
Test Suite Generation and
Augmentation for Reconfigurable
Industrial Control Software in the
Internet of Production
Marco Lutz geb. Grochowski

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2024-09
RWTH Aachen University | Department of Computer Science | September 2024

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Test Suite Generation and Augmentation for
Reconfigurable Industrial Control Software in

the Internet of Production

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Marco Lutz geb. Grochowski, M. Sc. RWTH
aus Hilden

Berichter: Universitätsprofessor Dr.-Ing. Stefan Kowalewski

Universitätsprofessor Dr. Paula Herber

Tag der mündlichen Prüfung: 10. September 2024

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Marco Lutz geb. Grochowski

Lehrstuhl Informatik 11

grochowski@embedded.rwth-aachen.de

Aachener Informatik Bericht AIB-2024-09

Herausgeber: Fachgruppe Informatik

RWTH Aachen University

Ahornstr. 55

52074 Aachen

GERMANY

ISSN 0935-3232

Abstract
With the advent of Industry 4.0 and the digitally networked factory, cyber-physical

production systems (CPPSs) are reconfigured frequently along their life cycle to

adapt to changing customer requirements or market demands. Such reconfigu-

rations are not limited to the hardware but also affect the software of the pro-

grammable logic controllers (PLCs) driving these plants. While verification and

testing are two techniques capable of alleviating the risk of introducing errors in

production code, it is no longer sufficient to rely only on the results obtained by

these methods during the commissioning of the CPPS. Even minor incremental

reconfigurations to the PLC’s software during the operational phase of the life

cycle may introduce regressions that can be quickly overlooked by a developer and

therefore need to be reverified.

The goal of this thesis is to provide a “push button” analysis for generating test

cases after a static reconfiguration. The generated test cases can be injected and

monitored during maintenance or virtual commissioning to observe the impact of

reconfiguration on the CPPS by the developer.

In order to reduce redundancy in test suite generation (TSG) after a structural

reconfiguration to the PLC software, symbolic summaries of specific parts of the

program should be cached and reused to benefit subsequent analysis. While

automatic TSG is an established technique used to generate test suites adhering

to structural coverage metrics of PLC software, the generated test suite might not

anymore be adequate enough with regards to the coverage metric to ensure the

absence of regressions. An indispensable part of regression testing (RT) is test

suite augmentation (TSA), which guides the TSG toward the reconfigured behavior

and increases the chances of deriving difference-revealing test cases which expose

behavioral differences between the program and its reconfigured version. The

derivation of new test cases is required to uncover potential regressions after a

reconfiguration.

To this end, the contributions of this thesis include

heuristics for the scalability of the existing TSG for PLC software,

the reuse of symbolic summaries during TSG of reconfigured PLC software,

and the concept of executing the old and new version of a reconfigured PLC

software in one unified program version during TSA.

These contributions are evaluated on selected domain-specific benchmarks of

varying difficulty from the PLCopen Safety suite and the Pick and Place Unit

(PPU).

i

Zusammenfassung
Mit dem Aufkommen von Industrie 4.0 und der digital vernetzten Fabrik werden

cyber-physische Produktionssysteme (CPPS) während ihres Lebenszyklus häufig

neu konfiguriert, um sich an veränderte Kunden- oder Marktbedürfnisse anzu-

passen. Solche Rekonfigurationen sind nicht nur auf die Hardware beschränkt,

sondern betreffen auch die Software der speicherprogrammierbaren Steuerungen

(SPSen), die diese Anlagen steuern. Während die Verifizierung und das Testen

zwei Techniken sind, die das Risiko von Fehlern des in der Produktion einge-

setzten Quellcodes vermindern, reicht es heutzutage nicht mehr aus, sich nur auf

die aus der Inbetriebnahme resultierenden Ergebnisse zu verlassen. Selbst kleine

inkrementelle Rekonfigurationen an der SPS-Software während der Betriebsphase

entlang des Lebenszykluses können Regressionen einführen, die von einem Ent-

wickler schnell übersehen werden können und daher erneut sichergestellt werden

müssen.

Das Ziel dieser Arbeit ist es, eine „Push-Button“-Analyse für die Generierung

von Testfällen nach einer Rekonfiguration zu entwerfen. Die generierten Testfäl-

le können während der Wartung oder der virtuellen Inbetriebnahme eingespeist

und überwacht werden, um die Auswirkungen der Rekonfiguration auf das CPPS

durch den Entwickler zu beobachten. Um die Redundanz bei der Generierung

von Testsuiten (TSG) nach solchen Rekonfigurationen zu verringern, sollen sym-

bolische Zusammenfassungen von bestimmten Teilen des Programms zwischen-

gespeichert und wiederverwendet werden. Die Testsuite-Erweiterung (TSA) stellt

einen unverzichtbaren Teil des Regressionstestens (RT) dar, da die Abwesenheit

von Regressionen nach einer Rekonfiguration nicht ausschließlich durch die al-

te Testsuite gewährleistet werden kann. Die TSA lenkt die TSG in Richtung des

rekonfigurierten Verhaltens und erhöht so die Chancen Testfälle abzuleiten, die

die Verhaltensunterschiede zwischen beiden Programmversionen aufdecken. Zu

diesem Zweck beinhaltet der Beitrag dieser Arbeit

Heuristiken für die Skalierbarkeit der bestehenden TSG für SPS-Software,

die Wiederverwendung von symbolischen Zusammenfassungen während

der TSG von rekonfigurierter SPS-Software,

und das Konzept der Ausführung der alten und der neuen Version einer

rekonfigurierten SPS-Software in einer Programmversion für die TSA.

Diese Ansätze werden anhand ausgewählter domänenspezifischer Benchmarks

mit unterschiedlichem Schwierigkeitsgrad aus der PLCopen Safety Suite und der

Pick and Place Unit (PPU) bewertet.

iii

Contents
1 Introduction . 1

1.1 Internet of Production . 1

1.1.1 Vision, Objective, and Impact 2

1.1.2 Digital Shadow . 3

1.2 Transformable Production Systems 3

1.2.1 Service-oriented Architecture 4

1.2.2 Reconfigurations of Production Systems 6

1.3 Software Maintenance Process . 10

1.3.1 Regression Testing . 11

1.3.2 Implications of Reconfigurations on the Trace Semantics . . 15

1.4 Contribution . 17

1.4.1 Publications . 17

1.4.2 Limitations and Assumptions 19

1.4.3 Outline . 20

2 Preliminaries . 23
2.1 Programmable Logic Controllers . 23

2.1.1 Program Organization Units 24

2.1.2 Programming Languages . 25

2.2 Intermediate Representation . 27

2.3 Symbolic Program Analysis . 29

2.4 Design Principles of Symbolic Execution 33

2.4.1 Handling of Loops and Recursion 34

2.4.2 Avoiding the Encoding of Infeasible Execution Paths 34

2.4.3 Merging of Execution Paths 34

2.4.4 Dealing with Compositionality 37

2.5 Unifying Program Versions via Change Annotations 38

2.6 Formal Reasoning with the SMT Solver Z3 40

3 Literature Review . 43
3.1 Test Suite Generation via Symbolic Execution 44

3.1.1 Compositionality and State Merging 44

3.1.2 Incremental Solving, Search Heuristics, and Memoization . 45

3.2 Test Suite Augmentation via Regression Analysis 46

3.2.1 Program Differencing using Summarization 47

3.2.2 Aiding Regression Analysis with Change Impact Analysis . 48

3.2.3 Exposing Divergent Behaviors after a Reconfiguration 52

v

Contents

3.3 Related Work . 53

3.3.1 Verification of Programmable Logic Control Software 54

3.3.2 Testing of Programmable Logic Control Software 57

4 Test Suite Generation . 59
4.1 Compositional and Bounded Symbolic Execution 60

4.1.1 Merge Strategy . 63

4.1.2 Exploration Strategy . 64

4.1.3 Assignments, Branches, and Calls 67

4.1.4 Detection of Unreachable Branches 70

4.1.5 Static Single Assignment and Variable Versioning 72

4.2 Generation of Summaries . 73

4.3 Application of Summaries . 76

4.4 Reusing Summaries across Program Versions 81

4.4.1 Static Change Impact Analysis 83

4.4.2 Predicate-Sensitive Change Impact Analysis 84

4.4.3 Must Summary Validity Checking Analysis 86

5 Test Suite Augmentation . 89
5.1 Test Suite Coverage Identification Problem 92

5.2 Shadow Symbolic Execution . 93

5.2.1 Developer-centered Test Suite Augmentation Process 93

5.2.2 Collecting Change Traversing Test Cases 96

5.2.3 Finding Divergent Execution Contexts 98

5.2.4 Propagating Divergent Execution Contexts 107

5.2.5 Checking for Output Differences 108

6 Evaluation . 109
6.1 Benchmarks . 109

6.1.1 PLCopen Safety Suite . 109

6.1.2 Pick and Place Unit . 110

6.2 Test Suite Generation . 112

6.3 Test Suite Augmentation . 119

7 Conclusion . 123
7.1 Outlook . 124

A Operational Semantics . 127

List of Figures . 133

List of Tables . 135

List of Definitions . 139

vi

Contents

List of Examples . 141

List of Acronyms . 143

Bibliography . 147

vii

Introduction 1
Since the advent of the Industrial Internet of Things (IIoT), conventional manufac-

turing has experienced a paradigm shift toward cyber manufacturing. This shift is

driven by the growing demands for individual products and emerging information

and communications technologies (ICT) [Jes & Bre
+

17], resulting in the fourth

industrial revolution known as Industry 4.0 [Bun 16].

As conventional production systems’ life cycles and value chains are too rigid

regarding the increasingly demanded agility in industrial automation [Gro & Sim
+

20], the trend goes toward networking and distributed computing [Bor & Tre
+

21].

While these technologies are well understood, the currently applied concepts must

be adapted to meet future production requirements.

Several challenges for formal and semi-formal methods arise with service-

oriented architectures (SOAs) as enablers and implementation means for multi-

agent systems (MASs). The increasing modularization and distributed control

structures result in heterogeneity regarding ad-hoc networking and a high degree

of reconfigurability, leading to emergent behavior and potential regressions after

the production system is put into operation.

Therefore, the quality assurance of logic control software during the life cycle of

a cyber-physical production system (CPPS) requires adaptations in the testing and

verification processes known from traditional software engineering. With the use

of Digital Shadows (DSs) and the insights gained from production, reconfigurations

made to the logic control software need to be adequately tested and verified to

ensure safe changes to the production process. The central challenge lies in the

aggregation, abstraction, and analysis of heterogeneous data [Bra & Dal
+

22], which

the Internet of Production (IoP) tries to master.

1.1 Internet of Production
The IoP builds on the ideas of the IIoT and advocates the vision of enabling

real cross-domain and inter-company collaboration by providing semantically

adequate and context-aware data from production [Pen & Gle
+

19]. Figure 1.1

shows the architecture and infrastructure of the IoP in the background and a

high level abstraction in the foreground. During the life cycle of the production

process, data emitted by CPPSs are collected and analyzed. The insights gained

from the emitted data are turned into data that controls the process and forms

the basis for changes, which create new services and flexible value chains [Gro &

Kow
+

19]. Changes translated into reconfigurations of the underlying logic control

1

1 Introduction

Production Process

Data

Analysis Changes

Insights

Control

Safety!

t

Figure 1.1: The architecture and infrastructure of the IoP [Bre & Klo
+

17].

Figure adapted from Bild 1 in [San & Xi
+

21].

software of the CPPS can result in safety-critical modifications requiring additional

safeguarding.

1.1.1 Vision, Objective, and Impact
The vision, objective, and impact of the IoP concerning the functional perspective

for the realization of the emphasized process depicted in Figure 1.1 are listed next.

Vision:

Integration of machine learning and AI-based models from engineering

Creation of IoP-specific “data to knowledge pipelines” that transform massive

data into insights

Providing meaningful, actionable knowledge to decision-makers

Objective:

Visualizations, decision support, and human-centered interfaces

Enable cross-learning and transfer

Data-to-knowledge pipelines

2

1.2 Transformable Production Systems

Impact:

Methods for data-driven insights and back-coupling to transform insights

into actions – usable by human or machine

Smart Decision Support for the human-in-the-loop

Toolbox for Digital Shadows, Data-To-Knowledge Pipelines, validated, self-

adaptive production systems

The key challenges for the IoP lie in building algorithms that combine machine

learning with model-based analysis and control and develop human-centered

interfaces to facilitate decision support.

1.1.2 Digital Shadow
A key component in realizing the vision, objective, and impact of the IoP is the

digital shadow (DS).

Definition 1.1: Digital Shadow [Bib & Dal+ 20; Bec & Bib+ 21]
A digital shadow (DS) is a set of temporal data traces and/or their aggregation

and abstraction collected concerning a system for a specific purpose, i.e.,

context-based with respect to the original system.

The DS comprises task-specific data of production processes allowing the recon-

struction of the entire life cycle of an industrial asset and serves as the primary

technique for data aggregation and refinement within the IoP [Bre & Buc
+

19]. The

DS, therefore, abstracts from the underlying production process and serves as a

virtual representation of the current state of the logic control software.

This gives rise to the use of event-driven architectures in which messages are

exchanged as soon as a state change occurs [Bre & Buc
+

19] and is further discussed

in Section 1.2.1. The use of the DS for the contribution of this thesis lies in the

aggregation ofdata during the whole analysis life cycle of test suite generation (TSG)

and test suite augmentation (TSA) of a reconfigured programmable logic controller

(PLC) program. In particular, the specific purpose mentioned in Definition 1.1

refers to the artifacts resulting from the process of TSG and TSA, and hence the

generated test cases and function block (FB) summaries form the DSs of testing.

This disruptive concept of the IoP results in transformable production systems.

1.2 Transformable Production Systems
Transformability is one of the primary enablers of coping with changing intrinsic

and extrinsic demands. It is a required property to guarantee competitiveness

among companies and comprises the flexibility and mechanical reconfigurability of

3

1 Introduction

a CPPS [Jes & Bre
+

17]. Flexibility describes the property of a CPPS to adapt quickly

and with little effort, within the limits of a given range, to changed conditions and,

together with reconfigurability, enables the CPPS to adapt to changes that were

unknown during planning [Rei & Kre
+

08; Wie & Rei
+

14]. Figure 1.2 shows the

Current practice:

Conventional

production system

Development

and testing

Commissioning

and testing

Production and

quality assurance

Retrofitting

Future practice:

Transformable

production system

Development

and testing

Commissioning

and testing

Operational

phase

Pro
d
u

c
t
i
o
n

a
n

d

quality

a
s
s
u
r
a
n
c
e

R
e
c
o
n
f
i
g
u
r
a

ti
o
n
s

M
aintenan

c
e

and usag
e

Internet of
Production

Figure 1.2: Juxtaposition of the production system’s life cycle and value chain.

Figure adapted from Fig. 2 in [Zel & Wey 15].

juxtaposition of conventional and transformable production systems’ life cycle and

value chain. This shift from conventional to transformable production systems

comes with a series of challenges that the IoP tries to master.

In general, the overall complexity of the CPPS increases [Wie & Rei
+

14] as the

IoP blurs the distinction between the development and operational phases of the

production system.

While transformability is a crucial enabler for quickly adapting to changing

market requirements, it also increases the complexity due to the reconfigurability

and emergent behavior [Wie & Rei
+

14; Ste & Hei 17]. This leads to shorter product

cycles and an increase in the number of software variants. This highly iterative

development and agile manufacturing process in which the requirements are

subject to continuous changes take their toll on the safety of the CPPS. To manage

the increasing complexity, efficient and lightweight techniques that bridge the gap

between verification and testing are required.

The following section explains the heterogeneous environments and the dis-

tributed control of a CPPS.

1.2.1 Service-oriented Architecture
A SOA, in combination with the concept of the DS, suits the demanding require-

ments of reconfigurable CPPS [Bre & Buc
+

19]. Figure 1.3 shows the composition of

services to processes and the distinction between orchestration and choreography [Pel

03; Rie 12]. A centralized service coordinates an orchestration, e.g., “Service A” or

“Service D” in Figure 1.3, which implements the business logic or the production

process workflow. This centralized service describes all necessary information

4

1.2 Transformable Production Systems

for the aggregation of multiple services, their interfaces, their dependencies with

regard to the flow of control, and their exchanged messages [Rie 12].

In contrast, the choreography does not follow some centralized coordination but

instead consists of the interplay between autonomous services in which their coop-

eration may fulfill cross-organizational processes. It specifies the communication

protocol and works on the observable behavior of the participating processes, com-

monly specified as behavioral interfaces [Rie 12]. The depicted SOA in Figure 1.3

Choreography

Orchestration Orchestration

Request

Response

Service A

Service B

Technical

Process B

Service C

Technical

Process C

Service D

Service E

Technical

Process E

Service F

Technical

Process F

Service G

Technical

Process G

Figure 1.3: Orchestration and choreography in a SOA.

Figure adapted from Figure 1 in [Pel 03].

is therefore subdivided by the orchestration and choreography into two views on

the system, a local and a global view, respectively [Rie 12]. The application of formal

methods on the global view can thus only assure the interoperability between

the processes in this choreography. As opposed to this, the application of formal

methods on the local view allows for verification of the behavior of the services due

to the centralized and coordinating service and the knowledge about the actual

business logic [Rie 12].

This thesis focuses on the safeguarding of the local view. To further delimit the

contribution, Figure 1.4 refines the local view by further splitting it up into an

exterior and an inner view [Zel & Wey 18]. The “exterior” view communicates to

other components via its interface and abstracts from the technical process, whereas

the “inner” view focuses on communication with the underlying technical process

and is responsible for driving the technical process to behave in the desired manner.

Typically, reactive systems are used to control the technical process.

In the IoP, the reactive nature of the logic control software is lifted to an event-

based system with the help of the DS and exposed as a service [Gro & Kow
+

19].

As both components, i.e., services, and their assemblies, i.e., composed services,

can be subject to changes in an agile environment, the following section talks about

reconfigurations that can occur.

5

1 Introduction

“Exterior” View

“Inner” View

Service

Technical Process

Message

(Subscribe)

Message

(Publish)

Actuator Sensor

Figure 1.4: Generalized views on a service with exemplary communication tech-

nologies and its interaction with a technical process.

Figure adapted from Fig. 1. a) in [Zel & Wey 18].

1.2.2 Reconfigurations of Production Systems
Reconfigurations allow the CPPS to be able to change quickly and cost-effectively

in terms of their capacities, their functional contents, and the technologies they

make available to meet the demands of today’s markets [Ste & Hei 17]. It enables

quick scale-up and change management using modular structures with matching

interfaces [Ste & Hei 17] and pushes the boundaries of the CPPS’s flexibility

corridors. In order to unify the terminology of evolution [Bec & Mun
+

19], changes,
and adaptations [Vog & Rös

+
16] found in literature, the definition of reconfiguration

is used synonymously throughout this thesis.

Definition 1.2: Reconfiguration [Mat 10]
“A reconfiguration represents the technical view of the process of modifying an already
developed and operationally deployed system to adapt it to new requirements, extend
functionality, eliminate errors, or improve quality characteristics.”

Due to this increasing agility in the development process, the shorter life cycles,

and the changing customer and legislator requirements, the software maintenance

process must account for reassurance of the CPPS’s behavior after a reconfigura-

tion [Gro & Sim
+

20]. A reconfiguration can affect hardware as well as software, and

a classification for the types of reconfiguration in accordance with the definition

of [Mat 10] is illustrated in Figure 1.5.

In this thesis, reconfigurations affecting the logic control software are analyzed.

These reconfigurations are often initiated by changes to the hardware components

of the CPPS and form the basis for software evolution. Reconfigurations of a

CPPS can either be structural (architecture-based), functional (service-related), or

non-functional (quality-related) [Mat 10] and affect either the “exterior” or “inner”

view. In the subsequent sections, these types of reconfigurations are explained

6

1.2 Transformable Production Systems

Cyber-physical

Production System

Reconfiguration

Software

Reconfiguration

Hardware

Reconfiguration

Logic Control

Software

Reconfiguration

System

Software

Reconfiguration

. . .

Figure 1.5: Application areas for reconfigurations of CPPS.

Figure adapted from Abbildung 5.1 in [Mat 10].

with the help of the two perspectives illustrated in Figure 1.4.

Reconfigurations of the Exterior View

Structural reconfigurations of the exterior view are, for instance, changes in the

services’ interfaces or changes in the dependencies between the services or the

architecture. These reconfigurations do not impact the behaviorof the innerview, as

the control logic is encapsulated within a service. Figure 1.6 summarizes the effect

of modifications, deletions, and additions on the level of services. Modifications to

the service interface do not impact the implementation that controls the technical

process.

However, the converse is not true. Typically, behavioral reconfigurations of the

“exterior” view are achieved by either changing the interfaces of the “exterior”

view or changing the behavior, i.e., the implementation of the “inner” view. The

deletion of an existing service, such as Service C, or the addition of a new service,

such as Service D, depicted in Figure 1.6, only affects the business logic of Service

A and its interoperability but does not affect any non-directly connected services.

In general, structural reconfigurations of the “exterior” view do not impact the

behaviorof the “inner” view, and verification boils down to proving interoperability

using behavioral information. More interesting are reconfigurations impacting the

exterior view that stem from reconfigurations of the inner view and are discussed

in the following.

7

1 Introduction

Service A

Service B

Technical Process B

Service C

Technical Process C

Service D

Technical Process D

Actuator Sensor Actuator Sensor×
×

Figure 1.6: Reconfiguration of a SOA after modifications to an existing service,

deletion of a service and/or connections, and addition of a new con-

struction to the production system, which requires an implementation

of an additional service or addition of connections.

Reconfigurations of the Inner View

Typically, with regard to logic control software, reconfigurations originate from

reconfigurations occurring to the technical process, as depicted in Figure 1.5. Recon-

figurations to the technical process can be categorized as the addition, modification,

and removal of new or existing hardware components [Vog & Fol
+

14].

1. Addition of a new hardware component:

Implementation of a new function block

Adaptation of an existing function block with regard to its interface and

implementation

2. Modification of the behavior of the context (hardware/mechanical):

Modification of the internal structure of the function block

Optimization of the behavior of the function block

3. Removal of a hardware component:

Reduction of the interface and internal structure of the function block

These hardware reconfigurations often induce reconfigurations in the software and

are illustrated in Figures 1.7 to 1.9. For example, when a new hardware component,

such as a sensororactuator, is added, the functionality must be likewise represented

in software.

Therefore, a new FB may be implemented to account for the new functionality,

as depicted in Figure 1.7, or the adaptation of an existing FB with regard to its

interfaces and implementation. A modification of the behavior of the technical

8

1.2 Transformable Production Systems

ℱ ℬ1

ℱ ℬ2

ℱ ℬ3

𝓕𝓑
′

ℱ ℬ4

ℐ1
ℐ2
ℐ3
ℐ4
ℐ5
ℐ6
ℐ7

𝒪1

𝒪2

𝒪3

𝒫′

Figure 1.7: Reconfiguration of a program after adding a new construction to the

CPPS, which requires an implementation of an additional FB ℱ ℬ′.
Figure adapted from Abbildung 4 (1) in [Vog & Fol

+
14].

ℱ ℬ1

𝓕𝓑
′
2

𝓕𝓑
′
3

ℱ ℬ4

ℐ1
ℐ2
ℐ3
ℐ4
ℐ5
ℐ6
ℐ7

𝒪1

𝒪2

𝒪3

𝒫′

Figure 1.8: Reconfiguration of a program by modifying the behavior of the context

(mechanical) to the production system, which requires the adaptation

of the internal structure of the program. The interface may stay the

same, e.g., when the order of two processing steps is changed.

Figure adapted from Abbildung 4 (3) in [Vog & Fol
+

14].

9

1 Introduction

ℱ ℬ1

ℱ ℬ2

ℱ ℬ3

ℱ ℬ4

ℐ1
ℐ2
ℐ3
ℐ4
ℐ5
ℐ6
ℐ7

𝒪1

𝒪2

𝒪3

𝒫′

×
×

×
×

×

Figure 1.9: Removal of a hardware component can lead to the removal of FBs and

modifications to the interface.

Figure adapted from Abbildung 4 (5) in [Vog & Fol
+

14].

process may lead to a change in the structure of the underlying software. Figure 1.8

reflects the reconfiguration of the technical process in software. Last, removing a

hardware component can reduce the interface and the internal structure of the FB,

as depicted in Figure 1.9.

Depending on the intended hardware changes, complex software reconfigura-

tions can arise. However, they can be reduced to a combination of small incremental

reconfigurations, as illustrated by the types of reconfigurations in Figures 1.7 to 1.9.

In the next section, the impact of such planned and unplanned reconfigurations is

categorized and integrated into the software maintenance process.

1.3 Software Maintenance Process
The quality assurance of logic control software during the life cycle of a CPPS

requires adaptations in the testing and verification processes known from tradi-

tional software engineering. With the use of the DS and the insights gained from

production, reconfigurations made to the control software need to be adequately

tested and verified to ensure safe modifications to the production process. In the

context of software maintenance, the data of the DS does not only encompass the

data passed in communication between services but also artifacts resulting from

the maintenance process. CPPSs are reconfigured frequently during their life cycle,

and hence it must be ensured that a revision does not introduce any regressions

while achieving the intended effect [Bec & Mun
+

19].

Figure 1.10 gives an overview of the software maintenance process. A reconfig-

uration request starts the software maintenance process. Reasons for reconfigura-

tions consist of minimizing efforts, defects, or cost. It is not relevant whether the

reconfiguration request is intrinsic or extrinsic, i.e., either triggered internally by

the developing company or induced externally by another company or the market.

10

1.3 Software Maintenance Process

Unchanged

Specification

Changed

Specification

Reconfiguration

Request

Software

Reconfiguration

Revalidate

Software

Correction

corrective

preventive

Software

Enhancement

adaptive

additive

perfective

Corrective

Progressive

Regression

Testing

Figure 1.10: Overview of the software maintenance process and integration of

regression testing as a method for revalidation.

Figure adapted from Fig. 19 in [Gal & Lyl 91].

More important is the distinction between the type of reconfiguration request,

either software correction or software enhancement. Depending on the type of

reconfiguration, the specification is either changed or unchanged. Changes to the

specification are classified as adaptive, additive, or perfective reconfigurations [ISO

22].

The class of software corrections can either be corrective, i.e., a bug was fixed,

or preventive, i.e., to correct faults in the software before they occur in the system

[ISO 22]. After the reconfiguration request has been stated, the action follows.

The software is reconfigured, and the effect of the reconfiguration needs to be

revalidated to confirm no unintended changes have occurred. An in general

undecidable but very sought-after question (cf. [Pod & Cla 90]) during software

maintenance is how a change in the semantics of a program statement affects the

execution behavior of other statements in the program.

The goal is to find reasonable approximate solutions for the following two

problems: (1) determining the set of affected components and (2) determining the

set of tests that exercise these components. A technique that tries to answer this

question is regression testing, which can either be corrective or progressive and is

further discussed in the next section.

1.3.1 Regression Testing
The naive approach, after a reconfiguration, uses an existing test suite and reruns

it on the reconfigured PLC program. While this works in theory, it tends to yield

two practical problems:

11

1 Introduction

1. If the test suite is too large, executing all test cases might not be feasible. There-

fore, some form of prioritization or minimization has to be performed [Yoo

& Har 12].

2. The existing test suite might not test the changed behavior and therefore

requires TSA [Xu & Kim
+

15]

Regression testing typically consists of four major problems: (1) test suite classi-
fication, (2) test suite execution, (3) test suite coverage identification, and (4) test suite
maintenance [Leu & Whi 89; Rot & Har 96]. The problem of test suite classification

deals with the selection of test cases 𝑇′ ⊆ 𝑇 such that specific criteria such as

required time to test are minimized, and other criteria like coverage are maximized.

Figure 1.11 gives an overview of the regression testing pipeline and the software

PLC Program

Version 𝑃

PLC Program

Version 𝑃′
Program

Unification

Change-Annotated

PLC Program

Test Suite

Classification

Reusable

Tests

Test Suite

Execution and

Classification

Obsolete

Tests

Retestable

Tests

Test Suite

Coverage

Identification

Test Suite

Maintenance

Test Suite

Augmentation

New Specification

Tests

New Structural

Tests

Test Suite

𝑇𝑃
all

Test Suite

Generation

Test Suite

𝑇𝑃′

all

Reconfiguration

++

unclassified

coverage

measure

Figure 1.11: Overview of the regression testing pipeline and maintenance.

Figure adapted from Figure 3 in [Leu & Whi 89].

maintenance process and is referenced throughout this section. Figure 1.12 il-

lustrates the three main techniques: test (1) selection, (2) prioritization, and (3)

minimization [Yoo & Har 12].

Test case selection aims to remove all test cases that are not part of the retest

set. The resulting set of test cases can still be “too big” to test because it would,

for example, require more time than available after a reconfiguration. Test case

prioritization can use the execution history and is a widely utilized technique for re-

gression testing [Eng & Run
+

10] to prioritize new-structural and new-specification

12

1.3 Software Maintenance Process

PLC

Program 𝑃

PLC

Program 𝑃′

Selection: 𝑇𝑃
all − 𝑇obsolete

Prioritization: sorted(𝑇𝑃
all)

Minimization: minimize(𝑇𝑃
all)

Augmentation: 𝑇𝑃
all + 𝑇new

Regression Testing

Test Suite Augmentation

Test Suite

𝑇𝑃
all

Syntactic

Reconfiguration Δ

Automated

Test Case

Generation

Test Suite

𝑇𝑃′

all
+

Retest

Figure 1.12: Application of regression testing techniques and test suite augmenta-

tion after a syntactic reconfiguration.

test cases. Last, test suite minimization tries to reduce the number of test cases

required to cover as many faults as possible and corresponds to the minimal set

cover problem, which is NP-complete [Yoo & Har 12] and, therefore, rarely used.

There are, however, some heuristics but most regression testing pipelines rely on

selection techniques that are modification-aware [Rot & Har 96]. A complementary

technique to regression testing poses TSA [Xu & Kim
+

15].

The technique presented in Chapter 4 can be categorized as some form of

regression algorithm, as already done work tries to be lifted to the reconfigured

program version. The test suite execution problem tries to establish the correctness

of the reconfigured program version 𝑃′ with respect to the 𝑇′. The test suite

coverage identification problem is the subject of Chapter 5. The goal is to identify

whether the previous test suite𝑇 is still sufficient to cover the reconfigured program

version 𝑃′ and, if necessary, create a set of new functional or structural tests. Last

but not least, the test suite maintenance problem deals with creating a new test

suite and test history for the reconfigured program 𝑃′ by consolidating the results

from the prior steps [Leu & Whi 89].

Test cases can be classified into the following three categories: (1) reusable, (2)

retestable, and (3) obsolete test cases [Leu & Whi 89]. Reusable test cases are not

modification-traversing as they execute the parts of the program that remain

unchanged between the two versions. They should produce the same result in

both program versions and need not be rerun. During test suite classification,

reusable tests can be derived statically by analyzing the control-flow graphs (CFGs)

of the change-annotated program (CAP), as depicted in Figure 1.11. Retestable

test cases, however, are modification-traversing and must be rerun as they execute

the parts of the program that have been changed. This class of test cases is

especially interesting, as they may be difference-revealing. A test case is said to

be difference-revealing if executed on both program versions, the base version 𝑃

and the reconfigured program 𝑃′, produce different outputs. Both the reusable

and retestable test cases belong to the class of non-obsolete test cases, as depicted

13

1 Introduction

Fault-Revealing

Modification-Revealing

Fault-Revealing

Modification-Traversing

Test Suite 𝑇

Obsolete

Non-Obsolete

Figure 1.13: Relationship between test classes.

Figure adapted from Fig. 1 in [Rot & Har 96].

in Figure 1.13. Last, the class of obsolete test cases includes test cases that can no

longer be used because they were either specified over a different input/output

relation or do not contribute to the structural coverage [Leu & Whi 89].

As shown in Figure 1.11, the test suite must be executed to determine whether

a test case is retestable or obsolete. For the sake of completeness, the test classes,

their relation to the software maintenance process from Figure 1.10, and their

target construct are illustrated in Table 1.1. The generation of new-structural and

Table 1.1: Classification of test cases.

Table adapted from Table 2 in [Leu & Whi 89].
Test Class Specification Target Construct Test Type
Reusable Unchanged Unchanged Structural, Specification

Retestable Unchanged Changed Structural, Specification

Obsolete

Unchanged Changed Structural

Changed Unchanged/Changed Specification

New-Structural Unchanged/Changed New Structural

New-Specification Changed New Specification

new-specification test cases are part of TSA and hence not discussed here. The test

suite coverage identification depicted in Figure 1.11 is discussed and explained

in Chapter 5. Last but not least, after the classification of the old test suite and

the generation of new test cases, the process of test suite maintenance (TSM) is

performed.

Figure 1.14 gives an overview of how the newly derived test plan relates to

the old test plan under consideration for corrective and progressive changes, as

14

1.3 Software Maintenance Process

Corrective

Reusable

Retestable

Obsolete

Reusable

Retestable

New-Structural

Progressive

Reusable

Retestable

Obsolete

Reusable

Retestable

New-Structural

New-Specification

Old Test Plan New Test Plan

Figure 1.14: Evolution of the test plan during TSM.

Figure adapted from Figure 1 in [Leu & Whi 89].

illustrated in Figure 1.10. In both cases, the TSM amounts to updating the test suite

with the newly generated test cases while removing obsolete ones yielding a test

suite suitable for testing the reconfigured program version.

1.3.2 Implications of Reconfigurations on the Trace Semantics
The implications of reconfigurations on the trace semantics are illustrated in Fig-

ure 1.15. They either lead to a change of the input/output relation or no change of

the input/output relation. The behavior of the base version 𝑃 and of the reconfig-

ured program 𝑃′ are expressed by their trace semantics, where 𝒯 represents the

set of all traces of possible combinations of inputs and outputs, and 𝒯𝑃 the possible

traces of 𝑃 [Cha & Ulb
+

19]. The green area depicts the set of all possible traces

that do not violate requirements, whereas the red areas depict traces that exhibit

bad behavior in some form or another.

Figure 1.15a shows a complete change of the input/output relation denoted

by the non-overlapping domains. Both a complete and a partial change of the

input/output relation require new test cases, as all prior generated test cases are

obsolete. In these scenarios, techniques other than TSA are required to establish

transferrable knowledge. For example, regression verification can establish an

equivalence relation between the two versions even though their interfaces have

changed [Cha & Ulb
+

19]. However, this change must be captured explicitly by

specifying the semantic difference in a logical formula as input for the regression

15

1 Introduction

𝒯 = ℐ × 𝒪

Bad

Bad

Bad

𝒯𝑃

𝒯 ′ = ℐ′ × 𝒪′

Bad

Bad

Bad

𝒯𝑃′

(a) Complete Change of the Input/Output-Relation.

𝒯 ′ = ℐ′ × 𝒪′

Bad

Bad

𝒯 = ℐ × 𝒪

Bad

Bad
Bad

𝒯𝑃 𝒯𝑃′

(b) Partial Change of the Input/Output Relation.

𝒯 = ℐ × 𝒪

Bad

Bad

Bad

𝒯𝑃
𝒯𝑃′

𝒯 = ℐ × 𝒪

Bad

Bad

Bad

𝒯𝑃 𝒯𝑃′

𝒯 = ℐ × 𝒪

𝒯𝑃

Bad

Bad

Bad

𝒯𝑃′

(c) No Change of the Input/Output Relation.

Figure 1.15: Implications of reconfigurations on the trace semantics of PLC pro-

grams.

Figure adapted from Fig. 4 in [Cha & Ulb
+

19].
16

1.4 Contribution

verification algorithm.

The contributions of this thesis consider no changes in the input/output relation

of the reconfigured PLC program and hence deal with the class of implications

depicted in Figure 1.15c. This is a typical scenario where code is refactored, the

technical process is reconfigured without affecting the controller’s interface, or

additional behavior is implemented [Cha & Ulb
+

19].

1.4 Contribution
The contribution of this thesis is aligned in the following with regard to the vision,

objective, and impact of the IoP, as presented in Section 1.1.1. The overarching

goal is to ensure safety for rapidly changing CPPS in the IoP in an efficient way.

The central research question concerns how traditional software verification and

testing methods can apply to emerging technologies in the context of the IoP while

fulfilling standard industrial requirements.

The vision is to build a data-to-knowledge pipeline to provide meaningful,

actionable knowledge, where the data represents the source code of a PLC program

and the actionable knowledge of whether a PLC program is safe or unsafe after a

reconfiguration.

The objective is to provide decision support, i.e., to provide insights into the

quality of the development process by evaluating the adequacy of a test suite for

structural coverage of a reconfigured PLC program.

The impact are the formal methods that provide data-driven insights into the

impact of the reconfiguration on the PLC software and a toolbox for DS of testing

in the form of a program analysis framework (PAF) as a “push-button” analysis to

generate test cases and augment test suites after a reconfiguration.

1.4.1 Publications
The main contributions found in Chapter 4 and Chapter 5 have been published in

prior work. This section presents the publications relevant to this thesis and the

corresponding contributions.

Relevant Publications

[Gro & Sim
+

20] M. Grochowski, H. Simon, D. Bohlender, S. Kowalewski, A.

Löcklin, T. Müller, N. Jazdi, A. Zeller, and M. Weyrich, “For-

male Methoden für rekonfigurierbare cyber-physische Systeme

in der Produktion”, Autom., vol. 68, no. 1, pp. 3–14, 2020. doi:

10.1515/auto-2019-0115. [Online]. Available: https://doi
.org/10.1515/auto-2019-0115.

17

https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1515/auto-2019-0115

1 Introduction

[Gro & Völ
+

22a] M. Grochowski, M. Völker, and S. Kowalewski, “Automatic

Test Suite Generation for PLC Software in the Internet of Pro-

duction”, in 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA), 2022, pp. 1–8. doi:

10.1109/ETFA52439.2022.9921726.

[Gro & Völ
+

22b] M. Grochowski, M. Völker, and S. Kowalewski, “Test Suite

Augmentation for Reconfigurable PLC Software in the Internet

of Production”, in Formal Methods for Industrial Critical Sys-
tems - 27th International Conference, FMICS 2022, Warsaw, Poland,
September 14-15, 2022, Proceedings, J. F. Groote and M. Huis-

man, Eds., ser. Lecture Notes in Computer Science, vol. 13487,

Springer, 2022, pp. 137–154. doi: 10.1007/978-3-031-15008-
1_10. [Online]. Available: https://doi.org/10.1007/978-
3-031-15008-1%5C_10.

Further Publications

[Gro & Kow
+

19] M. Grochowski, S. Kowalewski, M. Buchsbaum, and C. Brecher,

“Applying Runtime Monitoring to the Industrial Internet of

Things”, in 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, ETFA 2019, Zaragoza, Spain,
September 10-13, 2019, IEEE, 2019, pp. 348–355. doi: 10.1109
/ETFA.2019.8869447. [Online]. Available: https://doi.org
/10.1109/ETFA.2019.8869447.

Bibliographic Notes and Contributions
The core idea of the TSG algorithm presented in Chapter 4 is based on prior work

by Dimitri Bohlender and Hendrik Simon [Sim & Fri
+

15; Boh & Sim
+

16]. While

a framework for the analysis of PLC software already existed in the form of the

tool Arcade.Plc [Bia & Bra
+

12], the compilation and translation pipeline from

Structured Text (ST) to the intermediate representation (IR) of Sebastian Biallas

has been reimplemented by me. All other contributions of this thesis have been

implemented in a standalone project by myself. The used benchmarks of the

PLCopen Safety suite were implemented by Sebastian Biallas and Hendrik Simon,

while I extended it by user-defined program examples.

For compliance with the doctoral regulations, I delimit my contributions from

the contributions of my co-authors of the relevant publications. The overview

paper [Gro & Sim
+

20] was a joint collaboration with researchers from the University

of Stuttgart. Dimitri Bohlender and I worked in close collaboration writing about

the work of Hendrik Simon and added our own perspectives in the respective

sections 2, 4, and 5.

The paper [Gro & Völ
+

22a] formed the basis of Chapter 4 and benefited from

the discussions with Marcus Völker and the valuable feedback provided by Stefan

18

https://doi.org/10.1109/ETFA52439.2022.9921726
https://doi.org/10.1007/978-3-031-15008-1_10
https://doi.org/10.1007/978-3-031-15008-1_10
https://doi.org/10.1007/978-3-031-15008-1%5C_10
https://doi.org/10.1007/978-3-031-15008-1%5C_10
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1109/ETFA.2019.8869447

1.4 Contribution

Kowalewski. The core idea and the underlying implementation of the methodolo-

gies were researched and implemented by me.

Chapter 5 is basedon [Gro & Völ
+

22b], to which I contributedalloriginal concepts

and methodologies. After identifying the need for TSA after a reconfiguration, I

supervised Johannes Neuhaus in developing a prototypical implementation in his

Master’s thesis. While his work gave a good first impression of how TSA could be

applied, several improvements and additional features had to be implemented by

me. The publication [Gro & Völ
+

22b] thus represents my own work incorporating

the discussions and feedback of Marcus Völker and Stefan Kowalewski.

1.4.2 Limitations and Assumptions
This dissertation does not deal with the whole safety life cycle of a CPPS but instead

places particular emphasis on analyzing the impact of reconfigurations. While

formal verification methods are suitable for safeguarding safety-critical functions,

they require a high modeling effort [Gro & Sim
+

20]. This may inhibit the use of

formal verification methods in practice, giving rise to more lightweight techniques

such as regression testing and TSA. A necessary prerequisite for the algorithms

presented in this thesis is the existence of a syntactically change-annotated PLC

program given as input to the PAF. Furthermore, the techniques adhere to the

limitations imposed by the underlying PLC’s architecture and standard.

In particular, PLC programs are subject to cyclic execution resulting in non-

termination. Still, every execution through one cycle terminates and hence can

be analyzed. Moreover, the standard forbids the implementation of recursive

calls [Gro & Völ
+

22b]. In its current state, the PAF does not support all available

language features of the [Int 14]. For instance, using arrays or pointers is not yet

supported but could be extended. Statically allocated memory, however, can be

modeled by flattening the arrays. While the PAF is able to analyze loops other

than the naturally occurring execution cycle of the PLC program [Gro & Völ
+

22b],

no additional heuristics such as loop invariant generation have been implemented,

hence may rendering the analysis of loops in specific examples as intractable. Some

of the benchmarks use the timer capabilities of the [Int 14], which are modeled non-

deterministically using an over-approximating representation of timers from [Adi

& Dar
+

14].

Last but not least, control tasks are usually distributed in the context of Industry

4.0, yet most often still coordinated centrally [Bre & Buc
+

19]. While multiple

PLCs for each control task exist, they are coordinated centrally by one overarching

controlling PLC. Despite that, the distributed control task is modeled as one com-

positional, classic PLC program, in which the other control tasks are incorporated

as FBs and executed on a single PLC controller in the benchmarks [Gro & Völ
+

22b].

This neglects the influences of different times and latencies introduced due to the

communication between each controlling PLC [Gro & Völ
+

22b]. It is assumed

that the sequential modeling using a single PLC is a feasible abstraction of several

19

1 Introduction

distributed PLCs running in parallel, realizing the same control task, because the

business logic is implemented by a single, coordinating PLC, which processes the

messages of the other distributed PLCs sequentially in all circumstances [Gro &

Völ
+

22b].

To this end, the contributions of this thesis include

heuristics for the scalability of the existing TSG for PLC software,

the reuse of symbolic summaries during TSG of reconfigured PLC software

with the goal of reducing analysis time,

and the concept of four-way forking for TSA of reconfigured PLC software

and are evaluated on selected domain-specific benchmarks of varying difficulty,

such as the PLCopen Safety suite and the Pick and Place Unit (PPU).

1.4.3 Outline
Figure 1.16 gives a graphical overview of the implementation contribution of this

thesis and their interplay and aligns them with the subsequent chapters. The input

Chapter 2
Chapter 4

Chapter 5

...

PLC Program

Version 𝑃

PLC Program

Version 𝑃′

...

C
h

a
n

g
e
-
A

n
n

o
t
a
t
e
d

P
L

C
P

r
o
g

r
a
m

P
a
r
s
e
r

&
C

o
m

p
i
l
e
r

Static

Analysis

Symbolic

Execution

Test Suite

Coverage

Identification

Verification

Condition

Generation

Program Analysis Framework

Summaries

Test Suite

Digital Shadows

of Testing

𝑡

Reconfiguration

Figure 1.16: Overview of the implementation contribution of this thesis.

of the developed PAF is a change-annotated PLC program, which is parsed and

compiled into a textual IR and represented as a CFG. Chapter 2 gives an intro-

duction to PLCs and their peculiarities, presents the IR, gives a short digression

to symbolic program analysis and their design space, discusses the unification

of program versions in a CAP, and motivates how satisfiability modulo theories

(SMT) formulas can be solved efficiently. The subsequent Chapter 3 gives insights

into the field of TSG and TSA in regression analysis and discusses related work in

20

1.4 Contribution

the field of PLC verification and testing. Chapter 4 deals with the background on

TSG, the realization of summarization of FBs, and the applicability of summaries.

It is represented by the blocks static analysis (SA), verification condition generation

(VCG), symbolic execution (SE), and the summaries of Figure 1.16. Chapter 5

focuses on the TSA and extends the SE from Chapter 4. This chapter explains

the underlying theory behind the test suite coverage identification depicted in Fig-

ure 1.16 and proposes shadow symbolic execution (SSE) as a solution to TSA. In

Chapter 6, the two techniques proposed in this thesis are evaluated on benchmarks

of varying sizes under different heuristics. Last, Chapter 7 concludes this thesis

and gives suggestions for future work.

21

Preliminaries 2
This chapter gives an introduction to PLCs, their execution model, and an IR for ST.

Following this, the design principles of SE and relevant concepts for the methods

in Chapter 4 and Chapter 5 are presented.

2.1 Programmable Logic Controllers
PLCs are specially designed control hardware used in industrial automation [Tie

& Joh 09] to control, operate, supervise, and monitor highly complex automation

processes [Bia 16].

As PLCs are still ubiquitous in today’s industrial control applications [Boh

21], they are subject to the IEC 61131 standard [Int 14]. The standard defines

requirements toward both hardware and software aspects of the PLCs [Boh 21] for

the prevention of personal injury caused by machines in the production process [Tie

& Joh 09]. Figure 2.1 shows a schematic view of the execution model of the PLC

and its interaction with its environment. PLCs adhere to a cyclic execution model.

Input

variables

Local

variables

Output

variables

Program

Programmable Logic Controller

S
e
n

s
o
r
s

A
c
t
u

a
t
o
r
s

Technical Process

Single cycle

Figure 2.1: Schematic view of a PLC interacting with its environment.

Figure adapted from Figure 2.1 in [Boh 21].

At the beginning of an execution cycle, the inputs from the environment provided

23

2 Preliminaries

by the sensors of the technical process are read and stored in the designated input

variables of the PLC. For the duration of the execution cycle, the PLC will work on

this copy of input variables and ignore any new values provided by the sensors

until the beginning of the next cycle.

Next, the execution of the logic control program takes place. To update its

execution state, the program may use local variables serving as internal memory,

whose valuations persist across subsequent execution cycles. An execution cycle

ends when the program terminates. Upon termination, the computed valuations of

the output variables are used to update the outgoing connections to the actuators

in order to invoke the desired behavior of the controlled plant. Between updates,

the outputs retain their valuations throughout the subsequent cycles [Boh 21].

2.1.1 Program Organization Units
A PLC program can consist of several program organization units (POUs), which

provide an interface definition of the input, local, and output variables and a body

containing the actual instruction that operates on this interface [Tie & Joh 09]. The

IEC 61131 standard [Int 14] distinguishes between three types of POUs, namely

functions, function blocks, and programs.

Function Functions are parameterizable POUs without local variables or FB

instances. They are, therefore, “stateless” and always provide the same result

for the same input parameters. Since there is no internal state, it is impossible

to instantiate functions [Bia 16] as part of a POU’s interface declaration, and an

invocation requires passing all parameters directly to the function.

Function Block FBs are parameterizable POUs with local variables and FB in-

stances. Instances of FBs are created as local variables of POUs. FBs retain the

valuations of their internal and external variables between invocations and are,

thus, “stateful”. The passing of arguments is optional when invoking FBs [Boh 21].

Unlike functions, an instance of an FB is part of the parent POUs’ local variables,

and initialization only takes place for the first call of an instance. As internal

and external variable valuations are retained between invocations, calling an FB

without assigning new arguments to its input parameters will use the currently

assigned values.

Typically, timer FBs are configured this way by passing arguments for all pa-

rameters and only partially assigning values to input parameters in subsequent

calls [Boh 21].

Program This POU type represents the main entry point in each cycle and

adheres to the schematic view of Figure 2.1. In addition to the local variables of

FBs, programs have hardware inputs and outputs [Bia 16]. All variables of the

overall program to which physical addresses, i.e., inputs and outputs of the PLC, are

24

2.1 Programmable Logic Controllers

assigned must be memory-mapped in this POU or the respective configuration [Tie

& Joh 09].

2.1.2 Programming Languages
As PLCs are widely used in industrial automation, the IEC 61131 standard defines

five distinct programming languages for implementing the functionality of a POU

to account for the various programming paradigms [Bia 16]: Instruction List (IL),

Structured Text (ST), Ladder Diagram (LD), Function Block Diagram (FBD), and

Sequential Function Chart (SFC) [Tie & Joh 09].

The choice of language depends on the tasks and areas of applications at hand

and differs significantly [Tie & Joh 09]. Usually, lower-level and algorithmic

functionality are implemented in textual languages, whereas the overall project

structure is implemented in a graphical language [Boh 21].

As all of the IEC 61131 programming languages can be translated into each

other [Boh 21], verification workflows make use of an IR [Dar & Maj
+

16]. The

high-level textual language ST is introduced and used throughout this thesis for

illustration purposes [Tie & Joh 09].

Structured Text

ST is a high-level textual language for imperative, procedural PLC program-

ming [Boh 21] which resembles Pascal [Tie & Joh 09]. A compositional example

program consisting of two POUs, a program 𝑃 and an FB Fb, is shown in Figure 2.2.

Example 2.1: Explanation of Figure 2.2

The main program, 𝑃, instantiates an FB of type Fb and invokes it in the body.

The input variable is passed as an argument via assigning 𝑥 ≔ 𝑎, and the

output is written via 𝑧 => 𝑏. The callee 𝑓 computes its output 𝑧 depending

on the valuation of the input of 𝑥 and the internal state of 𝑦. It uses 𝑦 as an

internal counter variable and returns 𝑧 := TRUE if the valuation reaches the

value 3. The value of the local variable 𝑦 of the callee 𝑓 is initialized with 0.

User-defined initialization is achieved by using the allocation operator such

as 𝑦 : 𝐼𝑁𝑇 := 1;.

Default Initialization of Variables

At the start of the program, all variables are assigned initial values. These valuations

dependon the specification by the developermade in the corresponding declaration

parts of the POUs [Tie & Joh 09]. The IEC 61131 ensures that all elementary data

types have predefined initial values [Int 14]. Elementary data types, for instance,

are initialized with 0 for numeric values and false for Boolean values. This is also

25

2 Preliminaries

1 PROGRAM P
2 VAR_INPUT
3 a : INT;
4 END_VAR
5 VAR
6 f : Fb;
7 END_VAR
8 VAR_OUTPUT
9 b : BOOL;
10 END_VAR
11 f(x:=a,z=>b);
12 END_PROGRAM

1 FUNCTION_BLOCK Fb
2 VAR_INPUT
3 x : INT;
4 END_VAR
5 VAR
6 y : INT;
7 END_VAR
8 VAR_OUTPUT
9 z : BOOL;
10 END_VAR;
11 IF x >= 32 THEN
12 y := y + 1;
13 ELSE
14 y := y;
15 END_IF;
16 IF y >= 3 THEN
17 z := TRUE;
18 y := 0;
19 ELSE
20 z := FALSE;
21 END_IF;
22 END_FUNCTION_BLOCK

Figure 2.2: A program POU and an FB POU.

26

2.2 Intermediate Representation

termed 0-default initialization throughout this thesis. For example in Figure 2.2,

the value of the local variable 𝑦 of the callee 𝑓 is initialized with 0. User-defined

initialization is achieved by using the allocation operator such as 𝑦 : 𝐼𝑁𝑇 := 1;.

2.2 Intermediate Representation
Each POU is compiled into a type-representative module representing the program

semantics in a goto-based textual IR. The supported expressions by these semantics

are due to [Nie & Nie 92; Nie & Nie 20] and presented in Definition 2.1.

Definition 2.1: Expression [Nie & Nie 92; Nie & Nie 20]
An expression 𝑒 ∈ 𝑬 is either an arithmetic expression 𝑎 ∈ 𝑬𝐴 ⊆ 𝑬 or a

Boolean expression 𝑏 ∈ 𝑬𝐵 ⊆ 𝑬.

𝑒 F 𝑎 | 𝑏
𝑎 F 𝑖 | 𝑣𝑎 | −𝑎 | 𝑎1 op𝑎 𝑎2

𝑏 F 𝑡 | 𝑣𝑏 | ¬𝑏 | 𝑎1 op𝑟 𝑎2 | 𝑏1 op𝑏 𝑏2

The meta-variable 𝑖 ∈ I represents integers and ranges over the

implementation-specific integer data type I of the programming language

used for Z3 [dMou & Bjø 08], as it is used as implementation backend

for expressions within this thesis. The meta-variable 𝑡 ∈ B represents the

Boolean truth values true and false. The arithmetic and Boolean variables

are denoted through the meta-variable 𝑣𝑎 ∈ 𝑽𝐴 ⊆ 𝑽 or 𝑣𝑏 ∈ 𝑽𝐵 ⊆ 𝑽 , respec-

tively. The supported subset of operators with their corresponding semantics

from ST [Int 14] are op𝑎 ∈ {∗∗, ∗, /,MOD,+,−} for arithmetic expressions

and op𝑟 ∈ {<, >, ≤, ≥,=, <>} and op𝑏 ∈ {AND,XOR,OR} for Boolean ex-

pressions [Tie & Joh 09]. Parentheses, “(” and “)”, are resolved during

compilation from ST to the IR via the precedence of operators.

The ST statements are compiled into instructions of the IR using the expressions

defined in Definition 2.1.

Definition 2.2: Instruction
An instruction has one of the following forms:

𝐼 F goto 𝑏ℓ | sequence(𝐼1, 𝐼2) | assign(𝑣, 𝑒)
| ite(𝑏, goto 𝑏ℓ1

, goto 𝑏ℓ2
) | 𝑣1, . . . , 𝑣𝑛 B call 𝐺(𝑒1, . . . , 𝑒𝑚) .

Throughout this thesis, the call instruction 𝑣1, . . . , 𝑣𝑛 B call 𝐺′(𝑒1, . . . , 𝑒𝑚) is

lowered to a sequence of pre- and post-assignments without the loss of general-

27

2 Preliminaries

ity [Cla & Hen
+

18]. During compilation calls are completed, i.e., additional pre-

and post-assignments are introduced such that all variables are always initialized.

It is determined which inputs and outputs are read and written and the respective

assignments are augmented, enforcing the same order as in the underlying inter-

face of the compiled, type-representative module. The cyclic execution semantic of

a PLC program is not explicitly captured via an instruction. Instead, it is implicitly

captured by Definition 2.3. Possible execution paths through this IR are of interest

to analyze a program. Therefore, the IR representing the program structure can

be formalized as a flow graph. Here, the instructions are labeled and assigned to

vertices. In principle, assigning the instructions to the edges is equivalent, and

the appropriate choice of formalization depends on the particular analysis [Ste 93].

The edges between the vertices represent the intra- and interprocedural flow of

control.

Definition 2.3: Control-Flow Graph [All 70]

A control-flow graph (CFG) is a tuple 𝐺 = (𝑽 ,𝑽input, (𝐵, 𝐸), 𝑏ℓ𝑒 , 𝑏ℓ𝑥), where

𝑽 is an ordered finite set of variables,

𝑽input ⊆ 𝑽 is an ordered finite set of input variables,

(𝐵, 𝐸) is a directed graph with

– vertices 𝐵 representing labeled blocks 𝑏ℓ ∈ 𝐵,

– edges 𝐸 ⊆ 𝐵 × 𝐵 modeling the potential transfer of control from

the end of the block to the beginning of the next block,

𝑏ℓ𝑒 ∈ 𝐵 is a unique entry block,

𝑏ℓ𝑥 ∈ 𝐵 is a unique exit block, and without loss of generality 𝑏ℓ𝑒 ≠ 𝑏ℓ𝑥 .

The finite set of variables 𝑽 = 𝑽input ⊎ 𝑽local ⊎ 𝑽output results from the disjoint set

union of the input, local, and output variables of all referenced type-representative

CFGs that are connected to this CFG. Each labeled block 𝑏ℓ ∈ 𝐵 can contain zero or

more instructions. A single block encoding of the control flow is enforced for the SE

in the subsequent Chapters 4 to 5, therefore disallowing sequence of instructions

as commonly referred to as basic block encoding without the loss of generality.

This implies that an instruction within a vertex 𝑏ℓ of 𝐺 is uniquely identifiable by

its label ℓ .

Definition 2.4: Program

A program is a pair 𝒫 = (𝐺,𝒢), where

𝐺 ∈ 𝒢 is the CFG representing the program POU,

28

2.3 Symbolic Program Analysis

𝒢 is a set of CFGs representing POUs referenced by the PLC’s program

POU.

We model the PLC program as a pair 𝑃 = (𝐺,𝒢), where 𝐺 ∈ 𝒢 is the CFG of the

program POU, and 𝒢 is a set of CFGs representing nested FBs occurring in the

program.

Example 2.2: Control-Flow Graph

Figure 2.3 shows the compiled running example. 𝒫 = (𝑃, {𝑃, 𝐹𝑏}), where

𝑃 = ({𝑎, 𝑏, f.x, f.y, f.z}, {𝑎}, (𝐵, 𝐸), 𝑏0, 𝑏13). Do note that variables such as

f.x do not represent qualified names anymore but are instead flattened as

the internal memory of FBs are lowered during the compilation to regular

procedures which operate on references to the blocks’ variables [Boh 21].

Hence the qualified names [Aho & Set
+

86] such as f.x, where 𝑓 and 𝑥 are

identifiers, are lowered to a single identifier f.x and therefore represent a

single flattened variable.

Representation of Callees
Several ways of modeling callees exist, enabling different precisions for the analy-

ses [Nie & Nie
+

99]. A callee is a function that is called by another function, the

caller. The algorithms of this thesis were designed with function cloning in mind.

Cloning provides some form of context sensitivity through the use of scopes but

avoids redundancy as introduced by function inlining.

A benefit of cloning is the avoidance of interprocedural invalid paths. Never-

theless, high nesting depths may lead to an exponential blow-up. A downside

of function cloning is that it does not work on (mutually) recursive functions.

However, the PLC standard [Int 14] restricts the programmer from implementing

recursion. While avoiding interprocedural invalid paths under-approximates the

program’s behavior, the analysis is still compositional in a broader sense as, for

instance, the summarization from Chapter 4 abstracts from the actual context.

2.3 Symbolic Program Analysis
Next, some common concepts from the symbolic program analysis’s perspective

are explained to resolve ambiguity [Aho & Set
+

86]. Figure 2.4 illustrates the

relationship between these concepts. Variables refer to particular locations within

the memory, called the store. A state is a mapping from locations in the store

to values, i.e., a state maps “l-values” to their corresponding “r-values”. An l-

value always has a defined location within the memory and thus can be referenced.

However, an r-value is an expression that is not an l-value. In the context of symbolic

29

2 Preliminaries

𝑏0 :

ENTRY

𝑏3 :

ENTRY

𝑏4 :

𝑥 ≥ 32

𝑏5 :

𝑦 ≔ 𝑦 + 1

𝑏6 :

𝑦 ≔ 𝑦

𝑏7 :

𝑦 ≥ 3

𝑏8 :

𝑧 ≔ true

𝑏9 :

𝑦 ≔ 0

𝑏10 :

𝑧 ≔ false

𝑏11 :

EXIT

𝑏1 :

f.x ≔ 𝑎

𝑏13 :

EXIT

𝑏2 :

𝐺Fb()

𝑏12 :

𝑏 ≔ f.z

CFG of 𝑃
CFG of Fb

Figure 2.3: Graphical representation of the compiled running example.

30

2.3 Symbolic Program Analysis

names

locations (or memory addresses)

(or program variables)
values

Store

environment state

Figure 2.4: Relationship between the environment, store, and state [Aho & Set
+

86].

Figure adapted from Figure 1.8 in [Aho & Set
+

86].

program analysis [Bal & Cop
+

18], the state refers to an execution state, whereas

the store describes this mapping. Usually, the semantics use two mappings, one for

the environment 𝜖 : 𝑽 → Loc, which maps names describing variables to locations

Loc B N, and one for the state 𝜄 : Loc → 𝑫, which maps locations to values of

the respective domain 𝑑 ∈ 𝑫, i.e., integers 𝑖 ∈ I and Boolean truth values 𝑡 ∈ B
in this thesis, as depicted in Figure 2.4. This thesis abstracts from this concept of

composition and directly maps names to their values which is common in symbolic

program analysis [Nie & Nie
+

99]. This facilitates the notation as compile-time

names are equivalent to run-time locations, i.e., variables [Aho & Set
+

86], and also

coincides with how POUs are compiled in the IR of this thesis (see Example 2.2).

The definitions of the concrete and symbolic store used in symbolic program

analysis with regard to this thesis are given in Definition 2.5.

Definition 2.5: Concrete and Symbolic Store
A concrete store 𝜌 : 𝑽 → 𝑫 is a mapping from variables 𝑣 ∈ 𝑽 to concrete

values 𝑑 ∈ 𝑫. A symbolic store 𝜎 : 𝑽 → 𝚺 is a mapping from variables 𝑣 ∈ 𝑽
to symbolic expressions 𝛾 ∈ 𝚺.

A symbolic expression 𝛾 ∈ 𝚺 is essentially just an expression 𝑒 ∈ 𝑬 defined over

additional names not defined in the IR of the analyzed PLC program. Variables

can be read and written to the respective stores, and manipulation is denoted by

either accessing, i.e., reading from the store, or substitution, i.e., writing to the

store.

Definition 2.6: Substitution
Substitution of a variable 𝑢, 𝑣, 𝑥, 𝑦 ∈ 𝑽 with a concrete value 𝑑 ∈ 𝑫 or a

symbolic expression 𝛾 ∈ 𝚺 is defined over the concrete and symbolic store

as follows

𝜌[𝑑/𝑣](𝑢) B
{
𝑑 if 𝑢 = 𝑣,

𝜌(𝑢) otherwise

𝜎[𝛾/𝑦](𝑥) B
{
𝛾 if 𝑥 = 𝑦,

𝜎(𝑥) otherwise ,

31

2 Preliminaries

where all occurrences of 𝑣 and 𝑦 are substituted in the concrete and symbolic

store by 𝑑 and 𝛾, respectively.

Throughout this thesis, the substitution operation of Definition 2.6 is generalized

to the short-hand update functions 𝜌[𝑣 ↦→ 𝑑] and 𝜎[𝑦 ↦→ 𝛾].
Furthermore, the notations eval𝜌(𝑒) and eval𝜎(𝑒) are used to denote the evalua-

tion of the expression 𝑒 ∈ 𝑬 with regards to the evaluation relation ⟨𝑒 , 𝜌⟩ → 𝑑 for

the concrete store and ⟨𝑒 , 𝜎⟩ → 𝛾 for the symbolic store defined in Appendix A,

respectively. The definitions for the concrete and symbolic evaluation functions

are given in the Definitions 2.7 to 2.8.

Definition 2.7: Concrete Evaluation Function
Given a concrete store 𝜌, the evaluation function eval𝜌 : 𝑬 → 𝑫 is defined

recursively and assigns to each expression 𝑒 ∈ 𝑬 a value from the respective

domain 𝑑 ∈ 𝑫, integer or Boolean.

Definition 2.8: Symbolic Evaluation Function
Given a symbolic store 𝜎, the evaluation function eval𝜎 : 𝑬 → 𝚺 is defined

recursively and assigns to each expression 𝑒 ∈ 𝑬 a symbolic value from the

respective domain 𝛾 ∈ 𝚺, integer or Boolean.

Static and Dynamic Symbolic Execution
A branch of symbolic program analysis deals with static and dynamic symbolic

execution (SE) [Bal & Cop
+

18]. Before looking at the differences between static

and dynamic SE, a high-level description of how SE works is given.

SE automatically explores program paths by executing the underlying CFG of

the IR for the respective PLC program using symbolic values for the input variables.

In case concrete valuations are also considered, SE is called concolic execution

(CE), a portmanteau of concrete and symbolic execution.

Definition 2.9: Path
A path through a CFG is a sequence of 𝑚 > 0 edges 𝑒1, . . . , 𝑒𝑚 such that

given basic blocks 𝑏𝑖 , 𝑏 𝑗 , 𝑏𝑘 , 𝑏𝑙 ∈ 𝐵 and 0 < 𝑛 < 𝑚 then 𝑒𝑛 B (𝑏𝑖 , 𝑏 𝑗) and

𝑒𝑛+1 B (𝑏𝑘 , 𝑏𝑙), then 𝑏 𝑗 ≡ 𝑏𝑘 .

A path is feasible if there exists an input to the program that “covers” the path,

i.e., when the program with that input is executed, the corresponding path is taken.

A path is infeasible if there exists no input that covers the path.

The execution strategy of SE can adhere to two different strategies [Kuz & Kin
+

12]. Either a path is completely executed from the entry to the exit of the CFG

32

2.4 Design Principles of Symbolic Execution

in a depth-first exploration (“DART-style” [God & Kla
+

05]), or the execution is

more shallow and performed in a breadth-first exploration (“EXE-style” [Cad

& Gan
+

08]). This thesis uses the “EXE-style” execution over the “DART-style”

execution as it gives more fine-grained control over the execution. SE begins from

an initial execution state and unfolds the set of reachable execution states in a certain

number of “steps”. This unfolding leads to a partition of the input space resulting

in an enumeration of all feasible paths. In general, a CFG over-approximates the

executable behavior.

Definition 2.10: Execution State [Bal & Cop+ 18]

An execution state 𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋), where

𝑏ℓ ∈ 𝐵 is next vertex of the CFG to execute,

𝜌 is a concrete store that maps variables 𝑣 ∈ 𝑽 to expressions over

concrete values,

𝜎 is a symbolic store that maps variables 𝑣 ∈ 𝑽 to expressions over

concrete and symbolic values,

𝜋 denotes the path constraint representing a set of conditional expres-

sions taken on the execution path up to vertex 𝑏ℓ .

The path constraint 𝜋 characterizes a set of input parameters for which the

program executes along the path [God 07]. The branching conditions are recorded

in the path constraint 𝜋 whenever the execution “forks” at a branch. In the domain

of PLC software, the path constraint 𝜋 also carries constraints on local variables

resulting from decisions at branches. A constraint solver is used to decide the

feasibility of the recorded paths and can generate a satisfying assignment that can

be used as a witness or test case for the particular path.

While in static SE, the whole program source code is represented as a formula

by computing the strongest post-conditions beginning from the entry of the CFG,

dynamic SE actually executes the program using concrete valuations while main-

taining symbolic valuations for input-dependent choices of paths at branches.

Consequently, an advantage of dynamic SE is that no false positives are derived,

and one can always obtain useful partial results [Bal & Cop
+

18].

Still, in order to guarantee the absence of bugs, all paths must be enumerated.

As execution goes on, the number of enumerated paths can become too large to

handle efficiently, resulting in the path explosion problem.

2.4 Design Principles of Symbolic Execution
Path explosion is a problem occurring during SE [Bal & Cop

+
18]. There are four

major ways to tackle the problem of path explosion in SE [Bey & Lem 16]:

33

2 Preliminaries

1. Search heuristics for achieving a high level of branch or path coverage as fast

as possible

2. Compositional symbolic execution, creating summaries of functions or paths

and reusing them instead of recomputing already explored states

3. Handling of unbounded loops

4. Using interpolants for tracking reasons why a particular path is infeasible

These solutions are tightly coupled with how the underlying SE engine and algo-

rithms are designed [Kuz & Kin
+

12; Kuz & Kin
+

14].

2.4.1 Handling of Loops and Recursion
Standard techniques which allow the analysis of loops and recursion are unrolling

and function call inlining [Kuz & Kin
+

14; Bec & Ulb
+

15]. A peculiarity of PLC

programs is that recursive call chains are forbidden by design as defined in the

standard [Int 14]. Static unrolling of loops in PLC programs is usually done up to

a specific bound by statically rewriting the underlying IR [Bec & Ulb
+

15].

In this thesis, no techniques or heuristics have been investigated that deal with

the problem of handling loops and recursions efficiently. In fact, the assumption

is made that the programs under analysis do not contain any unbounded or

“problematic” loops. As PLC programs are employed to solve time-critical tasks,

and the standard requires the programs to finish within a specified cycle time [Int

14], it is, therefore, reasonable to assume that programs usually do not contain

loops with an unbounded number of iterations [Bec & Ulb
+

15].

The algorithms of Chapter 4 and Chapter 5 explore loops as long as they cannot

prove the infeasibility of the condition.

2.4.2 Avoiding the Encoding of Infeasible Execution Paths
In general, symbolic program analysis avoids encoding infeasible execution paths

by checking for satisfiability at points in the program where the control flow

branches. By not considering execution states that represent infeasible paths, the

problem of path explosion is combatted by investing solving time earlier in the

execution [Kuz & Kin
+

14]. In this thesis, feasibility checking is also performed

when “forking” and is explained in detail in Chapter 4.

2.4.3 Merging of Execution Paths
State merging combines paths into a state [Bal & Cop

+
18] and is a suitable technique

to combat the path explosion problem [Kuz & Kin
+

14]. Unlike in SA, where it is

acceptable that the resulting merged state over-approximates the individual states

that were merged, SE for TSG requires more precise information [Kuz & Kin
+

14].

34

2.4 Design Principles of Symbolic Execution

A possible way to merge all execution paths without any over-approximation

reaching a particular vertex is using the path constraint 𝜋 to determine from which

path the information reached this specific vertex.

Example 2.3: State Merging
Merging execution states in each cycle of a PLC program yields a linear path

growth and is a desired technique to combat the path explosion problem.

The tradeoff, however, is that state merging generates more complex execution

states. Consider merging the following two execution states described by a

path constraint and their concrete and symbolic valuations:

merge
©­­«

𝑥0 ≥ 0

𝑥 ↦→ 𝑥0

𝑦 ↦→ 1

 ,


𝑥0 + 1 < 8

𝑥 ↦→ 0

𝑦 ↦→ 8


ª®®¬ =


𝑥0 ≥ 0 ∨ 𝑥0 + 1 < 8

𝑥 ↦→ ite(𝑥0 ≥ 0, 𝑥0, 0)
𝑦 ↦→ 1


Symbolic valuations are merged with the help of the ite-expression of the

underlying SMT solver. Due to the efficient representation of expressions

in the abstract syntax tree (AST) in Z3, the merged expressions are kept as

compact as possible (without duplication) in memory, even in the presence

of nested ite-expressions. Either valuation can be chosen when merging

concrete valuations which leads to an under-approximation of the concrete

store.

State merging can occur at different points during program execution. Either

all paths are executed until the end of the cycle, and the subsequent cycle is

explored with the merged execution state of all paths, or at each point where the

control flow joins, the respective paths are merged. This is explained with the help

of Example 2.4.

Example 2.4: Join Points during State Merging
This example shows how two merge-based strategies can be used during the

exploration of the CFG.

35

2 Preliminaries

Fork

Fork

Fork

Merge

C
y
c
l
e

1

. . .

C
y
c
l
e

2

Figure 2.5: Merging at the end of

the cycle.

Fork

Fork

Merge

Fork

Merge

Merge

C
y
c
l
e

1

. . .

C
y
c
l
e

2

Figure 2.6: Merging at all join

points.

Either way, merging reduces the number of execution states and combats

the path explosion problem as an exponential growth with each cycle is

prevented. However, merging execution states introduces more complex

formulas and offloads the burden to the underlying SMT solver.

Merging states this way for every possible join point, i.e., where control flow

merges in the graph, SE would become similar to VCG or bounded model checking

(BMC), where the entire problem instance is encoded in one monolithic formula

that is passed in full to a solver [Kuz & Kin
+

14]. However, encoding the problem

instance as one monolithic formula also has downsides. The complete merging

36

2.4 Design Principles of Symbolic Execution

sacrifices the advantages of continuously progressing, prioritizing execution states,

and reaching coverage goals quickly, and thus more dynamic approaches are

favorable [Kuz & Kin
+

14].

2.4.4 Dealing with Compositionality
While function call inlining is a simple and precise approach for interprocedural

symbolic program analysis, it is also costly [Kuz & Kin
+

14]. Function cloning

poses an alternative to function inlining and is used for the representation of callees

throughout this thesis, as presented in Section 2.2.

Function cloning provides context sensitivity and therefore avoids the encoding

of invalid interprocedural paths. However, high nesting depths can lead to an

exponential blow-up, just as with function inlining. The drawback of not working

on mutually recursive functions is neglectable for the programs in the PLC domain.

This gives rise to the use of function summaries such that re-analyzing functions

and FBs at every invocation can be avoided [God 07].

May and Must Summaries

The number of paths to be explored can be reduced by using memoization in the form

of summaries [Can & God 19]. A summary is either of the form “may” or “must”.

While SA generates and memoizes over-approximations (“may” summaries), TSG

computes under-approximations (“must” summaries) rooted in feasible executions.

Definition 2.11: Must Summary [God 07; God & Lah+ 11]

A must summary of a code fragment is of the form ⟨lp, 𝑃, lq, 𝑄⟩, and implies

that for every execution context satisfying the pre-condition 𝑃 at lp in the pro-

gram, there exists an execution that visits lq and satisfies the post-condition

𝑄 at lq.

A pre-condition defines an equivalence class of concrete executions [God 07]. A

post-condition describes the valuations of the variables at the exit of the summary.

Given a path constraint 𝜋𝑤 and a compositional program 𝑃. The summary 𝜙fb =∨
𝑤 𝜙𝑤 is computed by symbolically executing all feasible paths of the FB and

generating a pre- and post-condition with regard to the input-output relation of

the respective FB. Each disjunct 𝜙𝑤 represents one summarized path through

the FB and is of the form 𝜙𝑤fb = pre𝑤fb
∧ post𝑤fb

, where pre𝑤fb
is a conjunction of

constraints on the inputs of FB while post𝑤fb
is a conjunction of constraints on the

outputs of FB [God 07].

37

2 Preliminaries

Example 2.5: Must Summary
Consider the CFG of the FB depicted in Figure 2.3. While 𝑦 is a local

variable of the FB, it must be considered in the respective must summary.

This clashes with the definition of preconditions consisting of only whole-

program inputs [God 07] but is a necessary adaption to represent execution

paths of stateful FBs correctly. A summary for the right-most outer path

through the CFG of the FB is characterized by the following formula:

𝜙𝑤fb ≔ ¬(𝑥 ≥ 32) ∧ ¬(𝑦 ≥ 3)︸ ︷︷ ︸
pre𝑤fb

∧ (𝑧 = false)︸ ︷︷ ︸
postwfb

.

The mandatory versioning of variables, as presented in Section 4.1.5, is

neglected for reasons of the example.

2.5 Unifying Program Versions via Change Annotations
Syntactic reconfigurations to industrial control software can be categorized fol-

lowing the concept in [Kuc & Pal
+

18], where a change(old, new) macro was

introduced.

Definition 2.12: Change-Annotation Expression [Pal & Kuc+ 16; Kuc 16;
Kuc & Pal+ 18]

A change-annotation macro change(old, new) in the source code of a PLC

program is compiled into a binary change-annotation expression change(𝑒1, 𝑒2)
which consists of two compiled expressions 𝑒1 and 𝑒2 of the same type

corresponding to the expression in the old and new program, respectively.

It naturally extends the set of expressions of the IR defined in Definition 2.1

as follows:

𝑒 F 𝑎 | 𝑏 | 𝑐
𝑎 F 𝑖 | 𝑣𝑎 | −𝑎 | 𝑎1 op𝑎 𝑎2

𝑏 F 𝑡 | 𝑣𝑏 | ¬𝑏 | 𝑎1 op𝑟 𝑎2 | 𝑏1 op𝑏 𝑏2

𝑐 F change(𝑒1, 𝑒2) ,

where 𝑐 ∈ 𝑬𝐶 ⊆ 𝑬 is a change expression.

The following enumeration summarizes the available reconfigurations using the

categorization of [Kuc & Pal
+

18] expressed in the ST syntax.

Addition of new functionality

38

2.5 Unifying Program Versions via Change Annotations

1. Addition of an assignment:

x B change(old : x, new : e);

2. Addition of code in the new program version:

IF change(old : false, new : true) THEN
code to be added

END_IF;

Modification of already existing functionality

1. Modifying the right-hand side of an assignment:

x B change(old : e1, new : e2);

2. Modifying the arguments of a function block invocation:

f(x B change(old : e1, new : e2), . . .);

3. Modifying a conditional expression:

IF change(old : e1, new : e2) THEN

Deletion of functionality

1. Deletion of an assignment:

x B change(old : e, new : x);

2. Deletion of code in the new program version:

IF change(old : true, new : false) THEN
code to be deleted

END_IF;

A significant benefit of the change-annotation macro is that it keeps the correspon-

dence between the old and the new program versions intact. It was therefore

chosen for analyzing the semantic effects of the implication introduced by syntac-

tical reconfigurations [Gro & Völ
+

22b].

39

2 Preliminaries

Example 2.6: Reconfiguration applied to the Running Example
Consider the following syntactic change applied to the FB of Figure 2.2.

1 FUNCTION_BLOCK Fb
2 // Interface omitted.
3 IF x >= 32 THEN
4 y := y + 1;
5 ELSE
6 y := y;
7 END_IF;
8 IF y >= 3 THEN
9 z := TRUE;
10 y := 0;
11 ELSE
12 z := FALSE;
13 END_IF;
14 END_FUNCTION_BLOCK

Listing 2.1: Callee POU before recon-

figuration.

1 FUNCTION_BLOCK Fb′

2 // Interface omitted.
3 IF x >= 32 THEN
4 y := y + change(1, 2);
5 ELSE
6 y := y;
7 END_IF;
8 IF y >= 3 THEN
9 z := TRUE;
10 y := 0;
11 ELSE
12 z := FALSE;
13 END_IF;
14 END_FUNCTION_BLOCK

Listing 2.2: Callee POU after recon-

figuration.

Reconfigurations are translated into syntactic reconfigurations applied to

the source code of the PLC program with the help of the change(old, new)
macro.

2.6 Formal Reasoning with the SMT Solver Z3
The algorithms presented throughout this thesis heavily rely on using the SMT

solver Z3 [dMou & Bjø 08]. Satisfiability is the problem of determining whether

a formula 𝜙 has a satisfying assignment, i.e., a model. SAT solvers check the

satisfiability of propositional formulas. A propositional formula contains either

true or false atomic propositions; accordingly, a model is a truth assignment to these

Boolean variables.

An SMT solver checks the satisfiability of first-order formulas in some first-order

decidable theories, such as linear arithmetic. The goal is to find a model that

assigns values to variables and interpretations to all occurring predicates in the

formula 𝜙 within the respective theory 𝑇. Z3 is such an SMT solver, and its API

is used to model this thesis’s internal IR. Figure 2.7 gives a high-level overview of

how an SMT solver is used during SE.

40

2.6 Formal Reasoning with the SMT Solver Z3

Symbolic

Execution

Engine

SAT Solver

Formula

Theory Solver

path constraint

satisfying

assignment

Boolean abstraction

model conflict

Figure 2.7: Interplay of SE and SMT solving with Z3.

Incremental Interface The Z3 API
1

provides two interfaces for adding and re-

moving constraints during incremental solving: push/pop and assumptions. Do

note that being able to add constraints does not make the solver incremental. The

incrementality stems from storing and restoring the solver’s state by a call to push

and pop, respectively. This way, an initial set of assertions can be checked for

satisfiability, and other additional assertions and checks may follow.

In case the addition of an assertion leads to unsatisfiability, the lemmas that

were learned and are not valid can be removed with a pop, and a previous state is

restored. This can be tedious when checking many potential execution paths for

satisfiability. A more flexible approach poses the assumptions interface. However,

for each assertion, a fresh Boolean assumption literal must be introduced, which

implies the assertion.

During solving, the individual assertions can be considered for checking by

toggling the corresponding Boolean assumption literals. A check with assumptions

also has the benefit that in case of unsatisfiability, an unsatisfiable core can be

obtained. The unsatisfiable core contains a subset of the assertions that the SMT

solver used to deduce unsatisfiability.

1https://z3prover.github.io/api/html/index.html

41

https://z3prover.github.io/api/html/index.html

Literature Review 3
“If I have seen further it is by standing on ye sholders of Giants.”

— Sir Isaac Newton, Letter to Robert Hooke (15 February 1676)

This chapter overviews the state of the art of the main techniques behind the

algorithms contributed by this thesis in Chapter 4 and Chapter 5 and discusses

their relevance in program analysis. Next, a digression into regression analysis is

Chapter 4

Chapter 5

PLC Program

Version 𝑃

PLC Program

Version 𝑃′
Program

Unification

Change-Annotated

PLC Program

Test Suite

Classification

Reusable

Tests

Test Suite

Execution and

Classification

Obsolete

Tests

Retestable

Tests

Test Suite

Coverage

Identification

Test Suite

Maintenance

Test Suite

Augmentation

New Specification

Tests

New Structural

Tests

Test Suite

𝑻𝑷
all

Test Suite

Generation

Test Suite

𝑇𝑃′

all

Reconfiguration

++

unclassified

coverage

measure

Figure 3.1: Overview of the regression testing pipeline.

Figure adapted from Figure 3 in [Leu & Whi 89].

presented, and relevant alternative work from verification and testing relying on

this technique is discussed. Finally, the related work of verifying and testing the

PLC software is presented.

43

3 Literature Review

3.1 Test Suite Generation via Symbolic Execution
SE is a precise and systematic program analysis technique that can be used for the

automated generation of test cases [Kin 76; Dar & Kin 78] and has been used ever

since for a variety of symbolic program analyses [Cad & Sen 13]. While the core

technique remains the same among a variety of contributions to the state of the

art [Sen & Mar
+

05; Cad & Gan
+

08; Cad & Dun
+

08; Bur & Sen 08; God & Lev
+

12], the following sections solely focus on the design principles [Kuz & Kin
+

12]

mentioned in Section 2.4 relevant for the algorithms presented in Chapter 4 and

Chapter 5 of this thesis. A recent overview of applications, tools, and optimizations

of SE can be found in [Bal & Cop
+

18].

3.1.1 Compositionality and State Merging
Compositionality and state merging are vital techniques to combat path explo-

sion [Bal & Cop
+

18].

Compositional symbolic execution (CSE) for TSG was first introduced in Smart

[God 07], an extension of the directed automated random testing tool Dart [God

& Kla
+

05]. Smart computes function summaries during SE by testing functions

in isolation when they are encountered in a top-down search on a demand-driven

basis [God 07]. Function summaries are expressed over input pre-conditions and

output post-conditions and computed by traversing each path within the respective

function [God 07]. The input pre-conditions are obtained by simplifying the

conjunction of branch conditions concerning the function inputs on that path. The

output post-conditions are obtained by considering the conjunction of constraints

written during the execution of the function [God 07]. Whenever a function is

encountered during the search of the SE, Smart checks if an applicable summary

already exists. If it does, the execution context is updated with the summarized

contents, and the search skips the function’s execution. Otherwise, the function is

explored under the current calling context while Smart tries to generate a function

summary [God 07].

The limitations of Smart were addressed in a subsequent publication by imple-

menting the possibility of incrementally constructing partial function summaries to

avoid the analysis of unnecessary and hard-to-analyze functions whose constraints

were outside of the SMT solvers’ theory [Ana & God
+

08].

Summarization was also addressed in [Lin & Mil
+

15], where it was generalized

to any code fragments not explicitly limited to functions. Unlike in Smart, sum-

marization takes place before SE. The paper evaluated three strategies of differing

summarization granularity alongside the standard CSE. It was shown that an

acyclic summarization strategy, “LASUM”, was the most effective in reducing the

average computation time of CSE [Lin & Mil
+

15]. This heuristic summarizes the

contents of the most inner loop by breaking the summarization of the outer loop

down to the summarization before, during, and after the inner loop. This mitigates

the path explosion problem for nested loops compared to the other summarization

44

3.1 Test Suite Generation via Symbolic Execution

strategies evaluated in the paper by pruning redundant calls to the SMT solver [Lin

& Mil
+

15].

MultiSE proposes a new technique for merging execution states incrementally

using value summaries [Sen & Nec
+

15]. In contrast to conventional merging in

SE, value summaries avoid redundant executions by sharing values along multiple

execution paths [Sen & Nec
+

15]. By avoiding auxiliary symbolic values, while

merging, MultiSE can handle function calls more efficiently by using fewer calls

to an SMT solver. The evaluation has shown that this leads to a significant speedup

between conventional merging in SE and MultiSE.

The algorithms of this thesis use the if-then-else expression ite of the underlying

SMT solver for merging symbolic expressions at feasible join points [Boh & Sim
+

16]. While value summaries and ite-expressions are similar, the former does not

require simplification as no nested ite-expressions occur during the application of

MultiSE [Sen & Nec
+

15]. In general, one is interested in reducing the solving cost

induced by merging while at the same time leveraging the advantages of SE [Avg

& Reb
+

14; Kuz & Kin
+

14].

3.1.2 Incremental Solving, Search Heuristics, and Memoization
The work of [Lin & Mil

+
15] is succeeded by [Lin & Mil

+
16; Lin 17] in which

the restriction of summarization from functions to arbitrary summarization of

code fragments was alleviated by introducing incremental solving. A weakness of

CSE is the loss of context during summarization, resulting in a bottleneck in the

exploration of complex systems [Lin & Mil
+

16]. The paper proposes a combination

of incremental solving and CSE to mitigate this weakness by compensating with

the incremental assumption-checking capabilities of an SMT solver [Lin & Mil
+

16]. The CSE implementation is compared to conventional SE, showing that incre-

mental solving is more beneficial for exhaustive exploration than non-incremental

solving [Lin & Mil
+

16]. To fully benefit from incremental solving, the search

heuristic must be confined to depth-first search (DFS), a drawback that must not

be underestimated according to [Lin & Mil
+

16].

While incremental symbolic execution techniques are not suitable for targeted

search, which is subject to a series of research [Cad & Dun
+

08; San & Har 10; Ma

& Kho
+

11; Böh & Pha
+

17], they are beneficial in reducing the cost for multiple

SEs of a program during software testing [Yan & Khu
+

13].

Memoise is a technique that records and reuses results of previous applications

of SE to a program across different runs by relying on an efficient tree-based data

structure [Yan & Khu
+

13]. This trie is a compact representation of the visited

symbolic paths during SE and additionally stores the branching decisions and the

corresponding symbolic values [Yan & Khu
+

13]. An already executed path can be

efficiently replayed by turning off constraint solving and guiding the search along

the stored choices in the trie [Yan & Khu
+

13]. The preliminary evaluation has

shown that the iterative deepening and directed exploration using the trie-based

45

3 Literature Review

data structure significantly reduced the cost for multiple SEs on a program during

software testing. Memoise can also be used for cost-effective regression analysis

by executing SE only on paths leading to change-impacted trie nodes and pruning

others from the search [Yan & Khu
+

13].

Another form of memoization is the reuse of function summaries. For instance,

the function summaries generated by Smart were used to revalidate them on the

new program version [God & Lah
+

11]. A three-phased algorithm was presented,

which solves the problem of statically validating symbolic test summaries through

the use of SA and VCG. The algorithm decides by static checking whether the

summary is still valid in the new program version or has to be dynamically

recomputed [God & Lah
+

11]. The evaluation has shown that in the presence of

minor code changes, this algorithm significantly improves the regression testing

(RT) process [God & Lah
+

11].

In the subsequent section, the problem of creating new test cases that specifically

target the reconfigured behavior in the new program version is addressed [San &

Chi
+

08].

3.2 Test Suite Augmentation via Regression Analysis
Regression analysis aims to ensure that reconfigurations to a program 𝑃 do not

introduce any regressions in the reconfigured program 𝑃′. This is usually done by

providing the same input to both program versions and comparing their outputs,

as depicted in Figure 3.2.

Program 𝑃

Program 𝑃′

Input

Output of 𝑃

Output of 𝑃′

?

=Reconfiguration

Figure 3.2: General overview of the regression analysis after a reconfiguration.

Regression analysis can be subdivided into regression verification and RT. The

term regression verification was coined in [God & Str 09], in which an algorithm

for an automatic and incremental proof of equivalence between two closely re-

lated versions of a program was implemented. The equivalence proof is based

on the partial equivalence rule derived from Hoare’s inference rule for recursive

invocations [God & Str 09]. It either proves the absence of regressions by es-

tablishing behavioral equivalence or provides a witness of behavioral difference.

Regression Verification Tool (RVT) traverses the two call-graphs of the loop-free

and recursion-free fragments of the two programs and abstracts callees with un-

interpreted functions when possible. This bottom-up decomposition algorithm

46

3.2 Test Suite Augmentation via Regression Analysis

proved the partial equivalence of pairs of functions and was successfully evalu-

ated on several small industrial programs within a reasonable time. Nevertheless,

in practice, regression verification of non-equivalent versions is a very time and

memory-consuming task [God & Str 09].

While regression verification tries to prove that both program versions behave

equally or differently in a formally specified way [Fel & Gre
+

14], RT is usually

concerned with reusing an existing test suite and re-running it on the reconfigured

program. However, re-running the test suite of the old program version on the new

one might be infeasible if it is too large and might not test the changed behavior [Böh

& Roy
+

13; Xu & Kim
+

15]. The former is commonly addressed by RT techniques

such as test case selection or prioritization, while the latter is a complementary

techniques called TSA as illustrated in Figure 1.12 of Section 1.3.1.

The following sections will focus on state-of-the-art techniques with regard to

TSA, as the algorithm presented in Chapter 5 focuses on generating test cases that

exhibit divergent behavior in reconfigured PLC programs.

3.2.1 Program Differencing using Summarization
Differential symbolic execution (DSE) applies SE to perform a differential program

analysis to create deltas that can be used for a variety of subsequent analyses [Per &

Dwy
+

08]. The algorithm consists of several steps. First, the syntactic similarities are

determined by a line-by-line comparison between both program versions. Next, for

the methods that differ, both versions of those methods are symbolically executed,

and summaries are generated. The SE over-approximates the behavior of the two

program versions by constructing symbolic function summaries. The symbolic

function summaries consist of a set of disjoint conditions on the input values, each of

which is assigned the corresponding symbolic output value of the program [Per &

Dwy
+

08]. Uninterpreted functions are used for the previously identified common

code fragments to abstract from the concrete behavior and facilitate the analysis.

The generated summaries are checked using two different notions of equivalence:

functional and partition-effects equivalence. The functional equivalence checks

whether, for the same input, the same output is emitted similarly to [God & Str 09].

The partition-effects equivalence checks for functional equivalence and whether

the programs equivalently partition the input space, i.e., for the same inputs, the

same outputs are emitted while traversing the same paths. If those checks fail,

the summaries are not equivalent. DSE will then generate deltas that precisely

characterize the input valuations and conditions under which the two program

versions show divergent behavior.

While DSE is a precise analysis, it does not scale well. The main result of [Pod &

Cla 90] shows that there is a relation between syntactic and semantic dependencies

and that dependency analysis can give an “approximate” answer to the question

if one statement is semantically dependent on another statement. SA avoids

undecidability problems by giving up completeness for soundness, a property

47

3 Literature Review

which is exploited in the techniques used in [Per & Yan
+

11; Yan & Per
+

14] and

presented next.

3.2.2 Aiding Regression Analysis with Change Impact Analysis
Directed incremental symbolic execution (DiSE) combines static change impact

analysis (CIA) and state-of-the-art SE techniques to enable a more efficient re-

gression analysis [Per & Yan
+

11]. The effect of the reconfiguration on the new

program version is computed using a lightweight syntactical differential analysis.

Afterward, DiSE begins performing an intraprocedural analysis to detect parts

of the CFG affected by this reconfiguration using the information of the syntac-

tical differential analysis. The computation of affected and unaffected vertices is

based on control- and data flow dependencies and corresponds to some form of

intraprocedural slicing. This information is then leveraged to perform a directed

SE, which is guided toward those paths that can reach a reconfigured vertex. For

any sequence of affected vertices that lie on some feasible execution path within the

specified depth bound, DiSE explores one execution path containing that particular

sequence [Per & Yan
+

11].

Several extensions and improvements have been researched that build up on

the concept of DiSE. A natural extension of DiSE to interprocedural directed

incremental symbolic execution (iDiSE) was proposed in [Run & Per
+

12] in which

the intraprocedural analysis was lifted to an interprocedural analysis using call

graphs to compute the impact of the reconfiguration across function boundaries.

Later, another extension of iDiSE to concurrent programs was presented as

Conci-SE [Guo & Kus
+

16], in which concurrent paths in a program are analyzed

using a summary-based incremental SE. At the core, Conci-SE relies on the static

CIA of iDiSE. It computes symbolic summaries to infer execution paths affected by a

reconfiguration in order to execute those affected paths incrementally. The concepts

of DiSE were also used to improve scalability in regression verification [Bac & Per
+

13] by removing code fragments unaffected by the reconfiguration before analysis.

It was then tried to show equivalence on the reduced programs [Bac & Per
+

13], and

the evaluation concluded that this reduction technique is beneficial in lowering

solving time.

While the results of the DiSE analysis can be used for various software evolution

tasks [Per & Yan
+

11], such as in regression verification [Bac & Per
+

13] or in

RT [Yan & Per
+

14], it nonetheless suffers from two severe disadvantages. The

static CIA gives only a conservative estimate of the impact of the reconfiguration.

While this may lead to significant savings in analysis time [Yan & Per
+

14], it is too

imprecise for most reconfigurations and especially not suitable for the analysis of

reconfigurable PLC software, as explained in Example 3.1.

48

3.2 Test Suite Augmentation via Regression Analysis

Example 3.1: Degeneration of Static Change Impact Analysis
This example emphasizes why a static CIA, often found in literature, is in

most cases not suitable to analyze PLC programs.

1 PROGRAM P
2 VAR_INPUT
3 x : INT;
4 END_VAR;
5 VAR
6 y : INT;
7 END_VAR;
8 VAR_OUTPUT
9 z : INT;
10 END_VAR;
11 y := 5;
12 IF change(x > 4, x > 6)

THEN
13 z := 10;
14 ELSE
15 // DIV BY ZERO ?
16 z := y / (5 - x);
17 END_IF;
18 END_PROGRAM;

Listing 3.1: Example POU.

𝑏0 :

ENTRY

𝑏1 :

𝑦 ≔ 5

𝑏2 :

change(𝑥 > 4, 𝑥 > 6)?

𝑏3 :

𝑧 ≔ 10

𝑏5 :

𝑧 ≔ 𝑦/(5 − 𝑥)

𝑏6 :

EXIT

Listing 3.2: CFG of example POU.

The static CIA of DiSE would mark all vertices of the CFG as affected by the

reconfiguration by following the control- and data dependence edges, colored

blue and orange, respectively. Performing SE on this “sliced” program

corresponds to performing SE on the whole program. Furthermore, DiSE

would yield an arbitrary value satisfying ¬(𝑥 > 6), which does not guarantee

that a potential divergence is revealed. Hence, static CIA degenerates for PLC

software as it is often too imprecise and misses important pruning and

prioritization opportunities, such as in a dynamic analysis.

A more expensive semantic analysis can be used to overcome the imprecision

of the static CIA and retrieve more refined results. Similar to DSE, SymDiff

tries to solve the problem of differential verification [Lah & Haw
+

12]. In more

recent publications [Gyo & Lah
+

16; Gyo & Lah
+

17], SymDiff was extended

by an interprocedural semantic CIA using equivalence relations which showed

significant improvements in the precision of the analysis of larger projects. While

SymDiff can prune the space of execution paths for which regression tests need

to be generated [Gyo & Lah
+

16], it does not automatically derive test cases that

49

3 Literature Review

trigger divergent behavior.

To conclude, DiSE does not guide the SE in the direction of real divergence

besides the reachability of the reconfigured vertices. It also explores one execution

path at a time containing affected vertices within a specified bound which might

not propagate a divergent behavior across multiple cycles in a PLC software setting.

It is becoming apparent that techniques are needed that partition the input space

with regard to failure [Wey & Jen 91], i.e., either equivalence-revealing or difference-
revealing, to be able to propagate divergent behavior to the observable outputs of

the PLC software.

Partition-based regression verification (PRV) is a technique that infers differential

input partitions that represent a subset of the common input space of two program

versions [Böh & dS O
+

13]. It uses random testing and concolic execution to

compute partitions characterized by symbolic conditions. The symbolic conditions

define a range of valid inputs for which the specific partition [Böh & dS O
+

13]

propagates the same differential state to the output. If both versions compute

the same output for an arbitrary input of the respective partition, the partition

is said to be equivalence-revealing. It is then soundly guaranteed [Böh & dS O
+

13] that both programs compute the same output for all inputs satisfying the

symbolic condition of that partition. Otherwise, the respective partition is said to

be difference-revealing. Additionally, PRV is able to generate test cases that expose

different behavior across both program versions [Böh & dS O
+

13]. A strength of

PRV is the verification of entire input space partitions and the capability of relating

behavioral differences to syntactic changes as opposed to DiSE [Per & Yan
+

11]

by using static and dynamic slicing during inference of the differential partitions.

Another vital property of PRV, in contrast to traditional regression verification,

lies in its incremental nature. PRV gradually verifies the differential partitions and

hence can retain partial verification guarantees of already explored differential

partitions even in case of interruption due to time or memory constraints [Böh &

dS O
+

13]. Example 3.2 illustrates the inferred differential partitions by PRV for

the program shown in Example 3.1.

Example 3.2: Differential Partitions
Tables 3.1 and 3.2 show the partitioning of the partition-based regression

verification on the running example shown in Example 3.1.

50

3.2 Test Suite Augmentation via Regression Analysis

Table 3.1: Table with partitions.

Input Output

𝑃
𝑥 > 4 𝑧 := 10

𝑥 ≤ 4 𝑧 := 5/(5 − 𝑥)

𝑃′
𝑥 > 6 𝑧 := 10

𝑥 ≤ 6 𝑧 := 5/(5 − 𝑥)

The algorithm tries to partition the behavior of the programs by exploration

of all combinations using the following relation:

𝑠1 ⊗ 𝑠2 = {
(
(𝑐1 ∩ 𝑐2), (𝑜1

!

= 𝑜2)
)
| (𝑐1, 𝑜1) ∈ 𝑠1 ∧ (𝑐2, 𝑜2) ∈ 𝑠2 ∧ (𝑐1 ∩ 𝑐2) ≠ ∅} ,

where

𝑜1

!

= 𝑜2 B

{
𝐸𝑄, if 𝑜1 = 𝑜2

(𝑜1, 𝑜2) otherwise.

For the illustrated partitions in Table 3.1 the following combinations result

when applying the relation:

(𝑥 > 4, 𝑧 ≔ 10) ⊗ (𝑥 > 6, 𝑧 ≔ 10) =
(
(𝑥 > 4 ∩ 𝑥 > 6), 𝐸𝑄

)
= (𝑥 > 6, 𝐸𝑄)

(𝑥 > 4, 𝑧 ≔ 10) ⊗ (𝑥 ≤ 6, 𝑧 ≔ 5/(5 − 𝑥)) =
(
5 ≤ 𝑥 ≤ 6,

(𝑧 ≔ 10, 𝑧 ≔ 5/(5 − 𝑥))
)

(𝑥 ≤ 4, 𝑧 ≔ 5/(5 − 𝑥)) ⊗ (𝑥 > 6, 𝑧 ≔ 10) = (∅, . . .)
(𝑥 ≤ 4, 𝑧 ≔ 5/(5 − 𝑥)) ⊗ (𝑥 ≤ 6, 𝑧 ≔ 5/(5 − 𝑥)) =

(
𝑥 ≤ 4, 𝐸𝑄

)
The results are depicted in Table 3.2.

Table 3.2: Table with the resulting differential partitions.

Input Output

PRV

𝑥 > 6 EQ

5 ≤ 𝑥 ≤ 6 𝑧 := 10 ∧ 𝑧 := 5/(5 − 𝑥)
𝑥 ≤ 4 EQ

While 𝑥 > 6 and 𝑥 ≤ 4 are differential partitions, i.e., a common subset

of the input space of 𝑃 and 𝑃′, they propagate the same differential state

51

3 Literature Review

to the output and hence are denoted as equivalence-revealing (EQ). Both

programs lead to different outputs only for values satisfying 5 ≤ 𝑥 ≤ 6 and

consequently may be difference-revealing.

Unlike DiSE, PRV can classify and derive test cases that lead to divergent outputs

in both program versions. While PRV is a valuable alternative to other regression

test generation techniques due to the derivation of homogeneous differential

partitions concerning the failure [Wey & Jen 91], it does not scale well. The

verification of the entire input space can be prohibitively expensive and is often

not required in RT.

In the next section, a possible improvement is presented, which uses a test case

from the previous program version as a “seed” to derive a test case for the new

program version that might be difference-revealing.

3.2.3 Exposing Divergent Behaviors after a Reconfiguration
SSE is a technique for the derivation of difference-revealing test cases [Pal & Kuc

+

16; Kuc & Pal
+

18]. The goal is not to generate a complete test suite for the new

program version but to derive test cases in which both programs expose divergent

behavior. These test cases can be used to augment the test suite, which then

is checked by a developer to determine whether the new behavior due to the

reconfiguration is intended or not.

In contrast to Conci-SE, which first symbolically executes the old version of

the program to obtain the summaries [Guo & Kus
+

16] or PRV, which runs both

program versions separately, SSE executes both versions at the same time. The

similarity of the two analyzed programs can be exploited by sharing the symbolic

store and reducing the required memory.

As input, SSE receives a CAP and a test suite for the program version before

reconfiguration. The CAP is obtained by annotating the old program version with

a change-annotation macro “change(old : 𝑒1, new : 𝑒2)” such that the old version

and new version are obtained by replacing all occurrences of change with the

respective old or new argument (see Section 2.5).

SSE then proceeds to select those test cases that “touch” the patch, i.e., the

vertices of the CFG, which are reconfigured [Pal & Kuc
+

16]. Afterward, a CE is

performed on the CAP to derive divergent contexts. A shadow expression contain-

ing information about both program versions is generated upon encountering a

change expression. The shadow expression symbolically represents an expression

for both program versions, which prevents the duplication of common expressions

and the creation of two separate memory stores for each version.

If a branch is reached, execution might diverge. For this purpose, SSE checks

whether the current expression contains any shadow expression that makes the

two versions follow different paths. While the executions might follow the same

52

3.3 Related Work

path under the current valuations, SSE also checks whether input valuations exist

that might make both versions take different paths. A test case is then generated for

each possible input valuation and added to the queue of divergent contexts. In case

different paths are followed, execution is stopped, and the current execution context

is added to a queue of divergent contexts. Then, a bounded symbolic execution

(BSE) is performed on the prior derived divergent contexts and corresponding test

cases to explore potential divergent behavior in the new program version. Finally,

both versions are executed on all derived divergent inputs, and the results are

presented to the developer.

SSE is driven by the concrete inputs from an existing test suite, so visiting a recon-

figured vertex in the CFG is trivially necessary to exercise the reconfiguration. This

also implies that divergences might be missed, as this technique strongly depends

on the quality of the initial valuations. Compared to PRV, the exploration strategy

of SSE focuses on constraining the search space by inheriting the path constraint

prefix from the concrete input valuations that reach the potential divergence. As

far as PLC software is concerned, this might lead to missing more profound nested

divergences in the breadth-first search phase of SSE, as divergent behavior might

need to be propagated across multiple cycles. The idea of SSE is adapted and

extended in [Nol & Ngu
+

19] to “Complete SSE” by exhaustively exploring the

execution tree of the reconfigured program. However, this thesis solely focuses on

evaluating the feasibility of the SSE approach.

3.3 Related Work
An overview of the challenges for the functional testing of reconfigurable CPPSs

is given in [Zel & Wey 16]. [Zel & Wey 16] identifies three use cases in which the

requirements of future production systems have several implications on the need

for functional testing. These challenges arise through changing the production

environment, different production tasks, and the system’s decentralization. This

leads to reconfigurations of software and hardware, the often changing and ad

hoc production tasks, and the possibility of multiple production paths caused by

resource redundancy [Zel & Wey 16].

Software components must be adequately tested and verified throughout the

whole life cycle of the CPPS to ensure correct behavior after a reconfiguration [Gro

& Sim
+

20]. In addition to the two mutually complementing approaches presented

in [Gro & Sim
+

20], this section aims to give an overview of other relevant ap-

proaches in the field of verification and testing of PLC software. Table 3.3 gives an

overview of related work regarding the verification and testing of PLC software

used in CPPSs. The publications and techniques in Table 3.3 are categorized

according to their field of application, i.e., level in the development cycle, their

view, and whether they target software reconfigurations. They are subdivided into

verification and testing, and the “! ” symbol denotes that the techniques, while not

intended in the respective publication, can be lifted to perform the necessary task

53

3 Literature Review

Table 3.3: Overview of the related work in the field of PLC software verification

and testing.

Source Level [VDI 21] View Structural Functional Reconfigurations

Verification
Arcade.PLC

– Cycle-Bmc [Boh & Ham
+

18]

Unit /

Integration
Inner ! ✓ ✗

VerifAps [Bec & Ulb
+

15; Wei & Ulb
+

20]

– Regression Verification

– Gtt and Rtt [Wei & Wie
+

17; Wei 21]

Unit /

Integration

Inner

Inner

✗

✗
✓

✓

✓

✓

TestIas

[Zel & Jaz
+

18; Zel & Wey 18; Zel & Jaz
+

19]

HW/SW

Integration
Outer ✗ ✓ ✓

Testing
Twistturn

[Thö & Rei
+

17; Thö 21]

HW/SW

Integration
Outer ✗ ✓ ✗

Regression Testing with CoDeSys

[Ule & Vog
+

17; Ule & Vog 18; Ule 18]

HW/SW

Integration
Inner ! ✓ !

Arcade.PLC

– TSG

[Sim & Fri
+

15; Boh & Sim
+

16; Sim & Kow 18]

Unit /

Integration
Inner ✓ ✗ ✗

Contribution of this Thesis

– TSG + TSA

Unit /

Integration
Inner ✓ ✗ ✓

of the individual category.

3.3.1 Verification of Programmable Logic Control Software
The verification of PLC software is subject to a lot of research not limited to

academia [Adi & Dar
+

15; Dar & Bla
+

15; Lop & Tou
+

22]. PLCverif is a tool

developed at the European Organization for Nuclear Research (CERN). It fea-

tures a software verification pipeline commonly found in other works such as

Arcade.PLC [Boh 21] in which a PLC program is transformed into an IR (see Sec-

tion 2.2), and verification tasks are delegated to state-of-the-art model checkers

with requirements expressed in some form of temporal logic such as Computation

Tree Logic (CTL) [Bai & Kat 08]. The following sections discuss and relate the

related work’s general ideas to this thesis’ contributions.

VerifAps

A significant bottleneck in applying formal methods is the lack of appropriate

system and requirement specifications [Bec & Mun
+

19]. Regression verification

circumvents this problem by reusing the version of the PLC software before the

reconfiguration, thus reducing the need to formalize requirements [Bec & Mun
+

19]. VerifAps is a software project for verifying automated production plants in

which such methods are explored.

54

3.3 Related Work

Regression Verification [Bec & Ulb
+

15] proposed a novel method for regression

verification of PLC software. The novelty of the contribution is the definition of

reactive conditional and relational equivalence and a proof methodology for PLC

software.

For this purpose, the trace semantics and trace equivalence of PLC programs

are introduced for the formalization of the relational equivalence [Bec & Ulb
+

15].

Furthermore, an environment model can be used to increase the precision of the

verification task. VerifAps accepts PLC programs in ST and transforms them

into an internal representation ST0, in which the program is fully unwound, and

invocations are inlined.

VCGs are obtained using a SE to derive a state transition system, which serves

as an input for a model checker. Full equivalence can be restricted using additional

constraints to allow deviations due to reconfigurations representing intended

behavior in the new program version [Bec & Ulb
+

15]. This shares the workload

between the tool-assisted invariant generation and the user by encoding both the

old and the new program version via coupling invariants [Bec & Ulb
+

15].

A successful evaluation of the PPU benchmark demonstrates the feasibility of

the proposed technique for practical evolution scenarios and uncovers a series of

regression bugs. Albeit slow, the results are promising.

Regression verification provides an equivalence proof for all possible inputs,

increasing confidence in the correctness of the reconfigured PLC software. It does

not require any functional or behavioral specification as the code of the prior version

is used. While proofs can be harder to obtain when the PLC software increases

in size, modularization tries to mitigate this problem which was investigated in

further research [Wei & Ulb
+

20; Wei 21].

Gtt and Rtt Generalized test tables (Gtt) are a new specification language for

defining test cases of functional properties used for verification [Wei & Wie
+

17].

The typical definition of a test case as a single table is lifted to capture multiple

similar behavioral cases via a formal temporal specification.

The table consists of four significant columns. The first column denotes the test

step, whereas the second and third column represents a set of input and output

variables. The fourth column represents the duration of the respective step. Each

input and output variable contains constraints on the respective variable. The rows

are applied consecutively from top to bottom [Wei & Wie
+

17]. Depending on the

given constraints in the duration column, a row or a group of rows can be skipped

or repeated [Wei & Wie
+

17].

The test conformance of a Gtt is defined as a two-party game over infinite words

between the system under test (SUT) and the tester [Bec & Cha
+

17]. The game is

encoded into a model which can be efficiently validated by state-of-the-art model

checkers [Bec & Cha
+

17], and the applicability and feasibility were demonstrated

in several experiments. Furthermore, an empirical study evaluated the usability

and comprehensibility of the added syntactical Gtt notations concerning table

55

3 Literature Review

generalization [Wei & Wie
+

17].

The concept of Gtts was extended to relational test tables (Rtts) in [Wei 21]. As

the name suggests, Rtts is an extension of Gtt for specifying relational properties.

A functional property is specified over the behavior of a single program run,

whereas a relational property is specified over multiple runs of a program [Wei 21].

The semantics are defined as a reduction to Gtt by supplying an instrumented

product program to the Gtt verification engine [Wei 21]. This allows Rtt to

use the existing program version as a functional specification. Only the relation

between the subsequent program versions have to be defined using a relational

specification to ensure that unwanted regressions were not introduced during the

reconfiguration [Wei 21].

TestIas

TestIas is a tool for verifying reconfigurable distributed control systems [Zel &

Jaz
+

19]. The underlying concept of component-based verification was researched

in several publications [Zel & Jaz
+

18; Zel & Wey 18]. The mode of operation of

verifying a reconfiguration is divided into three tasks.

Atfirst, an impact analysis on the dependency graphofa blockdefinition diagram

of the automation system for identifying affected components is performed. This

static CIA determines which components are affected by traversing the edges

representing a call to a component’s functionality. Next, a composition of the

behavior models of the affected components relevant to the requirements under

verification is carried out. Adapted Petri nets are used as the underlying behavior

model for the composition, which abstracts and encapsulates the internal behavior

of the component and focus on the representation of the interfaces.

The composition thus works on the level of interfaces of the adaptated Petri nets

and is able to verify interoperability [Zel & Wey 18]. Last, the affected subsystem

is verified using a state-of-the-art verification tool. The evaluation of TestIas

comprises several reconfiguration scenarios and requirement changes, showing

the technique’s feasibility.

Cycle-Bmc

Cycle-Bmc is a lifted variant of BMC to the domain of PLC software for checking

the reachability of unwanted behavior within a bounded number of steps [Boh

& Ham
+

18]. In order to achieve an efficient, incremental, and monotonic logical

characterization of the PLC software’s semantics, a combination of SE and dynamic

large-block encoding (LBE) is used [Boh & Ham
+

18].

Parts of this encoding are used in this thesis to generate summaries of FBs. The

PLC program under analysis is symbolically encoded in the topological order

induced by the underlying control-flow automaton (CFA). Using assumption

literals and solving under assumptions, the incremental solving capabilities of the

underlying SMT solver are exploited. The logical characterization is limited to

56

3.3 Related Work

inlined PLC programs. The evaluation shows that an analysis specially tailored

to the domain of PLC programs leads to significant improvements over related

work [Boh & Ham
+

18].

3.3.2 Testing of Programmable Logic Control Software
TwistTurn

Hardware-in-the-loop (HIL) simulation is a powerful technique to reduce the risk of

system failures leading to expensive damage [Thö & Rei
+

17]. The SUT is connected

to the HIL simulator and stimulated by test cases defined in a language extension

of ST. The output behavior of the SUT is analyzed with regard to user-defined

acceptance criteria.

In this testing scenario, a PLC is used to control an industrial plant simulated

using TwistTurn. This concept was lifted in [Thö & Sma
+

19], in which a ran-

domized test case generation framework was used. The test cases were generated

using fuzzing and executed via OPC Unified Architecture (OPC UA) using an

“ioco”-based analysis. OPC UA is a cross-platform standard for the exchange of

data between components in a SOA developed by the OPC Foundation [IEC 20].

An exhaustive evaluation using TwistTurn as a testing tool is available in [Thö

21].

Regression Testing with CoDeSys

In [Ule & Vog 16], RT for reconfigurable PLC software was researched. RT is

performed on the system level by re-evaluating functional test cases relating to the

whole CPPS and leveraging field data to build a correlation between the SUT and

the executed test suite [Ule & Vog 16].

The relation of system tests concerning the tested components is done in a guided,

semi-automatic approach in which a human operator is included to perform the

manual tasks [Ule & Vog 16]. This information is used to prioritize test cases that

are modification traversing in subsequent program versions. The concept was

expanded and deepened in further work [Ule & Vog 18], and further research has

looked at a coverage assessment approaches using behavior models [Ule & Vog
+

17].

In comparison to this thesis, untested behavior is identified on the system level

based on requirements [Ule & Vog 18]. However, the contribution of this thesis

focuses on generating test cases on the unit level using structural test coverage

criteria.

Arcade.PLC

[Sim & Fri
+

15] presents a method for automatic TSG for PLC software using

coverage metrics. A model checker is used to generate line orbranch coverage-based

57

3 Literature Review

test cases by iteratively deriving counterexamples. The counterexamples serve as

witnesses of reachability, and the input variables’ valuations are transformed into

test cases that can be executed on the actual hardware.

The algorithms are implemented in the tool Arcade.PLC and were evaluated

on a vendor-specific implementation of the PLCopen Safety suite. A refined and

more efficient approach targeting TSG for PLC software is presented in [Boh &

Sim
+

16]. A concolic testing strategy is employed to substitute the expensive model-

checking in case unreachable branches exist. Another heuristic for the reduction of

the analysis time in TSG¸ is the exploitation of mode spaces of a PLC program [Sim

& Kow 18].

Concluding Remarks

While there is work that focuses on the generation of test cases about the functional

perspective of PLC software, there is no work that tries to generate and augment a

test suite after a reconfiguration to the structural level. This thesis aims to fill this

research gap by improving the scalability of TSG and investigating the applicability

of SSE in the domain of PLC software for TSA.

58

Test Suite Generation 4
This chapter focuses on the algorithms for TSG. In the following sections, the

methodology and implementation of a BSE are explained in detail, and the design

space choices of Section 2.4 are discussed. Figure 4.1 shows the integration of TSG

Contribution of this chapter within the regression testing pipeline.

PLC Program

Version 𝑃

PLC Program

Version 𝑃′
Program

Unification

Change-Annotated

PLC Program

Test Suite

Classification

Reusable

Tests

Test Suite

Execution and

Classification

Obsolete

Tests

Retestable

Tests

Test Suite

Coverage

Identification

Test Suite

Maintenance

Test Suite

Augmentation

New Specification

Tests

New Structural

Tests

Test Suite

𝑇𝑃
all

Test Suite
Generation

Test Suite

𝑇𝑃′

all

Reconfiguration

++

unclassified

coverage

measure

Figure 4.1: Overview of the regression testing pipeline and contribution of this

chapter.

Figure adapted from Figure 3 in [Leu & Whi 89].

into the overall regression testing and software maintenance pipeline. Not only the

resulting test suite 𝑇𝑃
all but also the main algorithm driving the TSG are essential

components for the algorithms in the next Chapter 5 and thus explained in detail.

Furthermore, this chapter introduces the concept of summarization to increase

scalability concerning compositionality by using symbolic summaries.

Running Example The following reconfigured FB should serve as a running

example throughout this chapter.

59

4 Test Suite Generation

𝑏3 :

ENTRY

𝑏4 :

𝑥 ≥ 32

𝑏5 :

𝑦 ≔ 𝑦 + 1

𝑏6 :

𝑦 ≔ 𝑦

𝑏7 :

𝑦 ≥ 3

𝑏8 :

𝑧 ≔ true

𝑏9 :

𝑦 ≔ 0

𝑏10 :

𝑧 ≔ false

𝑏11 :

EXIT

CFG of Fb

(a) CFG of the old program version with

annotated summaries.

𝑏3 :

ENTRY

𝑏4 :

𝑥 ≥ 32

𝑏5 :

𝑦 ≔ 𝑦 + change(1, 2)
𝑏6 :

𝑦 ≔ 𝑦

𝑏7 :

𝑦 ≥ 3

𝑏8 :

𝑧 ≔ true

𝑏9 :

𝑦 ≔ 0

𝑏10 :

𝑧 ≔ false

𝑏11 :

EXIT

CFG of Fb′

(b) CFG of the reconfigured program for

which summaries should be checked.

Figure 4.2: CFGs of the old and the reconfigured program versions.

4.1 Compositional and Bounded Symbolic Execution
One goal of SE is to drive the execution of a program along certain paths of interest

to maximize a coverage criterion. Throughout this thesis, the acronyms SE, CSE,

and BSE are used interchangeably to abstract from the parametrizable algorithms

for the particular problem instance within the PAF. Frames are used to analyze

PLC programs with functions and FBs and are essential to provide some sense

60

4.1 Compositional and Bounded Symbolic Execution

of context-sensitivity in compositional analysis. Each frame carries the current

scope such that the variables are always uniquely referencable, which goes hand in

hand with the chosen IR, as discussed in Section 2.3. Another vital component of

a frame is the return vertex. It is mandatory to ensure that only realizable paths

are explored, which is in detail explained in Section 4.1.1.

Definition 4.1: Frame
A frame 𝑓 is a tuple 𝑓 = (𝐺, scope, 𝑏ℓreturn), where

𝐺 represents the CFG of the POU under analysis,

scope is the scope under which references to variables should be evalu-

ated,

𝑏ℓreturn denotes the vertex in the caller’s scope to which execution should

return after reaching the respective exit vertex of the callee.

Given Definition 2.10 of an execution state and Definition 4.1 of a frame, the

primary data structure for BSE is introduced next.

Definition 4.2: Execution Context
An execution context 𝑞 is a tuple 𝑞 = (𝑐, 𝑠, 𝒞), where

𝑐 ∈ N denotes the current execution cycle of the PLC program,

𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋) is an execution state,

𝒞 is a call stack carrying frames.

The execution context encapsulates the current execution state and serves as

the internal representation of the BSE’s state. Execution of a PLC program is

implemented by appropriate modification of the execution context 𝑞 in the PAF.

Algorithm 1 illustrates BSE’s method of operation.

Algorithm 1 Bounded Symbolic Execution

Input : Program 𝑃 = (𝐺,𝒢)
Local : Execution context 𝑞

Output : Test suite 𝑇

1: 𝑞 ← initialize(𝐺)
2: while ¬isGlobalTerminationCriteriaMet() do
3: // Algorithm 2

4: (𝑞′, tclocal) ← executeCycle(𝑞)
5: if tclocal then
6: terminate

7: end
8: cycle← cycle + 1

61

4 Test Suite Generation

9: end
10: return 𝑇

BSE receives the compiled program in the IR and generates a test suite𝑇 adhering

to a selected coverage criterion.

Initialization An initial execution context 𝑞 is derived from the main CFG of the

program 𝑃 in Line 1 of Algorithm 1. The current execution cycle 𝑐 is initialized

with 0, and the execution begins at the entry vertex 𝑏ℓ𝑒 of the main CFG. The

concrete and symbolic stores are initialized regarding their data and storage types.

Fresh symbolic variables are introduced for whole-program inputs, i.e., inputs

belonging to the main CFG. All other inputs and variables were flattened during

compilation and therefore are not initially treated symbolically. The call stack 𝒞 is

initialized with the main frame ⟨𝐺, getScope(𝐺), 𝑏ℓ𝑒 ⟩.
After initialization, the BSE is executed until the global termination criteria

in Line 2 of Algorithm 1 are reached. As the execution of PLC programs is ad

infinitum, the termination criteria can be either configured to stop the execution

after a predefined bound, execute as long as a certain time has passed, the coverage

criterion has been reached, or one or more of the prior criteria in combination has

occurred. As long as the BSE should not terminate, the CFG of the program 𝑃 is

executed on a per-cycle basis in Line 4 of Algorithm 1.

Executing Cycles In order to account for the cyclic execution mode of PLC

programs, BSE is able to execute the CFG on a per-cycle basis.

Algorithm 2 executeCycle

Input : Execution context 𝑞in B (𝑐, 𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋), 𝒞)
Local : Current execution context 𝑞, Priority queue 𝒬, Merge queueℳ, Test

suite 𝑇

Output : Succeeding execution context 𝑞′, local termination criteria tclocal
1: 𝒬.push(𝑞in)
2: while (𝒬 ≠ ∅ ∨ℳ ≠ ∅) do
3: if isLocalTerminationCriteriaMet() then
4: return (_, 𝑡𝑐local)
5: end
6: if 𝒬 = ∅ then
7: 𝒬.push(merge(ℳ))
8: end
9: 𝑞 ← 𝒬.pop()

10: // Algorithm 3

11: 𝑄′ B {𝑞′
1
, . . . , 𝑞′𝑛} ← executeVertex(𝑞)

12: for each 𝑞′ B (𝑐′, 𝑠′, 𝐶′) ∈ 𝑄′ do
13: if hasCoverageIncreased(𝑞′) then
14: 𝑇.push(deriveTestCase(𝑞′))

62

4.1 Compositional and Bounded Symbolic Execution

15: end
16: if reachedSucceedingCycle(𝑞′) then
17: return (𝑞′, _)
18: else
19: if reachedMergePoint(𝑞′) then
20: ℳ .push(𝑞′)
21: else
22: 𝒬.push(𝑞′)
23: end
24: end
25: end
26: end

Algorithm 2 shows how execution is guided through a cycle. A cycle is executed

as long as either execution contexts exist for exploration or execution contexts

are waiting to be merged (see Line 2 of Algorithm 2). In order to guarantee the

progress of BSE, Lines 3 to 4 of Algorithm 2 check whether a local termination

criterion is fulfilled. In case BSE runs into a timeout or the wanted coverage has

been reached, execution of the cycle is stopped. If the exploration queue 𝒬 does

not contain any execution contexts, the engine performs a merge of the enqueued

execution contexts at the respective merge points in Lines 6 to 8. Before continuing

with the rest of Algorithm 2, the merge strategy is explained next.

4.1.1 Merge Strategy
Merging is an important technique to alleviate the path explosion problem men-

tioned in Section 2.4. During initialization in Line 1 of Algorithm 1, the queue of

merge pointsℳ is populated with all possible vertices of the CFG at which control

flow joins with respect to realizable paths.

Definition 4.3: Merge Point

A merge point mp is a tuple mp = (scope, depth, 𝑏ℓ , 𝑏ℓreturn), where

scope denotes the current calling scope,

depth denotes the call depth,

𝑏ℓ denotes the vertex at which merging should occur,

𝑏ℓreturn denotes the vertex to which the execution context in the current

calling scope returns to.

A realizable path represents a valid interprocedural path, i.e., a path in which

each interprocedural return edge corresponds to the preceding interprocedural

call edge [Rep & Hor
+

95].

63

4 Test Suite Generation

Example 4.1: Infeasible and Realizable Paths
Infeasible paths do not correspond to actual executions and must be consid-

ered when merging.

𝑏0 :

ENTRY

𝑏0 :

CALL

𝑏0 :

RETURN

𝑏0 :

EXIT

𝑏3 :

ENTRY

𝑏3 :

EXIT

𝑏0 :

ENTRY

𝑏0 :

CALL

𝑏0 :

RETURN

𝑏0 :

EXIT

. . .

intraprocedural

call-to-return-site

edge

. . .

. . .

. . .

intraprocedural

call-to-return-site

edge

. . .

CFG of 𝑃

Figure 4.3: Two calls under different execution contexts to the same callee.

The realizable path is colored green, and the infeasible path is colored red.

The definition of merge points prevents the merging of infeasible paths as it

considers their calling contexts.

The merge strategy adheres to the representation of callees in the IR (see Sec-

tion 2.2) and avoids merging of interprocedural invalid paths. It always prioritizes

lower labeled vertices at the same depth.

Another strategy worth discussing is the exploration strategy hidden behind

Line 9 of Algorithm 2.

4.1.2 Exploration Strategy
The execution follows a cycle-based and depth-first exploration strategy similar to

prior work [Boh & Sim
+

16] with a parametrizable timeout, coverage, and cycle

bound [Gro & Völ
+

22b]. The global termination criteria in Line 2 of Algorithm 1

feature a configurable cycle exploration bound that can be explicitly configured

to the analyzed program to cope with increasing computation time induced by

64

4.1 Compositional and Bounded Symbolic Execution

the cyclic execution of PLC programs. This guarantees termination even in the

presence of unreachable branches (discussed in Section 4.1.4).

Internally, a heuristically sorted priority queue 𝒬 is used, which determines

the order of execution of the execution contexts 𝑞. When retrieving an execution

context 𝑞 from the priority queue 𝒬, such as in Line 9 of Algorithm 2, execution

contexts with a lower cycle count and deeper nested scopes are prioritized over

“shallow” execution contexts. Ultimately, this results in executing all feasible

execution paths through one execution cycle before continuing the execution in

the next cycle [Gro & Völ
+

22b].

Another benefit of adapting the depth-first search heuristic to behave like a

pseudo-breadth-first search through one execution cycle is the generation of con-

cise test cases with no unnecessary executed cycles reaching the same vertices.

Furthermore, the decision to prioritize execution contexts with deeper nested

paths over the execution contexts with shallower nested paths ensures pushing the

exploration frontier forward while giving rise to merge opportunities at control-

flow joint points.

After retrieving the next execution context 𝑞 from the exploration queue, it is

executed in Line 11 of Algorithm 2.

Executing Vertices Depending on the type of vertex executed by the BSE, different

modifications of the execution context 𝑞 are performed.

Algorithm 3 executeVertex

Input : Execution context 𝑞 B (𝑐, 𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋), 𝒞)
Output : Set of succeeding execution contexts 𝑄′ B {𝑞′

1
, . . . , 𝑞′𝑛}

1: switch handleVertex(𝑏ℓ) do
2: case PROGRAM_ENTRY do
3: 𝑏ℓ ′ ← getSucceedingVertex(𝑏ℓ)
4: 𝑠′← (𝑏ℓ ′ , 𝜌, 𝜎,𝜋)
5: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′, 𝐶)

)
6: end
7: case FUNCTION_BLOCK_ENTRY do
8: // analogous to PROGRAM_ENTRY
9: 𝑏ℓ ′ ← getSucceedingVertex(𝑏ℓ)

10: 𝑠′← (𝑏ℓ ′ , 𝜌, 𝜎,𝜋)
11: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′, 𝐶)

)
12: end
13: case REGULAR do
14: // Algorithm 4

15: 𝑄′← executeInstruction(𝑞)
16: end
17: case PROGRAM_EXIT do
18: 𝜌′← 𝜌[𝑣 ↦→ random() | 𝑣 ∈ 𝑽input]
19: 𝜎′← 𝜎[𝑣 ↦→ 𝑣fresh | 𝑣 ∈ 𝑽input]

65

4 Test Suite Generation

20: 𝑠′← (𝑏ℓ ′ , 𝜌′, 𝜎′,𝜋)
21: 𝑄′.push

(
𝑞′ B (𝑐 + 1, 𝑠′, 𝐶)

)
22: end
23: case FUNCTION_BLOCK_EXIT do
24: (_, _, 𝑏ℓreturn) ← 𝒞.top()
25: 𝐶′← 𝐶.pop()
26: 𝑠′← (𝑏ℓreturn , 𝜌, 𝜎,𝜋)
27: 𝑄′.push(𝑞′ B (𝑐, 𝑠′, 𝐶′))
28: end
29: end
30: return 𝑄′

Upon encountering a program or FB entry vertex, the execution context is

updated with the succeeding vertex induced by the underlying structure of the

CFG.

The exit vertex of the main program or of an FB is handled uniquely. Upon

encountering the program exit vertex, the execution context is prepared for the

subsequent cycle by updating the concrete store with random valuations and

introducing fresh symbolic variables for the symbolic store of the program input

variables. The semantics follow the operational semantics defined in Appendix A,

and the random() function assigns each input variable 𝑣 ∈ 𝑽input a type-specific

random value 𝑑 ∈ 𝑫. In contrast, for each input variable in the symbolic store 𝜎, a

fresh symbolic input variable 𝑣fresh is introduced.

Implicitly, valuations for the local and output variables are coupled to keep their

concrete valuations from the previous cycle and reference the symbolic valuations

from the prior cycle, if any. Furthermore, the cycle count is increased, leading to

the termination of the local execution of the respective execution context through

this cycle in the calling algorithm.

The handling of FB exit vertices differs from the program exit in that only the call

stack 𝒞 is modified, and the succeeding vertex is retrieved from the current frame.

Do note that the handling of the call instruction is responsible for modifying the

call stack 𝒞 instead of handling the FB’s entry vertex.

Before continuing with the handling of regular vertices in Line 15 of Algorithm 3,

the Lines 12 to 24 of Algorithm 2 are discussed. Several checks are performed

for each succeeding execution context 𝑞′, which were derived from executing the

vertex of the current execution context. In case the execution leads to an increase

in coverage by, for example, the discovery of a yet uncovered vertex denoting a

successor of a branching vertex, a test case is derived from the respective execution

context and added to the test suite. Afterward, it is checked whether the execution

context reached the next cycle, and execution is stopped if the beginning of a new

cycle is reached. Concluding the discussion of Algorithm 2 with Lines 19 to 22,

it is decided whether the resulting execution context reached a merge point and

should be enqueued for merging or further exploration.

Next follows the remaining discussion of Algorithm 3 and Algorithm 4.

66

4.1 Compositional and Bounded Symbolic Execution

4.1.3 Assignments, Branches, and Calls
Algorithm 4 executes instructions under the current execution context 𝑞. The

semantic effects of the instructions are captured by modification of the respective

stores and the current execution context 𝑞.

Algorithm 4 executeInstruction

Input : Execution context 𝑞 B (𝑐, 𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋), 𝒞)
Local : Applicable summaries 𝑆

Output : Set of succeeding execution contexts 𝑄′ B {𝑞′
1
, . . . , 𝑞′𝑛}

1: switch instructionAt(𝑏ℓ) do
2: case 𝑣 B 𝑒 do
3: 𝑏ℓ ′ ← getSucceedingVertex(𝑏ℓ)
4: 𝜌′← 𝜌[𝑣 ↦→ eval𝜌(𝑒)]
5: 𝜎′← 𝜎[𝑣 ↦→ eval𝜎(𝑒)]
6: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′ = (𝑏ℓ ′ , 𝜌′, 𝜎′,𝜋), 𝐶)

)
7: end
8: case 𝑏 do
9: 𝑏ℓ ,true← getSucceedingPositiveVertex(𝑏ℓ)

10: 𝑏ℓ ,false← getSucceedingNegativeVertex(𝑏ℓ)
11: if eval𝜌(𝑏) then
12: 𝜋′← 𝜋 ∧ eval𝜎(𝑏)
13: if tryFork(𝜋 ∧ eval𝜎(¬𝑏)) then
14: 𝜌′← model(𝜋 ∧ eval𝜎(¬𝑏))
15: 𝑄′.push

(
𝑞′forked B (𝑐, 𝑠

′ = (𝑏ℓ ,false, 𝜌′, 𝜎,𝜋 ∧ eval𝜎(¬𝑏)), 𝐶)
)

16: end
17: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′ = (𝑏ℓ ,true, 𝜌, 𝜎,𝜋′), 𝐶)

)
18: else
19: 𝜋′← 𝜋 ∧ eval𝜎(¬𝑏)
20: if tryFork(𝜋 ∧ eval𝜎(𝑏)) then
21: 𝜌′← model(𝜋 ∧ eval𝜎(𝑏))
22: 𝑄′.push

(
𝑞′forked B (𝑐, 𝑠

′ = (𝑏ℓ ,true, 𝜌′, 𝜎,𝜋 ∧ eval𝜎(𝑏)), 𝐶)
)

23: end
24: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′ = (𝑏ℓ ,false, 𝜌, 𝜎,𝜋′), 𝐶)

)
25: end
26: end
27: case 𝐺() do
28: 𝑏ℓreturn ← getSucceedingIntraproceduralVertex(𝑏ℓ)
29: 𝒞.push(𝐺′, getScope(𝐺′), 𝑏ℓreturn)
30: 𝑆applicable← findApplicableSummary(𝑞)
31: for each 𝑠 ∈ 𝑆applicable do
32: 𝑞′← applySummary(𝑞)
33: 𝒬′.push(𝑞′)
34: end

67

4 Test Suite Generation

35: end
36: end

Assignments Lines 2 to 7 of Algorithm 4 are responsible for handling the assign-

ment instruction. The succeeding vertex is determined from the underlying CFG,

and the concrete and symbolic stores are updated via the respective evaluation

function eval (see Definitions 2.7 to 2.8) concerning the written variable. The

bracket notation denotes the usual replacement for the specified variable in the

stores as defined in Section 2.3.

Branches Whenever a branching instruction is encountered, Lines 8 to 26 of

Algorithm 4 analyze whether the control flow can branch in either the positive,

the negative, or both directions. Depending on the concrete valuations of the

current execution context 𝑞, Line 11 either evaluates to true or false. As the cases are

mirrored and structurally analogous, the positive case is discussed in the following.

In case the condition of the branching instruction evaluates to true, the execution

is continued with the positive branch, and the path constraint is updated symbol-

ically. Next, Line 13 checks whether the other path would also be feasible under

the current path constraint with the negated condition. If the underlying SMT

solver returns a satisfying solution, the model can be retrieved to instantiate the

concrete store, governing the concrete valuations that lead to this branch. A forked

execution context is created and added to the set of succeeding execution contexts.

Calls Call instructions are lowered to a sequence of pre- and post-assignments

(see Appendix A for further details). Therefore, Lines 27 to 35 are responsible for

modifying the call frame stack and updating the control flow appropriately. While

notadhering to a feasible execution, the underlying CFG exposes an intraprocedural

control-flow edge that relates the calling vertex with the returning vertex (see

Line 28 of Algorithm 4) in the calling CFG. This way, the frame carries context-

sensitive information regarding the calling context, enabling the merge strategy

only to consider feasible execution paths.

Example 4.2: Symbolic Execution through the Running Example
This example shows how test cases may be derived during SE. Consider the

following execution context enters the FB of Figure 4.2a during SE.

𝜋 : true
𝜌 : {𝑥 ↦→ 32, 𝑦 ↦→ 0, 𝑧 ↦→ false}
𝜎 : {𝑥 ↦→ 𝑥0}

After the execution of the branch in Lines 8 to 26 of Algorithm 4, the set of

succeeding execution contexts 𝑄′ holds the two execution contexts 𝑞1 and 𝑞2.

68

4.1 Compositional and Bounded Symbolic Execution

The resulting execution contexts are illustrated in Figure 4.4.

𝜋 : true
𝜌 : {𝑥 ↦→ 32, 𝑦 ↦→ 0, 𝑧 ↦→ false}
𝜎 : {𝑥 ↦→ 𝑥0}𝜋 : true
𝜌 : {𝑥 ↦→ 32, 𝑦 ↦→ 0, 𝑧 ↦→ false}
𝜎 : {𝑥 ↦→ 𝑥0}

𝜋 : (𝑥 ≥ 32)
𝜌 : {𝑥 ↦→ 32, 𝑦 ↦→ 0, 𝑧 ↦→ false}
𝜎 : {𝑥 ↦→ 𝑥0}

eval𝜌
(
(𝑥 ≥ 32)

)
= true

𝜋 : ¬(𝑥 ≥ 32)
𝜌 : {𝑥 ↦→ 0, 𝑦 ↦→ 0, 𝑧 ↦→ false}
𝜎 : {𝑥 ↦→ 𝑥0}

𝑞1 𝑞2

Is tryFork(𝜋 ∧ ¬(𝑥 ≥ 32))
under (𝜌, 𝜎) SAT?

Figure 4.4: Intermediate state of the SE after a fork has occurred.

These execution contexts are propagated through Algorithm 3 to Algorithm 2,

for which two test cases are generated in Lines 13 to 15 as both vertices were

traversed for the first time, and hence the overall coverage has increased. The

derived test cases consist of the respective input valuations in each cycle and

the initial concrete state valuations. The resulting test cases are depicted

in Figures 4.5 to 4.6 in the XML format used by the PAF.

1 <?xml version="1.0" encoding="utf-8"?>
2 <testcase >
3 <initialization >
4 <valuation variable="P.b">false </valuation >
5 <valuation variable="P.f.x">0</valuation >
6 <valuation variable="P.f.y">0</valuation >
7 <valuation variable="P.f.z">false </valuation >
8 </initialization >
9 <input cycle="0">
10 <valuation variable="P.a">32</valuation >
11 </input>
12 </testcase>

Figure 4.5: Resulting test case for execution context 𝑞1.

69

4 Test Suite Generation

1 <?xml version="1.0" encoding="utf-8"?>
2 <testcase >
3 <initialization >
4 <valuation variable="P.b">false </valuation >
5 <valuation variable="P.f.x">0</valuation >
6 <valuation variable="P.f.y">0</valuation >
7 <valuation variable="P.f.z">false </valuation >
8 </initialization >
9 <input cycle="0">
10 <valuation variable="P.a">0</valuation >
11 </input>
12 </testcase>

Figure 4.6: Resulting test case for execution context 𝑞2.

The test cases depict fully qualified variable identifiers of the running example

shown in Figure 2.3. In order to obtain the corresponding state and output

valuations, the test cases must be simulated using the semantics of the CFG

under test until the end of the cycle is reached.

4.1.4 Detection of Unreachable Branches
Detecting unreachable branches is a vital task during SE, affecting the analysis’s

performance. While the proposed Algorithm 4 prevents the encoding of infeasible

paths in Lines 8 to 26, the exploration strategy still tries to guide SE into paths that

are not yet explored. If the paths are unreachable, they remain unexplored, and

SE might not terminate if no other termination criteria, such as timeout or cycle

bound, are defined.

Example 4.3: Unreachable Paths
Figure 4.7 shows a CFG with unreachable paths.

70

4.1 Compositional and Bounded Symbolic Execution

. . .

𝑏1 :

¬Activate

. . .
𝑏3 :

DiagCode = 0

𝑏4 :

Activate

𝑏5 :

DiagCode B 0

𝑏6 :

¬Activate

.

eval𝜌(Activate) = true

Infeasible
Edges

Figure 4.7: An excerpt of an implementation of the SF_Antivalent FB from

the PLCopen Safety suite.

Once the execution reaches 𝑏3, the value of the Boolean variable Activate is

invariantly true. This renders the negative branch for the decision at 𝑏4 to

be infeasible for all execution contexts traversing 𝑏3 and therefore makes the

immediate path from 𝑏4 to 𝑏6 unreachable.

Currently, the SA of this thesis is not capable of performing abstract interpretation

to detect unreachable branches. For this purpose, the algorithms from Crab
1

are

leveraged to build a value set analysis (VSA) as Crab is a language-agnostic library

for SA. VSA aims to compute the possible valuations a variable can take at each

vertex in the CFG. This information can then be used to deduce statically whether

a path is reachable or not.

1https://github.com/seahorn/crab

71

https://github.com/seahorn/crab

4 Test Suite Generation

In order to leverage Crab, the IR of this thesis needs to be transformed into the

IR of Crab. While the static single assignment (SSA) pass has been abandoned for

the use in SE (see Section 4.1.5), it is applied to the IR as part of the transformation

pipeline to obtain a “Crab-analyzable” IR. The transformation pipeline consists

of several steps. At first, the CFG is transformed using a basic block (BB) pass [Aho

& Set
+

86]. Next, the instructions and expressions of the IR are transformed into

three-address code (TAC) [Aho & Set
+

86]. Then, call instructions need to be

rewritten to adhere to the expected internal structure of Crab’s IR to be able

to perform interprocedural SA. Last, the SSA pass is applied, and 𝜙 functions

are resolved appropriately by pushing them into the predecessor vertices. Even

though the information obtained by the 𝜙 functions is not exploited, the SSA pass

is essential in assuring the unique variable versioning throughout all instructions

and expressions. Finally, the transformed IR is marshaled into Crab’s IR and the

VSA is performed.

A precise numerical abstract domain has been chosen to derive sound bounds

for the valuation of variables. While precise, the Boxes domain [Gur & Cha 10]

is an expensive domain. The Boxes domain is sensitive to the number of “splits”

with regard to each variable, which are introduced by Boolean operations and join

operations at points where the control flow merges [Gro & Völ
+

22b]. Unfortunately,

PLC programs typically exhibit a “state-machine” like behavior leading to a lot of

“splits” on variables, and their cyclic dependency severely inhibits the application

of Crab’s VSA [Gro & Völ
+

22b]. Anotherdownside in applying the transformation

pipeline is the bloat-up of the CFG representation as the number of variables and

vertices to consider significantly increases for the VSA.

To still reuse at least some information from the VSA, the analysis behavior

can be tuned to achieve a trade-off between precision and run time. The Boxes

domain was configured with a low widening delay and the decision to convexify

the information after a certain amount of disjunctions resulting from splits. Overall,

this made the analysis applicable, yielding usable but imprecise results.

4.1.5 Static Single Assignment and Variable Versioning
Typically, the IR is represented in SSA form [Bra & Buc

+
13]. While the transforma-

tion of the IR presented in this thesis to an equivalent SSA form has been efficiently

implemented using a state-of-the-art algorithm [Bra & Buc
+

13], the introduction

of 𝜙 functions has hindered the use of other algorithms. A 𝜙 function is placed

at join points of the CFG and denotes the preceding definitions of a variable 𝑣

reaching that specific vertex. For using an external SA tool, e.g., such as Crab,

the 𝜙 functions had to be “pushed” back into the respective immediate predeces-

sors. Hence, the SSA transformation pass was abandoned prior to performing SE.

Instead, variables are versioned on the fly during SE. Consider the assignment

𝑣 B 𝑣 + 1 which is versioned using numerical subscripts as 𝑣𝑖+1 B 𝑣𝑖 + 1. This ben-

efits merging and summary reuse as it is possible to distinguish between multiple

72

4.2 Generation of Summaries

versions of the same variable and identify their modifications [Lin 17].

4.2 Generation of Summaries
Figure 4.8 gives an overview of the interplay between SE, summary generation,

and the reuse of summaries generated from program version 𝑃 in the reconfigured

program version 𝑃′. This chapter focuses first on the SE implemented in this thesis

Syntactic Reconfiguration

L0

L1

L2

L3

L4

ENTRY

EXIT

L5

L6

ENTRY

EXIT

Version 𝑃

I/O

R1

R3

R0

R2

R4

ENTRY

EXIT

R5

R6

ENTRY

EXIT

Version 𝑃′

I/O

Verification Condition Generation

+ Summary Generation

Static Change Impact Analysis

+ Validity Checking

Symbolic

Execution

Summaries

Valid

Summaries

Test Suite

𝑇

Test Suite

𝑇′

Figure 4.8: Overview of the interplay between symbolic execution, summary gen-

eration, and reuse across program versions.

Figure taken from Fig. 3 in [Gro & Völ
+

22a].

which is used to generate test cases adhering to branch coverage. Next, the VCG for

generating summaries and the embedding in the SE is explained. Last, the reuse

of the generated summaries and how to check that summaries are still valid after

a program reconfiguration is illustrated.

The generation of summaries is detached from the SE [Lin & Mil
+

15; Lin

& Mil
+

16]. The summarization pass identifies all code fragments suitable for

summarization [Lin & Mil
+

16]. In order to summarize suitable code fragments,

the algorithm of [Boh & Ham
+

18] is used to derive static verification conditions

(VCs) for PLC programs. Currently, summarization is limited to whole FBs.

An alternative definition to the Definition 2.11 [God 07; God & Lah
+

11] in Sec-

tion 2.4.4 is used to represent summarized paths and is presented next.

Definition 4.4: Summary Representation during VCG

A summary is a three-tuple 𝑆 = (ℬ ,𝒜 ,ℋ), where

ℬ represents the set of assumption literals encoding the flow of control

through the summarized code fragment,

𝒜 is the set of assumptions occurring on the summarized path,

73

4 Test Suite Generation

ℋ is the set of hard constraints occurring on the summarized path.

Each summary uniquely characterizes its summarized path via its assumption lit-

eralsℬ and the occurring assumptions𝒜 and hard constraintsℋ on that path [Gro

& Völ
+

22a]. This alternative representation was chosen as Definition 2.11 is not

immediately applicable to CSE for PLC programs. The “statefulness” of FBs

(see Section 2.1.1) conflicts with the loss of context information during summa-

rization. As local and output variables may occur on the path constraint, there

is no clear separation between inputs and state variables and, therefore, no clear

separation between input pre- and output post-conditions. Instead of lowering

and substituting valuations to adhere to Definition 2.11, the assumptions must also

keep track of state variables as their valuations persist through multiple calls along

the cycle [Gro & Völ
+

22a].

Different from Algorithm 2, the execution contexts are not merged when the

control flow is joined. Instead, the CFG of the respective FB is explored depth-

first, starting from the initial execution context and for each execution context

forked during the execution until the exit vertex is reached. Each execution context

reaching the exit of the FB represents a feasible execution path through that FB.

Thus, summarization is done per path and illustrated in Example 4.4.

Example 4.4: Function Block Summarization
Figure 4.2a shows the CFG of the running example. The corresponding

summarized paths are reflected by the respective color-coded summaries

below.

ℬ1 = {𝑏3→ true, 𝑏4→ 𝑏3, 𝑏5→ 𝑏4, 𝑏7→ 𝑏5, 𝑏8→ 𝑏7, 𝑏9→ 𝑏8, 𝑏11→ 𝑏9}
𝒜1 = {𝑏5→ (𝑥0 ≥ 32), 𝑏8→ (𝑦1 ≥ 3)}
ℋ1 = {𝑏5→ (𝑦1 = 𝑦0 + 1), 𝑏8→ (𝑧1 = true), 𝑏9→ (𝑦2 = 0)}

ℬ2 = {𝑏3→ true, 𝑏4→ 𝑏3, 𝑏5→ 𝑏4, 𝑏7→ 𝑏5, 𝑏10→ 𝑏7, 𝑏11→ 𝑏10}
𝒜2 = {𝑏5→ (𝑥0 ≥ 32), 𝑏10→ ¬(𝑦1 ≥ 3)}
ℋ2 = {𝑏5→ (𝑦1 = 𝑦0 + 1), 𝑏10→ (𝑧2 = false)}

ℬ3 = {𝑏3→ true, 𝑏4→ 𝑏3, 𝑏6→ 𝑏4, 𝑏7→ 𝑏6, 𝑏8→ 𝑏7, 𝑏9→ 𝑏8, 𝑏11→ 𝑏9}
𝒜3 = {𝑏6→ ¬(𝑥0 ≥ 32), 𝑏8→ (𝑦3 ≥ 3)}
ℋ3 = {𝑏6→ (𝑦3 = 𝑦0), 𝑏8→ (𝑧3 = true), 𝑏9→ (𝑦4 = 0)}

ℬ4 = {𝑏3→ true, 𝑏4→ 𝑏3, 𝑏6→ 𝑏4, 𝑏7→ 𝑏6, 𝑏10→ 𝑏7, 𝑏11→ 𝑏10}
𝒜4 = {𝑏6→ ¬(𝑥0 ≥ 32), 𝑏10→ ¬(𝑦3 ≥ 3)}
ℋ4 = {𝑏6→ (𝑦3 = 𝑦0), 𝑏10→ (𝑧4 = false)}

74

4.2 Generation of Summaries

The entry of a summarized FB is unconditionally part of every path through

the FB and is denoted by the implication 𝑏3→ true. The conditions at branch

points such as at 𝑏4 and 𝑏7 are pushed into the succeeding blocks, e.g., 𝑏5→
(𝑥0 ≥ 32), in correspondence with the encoding of the “assume” instruction

in [Boh 21]. This is achieved by rewriting the branching instructions of the

IR used in this thesis through pushing the respective expressions into the

succeeding basic blocks.

Nonetheless, while the summary representation of Definition 4.4 facilitates the

generation through the use of the assumption literals ℬ, it is of no use when trying

to apply summaries during SE [Gro & Völ
+

22a]. The major problem lies in how

paths are characterized, which is not invariant to potential reconfigurations of

the PLC program, such as adding code. Therefore, the assumption literals are

stripped from the summary representation, resulting, for example, in the following

summary, which summarizes the right-outermost path in Figure 4.2a.

𝒜4 = {¬(𝑥0 ≥ 32) ∧ ¬(𝑦1 ≥ 3)}
ℋ4 = {(𝑦1 = 𝑦0) ∧ (𝑧1 = false)}

To be reusable, the variable occurring in the assumptions and hard constraints are

re-versioned while keeping the order of execution intact [Gro & Völ
+

22a]. In a

wider sense, the assumptions denoted by𝒜 and the hard constraints denoted by

ℋ can be understood as “pre-” and “post-conditions” as defined in Definition 2.11,

respectively. As this summary represents the equivalence class of paths that are

rooted in concrete and feasible executions throughout the summarized FB, they

are still considered to be under-approximating “must”-summaries [Gro & Völ
+

22a].

The reason for generating summaries before execution becomes apparent when

looking at the application of summaries. Suppose summarization would occur

during SE of Figure 4.2a. Assuming the 0-default initialization on the calling

execution context resulting in the concrete store 𝜌 ≔ {𝑥0 ↦→ 0, 𝑦0 ↦→ 0, 𝑧0 ↦→ false},
the true branch succeeding 𝑏7 may never be executed because there would always

exist an applicable summary that takes the right-most outer path through the FB.

To prevent this, the execution context can be executed to uncover further feasible

paths along the CFG of the analyzed FB. However, additional execution, even

though a summary is applicable, would circumvent the use of summaries in the

first place. Nevertheless, in case of incomplete summarization, it is necessary as it

is generally not statically deducible which path is taken before the actual execution.

75

4 Test Suite Generation

4.3 Application of Summaries
Whenever a call is encountered, it is checked in Lines 27 to 35 of Algorithm 4

whether an applicable summary under the current execution context 𝑞 exists or not.

A summary is applicable if the assumptions and hard constraints of the summary

conjoined with the current context’s symbolic valuations reaching the summary’s

application point are satisfiable [Gro & Völ
+

22a]. In case multiple summaries are

deemed applicable, an appropriate amount of execution contexts corresponding

to the number of applicable summaries must be forked. The applicability check

boils down to a query to a SMT solver.

Algorithm 5 findApplicableSummary

Input : Execution context 𝑞 B (𝑐, 𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋), 𝒞), Set of summaries 𝑆

Local : SMT solver 𝒮
Output : Set of applicable summaries 𝑆applicable

1: 𝑓 ← 𝑞.getFrame()
2: 𝐺 B (𝑽 , . . .) ← 𝑓 .getCFG()
3: for each 𝑣 ∈ 𝑽 do
4: 𝑣reversioned← reversion(𝑣)
5: for each 𝑣′ ∈ 𝑽 do
6: 𝛾← 𝜎(𝑣′)
7: 𝛾reversioned← 𝛾.substitute(𝑣, 𝑣reversioned)
8: 𝜎reversioned.insert

(
⟨𝑣reversioned, 𝛾reversioned⟩

)
9: end

10: for each 𝜋𝑖 ∈ 𝜋 do
11: 𝜋reversioned.push(𝜋𝑖 .substitute(𝑣, 𝑣reversioned))
12: end
13: end
14: for each 𝑠 ∈ 𝑆 of 𝐺 do
15: 𝒮.add(𝜎reversioned,ℋ𝑠)
16: 𝒮.add(𝜋reversioned,𝒜𝑠)
17: end

Checking whether a summary is applicable can be subdivided into two steps.

First, the execution context 𝑞 must be aligned with the summaries. Because

summarization is a local analysis with regards to the summarized FB, it is given

that no variables outside of the summarization’s scope appear in the assumptions

and hard constraints [Gro & Völ
+

22a]. The “re-versioning” thus is only limited to

the interface of the callee’s CFG, which is retrieved from the call stack 𝒞 in Lines 1

to 2 of Algorithm 5. Therefore, the variables occurring in the symbolic valuations

and the path constraint must be re-versioned to be aligned with the summaries’

versions. This version alignment is necessary, as summaries are stored as reusable

constraints without context, i.e., they do not adhere to any control flow other than

the induced execution order due to the variable versioning.

76

4.3 Application of Summaries

Therefore, in Lines 3 to 9 of Algorithm 5, the symbolic valuations from the

symbolic store 𝜎 are extracted, and each occurrence of the respective variable 𝑣

is substituted by its “re-versioned” version 𝑣reversioned. The re-versioning process

aligns the identifiers of the flattened variables relative to version 0. For example,

the symbolic valuations of the symbolic store 𝜎 B {𝑥7 ↦→ 𝑦2 + 𝑧5, 𝑥9 ↦→ 𝑥7 + 1} of

the execution context 𝑞 reaching the summary’s application point are reversioned

to 𝜎reversioned B {𝑥0 ↦→ 𝑦0 + 𝑧0, 𝑥1 ↦→ 𝑥0 + 1}. As variables are versioned on the

fly during SE, and their global versioning simulates a kind of SSA form, locally

re-versioning to check for applicability does not interfere with the consistency of

the global version store.

However, suppose the summary is indeed applicable. In that case, the variables

must be appropriately re-versioned in Line 32 of Algorithm 4 to ensure consistency

among other execution contexts 𝑞′waiting in the priority queue𝒬. The substitution

ofvariables by their re-versionedversion is also applied to the expressions occurring

in the path constraint 𝜋. Next, the execution context’s re-versioned symbolic

valuations and the summary’s hard constraints are added to the solver’s assertion

stack.

Example 4.5: Finding an applicable Summary

Consider the execution context 𝑞 = (𝑐, 𝑠, 𝒞) reaching a summarization point,

where 𝑐 = 2, the call stack consists of only the main frame, and the path

constraint and stores of the execution state look as follows:

𝜋 ≔ true
𝜌 ≔ {𝑥2

0
↦→ 0, . . .}

𝜎 ≔ {𝑥2

0
↦→ 𝑥2

0
, 𝑦2

0
↦→ ite

(
(𝑥1

0
≥ 32) ∧ ¬(𝑦1

4
≥ 3), 𝑦1

4
, 𝑦1

2

)
, . . .} .

Note that the upper index 𝑖 of a variable 𝑥 𝑖
𝑗

denotes the respective cycle

number, and the lower index 𝑗 is the implicit “SSA”-version. The value

of 𝑦2

0
is dependent on choices in prior cycles and contains further nested

ite-expressions.

77

4 Test Suite Generation

Context

Summary

Manager

SMT

Solver

Summaries

Summarization

Point

check

sat /

unsat coreprune

Figure 4.9: Overview of summary application.

The summary manager tries to find an applicable summary given the execu-

tion context by finding a satisfying assignment for the re-versioned versions

of the summary’s variables under the current path constraint and valuations

of the current stores.

The summary manager evaluates each of the four previously generated

summaries of Example 4.4, which are depicted in their re-versioned forms

in Figure 4.10.

𝒜1 = {𝑏5→ (𝑥0 ≥ 32), 𝑏8→ (𝑦1 ≥ 3)}
ℋ1 = {𝑏5→ (𝑦1 = 𝑦0 + 1), 𝑏8→ (𝑧1 = true), 𝑏9→ (𝑦2 = 0)}

𝒜2 = {𝑏5→ (𝑥0 ≥ 32), 𝑏10→ ¬(𝑦1 ≥ 3)}
ℋ2 = {𝑏5→ (𝑦1 = 𝑦0 + 1), 𝑏10→ (𝑧1 = false)}

𝒜3 = {𝑏6→ ¬(𝑥0 ≥ 32), 𝑏8→ (𝑦1 ≥ 3)}
ℋ3 = {𝑏6→ (𝑦1 = 𝑦0), 𝑏8→ (𝑧1 = true), 𝑏9→ (𝑦2 = 0)}

𝒜4 = {𝑏6→ ¬(𝑥0 ≥ 32), 𝑏10→ ¬(𝑦1 ≥ 3)}
ℋ4 = {𝑏6→ (𝑦1 = 𝑦0), 𝑏10→ (𝑧1 = false)}

Figure 4.10: Re-versioned summarized paths of the FB depicted in Fig-

ure 4.2a.

78

4.3 Application of Summaries

The evaluation of the first summary yields a satisfying assignment, i.e., a

valuation for the input variable 𝑥0 ↦→ 32 that satisfies the assumptions and

hard constraints of the summary while respecting the current context’s path

constraint and valuations. On the contrary, checking the third summary for

applicability yields UNSAT, as the valuation of 𝑦2

0
depends on the control

flow choices of the prior cycles and under the 0-default initialization 𝑦0

0
↦→ 0 it

is required that 𝑥2

0
≥ 32 which contradicts the other clause of the summary’s

assumption.

An essential property of summaries is that the assumptions are the only reason

an SMT solver may produce an unsatisfiable result. This means that for any valid

execution context 𝑞 with path constraint 𝜋, only the summary’s assumptions can

invalidate the valid execution context [Lin & Mil
+

16]. Formally, the constraints of

a summary can be expressed and rewritten to [Lin & Mil
+

16]:

𝜙 B ℎ1 ∧ . . . ∧ ℎ𝑚︸ ︷︷ ︸
hard constraints

∧ 𝑎1 ∧ . . . ∧ 𝑎𝑛︸ ︷︷ ︸
assumptions

= ℎ1 ∧ . . . ∧ ℎ𝑚 ∧ (𝑎1 ∨ 𝑏1) ∧ . . . ∧ (𝑎𝑛 ∨ 𝑏𝑛) ∧ ¬𝑏1 ∧ . . .¬𝑏𝑛 ,

where 𝑏1, . . . , 𝑏𝑛 denote 𝑛 free Boolean assumption literals. This implies that hard

constraints can never invalidate a valid execution context. The only reason for

a valid execution context to be invalid is if a conflicting assumption is added,

resulting in a solver check failure [Lin & Mil
+

16]. Furthermore, this way of

representing summaries gives rise to an efficient form of representation presented

in Example 4.6.

Example 4.6: Representation of Summaries as a Trie
Figure 4.11 illustrates the computed summaries of Example 4.4 as a trie [Fre

60]. Hard constraints are depicted as rectangles and assumptions as rectan-

gles with rounded corners. A trie, derived from the word retrieval, is an

efficient tree data structure for searching within prefix-based data [Fre 60].

The weakest-precondition “true” approximates the root node of the summary

without compromising the correctness of the summary [God 07].

79

4 Test Suite Generation

true

(𝑥0 ≥ 32) ¬(𝑥0 ≥ 32)

(𝑦1 = 𝑦0 + 1) (𝑦1 = 𝑦0)

(𝑦1 ≥ 3) ¬(𝑦1 ≥ 3) (𝑦1 ≥ 3) ¬(𝑦1 ≥ 3)

(𝑧1 = true)

(𝑦2 = 0)

(𝑧1 = false) (𝑧1 = true)

(𝑦2 = true)

(𝑧1 = false)

Figure 4.11: Exemplary summary depicted as a trie.

The representation of summaries as a trie has several benefits. First and fore-

most, it is an efficient way to store shared clauses in memory as highlighted

in Figure 4.11 by the blue and petrol-colored subtries representing different

execution paths throughout the CFG in Figure 4.2a; second, it gives rise to

incremental checking.

Through the use of the incremental solving interface of Z3, an unsatisfiable

core can be obtained in case the summary is not applicable under the current

execution context. An unsatisfiable core denotes a subset of assertions that prevent

the derivation of the satisfiability of a formula. The unsatisfiable core returned by

the solver can be used to prune the summaries by excluding the summaries that

share the same assumptions to speed up the applicability checking. Concerning

the trie depicted in Example 4.6, the corresponding subtrees can be “pruned” away

as summarization is an analysis local to the respective FB [Gro & Völ
+

22a]. While

the removal of the corresponding assumption literals in the trie representation

aggravates summary pruning, it is necessary when trying to determine whether a

summary is reusable or not. As code might be added or removed, the correspon-

dence between the assumption literals and the structure of the CFG is not kept,

and this mismatch leads to inconclusive results when applying a summary [Gro &

80

4.4 Reusing Summaries across Program Versions

Völ
+

22a].

Although summary pruning is theoretically possible when, e.g., following the

execution model of Smart [God 07], as each run is along a single path and concrete

valuations are available, it can not be applied to the algorithm proposed in this

thesis. This is a trade-off to the current merge strategy as there potentially do not

exist viable concrete valuations for the summary’s inputs due to prior merging.

Therefore, summary pruning is only feasibly usable if concrete valuations for

the respective variables of all paths are present in the current execution context.

However, experiments have shown (cf. Chapter 6) that merging is, in general,

a suitable heuristic to limit the path explosion due to the cyclic nature of PLC

programs.

If the solver returns “sat”, the summary is applicable under the current execution

context 𝑞 [Gro & Völ
+

22a]. After determining which summaries are applicable

and which are not, the current execution context 𝑞 must be updated to account

for the effect of the summary. For each applicable summary 𝑠 ∈ 𝑆applicable, a

new execution context 𝑞′ is derived in Lines 31 to 33 of Algorithm 4. Summary

application proceeds by first re-versioning the hard constraints and assumptions

of the summary to align them with the local and global execution context similar

to Lines 3 to 9 of Algorithm 5. Then, to reflect the effect of the summary and

fast-forward execution to the exit vertex of the summarized FB [Gro & Völ
+

22a],

the assumptions are added to the path constraint 𝜋. The valuations from the hard

constraints are used to update the symbolic store of the execution context.

4.4 Reusing Summaries across Program Versions
Once a PLC program has been reconfigured as visualized in Figure 4.2, the aim

is to reuse as much work as possible from the previous version. For this purpose,

summaries generated during the SE of the previous version should be checked for

validity in the reconfigured version. This problem is defined as the must-summary

checking problem.

Definition 4.5: Must Summary Checking Problem [God & Lah+ 11]
Given a program 𝑃, a set of summaries 𝑆 for that program, and its reconfig-

ured version 𝑃′. Which summaries 𝑠 ∈ 𝑆 are still valid must summaries for

the reconfigured program 𝑃′?

In the following, a three-phased algorithm [God & Lah
+

11] which statically ana-

lyzes whether a summary is applicable or not, is presented. Figure 4.12 illustrates

the three-phased algorithm, which is either executable in isolation or can be run

in a pipeline. The input to this pipeline are all summaries of the prior program

version, and the output is a set of safely reusable summaries which are still valid

in the new program version. Each phase is explained in the subsequent sections

with the help of Algorithm 6.

81

4 Test Suite Generation

Phase 1:

Static Change Impact Analysis

Phase 2:

Predicate-Sensitive

Change Impact Analysis

Phase 3:

Must Summary

Validity Checking Analysis

Summaries

Reusable

Summaries

invalid

invalid

+

Figure 4.12: Three-phased summary reuse checking algorithm [God & Lah
+

11].

Figure adapted from Fig. 5 in [Gro & Völ
+

22a].

Algorithm 6 Statically Validating Must Summaries [God & Lah
+

11]

Input : CFG 𝐺, Summaries 𝑆

Output : Validated summaries 𝑆valid
1: for each callee𝐺′ ∈ callGraph(𝐺) do
2: // Phase 1

3: 𝐵change-annotated← getChangeAnnotatedVertices(𝐺′)
4: if 𝐵change-annotated = ∅ then
5: 𝑆valid← 𝑆

6: else
7: vcgold← generateVerificationConditions(𝐺′old)
8: vcgnew← generateVerificationConditions(𝐺′new)
9: for each 𝑠 ∈ 𝑆 do

10: // Phase 2

11: valid← predicateSensitiveCIA(𝑠, vcgold, 𝐵change-annotated)
12: if valid then
13: 𝑆valid.push(𝑠)
14: else
15: // Phase 3

16: valid← validityChecking(𝑠, vcgnew)
17: if valid then
18: 𝑆valid.push(𝑠)
19: end
20: end
21: end

82

4.4 Reusing Summaries across Program Versions

22: end
23: end
24: return 𝑆valid

4.4.1 Static Change Impact Analysis
The first phase performs a static CIA on each callee in the call graph (CG) of the

program 𝑃 to find reconfigurations and their implications on the other CFGs. An

instruction in the CFG of 𝑃 is reconfigured if it is either changed or deleted in the

subsequent version 𝑃′ or the ordered set of immediate successors has changed [God

& Lah
+

11]. This translates directly to the CAP representation of this thesis. Thus, a

CFG is reconfigured if it contains a reconfigured instruction or calls a reconfigured

CFG. Example 4.7 illustrates the impact of reconfigurations in the CG.

Example 4.7: Call Graph and Impact of Reconfigurations
Figure 4.13 shows an exemplary CG and the impact of reconfigurations on

the validity of other FBs’ summaries.

Program

FB1 FB2

FB3 FB4

𝑆1

𝑆3

✗

𝑆2

𝑆4

✓R

I I

impacted

Figure 4.13: Call graph with reconfigured CFGs and the implications for

summaries.

In this example, the CFG of FB3 contains one or more reconfigured instruc-

tions and hence is flagged with R for “reconfigured”. By traversing the

CG through the dependencies on FB3, the impacted FBs, FB1 and FB2, can

be determined and also flagged as I for “impacted” by the reconfiguration.

This is because their summaries use the summaries from the reconfigured

CFG. Solely the summaries of FB4 are deemed valid, as the CFG was not

reconfigured in any way.

Please note that the contribution of this thesis only considers call stacks

of depth 1, which is reflected in Lines 3 to 5 of Algorithm 6 and is only a

limitation of the current underlying implementation and not the algorithm

of [God & Lah
+

11] in general. Therefore, no nested summaries can occur.

83

4 Test Suite Generation

Reconfigurations of the CFG are represented by change-annotation macros

in the IR. An FB in 𝑃′ is therefore reconfigured if it contains such a change-
annotated expression. Line 3 of Algorithm 6 traverses the structure of the CFG and

retrieves all vertices whose instructions include a change-annotated expression.

The subsequent Line 4 checks whether this set is empty or not. In case it is empty,

the CFG does not contain change-annotated vertices, and all summaries of the

prior program version 𝑃 are also valid in the subsequent program version 𝑃′. They

can be safely reused, and the valid summaries are collected in Line 5. If the set of

change-annotated vertices is not empty, all the summaries for this specific CFG are

invalidated by the first phase.

This is an imprecise but inexpensive over-approximation which implies that the

syntactic reconfigurations also have a potential semantic effect [Gro & Völ
+

22a].

The algorithm then checks the next callee in the CG until the whole CG has been

analyzed.

4.4.2 Predicate-Sensitive Change Impact Analysis
Even though the CFG is reconfigured, the reconfiguration might not introduce

semantic effects that lead to an invalidation of a summary. Therefore, the second

phase analyzes the “pre-” and “post-conditions” of the summary and is thus

predicate-sensitive CIA [God & Lah
+

11]. Instead of over-approximately looking

at all paths between the entry and exit of the summary, only the paths represented

by the assumptions and hard constraints are taken into account [Gro & Völ
+

22a].

The predicate-sensitive analysis is performed on the static VCs of the old program

𝑃 to check whether a reconfiguration exists on these specific paths.

Generation of Verification Conditions

The generation of VCs in Lines 7 to 8 of Algorithm 6 resembles Algorithm 1. It

also symbolically encodes the PLC program’s semantics while using a variant of

the Cycle-BMC procedure presented in [Boh & Ham
+

18; Boh 21]. Instead of

encoding a whole cycle, the procedure encodes the passed CFG from the entry up

to its exit vertex. In fact, it reuses the algorithm used for the summary generation

in Section 4.2. By passing an appropriate argument to the encoding algorithm, the

new or old version of the CFG is encoded. Exemplary results of the VCG for the

running example’s old program version are shown in Example 4.8.

84

4.4 Reusing Summaries across Program Versions

Example 4.8: Verification Conditions for the Running Example
The following VCs result from the encoding of the old program version’s

CFG illustrated in Figure 4.2b.

ℬ B
{𝑏3→ true, 𝑏4→ 𝑏3, 𝑏5→ 𝑏4, 𝑏6→ 𝑏4

𝑏7→ 𝑏5 ∨ 𝑏6, 𝑏8→ 𝑏7, 𝑏9→ 𝑏8, 𝑏10→ 𝑏7,

𝑏11→ 𝑏9 ∨ 𝑏10}

𝒜 B
{𝑏5→ (𝑥0 ≥ 32), 𝑏6→ ¬(𝑥0 ≥ 32),
𝑏8→ (𝑦3 ≥ 3), 𝑏10→ ¬(𝑦3 ≥ 3)}

ℋ B
{𝑏5→ 𝑦1 = 𝑦0 + 1 ∧ 𝑦3 = 𝑦1, 𝑏6→ 𝑦2 = 𝑦0 ∧ 𝑦3 = 𝑦2,

𝑏8→ 𝑧1 = true, 𝑏9→ 𝑦4 = 0 ∧ 𝑦5 = 𝑦4 ∧ 𝑧3 = 𝑧1,

𝑏10→ 𝑧2 = false ∧ 𝑦5 = 𝑦3 ∧ 𝑧3 = 𝑧2}

Note that auxiliary valuations such as 𝑦3 = 𝑦2 and 𝑦5 = 𝑦3 are the result of

merging. They ensure that the correct valuations are propagated depending

on the control flow.

After the VCs are generated, they are instrumented to check for validity. The

instrumentation partially follows the instrumentation presented in [God & Lah
+

11].

First, an auxiliary Boolean variable reconfigured is added. This auxiliary Boolean

variable is used to denote vertices in the old program version 𝑃, which differ from

the new program version 𝑃′. For each change-annotated vertex 𝑏ℓ ∈ 𝐵change-annotated,

a hard constraint 𝑏ℓ → (reconfigured = true) implying the auxiliary Boolean variable

reconfigured is added. In case such a change-expression occurs in a conditional

instruction, the corresponding assignment is added before that instruction to the

respective basic block [Gro & Völ
+

22a]. The hard constraints of the entry of the

VCs are augmented with 𝑏ℓ𝑒 → (reconfigured = false) to account for the change of

the auxiliary variable. In addition, two auxiliary assumption literals, 𝐴 and 𝐻 are

introduced, representing the assumptions and hard constraints of the summary

under analysis. The goal is to check whether the instrumented static VCs have a

satisfiable solution under those auxiliary assumption literals. If these assertions

hold, then the summary is a valid must summary for all possible inputs of the old

program and is added to the set of valid summaries 𝑆valid in Line 13 of Algorithm 6.

It can safely be reused in the new program version 𝑃′ as there are no reconfigured

instructions on the path characterized by this specific summary [Gro & Völ
+

22a].

In Example 4.9 a summary is exemplarily analyzed for validity using the proposed

instrumentation of the VCs for the predicate-sensitive analysis.

Example 4.9: Running Example and Phase 2
In order to correctly adhere to the flow of control, the assumptions 𝒜 and

hard constraints ℋ of the summary under analysis must be lowered and

85

4 Test Suite Generation

re-versioned, respectively. In this example, the summary 𝑆2 of Example 4.4

𝒜2 = {𝑏5→ (𝑥0 ≥ 32), 𝑏10→ ¬(𝑦1 ≥ 3)}
ℋ2 = {𝑏5→ (𝑦1 = 𝑦0 + 1), 𝑏10→ (𝑧1 = false)}

is checked for validity using the predicate-sensitive analysis. The VCs of

the current context in the program version before reconfiguration are given

in Example 4.8. As the summary 𝑆2 writes to the local variable 𝑦, the corre-

sponding assumptions are lowered to reflect the effect of the hard constraints.

Furthermore, the hard constraints of the summary are re-versioned to account

for the effect of the VCs yielding the following instrumentation:

𝑏3→ (reconfigured
0
= false)

𝑏5→ (reconfigured
1
= true) ∧ (reconfigured

2
= reconfigured

1
)

𝑏6→ (reconfigured
2
= reconfigured

0
)

𝐴→ (𝑥0 ≥ 32) ∧ ¬(𝑦0 > 2)
𝐻 → (𝑦5 = 𝑦0 + 1) ∧ (𝑧3 = false)
𝑏11→ 𝐻 =⇒ ¬(reconfigured

2
)

Under the assumption that 𝐴 and 𝐻 are true, and the exit 𝑏11 is reachable,

the SMT solver returns UNSAT. The reason is that once 𝐴 is assumed, the

only possible path at 𝑏4 is through 𝑏5, as the valuation of 𝑥0 must satisfy

𝑥0 ≥ 32. This leads to a conflict, as reconfigured is set to true, but 𝐻 enforces

that the variable must be false at the exit of the FB. While the summary may

still be semantically applicable, the second phase solely checks whether a

reconfiguration occurs on the path and invalidates it in that case. Do note that

the introduction of the auxiliary reconfigured variables for path distinction

due to merging does not matter, as the analysis is over-approximating and a

conflict refers to a path toggled by the assumptions 𝐴.

4.4.3 Must Summary Validity Checking Analysis
In the third phase, the summaries are checked for applicability using the generated

VCs of the new program version 𝑃′. In contrast to the check in the second phase,

in which reconfigurations occurring on paths were detected, this phase applies a

semantic check. The generated VCs are checked under the summaries’ assumptions

andhardconstraints by instrumenting the VCs of the new program version similarly

to the second phase. While in [God & Lah
+

11], an additional auxiliary variable

is introduced to track whether the reconfigured code fragment reaches the exit

vertex of the summarized FB, it is disregarded in this thesis. This “simplification”

is based on the assumption that all executions throughout an FB terminate. If the

86

4.4 Reusing Summaries across Program Versions

VCs and the constraints from the summary have a satisfying solution, the summary

is added to the set of valid summaries in Line 18. This is an absolute guarantee

that the summary is reusable in the new version [God & Lah
+

11]. The derived

VCs and the instrumentation for the running example in Figure 4.2b are shown

in Example 4.10.

Example 4.10: Running Example and Phase 3
This example considers summary 𝑆2 from Example 4.9. The VCs of the

current execution context in the reconfigured program version are depicted

below.

ℬ B
{𝑏3→ true, 𝑏4→ 𝑏3, 𝑏5→ 𝑏4, 𝑏6→ 𝑏4

𝑏7→ 𝑏5 ∨ 𝑏6, 𝑏8→ 𝑏7, 𝑏9→ 𝑏8, 𝑏10→ 𝑏7,

𝑏11→ 𝑏9 ∨ 𝑏10}

𝒜 B
{𝑏5→ (𝑥0 ≥ 32), 𝑏6→ ¬(𝑥0 ≥ 32),
𝑏8→ (𝑦3 ≥ 3), 𝑏10→ ¬(𝑦3 ≥ 3)}

ℋ B
{𝑏5→ (𝑦1 = 𝑦0 + 2) ∧ (𝑦3 = 𝑦1), 𝑏6→ (𝑦2 = 𝑦0) ∧ (𝑦3 = 𝑦2),
𝑏8→ (𝑧1 = true), 𝑏9→ (𝑦4 = 0) ∧ (𝑦5 = 𝑦4) ∧ (𝑧3 = 𝑧1),
𝑏10→ (𝑧2 = false) ∧ (𝑦5 = 𝑦3) ∧ (𝑧3 = 𝑧2)}

Due to the reconfiguration, the value of 𝑦 is incremented by 2 at location

𝑏5. The instrumentation boils down to the following additional assertions

added to the solver’s stack:

𝐴→ (𝑥0 ≥ 32) ∧ ¬(𝑦0 > 2)
𝐻 → (𝑦5 = 𝑦0 + 1) ∧ (𝑧3 = false)

As the assumptions of the summary of the old program version drive the

execution through 𝑏5 and 𝑏10 via the assertions (𝑥0 ≥ 32) and ¬(𝑦1 ≥ 3), the

hard constraints at the exit of the FB are not consistent anymore with the

new VCs. The conflicting clauses are new : (𝑦5 = 𝑦0+2) and old : (𝑦5 = 𝑦0+1)
and thus UNSAT is returned by the SMT solver. This is a limitation of

“must”-summaries as they are rooted in concrete executions.

As this summary has been invalidated by all three phases it is not reusable

for application checking during SE of the new program version.

Regeneration of Invalidated Summaries

While all validated summaries 𝑆valid from all three phases can be reused in the

new program version 𝑃′, all invalidated summaries are not reusable. Hence, there

exist paths in the new program which are not characterized by a summary yet.

To circumvent this problem appropriately, those paths must be “re-summarized”.

87

4 Test Suite Generation

With the same reasoning as generating the summaries before the execution, regen-

eration also has to occur before the execution of the new program version 𝑃′. In

order to prevent redundant work, the generated VCs of the new program version

obtained during the static validation of the summaries can be reused to regenerate

those missing summaries. In its current state, regeneration can partially regenerate

summaries using the same technique described in Section 4.2. However, it does

not yet exploit the knowledge of which summaries are valid and invalid, and also

unreachable branches complicate the regeneration and is thus not in the scope of

this thesis.

Concluding Remarks This chapter has introduced and explained a composi-

tional SE algorithm for automatic TSG. Several heuristics and design decisions

have been presented and explained in detail, as the proposed CSE serves as a base-

line for the techniques presented in the succeeding chapter on TSA. A heuristic

for the improvement of subsequent analysis in the form of reusable FB summaries

has been presented in the second part of this chapter. The proposed algorithms

are evaluated in Chapter 6 in the respective section Section 6.2.

88

Test Suite Augmentation 5
This chapter presents a technique for augmentation of the test suite for a recon-

figured program. Figure 5.1 gives an overview of the discussed contents in the

Contribution of this chapter within
the regression testing pipeline.

PLC Program

Version 𝑃

PLC Program

Version 𝑃′
Program

Unification

Change-Annotated

PLC Program

Test Suite

Classification

Reusable

Tests

Test Suite

Execution and

Classification

Obsolete

Tests

Retestable

Tests

Test Suite

Coverage

Identification

Test Suite

Maintenance

Test Suite
Augmentation

New Specification

Tests

New Structural

Tests

Test Suite

𝑇𝑃
all

Test Suite

Generation

Test Suite

𝑇𝑃′

all

Reconfiguration

++

unclassified

coverage

measure

Figure 5.1: Overview of the regression testing pipeline and contribution of this

chapter.

Figure adapted from Figure 3 in [Leu & Whi 89].

subsequent sections. In the beginning, the core theoretical foundation and the

idea behind TSA are given by examining the test suite coverage identification

problem. The test suite coverage identification problem is particularly interesting

for determining whether the current test suite 𝑇 is adequate enough to test the

reconfigured program version 𝑃′. Next, SSE is presented and discussed in-depth,

as it is the main algorithm that drives the TSA.

Motivation To motivate the need for TSA, an exemplary program and its reconfig-

uration is illustrated in Figure 5.2. The old test suite consists of valid inputs which

89

5 Test Suite Augmentation

y B x;

IF y > 1 THEN

z B TRUE;

ELSE

z B FALSE;

END_IF;

y B x + 1;

IF y > 1 THEN

z B TRUE;

ELSE

z B FALSE;

END_IF;

Old Program New Program

Syntactic

Reconfiguration

𝑥 = 0,

𝑥 = 2

Old

Test Suite

𝑥 = 0,

𝑥 = 2

Reused Old

Test Suite

100% branch

coverage ✓
100% branch

coverage ✓

Reuse

Figure 5.2: Motivating example.

Example adapted from Fig. 3 in [Kuc & Pal
+

18].

are homogeneous concerning the feasible program paths of the old program [Wey

& Jen 91]. While executing the old test suite on the new program yields the same

coverage, one has to keep in mind that coverage alone does not quantify the capa-

bility of the test suite to reveal regressions. Instead, one is interested in test suites

homogeneous with regards to failure, where this thesis defines failure to occur if

an input exposes a behavioral difference.

Definition 5.1: Behavioral Difference [Nol 20]
In general, behavioral difference refers to a difference in the execution behav-

ior of a program. Such a difference has several forms, e.g., a difference in

execution time, a difference in the traversed code fragments, or a difference

in the outputs of a program.

The goal of the subsequent sections is to derive test cases that expose behavioral

differences between the old and the reconfigured program.

Definition 5.2: Difference-Revealing Test Case
Given an old program version 𝑃 and its reconfigured version 𝑃′. A test case

is said to be difference-revealing if different output valuations are produced

after executing both program versions with the same input valuations.

90

Hence, this chapter aims to derive test inputs that expose difference-revealing

behavior in the outputs of the programs, as displayed in Figure 5.3.

Program 𝑃

Program 𝑃′

Test Case

Output of 𝑃

Output of 𝑃′

≠Reconfiguration

Figure 5.3: A test case producing difference-revealing outputs when executed on

both program versions.

Running Example Throughout this chapter, the following running example will

be used, and the following examples refer to this small but expressive PLC

program. The TSG of Chapter 4 has generated the following test suite 𝑇 B

1 PROGRAM 𝑃′

2 VAR_INPUT
3 x : INT;
4 END_VAR
5 VAR
6 y : INT;
7 END_VAR
8 VAR_OUTPUT
9 z : BOOL := FALSE;
10 END_VAR
11 y := change(x, x + 1);
12 IF y > 1 THEN
13 z := TRUE;
14 ELSE
15 z := FALSE;
16 END_IF;
17 END_PROGRAM

𝑏0 :

ENTRY

𝑏1 :

𝑦 B change(𝑥, 𝑥 + 1)

𝑏2 :

𝑦 > 1

𝑏3 :

𝑧 ≔ true
𝑏4 :

𝑧 ≔ false

𝑏5 :

EXIT

CFG of P′

Figure 5.4: Textual and graphical representation of the running example.{
(𝑥 ↦→ 0, 𝑧 ↦→ false)︸ ︷︷ ︸

𝑡1

, (𝑥 ↦→ 2, 𝑧 ↦→ true)︸ ︷︷ ︸
𝑡2

}
, which is used in the presented analyses.

91

5 Test Suite Augmentation

5.1 Test Suite Coverage Identification Problem
An essential task in testing is to assess whether a set of components in the program

are covered or not. For this purpose, a test data adequacy criterion 𝐶 = (𝜂, 𝜈) is

defined [Rot 96]. A typical code-based adequacy criterion is statement or branch

coverage, where 𝜂 specifies the set of vertices in the CFG and 𝜈 specifies how to

execute the instruction associated with the vertices [Rot 96]. For instance, a branch-

covering test suite 𝑇 is adequately enough for a program 𝑃 if, for all branching

vertices (as specified by 𝜂), there exists at least one test case (as specified by 𝜈) by

which it is exercised [Rot 96]. Now, after reconfiguring the program, this test suite

𝑇 might not be adequate anymore to cover the reconfigured program 𝑃′. In order

to distinguish between components that need to be retested and components that

do not need to be retested, a significance criterion is added to the definition of the

test adequacy criterion leading to the following definition of the regression test

adequacy criterion:

Definition 5.3: Regression Test Adequacy Criterion [Rot 96]
Given a program 𝑃 and a reconfigured program 𝑃′, a regression test adequacy
criterion is a 3-tuple 𝐶 = (𝜂, 𝜈, 𝛼) such that

𝜂 specifies a set of vertices of 𝑃′,

𝜈 specifies what it means to execute a vertex in 𝑃′,

𝛼 specifies what it means for a vertex of 𝑃′ to be significant.

The regression test adequacy criterion must be appropriately initialized to aug-

ment the test suite 𝑇 with new structural tests. SSE is a technique that augments

the test suite 𝑇 by deriving difference-revealing test cases, where 𝜂 specifies a

set of change-annotated vertices of 𝑃′, 𝜈 specifies how change-annotated vertices

are reached, and 𝛼 categorizes divergent execution contexts as significant. The

problem of finding these significant execution contexts is defined in Definition 5.4.

Definition 5.4: Test Suite Coverage Identification Problem [Rot 96]

Given a program 𝑃 and the reconfigured program 𝑃′. Let 𝐶 = (𝜂, 𝜈, 𝛼) be a

regression test adequacy criterion and𝑄 the set of components of 𝑃′ specified

by 𝜂. Find a maximal 𝑄′ ⊆ 𝑄, such that ∀𝑞 ∈ 𝑄′ : 𝑞 is significant as specified

by 𝛼.

The test coverage identification problem now involves finding the maximum

number of test cases that lead to a divergence in the new program version 𝑃′ with

regard to the change-annotated vertices of 𝜂.

Because SSE is a technique that is capable of answering this coverage identifica-

tion problem, it is explained throughout the subsequent sections.

92

5.2 Shadow Symbolic Execution

5.2 Shadow Symbolic Execution
Before going in-depth and explaining the internal working of SSE, a high-level

overview of how TSA is embedded in the development process is given.

5.2.1 Developer-centered Test Suite Augmentation Process
Figure 5.5 gives an overview of the developer-centered TSA process. The developer

Digital Shadows

of Testing

Developer

(as Oracle)

Program

Unification

Change-Annotated

PLC Program

PLC Program

Test Suite
Augmentation Test Suite

Difference-Revealing

Test Cases

Expected

Divergences

Regression

Bugs

Change Request

(intrinsic / extrinsic)

Syntactic

Reconfiguration

✗✓

Figure 5.5: Overview of the developer-centered TSA process.

Figure adapted from Fig. 3 in [Gro & Völ
+

22b].

obtains either an intrinsic or extrinsic change request. Intrinsic change requests usu-

ally refer to software correction tasks (cf. Section 1.3). In contrast, extrinsic change

requests stem from changing customer requirements or market demands leading to

an enhancement of software (see Figure 1.10 in Section 1.3). The developer’s task is

to unify the old and new program versions into a CAP. Unification is done with the

aid of the change-annotation macro presented in Section 2.5. Intuitively, two things

are needed for TSA after a reconfiguration: (1) the test cases must reach potentially

affected areas along different, relevant paths (specific chains of control- and data

dependencies), and (2) test cases must account for the state of the PLC software

and the effects of the reconfigurations, i.e., be difference-revealing. TSA amounts

to four phases which are applied subsequently and are depicted in Figure 5.6.

The SSE algorithm is performed on the CAP and the test artifacts of the previous

program version 𝑃. The results are used to perform a BSE afterward, potentially

yielding divergent test inputs. These test inputs are replayed and simulated on the

new program version 𝑃′ in order to derive difference-revealing test cases as defined

93

5 Test Suite Augmentation

Test Suite Augmentation

Test Suite

Change-Annotated

PLC Program

Collect

Change

Traversing

Test Cases

Find

Divergent

Contexts

Bounded

Symbolic

Execution

Check for

Output

Differences

Difference-Revealing

Test Cases

Figure 5.6: Overview of TSA using SSE.

Figure adapted from Fig. 4 in [Kuc & Pal
+

18].

in Definition 5.2. These test cases can be examined by a developer who serves as

an oracle to categorize them as either expected divergences, e.g., because a bug

was fixed, or actual regressions.

An interesting research question in this context is whether the four-way forking

concept is applicable to the PLC domain. The introduced baseline BSE of Chapter 4

is augmented with the functionality of the SSE [Kuc & Pal
+

18] algorithm. In

general, it can be intractable because outputs are potentially difference-revealing

after 𝑘 cycles (depending on the internal state of the PLC program). Therefore, the

analysis may run out of memory before the divergence is reached. SSE is essentially

just SE at its core with a little bit of extra, and that extra is the concept of four-way

forking [Kuc & Pal
+

18].

The TSA algorithm pipeline of Figure 5.6, which uses SSE, is presented in

Algorithm 7.

Algorithm 7 Test Suite Augmentation using SSE [Kuc & Pal
+

18]

Input : CAP 𝑃 = (𝐺,𝒢), CFG 𝐺 = (𝑽 ,𝑽input, (𝐵, 𝐸), 𝑏ℓ𝑒 , 𝑏ℓ𝑥), Test Suite 𝑇

Local : Divergent execution contexts and triggering test cases 𝑄divergent
Output : Difference revealing test cases 𝑇difference-revealing

1: 𝑇change-traversing← collectChangeTraversingTestCases(𝐺, 𝑇)
2: for each 𝑡 ∈ 𝑇change-traversing do // Phase 1

3: {(𝑞0, 𝑡
′
0
), . . . , (𝑞𝑚 , 𝑡′𝑚)} B 𝒬divergent.push

(
findDivergentContexts(𝑡)

)
4: end
5: for each (𝑞, 𝑡′) ∈ 𝒬divergent do // Phase 2

6: 𝑇divergent.push
(
performBoundedExecution(𝑞, 𝑡′)

)
7: end
8: 𝑇difference-revealing← checkForOutputDifferences(𝐺, 𝑇divergent)

In order to account for “shadows”, i.e. change-annotated expressions (see Ex-

ample 5.2), occurring in the concrete and symbolic store of the execution state

𝑠, Definition 2.10 is extended in Definition 5.5.

94

5.2 Shadow Symbolic Execution

Definition 5.5: Divergent Execution State

A divergent execution state is a tuple 𝑠divergent = (𝑠, 𝜌𝑠 , 𝜎𝑠 ,𝜋old,𝜋new), where

𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋) is an execution state,

𝜌𝑠 is a shadowed concrete store that maps shadow variables to expressions

over concrete values,

𝜎𝑠 is a shadowed symbolic store that maps shadow variables to expressions

over concrete and symbolic values,

𝜋𝑜𝑙𝑑 and 𝜋𝑛𝑒𝑤 denoting the path constraint of the old and new pro-

gram version, 𝑃 and 𝑃′, respectively, representing a set of conditional

expressions taken on the execution path up to vertex 𝑏ℓ .

In order to correctly update the state, the evaluation functions eval𝜌(𝑒) and

eval𝜎(𝑒) (see Section 2.3) are lifted to concrete and symbolic shadow expressions

via eval
shadow
𝜌 (𝑒) and eval

shadow
𝜎 (𝑒), respectively.

Definition 5.6: Shadow Evaluation Function
Given a concrete or symbolic shadow store, 𝜌𝑠 and 𝜎𝑠 , respectively, the

shadow evaluation functions eval
shadow
𝜌 : 𝑬 → 𝑫 and eval

shadow
𝜎 : 𝑬 → 𝚺 are

defined recursively in terms of their respective concrete and symbolic eval-

uation functions for non-shadowed variables occurring in the expression 𝑒.

Depending on whether the old, new, or both versions of an expression con-

taining a change-annotation should be evaluated, the respective shadowed

stores 𝜌𝑠 and 𝜎𝑠 are used.

Furthermore, the introduction of the divergent state gives rise to the definition

of a divergent execution context.

Definition 5.7: Divergent Execution Context

A divergent execution context is a tuple 𝑞divergent = (𝑐, 𝑠divergent, 𝒞), where

𝑐 ∈ N denotes the current execution cycle of the PLC program,

𝑠divergent = (𝑠, 𝜌𝑠 , 𝜎𝑠 ,𝜋old,𝜋new) is a divergent execution state,

𝒞 is a call stack.

The four major steps of Algorithm 7 are explained throughout the following

sections. If derivable from the context, the subscript of the divergent execution

context 𝑞divergent is dropped in the following sections.

95

5 Test Suite Augmentation

5.2.2 Collecting Change Traversing Test Cases
In Line 1 of Algorithm 7, the test suite 𝑇 of the version before the reconfiguration

is reused and executed on the CAP to determine which test cases are change-

traversing. A test case is change-traversing if the execution path in the new

program version induced by the valuations of the test case contains a change-

annotated instruction. Before executing the new program version on the test case,

the program’s interface is checked. In case the test case does not contain valuations

for all variables of the new program version’s interface due to a reconfiguration,

it is augmented. The test case is augmented with additional valuations using the

0-default initialization (see Section 2.1) for BOOL and INT as defined in the IEC

61131 standard [Int 14], false and 0, respectively.

Example 5.1: Collecting Change Traversing Test Cases

Given a test suite 𝑇 B
{
(𝑥 ↦→ 0, 𝑧 ↦→ false)︸ ︷︷ ︸

𝑡1

, (𝑥 ↦→ 2, 𝑧 ↦→ true)︸ ︷︷ ︸
𝑡2

}
generated for

the old program 𝑃 illustrated in Figure 5.4. Each test case 𝑡𝑖 ∈ 𝑇, 𝑖 ∈ {1, 2}
is “simulated” in the change-annotated CFG of the reconfigured program

𝑃′ using the old expression of the change-annotation macro. The concrete

execution of the test suite 𝑇 yields a mapping from test cases to covered basic

blocks.

96

5.2 Shadow Symbolic Execution

𝑏0 :

ENTRY

𝑏1 :

𝑦 B change(𝑥, 𝑥 + 1)

𝑏2 :

𝑦 > 1

𝑏3 :

𝑧 ≔ true
𝑏4 :

𝑧 ≔ false

𝑏5 :

EXIT

CFG of P′

(a) Traversed basic blocks after execu-

tion of 𝑡1.

𝑏0 :

ENTRY

𝑏1 :

𝑦 B change(𝑥, 𝑥 + 1)

𝑏2 :

𝑦 > 1

𝑏3 :

𝑧 ≔ true
𝑏4 :

𝑧 ≔ false

𝑏5 :

EXIT

CFG of P′

(b) Traversed basic blocks after execu-

tion of 𝑡2.

For instance, 𝑡1 traverses {𝑏0, 𝑏1, 𝑏2, 𝑏4, 𝑏5} as the valuation 𝑦 ↦→ 0 at the

decision in 𝑏2 yields false after concrete evaluation, whereas 𝑡2 traverses

{𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏5}.

For each test case, the execution history and the state valuations reaching the end

of the cycle in the old program versions are saved. This augmentation comes in

handy later when test cases are checked for difference-revealing behavior between

the old version and the reconfigured program. As a test case can traverse multiple

change-annotated labels, only those test cases are selected that cover the most

amount of change-annotated labels. This reduces the number of test cases needed

for consideration in the first phase without losing expressiveness. Test cases

spanning multiple cycles with the same valuations as prefixes are prioritized. There

may exist no test case in the test suite 𝑇 that covers a specific change-annotated

label. This requires the generation of a test case covering that specific label before

execution in case divergent behavior should be detected for that particular label.

97

5 Test Suite Augmentation

The resulting subset of test cases 𝑇change-traversing of the test suite 𝑇 forms the basis

for the next phase.

5.2.3 Finding Divergent Execution Contexts
Finding divergent execution contexts establishes the basis for deriving test inputs

that expose different behavior across both program versions. It is driven by the

concrete valuations from the change-traversing test cases and executed for each

test case touching a change-annotated label. Algorithm 8 shows the algorithm

responsible for finding divergent execution contexts using SE.

Algorithm 8 findDivergentContexts

Input : CAP 𝑃 = (𝐺,𝒢), Test case 𝑡change-traversing
Local : Set of succeding execution contexts 𝑄′

Output : Set of divergent contexts and triggering test case 𝐷

1: 𝑞 ← initializeDivergenceExecution(𝐺, 𝑡change-traversing)
2: for each 𝜌𝑡 ∈ 𝑡change-traversing do
3: 𝜌← 𝜌[𝑣 ↦→ 𝜌𝑡(𝑣) | ∀𝑣 ∈ 𝑽𝑖𝑛𝑝𝑢𝑡]
4: CONTINUE_FINDING_DIVERGENT_CONTEXTS:
5: // Algorithm 9

6: (𝑄′, 𝜉) ← executeCycleUntilDivergence(𝑞)
7: switch 𝜉 do
8: case EXPECTED_BEHAVIOR do
9: // continue execution with the next cycle

10: end
11: case POTENTIAL_DIVERGENT_BEHAVIOR do
12: for each 𝑞′forked ∈ 𝑄

′ do
13: 𝐷.push(⟨𝑞′forked, deriveTestCase(𝑞

′
forked)⟩)

14: end
15: goto CONTINUE_FINDING_DIVERGENT_CONTEXTS
16: end
17: case DIVERGENT_BEHAVIOR do
18: 𝐷.push(⟨𝑞, 𝑡change-traversing⟩)
19: return 𝐷

20: end
21: end
22: cycle← cycle + 1

23: end
24: return 𝐷

Initially, an execution context is created, and internal data structures are popu-

lated. It is important to note that no merging occurs throughout the execution of

the first phase, as divergent forked execution contexts are added to a queue to be

explored in the second phase as shown in Algorithm 7. Hence in Line 3, execution

98

5.2 Shadow Symbolic Execution

is driven by the concrete valuations of the test cases. The execution context is then

executed until the end of the cycle or until a divergence has occurred. Before going

in-depth with the algorithm in Line 6, the rest of the algorithm is explained first.

Expected Behavior In contrast to the SE in Algorithm 1 of Chapter 4, the engine

also keeps track of the current execution status 𝜉. This execution status 𝜉 denotes

whether a divergence has occurred or not during the execution of the execution

context 𝑞 under the current change-traversing test cases in the respective cycle. If

no divergence has been triggered and execution was performed as in traditional

SE, the behavior of executing the context under the test case is as expected. In this

case, the algorithm continues executing the next cycle regarding the valuations

specified in the test case 𝑡change-traversing.

Potential Divergent Behavior Whenever potential divergent execution behavior

is encountered during SE, it is examined by the engine in Lines 11 to 16. Suppose,

for now, that the execution of Algorithm 9 returned a set of succeeding execution

contexts 𝑄′ that exhibit potential divergent behavior. In that case, the forked

divergent execution contexts are regarded as candidates that must be further

explored in the second phase of Algorithm 7. Hence, they are added to the

set of divergent contexts, and a test case that triggers the divergent behavior is

derived. This test case is used during the BSE in the second phase of Algorithm 7

to systematically and comprehensively explore additional divergent contexts [Kuc

& Pal
+

18]. Line 15 jumps back to finish executing the current execution context

under the test case and potentially reveals a real divergence. As long as the concrete

executions do not diverge, Algorithm 8 continues execution until the end of the

test case and explores any other possible divergences along the execution path.

Divergent Behavior While the current change-traversing test case makes both

program versions follow different paths at a branch instruction for an expression

containing a “shadowed” variable, it might not be sufficient enough to explore

all new divergent behaviors that arise from this context. The execution context 𝑞

is pushed together with the change-traversing test case to the set of divergences

found during the first phase, and execution is stopped for the current test case.

In the following, the algorithms responsible for detecting the divergent behavior

in Line 6 of Algorithm 8 and the core concept are explained in detail.

Algorithm 9 executeCycleUntilDivergence

Input : Execution context 𝑞

Output : Execution status 𝜉, Set of succeeding execution contexts 𝑄′

1: while ¬reachedSucceedingCycle(𝑞) do
2: // Algorithm 10

3: (𝜉, 𝑄′ B {𝑞′
1
, . . . , 𝑞′𝑛}) ← executeVertexUntilDivergence(𝑞)

4: if 𝜉 ≠ EXPECTED_BEHAVIOR then

99

5 Test Suite Augmentation

5: return (𝜉, 𝑄′)
6: end
7: end
8: return (EXPECTED_BEHAVIOR, 𝑄′ B {𝑞})

The execution context is executed until either a divergence is encountered (see

Line 4 of Algorithm 9) or the end of the current cycle has been reached (see Line 1

of Algorithm 9). The exploration strategy of SSE is similar to that of the BSE

presented in Chapter 4. Algorithm 10 and Algorithm 11 are explained in the

following.

Algorithm 10 executeVertexUntilDivergence

Input : Execution context 𝑞 B (𝑐, 𝑠 = (𝑏ℓ , 𝜌, 𝜎,𝜋), 𝐶)
Output : Execution status 𝜉, Set of succeeding execution contexts 𝑄′

1: switch handleVertex(𝑏ℓ) do
2: case PROGRAM_ENTRY do
3: 𝜉← EXPECTED_BEHAVIOR
4: 𝑏ℓ ′ ← getSucceedingVertex(𝑏ℓ)
5: 𝑠′← (𝑏ℓ ′ , 𝜌, 𝜎,𝜋)
6: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′, 𝐶)

)
7: end
8: case FUNCTION_BLOCK_ENTRY do
9: // analogous to PROGRAM_ENTRY

10: 𝜉← EXPECTED_BEHAVIOR
11: 𝑏ℓ ′ ← getSucceedingVertex(𝑏ℓ)
12: 𝑠′← (𝑏ℓ ′ , 𝜌, 𝜎,𝜋)
13: 𝑄′.push

(
𝑞′ B (𝑐, 𝑠′, 𝐶)

)
14: end
15: case REGULAR do
16: // Algorithm 11

17: (𝜉, 𝑄′) ← executeInstructionUntilDivergence(𝑞)
18: end
19: case PROGRAM_EXIT do
20: 𝜉← EXPECTED_BEHAVIOR
21: // concrete store 𝜌 is overriden by change-traversing test case

22: 𝜎′← 𝜎[𝑣 ↦→ 𝑣fresh | 𝑣 ∈ 𝑽input]
23: 𝑠′← (𝑏ℓ ′ , 𝜌, 𝜎′,𝜋)
24: 𝑄′.push

(
𝑞′ B (𝑐 + 1, 𝑠′, 𝐶)

)
25: end
26: case FUNCTION_BLOCK_EXIT do
27: 𝜉← EXPECTED_BEHAVIOR
28: (_, _, 𝑏ℓreturn) ← 𝒞.top()
29: 𝐶′← 𝐶.pop()
30: 𝑠′← (𝑏ℓreturn , 𝜌, 𝜎,𝜋)

100

5.2 Shadow Symbolic Execution

31: 𝑄′.push(𝑞′ B (𝑐, 𝑠′, 𝐶′))
32: end
33: end
34: return (𝜉, 𝑄′)

Algorithm 10 is mostly analogous to Algorithm 3 of Chapter 4. The only

differences lie in the propagation of the execution status 𝜉, the specially tailored

execution of instructions in Line 17, and the missing update of concrete valuations

in case the program exit has been reached. This is because the valuations from the

concrete store are overridden by the valuations of the change-traversing test case

driving the execution in Line 2 of Algorithm 8.

In the following, Algorithm 11 is explained in further depth as it is the heart of

finding divergent execution contexts in SSE.

Algorithm 11 executeInstructionUntilDivergence

Input : Execution context 𝑞

Output : Execution status 𝜉, Set of succeeding execution contexts 𝑄′

1: switch instructionAt(𝑏ℓ) do
2: case 𝑣 B 𝑒 do
3: 𝑏ℓ ′ ← getSucceedingVertex(𝑏ℓ)
4: (𝜌′, 𝜌′𝑠) ← 𝜌[𝑣 ↦→ eval

shadow
𝜌 (𝑒)]

5: (𝜎′, 𝜎′𝑠) ← 𝜎[𝑣 ↦→ eval
shadow
𝜎 (𝑒)]

6: 𝑞′←
(
𝑐, 𝑠′ =

(
(𝑏ℓ ′ , 𝜌′, 𝜎′,𝜋

)
, 𝜌′𝑠 , 𝜎

′
𝑠 ,𝜋old,𝜋new), 𝐶

)
7: 𝑄′.push(𝑞′)
8: end
9: case 𝑏 do

10: if containsShadowExpression(𝑏) then
11: (𝑑old, 𝑑new) ← eval

shadow
𝜌 (𝑏)

12: if 𝑑old ≠ 𝑑new then
13: return (DIVERGENT_BEHAVIOR, 𝑄′ B {𝑞})
14: else
15: (𝜑old, 𝜑new) ← eval

shadow
𝜎 (𝑏)

16: 𝑏ℓ ,true← getSucceedingPositiveVertex(𝑏ℓ)
17: 𝑏ℓ ,false← getSucceedingNegativeVertex(𝑏ℓ)
18: if tryDivergentFork(𝜋 ∧ 𝜋old ∧ 𝜋new ∧ ¬𝜑old ∧ 𝜑new) then
19: 𝜌′← model(𝜋 ∧ 𝜋old ∧ 𝜋new ∧ ¬𝜑old ∧ 𝜑new)
20: 𝑞′← (𝑐, 𝑠′ = (𝑏ℓ ,true, 𝜌′, 𝜎,𝜋old ∧ ¬𝜑old,𝜋new ∧ 𝜑new), 𝐶)
21: 𝑄′.push(𝑞′)
22: end
23: if tryDivergentFork(𝜋 ∧ 𝜋old ∧ 𝜋new ∧ 𝜑old ∧ ¬𝜑new) then
24: 𝜌′← model(𝜋 ∧ 𝜋old ∧ 𝜋new ∧ 𝜑old ∧ ¬𝜑new)
25: 𝑞′← (𝑐, 𝑠′ =

(
(𝑏ℓ ,false, 𝜌

′, 𝜎,𝜋), 𝜌𝑠 , 𝜎𝑠 ,

𝜋old ∧ 𝜑old,𝜋new ∧ ¬𝜑new
)
, 𝐶)

26: 𝑄′.push(𝑞′)

101

5 Test Suite Augmentation

27: end
28: if 𝑑old then
29: 𝑞′← (𝑐, 𝑠′ = (𝑏ℓ ,true, 𝜌, 𝜎,𝜋old ∧ 𝜑old,𝜋new ∧ 𝜑new), 𝐶)
30: 𝑄′.push(𝑞′)
31: else
32: 𝑞′← (𝑐, 𝑠′ = (𝑏ℓ ,false, 𝜌, 𝜎,𝜋old ∧ ¬𝜑old,𝜋new ∧ ¬𝜑new), 𝐶)
33: 𝑄′.push(𝑞′)
34: end
35: return (POTENTIAL_DIVERGENT_BEHAVIOR, 𝑄′)
36: end
37: else
38: // analogous to Algorithm 4

39: end
40: end
41: case 𝐺() do
42: // analogous to Algorithm 4 modulo summary application

43: end
44: end
45: return (EXPECTED_BEHAVIOR, 𝑄′)

Unlike traditional SE, the execution of assignments may introduce shadow

expressions. Lines 2 to 7 of Algorithm 11 concretely evaluate and symbolically

encode the expression of the assignmentand introduce a new concrete andsymbolic

shadow variable in case the expression contains a change-annotation expression

change(old : 𝑒1, new : 𝑒2). This is an essential part for SSE as it gives rise to efficiently

sharing the execution states using those auxiliary shadow variables. An example

is given in Example 5.2 to depict how concrete and symbolic representations of

changes are reflected.

Example 5.2: Concrete and Symbolic Representations of Changes

Consider the assignment 𝑥 ≔ 𝑥 + change(𝑦, 𝑧) under the current symbolic

store 𝜎 ≔ {𝑥0 ↦→ 0, 𝑦0 ↦→ 𝑦0, 𝑧0 ↦→ 𝑧0}. The symbolic expression tree for the

valuation of 𝑥 after the execution is shown in Figure 5.8.

+

𝑥0 𝑥𝑠

𝑦0 𝑧0

shadow

𝑥1

Figure 5.8: Symbolic expression tree containing a shadow expression.

An auxiliary symbolic shadow variable 𝑥𝑠 is introduced and saved in the

symbolic shadow store 𝜎𝑠 ≔ {𝑥𝑠 ↦→ (old : 𝑦0, new : 𝑧0)}. The symbolic store

102

5.2 Shadow Symbolic Execution

𝜎 ≔ {𝑥1 ↦→ 𝑥0 + 𝑥𝑠 , . . .} uses the symbolic shadow variable 𝑥𝑠 to “shadow”

the current symbolic valuation of the second operand of the assignment.

Depending whether the old or the new program version is regarded, the

symbolic valuation of 𝑥𝑠 is substituted respectively in the corresponding

eval
shadow
𝜎 function. The case for the concrete evaluation is analogous.

During TSA, the branching instructions are handled in a particular way in Lines 9

to 40 of Algorithm 10 different from the one presented in Algorithm 4 of Chapter 4.

As change annotations may occur in nested expressions, Line 10 of Algorithm 11

checks recursively whether the current branching expression contains a shadow

expression. If the expression does not contain a shadow expression, execution

continues with Algorithm 4 presented in Chapter 4. If it contains a shadow

expression, it may influence the branching behavior and needs to be checked

respectively. Example 5.3 covers the handling of branching instructions in the

running example.

Example 5.3: Finding Divergent Contexts

Consider that the test case 𝑡1 B (𝑥 ↦→ 0, 𝑧 ↦→ false) is executed on the

reconfigured CFG of the program depicted in Figure 5.4.

𝜋 : true
𝜌 : {𝑥0 ↦→ 0, 𝑦0 ↦→ 0, 𝑧0 ↦→ false}
𝜎 : {𝑥0 ↦→ 𝑥0}

𝜋 : true
𝜌 : {𝑥0 ↦→ 0, 𝑦1 ↦→ 𝑦𝑠 , 𝑧0 ↦→ false}
𝜎 : {𝑥0 ↦→ 𝑥0, 𝑦1 ↦→ 𝑦𝑠}
𝜌𝑠 : {𝑦𝑠 ↦→ (old : 0, new : 1)}
𝜎𝑠 : {𝑦𝑠 ↦→ (old : 𝑥0, new : 𝑥0 + 1)}

After execution of

𝑏0 and 𝑏1

Figure 5.9: Initial execution context and the effect of execution after reaching

basic block 𝑏2.

The evolution of the initial execution context after executing 𝑏0 and 𝑏1 is

depicted in Figure 5.9. While the execution of the entry basic block 𝑏0 did

not affect the initial execution context, the execution of the change-annotated

basic block 𝑏1, introduceda concrete andsymbolic change-shadow expression

𝑦𝑠 . The execution of the branch instruction 𝑦1 > 1 of 𝑏2 may lead to either a

1. divergence,

2. potential divergence,

3. or no divergence,

Ast contains

change(old, new)

103

5 Test Suite Augmentation

depending on the symbolic representation of 𝑦1. This is checked in Algo-

rithm 11 by calling the containsShadowExpression-function on the expres-

sion of the branching instruction. It checks, whether the Ast of 𝑦1 > 1 under

the given execution context contains a shadowed expression.

>

𝑦𝑠 1

𝑥0 +

𝑥0 1

old new

Figure 5.10: Ast of 𝑦1 > 1 under the current execution context.

As Figure 5.10 graphically illustrates the Ast of the execution context

from Figure 5.9 containing a shadow expression, the execution may diverge
and need to be further analyzed.

Line 11 evaluates the branch expression under both the concrete and the shad-

owed concrete store, resolving all shadow expressions [Gro & Völ
+

22b]. Exam-

ple 5.4 shows how the check in Line 12 of Algorithm 11 is applied to the running

example.

Example 5.4: Checking for Divergences
When checking for divergences, the branching expression is evaluated con-

cretely under the current execution context. Consider the following execution

context obtained after the execution of the initial execution context on the CFG

of the running example as shown in Example 5.3:

𝜋 : true
𝜌 : {𝑥0 ↦→ 0, 𝑦1 ↦→ 𝑦𝑠 , 𝑧0 ↦→ false}
𝜎 : {𝑥0 ↦→ 𝑥0, 𝑦1 ↦→ 𝑦𝑠}
𝜌𝑠 : {𝑦𝑠 ↦→ (old : 0, new : 1)}
𝜎𝑠 : {𝑦𝑠 ↦→ (old : 𝑥0, new : 𝑥0 + 1)}

Concrete evaluation of the branching expression 𝑦1 > 1 under this context

as shown in Line 11 of Algorithm 11 yields the following concrete values for

104

5.2 Shadow Symbolic Execution

𝑑old and 𝑑new:

𝑑old = evalshadow
𝜌 (𝑦1 > 1) = evalshadow

𝜌 (0 > 1) = false

𝑑new = evalshadow
𝜌 (𝑦1 > 1) = evalshadow

𝜌 (1 > 1) = false

A subsequent check for equality of 𝑑old = 𝑑new yields true and hence the

concrete execution do not diverge.

If the valuations of the expressions under the old and the new execution context

do not coincide, the seeded test case leads to divergent behavior and might trigger

difference-revealing outputs [Gro & Völ
+

22b] giving rise to the concept of four-way
forking.

Four-way Forking of Execution Paths

Figure 5.11 illustrates the concept of four-way forking [Pal & Kuc
+

16; Kuc & Pal
+

18]. Whenever the concrete execution evaluates the branching expression to the

Potentially difference-revealing!

Four-way Fork
𝜋 : true
change(old : 𝜑old, new : 𝜑new)

old : true
new : true

𝜋 = 𝜑old ∧ 𝜑new
. . .

old : false
new : false

𝜋 = ¬𝜑old ∧ ¬𝜑new
. . .

old : true
new : false

𝜋 = 𝜑old ∧ ¬𝜑new
. . .

old : false
new : true

𝜋 = ¬𝜑old ∧ 𝜑new
. . .

Figure 5.11: Four-way forking in SSE.

Figure adapted from Figure 2 in [Pal & Kuc
+

16].

same value, both program versions make the same decision. This is denoted by

the two outer branches of Figure 5.11, where old and new are both true and false,
respectively. In case the branching expression evaluates to different values under

the current execution contexts, potential divergent behavior may occur. Through

the use of the shadow expression, the forking of the execution context is not limited

to the traditional fork into two succeeding execution contexts for the respective true
and false branches. This is represented in Lines 18 to 27 of Algorithm 11, where

the generation of divergent execution contexts can be performed. Example 5.5

illustrates this process for the running example.

105

5 Test Suite Augmentation

Example 5.5: Divergent Fork
After concluding that the concrete evaluations of the branching expression

𝑦1 > 1 for the running example do not diverge, Algorithm 11 tries to fork the

current execution context in Lines 18 to 27 symbolically and divergently. For

the sake of example, the execution context below is considered:

𝜋 : true
𝜌 : {𝑥0 ↦→ 0, 𝑦1 ↦→ 𝑦𝑠 , 𝑧0 ↦→ false}
𝜎 : {𝑥0 ↦→ 𝑥0, 𝑦1 ↦→ 𝑦𝑠}
𝜌𝑠 : {𝑦𝑠 ↦→ (old : 0, new : 1)}
𝜎𝑠 : {𝑦𝑠 ↦→ (old : 𝑥0, new : 𝑥0 + 1)}

First, the branching expression 𝑦1 > 1 is evaluated under the symbolic

shadow store 𝜎𝑠 using the evalshadow
𝜎 function:

𝜑old = evalshadow
𝜎 (𝑦1 > 1) = 𝑥0 > 1

𝜑new = evalshadow
𝜎 (𝑦1 > 1) = 𝑥0 + 1 > 1

Next, it is checked whether tryDivergentFork(𝜑old ∧ ¬𝜑new) is SAT, while

for the sake of example, the old, new, and current path constraints are omitted

from the query:

(𝑥0 > 1)︸ ︷︷ ︸
=𝜑old

∧¬(𝑥0 + 1 > 1)︸ ︷︷ ︸
=¬𝜑new

≡ (𝑥0 > 1) ∧ (𝑥0 ≤ 0) is UNSAT!

As the assertions are unsatisfiable, no divergence toward the left-innermost

branch of the four-way fork depicted in Figure 5.11 is possible. Second, it is

checked whether tryDivergentFork(¬𝜑old ∧ 𝜑new) is SAT:

¬(𝑥0 > 1)︸ ︷︷ ︸
=¬𝜑old

∧ (𝑥0 + 1 > 1)︸ ︷︷ ︸
=𝜑new

≡ (𝑥0 ≤ 1) ∧ (𝑥0 > 0) is SAT, witness 𝑥0 = 1!

This set of assertions is satisfiable and the underlying SMT solver returns a

model from which the concrete valuations driving the executions into this

particular branch are extracted.

The execution context 𝑞′ reaching the branching point is forked and updated with

the retrieved model from the solver. It is added to the queue of divergent executions

contexts 𝑄′ for exploration in the subsequent phase by appropriately propagating

it to Lines 11 to 16 of Algorithm 8. Test inputs derived from divergent execution

106

5.2 Shadow Symbolic Execution

contexts drive the SE in one of the inner branches of Figure 5.11 and belong to the

class of non-obsolete, modification-traversing test cases (cf. Figure 1.13). In Lines 28

to 34 of Algorithm 11 the current execution context is updated to follow the path

of the branch adhering to the respective decision value of 𝑑old. This ensures that

deeper nested divergences may be found in case this branch did not introduce any

divergent execution contexts in the prior Lines 18 to 27.

The first two steps of Figure 5.6 identify whether there exist modification-

traversing test cases in the test suite 𝑇 and derives new test cases that trigger

divergent behavior. The next step investigates whether the modification-traversing

test cases found during the evaluation of the four-way fork depicted in Figure 5.11

propagate other modification- and difference-revealing behavior.

5.2.4 Propagating Divergent Execution Contexts
The second phase consists of Lines 5 to 8 of Algorithm 7 and initiates a BSE for each

divergent context found in the first phase. While in the original implementation, the

BSE is executed in a breadth-first searchmode fora fixedtime budget [Kuc & Pal
+

18],

the algorithm of this thesis uses a cycle-based, depth-first search. Essentially, this

type of depth-first search simulates a breadth-first search throughout one execution

cycle of the PLC, as execution contexts are executed until the end of the cycle, where

the output behavior is observable. This also benefits test case generation, leading

to concise test cases without unnecessary cycles in between. The BSE is initialized

with the test case 𝑡′, which triggered the divergent behavior. At this point, the

behavior triggered by that test case is either a “real” divergence as the concrete

executions in the old and the new program version deviated, or it was generated

because of a potential, possible divergence at the four-way fork. Either way, the BSE

starts from the divergence point inheriting the execution context, which triggered

the divergence to search for additional divergent behaviors [Kuc & Pal
+

18]. As

this search is performed in the new version of the change-annotated program,

only the common and the “new” path constraint are considered. Therefore, the

merging strategy from Section 4.1.1 does not need to be modified to account for

both program versions.

Other than that, this phase behaves as the SE presented in Chapter 4, generating

as many test cases as possible until the respective termination criteria are met [Gro

& Völ
+

22b]. Paths covered by these test cases originate from a divergent execu-

tion context and hence may be difference-revealing. This approach is, however,

incomplete [Nol & Ngu
+

19] as the four-way fork is not executed exhaustively and

hence does not partition the entire input space with regards to the divergence.

Nevertheless, the aim of SSE is not to generate a high-coverage test suite [Kuc &

Pal
+

18] but rather to generate test inputs that exercise the divergences.

107

5 Test Suite Augmentation

5.2.5 Checking for Output Differences
Lastly, the old and new program versions are checked for output differences in

Line 8 of Algorithm 7 on the test cases exposed during the prior phases to be

triggering divergent execution contexts. For each divergent test case, the new

program version 𝑃′ is simulated with the valuations of that test case. If the outputs

of the test case in the old program version 𝑃 and the new program version 𝑃′ differ,

the test case is difference-revealing and added to the set of difference-revealing test

cases. The following Example 5.6 illustrates this process on the running example.

Example 5.6: Checking for Output Differences
After the derivation of test inputs that lead to divergent execution contexts,

they are executed to check whether they propagate the divergence and reveal

differences in the outputs of both program versions. By concretely executing

the derived divergent test input 𝑥0 = 1 in the change-annotated CFG of the

program, the following execution contexts are obtained:

𝜋 : true
𝜌 : {𝑥0 ↦→ 1, 𝑦1 ↦→ 1, 𝑧0 ↦→ false}

𝜋 : true
𝜌 : {𝑥0 ↦→ 1, 𝑦1 ↦→ 1, 𝑧1 ↦→ false}

𝜋 : true
𝜌 : {𝑥0 ↦→ 1, 𝑦1 ↦→ 2, 𝑧0 ↦→ false}

𝜋 : true
𝜌 : {𝑥0 ↦→ 1, 𝑦1 ↦→ 2, 𝑧1 ↦→ true}

Old Program New Program

Figure 5.12: Resulting execution contexts after concretely executing the old

and the new program on the derived divergent test input.

As both program versions produce different outputs (old : 𝑧1 ↦→ false vs.

new : 𝑧1 ↦→ true) for the same input (old and new : 𝑥0 ↦→ 1) the test input is

said to be difference-revealing.

As illustrated in Figure 5.5, it is the task of the developer to check whether a

difference-revealing test case is a fault-revealing test case or not.

Concluding Remarks This chapter presented a state-of-the-art algorithm for TSA

lifted to the domain of PLC software. The necessary adaptations and the embedding

of the CSE of Chapter 4 have been presented. The next chapter evaluates the

performance of the proposed TSA algorithm.

108

Evaluation 6
This chapter first introduces and provides background information on the bench-

marks used to evaluate this thesis. The actual evaluation is two-fold. Both, the

contribution of Chapter 4 and the contribution of Chapter 5 are evaluated in this

order, and the results are discussed.

Technical Setup The evaluation was conducted on an Intel(R) Core(TM) i5-6600K

CPU @ 3.50 GHz x 4 desktop with 16 GiB of RAM running Ubuntu 22.04.1 LTS. The

high-performance automated theorem prover Z3 version 4.9.1 by Microsoft [dMou

& Bjø 08] was used for SMT-solving. The benchmarks evaluated with Arcade.PLC

were also run with the same evaluation setup.

6.1 Benchmarks
Due to the lack of industrial-sized benchmarks that incorporate reconfigurations

and yet are still analyzable by the implemented proof of concept, the PLCopen

Safety suite and the PPU have been chosen as a compromise.

6.1.1 PLCopen Safety Suite
The PLCopen Safety suite consists of a set of IEC 61131-3 programs [Int 14] and FBs

defined by the members of the PLCopen and external safety-related organizations.

PLCopen is an independent worldwide organization aiming to provide efficiency

in industrial automation based on the needs of its users
1
. They concentrate on

technical and vendor-neutral specifications around the IEC 61131-3 standard to

reduce the costs of reimplementation and validation of FBs. An exemplary PLC

program is depicted in Figure 6.1. It is described in the technical specification

by the PLCopen [PLC 08]. The description consists of a textual specification of

selected important properties, a visualization of the behavior using digital timing

diagrams, and a semi-formal specification of the complete behavior in the form of

state diagrams [Bia 16]. The implementations for the rest of the PLCopen Safety

suite [PLC 18] were reused from the Arcade.PLC tool [Bia & Bra
+

12; Bia 16].

1https://plcopen.org/what-plcopen

109

https://plcopen.org/what-plcopen

6 Evaluation

4.5. Two-Hand Control

Activate

S_EStopIn

S_StartReset

S_AutoReset

Reset

Ready

S_EStopOut

Error

DiagCode

SF_EmergencyStop

Activate

S_Button1

S_Button2

Ready

S_TwoHandOut

Error

DiagCode

SF_TwoHandControlTypeII

Activate

S_SafeControl

ProcessControl

StaticControl

S_StartReset

S_AutoReset

Reset

Ready

S_OutControl

Error

DiagCode

SF_OutControl

Activate

S_OutControl

S_EDM1

S_EDM2

MonitoringTime

S_StartReset

Reset

Ready

S_EDM_Out

Error

DiagCode

SF_EDM

SAFEBOOL_TO_BOOL

TRUE

S1_S_EStopIn

FALSE

FALSE

S0_Reset

Process

S2_S_Switch1

S2_S_Switch2

TRUE

FALSE

TRUE

TRUE

S0_Reset

TRUE

K1_S_EDM1

K2_S_EDM2

T#_200ms

FALSE

S0_Reset

S_EDM_Out_EDM_K1_K2

S
e
n

s
o
r
s

A
c
t
u

a
t
o
r
s

Environment

Figure 6.1: An exemplary PLC program interacting with its environment.

Figure adapted from Figure 23 in [PLC 08].

6.1.2 Pick and Place Unit
The PPU is a bench-scale manufacturing system [Vog & Leg

+
14]. In total, 15

scenarios and their evolutions are described in the technical document. It is an

open case study, and the documentation is freely available
2
. Its size and complexity

limitations pose a trade-off between problem complexity and evaluation effort and

hence make it suitable for algorithmic analysis.

While it was extended to feature 23 scenarios [Vog & Bou
+

18], the benchmarks

analyzed in this thesis are limited to the original description of the PPU [Vog &

Leg
+

14]. Table 6.1 gives an overview of the software and mechanical changes

Table 6.1: Software and mechanical changes during evolution of the PPU.

The symbols are explained in the text.

Table adapted from Table 20 in [Vog & Leg
+

14].

Scenario
Stack Crane Ramp Stamp

Soft. Mech. Soft. Mech. Soft. Mech. Soft. Mech.

Scenario_0 I I I I - I - -

Scenario_1 = = = = - M - -

Scenario_2 M M = = - = - -

Scenario_3 = = M M - = I I

during the evolution of the PPU. A graphical representation of Table 6.1 is given

in Figure 6.2. Scenario_0 introduces (I) the stack, crane, and ramp components.

2https://www.mec.ed.tum.de/ais/forschung/demonstratoren/ppu/

110

https://www.mec.ed.tum.de/ais/forschung/demonstratoren/ppu/

6.1 Benchmarks

The evolution from Scenario_0 to Scenario_1 introduces a purely structural

Evolutions which affect

Software Functionality

Sc0Sc1

Sc2

Sc3Sc4a

Sc4b . . .

Y-shaped

Ramp

Plastic and Metallic

Workpieces

Stamp

Component

Figure 6.2: Excerpt from evolutions of the PPU.

Figure adapted from Fig. 48 in [Vog & Leg
+

14].

change in the form of a modification (M). The ramp component underwent a

mechanical reconfiguration which did not affect the software, and all the other

components were untouched by this reconfiguration (=).

The second evolution step from Scenario_0 to Scenario_2, as depicted in Fig-

ure 6.2, resulted from changing customer requirements. The PPU should handle

both plastic and metallic workpieces. Due to the introduction of an induction

sensor (structural change), the output behavior of the stack (functional change)

changed while all other components were untouched by this reconfiguration.

The third evolution step from Scenario_2 to Scenario_3 was performed in

order to stamp metallic workpieces before being transported to the ramp. A stamp

component was introduced to enable stamping, and the behavior of the crane had

to be reimplemented.

Figure 6.3 illustrates an exemplary scenario of the PPU. The PPU is designed

for a centralized control structure executing multiple FBs on the same PLC. While

this centralized control structure is certainly capable of orchestrating a whole work

cell, the communication between the components is still limited to the scope of

within one application. Therefore, the TSG of this thesis is characterized as classic,

monolithic testing rather than distributed testing and thus challenges arising from

diverse networking between components are not regarded.

111

6 Evaluation

OMAC

State Machine

Unit

PPU

Equipment

Module 1

Stamping Plant

Equipment

Module 2

Sorting Plant

Control

Module 1

Crane

Control

Module 2

Stack

Control

Module 3

Stamp

Control

Module 4

Conveyor

Running on a centralized PLC

Figure 6.3: An exemplary scenario of the PPU.

Figure adapted from Figure 17 in [Vog & Rös
+

16].

Setup The VerifAps library
3

was used to translate the scenarios of the PPU

from PLCopenXML to ST. The Xml2TxtApp of VerifAps was used with the

options –translate-sfc and –ppu and manually post-processed to conform with

the input defined by the grammar used by the PAF for this thesis.

6.2 Test Suite Generation
As TSG is an integral part of TSA, first, the achieved performance improvements

for the BSE are presented.

Evaluation of the PLCopen Safety Suite Table 6.2 shows the results of the eval-

uation of a set of safety-related PLC programs provided by the PLCopen orga-

nization [PLC 18] using their corresponding reference implementation in Ar-

cade.PLC [Bia & Bra
+

12] which were published in [Gro & Völ
+

22b]. For each

evaluated FB and user-defined program, Table 6.2 shows the lines of code (LOC),

the achieved branch coverage values (cov. [%]) along multiple execution cycles,

the amount of generated test cases (T [#]), as well as the runtimes (time [s]) in

seconds of the merge-based TSG algorithm in Arcade.PLC [Boh & Sim
+

16] in

3https://github.com/VerifAPS/verifaps-lib

112

https://github.com/VerifAPS/verifaps-lib

6.2 Test Suite Generation

Table 6.2: Comparison of branch coverage and runtimes for the TSG of the PLCopen

Safety library, ordered alphabetically. The rows highlighted in blue show

results in favor of Arcade.PLC and the rows highlighted in orange show

results where the contribution significantly outperformed Arcade.PLC

in one metric.

Table adapted from Table 1 in [Gro & Völ
+

22b].

Function Block /

Program
Arcade.PLC + SA Contribution + SA

manual

LOC cov. [%] T [#] time [s] cov. [%] T [#] time [s]
Antivalent 136 100 61 0.74 100 23 0.37

EDM 229 100 134 5.22 100 62 3.49

Emergency_Stop 127 100 66 0.45 100 27 0.33

Enable_Switch 133 100 71 1.13 100 32 1.28

Equivalent 133 100 62 0.86 100 26 0.59

ESPE 127 100 66 0.42 100 27 0.31

Guard_Locking 148 100 80 1.01 100 37 0.87

Guard_Monitoring 174 100 82 1.45 100 34 1.12

Mode_Selector 239 100 70 5.20 100 30 1.08
Muting_Seq 262 97.5 - TO 100 53 49.6
Out_Control 121 100 67 0.77 100 31 0.61

Safe_Stop 157 100 73 3.52 100 32 0.59

Safely_Limit_Speed 175 100 91 9.90 100 41 1.38
Safety_Request 191 100 88 1.29 100 40 1.01

Testable_Safety_Sensor 291 100 147 16.93 100 68 17.08

Two_Hand_Control_Type_II 126 100 83 0.85 100 38 0.73

Two_Hand_Control_Type_III 184 100 107 1.63 100 46 0.95

DiagnosticsConcept 537 65.49 - TO 91.00 104 TO

Muting 1119 51.24 - TO 80.23 196 TO

SafeMotion 1061 38.15 - TO 73.71 156 TO

SafeMotionIO 811 53.50 - TO 71.65 106 TO

TwoHandControl 608 58.79 - TO 86.34 131 TO

113

6 Evaluation

comparison to the results of this thesis’ contribution. The timeout (TO) was set to

10 minutes, and the values show an average over multiple experiments.

Arcade.PLC uses a value-set analysis for the detection of unreachable branches,

whereas this contribution uses the SA capabilities provided by Crab. To only

focus on the performance of the underlying BSE implementations, both programs

were executed with the additional pre-computed information from the SA without

considering its execution time. SA
manual

refers to the manual annotation for truly

unreachable branches in addition to the derived automated results from Crab,

which were over-approximated due to the convexification of the disjunctions as

mentioned in Section 4.1.4.

Overall, both approaches perform equally well concerning the analysis time of

the corresponding FBs. There are a few outliers (Enable_Switch, Mode_Selector,
Muting_Seq, Safely_Limit_Speed, and Testable_Safety_Sensor), but in general,

the results are as expected when taking the LOC as a reference for a rough estimate

of the complexity. A significant difference is visible in the number of tests generated

by both approaches. While Arcade.PLC generates concise test cases for every

branch, the contribution of this thesis tries to avoid redundancies due to shorter

test cases being a prefix of longer test cases, hence generating fewer test cases

overall [Gro & Völ
+

22b]. This observation is neither a benefit nor a disadvantage

of either approach and could be easily obtained by static post-processing on the

test suite generated by Arcade.PLC. Due to a technical limitation, Arcade.PLC

does not generate any test cases when running into a timeout.

Regardless, the coverage values can be used as a measure of the achieved

performance. A trend visible during the analysis of Muting_Seq, which passes onto

the analysis of the user-defined programs, is that Arcade.PLC quickly reaches its

limitation when encountering hard-to-analyze and deeper nested explorations.

The user-defined programs found in the bottom section of Table 6.2 are composed

of multiple FBs from the upper part of the table with additional logic and were

analyzed by Arcade.PLC with SA and by this contribution without manual SA

annotations.

An apparent result derived from the achieved coverage values is that the analysis

becomes more complex as more calling contexts are available. The delayed merge

strategy until the end of the cycle, as performed by Arcade.PLC, performs worse

than merging on all realizable paths as soon as the opportunity is given [Gro &

Völ
+

22b]. The degeneration of performance is most notably in programs that make

heavy use of the timer and edge trigger FBs as deeper nested behavior can only

be reached traversing specific paths requiring the heavy lifting of the underlying

SMT solver.

Evaluation of the PPU Table 6.3 shows the analysis results of selected scenarios

from the PPU benchmark. As TSA uses a BSE at its core, the results of the TSG

without SA information are shown in Table 6.3 and discussed next. The semantics

of the columns is the same as in Table 6.2 with the addition of the maximum

114

6.2 Test Suite Generation

Table 6.3: Results of the TSG using BSE for selected PPU scenarios.

Table adapted from Table 2 in [Gro & Völ
+

22b].

PPU
Scenario

Contribution

LOC cov. [%] T [#] time [s] cycle [#]
Scenario_0 412 88.97 45 169.82 25

Scenario_1 412 88.97 45 170.12 25

Scenario_2 459 89.61 55 274.19 25

Scenario_3 768 91.67 102 1198.08 25

number of cycles (cycle [#]). The BSE is configured to be bounded by time (TO

= 30 minutes), the number of cycles (= 25), and reaching a predefined coverage

value (= 100% “branch” coverage). The PPU has more functionality with regard to

the FBs of the PLCopen Safety suite analyzed before, which is also reflected in the

required time and the need to specify additional termination criteria for the TSG.

A comparison with Arcade.PLC was omitted as it is missing functionality to be

able to analyze the PPU benchmark.

As the reconfiguration from Scenario_0 to Scenario_1 aims to increase the

ramp’s capacity by a purely structural change, as depicted in Table 6.1, the achieved

results are equal in both cases. The differing runtimes in both rows are due to the

average of multiple experiments. The other entries are as expected: as the size and

complexity of the benchmark increase, the runtimes and the number of test cases

also increase.

Using Summarization during Test Suite Generation
The summarization algorithm presented in Chapter 4 and the use of summaries

during TSG were evaluatedon the PLCopen Safety suite. Table 6.4 shows the results

of the CSE without SA information and the CSE using summarization without

SA information on the PLCopen Safety suite. The timeout was set to 10 minutes,

and the execution was bounded by 15 cycles. For each evaluated FB, Table 6.4

shows the achieved coverage in percent (cov. [%]), the number of generated test

cases (T [#]), as well as the runtimes (t[s]) in seconds of both implementations.

In addition, the columns for the evaluation with summarization also show the

number of generated summaries (S [#]) and the time it took to generate them (gen.
t[s]). The overall runtime (t[s]) in seconds includes the cumulative time it took to

apply the summaries during CSE (apl. t[s]) [Gro & Völ
+

22a].

When glancing at Table 6.4, it becomes apparent that both techniques perform

more or less equally well. This was not expected. However, the time for summary

application is already an indicator of the bottleneck, and subsequent profiling of

the software architecture resulted in SMT-solving being the most expensive task,

occupying around 67% of the total runtime.

115

6 Evaluation

Table 6.4: Comparison of branch coverage and runtimes for the TSG of the PLCopen

Safety library. The rows highlighted in blue denote results where the

use of the summarization heuristic performs better with regard to the

highlighted metrics.

Table adapted from Table I in [Gro & Völ
+

22a].

Function Block /

Program
CSE w/o SA CSE + Sum. w/o SA

cov. [%] T [#] t [s] cov. [%] T / S [#] gen. t [s] apl. t [s] / t [s]
Antivalent 80.26 21 10.47 80.26 21 / 36 0.18 12.91 / 13.79

EDM 97.86 64 10.99 97.86 80 / 65 0.56 12.88 / 13.78

Emergency_Stop 94.29 26 9.75 94.29 24 / 25 0.15 8.23 / 9.07
Enable_Switch 93.42 31 12.97 93.42 34 / 32 0.14 13.13 / 14.40

Equivalent 93.75 24 8.95 93.75 27 / 34 0.13 12.80 / 13.77

ESPE 94.25 25 10.14 94.25 24 / 25 0.15 8.35 / 9.15
Guard_Locking 97.56 38 16.60 97.56 45 / 36 0.20 25.38 / 27.40

Guard_Monitoring 93.02 34 19.07 93.02 41 / 40 0.20 22.52 / 24.43

Mode_Selector 94.44 29 14.67 95.83 61 / 59 0.68 17.33 / 18.48

Muting_Seq 95.90 54 56.66 95.90 69 / 56 0.46 93.94 / 103.25

Out_Control 95.71 31 11.64 95.71 37 / 31 0.15 15.46 / 16.88

Safe_Stop 94.88 31 9.58 94.88 37 / 93 0.60 20.74 / 21.77

Limit_Speed 97.87 41 24.38 97.87 55 / 121 0.79 35.75 / 37.27

Safety_Request 95.56 36 15.99 95.56 35 / 36 0.29 17.78 / 19.63

Safety_Sensor 91.67 69 14.49 91.67 80 / 67 0.63 12.49 / 13.55
TH_Control_T_II 96.51 38 18.33 96.51 40 / 39 0.16 18.52 / 19.91

TH_Control_T_III 96.36 46 33.34 96.36 48 / 53 0.32 45.15 / 48.25

116

6.2 Test Suite Generation

This shows that there is no clear benefit of using summarization over the baseline,

and often, more test cases were generated due to the loss of context. At the same

time, both analyses reached comparable coverage values. These test cases are

redundant with regard to the chosen branch coverage metric as they represent

witnesses of the same equivalence classes [Gro & Völ
+

22a].

Nonetheless, there are some cases where summarization outperforms the base-

line. In general, no clear evidence could be derived on why because it staggers

between FBs of varying complexity. One explanation could be that summarization

covers multiple branches in one path and hence reduces the number of generated

test cases compared to the baseline, which tries to generate test cases whenever

a new branch is covered. Furthermore, the results depicted in Table 6.4 reflect

average values over multiple experiments. It was observed that the generated

context and the order and choice of summaries during the applicability check

influence the achieved performance.

Comparison of different Heuristics The baseline is put to the test in comparison

with a non-merged-based (NMB) and a merge-based (MB) concolic approach using

summarization in Table 6.5. As profiling has shown that a lot of time is spent on

solving the symbolic expressions during the applicability checking, two different

heuristics are evaluated. Table 6.5 shows the results of the comparison between

the baseline, the NMB, and MB concolic approaches using summarization. The

timeout is set to 10 minutes, and the cycle bound is set to 25 cycles. The cumulative

application checking time for the summaries is contained in the total runtimes

(t[s]) for the respective approaches.

While the algorithm for finding applicable summaries executes very fast for the

NMB approach due to the use of concrete valuations, the explicit enumeration of

all feasible paths through one cycle degenerates quickly [Gro & Völ
+

22a]. For

deeper nested execution contexts, this way of exploring the CFG of a PLC program

is intractable due to the path explosion problem emerging from the cyclic behavior.

Considering the compromise of still executing concolically while merging at

join points, additional symbolic checking has to be undertaken as information

is partially lost [Gro & Völ
+

22a]. This limitation stems from the way how the

concrete stores of the execution contexts are currently merged, resulting in an

under-approximation and hence loss of context information during the summary

application [Gro & Völ
+

22a]. The increased running times can be explained by

the engine’s effort to alleviate this context loss. Therefore, for each concretely non-

applicable summary, a symbolic check has to be performed additionally, offloading

expensive queries to the SMT solver [Gro & Völ
+

22a].

Reusing Summaries across Program Versions For the sake of completeness, the

results for reusing summaries across program versions are discussed next despite

the poor results for the summary application check. Table 6.6 shows the results

of the validity checking algorithm for the generated summaries of the PLCopen

117

6 Evaluation

Table 6.5: Comparison of the baseline, the non-merge-based concolic and the merge-

based technique on the PLCopen Safety suite. The rows highlighted in

blue show results where the other techniques outperformed the base-

line CSE.

Table adapted from Table II in [Gro & Völ
+

22a].

Function Block /

Program
CSE w/o SA NMB + Sum. MB + Sum.

cov. [%] T [#] t[s] cov. [%] T [#] t[s] cov. [%] T [#] t[s]
Antivalent 80.26 21 10.47 80.26 14 TO 80.26 21 14.66

EDM 97.86 64 10.99 97.86 39 TO 97.86 79 138.35

Emergency_Stop 94.29 26 9.75 94.29 15 TO 94.29 24 9.1
Enable_Switch 93.42 31 12.97 93.42 23 TO 93.42 33 14.37

Equivalent 93.75 24 8.95 93.75 16 TO 93.75 26 13.93

ESPE 94.25 25 10.14 94.25 15 TO 94.25 24 9.19
Guard_Locking 97.56 38 16.60 97.56 27 TO 97.56 47 27.88

Guard_Monitoring 93.02 34 19.07 93.02 23 TO 93.02 38 25.65

Mode_Selector 94.44 29 14.67 90.28 40 TO 95.83 62 187.21

Muting_Seq 95.90 54 56.66 86.89 35 TO 95.90 68 111.10

Out_Control 95.71 31 11.64 95.71 22 TO 95.71 37 16.97

Safe_Stop 94.88 31 11.64 94.88 20 TO 94.88 40 220.57

Limit_Speed 97.87 41 24.38 80.85 22 TO 97.87 54 376.83

Safety_Request 95.56 36 15.99 95.56 21 TO 95.56 36 24.14

Safety_Sensor 91.67 69 14.49 69.87 28 TO 91.67 85 158.43

TH_Control_T_II 96.51 38 18.33 96.51 22 TO 96.51 40 23.10

TH_Control_T_III 96.36 46 33.34 96.36 22 TO 96.36 48 57.34

118

6.3 Test Suite Augmentation

Safety suite after reconfigurations have been performed to the respective FBs. The

Table 6.6: Runtimes for validity checking of arbitrary changes to the PLCopen

Safety suite.

Table adapted from Table III in [Gro & Völ
+

22a].

Function Block /

Program S [#] Phase 1 [s] Phase 2 [s] Phase 3 [s] Valid [#] Invalid [#]
Antivalent 36 0 0.30 0.32 36 0

EDM 65 0 1.42 0.02 64 1

Emergency_Stop 25 0 0.10 0.03 24 1

Enable_Switch 32 0 0.13 0.04 32 0

Equivalent 34 0 0.14 0.03 33 1

ESPE 25 0 0.10 0.06 23 2

Guard_Locking 36 0 0.23 0.02 33 3

Guard_Monitoring 40 0 0.22 0.03 38 2

Mode_Selector 59 0 0.64 0.09 58 1

Muting_Seq 56 0 1.18 0.60 53 3

Out_Control 31 0 0.12 0.08 30 1

Safe_Stop 93 0 0.75 0.03 89 4

Limit_Speed 121 0 0.84 0.02 117 4

Safety_Request 36 0 0.22 0.05 35 1

Safety_Sensor 67 0 1.93 0.03 66 1

TH_Control_T_II 39 0 0.17 0.04 38 1

TH_Control_T_III 53 0 0.36 0.02 50 3

reconfigurations were performed manually and had no semantic reasoning behind

them. This resulted in only one or two reconfigurations per FB as it required

a manual check for correctness. In general, the results of the second and third

phase are dependent on the encoding of the problem instance and the performance

of the used SMT solver. The algorithm performs as it was expected from the

results obtained in the respective source [God & Lah
+

11] and underlines that the

bottleneck in efficiently reusing summaries across program versions remains in

their application checking during SE.

6.3 Test Suite Augmentation
Table 6.7 shows the results of the TSA algorithm applied to selected reconfigu-

ration scenarios of the PPU benchmark. The first column denotes the analyzed

reconfiguration scenario (cf. Figure 6.2). The second column relates the number

of untouched change-annotated vertices (𝑏𝑢 [#]) to the number of total change-

annotated vertices (𝑏𝑐𝑎 [#]) in the program using the test suite of the program

before the reconfiguration. This ratio gives an estimate of how well the previous

test suite is capable of finding divergences using SSE.

119

6 Evaluation

Table 6.7: Results of the TSA using Algorithm 7 for selected reconfiguration sce-

narios of the PPU.

Table adapted from Table 3. in [Gro & Völ
+

22b].

PPU
Evolution

𝑏u [#] /

𝑏ca[#] 𝑇ca[#]
FDC BSE

𝑇diff [#]
𝒬div [#] t [s] 𝑇div [#] t [s]

Scenario_{0→ 1} 0/0 0 0 0 0 0 0

Scenario_{0→ 2} 1/12 45 2 1.77 52 54.99 23

Scenario_{2→ 3} 21/50 55 21 19.49 1269 3423.94 1269

The third column denotes the number of test cases (𝑇𝑐𝑎[#]) of the test suite that

exercise any number of change-annotated vertices 𝑏𝑐𝑎 in the change-annotated PLC

program [Gro & Völ
+

22b]. The generated test cases are succinct with regard to the

required number of cycles to reach a particular specific coverage metric. Therefore

test cases that cover deeper nested code fragments can share a partial prefix with

other test cases [Gro & Völ
+

22b]. As SSE requires a seed in the form of a test case

as an input, this leads to a natural limitation of the SSE approach. An increased

analysis time for the subsequent phases is expected for programs that exhibit cyclic

behavior, such as in the PLC domain.

The fourth column represents the analysis results of Algorithm 8 in Section 5.2.3

for finding divergent execution contexts. It lists the number of derived divergent

contexts (𝒬div[#]) and the total time it took to perform the analysis (t [s]) for each

representative test case derived from the prior phase.

The fifth column represents the analysis results of propagating the divergent

execution contexts by initiating a BSE for each divergent context found. It is divided

into the number of divergent test cases (𝑇div[#]) generated by the BSE using the

corresponding triggering test cases as a seed for the concolic execution and the

total runtime (t [s]).
Last but not least, the sixth column denotes the number of difference-revealing

test cases (𝑇diff [#]) that were derived from the divergent test cases𝑇div[#] by checking

the observable behavior of the old and the new version of the program.

Discussion The first row of Table 6.7 shows that the TSA algorithm did not

perform any analysis as Scenario_{0 → 1} only introduced a mechanical re-

configuration (see Table 6.1 and Figure 6.2). Scenario_{0 → 2} consists of 12

change-annotated vertices, of which one is not traversed by the test suite 𝑇 gener-

ated for Scenario_0. This shows that the old test suite 𝑇 is not adequate enough

to test Scenario_2 with regard to the respective coverage measure. In order to

guarantee an exhaustive analysis, a directed TSG must be performed to derive a

test case traversing the untraversed change-annotated vertex. This is disregarded

in the subsequent analysis, and all 45 test cases from the prior test suite are selected

as 𝑇𝑐𝑎[#]. For each test case in 𝑇𝑐𝑎[#], Algorithm 8 of Chapter 5 is executed, yielding

120

6.3 Test Suite Augmentation

two divergent contexts in under two seconds. For each divergent context, a BSE is

started from the point of divergence resulting in 52 divergent test inputs in under

a minute. Of all those divergent test inputs, only 23 are truly difference-revealing

and need to be subsequently analyzed by the developer to distinguish between

expected divergences and regression bugs. As the increase in LOCs depicted

in Table 6.3 already suggests, Scenario_{2 → 3} has even more untraversed

change-annotated vertices, divergent execution contexts, and difference-revealing

test cases. While the generation time of roughly an hour is an acceptable time,

the amount of generated difference-revealing test cases that have to manually be

analyzed by the developer is not. The reason for the amount of generated test cases

during BSE for Scenario_{2 → 3} is explained with the help of Figure 6.4. The

ℐ 𝒪 ℐ 𝒪Cycle 1 Cycle 2

Fork

Figure 6.4: Paths taken by the generated test cases under divergent test inputs

during BSE.

divergent execution contexts and the respective divergent test inputs represent the

contexts that triggered either a diverging concrete execution or were generated

because of potential possible divergences at the four-way fork. Assume the blue

and the red path denote divergent test inputs derived in the analysis prior to BSE.

In the example, the branch condition within the block denoted by orange is only de-

pendent on the input valuations. This, therefore, leads to a fork and the generation

of two test cases for the true and the false branch inheriting the prefix of the first

cycle. The same is done for the other divergent test input denoted by the red path,

and again two test cases covering both branches are derived. In total, BSE generates

four test cases while the initial two divergent test inputs would be sufficient to

yield the same coverage measure in case of branch coverage.

121

Conclusion 7
The evolution of PLC software involves the addition, modification, and removal of

functionality. In order to guarantee that a PLC program is adequately tested after

such a reconfiguration with regard to a specified coverage metric, the test suite

must also evolve.

The goal of this thesis was to provide a “push-button” analysis for the generation

of test cases after a reconfiguration. This tool should be usable during static

reconfiguration, i.e., when the entire system is stopped during maintenance, or

during virtual commissioning. In these scenarios, the test input data can be

fed and supervised to observe the impact of the reconfiguration on the CPPS by

the developer. To achieve this goal, this thesis investigated two complementing

approaches. The general rationale was to improve efficiency by notdoing redundant

work when trying to generate test cases for a PLC program and augmenting the

test suite for the new PLC program after a reconfiguration.

Test Suite Generation Automatic TSG is a well-established technique used to

generate test suites adhering to structural coverage metrics of PLC software [Sim &

Fri
+

15; Boh & Sim
+

16; Gro & Völ
+

22a]. However, in the face of reconfigurations, a

new analysis would not consider the effort of the prior analysis. In order to reduce

this redundancy in TSG after a structural reconfiguration to the PLC software

has occurred, symbolic summaries of specific parts of the program have been

derived, cached, and reused to investigate whether they can benefit the subsequent

analysis. As code untouched from reconfigurations will result in equivalent path

conditions, the goal was to determine whether the application of summaries can aid

in increasing the analysis’ performance. For this purpose, a combination of state-of-

the-art CSE and SA algorithms for TSG and summary reuse [Can & God 19] have

been implemented and evaluated. The evaluation of the prototypical evaluation

on the PLCOpen Safety suite in Section 6.2 clearly showed the ineffectiveness of

using summarization of FBs during TSG for reconfigurable PLC software.

Test Suite Augmentation After a reconfiguration, the generated test suite via

automatic TSG might not be adequate enough anymore with regard to the coverage

metric to ensure the absence of regressions in the new program version. An

indispensable part of RT poses TSA, which guides the TSG toward the reconfigured

behavior and increases the chances of deriving difference-revealing test cases which

expose behavioral differences between the program and its reconfigured version.

123

7 Conclusion

Intuitively, two things are needed to guarantee that a test suite is adequate enough

with regard to some coverage metric to test the behavior after a reconfiguration:

(1) test cases must reach potentially affected areas, and (2) test cases must account

for the state of the software and the effects of changes. Reaching potentially

affected areas (1) must occur along different, relevant paths following specific

data- and control dependency chains. In Chapter 3, it was shown that a static

CIA degenerates for the analysis of changes after a reconfiguration to the PLC

software. It is often imprecise and misses important pruning and prioritization

opportunities. The execution of modified instructions does not mean that they

are necessarily difference-revealing because the subdomains do not need to be

homogenous with regard to the failure [Wey & Jen 91]. Semantic change-impact

analysis may optimize the search for relevant areas during SE and prune unrelated

paths, but it was out of the scope for this thesis.

This thesis presented the implementation of state-of-the-art CSE algorithms

for TSA in the area of PLC programs. Test generation is guided toward the changed

behavior using a technique known as four-way forking [Pal & Kuc
+

16; Kuc & Pal
+

18] from SSE. The old and new PLC software are executed in the same CSE instance

through the use of a CAP to account for the effects of the reconfiguration and

increase the chances of generating difference-revealing test cases. The prototypical

implementation was evaluated using domain-specific benchmarks such as the

PLCopen Safety library and the PPU. It exposed the limitations in applicability

and effectiveness of the used techniques for safeguarding PLC software subject to

frequent reconfigurations as found in CPPSs.

While the generation of difference-revealing test cases (2) is a good step toward

increasing the confidence in the absence of errors, partition testing might often

not be better than random input generation. Hence exhaustive four-way forking

is necessary to guarantee the absence of errors. Exhaustivenes, however, comes

with a price rendering it often intractable [Nol & Ngu
+

19]. Another possibility of

improving the effectiveness of SE to find regression errors and faults is achieved by

using the concept of fault-based testing. Typically, this is achieved by instrument-

ing the CFG of the reconfigured program with a series of enhanced cross-version
checks [Kuc & Pal

+
18; Jam & Fra

+
13].

7.1 Outlook
Several issues remain for the implemented TSG. Currently, the summarization

supports only whole FBs without nested callees. Future work should investigate

arbitrary code summarization and also allow multiple, nested FBs during summa-

rization. In general, I assume that the benefits of summarization would be more

visible when analyzing more extensive and complex programs than the PLCopen

Safety suite. Furthermore, incremental solving should be investigated in more

depth. While it was prototypically implemented for summary pruning to combat

the lack of context information during the summary application, the results were

124

7.1 Outlook

poor.

The amount of generated difference-revealing test cases by the TSA is not manu-

ally analyzable. Potential solutions such as test case prioritization or other test suite

reduction techniques from RT should be evaluated in order to narrow down the

required test cases, which must be checked by the developer after a reconfiguration

to uncover potential regressions.

Figure 7.1 summarizes state-of-the-art techniques and puts them in comparison

concerning their encoding. A significant drawback of using symbolic summaries

One Formula per Path

DART (SAGE)

[God & Kla
+

05]

EXE (KLEE)

[Cad & Dun
+

08]

Merge-based

Concolic Execution

[Sim & Fri
+

15;

Boh & Sim
+

16]

CBMC

[Cla & Kro
+

04;

Kro & Tau 14]

One Formula per CFG

BOOGIE

[Bar & Cha
+

05]

SEAHORN

[Gur & Kah
+

15]

HORN PLC

[Boh & Kow 20]

Compositional SE /

Summaries

[God 07; God

& Lah
+

11]

CYCLE-BMC

[Boh & Ham
+

18]

Dynamic

State Merging

[Kuz & Kin
+

12]

Symbolic Execution
Verification Condition

Generation

Figure 7.1: Relationship between SE and VCG.

Figure adapted from [Kuz & Kin
+

14; Can & God 19].

and state merging in SE is the increased solving cost. This thesis investigated

dynamically executing the CFG and merging execution states at control flow join

points, where all feasible subpaths have been explored before the merge. This is

125

7 Conclusion

quite similar to static state merging from VCG, with the exception that this thesis

under-approximates the execution paths through the CFG.

Furthermore, the IR under-approximates the behavior of the analyzed CFG by

using function cloning to avoid invalid interprocedural paths. Over-approximation

boosts merging and analysis speed at the cost of introducing spurious behavior.

An interesting research question would be to investigate the trade-off between the

progress gained through spuriousness and the time lost refining the counterex-

amples to derive test cases. Experiments with VCG for the verification of PLC

programs [Boh & Ham
+

18; Boh & Kow 20; Boh 21] have shown that this technique

outperforms other state-of-the-art verification techniques for PLC programs. Es-

pecially interesting is the fact that during the summary generation in Chapter 4,

the implementation of SE is based on the concepts of [Boh & Ham
+

18]. In future

work, experiments adopting VCG and intermediate merging strategies may move

Cycle-Bmc more into the direction of SE and pose a competitive solution for TSG

with path-based summary reuse.

126

Operational Semantics A
The value of an expression depends on the respective store. The concrete and

symbolic operational semantics of expressions are defined over configurations

⟨𝑒 , 𝜌⟩ and ⟨𝑒 , 𝜎⟩ consist of the expression 𝑒 ∈ 𝑬 and the concrete or symbolic

store, 𝜌 and 𝜎, respectively. The big-step operational semantics of expressions are

specified in terms of the transition relation operator “→” as follows: ⟨𝑒 , 𝜌⟩ → 𝑑

for the evaluation of the concrete configuration and ⟨𝑒 , 𝜎⟩ → 𝛾 for the evaluation

of the symbolic configuration in their respective domains [Nie & Nie
+

99]. Hence,

for example, ⟨𝑒 ≔ 𝑥 > 0, 𝜌 ≔ {𝑥 ↦→ 1}⟩ → 𝑑 ≔ true means that expression 𝑥 > 0

evaluates to true using the concrete valuation 𝑥 ↦→ 1.

The symbolic operational semantics of expressions are defined in terms of Z3

expressions and their internal semantics [dMou & Bjø 08]. This facilitates the entire

implementation of a type system and gives rise to the powerful way Z3 handles

their expressions in memory.

The operational semantics of the expressions and instructions are used through-

out this thesis in Chapter 4 and Chapter 5 within the SE algorithms.

Definition A.1: Concrete Operational Semantics of Expressions

⟨𝑖 , 𝜌⟩ → 𝑖
𝑖 ∈ I

⟨𝑣𝑎 , 𝜌⟩ → 𝜌(𝑣𝑎)
𝑣𝑎 ∈ 𝑽𝐴

Negation

⟨𝑎, 𝜌⟩ → 𝑖

⟨−𝑎, 𝜌⟩ → −𝑖

Exponentiation

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 ∗ ∗𝑎2, 𝜌⟩ → 𝑖1 ∗ ∗𝑖2

Multiplication

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 ∗ 𝑎2, 𝜌⟩ → 𝑖1 ∗ 𝑖2

Divis ion

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1/𝑎2, 𝜌⟩ → 𝑖1/𝑖2

Modulo

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 MOD 𝑎2, 𝜌⟩ → 𝑖1 MOD 𝑖2

Addition

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 + 𝑎2, 𝜌⟩ → 𝑖1 + 𝑖2

Subtraction

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 − 𝑎2, 𝜌⟩ → 𝑖1 − 𝑖2

127

A Operational Semantics

Definition A.2: Concrete Operational Semantics of Boolean Expressions

⟨true, 𝜌⟩ → true
true ∈ B

⟨false, 𝜌⟩ → false
false ∈ B

⟨𝑣𝑏 , 𝜌⟩ → 𝜌(𝑣𝑏)
𝑣𝑏 ∈ 𝑽𝐵

Complement

⟨𝑏, 𝜌⟩ → 𝑡

⟨¬𝑏, 𝜌⟩ → ¬𝑡

Less Than

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 < 𝑎2, 𝜌⟩ → 𝑖1 < 𝑖2

Greater Than

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 > 𝑎2, 𝜌⟩ → 𝑖1 > 𝑖2

Less Or Equal Than

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 ≤ 𝑎2, 𝜌⟩ → 𝑖1 ≤ 𝑖2

Greater Or Equal Than

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 ≥ 𝑎2, 𝜌⟩ → 𝑖1 ≥ 𝑖2

Equality

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 = 𝑎2, 𝜌⟩ → 𝑖1 = 𝑖2

Inequality

⟨𝑎1, 𝜌⟩ → 𝑖1 ⟨𝑎2, 𝜌⟩ → 𝑖2

⟨𝑎1 <> 𝑎2, 𝜌⟩ → 𝑖1 ≠ 𝑖2

Boolean And

⟨𝑏1, 𝜌⟩ → 𝑡1 ⟨𝑏2, 𝜌⟩ → 𝑡2

⟨𝑏1 AND 𝑏2, 𝜌⟩ → 𝑡1 ∧ 𝑡2

Boolean Xor

⟨𝑏1, 𝜌⟩ → 𝑡1 ⟨𝑏2, 𝜌⟩ → 𝑡2

⟨𝑏1 XOR 𝑏2, 𝜌⟩ → 𝑡1 ⊻ 𝑡2

Boolean Or

⟨𝑏1, 𝜌⟩ → 𝑡1 ⟨𝑏2, 𝜌⟩ → 𝑡2

⟨𝑏1 OR 𝑏2, 𝜌⟩ → 𝑡1 ∨ 𝑡2

128

Definition A.3: Symbolic Operational Semantics of Expressions

⟨𝑣𝑎 , 𝜎⟩ → 𝜎(𝑣𝑎)
𝑣𝑎 ∈ 𝑽𝐴

Negation

⟨𝑎, 𝜎⟩ → 𝛾

⟨−𝑎, 𝜎⟩ → −(𝛾)

Exponentiation

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 ∗ ∗𝑎2, 𝜎⟩ → ∗ ∗ (𝛾1, 𝛾2)

Multiplication

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 ∗ 𝑎2, 𝜎⟩ → ∗(𝛾1, 𝛾2)

Divis ion

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1/𝑎2, 𝜎⟩ → /(𝛾1, 𝛾2)

Modulo

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 MOD 𝑎2, 𝜎⟩ → MOD (𝛾1, 𝛾2)

Addition

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 + 𝑎2, 𝜎⟩ → +(𝛾1, 𝛾2)

Subtraction

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 − 𝑎2, 𝜎⟩ → −(𝛾1, 𝛾2)

⟨𝑣𝑏 , 𝜎⟩ → 𝜎(𝑣𝑏)
𝑣𝑏 ∈ 𝑽𝐵

Complement

⟨𝑏, 𝜎⟩ → 𝛾

⟨¬𝑏, 𝜎⟩ → ¬(𝛾)

Less Than

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 < 𝑎2, 𝜎⟩ →< (𝛾1, 𝛾2)

Greater Than

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 > 𝑎2, 𝜎⟩ →> (𝛾1, 𝛾2)

Less Or Equal Than

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 ≤ 𝑎2, 𝜎⟩ →≤ (𝛾1, 𝛾2)

Greater Or Equal Than

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 ≥ 𝑎2, 𝜎⟩ →≥ (𝛾1, 𝛾2)

Equality

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 = 𝑎2, 𝜎⟩ →= (𝛾1, 𝛾2)

Inequality

⟨𝑎1, 𝜎⟩ → 𝛾1 ⟨𝑎2, 𝜎⟩ → 𝛾2

⟨𝑎1 <> 𝑎2, 𝜎⟩ →≠ (𝛾1, 𝛾2)

Boolean And

⟨𝑏1, 𝜎⟩ → 𝛾1 ⟨𝑏2, 𝜎⟩ → 𝛾2

⟨𝑏1 AND 𝑏2, 𝜎⟩ → ∧(𝛾1, 𝛾2)

Boolean Xor

⟨𝑏1, 𝜎⟩ → 𝛾1 ⟨𝑏2, 𝜎⟩ → 𝛾2

⟨𝑏1 XOR 𝑏2, 𝜎⟩ → ⊻(𝛾1, 𝛾2)

Boolean Or

⟨𝑏1, 𝜎⟩ → 𝛾1 ⟨𝑏2, 𝜎⟩ → 𝛾2

⟨𝑏1 OR 𝑏2, 𝜎⟩ → ∨(𝛾1, 𝛾2)

129

A Operational Semantics

The big-step operational semantics of instructions are definedoverconfigurations

⟨𝐼 , 𝑠⟩. The judgment has the form ⟨𝐼 , 𝑠⟩ → 𝑠′, where 𝑠′ is the succeeding execution

state after executing the instruction 𝐼 in execution state 𝑠.

Definition A.4: Concrete Operational Semantics of Instructions

Goto

⟨goto 𝑏ℓ ′ , 𝑏ℓ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′ , 𝜌, 𝜎,𝜋

Sequence

⟨𝐼1, 𝑏ℓ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′′ , 𝜌
′′, 𝜎′′,𝜋′′ ⟨𝐼2, 𝑏ℓ ′′ , 𝜌′′, 𝜎′′,𝜋′′⟩ → 𝑏ℓ ′ , 𝜌

′, 𝜎′,𝜋′

⟨sequence(𝐼1, 𝐼2), 𝑏ℓ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′ , 𝜌
′, 𝜎′,𝜋′

Assignment

⟨𝑒 , 𝜌⟩ → 𝑑

⟨assign(𝑣, 𝑒), 𝑏ℓ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ , 𝜌[𝑣 ↦→ 𝑑], 𝜎,𝜋

If – Goto True

⟨𝑏, 𝜌⟩ → true ⟨goto 𝑏ℓ ′ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′ , 𝜌
′, 𝜎′,𝜋′

⟨ite(𝑏, goto 𝑏ℓ ′ , goto 𝑏ℓ ′′), 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′ , 𝜌
′, 𝜎′,𝜋′

If – Goto False

⟨𝑏, 𝜌⟩ → false ⟨goto 𝑏ℓ ′′ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′′ , 𝜌
′′, 𝜎′′,𝜋′′

⟨ite(𝑏, goto 𝑏ℓ ′ , goto 𝑏ℓ ′′), 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′′ , 𝜌
′′, 𝜎′′,𝜋′′

Call

⟨𝑒1, 𝜌⟩ → 𝑑1, . . . , ⟨𝑒𝑚 , 𝜌⟩ → 𝑑𝑚
⟨𝑏ℓ , 𝜌[𝑒1 ↦→ 𝑑1, . . . , 𝑒𝑚 ↦→ 𝑑𝑚], 𝜎,𝜋⟩ →∗ 𝑏ℓ ′ , 𝜌′, 𝜎′,𝜋′

⟨𝑣1, . . . , 𝑣𝑛 B call 𝐺(𝑒1, . . . , 𝑒𝑚), 𝑏ℓ , 𝜌, 𝜎,𝜋⟩
→ 𝑏ℓ ′ , 𝜌[𝑣1 ↦→ 𝜌′(𝑣1), . . . , 𝜌′(𝑣𝑛)], 𝜎′,𝜋′

130

Definition A.5: Symbolic Operational Semantics of Instructions

Assignment

⟨𝑒 , 𝜌⟩ → 𝑑

⟨assign(𝑣, 𝑒), 𝑏ℓ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ , 𝜌[𝑣 ↦→ 𝑑], 𝜎,𝜋

If – Goto True

⟨𝑏, 𝜎⟩ → 𝛽 𝜋 ∧ 𝛽 is SAT ⟨goto 𝑏ℓ ′ , 𝜌, 𝜎,𝜋 ∧ 𝛽⟩ → 𝑏ℓ ′ , 𝜌
′, 𝜎′,𝜋′

⟨ite(𝑏, goto 𝑏ℓ ′ , goto 𝑏ℓ ′′), 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′ , 𝜌
′, 𝜎′,𝜋′

If – Goto False

⟨𝑏, 𝜌⟩ → 𝛽 𝜋 ∧ ¬𝛽 is SAT ⟨goto 𝑏ℓ ′′ , 𝜌, 𝜎,𝜋 ∧ ¬𝛽⟩ → 𝑏ℓ ′′ , 𝜌
′′, 𝜎′′,𝜋′′

⟨ite(𝑏, goto 𝑏ℓ ′ , goto 𝑏ℓ ′′), 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′′ , 𝜌
′′, 𝜎′′,𝜋′′

Call

⟨𝑒1, 𝜎⟩ → 𝛾1, . . . , ⟨𝑒𝑚 , 𝜎⟩ → 𝛾𝑚
⟨𝑏ℓ , 𝜌, 𝜎[𝑒1 ↦→ 𝛾1, . . . , 𝑒𝑚 ↦→ 𝛾𝑚],𝜋⟩ →∗ 𝑏ℓ ′ , 𝜌′, 𝜎′,𝜋′

⟨𝑣1, . . . , 𝑣𝑛 B call 𝐺(𝑒1, . . . , 𝑒𝑚), 𝑏ℓ , 𝜌, 𝜎,𝜋⟩
→ 𝑏ℓ ′ , 𝜌

′, 𝜎[𝑣1 ↦→ 𝜎′(𝑣1), . . . , 𝜎′(𝑣𝑛)],𝜋′

Last but not least, the operational semantic of a program is presented.

Definition A.6: Operational Semantic of a Program

Cycle

∀𝑣 ∈ 𝑽 \ 𝑽input.𝜌
′′[𝑣 ↦→ 𝜌(𝑣)]

∀𝑣 ∈ 𝑽input.𝜌
′′[𝑣 ↦→ 𝑑] ⟨𝑏ℓ , 𝜌′′, 𝜎′′,𝜋′′⟩ →∗ 𝑏ℓ ′ , 𝜌′, 𝜎′,𝜋′

⟨cycle, 𝑏ℓ , 𝜌, 𝜎,𝜋⟩ → 𝑏ℓ ′ , 𝜌
′, 𝜎′,𝜋′

While there exists no explicit instruction in the IR to capture the semantics of

the PLC cycle, it is implicitly encoded by an edge in the respective CFG of the main

program.

131

List of Figures
1.1 The architecture and infrastructure of the IoP [Bre & Klo

+
17]. . . . 2

1.2 Juxtaposition of the production system’s life cycle and value chain. 4

1.3 Orchestration and choreography in a SOA. 5

1.4 Generalized views on a service with exemplary communication

technologies and its interaction with a technical process. 6

1.5 Application areas for reconfigurations of CPPS. 7

1.6 Reconfiguration of a SOA after modifications to an existing service,

deletion of a service and/or connections, and addition of a new

construction to the production system, which requires an imple-

mentation of an additional service or addition of connections. . . . 8

1.7 Reconfiguration of a program after adding a new construction to

the CPPS, which requires an implementation of an additional FB ℱ ℬ′. 9

1.8 Reconfiguration of a program by modifying the behavior of the

context (mechanical) to the production system, which requires the

adaptation of the internal structure of the program. The interface

may stay the same, e.g., when the order of two processing steps is

changed. 9

1.9 Removal of a hardware component can lead to the removal of FBs

and modifications to the interface. 10

1.10 Overview of the software maintenance process and integration of

regression testing as a method for revalidation. 11

1.11 Overview of the regression testing pipeline and maintenance. . . . 12

1.12 Application of regression testing techniques and test suite augmen-

tation after a syntactic reconfiguration. 13

1.13 Relationship between test classes. 14

1.14 Evolution of the test plan during TSM. 15

1.15 Implications of reconfigurations on the trace semantics of PLC pro-

grams. 16

1.16 Overview of the implementation contribution of this thesis. 20

2.1 Schematic view of a PLC interacting with its environment. 23

2.2 A program POU and an FB POU. 26

2.3 Graphical representation of the compiled running example. 30

2.4 Relationship between the environment, store, and state [Aho & Set
+

86]. 31

2.5 Merging at the end of the cycle. 36

2.6 Merging at all join points. 36

133

List of Figures

2.7 Interplay of SE and SMT solving with Z3. 41

3.1 Overview of the regression testing pipeline. 43

3.2 General overview of the regression analysis after a reconfiguration. 46

4.1 Overview of the regression testing pipeline and contribution of this

chapter. 59

4.2 CFGs of the old and the reconfigured program versions. 60

4.3 Two calls under different execution contexts to the same callee. . . . 64

4.4 Intermediate state of the SE after a fork has occurred. 69

4.5 Resulting test case for execution context 𝑞1. 69

4.6 Resulting test case for execution context 𝑞2. 70

4.7 An excerpt of an implementation of the SF_Antivalent FB from the

PLCopen Safety suite. 71

4.8 Overview of the interplay between symbolic execution, summary

generation, and reuse across program versions. 73

4.9 Overview of summary application. 78

4.10 Re-versioned summarized paths of the FB depicted in Figure 4.2a. . 78

4.11 Exemplary summary depicted as a trie. 80

4.12 Three-phased summary reuse checking algorithm [God & Lah
+

11]. 82

4.13 Call graph with reconfigured CFGs and the implications for sum-

maries. 83

5.1 Overview of the regression testing pipeline and contribution of this

chapter. 89

5.2 Motivating example. 90

5.3 A test case producing difference-revealing outputs when executed

on both program versions. 91

5.4 Textual and graphical representation of the running example. . . . 91

5.5 Overview of the developer-centered TSA process. 93

5.6 Overview of TSA using SSE. 94

5.8 Symbolic expression tree containing a shadow expression. 102

5.9 Initial execution context and the effect of execution after reaching

basic block 𝑏2. 103

5.10 Ast of 𝑦1 > 1 under the current execution context. 104

5.11 Four-way forking in SSE. 105

5.12 Resulting execution contexts after concretely executing the old and

the new program on the derived divergent test input. 108

6.1 An exemplary PLC program interacting with its environment. . . . 110

6.2 Excerpt from evolutions of the PPU. 111

6.3 An exemplary scenario of the PPU. 112

6.4 Paths taken by the generated test cases under divergent test inputs

during BSE. 121

134

List of Figures

7.1 Relationship between SE and VCG. 125

135

List of Tables
1.1 Classification of test cases. 14

3.1 Table with partitions. 51

3.2 Table with the resulting differential partitions. 51

3.3 Overview of the related work in the field of PLC software verification

and testing. 54

6.1 Software and mechanical changes during evolution of the PPU. The

symbols are explained in the text. 110

6.2 Comparison of branch coverage and runtimes for the TSG of the

PLCopen Safety library, ordered alphabetically. The rows high-

lighted in blue show results in favor of Arcade.PLC and the rows

highlighted in orange show results where the contribution signifi-

cantly outperformed Arcade.PLC in one metric. 113

6.3 Results of the TSG using BSE for selected PPU scenarios. 115

6.4 Comparison of branch coverage and runtimes for the TSG of the

PLCopen Safety library. The rows highlighted in blue denote results

where the use of the summarization heuristic performs better with

regard to the highlighted metrics. 116

6.5 Comparison of the baseline, the non-merge-based concolic and the

merge-based technique on the PLCopen Safety suite. The rows

highlighted in blue show results where the other techniques out-

performed the baseline CSE. 118

6.6 Runtimes for validity checking of arbitrary changes to the PLCopen

Safety suite. 119

6.7 Results of the TSA using Algorithm 7 for selected reconfiguration

scenarios of the PPU. 120

137

List of Definitions
1.1 Digital Shadow [Bib & Dal

+
20; Bec & Bib

+
21] 3

1.2 Reconfiguration [Mat 10] . 6

2.1 Expression [Nie & Nie 92; Nie & Nie 20] 27

2.2 Instruction . 27

2.3 Control-Flow Graph [All 70] . 28

2.4 Program . 28

2.5 Concrete and Symbolic Store . 31

2.6 Substitution . 31

2.7 Concrete Evaluation Function . 32

2.8 Symbolic Evaluation Function . 32

2.9 Path . 32

2.10 Execution State [Bal & Cop
+

18] . 33

2.11 Must Summary [God 07; God & Lah
+

11] 37

2.12 Change-Annotation Expression [Pal & Kuc
+

16; Kuc 16; Kuc & Pal
+

18] 38

4.1 Frame . 61

4.2 Execution Context . 61

4.3 Merge Point . 63

4.4 Summary Representation during VCG 73

4.5 Must Summary Checking Problem [God & Lah
+

11] 81

5.1 Behavioral Difference [Nol 20] . 90

5.2 Difference-Revealing Test Case . 90

5.3 Regression Test Adequacy Criterion [Rot 96] 92

5.4 Test Suite Coverage Identification Problem [Rot 96] 92

5.5 Divergent Execution State . 95

5.6 Shadow Evaluation Function . 95

5.7 Divergent Execution Context . 95

A.1 Concrete Operational Semantics of Expressions 127

A.2 Concrete Operational Semantics of Boolean Expressions 128

A.3 Symbolic Operational Semantics of Expressions 129

A.4 Concrete Operational Semantics of Instructions 130

A.5 Symbolic Operational Semantics of Instructions 131

A.6 Operational Semantic of a Program 131

139

List of Examples
2.1 Explanation of Figure 2.2 . 25

2.2 Control-Flow Graph . 29

2.3 State Merging . 35

2.4 Join Points during State Merging . 35

2.5 Must Summary . 38

2.6 Reconfiguration applied to the Running Example 40

3.1 Degeneration of Static Change Impact Analysis 49

3.2 Differential Partitions . 50

4.1 Infeasible and Realizable Paths . 64

4.2 Symbolic Execution through the Running Example 68

4.3 Unreachable Paths . 70

4.4 Function Block Summarization . 74

4.5 Finding an applicable Summary . 77

4.6 Representation of Summaries as a Trie 79

4.7 Call Graph and Impact of Reconfigurations 83

4.8 Verification Conditions for the Running Example 85

4.9 Running Example and Phase 2 . 85

4.10 Running Example and Phase 3 . 87

5.1 Collecting Change Traversing Test Cases 96

5.2 Concrete and Symbolic Representations of Changes 102

5.3 Finding Divergent Contexts . 103

5.4 Checking for Divergences . 104

5.5 Divergent Fork . 106

5.6 Checking for Output Differences . 108

141

List of Acronyms
Gtt generalized test tables

Rtt relational test table

AST abstract syntax tree

BB basic block

BMC bounded model checking

BSE bounded symbolic execution

CAP change-annotated program

CE concolic execution

CERN European Organization for Nuclear Research

CFA control-flow automaton

CFG control-flow graph

CG call graph

CIA change impact analysis

CPPS cyber-physical production system

CSE compositional symbolic execution

CTL Computation Tree Logic

DFS depth-first search

DiSE directed incremental symbolic execution

DS Digital Shadow

DSE differential symbolic execution

FB function block

143

List of Acronyms

FBD Function Block Diagram

HIL hardware-in-the-loop

ICT information and communications technologies

iDiSE interprocedural directed incremental symbolic execution

IIoT Industrial Internet of Things

IL Instruction List

IoP Internet of Production

IR intermediate representation

LBE large-block encoding

LD Ladder Diagram

MAS multi-agent system

OPC UA OPC Unified Architecture

PAF program analysis framework

PLC programmable logic controller

POU program organization unit

PPU Pick and Place Unit

PRV partition-based regression verification

RT regression testing

RVT Regression Verification Tool

SA static analysis

SE symbolic execution

SFC Sequential Function Chart

SMT satisfiability modulo theories

SOA service-oriented architecture

SSA static single assignment

144

List of Acronyms

SSE shadow symbolic execution

ST Structured Text

SUT system under test

TAC three-address code

TSA test suite augmentation

TSG test suite generation

TSM test suite maintenance

VC verification condition

VCG verification condition generation

VSA value set analysis

145

Bibliography
[Adi & Dar

+
14] B. F. Adiego, D. Darvas, E. B. Viñuela, J.-C. Tournier, V. M. G.

Suárez, and J. O. Blech, “Modelling and Formal Verification

of Timing Aspects in Large PLC Programs”, IFAC Proceedings
Volumes, vol. 47, no. 3, pp. 3333–3339, 2014, 19th IFAC World

Congress, issn: 1474-6670. doi: https://doi.org/10.318
2/20140824-6-ZA-1003.01279. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S147466
7016421208.

[Adi & Dar
+

15] B. F. Adiego, D. Darvas, E. B. Viñuela, J. Tournier, S. Bliudze,

J. O. Blech, and V. M. G. Suárez, “Applying Model Checking to

Industrial-Sized PLC Programs”, IEEE Trans. Ind. Informatics,
vol. 11, no. 6, pp. 1400–1410, 2015. doi: 10.1109/TII.2015
.2489184. [Online]. Available: https://doi.org/10.1109
/TII.2015.2489184.

[Aho & Set
+

86] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools (Addison-Wesley series in computer science

/ World student series edition). Addison-Wesley, 1986, isbn:

0-201-10088-6. [Online]. Available: https://www.worldcat.o
rg/oclc/12285707.

[All 70] F. E. Allen, “Control flow analysis”, in Proceedings of a Sympo-
sium on Compiler Optimization, Urbana-Champaign, Illinois, USA,
July 27-28, 1970, R. S. Northcote, Ed., ACM, 1970, pp. 1–19. doi:

10.1145/800028.808479. [Online]. Available: https://doi
.org/10.1145/800028.808479.

[Ana & God
+

08] S. Anand, P. Godefroid, and N. Tillmann, “Demand-Driven

Compositional Symbolic Execution”, in Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, C. R. Ramakrishnan and J.

Rehof, Eds., ser. Lecture Notes in Computer Science, vol. 4963,

Springer, 2008, pp. 367–381. doi: 10.1007/978-3-540-78800-
3_28. [Online]. Available: https://doi.org/10.1007/978-
3-540-78800-3%5C_28.

147

https://doi.org/https://doi.org/10.3182/20140824-6-ZA-1003.01279
https://doi.org/https://doi.org/10.3182/20140824-6-ZA-1003.01279
https://www.sciencedirect.com/science/article/pii/S1474667016421208
https://www.sciencedirect.com/science/article/pii/S1474667016421208
https://www.sciencedirect.com/science/article/pii/S1474667016421208
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1109/TII.2015.2489184
https://www.worldcat.org/oclc/12285707
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3%5C_28
https://doi.org/10.1007/978-3-540-78800-3%5C_28

Bibliography

[Avg & Reb
+

14] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing

Symbolic Execution with Veritesting”, in 36th International Con-
ference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, P. Jalote, L. C. Briand, and A. van der Hoek,

Eds., ACM, 2014, pp. 1083–1094. doi: 10.1145/2568225.2568
293. [Online]. Available: https://doi.org/10.1145/256822
5.2568293.

[Bac & Per
+

13] J. D. Backes, S. Person, N. Rungta, and O. Tkachuk, “Regression

Verification Using Impact Summaries”, in Model Checking Soft-
ware - 20th International Symposium, SPIN 2013, Stony Brook, NY,
USA, July 8-9, 2013. Proceedings, E. Bartocci and C. R. Ramakr-

ishnan, Eds., ser. Lecture Notes in Computer Science, vol. 7976,

Springer, 2013, pp. 99–116. doi: 10.1007/978-3-642-39176-
7_7. [Online]. Available: https://doi.org/10.1007/978-3-
642-39176-7%5C_7.

[Bai & Kat 08] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,

2008, isbn: 978-0-262-02649-9.

[Bal & Cop
+

18] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finoc-

chi, “A Survey of Symbolic Execution Techniques”, ACM Com-
put. Surv., vol. 51, no. 3, 50:1–50:39, 2018. doi: 10.1145/31826
57. [Online]. Available: https://doi.org/10.1145/3182657.

[Bar & Cha
+

05] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, andK. R. M. Leino,

“Boogie: A Modular Reusable Verifier for Object-Oriented Pro-

grams”, in Formal Methods for Components and Objects, 4th In-
ternational Symposium, FMCO 2005, Amsterdam, The Netherlands,
November 1-4, 2005, Revised Lectures, F. S. de Boer, M. M. Bon-

sangue, S. Graf, and W. P. de Roever, Eds., ser. Lecture Notes in

Computer Science, vol. 4111, Springer, 2005, pp. 364–387. doi:

10.1007/11804192_17. [Online]. Available: https://doi.o
rg/10.1007/11804192%5C_17.

[Bec & Bib
+

21] F. Becker, P. Bibow, M. Dalibor, A. Gannouni, V. Hahn, C.

Hopmann, M. Jarke, I. Koren, M. Kröger, J. Lipp, J. Maibaum, J.

Michael, B. Rumpe, P. Sapel, N. Schäfer, G. J. Schmitz, G. Schuh,

and A. Wortmann, “A Conceptual Model for Digital Shadows

in Industry and Its Application”, in Conceptual Modeling - 40th
International Conference, ER 2021, Virtual Event, October 18-21,
2021, Proceedings, A. K. Ghose, J. Horkoff, V. E. S. Souza, J.

Parsons, and J. Evermann, Eds., ser. Lecture Notes in Computer

Science, vol. 13011, Springer, 2021, pp. 271–281. doi: 10.1007
/978-3-030-89022-3_22. [Online]. Available: https://doi
.org/10.1007/978-3-030-89022-3%5C_22.

148

https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1007/978-3-642-39176-7%5C_7
https://doi.org/10.1007/978-3-642-39176-7%5C_7
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192%5C_17
https://doi.org/10.1007/11804192%5C_17
https://doi.org/10.1007/978-3-030-89022-3_22
https://doi.org/10.1007/978-3-030-89022-3_22
https://doi.org/10.1007/978-3-030-89022-3%5C_22
https://doi.org/10.1007/978-3-030-89022-3%5C_22

[Bec & Cha
+

17] B. Beckert, S. Cha, M. Ulbrich, B. Vogel-Heuser, and A. Weigl,

“Generalised Test Tables: A Practical Specification Language

for Reactive Systems”, in Integrated Formal Methods - 13th In-
ternational Conference, IFM 2017, Turin, Italy, September 20-22,
2017, Proceedings, N. Polikarpova and S. A. Schneider, Eds.,

ser. Lecture Notes in Computer Science, vol. 10510, Springer,

2017, pp. 129–144. doi: 10.1007/978-3-319-66845-1_9.
[Online]. Available: https://doi.org/10.1007/978-3-319-
66845-1%5C_9.

[Bec & Mun
+

19] B. Beckert, J. Mund, M. Ulbrich, and A. Weigl, “Formal Verifica-

tion of Evolutionary Changes”, in Managed Software Evolution,

R. H. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser,

J. Keim, and L. Märtin, Eds., Springer, 2019, pp. 309–332. doi:

10.1007/978- 3- 030- 13499- 0_11. [Online]. Available:

https://doi.org/10.1007/978-3-030-13499-0%5C_11.

[Bec & Ulb
+

15] B. Beckert, M. Ulbrich, B. Vogel-Heuser, and A. Weigl, “Regres-

sion Verification for Programmable Logic Controller Software”,

in Formal Methods and Software Engineering - 17th International
Conference on Formal Engineering Methods, ICFEM 2015, Paris,
France, November 3-5, 2015, Proceedings, M. J. Butler, S. Conchon,

and F. Zaïdi, Eds., ser. Lecture Notes in Computer Science,

vol. 9407, Springer, 2015, pp. 234–251. doi: 10.1007/978-3-3
19-25423-4_15. [Online]. Available: https://doi.org/10
.1007/978-3-319-25423-4%5C_15.

[Bey & Lem 16] D. Beyer and T. Lemberger, “Symbolic Execution with CEGAR”,

in Leveraging Applications of Formal Methods, Verification and Val-
idation: Foundational Techniques - 7th International Symposium,
ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Pro-
ceedings, Part I, T. Margaria and B. Steffen, Eds., ser. Lecture

Notes in Computer Science, vol. 9952, 2016, pp. 195–211. doi:

10.1007/978- 3- 319- 47166- 2_14. [Online]. Available:

https://doi.org/10.1007/978-3-319-47166-2%5C_14.

[Bia & Bra
+

12] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: a verifica-

tion platform forprogrammable logic controllers”, in IEEE/ACM
InternationalConference on AutomatedSoftware Engineering, ASE’12,
Essen, Germany, September 3-7, 2012, M. Goedicke, T. Menzies,

and M. Saeki, Eds., ACM, 2012, pp. 338–341. doi: 10.1145/23
51676.2351741. [Online]. Available: https://doi.org/10.1
145/2351676.2351741.

[Bia 16] S. Biallas, “Verification ofProgrammable Logic ControllerCode

using Model Checking and Static Analysis”, Ph.D. dissertation,

RWTH Aachen University, Germany, 2016, isbn: 978-3-8440-

149

https://doi.org/10.1007/978-3-319-66845-1_9
https://doi.org/10.1007/978-3-319-66845-1%5C_9
https://doi.org/10.1007/978-3-319-66845-1%5C_9
https://doi.org/10.1007/978-3-030-13499-0_11
https://doi.org/10.1007/978-3-030-13499-0%5C_11
https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1007/978-3-319-25423-4%5C_15
https://doi.org/10.1007/978-3-319-25423-4%5C_15
https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/978-3-319-47166-2%5C_14
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1145/2351676.2351741

Bibliography

4711-0. [Online]. Available: http://publications.rwth-aac
hen.de/record/668156.

[Bib & Dal
+

20] P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D.

Schmalzing, M. Schmitz, and A. Wortmann, “Model-Driven De-

velopment of a Digital Twin for Injection Molding”, in Advanced
Information Systems Engineering - 32nd International Conference,
CAiSE 2020, Grenoble, France, June 8-12, 2020, Proceedings, S.

Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, Eds., ser. Lec-

ture Notes in Computer Science, vol. 12127, Springer, 2020,

pp. 85–100. doi: 10.1007/978-3-030-49435-3_6. [Online].

Available: https://doi.org/10.1007/978-3-030-49435-3
%5C_6.

[Böh & dS O
+

13] M. Böhme, B. C. d. S. Oliveira, andA. Roychoudhury, “Partition-

Based Regression Verification”, in 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, D. Notkin, B. H. C. Cheng, and K. Pohl, Eds., IEEE

Computer Society, 2013, pp. 302–311. doi: 10.1109/ICSE.20
13.6606576. [Online]. Available: https://doi.org/10.1109
/ICSE.2013.6606576.

[Boh & Ham
+

18] D. Bohlender, D. Hamm, and S. Kowalewski, “Cycle-Bounded

Model Checking of PLC Software via Dynamic Large-Block

Encoding”, in Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018,

H. M. Haddad, R. L. Wainwright, and R. Chbeir, Eds., ACM,

2018, pp. 1891–1898. doi: 10.1145/3167132.3167334. [On-

line]. Available: https://doi.org/10.1145/3167132.316733
4.

[Boh & Kow 20] D. Bohlender and S. Kowalewski, “Leveraging Horn clause

solving for compositional verification of PLC software”, Discret.
Event Dyn. Syst., vol. 30, no. 1, pp. 1–24, 2020. doi: 10.1007/s
10626-019-00296-8. [Online]. Available: https://doi.org
/10.1007/s10626-019-00296-8.

[Böh & Pha
+

17] M. Böhme, V. Pham, M. Nguyen, and A. Roychoudhury, “Di-

rectedGreybox Fuzzing”, in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, B. M. Thu-

raisingham, D. Evans, T. Malkin, and D. Xu, Eds., ACM, 2017,

pp. 2329–2344. doi: 10.1145/3133956.3134020. [Online].

Available: https://doi.org/10.1145/3133956.3134020.

[Böh & Roy
+

13] M. Böhme, A. Roychoudhury, and B. C. d. S. Oliveira, “Re-

gression Testing of Evolving Programs”, Adv. Comput., vol. 89,

pp. 53–88, 2013. doi: 10.1016/B978-0-12-408094-2.00002-

150

http://publications.rwth-aachen.de/record/668156
http://publications.rwth-aachen.de/record/668156
https://doi.org/10.1007/978-3-030-49435-3_6
https://doi.org/10.1007/978-3-030-49435-3%5C_6
https://doi.org/10.1007/978-3-030-49435-3%5C_6
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1145/3167132.3167334
https://doi.org/10.1145/3167132.3167334
https://doi.org/10.1145/3167132.3167334
https://doi.org/10.1007/s10626-019-00296-8
https://doi.org/10.1007/s10626-019-00296-8
https://doi.org/10.1007/s10626-019-00296-8
https://doi.org/10.1007/s10626-019-00296-8
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3

3. [Online]. Available: https://doi.org/10.1016/B978-0-1
2-408094-2.00002-3.

[Boh & Sim
+

16] D. Bohlender, H. Simon, N. Friedrich, S. Kowalewski, and S.

Hauck-Stattelmann, “Concolic Test Generation for PLC pro-

grams using Coverage Metrics”, in 13th International Workshop
on Discrete Event Systems, WODES 2016, Xi’an, China, May 30 -
June 1, 2016, C. G. Cassandras, A. Giua, and Z. Li, Eds., IEEE,

2016, pp. 432–437. doi: 10.1109/WODES.2016.7497884. [On-

line]. Available: https://doi.org/10.1109/WODES.2016.749
7884.

[Boh 21] D. Bohlender, “Symbolic Methods for Formal Verification of In-

dustrial Control Software”, Ph.D. dissertation, RWTH Aachen

University, Germany, 2021. [Online]. Available: https://publ
ications.rwth-aachen.de/record/835546.

[Bor & Tre
+

21] T. Borangiu, D. Trentesaux, P. Leitão, O. Cardin, and S. Lamouri,

Eds., Service Oriented, Holonic and Multi-Agent Manufacturing
Systems for Industry of the Future - Proceedings of SOHOMA 2020,
Paris, France, 1-2 October 2020, vol. 952, Studies in Computa-

tional Intelligence, Springer, 2021, isbn: 978-3-030-69372-5.

doi: 10.1007/978-3-030-69373-2. [Online]. Available:

https://doi.org/10.1007/978-3-030-69373-2.

[Bra & Buc
+

13] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, and A.

Zwinkau, “Simple and Efficient Construction of Static Single

Assignment Form”, in Compiler Construction - 22nd International
Conference, CC 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, R. Jhala and K. D. Bosschere, Eds.,

ser. Lecture Notes in Computer Science, vol. 7791, Springer,

2013, pp. 102–122. doi: 10.1007/978-3-642-37051-9_6.
[Online]. Available: https://doi.org/10.1007/978-3-642-
37051-9%5C_6.

[Bra & Dal
+

22] P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lake-

meyer, M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B.

Rumpe, W. M. P. van der Aalst, K. Wehrle, A. Wortmann, and

M. Ziefle, “A Computer Science Perspective on Digital Transfor-

mation in Production”, ACM Trans. Internet Things, vol. 3, no. 2,

15:1–15:32, 2022. doi: 10.1145/3502265. [Online]. Available:

https://doi.org/10.1145/3502265.

[Bre & Buc
+

19] C. Brecher, M. Buchsbaum, and S. Storms, “Control from the

Cloud: Edge Computing, Services and Digital Shadow for Au-

tomation Technologies”, in International Conference on Robotics
and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24,

151

https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1016/B978-0-12-408094-2.00002-3
https://doi.org/10.1109/WODES.2016.7497884
https://doi.org/10.1109/WODES.2016.7497884
https://doi.org/10.1109/WODES.2016.7497884
https://publications.rwth-aachen.de/record/835546
https://publications.rwth-aachen.de/record/835546
https://doi.org/10.1007/978-3-030-69373-2
https://doi.org/10.1007/978-3-030-69373-2
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-37051-9%5C_6
https://doi.org/10.1007/978-3-642-37051-9%5C_6
https://doi.org/10.1145/3502265
https://doi.org/10.1145/3502265

Bibliography

2019, IEEE, 2019, pp. 9327–9333. doi: 10.1109/ICRA.2019
.8793488. [Online]. Available: https://doi.org/10.1109
/ICRA.2019.8793488.

[Bre & Klo
+

17] C. Brecher, F. Klocke, and R. H. Schmitt, Eds., Internet of Produc-
tion für agile Unternehmen : AWK Aachener Werkzeugmaschinen-
Kolloquium 2017, 18. bis 19. Mai, 29. Aachener

Werkzeugmaschinen-Kolloquium, Aachen (Germany), 18 May

2017 - 19 May 2017, Aachen: Apprimus Verlag, May 18, 2017,

496 Seiten, isbn: 3-86359-512-2. [Online]. Available: https:
//publications.rwth-aachen.de/record/692152.

[Bun 16] Bundesministerium für Bildung und Forschung. “Industrie

4.0”. (Jan. 2016), [Online]. Available: https://www.bmbf.d
e/bmbf/de/forschung/digitale-wirtschaft-und-gesel
lschaft/industrie-4-0/industrie-4-0.html (visited on

06/16/2022).

[Bur & Sen 08] J. Burnim and K. Sen, “Heuristics for Scalable Dynamic Test

Generation”, in 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2008), 15-19 September 2008,
L’Aquila, Italy, IEEE Computer Society, 2008, pp. 443–446. doi:

10.1109/ASE.2008.69. [Online]. Available: https://doi.or
g/10.1109/ASE.2008.69.

[Cad & Dun
+

08] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex

Systems Programs”, in 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10,
2008, San Diego, California, USA, Proceedings, R. Draves and

R. van Renesse, Eds., USENIX Association, 2008, pp. 209–224.

[Online]. Available: http://www.usenix.org/events/osdi0
8/tech/full%5C_papers/cadar/cadar.pdf.

[Cad & Gan
+

08] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler, “EXE: Automatically Generating Inputs of Death”,

ACM Trans. Inf. Syst. Secur., vol. 12, no. 2, 10:1–10:38, 2008. doi:

10.1145/1455518.1455522. [Online]. Available: https://do
i.org/10.1145/1455518.1455522.

[Cad & Sen 13] C. Cadar and K. Sen, “Symbolic Execution for Software Testing:

Three Decades Later”, Commun. ACM, vol. 56, no. 2, pp. 82–90,

2013. doi: 10.1145/2408776.2408795. [Online]. Available:

https://doi.org/10.1145/2408776.2408795.

[Can & God 19] G. Candea and P. Godefroid, “Automated Software Test Gen-

eration: Some Challenges, Solutions, and Recent Advances”,

in Computing and Software Science - State of the Art and Perspec-
tives, ser. Lecture Notes in Computer Science, B. Steffen and

152

https://doi.org/10.1109/ICRA.2019.8793488
https://doi.org/10.1109/ICRA.2019.8793488
https://doi.org/10.1109/ICRA.2019.8793488
https://doi.org/10.1109/ICRA.2019.8793488
https://publications.rwth-aachen.de/record/692152
https://publications.rwth-aachen.de/record/692152
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0.html
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0.html
https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-0/industrie-4-0.html
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1109/ASE.2008.69
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795

G. J. Woeginger, Eds., vol. 10000, Springer, 2019, pp. 505–531.

doi: 10.1007/978-3-319-91908-9_24. [Online]. Available:

https://doi.org/10.1007/978-3-319-91908-9%5C_24.

[Cha & Ulb
+

19] S. Cha, M. Ulbrich, A. Weigl, B. Beckert, K. Land, and B.

Vogel-Heuser, “On the Preservation of the Trust by Regres-

sion Verification of PLC software for Cyber-Physical Systems

of Systems”, in 17th IEEE International Conference on Industrial
Informatics, INDIN 2019, Helsinki, Finland, July 22-25, 2019, IEEE,

2019, pp. 413–418. doi: 10.1109/INDIN41052.2019.8972210.
[Online]. Available: https://doi.org/10.1109/INDIN41052
.2019.8972210.

[Cla & Hen
+

18] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.,

Handbook of Model Checking. Springer International Publishing,

2018. doi: 10.1007/978-3-319-10575-8.

[Cla & Kro
+

04] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking

ANSI-C Programs”, in Tools and Algorithms for the Construction
and Analysis of Systems, 10th International Conference, TACAS
2004, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings, K. Jensen and A. Podelski, Eds.,

ser. Lecture Notes in Computer Science, vol. 2988, Springer,

2004, pp. 168–176. doi: 10.1007/978-3-540-24730-2_15.
[Online]. Available: https://doi.org/10.1007/978-3-540-
24730-2%5C_15.

[Dar & Bla
+

15] D. Darvas, E. Blanco Vinuela, and B. Fernández Adiego, “

PLCverif: A Tool to Verify PLC Programs Based on Model

Checking Techniques”, WEPGF092. 4 p, 2015. doi: 10.18
429/JACoW- ICALEPCS2015- WEPGF092. [Online]. Available:

https://cds.cern.ch/record/2213507.

[Dar & Kin 78] J. A. Darringer and J. C. King, “Applications of Symbolic Exe-

cution to Program Testing”, Computer, vol. 11, no. 4, pp. 51–60,

1978. doi: 10.1109/C-M.1978.218139. [Online]. Available:

https://doi.org/10.1109/C-M.1978.218139.

[Dar & Maj
+

16] D. Darvas, I. Majzik, and E. B. Viñuela, “Formal Verification of

Safety PLC Based Control Software”, in Integrated Formal Meth-
ods - 12th International Conference, IFM 2016, Reykjavik, Iceland,
June 1-5, 2016, Proceedings, E. Ábrahám and M. Huisman, Eds.,

ser. Lecture Notes in Computer Science, vol. 9681, Springer,

2016, pp. 508–522. doi: 10.1007/978-3-319-33693-0_32.
[Online]. Available: https://doi.org/10.1007/978-3-319-
33693-0%5C_32.

153

https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9%5C_24
https://doi.org/10.1109/INDIN41052.2019.8972210
https://doi.org/10.1109/INDIN41052.2019.8972210
https://doi.org/10.1109/INDIN41052.2019.8972210
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2%5C_15
https://doi.org/10.1007/978-3-540-24730-2%5C_15
https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
https://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
https://cds.cern.ch/record/2213507
https://doi.org/10.1109/C-M.1978.218139
https://doi.org/10.1109/C-M.1978.218139
https://doi.org/10.1007/978-3-319-33693-0_32
https://doi.org/10.1007/978-3-319-33693-0%5C_32
https://doi.org/10.1007/978-3-319-33693-0%5C_32

Bibliography

[dMou & Bjø 08] L. M. de Moura and N. S. Bjørner, “Z3: An Efficient SMT

Solver”, in Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, C. R. Ramakrishnan and J. Rehof, Eds., ser. Lecture

Notes in Computer Science, vol. 4963, Springer, 2008, pp. 337–

340. doi: 10.1007/978- 3- 540- 78800- 3_24. [Online].

Available: https://doi.org/10.1007/978-3-540-78800-3
%5C_24.

[Eng & Run
+

10] E. Engström, P. Runeson, and M. Skoglund, “A Systematic

Review on Regression Test Selection Techniques”, Inf. Softw.
Technol., vol. 52, no. 1, pp. 14–30, 2010. doi: 10.1016/j.infso
f.2009.07.001. [Online]. Available: https://doi.org/10.1
016/j.infsof.2009.07.001.

[Fel & Gre
+

14] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ul-

brich, “Automating Regression Verification”, in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, I. Crnkovic, M.

Chechik, and P. Grünbacher, Eds., ACM, 2014, pp. 349–360.

doi: 10.1145/2642937.2642987. [Online]. Available: https:
//doi.org/10.1145/2642937.2642987.

[Fre 60] E. Fredkin, “Trie memory”, Commun. ACM, vol. 3, no. 9,

pp. 490–499, 1960. doi: 10.1145/367390.367400. [Online].

Available: https://doi.org/10.1145/367390.367400.

[Gal & Lyl 91] K. B. Gallagher and J. R. Lyle, “Using Program Slicing in Soft-

ware Maintenance”, IEEE Trans. Software Eng., vol. 17, no. 8,

pp. 751–761, 1991. doi: 10.1109/32.83912. [Online]. Avail-

able: https://doi.org/10.1109/32.83912.

[God & Kla
+

05] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Auto-

mated Random Testing”, in Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implemen-
tation, Chicago, IL, USA, June 12-15, 2005, V. Sarkar and M. W.

Hall, Eds., ACM, 2005, pp. 213–223. doi: 10.1145/1065010.1
065036. [Online]. Available: https://doi.org/10.1145/106
5010.1065036.

[God & Lah
+

11] P. Godefroid, S. K. Lahiri, and C. Rubio-González, “Statically

Validating Must Summaries for Incremental Compositional Dy-

namic Test Generation”, in Static Analysis - 18th International
Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Pro-
ceedings, E. Yahav, Ed., ser. Lecture Notes in Computer Science,

vol. 6887, Springer, 2011, pp. 112–128. doi: 10.1007/978-3-6

154

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1109/32.83912
https://doi.org/10.1109/32.83912
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12

42-23702-7_12. [Online]. Available: https://doi.org/10
.1007/978-3-642-23702-7%5C_12.

[God & Lev
+

12] P. Godefroid, M. Y. Levin, and D. A. Molnar, “SAGE: Whitebox

Fuzzing for Security Testing”, Commun. ACM, vol. 55, no. 3,

pp. 40–44, 2012. doi: 10.1145/2093548.2093564. [Online].

Available: https://doi.org/10.1145/2093548.2093564.

[God & Str 09] B. Godlin and O. Strichman, “Regression Verification”, in Pro-
ceedings of the 46th Design Automation Conference, DAC 2009,
San Francisco, CA, USA, July 26-31, 2009, ACM, 2009, pp. 466–

471. doi: 10.1145/1629911.1630034. [Online]. Available:

https://doi.org/10.1145/1629911.1630034.

[God 07] P. Godefroid, “Compositional Dynamic Test Generation”, in

Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2007, Nice, France,
January 17-19, 2007, M. Hofmann and M. Felleisen, Eds., ACM,

2007, pp. 47–54. doi: 10.1145/1190216.1190226. [Online].

Available: https://doi.org/10.1145/1190216.1190226.

[Gro & Kow
+

19] M. Grochowski, S. Kowalewski, M. Buchsbaum, and C. Brecher,

“Applying Runtime Monitoring to the Industrial Internet of

Things”, in 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, ETFA 2019, Zaragoza, Spain,
September 10-13, 2019, IEEE, 2019, pp. 348–355. doi: 10.1109
/ETFA.2019.8869447. [Online]. Available: https://doi.org
/10.1109/ETFA.2019.8869447.

[Gro & Sim
+

20] M. Grochowski, H. Simon, D. Bohlender, S. Kowalewski, A.

Löcklin, T. Müller, N. Jazdi, A. Zeller, and M. Weyrich, “For-

male Methoden für rekonfigurierbare cyber-physische Systeme

in der Produktion”, Autom., vol. 68, no. 1, pp. 3–14, 2020. doi:

10.1515/auto-2019-0115. [Online]. Available: https://doi
.org/10.1515/auto-2019-0115.

[Gro & Völ
+

22a] M. Grochowski, M. Völker, and S. Kowalewski, “Automatic

Test Suite Generation for PLC Software in the Internet of Pro-

duction”, in 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA), 2022, pp. 1–8. doi:

10.1109/ETFA52439.2022.9921726.

[Gro & Völ
+

22b] M. Grochowski, M. Völker, and S. Kowalewski, “Test Suite

Augmentation for Reconfigurable PLC Software in the Internet

of Production”, in Formal Methods for Industrial Critical Sys-
tems - 27th International Conference, FMICS 2022, Warsaw, Poland,
September 14-15, 2022, Proceedings, J. F. Groote and M. Huis-

man, Eds., ser. Lecture Notes in Computer Science, vol. 13487,

155

https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7%5C_12
https://doi.org/10.1007/978-3-642-23702-7%5C_12
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1109/ETFA.2019.8869447
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1515/auto-2019-0115
https://doi.org/10.1109/ETFA52439.2022.9921726

Bibliography

Springer, 2022, pp. 137–154. doi: 10.1007/978-3-031-15008-
1_10. [Online]. Available: https://doi.org/10.1007/978-
3-031-15008-1%5C_10.

[Guo & Kus
+

16] S. Guo, M. Kusano, and C. Wang, “Conc-iSE: Incremental

Symbolic Execution of Concurrent Software”, in Proceedings of
the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2016, Singapore, September 3-7, 2016, 2016,

pp. 531–542. doi: 10.1145/2970276.2970332. [Online]. Avail-

able: https://doi.org/10.1145/2970276.2970332.

[Gur & Cha 10] A. Gurfinkel and S. Chaki, “Boxes: A Symbolic Abstract Do-

main of Boxes”, in Static Analysis - 17th International Symposium,
SAS 2010, Perpignan, France, September 14-16, 2010. Proceed-
ings, R. Cousot and M. Martel, Eds., ser. Lecture Notes in

Computer Science, vol. 6337, Springer, 2010, pp. 287–303. doi:

10.1007/978- 3- 642- 15769- 1_18. [Online]. Available:

https://doi.org/10.1007/978-3-642-15769-1%5C_18.

[Gur & Kah
+

15] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The

SeaHorn Verification Framework”, in Computer Aided Verifi-
cation - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part I, D. Kroening and

C. S. Pasareanu, Eds., ser. Lecture Notes in Computer Science,

vol. 9206, Springer, 2015, pp. 343–361. doi: 10.1007/978-3-3
19-21690-4_20. [Online]. Available: https://doi.org/10
.1007/978-3-319-21690-4%5C_20.

[Gyo & Lah
+

16] A. Gyori, S. K. Lahiri, and N. Partush, “Interprocedural Se-

mantic Change-Impact Analysis using Equivalence Relations”,

CoRR, vol. abs/1609.08734, 2016. arXiv: 1609.08734. [Online].

Available: http://arxiv.org/abs/1609.08734.

[Gyo & Lah
+

17] A. Gyori, S. K. Lahiri, and N. Partush, “Refining Interprocedu-

ral Change-Impact Analysis using Equivalence Relations”, in

Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA, USA, July
10 - 14, 2017, T. Bultan and K. Sen, Eds., ACM, 2017, pp. 318–

328. doi: 10.1145/3092703.3092719. [Online]. Available:

https://doi.org/10.1145/3092703.3092719.

[IEC 20] IEC TR 62541-1:2020 RLV, “OPC unified architecture - Part 1:

Overview and concepts”, English, International Electrotechni-

cal Commision, Standard, Nov. 18, 2020.

[Int 14] International Electrotechnical Commission, “IEC 61131: Pro-

grammable controllers - Part 3: Programming languages”, In-

ternational Electrotechnical Commission, Geneva, Switzerland,

156

https://doi.org/10.1007/978-3-031-15008-1_10
https://doi.org/10.1007/978-3-031-15008-1_10
https://doi.org/10.1007/978-3-031-15008-1%5C_10
https://doi.org/10.1007/978-3-031-15008-1%5C_10
https://doi.org/10.1145/2970276.2970332
https://doi.org/10.1145/2970276.2970332
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-642-15769-1%5C_18
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4%5C_20
https://doi.org/10.1007/978-3-319-21690-4%5C_20
https://arxiv.org/abs/1609.08734
http://arxiv.org/abs/1609.08734
https://doi.org/10.1145/3092703.3092719
https://doi.org/10.1145/3092703.3092719

Tech. Rep., 2014. doi: 10.31030/2101412. [Online]. Available:

https://dx.doi.org/10.31030/2101412.

[ISO 22] ISO/IEC/IEE 14764:2022, “Software engineering - Software

life cycle processes - Maintenance”, International Organization

for Standardization, Tech. Rep., Jan. 2022. [Online]. Available:

https://www.iso.org/standard/80710.html.

[Jam & Fra
+

13] K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux, “Generat-

ing Test Suites with Augmented Dynamic Symbolic Execution”,

in Tests and Proofs - 7th International Conference, TAP@STAF 2013,
Budapest, Hungary, June 16-20, 2013. Proceedings, M. Veanes

and L. Viganò, Eds., ser. Lecture Notes in Computer Science,

vol. 7942, Springer, 2013, pp. 152–167. doi: 10.1007/978-3-6
42-38916-0_9. [Online]. Available: https://doi.org/10.1
007/978-3-642-38916-0%5C_9.

[Jes & Bre
+

17] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert,

“Industrial Internet of Things and Cyber Manufacturing Sys-

tems”, in Industrial Internet of Things: Cybermanufacturing Sys-
tems. Cham: Springer International Publishing, 2017, pp. 3–19,

isbn: 978-3-319-42559-7. doi: 10.1007/978-3-319-42559-7
_1. [Online]. Available: https://doi.org/10.1007/978-3-3
19-42559-7_1.

[Kin 76] J. C. King, “Symbolic Execution and Program Testing”, Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, 1976. doi: 10.1145/36
0248.360252. [Online]. Available: https://doi.org/10.114
5/360248.360252.

[Kro & Tau 14] D. Kroening and M. Tautschnig, “CBMC - C Bounded Model

Checker - (Competition Contribution)”, in Tools and Algorithms
for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014. Proceedings, E. Ábrahám and

K. Havelund, Eds., ser. Lecture Notes in Computer Science,

vol. 8413, Springer, 2014, pp. 389–391. doi: 10.1007/978-3-6
42-54862-8_26. [Online]. Available: https://doi.org/10
.1007/978-3-642-54862-8%5C_26.

[Kuc & Pal
+

18] T. Kuchta, H. Palikareva, and C. Cadar, “Shadow Symbolic

Execution for Testing Software Patches”, ACM Trans. Softw.
Eng. Methodol., vol. 27, no. 3, 10:1–10:32, 2018. doi: 10.1145/3
208952. [Online]. Available: https://doi.org/10.1145/320
8952.

157

https://doi.org/10.31030/2101412
https://dx.doi.org/10.31030/2101412
https://www.iso.org/standard/80710.html
https://doi.org/10.1007/978-3-642-38916-0_9
https://doi.org/10.1007/978-3-642-38916-0_9
https://doi.org/10.1007/978-3-642-38916-0%5C_9
https://doi.org/10.1007/978-3-642-38916-0%5C_9
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8%5C_26
https://doi.org/10.1007/978-3-642-54862-8%5C_26
https://doi.org/10.1145/3208952
https://doi.org/10.1145/3208952
https://doi.org/10.1145/3208952
https://doi.org/10.1145/3208952

Bibliography

[Kuc 16] T. Kuchta, “Enhanced Symbolic Execution for Patch Testing

and Document Recovery”, Ph.D. dissertation, Imperial College

London, UK, 2016. [Online]. Available: https://ethos.bl.u
k/OrderDetails.do?uin=uk.bl.ethos.739615.

[Kuz & Kin
+

12] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient

State Merging in Symbolic Execution”, in ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI ’12, Beĳing, China - June 11 - 16, 2012, J. Vitek, H. Lin, and

F. Tip, Eds., ACM, 2012, pp. 193–204. doi: 10.1145/2254064
.2254088. [Online]. Available: https://doi.org/10.1145/2
254064.2254088.

[Kuz & Kin
+

14] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient

State Merging in Symbolic Execution”, in Software Engineering
2014, Fachtagung des GI-Fachbereichs Softwaretechnik, 25. Februar
- 28. Februar 2014, Kiel, Germany, W. Hasselbring and N. C.

Ehmke, Eds., ser. LNI, vol. P-227, GI, 2014, pp. 45–46. [Online].

Available: https://dl.gi.de/20.500.12116/30951.

[Lah & Haw
+

12] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo,

“SYMDIFF: A Language-Agnostic Semantic Diff Tool for Im-

perative Programs”, in Computer Aided Verification - 24th Inter-
national Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012
Proceedings, P. Madhusudan and S. A. Seshia, Eds., ser. Lecture

Notes in Computer Science, vol. 7358, Springer, 2012, pp. 712–

717. doi: 10.1007/978-3-642-31424-7_54. [Online]. Avail-

able: https://doi.org/10.1007/978-3-642-31424-7%5C_5
4.

[Leu & Whi 89] H. K. N. Leung and L. J. White, “Insights into Regression Test-

ing”, in Proceedings of the Conference on Software Maintenance,
ICSM 1989, Miami, FL, USA, 16-19 October, 1989, IEEE, 1989,

pp. 60–69. doi: 10.1109/ICSM.1989.65194. [Online]. Avail-

able: https://doi.org/10.1109/ICSM.1989.65194.

[Lin & Mil
+

15] Y. Lin, T. Miller, and H. Søndergaard, “Compositional Symbolic

Execution Using Fine-Grained Summaries”, in 24th Australasian
Software Engineering Conference, ASWEC 2015, Adelaide, SA, Aus-
tralia, September 28 - October 1, 2015, IEEE Computer Society,

2015, pp. 213–222. doi: 10.1109/ASWEC.2015.32. [Online].

Available: https://doi.org/10.1109/ASWEC.2015.32.

[Lin & Mil
+

16] Y. Lin, T. Miller, and H. Søndergaard, “Compositional Symbolic

Execution: Incremental Solving Revisited”, in 23rd Asia-Pacific
Software Engineering Conference, APSEC 2016, Hamilton, New
Zealand, December6-9, 2016, A. Potanin, G. C. Murphy, S. Reeves,

and J. Dietrich, Eds., IEEE Computer Society, 2016, pp. 273–

158

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.739615
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.739615
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/2254064.2254088
https://dl.gi.de/20.500.12116/30951
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7%5C_54
https://doi.org/10.1007/978-3-642-31424-7%5C_54
https://doi.org/10.1109/ICSM.1989.65194
https://doi.org/10.1109/ICSM.1989.65194
https://doi.org/10.1109/ASWEC.2015.32
https://doi.org/10.1109/ASWEC.2015.32

280. doi: 10.1109/APSEC.2016.046. [Online]. Available:

https://doi.org/10.1109/APSEC.2016.046.

[Lin 17] Y. Lin, “Symbolic Execution with Over-Approximation”, Ph.D.

dissertation, University of Melbourne, Parkville, Victoria, Aus-

tralia, 2017. [Online]. Available: http://hdl.handle.net/11
343/197985.

[Lop & Tou
+

22] I. D. Lopez-Miguel, J. Tournier, and B. F. Adiego, “PLCverif:

status of a formal verification tool for programmable logic

controller”, CoRR, vol. abs/2203.17253, 2022. doi: 10.48550
/arXiv.2203.17253. arXiv: 2203.17253. [Online]. Available:

https://doi.org/10.48550/arXiv.2203.17253.

[Ma & Kho
+

11] K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed Symbolic

Execution”, in Static Analysis - 18th International Symposium, SAS
2011, Venice, Italy, September 14-16, 2011. Proceedings, E. Yahav,

Ed., ser. Lecture Notes in Computer Science, vol. 6887, Springer,

2011, pp. 95–111. doi: 10.1007/978-3-642-23702-7_11.
[Online]. Available: https://doi.org/10.1007/978-3-642-
23702-7%5C_11.

[Mat 10] J. Matevska, “Rekonfiguration komponentenbasierter

Softwaresysteme zur Laufzeit”, Ph.D. dissertation, Carl von

Ossietzky University of Oldenburg, 2010, isbn: 978-3-8348-

1001-4. [Online]. Available: https://d-nb.info/999240757.

[Nie & Nie 20] F. Nielson and H. R. Nielson, “Program Analysis (an Appe-

tizer)”, CoRR, vol. abs/2012.10086, 2020. arXiv: 2012.10086.
[Online]. Available: https://arxiv.org/abs/2012.10086.

[Nie & Nie 92] H. R. Nielson and F. Nielson, Semantics with Applications - A
Formal Introduction (Wiley professional computing). Wiley,

1992, isbn: 978-0-471-92980-2.

[Nie & Nie
+

99] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer, 1999, isbn: 978-3-540-65410-0. doi: 10.100
7/978-3-662-03811-6. [Online]. Available: https://doi.or
g/10.1007/978-3-662-03811-6.

[Nol & Ngu
+

19] Y. Noller, H. L. Nguyen, M. Tang, T. Kehrer, and L. Grunske,

“Complete Shadow Symbolic Execution with Java PathFinder”,

ACM SIGSOFT Softw. Eng. Notes, vol. 44, no. 4, pp. 15–16,

2019. doi: 10.1145/3364452.33644558. [Online]. Available:

https://doi.org/10.1145/3364452.33644558.

[Nol 20] Y. Noller, “Hybrid Differential Software Testing”, Ph.D. disser-

tation, Humboldt University of Berlin, Germany, 2020. [Online].

Available: http://edoc.hu-berlin.de/18452/22727.

159

https://doi.org/10.1109/APSEC.2016.046
https://doi.org/10.1109/APSEC.2016.046
http://hdl.handle.net/11343/197985
http://hdl.handle.net/11343/197985
https://doi.org/10.48550/arXiv.2203.17253
https://doi.org/10.48550/arXiv.2203.17253
https://arxiv.org/abs/2203.17253
https://doi.org/10.48550/arXiv.2203.17253
https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1007/978-3-642-23702-7%5C_11
https://doi.org/10.1007/978-3-642-23702-7%5C_11
https://d-nb.info/999240757
https://arxiv.org/abs/2012.10086
https://arxiv.org/abs/2012.10086
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3364452.33644558
https://doi.org/10.1145/3364452.33644558
http://edoc.hu-berlin.de/18452/22727

Bibliography

[Pal & Kuc
+

16] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a Doubt:

Testing for Divergences Between Software Versions”, in Proceed-
ings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, L. K. Dillon,

W. Visser, and L. A. Williams, Eds., ACM, 2016, pp. 1181–

1192. doi: 10.1145/2884781.2884845. [Online]. Available:

https://doi.org/10.1145/2884781.2884845.

[Pel 03] C. Peltz, “Web Services Orchestration and Choreography”,

Computer, vol. 36, no. 10, pp. 46–52, 2003. doi: 10.1109/MC.20
03.1236471. [Online]. Available: https://doi.org/10.1109
/MC.2003.1236471.

[Pen & Gle
+

19] J. Pennekamp, R. Glebke, M. Henze, T. Meisen, C. Quix, R. Hai,

L. C. Gleim, P. Niemietz, M. Rudack, S. Knape, A. Epple, D.

Trauth, U. Vroomen, T. Bergs, C. Brecher, A. Bührig-Polaczek,

M. Jarke, and K. Wehrle, “Towards an Infrastructure Enabling

the Internet of Production”, in IEEE International Conference on
Industrial Cyber Physical Systems, ICPS 2019, Taipei, Taiwan, May
6-9, 2019, IEEE, 2019, pp. 31–37. doi: 10.1109/ICPHYS.2019
.8780276. [Online]. Available: https://doi.org/10.1109
/ICPHYS.2019.8780276.

[Per & Dwy
+

08] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu, “Dif-

ferential Symbolic Execution”, in Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, 2008, Atlanta, Georgia, USA, November 9-14, 2008,

M. J. Harrold and G. C. Murphy, Eds., ACM, 2008, pp. 226–

237. doi: 10.1145/1453101.1453131. [Online]. Available:

https://doi.org/10.1145/1453101.1453131.

[Per & Yan
+

11] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed

Incremental Symbolic Execution”, in Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, M. W. Hall and D. A. Padua, Eds., ACM, 2011, pp. 504–

515. doi: 10.1145/1993498.1993558. [Online]. Available:

https://doi.org/10.1145/1993498.1993558.

[PLC 08] PLCopen - Technical Committee 5, “Safety Software, Technical

Specification, Part 2: User Examples”, PLCopen, Tech. Rep.,

2008.

[PLC 18] PLCopen - Technical Committee 5, “Safety Software, Technical

Specification, Part 1: Concepts and Function Blocks for Safety

Functions”, PLCopen, Tech. Rep., 2018.

160

https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1145/1993498.1993558

[Pod & Cla 90] A. Podgurski and L. A. Clarke, “A Formal Model of Program

Dependences and Its Implications for Software Testing, Debug-

ging, and Maintenance”, IEEE Trans. Software Eng., vol. 16,

no. 9, pp. 965–979, 1990. doi: 10.1109/32.58784. [Online].

Available: https://doi.org/10.1109/32.58784.

[Rei & Kre
+

08] G. Reinhart, P. Krebs, and H. Schellmann, “Flexibilität und

Wandlungsfähigkeit - das richtige Maß finden”, Institut für
Werkzeugmaschinen undBetriebswissenschaften, TU München (Hg.):
Innovationen für die Produktion. Landsberg/Lech: Moderne Indus-
trie, 2008.

[Rep & Hor
+

95] T. W. Reps, S. Horwitz, and S. Sagiv, “Precise Interprocedu-

ral Dataflow Analysis via Graph Reachability”, in Conference
Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, R. K. Cytron and P. Lee, Eds., ACM

Press, 1995, pp. 49–61. doi: 10.1145/199448.199462. [Online].

Available: https://doi.org/10.1145/199448.199462.

[Rie 12] M. V. Riegen, “Ablaufkontrolle von Prozess-Choreographien”,

Ph.D. dissertation, University of Hamburg, 2012. [Online].

Available: http://ediss.sub.uni-hamburg.de/volltexte
/2012/5852/.

[Rot & Har 96] G. Rothermel and M. J. Harrold, “Analyzing Regression Test

Selection Techniques”, IEEE Trans. Software Eng., vol. 22, no. 8,

pp. 529–551, 1996. doi: 10.1109/32.536955. [Online]. Avail-

able: https://doi.org/10.1109/32.536955.

[Rot 96] G. Rothermel, “Efficient, Effective Regression Testing Using

Safe Test Selection Techniques”, AAI9703440, Ph.D. disserta-

tion, USA, 1996, isbn: 0591098520.

[Run & Per
+

12] N. Rungta, S. Person, and J. Branchaud, “A Change Impact

Analysis to Characterize Evolving Program Behaviors”, in 28th
IEEE International Conference on Software Maintenance, ICSM
2012, Trento, Italy, September 23-28, 2012, IEEE Computer So-

ciety, 2012, pp. 109–118. doi: 10.1109/ICSM.2012.6405261.
[Online]. Available: https://doi.org/10.1109/ICSM.2012
.6405261.

[San & Chi
+

08] R. A. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,

and M. J. Harrold, “Test-Suite Augmentation for Evolving Soft-

ware”, in 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila,
Italy, IEEE Computer Society, 2008, pp. 218–227. doi: 10.1109
/ASE.2008.32. [Online]. Available: https://doi.org/10.11
09/ASE.2008.32.

161

https://doi.org/10.1109/32.58784
https://doi.org/10.1109/32.58784
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
http://ediss.sub.uni-hamburg.de/volltexte/2012/5852/
http://ediss.sub.uni-hamburg.de/volltexte/2012/5852/
https://doi.org/10.1109/32.536955
https://doi.org/10.1109/32.536955
https://doi.org/10.1109/ICSM.2012.6405261
https://doi.org/10.1109/ICSM.2012.6405261
https://doi.org/10.1109/ICSM.2012.6405261
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1109/ASE.2008.32

Bibliography

[San & Har 10] R. A. Santelices and M. J. Harrold, “Exploiting Program De-

pendencies for Scalable Multiple-Path Symbolic Execution”, in

Proceedings of the Nineteenth International Symposium on Software
Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010,

P. Tonella and A. Orso, Eds., ACM, 2010, pp. 195–206. doi:

10.1145/1831708.1831733. [Online]. Available: https://do
i.org/10.1145/1831708.1831733.

[San & Xi
+

21] M. Sanders, T. Xi, P. Dahlem, M. Fey, R. H. Schmitt, and C.

Brecher, “On-Machine Measurements im Internet of Produc-

tion”, Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 116, no. 4,

pp. 259–262, 2021. doi: doi:10.1515/zwf-2021-0037. [On-

line]. Available: https://doi.org/10.1515/zwf-2021-0037.

[Sen & Mar
+

05] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit test-

ing engine for C”, in Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2005,
Lisbon, Portugal, September 5-9, 2005, M. Wermelinger and H. C.

Gall, Eds., ACM, 2005, pp. 263–272. doi: 10.1145/1081706.1
081750. [Online]. Available: https://doi.org/10.1145/108
1706.1081750.

[Sen & Nec
+

15] K. Sen, G. C. Necula, L. Gong, and W. Choi, “MultiSE: Multi-

path Symbolic Execution using Value Summaries”, in Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - Septem-
ber 4, 2015, 2015, pp. 842–853. doi: 10.1145/2786805.2786830.
[Online]. Available: https://doi.org/10.1145/2786805.27
86830.

[Sim & Fri
+

15] H. Simon, N. Friedrich, S. Biallas, S. Hauck-Stattelmann, B.

Schlich, and S. Kowalewski, “Automatic Test Case Generation

for PLC Programs using Coverage Metrics”, in 20th IEEE Con-
ference on Emerging Technologies & Factory Automation, ETFA
2015, Luxembourg, September 8-11, 2015, IEEE, 2015, pp. 1–4.

doi: 10.1109/ETFA.2015.7301602. [Online]. Available:

https://doi.org/10.1109/ETFA.2015.7301602.

[Sim & Kow 18] H. Simon and S. Kowalewski, “Mode-Aware Concolic Testing

for PLC Software - Special Session ‘Formal Methods for the

Design and Analysis of Automated Production Systems’”, in

Integrated Formal Methods - 14th International Conference, IFM
2018, Maynooth, Ireland, September 5-7, 2018, Proceedings, C. A.

Furia and K. Winter, Eds., ser. Lecture Notes in Computer

Science, vol. 11023, Springer, 2018, pp. 367–376. doi: 10.1007

162

https://doi.org/10.1145/1831708.1831733
https://doi.org/10.1145/1831708.1831733
https://doi.org/10.1145/1831708.1831733
https://doi.org/doi:10.1515/zwf-2021-0037
https://doi.org/10.1515/zwf-2021-0037
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1109/ETFA.2015.7301602
https://doi.org/10.1109/ETFA.2015.7301602
https://doi.org/10.1007/978-3-319-98938-9_21
https://doi.org/10.1007/978-3-319-98938-9_21
https://doi.org/10.1007/978-3-319-98938-9_21

/978-3-319-98938-9_21. [Online]. Available: https://doi
.org/10.1007/978-3-319-98938-9%5C_21.

[Ste & Hei 17] T. Stehle and U. Heisel, “Konfiguration und Rekonfiguration

von Produktionssystemen”, in Neue Entwicklungen in der Un-
ternehmensorganisation, D. Spath, E. Westkämper, H.-J. Bullinger,

and H.-J. Warnecke, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2017, pp. 333–367, isbn: 978-3-662-55426-5. doi:

10.1007/978- 3- 662- 55426- 5_39. [Online]. Available:

https://doi.org/10.1007/978-3-662-55426-5_39.

[Ste 93] B. Steffen, “Generating Data Flow Analysis Algorithms from

Modal Specifications”, Sci. Comput. Program., vol. 21, no. 2,

pp. 115–139, 1993. doi: 10.1016/0167-6423(93)90003-8.
[Online]. Available: https://doi.org/10.1016/0167-6423
(93)90003-8.

[Thö & Rei
+

17] D. Thönnessen, N. Reinker, S. Rakel, and S. Kowalewski, “A

Concept for PLC Hardware-in-the-loop Testing Using an Exten-

sion of Structured Text”, in 22nd IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA 2017,
Limassol, Cyprus, September 12-15, 2017, IEEE, 2017, pp. 1–8.

doi: 10.1109/ETFA.2017.8247580. [Online]. Available:

https://doi.org/10.1109/ETFA.2017.8247580.

[Thö & Sma
+

19] D. Thönnessen, N. Smallbone, M. Fabian, K. Claessen, and

S. Kowalewski, “Testing Safety PLCs Using QuickCheck”, in

15th IEEE International Conference on Automation Science and
Engineering, CASE 2019, Vancouver, BC, Canada, August 22-26,
2019, IEEE, 2019, pp. 1–6. doi: 10.1109/COASE.2019.8843227.
[Online]. Available: https://doi.org/10.1109/COASE.2019
.8843227.

[Thö 21] D. Thönnessen, “Hardware-in-the-Loop Testing of Industrial

Automation Systems Using PLC Languages”, Ph.D. disser-

tation, RWTH Aachen University, Germany, 2021. [Online].

Available: https://publications.rwth-aachen.de/record
/826036.

[Tie & Joh 09] M. Tiegelkamp and K. H. John, SPS-Programmierung mit IEC
61131-3. Springer Berlin Heidelberg, 2009. doi: 10.1007/978-
3-642-00269-4. [Online]. Available: https://doi.org/10.1
007/978-3-642-00269-4.

[Ule & Vog 16] S. Ulewicz and B. Vogel-Heuser, “System Regression Test Pri-

oritization in Factory Automation: Relating Functional System

Tests to the Tested Code using Field Data”, in IECON 2016 -
42nd Annual Conference of the IEEE Industrial Electronics Society,

163

https://doi.org/10.1007/978-3-319-98938-9_21
https://doi.org/10.1007/978-3-319-98938-9_21
https://doi.org/10.1007/978-3-319-98938-9_21
https://doi.org/10.1007/978-3-319-98938-9_21
https://doi.org/10.1007/978-3-319-98938-9%5C_21
https://doi.org/10.1007/978-3-319-98938-9%5C_21
https://doi.org/10.1007/978-3-662-55426-5_39
https://doi.org/10.1007/978-3-662-55426-5_39
https://doi.org/10.1016/0167-6423(93)90003-8
https://doi.org/10.1016/0167-6423(93)90003-8
https://doi.org/10.1016/0167-6423(93)90003-8
https://doi.org/10.1109/ETFA.2017.8247580
https://doi.org/10.1109/ETFA.2017.8247580
https://doi.org/10.1109/COASE.2019.8843227
https://doi.org/10.1109/COASE.2019.8843227
https://doi.org/10.1109/COASE.2019.8843227
https://publications.rwth-aachen.de/record/826036
https://publications.rwth-aachen.de/record/826036
https://doi.org/10.1007/978-3-642-00269-4
https://doi.org/10.1007/978-3-642-00269-4
https://doi.org/10.1007/978-3-642-00269-4
https://doi.org/10.1007/978-3-642-00269-4

Bibliography

Florence, Italy, October 23-26, 2016, IEEE, 2016, pp. 4619–4626.

doi: 10.1109/IECON.2016.7792997. [Online]. Available:

https://doi.org/10.1109/IECON.2016.7792997.

[Ule & Vog 18] S. Ulewicz and B. Vogel-Heuser, “Industrially Applicable Sys-

tem Regression Test Prioritization in Production Automation”,

IEEE Trans Autom. Sci. Eng., vol. 15, no. 4, pp. 1839–1851,

2018. doi: 10.1109/TASE.2018.2810280. [Online]. Available:

https://doi.org/10.1109/TASE.2018.2810280.

[Ule & Vog
+

17] S. Ulewicz, B. Vogel-Heuser, H. Simon, D. Bohlender, M. Ob-

ster, and S. Kowalewski, “A Priori Test Coverage Estimation

for Automated Production Systems: Using Generated Behav-

ior Models for Coverage Calculation”, in 22nd IEEE Interna-
tional Conference on Emerging Technologies and Factory Automa-
tion, ETFA 2017, Limassol, Cyprus, September 12-15, 2017, IEEE,

2017, pp. 1–4. doi: 10.1109/ETFA.2017.8247704. [Online].

Available: https://doi.org/10.1109/ETFA.2017.8247704.

[Ule 18] S. Ulewicz, “Test Coverage Assessment for Semi-Automatic

System Testing and Regression Testing Support in Produc-

tion Automation”, Ph.D. dissertation, Technische Universität

München, 2018.

[VDI 21] VDI/VDE 2206, “Entwicklung mechatronischer und cyber-

physischer Systeme”, VDI/VDE, Tech. Rep., Nov. 2021.

[Vog & Bou
+

18] B. Vogel-Heuser, S. Bougouffa, and M. Sollfrank, “Researching

Evolution in Industrial Plant Automation: Scenarios and Doc-

umentation of the extended Pick and Place Unit”, Institute of

Automation and Information Systems, Technische Universität

München, Tech. Rep., 2018.

[Vog & Fol
+

14] B. Vogel-Heuser, J. Folmer, and C. Legat, “Anforderungen an

die Softwareevolution in der Automatisierung des Maschinen-

und Anlagenbaus”, Autom., vol. 62, no. 3, pp. 163–174, 2014.

doi: 10.1515/auto-2013-1051. [Online]. Available: https:
//doi.org/10.1515/auto-2013-1051.

[Vog & Leg
+

14] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, “Re-

searching Evolution in Industrial Plant Automation: Scenarios

and Documentation of the Pick and Place Unit”, Institute of

Automation and Information Systems, Technische Universität

München, Tech. Rep., 2014.

[Vog & Rös
+

16] B. Vogel-Heuser, S. Rösch, J. Fischer, T. Simon, S. Ulewicz,

and J. Folmer, “Fault Handling in PLC-Based Industry 4.0

Automated Production Systems as a Basis for Restart and Self-

Configuration and Its Evaluation”, Journal of Software Engi-

164

https://doi.org/10.1109/IECON.2016.7792997
https://doi.org/10.1109/IECON.2016.7792997
https://doi.org/10.1109/TASE.2018.2810280
https://doi.org/10.1109/TASE.2018.2810280
https://doi.org/10.1109/ETFA.2017.8247704
https://doi.org/10.1109/ETFA.2017.8247704
https://doi.org/10.1515/auto-2013-1051
https://doi.org/10.1515/auto-2013-1051
https://doi.org/10.1515/auto-2013-1051

neering and Applications, vol. 09, no. 01, pp. 1–43, 2016. doi:

10.4236/jsea.2016.91001. [Online]. Available: https://do
i.org/10.4236/jsea.2016.91001.

[Wei & Ulb
+

20] A. Weigl, M. Ulbrich, and D. Lentzsch, “Modular Regression

Verification for Reactive Systems”, in Leveraging Applications of
Formal Methods, Verification and Validation: Engineering Princi-
ples - 9th International Symposium on Leveraging Applications of
Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020,
Proceedings, Part II, T. Margaria and B. Steffen, Eds., ser. Lecture

Notes in Computer Science, vol. 12477, Springer, 2020, pp. 25–

43. doi: 10.1007/978-3-030-61470-6_3. [Online]. Avail-

able: https://doi.org/10.1007/978-3-030-61470-6%5C_3.

[Wei & Wie
+

17] A. Weigl, F. Wiebe, M. Ulbrich, S. Ulewicz, S. Cha, M. Kirsten,

B. Beckert, and B. Vogel-Heuser, “Generalized Test Tables: A

Powerful and Intuitive Specification Language for Reactive

Systems”, in 15th IEEE International Conference on Industrial In-
formatics, INDIN 2017, Emden, Germany, July 24-26, 2017, IEEE,

2017, pp. 875–882. doi: 10.1109/INDIN.2017.8104887. [On-

line]. Available: https://doi.org/10.1109/INDIN.2017.810
4887.

[Wei 21] A. Weigl, “Formal Specification and Verification for Automated

Production Systems”, Ph.D. dissertation, Karlsruhe Institute

of Technology, Germany, 2021. [Online]. Available: https://n
bn-resolving.org/urn:nbn:de:101:1-20211222040231640
80066.

[Wey & Jen 91] E. J. Weyuker and B. Jeng, “Analyzing Partition Testing Strate-

gies”, IEEE Trans. Software Eng., vol. 17, no. 7, pp. 703–711, 1991.

doi: 10.1109/32.83906. [Online]. Available: https://doi.o
rg/10.1109/32.83906.

[Wie & Rei
+

14] H.-P. Wiendahl, J. Reichardt, and P. Nyhuis, Handbuch Fabrik-
planung: Konzept, Gestaltung und Umsetzung wandlungsfähiger
Produktionsstätten. Carl Hanser Verlag GmbH Co KG, 2014.

[Xu & Kim
+

15] Z. Xu, Y. Kim, M. Kim, M. B. Cohen, and G. Rothermel, “Di-

rected test suite augmentation: an empirical investigation”,

Softw. Test. Verification Reliab., vol. 25, no. 2, pp. 77–114, 2015.

doi: 10.1002/stvr.1562. [Online]. Available: https://doi
.org/10.1002/stvr.1562.

[Yan & Khu
+

13] G. Yang, S. Khurshid, and C. S. Pasareanu, “Memoise: A

Tool for Memoized Symbolic Execution”, in 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng, and K. Pohl,

165

https://doi.org/10.4236/jsea.2016.91001
https://doi.org/10.4236/jsea.2016.91001
https://doi.org/10.4236/jsea.2016.91001
https://doi.org/10.1007/978-3-030-61470-6_3
https://doi.org/10.1007/978-3-030-61470-6%5C_3
https://doi.org/10.1109/INDIN.2017.8104887
https://doi.org/10.1109/INDIN.2017.8104887
https://doi.org/10.1109/INDIN.2017.8104887
https://nbn-resolving.org/urn:nbn:de:101:1-2021122204023164080066
https://nbn-resolving.org/urn:nbn:de:101:1-2021122204023164080066
https://nbn-resolving.org/urn:nbn:de:101:1-2021122204023164080066
https://doi.org/10.1109/32.83906
https://doi.org/10.1109/32.83906
https://doi.org/10.1109/32.83906
https://doi.org/10.1002/stvr.1562
https://doi.org/10.1002/stvr.1562
https://doi.org/10.1002/stvr.1562

Bibliography

Eds., IEEE Computer Society, 2013, pp. 1343–1346. doi: 10.11
09/ICSE.2013.6606713. [Online]. Available: https://doi.o
rg/10.1109/ICSE.2013.6606713.

[Yan & Per
+

14] G. Yang, S. Person, N. Rungta, and S. Khurshid, “Directed

Incremental Symbolic Execution”, ACM Trans. Softw. Eng.
Methodol., vol. 24, no. 1, 3:1–3:42, 2014. doi: 10.1145/2629536.
[Online]. Available: https://doi.org/10.1145/2629536.

[Yoo & Har 12] S. Yoo and M. Harman, “Regression Testing Minimisation,

Selection and Prioritisation: A Survey”, Softw. Test. Verification
Reliab., vol. 22, no. 2, pp. 67–120, 2012. doi: 10.1002/stv.430.
[Online]. Available: https://doi.org/10.1002/stv.430.

[Zel & Jaz
+

18] A. Zeller, N. Jazdi, and M. Weyrich, “Verifikation verteilter

Automatisierungssysteme auf Basis einer Modellkomposition”,

Autom., vol. 66, no. 6, pp. 456–470, 2018. doi: 10.1515/auto-2
017-0069. [Online]. Available: https://doi.org/10.1515/a
uto-2017-0069.

[Zel & Jaz
+

19] A. Zeller, N. Jazdi, and M. Weyrich, “Functional verification

of distributed automation systems”, The International Journal of
Advanced Manufacturing Technology, vol. 105, no. 9, pp. 3991–

4004, 2019. doi: 10.1007/s00170-019-03791-2. [Online].

Available: https://doi.org/10.1007/s00170-019-03791-2.

[Zel & Wey 15] A. Zeller and M. Weyrich, “Test Case Selection for Networked

Production Systems”, in 20th IEEE Conference on Emerging Tech-
nologies & Factory Automation, ETFA 2015, Luxembourg, Septem-
ber 8-11, 2015, IEEE, 2015, pp. 1–4. doi: 10.1109/ETFA.2015
.7301604. [Online]. Available: https://doi.org/10.1109
/ETFA.2015.7301604.

[Zel & Wey 16] A. Zeller and M. Weyrich, “Challenges for Functional Testing

of reconfigurable Production Systems”, in 21st IEEE Interna-
tional Conference on Emerging Technologies and Factory Automa-
tion, ETFA 2016, Berlin, Germany, September 6-9, 2016, IEEE,

2016, pp. 1–4. doi: 10.1109/ETFA.2016.7733620. [Online].

Available: https://doi.org/10.1109/ETFA.2016.7733620.

[Zel & Wey 18] A. Zeller and M. Weyrich, “Composition of Modular Models

for Verification of Distributed Automation Systems”, Procedia
Manufacturing, vol. 17, Jun. 2018. doi: 10.1016/j.promfg.20
18.10.139.

166

https://doi.org/10.1109/ICSE.2013.6606713
https://doi.org/10.1109/ICSE.2013.6606713
https://doi.org/10.1109/ICSE.2013.6606713
https://doi.org/10.1109/ICSE.2013.6606713
https://doi.org/10.1145/2629536
https://doi.org/10.1145/2629536
https://doi.org/10.1002/stv.430
https://doi.org/10.1002/stv.430
https://doi.org/10.1515/auto-2017-0069
https://doi.org/10.1515/auto-2017-0069
https://doi.org/10.1515/auto-2017-0069
https://doi.org/10.1515/auto-2017-0069
https://doi.org/10.1007/s00170-019-03791-2
https://doi.org/10.1007/s00170-019-03791-2
https://doi.org/10.1109/ETFA.2015.7301604
https://doi.org/10.1109/ETFA.2015.7301604
https://doi.org/10.1109/ETFA.2015.7301604
https://doi.org/10.1109/ETFA.2015.7301604
https://doi.org/10.1109/ETFA.2016.7733620
https://doi.org/10.1109/ETFA.2016.7733620
https://doi.org/10.1016/j.promfg.2018.10.139
https://doi.org/10.1016/j.promfg.2018.10.139

Aachener Informatik-Berichte
This list contains all technical reports published during the past three years. A com-

plete list of (more than 580) reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/

or can be downloaded directly via

http://aib.informatik.rwth-aachen.de/tex-files/berichte.pdf

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2021-01 Mathias Obster: Unterstützung der SPS-Programmierung

durch Statische Analyse während der Programmeingabe

2021-02 Manfred Nagl: An Integrative Approach for Software Archi-

tectures

2021-03 Manfred Nagl: Sequences of Software Architectures

2021-04 Manfred Nagl: Embedded Systems: Simple Rules to Improve

Adaptability

2021-05 Manfred Nagl: Process Interaction Diagrams are more than

Process Chains or Transport Networks

2021-06 Manfred Nagl: Characterization of Shallow and Deep Reuse

2021-07 Martin Schweigler: Ground Surface Pattern Recognition for

Enhanced Navigation

2021-08 Manfred Nagl: The Architecture is the Center of the Software

Development Process

2021-09 Manfred Nagl: Architectural Styles: Do they Need Different

Notations?

2021-10 David Thönnessen: Hardware-in-the-Loop testing of indus-

trial automation systems using PLC languages

2021-11 Dimitri Bohlender: Symbolic Methods for Formal Verificati-

on of Industrial Control Software

2022-01 Helen Bolke-Hermanns, Klaus Indermark, Joost-Pieter Kato-

en, Stefan Kowalewski, Thomas Noll, and Wolfgang Thomas:

50 Jahre Studiengang Informatik an der RWTH — Ein Streif-

zug in Text und Bild

2022-02 Shahid Khan: Boolean-logic driven Markov processes : Ex-

plained. Analysed. Verified.

2023-01 Marcus Völker: Policy Iteration for Value Set Analysis of PLC

Programs

167

http://aib.informatik.rwth-aachen.de/
http://aib.informatik.rwth-aachen.de/tex-files/berichte.pdf

Bibliography

2023-02 Maximilian Kloock: Synchronization-based cooperative tra-

jectory planning of networked vehicles

2023-03 Thomas Noll and Ira Fesefeldt: 22. Kolloquium Program-

miersprachen und Grundlagen der Programmierung

2023-04 Jera Hensel: Automated Termination Analysis of C Programs

168

	1 Introduction
	1.1 Internet of Production
	1.1.1 Vision, Objective, and Impact
	1.1.2 Digital Shadow

	1.2 Transformable Production Systems
	1.2.1 Service-oriented Architecture
	1.2.2 Reconfigurations of Production Systems

	1.3 Software Maintenance Process
	1.3.1 Regression Testing
	1.3.2 Implications of Reconfigurations on the Trace Semantics

	1.4 Contribution
	1.4.1 Publications
	1.4.2 Limitations and Assumptions
	1.4.3 Outline

	2 Preliminaries
	2.1 Programmable Logic Controllers
	2.1.1 Program Organization Units
	2.1.2 Programming Languages

	2.2 Intermediate Representation
	2.3 Symbolic Program Analysis
	2.4 Design Principles of Symbolic Execution
	2.4.1 Handling of Loops and Recursion
	2.4.2 Avoiding the Encoding of Infeasible Execution Paths
	2.4.3 Merging of Execution Paths
	2.4.4 Dealing with Compositionality

	2.5 Unifying Program Versions via Change Annotations
	2.6 Formal Reasoning with the SMT Solver Z3

	3 Literature Review
	3.1 Test Suite Generation via Symbolic Execution
	3.1.1 Compositionality and State Merging
	3.1.2 Incremental Solving, Search Heuristics, and Memoization

	3.2 Test Suite Augmentation via Regression Analysis
	3.2.1 Program Differencing using Summarization
	3.2.2 Aiding Regression Analysis with Change Impact Analysis
	3.2.3 Exposing Divergent Behaviors after a Reconfiguration

	3.3 Related Work
	3.3.1 Verification of Programmable Logic Control Software
	3.3.2 Testing of Programmable Logic Control Software

	4 Test Suite Generation
	4.1 Compositional and Bounded Symbolic Execution
	4.1.1 Merge Strategy
	4.1.2 Exploration Strategy
	4.1.3 Assignments, Branches, and Calls
	4.1.4 Detection of Unreachable Branches
	4.1.5 Static Single Assignment and Variable Versioning

	4.2 Generation of Summaries
	4.3 Application of Summaries
	4.4 Reusing Summaries across Program Versions
	4.4.1 Static Change Impact Analysis
	4.4.2 Predicate-Sensitive Change Impact Analysis
	4.4.3 Must Summary Validity Checking Analysis

	5 Test Suite Augmentation
	5.1 Test Suite Coverage Identification Problem
	5.2 Shadow Symbolic Execution
	5.2.1 Developer-centered Test Suite Augmentation Process
	5.2.2 Collecting Change Traversing Test Cases
	5.2.3 Finding Divergent Execution Contexts
	5.2.4 Propagating Divergent Execution Contexts
	5.2.5 Checking for Output Differences

	6 Evaluation
	6.1 Benchmarks
	6.1.1 PLCopen Safety Suite
	6.1.2 Pick and Place Unit

	6.2 Test Suite Generation
	6.3 Test Suite Augmentation

	7 Conclusion
	7.1 Outlook

	A Operational Semantics
	List of Figures
	List of Tables
	List of Definitions
	List of Examples
	List of Acronyms
	Bibliography

