM 

7.4 

2008 (13 fields in 

Queensland and 

NSW); 2009 (3 

fields in Central 

Queensland and 4 

fields at South-

East Queensland)  

2008-2009 

EGA Gregory, 

Kennedy, 

Ventura, 

Strezelecki, 

Baxter 

Crops experienced lodging, water 

stress, high temperature, hail damage 

in 2008. In 2009, lodging, water stress, 

moderate to severe nitrogen stress 

were also observed. 

2008 crops were fertilised. All 

crops were irrigated. 
N/A 

APSIM accounted for 72% of the 

non-lodged wheat yield variation 

and a RMSD=1.08 t/ha. While 

overestimated lodged crop yield 

and underestimated crop in the 

low-nitrogen field. 

Quantify yield gaps 

and yield response 

to environmental 

factors 

(He et al., 

2014) 

APSIM 

7.4 

Loess Plateau, 

China 
2007-2008 Changwu89134 

Average max temperature=15.2 - 

17.1°C. Average min temperature=2.4 

- 6.4°C. Average annual 

precipitation=320.8 - 479.8 mm. 

Urea applied of 300 kg/ha. 

Rainfed. 
N/A 

Simulated LAI, AGB, extractable 

SW (the 100cm depth), ET 

agreed well with observed values. 

LAI-d index=0.91, R2=0.89. 

Biomass-d=0.96, R2=0.91. ESW-

d=0.94, R2=0.78. ET-d=0.95, 

R2=0.85. 

Evaluate yield 

response to 

environmental 

factors 

(Wang et al., 

2014)* 

APSIM 

7.5 

Four sites from 

Northern China  

1961-2060 

(repeat the 

weather data, 

without climate 

change); 1989-

2003 (from 

2017_Gaydon_

FCR) 

N/A Annual rainfall=262, 608, 630, 848 

Irrigated and fertilised. Three 

scenarios. (1) Fertiliser; (2) 

stubble managed and fertilised; 

(3) control (rainfed and irrigated, 

without fertiliser and stubble) 

N/A 
Reasonably simulate 50% - 90% 

of the variation in the grain yield. 

Evaluate yield 

response to 

environmental 

factors 

(Zhao et al., 

2014a) 

APSIM 

7.5 

Wuqiao, North 

China Plain (NCP) 
2009-2011 SJZ15 

The average annual rainfall at the site 

was 550 mm (1961–2010). The 

average annual temperature is 12.9 oC. 

Irrigation ranged from 75 mm to 

375 mm. Nitrogen fertiliser 

applied from 0 to 330 kg N/ha. 

Weeds, insect pests, and diseases 

were effectively managed, and 

the crops did not experience any 

nutrient-related constraints. 

PAWC=

452mm 

down to 

depth of 

2m 

Simulated more biomass and 

grain than observed. The 

adjustment of the new N 

concentrations improved the 

simulation of wheat biomass and 

N uptake, especially under low N 

input. 

Evaluate the 

threshold nitrogen 

concentration used 

in the model 

(Zhao et al., 

2014b)* 

APSIM 

7.5 

Eight field 

experiments at 

Wuqiao, North 

China Plain (NCP) 

2003-2011 

Calibration: 

Exp 4 (2005) 

and Exp 8 

(N330), SJZ8 

The region experiences a summer 

monsoon and has an average annual 

temperature of 12.9 ˚C. The annual 

rainfall from 1961 to 2010 is 550 mm. 

Winter wheat (mid-October to 

early June) and summer maize 

rotation. Irrigated (3 × 75 mm). 0, 

123, 158, 192, 261, 330 kg N/ha 

N/A 

The APSIM model had the 

capability to simulate more than 

85% of the variability in 

aboveground biomass, RMSE = 

Evaluate the root 

modelling 
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and SJZ15. 

Other 

experiments 

data in Exp 1-8 

used for 

validation, 

SJZ8, SJZ15, 

ND09-1, JM22, 

YN15, 

W62036. 

During the months of July to 

September, which are considered the 

summer season, 64% of the annual 

rainfall occurred. Calcaric Fluvisol 

with a sandy clay loam texture. 

nitrogen fertiliser applied. No 

water, nutrients, weeds and pest 

stresses. 

1.10, and over 80% of the 

variation in final yield, RMSE = 

0.73. The adjustments made to 

root parameters had little effect 

on the model’s ability to simulate 

wheat shoot biomass and grain 

yield in the majority of 

experiments. 

(Xiao and 

Tao, 2014)* 
N/A Northern China  2005-2009 

Fengkang7, 

Jingdong8, 

Hengshui741, 

Shimai12, 

Boai7422, 

Zhengmai9023, 

Fu63, Lumai23 

Average annual temperature from 12.8 

to 15.7 for all four locations. 

Irrigated (4 times * 50 mm) and 

fertilised (TS-Fengkang7, NG-

Hengshui741, ZM-Boai7422, 

HM-Fu63: 90 kg N/ha used as 

base fertiliser and 60 kg N/ha 

added at jointing stage; TS-

Jingdong8, NG-Shimai12, 

Zhengmai9023, Lumai23: 120 kg 

N/ha used as base fertiliser and 

75 kg N/ha added at jointing 

stage) 

N/A 

R2=0.85, The average residual 

between modelled and observed 

yield was smaller than 0.5 t/ha 

Evaluate yield 

response to 

environmental 

factors 

(Li et al., 

2014) 
N/A 

Sixteen sites in 

NCP, China 

1981-2010 (The 

model was 

calibrated and 

validated using 

16 sites). 

Calibration data 

and validation 

data were 

separated. 

Jinfeng1, 

Jiamai26, 

Gaoyou503, 

Bainong3217, 

Yumai18, 

Zhengmai9023, 

Jinan13, 

Lumai15, 

Lumai21 

N/A 

Local traditional practices: 

irrigation was not conducted 

every year, but fertiliser was used 

several times every year. 

N/A 

RMSE=0.3205-0.8291 t/ha, 

NRMSE(%)=5.7-14.1, D-

value=0.90-0.97, R2=0.71-0.89 

Identify the change 

pattern of yields 

(Soltani and 

Sinclair, 

2015) 

(assembled 

datasets) 

APSIM 

7.X 

35 experimental 

datasets at 

Grogan, Iran 

2005-2008 
Several local 

varieties 

Silty clay. Average rainfall during the 

growing season (December - 

June)=340mm, average maximum 

temperature during pre-

anthesis=17.2˚C, average minimum 

temperature=7.3˚C. 

Nitrogen fertiliser was applied 

from 0 to 122 kg N/ha. Part of 

crops were irrigated. Multiple 

sowing dates (8-12 sowing dates). 

Multiple sowing densities (6-7 

densities ranged from 50-800 

plant/m2). 

N/A 

LAI at anthesis: RMSE=0.74, 

r=0.53, CV=18.3; dry mass at 

anthesis: RMSE=149.69 g/m2, 

r=0.51, CV=22.34; dry mass at 

maturity: RMSE=244.30 g/m2, 

r=0.72, CV=25.7; yield: 

RMSE=61.82 g/m2, r=0.81, 

CV=14.57 

Model 

intercomparison 

and evaluation 

(Sun et al., 

2015) 

APSIM 

7.0 

Two experiments 

at Luancheng 

station, NCP, 

China (used for 

calibration and 

validation) 

2006-2012 (first 

experiment), 

1984-2012 

(second 

experiment) 

Jimai7, 

Jimai36, 

Jimai733 

The water loss due to evaporation and 

plant transpiration during the crop 

growth period ranges from 400-450 

mm. The soil type is loam, with an 

average water holding capacity of 38% 

and a wilting point of 13%. 

Nitrogen application rates were 

100-125 kg N/ha (1984-1990), 

220 kg N/ha (in the 1990s), and 

250 kg N/ha (after 2000). 

Phosphorus application rates 

were 100 kg/ha (in the 1980s), 

150 kg/ha in the 1990s, and 180 

kg/ha recently. 

In the first experiment, four 

irrigation treatments were tested: 

full irrigation (irrigated to avoid 

water stress), critical stage 

irrigation (one additional 

irrigation at jointing stage), 

N/A 

APSIM showed an ability to 

explain over 83% of the 

variability in the measured grain 

yields of wheat across the four 

irrigation treatments tested in the 

first experiment. The RMSE 

values for winter wheat yields 

were 0.330, 0.567, 0.923, and 

0.762 t/ha for the FI, CI, MI, and 

RF treatments, respectively. 

In the second experiment, the 

model simulated winter wheat 

grain yields with an RMSE of 

0.590 t/ha. This experiment 

Evaluate yield 

response to 

environmental 

factors 
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minimum irrigation (irrigated 

before sowing if the top 50cm 

soil layer had less than 70% field 

capacity), and rain-fed. 

In the second experiment, 

irrigation was managed similarly 

to the full irrigation scenario. 

involved managing water supply 

similarly to the full irrigation 

treatment from the first 

experiment. 

(Acuña et al., 

2015) 

APSIM 

7.1 

Cambridge, 

Campbell Town, 

Epping Forest, 

Hagley, Forthside, 

Longford, 

Sassafras, 

Symmons Plains, 

Westbury, 

Tasmania, 

Australia 

1980s, 2000s 

Brennan, Isis, 

Machellar, 

Revenue, 

Tennant (winter 

wheat) and 

Kellalac (spring 

wheat) 

Average annual rainfall=499-965 mm, 

average MaxT=16.1-17.6˚C, average 

MinT=4.6-8.2˚C. 

Nitrogen fertiliser applications: 

24 - 245 kg N/ha.  
N/A R2=0.84, RMSE=1 t/ha. 

Explore the 

potential 

management 

strategies to close 

the yield gap 

(Deihimfard 

et al., 2015)* 

APSIM 

7.2 
North-eastern Iran 2009-2011 

Late maturing: 

Sionz, 

Gascozhen; 

early maturing: 

Chamran 

Growing season rainfall=137-298 mm, 

average MaxT=9.7-14˚C, average 

MinT=6.9-10.1˚C, average mean 

temperature=8.8-12.3˚C. 

N applied at four levels: 0, 55, 

110, 172 kg N/ha. All treatments 

involved splitting the nitrogen 

fertiliser (urea) in half, with 50% 

being applied at the time of 

planting and the other 50% being 

applied at anthesis. Irrigated 5 to 

9 times with 50 mm each time. 

N/A n=15, R2=0.83, RMSE=0.71 t/ha Quantify yield gaps 

(O’Leary et 

al., 2015) 

APSIM 

7.4 

A Free-Air CO2 

Enrichment 

(FACE) 

experiment was 

conducted in 

Horsham, 

Australia. 

2007-2009 Yitpi Under elevated CO2 conditions 

Two water regimes (rainfed and 

irrigation), two nitrogen 

fertilisation regimes (0 and 53-

138 kg/ha) and two sowing dates 

(normal and late) for both 

daytime ambient (365 umol mol-

1) and elevated (550 umol mol-1) 

CO2 atmospheric conditions. 

N/A 

APSIM tended to over-simulate 

LAI at DC65 (R2=0.24, 

RMSE=0.70 m2/m2), biomass at 

DC31 (R2=0, RMSE=1.592 t/ha), 

biomass at DC65 (R2=0.56, 

RMSE=1.542 t/ha) and yield 

(R2=0.20, RMSE=1.294 t/ha). 

Assess the effects 

of climate change 

on crop yield. 

(Innes et al., 

2015) 

APSIM 

7.5 

Datasets 

Statistical 

Division 150 

(SD150), six 

shires were 

selected: 

Carrathool, 

Coolamon. 

Narrandera, 

Wagga Wagga, 

Lockhart, and 

Temora. 

(ABARE) 

1982-2008 Hartog 

Growing season rainfall=250 - 

400mm, recurrent drought, high 

temperature and low rainfall 

Fertilised with 150 kg/ha urea 

(equivalent to 69 kg N/ha 

nitrogen). 

N/A 
Yield variation (%): R2=0.69, 

RMSE=18.9% 

Evaluate model 

under high-

temperature 

episodes 

(Zhao et al., 

2015)* 

APSIM 

7.5 

Wuqiao, North 

China Plain (NCP) 
2009-2010 SJZ8, SJZ15 

The region experiences a summer 

monsoon and has an average annual 

temperature of 12.9 ˚C. The annual 

rainfall from 1961 to 2010 is 550 mm. 

During the months of July to 

September, which are considered the 

Winter wheat (mid-October to 

early June) and summer maize 

rotation. 1st experiment: 3 × 75 

mm irrigations. 0, 123, 192, 261, 

330 kg N/ha N applied. 2nd 

experiment: 1/2/3/5 × 75 mm 

N/A 

RMSE=0.33 t/ha, R2=0.97. The 

simulated grain yield remained 

similar with modified parameters. 

Analyse the 

resource use 

efficiency 
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summer season, 64% of the annual 

rainfall occurred. Calcaric Fluvisol 

with a sandy clay loam texture. 

irrigations. 158 kg N/ha N 

applied. 

(Ahmed et 

al., 2016) 
N/A 

Islamabad, 

Pakistan 
2009-2011 

Tatara, NARC-

2009, Sehar-

2006, SKD-1, 

F-Sarhad 

The region experiences abundant 

rainfall with an average annual 

precipitation exceeding 1000mm, 

while the average annual temperature 

is 21.3°C. The annual potential 

evapotranspiration in the area is 

estimated to be approximately 1600 

mm. 

N/A N/A 

Phenology, maximum LAI, 

accumulated biomass and yield, 

with RMSE within range 2.03 – 

5.09 day, 0.14 – 0.32 m2/m2, 

0.15 – 0.40 t/ha, 0.12 – 0.31 t/ha, 

and R2 larger than 0.8, 0.83, 0.92 

and 0.82 respectively. 

Model calibration 

and evaluation 

(Van Oort et 

al., 2016) 

APSIM 

7.4 

Water shortage 

area in NCP, 

China 

2006 and 2007 

(two-year data) 

Shimai12 

(winter wheat) 

Continental monsoon: cold and dry 

winters. Average annual rainfall=533 

mm, only 2% occurs in winter. 

Three levels of irrigation: (1) zero 

irrigation during wheat growing 

season, (2) 75 mm water at stem 

extension (75 mm total) and (3) 

75 mm at stem extension plus 75 

mm water at booting (150 mm 

total). Enough irrigation was 

applied to before sowing to 

ensure the emergence of wheat. 

Enough N was applied to ensure 

no nutrient limitation. 

N/A 

The model was able to account 

for 95% of the variation in 

biomass for both wheat and 

maize, 90% of the variation in 

LAI, 84% of the variation in soil 

water content throughout the 

year, and 82% of the variation in 

crop grain yields under various 

irrigation practices. The model’s 

RMSE for biomass, LAI, 

available soil water content, and 

grain yield was 0.88 t/ha, 0.72, 27 

mm, and 0.64 t/ha, respectively. 

Construct 

groundwater 

neutral cropping 

systems 

(Li et al., 

2016) 

APSIM 

7.5 

Huantai site in 

NCP, China 
2008-2010 Jimai22 

The region experienced a temperate 

monsoon climate during the period of 

1990-2010, with an average annual 

temperature of 13.9°C and average 

annual rainfall of 547 mm. 

Four N treatments were applied: 

no N (CK), farmer conventional 

N (234 kg/ha urea applied), 

reduced N (144 kg/ha urea 

applied) and reduced N with 

manure (54 kg/ha chicken 

manure + 90 kg/ha urea applied). 

N/A 

The final biomass and grain yield 

variations simulated by APSIM 

matched 94% and 88% with the 

truth, respectively, and the 

corresponding RMSE values 

were 1.28 t/ha and 0.82 t/ha. 

Explore possibility 

of resources usage 

reduction while 

maintaining the 

yield 

(Mielenz et 

al., 2016)* 

APSIM 

7.5 

Kingaroy and 

Kingsthorpe, both 

situated in South 

Eastern 

Queensland, 

Australia 

2009 

(Kingsthorpe), 

2011 

(Kingaroy) 

Hartog 

(Kingaroy), 

Lang 

(Kingsthorpe) 

Humid subtropical. Average annual 

temperature of 18.2 °C at both sites. 

Annual average precipitations are 776 

mm and 630 mm. 

Kingaroy: In a sprinkler-irrigated 

experiment, four fertilisation 

treatments were examined, 

including a control group where 

no N fertiliser was applied, a 

group with the conventional N 

fertiliser rate adjusted based on 

the estimated residual soil N 

(urea applied at a rate of 20 

kg/ha), a group with the 

conventional fertiliser rate (urea 

applied at a rate of 80 kg/ha), and 

a group with the conventional 

fertiliser rate using urea coated 

with DMPP nitrification inhibitor 

(urea applied at a rate of 80 

kg/ha, with DMPP urea only 

applied at top dressing 60 kg/ha). 

Kingsthorpe: fertilised, three 

irrigation treatments and three 

replications. High irrigation 

N/A 

Overall yield prediction (four 

crop types): R2=0.92 

Three cases were within the range 

of the measured values’ standard 

deviation. 

Identify strategies 

for mitigating crop 

N2O emissions 
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(when 50% of the PAWC was 

depleted), medium irrigation 

(when 60% of the PAWC was 

depleted), low irrigation (when 

85% of the PAWC was depleted) 

(Zeleke and 

Nendel, 

2016)* 

APSIM 

7.6 

Wagga Wagga, 

NSW Australia 
2013-2014 

EGA Gregory, 

Livingston 

Sandy clay loam Red Kandosol. For 

2013 and 2014: number of frosts=40 

days, 48 days; AR=263 mm, 326 mm. 

irrigation (mm)=247 (in 2013), 

229 (in 2014). 
N/A R2=0.92, RMSE=0.65 t/ha 

Evaluate yield 

response to 

environmental 

factors 

(O’Leary et 

al., 2016)* 

APSIM 

7.6 

Eastern Australia 

(Wagga Wagga in 

New South Wales, 

Warwick in 

Queensland) 

1979-2003 

(Wagga 

Wagga), 1968-

2012 

(Warwick) 

N/A 

In some seasons, crops suffered from 

diseases like root-lesion nematodes 

and crown rot. 

Different stubble, tillage and 

nitrogen application 

managements applied. 

N/A 

At both Wagga Wagga and 

Warwick the simulated yield are 

considered typical with RMSE of 

1.08 t/ha and 1.39 t/ha. 

Evaluate yield 

response to 

environmental 

factors 

(Liu et al., 

2016a)* 

APSIM 

7.7 

Environment-

controlled 

chamber 

experiments were 

conducted at 

Nanjing in 

growing season 

2010-2013 and at 

Rugao in growing 

season 2013-2014. 

2010-2014 

(four-year with 

two cultivars) 

Yangmai16, 

Xumai30 

Environment-controlled phytotron 

experimental datasets under heat stress 

at anthesis and grain filling stages. A 

plant density of 10 plants per pot was 

maintained, with a pot diameter of 

0.28m. 

N and irrigation were applied to 

ensure no water or nitrogen 

stress. 

N/A 

When heat stress occurred at 

anthesis, APSIM overestimated 

grain filling durations and the 

effects of heat stress on total 

aboveground biomass at maturity. 

On the other hand, it 

underestimated grain size with 

heat stress at anthesis but 

overpredicted the effects of heat 

stress on LAI. The model 

underestimated the observed 

decline in grain filling rates with 

heat stress. The simulated yield 

by APSIM showed an R2 of 0.73 

with the observed yield when 

heat occurred at anthesis, and an 

R2 of 0.46 with the observed 

yield when heat occurred during 

grain filling. 

Evaluate the model 

ability of 

simulating heat 

impacts 

(Araya et al., 

2017) 

APSIM 

7.4 
Ethiopia 2011-2012 HAR-2501 N/A 

Two levels of nitrogen fertiliser 

applied: (1) 0, (2) 64 kg N/ha. 

Rainfed. 

N/A 

Simulated phenology R2 over 

0.8, 6.0 day, yield R2=0.63, 

0.14t/ha 

Assess the effects 

of climate change 

on crop yield. 

(Gaydon et 

al., 2017)* 

(assembled 

datasets) 

N/A 

12 Asian 

countries, total of 

43 experimental 

datasets, 966 

crops (326 wheat) 

Various years 
Various 

varieties 

Different weather conditions 

(temperature, rainfall, CO2 level). 

Different sowing dates, dates of 

transplanting, varieties, CO2, 

nitrogen and surface residue 

treatments, rainfed or irrigation 

conditions 

N/A 

R2=0.79, RMSE=0.845 t/ha, 

standard deviation=1.794 t/ha 

(n=326). The validation dataset 

showed a strong correlation (R2 > 

0.99) and low error in simulating 

phenology. However, in India's 

high-temperature conditions, 

APSIM overestimated the length 

of the crop growth period. In the 

North China Plain, simulations of 

winter wheat growth indicated 

that APSIM significantly 

underestimated the leaf area 

index (LAI), biomass, and yield 

of the crop. The incorrect 

temperature response of 

Model evaluation 
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physiological processes in the 

wheat model was the main reason 

for the underestimation. 

(Zhao et al., 

2017)* 
N/A 

There are ten 

agricultural 

meteorological 

experimental 

stations in Inner 

Mongolia, China 

that are 

representative of 

the region. 

2011-2014 Spring wheat 

The average annual temperature was 

between -1˚C and 10˚C. The average 

annual precipitation is between 50 mm 

and 450 mm. 

N/A N/A 

The yield’s RMSE varied 

between 28.95 kg/ha and 208.35 

kg/ha, while the NRMSE of the 

yield was controlled within 10%, 

ranging from 0.92% to 6.4%. The 

D index ranged from 0.85 to 0.95, 

and the MAE value ranged from 

41.1 to 410.85. Simulated 

phenology during the emergence 

and maturity stages had RMSEs 

of 1.22d-5.49d and 1.13d-3.00d, 

respectively, with smaller errors. 

The NRMSEs were also 

controlled within 10%, ranging 

from 1.06% to 5.09% and 0.65% 

to 1.45%. The D indices were 

close to 1, with fluctuations of 

0.49–0.99 and 0.69–1. 

Assess the effects 

of climate change 

on crop yield. 

(Holzworth 

et al., 2018) 

APSIM 

Next 

Generati

on 

Various locations 

Wheat model: 

650 simulation 

years 

Various 

varieties 
N/A N/A N/A Included in the model files. 

Model development 

and validation 

(Hussain et 

al., 2018) 

APSIM 

7.8 

Two climate 

regions: 

Faisalabad (semi-

arid), Layyah 

(arid) in Punjab-

Pakistan 

2013-2015 

Lasani-2008, 

Punjab-2011, 

Galaxy-2013 

Growing season temperature was 

btween -0.1 and 43˚C. 

The study involved three 

cultivars and eleven planting 

dates, with intervals of 15-16 

days between October 16th and 

March 16th. The crop received 

irrigation without water stress, 

and nitrogen, phosphorus, and 

potassium were applied at rates of 

120, 85, and 60 kg/ha. 

N/A 

At Faisalabad, APSIM had a 

large NRMSE of 65.5% for yield 

estimation. In Layyah during 

2013-14 and 2014-15, it over-

simulated the grain yield for 

planting dates after December 

1st. Furthermore, with the 

exception of the October 15th 

planting, it highly over-simulated 

the grain yield for all planting 

dates at Layyah during 2014-15. 

Model 

intercomparison 

and evaluation 

(Phelan et al., 

2018)* 

APSIM 

7.8 

Cressy, Symmons 

Plains, Epping 

Forest, Burnie, 

Tasmania, 

Australia 

2005-2010 

Mackellar_Tas, 

Revenue, 

Tennant 

Cressy, Epping forest, Symmons 

plains: average annual rainfall=628 

mm, average annual maximum 

temperature=17.2, average annual 

minimum temperature=5.1. Soil: fine 

sandy loam (PAWC=217 mm), clay 

loam (96 mm), loam (PAWC=221 

mm). 

Rainfed and fertilised (A rate of 

25 kg N/ha was generally used to 

apply nitrogen fertiliser during 

sowing, along with an additional 

top-dressed application of 50 kg 

N/ha in early spring.). 

PAWC=

96-221 

mm 

R2=0.83, MPE (mean prediction 

error)=11%, MEF (modelling 

efficiency)=0.82, v (ratio of 

variance in measured to 

simulated values)=1.09. 

Produce data for 

further 

incorporation into 

another model 

(Brown et al., 

2018) 

(assembled 

datasets) 

APSIM 

7.9 

Australia, 

Belgium, China, 

Ethiopia, Iran, 

New Zealand, 

Turkey, USA. 

In this paper, a 

collection of 

criteria that a 

N/A 
Various 

varieties 

48 experiments, 655 treatments, 

different planting years. 

Different time of sowing, N 

fertiliser, irrigation, residue 

additions, population, cultivar, 

tillage. 

N/A 

All variables: R2 ≥ 0.84 and NSE 

≥ 0.81. 

Yield: R2 = 0.84, RMSE=1.005 

t/ha and NSE = 0.81. 

Grain protein: R2 = 0.42 and a 

NSE of 0.36. 

Flag leaf: R2=0.98. 

Anthesis: R2=0.98. 

Model development 

and validation 
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contemporary 

crop model ought 

to satisfy is 

presented, along 

with a discussion 

on the methods 

and software 

employed by the 

APSIM 

development 

community to 

construct and 

uphold models 

that fulfill these 

criteria. 

(Bahri et al., 

2019) 
N/A 

Nabeul, Cherfech, 

Hendi Zitoun, 

Boulifa, Oued 

Mliz, and Mornag, 

Tunisia 

1989-1992, 

1996-1998, 

1999-2000, 

2003-2006 

Karim 

Nabeul: growing season rainfall=232 

mm, soil: sandy; Cherfech: GSR=345, 

516 mm, soil: silty clay loam; Hendi 

Zitoun: GSR=299, 139, 105 mm, soil: 

silty clay; Boulifa: GSR=424, 499, 

520 mm, soil: silt-clay sandy; Oued 

Mliz: GSR=240 mm, soil: clay loam; 

Mornag: GSR=125 mm, soil: clay 

loam. 

Nabeul: irrigation=228 mm, N 

fertiliser=132 kg N/ha; Cherfech: 

irrigation=255, 163 mm, N 

fertiliser=198, 132 kg N/ha; 

Hendi Zitoun: irrigation=290, 

300, 250 mm, N fertiliser=60, 

150 kg N/ha; Boulifa: 

irrigation=0, N fertiliser=76, 150 

kg N/ha; Oued Mliz: 

irrigation=100 mm, N 

fertiliser=150 kg N/ha; Mornag: 

irrigation=252 mm, N 

fertiliser=150 kg N/ha. 

N/A 
RMSE=1.647 t/ha, agreement 

index=0.83 

Evaluate yield 

response to 

environmental 

factors 

(Bai et al., 

2020) 

APSIM 

7.7 

North China Plain 

(NCP), China 
1981-2015 

Jimai22, 

Jining142, 

Zhengzhou761 

Growing season rainfall=100 - 300 

mm 

On-farm: N fertiliser were 

applied at sowing and jointing. 

Three to four times irrigation. 

High-yield: Four irrigation 

scenarios were tested, which 

included (1) no irrigation, (2) one 

irrigation with an interval of 5 

mm for 0-140 mm, (3) two 

irrigations with an interval of 5 

mm for each 0-140 mm, and (4) 

three irrigations with an interval 

of 5 mm for each 0-140 mm. Two 

nitrogen fertilization scenarios 

were also assessed, namely (1) a 

single N application of 0-300 kg 

N/ha at sowing stage with an 

interval of 5 kg N/ha, and (2) 

split N application (sowing and 

jointing stages) of 0-300 kg N/ha 

with an interval of 5 kg N/ha. 

N/A 

In 24 cities of NCP from 2007 to 

2015, the simulated potential 

yields and observed high yield 

records had an RMSE of 1.15 t/ha 

and an NRMSE of 12%. In 36 

cities of NCP from 2009 to 2014, 

the simulated on-farm wheat 

yield and surveyed yield had an 

RMSE of 0.576 t/ha and an 

NRMSE of 8.8%. 

Quantify yield gaps 

and seek for 

options to increase 

yield 

(Araya et al., 

2020)* 

APSIM 

7.7 

Kulumsa, Oromia; 

Hagereselam, 

Tigray region; 

Ilala; Wukro, 

2006-2008, 

2012 (KARC), 

2014 (HS), 

early, medium 

and late 

maturing 

cultivars 

For Site 1, the mean annual rainfall 

and cropping season rainfall (June - 

November) were approximately 820 

mm and 503 mm, respectively. The 

To evaluate the potential impacts 

of climate change, rainfed 

conditions, optimal planting 

dates, and density as determined 

N/A 

Yield-NRMSE (normalised 

RMSE) =22.8%, days of 

flowering-RMSE=4.3%, days of 

maturity-NRMSE=8.3%. 

Assess the effects 

of climate change 

on crop yield. 
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Tigray region, 

Ethiopia 

2014 (HS, IL, 

WU) 

site's mean annual maximum and 

minimum temperature were 23.1˚C 

and 10˚C, and the soil type was black 

vertisol. 

Site 2 had a mean annual rainfall and 

cropping season rainfall of 669 mm 

and 542 mm, respectively. The mean 

annual maximum and minimum 

temperatures were 22.5˚C and 11.1˚C. 

At Site 3, the soil type was black 

vertisol, and the mean annual rainfall 

and cropping season rainfall were 583 

mm and 491 mm, respectively. The 

mean annual maximum and minimum 

temperatures were 23.6˚C and 12.1˚C. 

Site 4 had clay soils, with mean annual 

rainfall and cropping season rainfall of 

565.6 mm and 335.4 mm, 

respectively. The mean annual 

maximum and minimum temperatures 

were 28.0˚C and 11.1˚C. 

by the model were used, along 

with two different fertiliser rates. 

The regional agronomists 

recommended one rate at 64 kg 

N/ha, and the other at 128 kg 

N/ha. 

(Yan et al., 

2020)* 

APSIM 

7.9 

Luancheng Agro-

Eco-Experimental 

station, NCP, 

China. 

2007-2016 

(validation 

2011-2016) 

KN199 

Loamy soil. Growing season 

rainfall=50-230mm. Average annual 

temperature=12.7˚C. 

Three irrigation treatments: (1) 

full irrigation (225 – 375 mm), 

(2) critical stage irrigation (75 

mm at jointing stage in addition 

to minimum irrigation), (3) 

minimum irrigation (keep the top 

50 cm soil layer above 75% of 

field capacity). 

N/A 

The model was capable of 

elucidating around 90% of the 

winter wheat’s phenology, 

biomass accumulation, grain 

yield, and seasonal 

evapotranspiration. The RMSE 

values for winter wheat yield 

were 0.263 t/ha, 0.598 t/ha, and 

0.453 t/ha for the MI, CI, and FI 

treatments, respectively. 

Explore possibility 

of resources usage 

reduction while 

maintaining the 

yield 

(Fletcher et 

al., 2020)* 

APSIM 

7.8 

Western Australia. 

ABARES obersed 

datasets at the 

scale of the 

statistical area 

level 2 

2010, 2015 N/A Rainfed (water limited condition) N/A N/A RMSE=0.77 t/ha, R2=0.69 

The climate change 

impacts on the 

distribution of 

Australian wheat 

belt 
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Appendix C Supplementary material for 

Chapter 3 

Table C. 1. The selected weather scenarios 

 Mean Tmax (°C) Mean Tmin (°C) Precipitation (mm) 
Growing period 

precipitation (mm) 

Wet year (1964) 20.5 7.4 546.2 453.1 

Normal year (1989) 21.4 8.7 395.2 311.8 

Dry year (2015) 22.7 8.6 253.4 140.2 

 

Table C. 2. The historic weather data of Nhill, Victoria, Australia (Station 078040 for 

precipitation and Station 078031 for temperatures, Tmax: maximum temperature, Tmin: 

minimum temperature) 

 Mean Tmax (°C) Mean Tmin (°C) Precipitation (mm) 

lowest 20.2 4.0 163.5 

10th %ile 20.8 7.1 260.8 

mean 21.6 8.0 400.8 

median 21.6 8.1 399.8 

90th %ile 22.5 8.8 526.7 

highest 24.6 9.5 738.8 

 

Table C. 3. The selected soil textures and the proportion of sand, silt, and clay sized particles 

 
Sandy soil (layer 1/layer 2 - 

6) 

Loamy soil (layer 1/layer 2 

- 6) 

Clayey soil (layer 1/layer 2 

- 6) 

Clay % 5/15 25/35 40/70 

Silt % 15/10 25/25 30/15 

Sand % 80/75 50/40 30/15 

Soil textures Loamy sand/Sandy loam Loam/Clay loam Silty clay/Clay 

 

Table C. 4. Mean and standard deviation values of the soil textures used for the soil layers of the 

three soil types used in this study 
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Soil layer texture Porosity (PO) (m3/m3) 
Drained upper limit (DUL) 

(m3/m3) 

Lower limit of 15 bar 

(LL15) (m3/m3) 

 Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

Loamy sand 0.437 0.069 0.160 0.053 0.044 0.023 

Sandy loam 0.453 0.102 0.214 0.055 0.099 0.020 

Loam 0.463 0.088 0.233 0.047 0.118 0.030 

Clay loam 0.464 0.055 0.263 0.048 0.150 0.027 

Silty clay 0.470 0.052 0.328 0.039 0.211 0.029 

Clay 0.475 0.048 0.393 0.030 0.272 0.030 

 

Table C. 5. The first order and total index variability with changing sample size for all parameters 

 

Standard 

deviation for 

indices when the 

sample size is 

between 30 and 

3000 

Standard deviation 

for indices when 

the sample size is 

between 30 and 

6000 

Standard deviation 

for indices when 

the sample size is 

between 30 and 

9000 

Standard deviation 

for indices when the 

sample size is 

between 30 and 

10000 

 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑖 𝑆𝑇𝑖 

Precipitation 0.046 0.087 0.040 0.076 0.036 0.068 0.035 0.066 

Tmax 0.044 0.088 0.038 0.075 0.034 0.067 0.032 0.065 

Tmin 0.023 0.044 0.019 0.038 0.017 0.034 0.017 0.033 

Fertilisation 

Amount 
0.035 0.015 0.031 0.013 0.028 0.012 0.027 0.011 

Initial 

Nitrogen 

Content 

0.063 0.048 0.054 0.041 0.048 0.037 0.047 0.036 

Soil 

Parameters 
0.055 0.145 0.048 0.125 0.043 0.112 0.041 0.108 

 

Table C. 6. First order and total sensitivity index with bootstrap confidence intervals for Scenario 

Norm _Lm_100 

Scenario Norm _Lm_100: normal weather, nitrogen fertilisation 100 kg N/ha, loamy soil 

 𝑆𝑖 

Bootstrap 

average 

of 𝑆𝑖 

95% CI of 𝑆𝑖 𝑆𝑇𝑖 

Bootstrap 

average of 

𝑆𝑇𝑖 

95% CI of 𝑆𝑇𝑖  

Precipitation 0.2813 0.2814 0.2811 0.2817 0.4211 0.4211 0.4205 0.4217 

Tmax 0.0648 0.0647 0.0646 0.0648 0.1625 0.1626 0.1622 0.1631 

Tmin 0.0279 0.0279 0.0278 0.0280 0.1045 0.1045 0.1041 0.1049 

Fertilisation 

amount 
0.0378 0.0378 0.0377 0.0379 0.0543 0.0543 0.0542 0.0544 
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Initial 

nitrogen 

content 

0.1949 0.1951 0.1949 0.1953 0.2237 0.2238 0.2236 0.2240 

Soil 

parameters 
0.2305 0.2307 0.2304 0.2310 0.4080 0.4082 0.4074 0.4091 
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Table C. 7. First order and total indices of uncertain factors at 50 kg N/ha nitrogen fertilisation amount 

  Nitrogen fertilisation 50 kg N/ha  

  Sandy soil Loamy soil Clayey soil 

  𝑆𝑖 value 𝑆𝑇𝑖 value (𝑆𝑇𝑖-𝑆𝑖) 𝑆𝑖 value 𝑆𝑇𝑖 value (𝑆𝑇𝑖-𝑆𝑖) 𝑆𝑖 value 𝑆𝑇𝑖 value (𝑆𝑇𝑖-𝑆𝑖) 

Wet 

year 

Precipitation 0.0086 0.2047 0.1961 0.1011 0.5303 0.4292 0.0064 0.0120 0.0056 

Tmax 0.0037 0.0269 0.0232 0.0082 0.1089 0.1007 0.0061 0.0153 0.0092 

Tmin 0.0024 0.0154 0.0130 0.0012 0.0760 0.0748 0.0037 0.0110 0.0073 

Fertilisation 

amount 
0.1581 0.1589 0.0008 0.0745 0.0773 0.0028 0.1974 0.2019 0.0045 

Initial nitrogen 

content 
0.5511 0.5660 0.0149 0.2843 0.2913 0.0070 0.7525 0.7534 0.0009 

Soil parameters 0.0724 0.2612 0.1888 0.1171 0.5734 0.4563 0.0214 0.0307 0.0093 

SUM 0.7963 1.2331 - 0.5864 1.6572 - 0.9875 1.0243 - 

Normal 

year 

Precipitation 0.1682 0.2468 0.0786 0.0804 0.1658 0.0854 0.0049 0.0157 0.0108 

Tmax 0.0290 0.0846 0.0556 0.0152 0.0734 0.0582 0.0032 0.0130 0.0098 

Tmin 0.0162 0.0601 0.0439 0.0205 0.0568 0.0363 0.0035 0.0094 0.0059 

Fertilisation 

amount 
0.0801 0.1003 0.0202 0.1218 0.1424 0.0206 0.1744 0.1764 0.0020 

Initial nitrogen 

content 
0.3652 0.4044 0.0392 0.5555 0.6095 0.0540 0.7861 0.7893 0.0032 

Soil parameters 0.2339 0.3285 0.0946 0.1188 0.2149 0.0961 0.0250 0.0315 0.0065 

SUM 0.8926 1.2247 - 0.9122 1.2628 - 0.9971 1.0353 - 

Precipitation 0.2104 0.3519 0.1415 0.1394 0.3254 0.1860 0.0876 0.1039 0.0163 
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Dry 

year 

Tmax 0.0704 0.1157 0.0453 0.0419 0.1128 0.0709 0.0347 0.0567 0.0220 

Tmin 0.0215 0.0569 0.0354 0.0074 0.0683 0.0609 0.0176 0.0325 0.0149 

Fertilisation 

amount 
0.0125 0.0300 0.0175 0.0367 0.0767 0.0400 0.1337 0.1503 0.0166 

Initial nitrogen 

content 
0.0790 0.1111 0.0321 0.2169 0.2813 0.0644 0.6179 0.6539 0.0360 

Soil parameters 0.4024 0.5568 0.1544 0.2776 0.4860 0.2084 0.0685 0.0843 0.0158 

SUM 0.7962 1.2224 - 0.7199 1.3505 - 0.9600 1.0816 - 

 

Table C. 8. First order and total indices of uncertain factors at 100 kg N/ha nitrogen fertilisation amount 

  Nitrogen fertilisation 100 kg N/ha  

  Sandy soil Loamy soil Clayey soil 

  𝑆𝑖 value 𝑆𝑇𝑖 value (𝑆𝑇𝑖-𝑆𝑖) 𝑆𝑖 value 
𝑆𝑇𝑖 

value 
(𝑆𝑇𝑖-𝑆𝑖) 𝑆𝑖 value 𝑆𝑇𝑖 value (𝑆𝑇𝑖-𝑆𝑖) 

Wet 

year 

Precipitation 0.0446 0.4297 0.3851 0.1395 0.6703 0.5308 0.0049 0.0121 0.0072 

Tmax 0.0046 0.0539 0.0493 0.0047 0.1276 0.1229 0.0080 0.0216 0.0136 

Tmin 0.0032 0.0306 0.0274 0.0001 0.0909 0.0908 0.0044 0.0181 0.0137 

Fertilisation 

amount 
0.0879 0.0994 0.0115 0.0330 0.0379 0.0049 0.1868 0.1911 0.0043 

Initial nitrogen 

content 
0.2850 0.3309 0.0459 0.1269 0.1392 0.0123 0.7309 0.7363 0.0054 

Soil parameters 0.1558 0.5533 0.3975 0.1633 0.7275 0.5642 0.0387 0.0489 0.0102 
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SUM 0.5811 1.4978 - 0.4675 1.7934 - 0.9737 1.0281 - 

Normal 

year 

Precipitation 0.3391 0.4421 0.1030 0.2813 0.4211 0.1398 0.0785 0.1203 0.0418 

Tmax 0.0718 0.1425 0.0707 0.0648 0.1625 0.0977 0.0278 0.0657 0.0379 

Tmin 0.0179 0.0770 0.0591 0.0279 0.1045 0.0766 0.0084 0.0382 0.0298 

Fertilisation 

amount 
0.0209 0.0311 0.0102 0.0378 0.0543 0.0165 0.1448 0.1734 0.0286 

Initial nitrogen 

content 
0.0997 0.1203 0.0206 0.1949 0.2237 0.0288 0.6136 0.6820 0.0684 

Soil parameters 0.3297 0.4561 0.1264 0.2305 0.4080 0.1775 0.0293 0.0509 0.0216 

SUM 0.8791 1.2691 - 0.8372 1.3741 - 0.9024 1.1305 - 

Dry 

year 

Precipitation 0.2582 0.4098 0.1516 0.2202 0.4531 0.2329 0.3285 0.3467 0.0182 

Tmax 0.0724 0.1175 0.0451 0.0742 0.1558 0.0816 0.1674 0.2296 0.0622 

Tmin 0.0276 0.0655 0.0379 0.0209 0.0982 0.0773 0.0686 0.1279 0.0593 

Fertilisation 

amount 
0.0078 0.0094 0.0016 0.0100 0.0110 0.0010 0.0403 0.0500 0.0097 

Initial nitrogen 

content 
0.0291 0.0387 0.0096 0.0382 0.0463 0.0081 0.1367 0.1658 0.0291 

Soil parameters 0.4093 0.5700 0.1607 0.3405 0.5921 0.2516 0.1723 0.1955 0.0232 

SUM 0.8044 1.2109 - 0.7040 1.3565 - 0.9138 1.1155 - 
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Table C. 9. The ensemble yield mean and standard deviation (kg/ha) 

 Sandy soil Loamy soil Clayey soil 

 N Fert 50 N Fert 100 N Fert 50 N Fert 100 N Fert 50 N Fert 100 

Wet year 
Mean=3349.76 

Std=586.16 

Mean=4517.19 

Std=532.56 

Mean=3206.18 

Std=815.92 

Mean=4404.24 

Std=973.49 

Mean=3311.64 

Std=497.68 

Mean=4522.99 

Std=457.16 

Normal 

year 

Mean=3087.74 

Std=418.89 

Mean=3571.28 

Std=379.91 

Mean=3194.19 

Std=487.58 

Mean=3872.09 

Std=399.31 

Mean=3300.16 

Std=582.69 

Mean=4568.14 

Std=429.20 

Dry year 
Mean=1873.97 

Std=188.32 

Mean=1982.29 

Std=187.61 

Mean=2064.52 

Std=233.65 

Mean=2222.48 

Std=221.05 

Mean=2596.89 

Std=290.56 

Mean=3002.13 

Std=206.75 

 

 

 

Figure C. 1. The distribution of (a) first order index and (b) total index ranks for each parameter 

under all eighteen scenarios. The six parameters are listed on the horizontal axis; the ranks are 
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ordered along the vertical axis. The cross mark represents the median value, the box denotes the 

interquartile range, the whisker shows the maximum and minimum ranks. 

 

 

Figure C. 2. The first order sensitivity index, total sensitivity index, and total interaction of each 

of the six factors for all scenarios. The different columns of plots are results for different soil 

types; the upper three rows are for the 50 kg N/ha fertilisation level under wet, normal, and dry 

weather scenarios, the lower three rows are for the 100 kg N/ha; The first order sensitivity index, 

total sensitivity index, and total interaction for each of the six parameters are indicated in the 

legend. 
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Appendix D Supplementary material for 

Chapter 5 

Table D. 1. The mean and standard deviation (std) of the lower limit of 15 bar (LL15), drained 

upper limit (DUL), saturation (SAT), crop lower limit (CLL), and plant available water capacity 

(PAWC) for the selected soil profile. 

Layer 
Depth 

(cm) 

LL15 (mm/mm) DUL (mm/mm) SAT (mm/mm) CLL (mm/mm) PAWC 

(mm) Mean Std Mean Std Mean Std Mean Std 

0-10 10 0.134 0.020 0.305 0.047 0.355 0.069 0.130 0.0235 17.5 

10-20 10 0.234 0.030 0.290 0.047 0.340 0.069 0.200 0.0235 9.0 

20-30 10 0.234 0.027 0.290 0.048 0.340 0.069 0.230 0.0240 6.0 

30-40 10 0.270 0.027 0.364 0.048 0.414 0.069 0.260 0.0288 10.4 

40-50 10 0.270 0.027 0.395 0.039 0.445 0.048 0.257 0.0273 13.8 

50-90 40 0.257 0.028 0.395 0.039 0.445 0.048 0.257 0.0273 13.8 

90-130 40 0.257 0.028 0.395 0.039 0.445 0.048 0.257 0.0295 13.8 

 

Appendix E Supplementary material for 

Chapter 6 

Table E. 1. The mean and standard deviation (std) of the lower limit of 15 bar (LL15), drained 

upper limit (DUL), saturation (SAT), crop lower limit (CLL), and plant available water capacity 

(PAWC) for the low-yield open loop selected soil profile. Soil information was obtained by 

selecting a suitable soil profile from the APSoil database (Oliver and Robertson, 2009). 

Layer 
Depth 

(cm) 

LL15 (mm/mm) DUL (mm/mm) SAT (mm/mm) CLL (mm/mm) PAWC 

(mm) Mean Std Mean Std Mean Std Mean Std 

0-10 10 0.134 0.020 0.305 0.047 0.355 0.069 0.130 0.0235 17.5 

10-20 10 0.234 0.030 0.290 0.047 0.340 0.069 0.200 0.0235 9.0 

20-30 10 0.234 0.027 0.290 0.048 0.340 0.069 0.230 0.024 6.0 

30-40 10 0.270 0.027 0.364 0.048 0.414 0.069 0.260 0.0288 10.4 

40-50 10 0.270 0.027 0.395 0.039 0.445 0.048 0.257 0.0273 13.8 

50-90 40 0.257 0.028 0.395 0.039 0.445 0.048 0.257 0.0273 13.8 

90-130 40 0.257 0.028 0.395 0.039 0.445 0.048 0.257 0.0295 13.8 
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Table E. 2. The mean and standard deviation (std) of the lower limit of 15 bar (LL15), drained 

upper limit (DUL), saturation (SAT), crop lower limit (CLL), and plant available water capacity 

(PAWC) for the high-yield open loop selected soil profile. Soil information was obtained by 

selecting a suitable soil profile from the APSoil database (Oliver and Robertson, 2009). 

Layer 
Depth 

(cm) 

LL15 (mm/mm) DUL (mm/mm) SAT (mm/mm) CLL (mm/mm) PAWC 

(mm) Mean Std Mean Std Mean Std Mean Std 

0-10 10 0.200 0.030 0.342 0.047 0.398 0.082 0.181 0.0246 16.1 

10-20 10 0.267 0.030 0.399 0.047 0.496 0.082 0.212 0.0240 18.7 

20-30 10 0.265 0.027 0.422 0.048 0.496 0.082 0.242 0.0249 18.0 

30-40 10 0.234 0.027 0.457 0.048 0.512 0.082 0.251 0.0283 20.6 

40-50 10 0.252 0.027 0.410 0.041 0.465 0.051 0.212 0.0312 19.8 

50-90 40 0.257 0.028 0.410 0.041 0.465 0.051 0.212 0.0312 19.8 

90-130 40 0.257 0.028 0.410 0.041 0.465 0.051 0.212 0.0312 19.8 

 

Table E. 3. The specific dates for the 15 cloud-free Sentinel-2 and 13 cloud-free PlanetScope 

images. 

Sentinel-2 (15 images) PlanetScope (13 images) 

 2019-05-26 

2019-05-29  

 2019-06-03 

2019-06-08  

2019-06-13  

 2019-06-17 

 2019-06-23 

2019-06-28  

2019-07-03  

 2019-07-06 

2019-07-13  

2019-07-18  

2019-07-23  

2019-08-12  

2019-08-17  

 2019-08-23 

 2019-08-29 

 2019-09-03 

2019-09-11  

 2019-09-17 

 2019-09-18 

2019-10-01  

 2019-10-15 

2019-10-21  

 2019-10-25 

2019-10-31  

2019-11-05  

 2019-11-11 

 

Table E. 4. The performance of low-yield and high-yield open loop cases with different 

observation errors (DA: data assimilation, A: additive, M: multiplicative). 
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Open loop 

case 

Ground 

truth yield 

(t/ha) 

Observation 

uncertainty 

type 

Observation 

uncertainty 

magnitude 

DA 

ensemble 

mean (t/ha) 

Increment from 

open loop by 

DA (t/ha) 

Innovations 

variance 

Low-yield 

open loop 

(4.45 t/ha) 

4.67 

A 

0.2 3.73 -0.72 4.03 

0.5 3.86 -0.59 0.71 

0.8 4.04 -0.41 0.50 

1.1 4.22 -0.23 0.37 

M 

10% 4.47 0.02 3.00 

20% 4.59 0.14 1.45 

30% 4.46 0.01 0.98 

5.20 

A 

0.2 4.21 -0.24 1.93 

0.5 4.20 -0.25 0.51 

0.8 4.26 -0.19 0.28 

1.1 4.34 -0.11 0.19 

M 

10% 4.68 0.23 2.79 

20% 4.66 0.21 1.19 

30% 4.57 0.12 0.84 

5.87 

A 

0.2 4.24 -0.21 2.31 

0.5 4.16 -0.29 0.69 

0.8 4.28 -0.17 0.41 

1.1 4.34 -0.11 0.29 

M 

10% 4.78 0.33 2.83 

20% 4.82 0.37 1.53 

30% 4.67 0.22 1.06 

6.47 

A 

0.2 4.40 0.36 3.83 

0.5 4.39 -0.06 0.82 

0.8 4.38 -0.07 0.40 

1.1 4.42 -0.03 0.26 

M 

10% 4.97 0.52 3.07 

20% 4.90 0.45 1.56 

30% 4.73 0.28 1.05 

High-

yield open 

loop (6.85 

t/ha) 

4.67 M 

10% 5.87 -0.98 1.80 

20% 5.91 -0.94 0.82 

30% 6.01 -0.84 0.62 

5.20 M 

10% 5.89 -0.96 2.48 

20% 5.96 -0.89 1.19 

30% 6.10 -0.75 0.71 

5.87 M 

10% 6.11 -0.74 1.82 

20% 6.14 -0.71 0.79 

30% 6.23 -0.62 0.55 

6.47 M 

10% 6.63 -0.22 2.56 

20% 6.46 -0.39 1.12 

30% 6.44 -0.41 0.71 

 

Table E. 5. The performance data assimilation for all 58 patches with the low-yield open loop 

case using 20% multiplicative observation error (DA: data assimilation) 

Open loop 

case (t/ha) 

Patch 

number 

Ground 

truth yield 

(t/ha) 

DA 

ensemble 

mean (t/ha) 

Increment 

from open 

loop by DA 

(t/ha) 

Residual 

between DA 

mean and 

truth (t/ha) 

Efficiency 

Standard 

deviation 

after DA 

Yield 

estimates: 

4.45 

 

L-1 6.33 4.85 0.4 -1.48 0.21 0.34 

L-2 6.2 4.78 0.33 -1.42 0.19 0.32 

L-3 6.05 4.8 0.35 -1.25 0.22 0.35 

L-4 6.14 4.78 0.33 -1.36 0.20 0.35 

L-5 6.28 4.87 0.42 -1.41 0.23 0.37 
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Ensemble 

standard 

deviation 

before 

DA: 0.76 

 

L-6 6.33 4.96 0.51 -1.37 0.27 0.30 

L-7 5.74 4.86 0.41 -0.88 0.32 0.30 

L-8 6.22 4.85 0.4 -1.37 0.23 0.35 

L-9 5.92 4.86 0.41 -1.06 0.28 0.37 

L-10 5.67 4.87 0.42 -0.80 0.35 0.37 

L-11 6.53 5.03 0.58 -1.50 0.28 0.33 

L-12 6.15 4.8 0.35 -1.35 0.21 0.32 

L-13 6.38 4.86 0.41 -1.52 0.21 0.35 

L-14 6.28 4.99 0.54 -1.29 0.30 0.37 

L-15 5.78 4.92 0.47 -0.86 0.35 0.36 

L-16 6.07 4.87 0.42 -1.20 0.26 0.37 

L-17 5.87 4.82 0.37 -1.05 0.26 0.38 

L-18 5.71 4.83 0.38 -0.88 0.30 0.40 

L-19 6.05 4.78 0.33 -1.27 0.21 0.34 

L-20 6.47 4.9 0.45 -1.57 0.22 0.36 

L-21 6.31 4.88 0.43 -1.43 0.23 0.38 

L-22 5.65 4.85 0.4 -0.80 0.33 0.30 

L-23 5.2 4.66 0.21 -0.54 0.28 0.31 

L-24 5.65 4.78 0.33 -0.87 0.28 0.34 

L-25 6.11 4.79 0.34 -1.32 0.20 0.34 

L-26 5.43 4.69 0.24 -0.74 0.24 0.32 

L-27 4.67 4.59 0.14 -0.08 0.64 0.35 

L-28 4.99 4.75 0.3 -0.24 0.56 0.40 

L-29 6.02 4.89 0.44 -1.13 0.28 0.34 

L-30 6.44 4.9 0.45 -1.54 0.23 0.37 

L-31 6.41 4.93 0.48 -1.48 0.24 0.39 

R-1 6.44 4.94 0.49 -1.5 0.25 0.37 

R-2 6.22 4.79 0.34 -1.43 0.19 0.36 

R-3 6.13 4.78 0.33 -1.35 0.20 0.32 

R-4 6.31 4.78 0.33 -1.53 0.18 0.38 

R-5 6.41 4.8 0.35 -1.61 0.18 0.36 

R-6 6.02 4.76 0.31 -1.26 0.20 0.35 

R-7 6.44 5.01 0.56 -1.43 0.28 0.38 

R-8 6.16 4.82 0.37 -1.34 0.22 0.37 

R-9 6.22 4.89 0.44 -1.33 0.25 0.33 

R-10 6.01 4.77 0.32 -1.24 0.21 0.38 

R-11 6.23 4.81 0.36 -1.42 0.20 0.37 

R-12 6.22 4.83 0.38 -1.39 0.21 0.37 

R-13 6.03 4.89 0.44 -1.14 0.28 0.37 

R-14 5.94 4.76 0.31 -1.18 0.21 0.33 

R-15 6.6 4.97 0.52 -1.63 0.24 0.33 

R-16 6.27 4.85 0.4 -1.42 0.22 0.34 

R-17 5.35 4.65 0.2 -0.70 0.22 0.33 

R-18 5.78 4.8 0.35 -0.98 0.26 0.31 

R-19 5.06 4.62 0.17 -0.44 0.28 0.29 

R-20 6.45 4.84 0.39 -1.61 0.20 0.38 

R-21 6.02 4.76 0.31 -1.26 0.21 0.37 

R-22 5.6 4.75 0.3 -0.85 0.26 0.32 

R-23 4.79 4.68 0.23 -0.11 0.68 0.30 

R-24 6.04 4.9 0.45 -1.14 0.28 0.34 

R-25 5.99 4.78 0.33 -1.21 0.21 0.32 

R-26 5.78 4.69 0.24 -1.09 0.18 0.30 

R-27 4.8 4.78 0.33 -0.02 0.94 0.30 
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Table E. 6. The performance data assimilation for all 58 patches with the high-yield open loop 

case using 20% multiplicative observation error (DA: data assimilation) 

Open loop 

case (t/ha) 

Patch 

number 

Ground 

truth yield 

(t/ha) 

DA 

ensemble 

mean (t/ha) 

Increment 

from open 

loop by DA 

(t/ha) 

Residual 

between DA 

mean and 

truth (t/ha) 

Efficiency 

Standard 

deviation 

after DA 

Yield 

estimates: 

6.85 

 

Ensemble 

standard 

deviation 

before 

DA: 0.71 

 

L-1 6.33 6.53 -0.32 0.20 0.62 0.59 

L-2 6.2 6.43 -0.42 0.23 0.65 0.59 

L-3 6.05 6.26 -0.59 0.21 0.74 0.57 

L-4 6.14 6.11 -0.74 -0.03 0.96 0.56 

L-5 6.28 6.08 -0.77 -0.20 0.65 0.54 

L-6 6.33 6.41 -0.44 0.08 0.85 0.60 

L-7 5.74 6.22 -0.63 0.48 0.57 0.60 

L-8 6.22 6.27 -0.58 0.05 0.92 0.56 

L-9 5.92 6.08 -0.77 0.16 0.83 0.54 

L-10 5.67 6 -0.85 0.33 0.72 0.52 

L-11 6.53 6.54 -0.31 0.01 0.97 0.58 

L-12 6.15 6.18 -0.67 0.03 0.96 0.58 

L-13 6.38 6.18 -0.67 -0.20 0.57 0.56 

L-14 6.28 6.11 -0.74 -0.17 0.70 0.53 

L-15 5.78 5.92 -0.93 0.14 0.87 0.52 

L-16 6.07 6.42 -0.43 0.35 0.55 0.56 

L-17 5.87 6.14 -0.71 0.27 0.72 0.54 

L-18 5.71 6.01 -0.84 0.30 0.74 0.53 

L-19 6.05 6.15 -0.7 0.10 0.87 0.57 

L-20 6.47 6.46 -0.39 -0.01 0.97 0.56 

L-21 6.31 6.34 -0.51 0.03 0.94 0.56 

L-22 5.65 6.12 -0.73 0.47 0.61 0.60 

L-23 5.2 5.96 -0.89 0.76 0.54 0.59 

L-24 5.65 6.23 -0.62 0.58 0.52 0.58 

L-25 6.11 6.18 -0.67 0.07 0.91 0.57 

L-26 5.43 5.81 -1.04 0.38 0.73 0.58 

L-27 4.67 5.91 -0.94 1.24 0.43 0.54 

L-28 4.99 6.04 -0.81 1.05 0.44 0.53 

L-29 6.02 6.36 -0.49 0.34 0.59 0.60 

L-30 6.44 6.63 -0.22 0.19 0.54 0.57 

L-31 6.41 6.6 -0.25 0.19 0.57 0.54 

R-1 6.44 6.18 -0.67 -0.26 0.37 0.54 

R-2 6.22 5.94 -0.91 -0.28 0.56 0.55 

R-3 6.13 6.1 -0.75 -0.03 0.96 0.53 

R-4 6.31 6.4 -0.45 0.09 0.83 0.53 

R-5 6.41 6.3 -0.55 -0.11 0.75 0.57 

R-6 6.02 5.89 -0.96 -0.13 0.84 0.55 

R-7 6.44 6.5 -0.35 0.06 0.85 0.53 

R-8 6.16 6.05 -0.8 -0.11 0.84 0.56 

R-9 6.22 5.99 -0.86 -0.23 0.63 0.57 

R-10 6.01 5.96 -0.89 -0.05 0.94 0.53 

R-11 6.23 6.26 -0.59 0.03 0.95 0.56 

R-12 6.22 6.17 -0.68 -0.05 0.92 0.56 

R-13 6.03 6.24 -0.61 0.21 0.74 0.56 

R-14 5.94 6.12 -0.73 0.18 0.80 0.58 

R-15 6.6 6.5 -0.35 -0.10 0.60 0.59 

R-16 6.27 6.34 -0.51 0.07 0.88 0.58 

R-17 5.35 5.98 -0.87 0.63 0.58 0.59 

R-18 5.78 5.83 -1.02 0.05 0.95 0.58 

R-19 5.06 5.89 -0.96 0.83 0.54 0.59 
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R-20 6.45 6.23 -0.62 -0.22 0.45 0.55 

R-21 6.02 5.94 -0.91 -0.08 0.90 0.55 

R-22 5.6 5.65 -1.2 0.05 0.96 0.57 

R-23 4.79 5.79 -1.06 1.00 0.51 0.60 

R-24 6.04 6.37 -0.48 0.33 0.59 0.59 

R-25 5.99 6.33 -0.52 0.34 0.60 0.59 

R-26 5.78 6.15 -0.7 0.37 0.65 0.59 

R-27 4.8 5.63 -1.22 0.83 0.60 0.59 

 


	Abstract
	Zusammenfassung
	Preface
	Acknowledgments
	Table of Contents
	List of tables
	List of figures
	Chapter 1 Thesis introduction
	1.1 Crop yield predictions by process-based crop models
	1.2 Crop model yield prediction uncertainty
	1.3 Improving crop model yield prediction
	1.4 Crop model data assimilation
	1.5 Assimilating observations into crop models using EnKF
	1.6 Research questions and objectives
	1.6.1 Research question 1 (Chapter 2)
	1.6.2 Research question 2 (Chapter 3)
	1.6.3 Research question 3 (Chapter 4)
	1.6.4 Research question 4 (Chapters 5 and 6)

	1.7 Thesis structure and publications

	Chapter 2 Performance of APSIM-Wheat and factors influencing the performance: A review and meta-analysis
	2.1 Abstract
	2.2 Introduction
	2.3 Methods and materials
	2.3.1 Overview of the APSIM Classic and Wheat module
	2.3.2 Literature search and selection criteria
	2.3.3 APSIM-Wheat calibration and evaluation metrics
	2.3.4 Description of reviewed datasets
	2.3.5 Building database for meta-analysis and performance metrics

	2.4 Factors affecting APSIM yield prediction
	2.4.1 Model calibration
	2.4.2 Water availability
	2.4.3 Nitrogen availability
	2.4.4 Other stresses
	2.4.5 Implications of the influential factors in changing climate

	2.5 Summary and conclusion

	Chapter 3 Sensitivity of APSIM-Wheat yield predictions to model parameters and inputs
	3.1 Abstract
	3.2 Introduction
	3.3 Materials and methodology
	3.3.1 The study area
	3.3.2 APSIM and wheat module
	3.3.3 The Sobol’ sensitivity analysis and resampling by bootstrap
	3.3.4 Weather, soil, and nitrogen fertilisation scenarios
	3.3.5 Perturbation of weather inputs, soil texture and nitrogen parameters
	3.3.5.1 Perturbation of weather inputs
	3.3.5.2 Perturbation of soil information
	3.3.5.3 Perturbation of fertilisation amount


	3.4 Results
	3.4.1 Effect of sample size
	3.4.2 Ranking of the influential input parameters
	3.4.3 Fertilisation amount effects on sensitivity
	3.4.4 Weather condition effects on sensitivity
	3.4.5 Interactions between factors
	3.4.6 Yield prediction variability

	3.5 Discussion
	3.5.1 Effects of water and nitrogen availability
	3.5.2 Implications for modellers
	3.5.3 Implications for crop managers
	3.5.4 Limitation and future work

	3.6 Conclusion

	Chapter 4  Remote sensing observations for updatable state variables in APSIM-Wheat model
	4.1 Abstract
	4.2 Introduction
	4.3 Methods
	4.3.1 Study area
	4.3.2 Vegetation indices
	4.3.3 Observation operator development
	4.3.3.1 Calibration of APSIM
	4.3.3.2 Processing of Sentinel-2 VIs data
	4.3.3.3 Consideration of growing periods
	4.3.3.4 Uncertainty assessment
	4.3.3.5 Curve linearity


	4.4 Results
	4.4.1 The selection of ideal observation candidate
	4.4.2 Operator uncertainty
	4.4.3 Method validation

	4.5 Conclusion

	Chapter 5 Assimilating remotely sensed green leaf area index for wheat yield estimates: a synthetic experiment
	5.1 Abstract
	5.2 Introduction
	5.3 Materials and methods
	5.3.1 Study site
	5.3.2 APSIM-Wheat and input datasets
	5.3.3 Synthetic twin experiment
	5.3.3.1 Model uncertainties
	5.3.3.2 The selection of TRUE simulations
	5.3.3.3 Synthetic observations
	5.3.3.4 Experimental design

	5.3.4 APSIM-Wheat data assimilation
	5.3.4.1 Ensemble Kalman filter
	5.3.4.2 Perturbation bias correction
	5.3.4.3 Observation operator

	5.3.5 Evaluation of data assimilation performance

	5.4 Results
	5.4.1 Performance of different data assimilation strategies
	5.4.1.1 Updating different biomass components
	5.4.1.2 Updating at different growth stages
	5.4.1.3 Update Interval

	5.4.2 Performance of the designed data assimilation

	5.5 Discussion
	5.5.1 The influence of updating different biomass components in the APSIM-Wheat
	5.5.2 The influence of updating APSIM-Wheat biomass states at different growth stages
	5.5.3 The updating interval and observation availability
	5.5.4 Adequacy of uncertainty estimation

	5.6 Conclusion

	Chapter 6 Real case study and spatial yield prediction based on satellite data
	6.1 Abstract
	6.2 Introduction
	6.3 Methods and materials
	6.3.1 Study site
	6.3.2 APSIM-Wheat data assimilation framework
	6.3.2.1 The open loop simulations and model uncertainties
	6.3.2.2 Satellite observation data
	6.3.2.3 Observation operator
	6.3.2.4 Observation uncertainty experiments

	6.3.3 Evaluation of data assimilation performance

	6.4 Results and discussion
	6.4.1 Observation uncertainty experiments
	6.4.2 Data assimilation performance

	6.5 Conclusion

	Chapter 7 Discussions and conclusions
	7.1 Research findings
	7.2 Research limitations and extension opportunities

	Reference
	Appendix A Supplementary material for Chapter 1
	Appendix B Supplementary material for Chapter 2
	Appendix C Supplementary material for Chapter 3
	Appendix D Supplementary material for Chapter 5
	Appendix E Supplementary material for Chapter 6

