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Abstract

Robust combinatorial optimization with budgeted uncertainty is one of the most pop-
ular approaches for integrating uncertainty into optimization problems. The existence
of a compact reformulation for (mixed-integer) linear programs and positive com-
plexity results give the impression that these problems are relatively easy to solve.
However, the practical performance of the reformulation is quite poor when solving
robust integer problems, in particular due to its weak linear relaxation. To overcome
this issue, we propose procedures to derive new classes of valid inequalities for robust
combinatorial optimization problems. For this, we recycle valid inequalities of the
underlying deterministic problem such that the additional variables from the robust
formulation are incorporated. The valid inequalities to be recycled may either be read-
ily available model constraints or actual cutting planes, where we can benefit from
decades of research on valid inequalities for classical optimization problems. We first
demonstrate the strength of the inequalities theoretically, by proving that recycling
yields a facet-defining inequality in many cases, even if the original valid inequality
was not facet-defining. Afterwards, we show in an extensive computational study that
using recycled inequalities can lead to a significant improvement of the computation
time when solving robust optimization problems.
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1 Introduction

Uncertain parameters are a common issue in decision-making problems and should be
treated with caution, as a seemingly optimal decision may reveal itself to be impractical
once it is implemented in the real world [1]. A popular approach for dealing with
uncertainties is robust optimization, in which one aims to optimize against the worst-
case of a set of scenarios. Robust optimization was proposed first by Soyster [2] in
the early 1970s. Kouvelis and Yu [3] considered it for combinatorial optimization
problems and discrete uncertainty sets in the 1990s. The concept was then further
analyzed by Ben-Tal and Nemirovski [1, 4, 5] as well as Bertsimas and Sim [6, 7] at
the beginning of this century. An overview on the topic can be found in [8—10].

The concept of budgeted uncertainty by Bertsimas and Sim has received particular
attention. This is illustrated by the fact that their seminal paper [7] is the most cited
document in the literature databases Scopus and Web of Science containing “robust
optimization” in its title, keywords or abstract. This popularity is not least due to the
scenarios being constructed in an intuitive way, where an uncertainty budget is used
to control the extent to which one wants to hedge against uncertainties. Bertsimas
and Sim show theoretically and experimentally that the “price of robustness” is rather
small, as the uncertainty budget can be chosen such that a high level of probabilistic
protection is achieved, while the loss in the objective value compared to non-robust
solutions is rather small [7]. In addition, the possibility to formulate the robust counter-
part of (mixed-integer) linear optimization problems again as (mixed-integer) linear
problems, and the existence of positive theoretical complexity results suggest that
robust optimization problems with budgeted uncertainty are easily solvable. However,
despite their popularity and the amount of research devoted to solving these kinds of
robust problems, instances of practical size often still pose a considerable challenge
for MILP solvers [11]. To help overcoming this challenge, we propose new classes
of valid inequalities for robust combinatorial optimization problems that are easy to
compute and often lead to a significant reduction of the computation time.

We first define a standard, so called nominal, combinatorial problem without uncer-
tainties

min E CiX;
ieln]

s.t. Ax <b,x €{0,1}",

(NOM)

where ¢ € R” is an objective vector, A € R™*" a constraint matrix with a right-
hand side » € R™ and [n] = {1, ..., n}. We now replace the objective coefficients
¢; with uncertain coefficients c; from an interval [ci, ¢ + é,-] and say that c; can
deviate from its nominal value c¢; by up to the deviation ¢; € Rxp. In the following,
we assume that at least one deviation ¢; is strictly positive, as otherwise all ¢] are
fixed to their nominal values c¢;. We call a vector of possible objective coefficients
{¢ e R"|¢] € [ci, ci + & Vi € [n]} a scenario. Note that for any feasible solution
x, the objective value is worst if all coefficients ¢; are equal to their maximum value
¢i + ¢;. In practice, however, this extreme scenario is usually very unlikely such that
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it would be overly conservative to assume that it actually occurs. To adjust the level of
conservatism, Bertsimas and Sim [7] propose a robust counterpart to NOM, in which
they restrict the set of considered uncertain scenarios by defining an uncertainty budget
I' € [0, n]. Given such a budget, we only consider these scenarios in which at most
L' ] coefficients cl’. deviate to ¢; + ¢; and one coefficient deviates to ¢; + (I" — | I']) ¢;.
This robust counterpart can be stated as

min Z cixi + Sur{rt1}agx[n]: ((F — T cexs + Zéixi)

ieln] NEIIREN ies
s.t. Ax <b,x €{0,1}".

Bertsimas and Sim [7] also show that we can resolve the non-linearity of the above
problem. For this, we write the inner maximization problem as

max E Cixib;
i€[n]

S.t. Z 6 <T
icln]
s e[0,17".

Note that this is a linear program when considering a fixed x € {0, 1}". By dualizing
this problem, we obtain a linear minimization problem, which we can use to substitute
the inner maximization problem above. This results in the compact robust problem

min 'z + Z (cixi + pi)
(ROB) icln]
st (x, p,2) € PROB x e {0, 1}

with
Ax <b

PROB — L (x, p,2)| pi + 2= ¢ixi Vi € [n]

xe€[0,1]",p e R,z € Ry
Unfortunately, the formulation PROB is quite weak, potentially leading to much higher
computation times for solving ROB compared to NOM. In fact, the integrality gap of
the formulation PROB  that is the relative difference between the values of an optimal
fractional solution and an optimal integer-feasible solution, may be arbitrarily large,
even if the integrality gap of the corresponding nominal problem is zero. This is shown
in the following example from [11].

Example 1 Consider the trivial problem of selecting the cheapest of n elements

min E CiX;

i€n]
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s.t. Zx,' =1,x €{0,1}*.

ie[n]

The integrality gap of the above problem is zero for all ¢ € R". However, if we consider
an instance of the uncertain counterpart ROB withc =0,¢ = 1,and T =1

minz+2pi

i€[n]
S.t. xi=1
ieln]
pitz=x Vi € [n]

x €{0,1}", p e RLy, z € Rxo,

then (x, p,z) = (% e, % 0,...,0, %) is the unique optimal fractional solution of
value % while the objective value of an optimal integer solution is 1. Hence, the
integrality gap is 17/1,{" = n — 1, and thus grows arbitrarily large as n — oo.

The above example shows that optimal continuous solutions for ROB tend to be
highly fractional, as small values of x; allow for covering all right-hand sides ¢;x; in
the constraints p; + z > ¢;x; with a small value of z, while choosing p; = 0. On the
one hand, such solutions are exactly what we aim for when striving for robustness, as
we distribute the risk as much as possible. On the other hand, highly fractional optimal
solutions for the linear relaxation imply the need for much branching, and thus a high
computational effort when solving ROB.

In the literature, several alternative approaches to solve ROB have been developed
and evaluated. Bertsimas et al. [12] as well as Fischetti and Monaci [13] test the
practical performance of the compact reformulation PROB compared to a separation
approach using an alternative formulation with exponentially many inequalities, each
one modeling an extreme scenario from the uncertainty set. Unfortunately, the alter-
native formulation is, despite its size, as weak as PROB and performs worse for robust
integer problems (but better for continuous problems). Joung and Park [14] propose
cuts that dominate the classic scenario inequalities and can be separated by consider-
ing the robustness term as a submodular function and greedily solving a maximization
problem over the corresponding polymatroid. Atamtiirk [15] addresses the issue by
proposing four different problem-independent strong formulations. The strongest of
these is theoretically as strong as possible, as it preserves the integrality gap of the
nominal problem. However, the four formulations are very large and are thus compu-
tationally outperformed by the standard formulation PROB, as shown in [11].

A famous approach to completely avoid the issues arising from the weak formu-
lation PROB is to solve ROB via resorting to its nominal counterpart. Bertsimas and
Sim [6] show that there always exists an optimal solution (x, p, z) to ROB such that
z € {O, Cl,...,Cn } Furthermore, solving ROB for a fixed z is equivalent to solving
its nominal counterpart with different objective values. Hence, ROB can be solved
by solving |{0, &1, ..., & }| <n + 1 nominal problems. Alvarez-Miranda et al. [16]
as well as Park and Lee [17] showed independently that it is sufficient to solve only
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n+2—T,orn+1—T nominal problems respectively. Lee and Kwon [18] even
improved these results later, showing that solving ["EF ] + 1 nominal problems already
suffices. Still, the computational effort of this approach is too high if n is large. To
address this, Hansknecht et al. [19] propose a divide and conquer approach, in which
one also solves nominal problems, but reduces the computational effort by pruning
many non-optimal values for z using bounds on the respective optimal objective value.
In [11], we proposed a branch and bound approach, in which non-optimal values for
z are pruned even more efficiently. The branch and bound makes use of structural
insights and strong linearizations derived from the following bilinear formulation

Ax <b
BIL _ . . . ;
P =1 (x, p,2)| pi +xiz > Cix Vi € [n]
x € [0, 1]",peR’éO,zeRzo

This bilinear formulation strengthens the original robustness constraints p; +z > ¢;x;
by multiplying z with x;. This is valid, as the bilinear inequality is equivalent to
pi +2z = ¢ix; forx; = 1 and p; > 0 for x; = 0. While the bilinearity is rather
hindering for practical purposes, as non-linear problems are in practice harder to
solve, PBIL is theoretically very strong. In fact, there exists no polyhedral formulation
P for ROB with P C PBIL [11].

Contribution
In this paper, we use the bilinear formulation as a foundation for the new class
of recycled inequalities. To obtain these, we combine the strength of the bilinear
inequalities with the structural properties provided by valid inequalities for the nominal
problem NOM. By doing so, we can use valid inequalities for NOM a second time to
improve the formulation PROB,

Inits simplest and most effective version, our recycling relies on the underlying valid
inequality to be a knapsack inequality. We will show that in this case the corresponding
recycled inequality often defines a facet of the convex hull of integer-feasible solutions

fPBIL

CROB _ conv ([(x, p,2) € PROB‘x € {0, 1}"}) .

Additionally, we show how to efficiently separate such recycled inequalities in a branch
and cut algorithm. We also discuss how to recycle inequalities that are not of the
knapsack type, to make use of a wider range of valid inequalities.

In an extensive computational study on robust versions of both classical combinato-
rial problems and real-world instances from MIPLIB 2017 [20], we verify that recycled
inequalities can substantially strengthen the formulation PROB, which is expressed by
drastic reductions of the integrality gap. Together with the efficient separation of recy-
cled inequalities, this leads to a significant improvement of solving times.

All implemented algorithms and generated test instances are published, together
with a package of algorithms for solving robust combinatorial optimization problems
[21] and benchmark instances [22].

Note that this is an extended version of a paper that appeared in the proceedings of
IPCO 2023 [23].
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Outline

In Sect.2, we show how to derive the new class of recycled inequalities from valid
knapsack inequalities. In Sect.3, we characterize inequalities for which the corre-
sponding recycled inequality is facet-defining. In Sect. 4, we discuss different efficient
approaches of separating recycled inequalities. In Sect.5, we show how to recycle
non-knapsack inequalities. In Sect. 6, we conduct our computational study.

2 Recycling valid inequalities

As already mentioned, the bilinear inequalities p; + x;z > ¢ x; play a crucial role
for our recycled inequalities. To understand their strength intuitively, we recall our
observations from Example 1. There, we noticed that choosing fractional values for
x; is tempting, as we are then able to meet the inequalities p; + z > ¢;x; with a small
value of z and p; = 0. However, this advantage vanishes for the bilinear inequalities
pi +xiz > Cix;, as we always have z > ¢; for x; # 0 and p; = 0. To make use of this
in practice, it would be beneficial to carry over the strength of the bilinear inequalities
to a linear formulation.

Multiplying linear inequalities with variables as an intermediate step in order to
achieve a stronger linear formulation is not a new approach. For the Reformulation—
Linearization-Technique by Sherali and Adams [24], one multiplies constraints with
variables and linearizes the resulting products afterwards via substitution with auxil-
iary variables. When taken to the extreme, where all constraints are multiplied with
all possible combinations of variables, one obtains a formulation with exponentially
many variables and constraints, whose projection onto the space of original variables
equals CROB_ Our approach is different in the sense that we don’t directly linearize the
bilinear inequalities, and thus don’t create auxiliary variables. Instead, we combine
several of the bilinear inequalities in order to estimate the non-linear terms against
a linear term, using a valid inequality for the corresponding nominal problem. From
now on, let

CNOM — ¢ony ({x € {0, 1}”|Ax < b})

be the convex hull of all integer nominal solutions. Then we combine the bilinear
inequalities and valid inequalities for CNM as follows.

Theorem 1 Let ), 7wixi < 7o be a valid inequality for CNOM with v € R%l.

Then the inequality
moz+ Y mipi = Y milixi o

i€[n] ieln]
is valid for CROB.
Proof Summing the bilinear constraints p; +x;z > ¢;x;, each with a weight of 77;, we
obtain
Z i pi + Z TiXiZ = Z TiCiXi,
i€[n] i€n] ieln)

which is a valid inequality for CROB e to 7 > 0. Now, since z > 0 holds, we have
Zie[n] 7;x;z < moz, and thus the validity of (1). O
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Hence, we can reuse the valid inequality } ;[ 7ix; < 7 to strengthen the formula-

tion PROB by adding the corresponding inequality (1). This motivates the following
definition.

Definition 1 We call Y, ., 7ixi < 7o recyclable if it is valid for CNM and 7 > 0.
We call moz + Zi el TiDi = Zi eln] T ¢ix; the corresponding recycled inequality.

In the following, we will only consider recyclable inequalities Zle[n Tix; < o
consisting exclusively of variables with uncertain objective coefficients, i.e., r; = 0
foralli € [n] with ¢; = 0.

Definition 2 We call an inequality Ziem mix; < mo andits corresponding coefficients
7 uncertainty-exclusive if t; = 0 holds for all i € [n] with ¢; = 0.

Note that uncertainty-exclusive inequalities are the only interesting ones for recy-
cling, because we can always recycle (1 (j; Ti*i < 7o when ¢; = 0 holds. While
this inequality is weaker than Z ) TiXi < 700 for the nominal problem, the corre-
sponding recycled inequality is stronger. This is because we remove ; p; from the
left-hand side while the right-hand side does not change due to 7;¢;x; = 0.

By focusing on uncertainty-exclusive inequalities, we obtain the following state-
ment.

Proposition 1 Let 7 € R™ be uncertainty-exclusive. If moz + Yiem TiPi =
Zie[n] i€ x; is valid for CROB | then Zie[n] mwix; < 7 is a recyclable inequality.

Proof First, note that the validity of 70z + Y ;e TiPi = D _icqn TiCixi already
implies & > 0, since p and z are unbounded, while the right-hand side Zi eln] i Cix;
is not. Second, note that ¢;x; = 0 implies 7;x; = 0 for all i € [n], since we have
x; = 0 or we have ¢; = 0 and thus 7; = 0 due to the uncertainty-exclusiveness.
Now, assume that Zle[n ;i x; < 1 is not valid for CNOM ;e . there exists a vector
% € CNOM yith Zle (n] m;X; > mo. Then there exists an index i € [n] with ¢;X; > 0,
as otherwise ;X; = 0 for all i € [n] and therefore mp < Zi cn] ;X = 0. We define
(%, p, %) € CROB with 7 = min {Ei|i € [n], ¢ixi > O} as well as p; = (5,' - Z)+)E,~
foralli € [n]. Note that we write (y)* = max {y, 0} for arbitrary y € R. Fori € [n],
we either have ¢;X; = 0, implying 7;X; = 0, or we have ¢;X; > 0, implying Z < ¢
by the choice of 7z and thus (éi — Z)+ = ¢; — Z. This yields 7; p; = m; (c, — z)+ X =
T (Ei — Z) X; for all i € [n]. Together with Z > 0, it follows

7oz + Zn,p, =Z|m— me, + Zn,c,xl < anc Xi,

i€[n] i€n] i€(n]

which proves that 70z + ;¢ Ti Pi = D_;cqy) iCiXi cannot be valid for CROB. o

The proposition above gives a first indication of the strength of the recycling
approach: We can obtain all non-dominated valid inequalities for CROB of the form
T0Z + D e TiPi = Djc[n) WiCiXi by recycling a valid nominal inequality. Hence,
if there exists an inequality of the form (1) that dominates a recycled inequality, then
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there necessarily exists a nominal recyclable inequality that leads to this stronger
inequality through recycling.

In order to see in which cases recycled inequalities are particularly effective, let
us consider how they compare to the bilinear inequalities over the course of their
construction. First, note that the sum of the bilinear inequalities is weaker than the
bilinear inequalities themselves. Hence, when separating a recycled inequality to cut
off a fractional solution (%, p, Z) € PNOM, then the inequality to be recycled ideally
only has 7; > 0 for indices i € [n] for which the bilinear inequality p; + x;Z >
¢;X; is violated or tight. A second potential weakening occurs when applying the
estimation Z, e[n] TiXiZ = TOZ. This implies that recycling ) | TiXi < 7o is
especially interesting if it is binding for (x, p, 2).

Reconsider Example 1, for which we can recycle the valid inequality Zl e Xi =1
implied by } ;) xi = 1. The recycled inequality z + > ;1 Pi = Dy %i Yields
z+); c[n) Pi = 1, and thus the optimal objective value of the linear relaxation is now
equal to the optimal integer objective value. This intuitively highlights the strength of
the recycled inequalities in the case where both properties, a binding recyclable valid
inequality and the violation of bilinear inequalities corresponding to indices i € [n]
with 77; > 0, coincide.

i€ln

2.1 Recycling inequalities for uncertain constraints

Recycling can also be applied when considering uncertain constraints with budgeted
uncertainty sets. In this setting, the j-throw ), c[n] 4jiXi < bj of the constraint matrix
Ax < b becomes I'jz; + Zie[n] (ajixi + pji) < b; with additional robustness
variables z; € R>g and p; € RY, as well as robustness constraints z; + pj; >
ajix; for i € [n] when considering deviations a; € R" and a constraint-specific
uncertainty budgetI'; € R [7]. Since the structure obtained for uncertain constraints
is analogous to that obtained for uncertain objective functions, we can apply the same
ideas as above. Let CROB be the convex hull of the set of feasible solutions for the

robust problem. Then we obtain the following result.

Theorem 2 Consider an uncertain constraint with deviations a; € R". Let ),
7;x; < mo be a valid inequality for CROB with r € R';"gl. Then the inequality

Tz + Z Tipji = Z nlajlxl

i€[n]

i€[n]

is also valid for CROB,

The proof is analogous to that of Theorem 1. Note that the recyclable inequality only
has to be valid for CROB and not for CNOM. This difference is important, as the uncertain
constraints have an impact on the set of feasible solutions. Thus, an uncertain constraint
may imply a valid inequality for CROB that can be used for recycling with respect
to another uncertain constraint. We only consider recycling for uncertain objective
functions in the following, as we suppose that studying the reciprocal effects between
different uncertain constraints is complex enough to motivate a separate paper. In the
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next section, we will investigate the strength of recycled inequalities for uncertain
objectives from a polyhedral point of view.

3 Facet-defining recycled inequalities

In this section, we show that recycled inequalities often define facets of the convex
hull of the robust problem CROB, Formally, for a polyhedron P C R”, each valid
inequality Y., Tix < 7o defines a face F = {x € P|Y_;,ymix =m0} of P. A
face F is called a facet if dim (F) = dim (P) — 1 holds, where the dimension of
a polyhedron P is defined as the maximum number of affinely independent points
within P minus one [25]. We say that an inequality is facet-defining if its induced
face is a facet. Facet-defining inequalities are highly interesting, as they are the best
inequalities to describe a polyhedron P in the sense that a minimal representation

A™x =b~
A<x <b=|’

with as few constraints as possible, consists of # — dim (P) equations A~x = b~ and
otherwise only proper inequalities A~x < b=, all of which are facet-defining [25].

In order to prove that recycled inequalities can be facet-defining for CROB, we first
determine the dimension of CROB. For the sake of simplicity, we assume for the rest
of this paper that the solution sets CN°M and CROB are non-empty.

P:{xER”

Lemma 1 We have dim (CRO8) = dim (CNOM) +n + 1.

Proof For a polyhedron P C R”, the number n — dim (P) equals the maximum
number of linearly independent equations that are met by all vectors in P. Let
Y e (@iXi + @nyipi) + 20112 = w be satisfied by all (x, p, z) € CROP. Since p

and z can be raised arbitrarily and CROB = ), we have w41 = - - - = w241 = 0, and
thus Zie[n] wix; = wo. Hence, the equations that are met by all (x, p, z) € CROB are
exactly the equations that are met by all x € CNOM, which implies

dim (CROB) — 41— <n — dim (CNOM)) = dim (CNOM) Fntl.
O

Knowing the dimension of CROB, we are now able to study facet-defining recycled
inequalities. For this, we let

FNOM () = 1 x e ¢NOM Z T X; = 700

i€[n]
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be the face of CNM induced by > e TiXi < 7o and

FROB m)=1{(x,p,2) € CROB 707 + Z Tipi = Z 7T Ci X;

i€n] i€[n]

be the face of CROB induced by the corresponding recycled inequality. Furthermore,
for some F € CNOM and § C [n], let proj s (F) be the projection on the subspace
of variables {x;|i € S}. The following theorem states the dimension of FROB (r)
based on the dimension of the projection of FNOM (1) onto the subspace of variables
x; with w; > 0. Together with Lemma 1, this yields a characterization of facet-
defining recycled inequalities. Remember that we only consider uncertainty-exclusive
inequalities, as these are the only non-dominated ones.

Theorem 3 Let Zle[n wixi < my be a recyclable, uncertainty-exclusive inequality
and S = {i € [n]|m; > 0}. Then the face FROB () has dimension

dim (projS (FNOM (71))) + dim (CNOM) +14+n—1S].

Hence, the recycled inequality from Definition 1 is facet-defining for CROB if and only
if
dim (projS (FNOM (71))) =|5|—1

holds.

Proof There always exist dim (CNOM)

tors (x, p,z) € FROB (7). To see this, let xo,...,xdim(CNOM) C CNOM e
affinely independent. We construct two families of vectors from these. For the
first familiy of dim (CNM) + 1 vectors, let (%, p,2)! = (x/,¢©x/,0) for j €
{0, ..., dim (CNOM)}, where ¢ © x/ refers to the component-wise multiplication, i.e.,

+ 1 + n — |S| affinely independent vec-

(co xj)l. = 6ixl'.j. By definition, (X, p, 7)/ is within CROB and we have

w0z + > mipl =m0+ Y m (cexf) 3 méix]

ieln] i€[n] i€ln]

For the second family of n — | S| vectors, we choose (x D, E)j = (xo, cOx0+el, O)
foreach j € [n]\ S, with e/ € R" being the j-th canonical vector. Again, each vector
is within CROB and due to r; = 0 it follows

T[OZJ“FZTQPZ _7100—|—an <c®x —i—ef) —n,—f-er,c,x _er,c:

i€[n] i€n] i€[n] i€n]

We extend the dim (CNOM) + 1 + n — S| vectors above with a set of additional

vectors {(i, D, Z)j ’j € [k]} C CROB forsome k € Z>o. We say that such an extension
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is valid if the additional vectors are in FROB (77) and are affinely independent together
with the vectors above. Let k’ € Z>( be the maximum number such that there exists
a valid extension with k” vectors. In order to prove the theorem, we show that k' =
dim (proj s (F NOM (rr))) + 1 holds. For this, we can restrict ourselves without loss of
generality to extensions with binary X/. If ¥/ is not binary, then (%, p, 7)/ is a convex
combination of integer-feasible solutions within CROB. Convex combinations are a
special case of affine combinations, and thus one of these integer-feasible solutions
must be affinely independent and can replace (x, p, z)/. Otherwise, (%, D, )/ itself
would not be affinely independent.

To show k¥’ = dim (proj s (F NOM (n))) + 1, we claim that an extension

{(JZ, P, )/ ‘ j € [k]} is valid if and only if the following four properties hold:

1. pl = (& —27) %/ forall j e [k],i €S,

2. 7/ > 0forall j € [k],

3. {proj S (ij ) | Jj € [k]} are affinely independent,
4. {%/|j e (K1} € FNOM ().

Assume that the above claim is true. Then properties 3 and 4 imply &' <
dim (proj (FNOM (n))) + 1. In order to prove k¥’ > dim (projs (FNOM (n))) +1
let { ., zdim (projg (FNOM )))} C FNOM (1) be affinely independent in the com-
ponents correspondmg to {x;|i € S}. These vectors fulfill properties 3 and 4, and thus
it suffices to construct p/, z/ for each j € {0, ..., dim (projg (FNOM (n)))} such
that (x, p, z)f satisfies properties 1 and 2. We choose 7/ = min {cl |z € [n],c > 0}
and j/ = (& — /)" &/ foralli € [n]. Then (%, j, Z)’ is by definition within CROB
and satisfies Z/ > 0, since we assumed that there exists at least one deviation ¢; that
is strictly positive. Since 7 is uncertainty-exclusive, we have ¢; > 0 for alli € §,
which yields ¢ > z/ and thus ﬁl.j = (6 —7/) ilj foralli € S. Therefore, the vectors
x, p, Z)j satisfy properties 1 to 4, and thus constitute a valid extension.

It remains to show the equivalency between the validity of extensions and the
properties 1 to 4. For this, let l(i, p, Z)j ‘ je [k]} C FROB (1) be a valid extension
of arbitrary size k € Z>g. Since we can assume %/ € {0,1})" for all j € [k], we have
p > (c -z ) x; foralli € [n] If property 1 dld not hold, then there would exist
indices j € [k] and i € S with pl > (c —zf) X;, and thus rr,p > 7T (c —zf) J
since 77; > O holds fori € S. Thisisa contradictlon due to

moZ! + er,ﬁi] > moz! + er,- (Ei —Zj))?i]

ie[n] i€[n]

(%) i\ ~j
> i X; z1+2nl<i—z/)xi]

i€[n]

= E &

ieln]
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which implies (%, p, Z)’ ¢ FROB (1), where (x) follows from D i) ki < 0.
The affine independency of the extension is equivalent to the linear inde-
pendency of the dim (CNOM) 4+ n — |S| + k vectors obtained from subtracting
(%, p.2)° of all others, that is, {(X,p.2) — (&, p.2)°|j € [dim (CN°M)]} and
{()%,fa,z)’ - ()E,ﬁ,Z)O‘j e ]\ S} aswellas[(i,ﬁ,i)j — @& P, Z)O‘j c [k]}.We
write these into the following matrix, using property 1 and with indices ordered such
that S = {1, ..., |S|}. The vertical lines separate the different families of vectors and
the horizontal lines separate the components corresponding to the variables x, p, and

Z.

J 0 ~J 0
Xy — X ...10...0]... Xy — X
ooxp—xY ]o...0... %) —x0
.51<x{—x?>...0...0... (él—Zj))?{—élx?
A zivel A0
0...0[ (&1 —27) X5 — Esixfy,
=] A 0
Lo Pisj+1 — CISIH1X 5141
o j i A
.c,,(xn—x,?)...o 1... p,,—cnx,?
0 ...]0...0[... z/

For each i € [n], we subtract row i from row n + i with factor ¢; and obtain

..xlj—x?...O...O... i{—x?
..x,{—xg...O...O... )Z,J,—x?(l)
0 ...[0...0]... —Z’)Ef
_zigd
0...0 xjg

10| ploy — 651 %

Pis)+1 ISI+1X 5141

0o ..o 1].. Pl — %)
0 .0 .. 0] .. 7/

We use the middle columns containing the canonical vectors to eliminate the corre-
sponding rows. We have ¥/ € CNM and thus ¥/ — x0 is linearly dependent of the

: NOM . .
vectors {xl —x% ..., K dim(CTOY) xo} due to the dimension of CNOM, Hence, we
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J

can also eliminate the first n rows in the last k columns and obtain

coxf=xp ool 0

xi—x)..J0... 0. 0
0 ool —ziE L

0...0[ —z/x

1 0 0

0 ..o 1... 0

0 Jo...0 z/

These columns are linearly independent if and only if 7/ # 0 holds for all j € [k] and
{ projg ()Ej ) | Jj€ [k]} are affinely independent. Thus, if property 1 holds, then the affine
independency of the extension is equivalent to properties 2 and 3. Since we have already
shown above that property 1 is implied, we know that the validity of the extension
implies properties 1 to 3. Conversely, properties 1 to 3 imply the affine independency
of the extension. Furthermore, given property 1, we have p! = (& —z/) &/ for all
i€Sandm = 0foralli ¢ S,and thus 7; p! = m; (¢; —2/) %/ foralli € [n].
Together with property 2, this yields

moz + Y mipl =Y méE o mil =) miy o mo=) miF,

i€[n] i€[n] i€[n] i€n]

and thus {)Ej | j€ [k]} C FNOM (7). Hence, property 4 holds if and only if
{(JE, p.2)/ ‘ j € [k]} fulfill the recycled inequality with equality. In summary, this
shows that the validity of the extension is equivalent to properties 1 to 4. O

A powerful implication of Theorem 3 is that recycling an uncertainty-exclusive
inequality yields always a facet-defining inequality if dim (F NOM (n)) = n— 1 holds.
This is because there exist n affinely independent vectors satisfying Zie[n] Tix = 7,
of which |S| must be affinely independent when projected on the subspace of the
variables {x;|i € S}. Note that dim (F NOM (n)) = n — 1 holds if FNOM (77) is either
a facet of a full-dimensional polyhedron CNM or if }°; e[n] Tix = 7o is actually an
equation with FNOM () = CNOM and dim (CN°M) = n — 1. This is summarized in
the following corollary.

Corollary 1 Let Zie[n] wix; < my be a recyclable, uncertainty-exclusive inequality.
The recycled inequality from Definition 1 is facet-defining for CROB if one of the
following holds:

o CNOM s full-dimensional and FNM (1) is a facet of CNOM,
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e dim (CNOM) = n — 1 and FNM (zr) = CNOM,

Contrary to first intuition, it is also possible to obtain facet-defining inequalities
by recycling weaker inequalities that are neither facet-defining nor equations. This is
because the dimension of the face FNOM (1) can shrink by less than n — |S| when
projected on the subspace of the variables {x;|i € S}. Thus, inequalities defining low-
dimensional faces can also yield facet-defining recycled inequalities if 7; = 0 holds
for many i € [n]. For example, consider an independent set problem on a graph
G = (V, E) with nodes V = [n]. The set of feasible solutions can be stated as
T ={xe{0,1)"|x;+x; <1V{i,j} € E}, withx; = 1if i € V belongs to the
independent set and x; = O otherwise. If Q C V is a clique in G, then the clique
inequality Y iep Xi < 1is valid for 7. Furthermore, the inequality strictly dominates
all inequalities ) ;. o Xi < 1 with Q' C Q and it is facet-defining for conv (Z) if
and only if Q is a maximal clique with respect to inclusion [25]. However, if ¢; > 0
holds foralli € Q, then the recycled inequality z + ) ;o Pi = ;o Cixi defines a
facet of the corresponding CROP for all cliques Q' € Q. This is because the projection
proj o/ (FNOM (71)), that is S = Q’, contains {ej |j € Q/} and thus has dimension
| Q' | — 1. Other examples include odd hole inequalities for the independent set problem
[26] and minimal cover inequalities for the knapsack problem [25]. These are in general
not facet-defining for their respective polytope CNM, but yield facet-defining recycled
inequalities for the polytope CROB of the robust counterpart.

One now might raise the question whether recycling dominated inequalities is
actually of practical interest or whether these do not matter due to the special structure
of the objective function, with all p; having an objective coefficient of 1. The following
example demonstrates that it can be beneficial to weaken an inequality before it is
recycled.

Example 2 Consider the robust problem

min 27 + Z —Xx; + pi
ie[5]
s.t. 3x5 + Z xi <3
icf4]

4+ pi = xi Vi € [5]

x€{0,1)°, p e Ry, z € Rao.
Choosing x = (% e %, 0), p=0,and z = % yields an optimal solution for the
linear relaxation with objective value —%. Recycling constraint 3x5 + Zie[4] xi <3
yields 3z +3ps + 3 i Pi = 3%5 + )4y Xi- After adding the recycled inequality,
an optimal solution is given by x = (% e, %, 0), p = (O, ...,0, }1) and 7z = %,
with an objective value of —%. Note that we now choose ps > 0 even though x5 = 0

holds. Since the bilinear inequality ps + xsz > ¢sxs now has a slack of zlp our
observation from the last section suggests that it may be beneficial to drop x5 from
the valid inequality for recycling. In fact, when recycling the dominated inequality

@ Springer



Recycling valid inequalities for robust combinatorial... 1M

> ief4)Xi < 3 instead of the model constraint, we obtain 3z + Y cj4) Pi = D _iea) i
and an optimal solution is now given by x = (1,1, 1,0, 0), p = 0, and z = 1, which
yields an objective value of —1.

After discussing the strong implications of Theorem 3, let us now consider its lim-
itations. The next example shows that uncertainty-exclusiveness is indeed necessary
for the correctness of Theorem 3 and Corollary 1.

Example 3 Consider the full-dimensional polyhedron

X1 +x2+x3 <2
CROB — conv [ 1 (x, p,2) € {0, 1} x R, b As A . ,
= 2+ pi = cix;i Vi €[3]

with ¢ = ¢; = 1 and ¢3 = 0. The constraint x| +x3 +x3 < 2 is facet-defining for the
corresponding CNOM, and thus meets all requirements of Corollary 1 with the exception
that it is not uncertainty-exclusive. Indeed, the recycled inequality 2z + p1 + p2+ p3 >
x1 + x7 is not facet-defining for CROB, as it is dominated by the sum of the constraints
z+ p1 = x1 and z + pa > x3. Note that this does not change when recycling the
corresponding uncertainty-exclusive inequality x; 4+ x» < 2 instead.

The observation in the example above is quite intuitive. While we can always trans-
form an arbitrary recyclable inequality into an uncertainty-exclusive one by dropping
all x; with ¢; = 0, we loose information during this process and cannot expect to
obtain a facet of CROB. Less obvious is the importance of the dimension of the nom-
inal polytope CNOM, which is a prerequisite for Corollary 1. In the following, we
consider another example which shows that inequalities recycled from facet-defining
inequalities are not necessarily facet-defining if we do not have dim (CNOM) = n.
Hence, the dimension of the nominal problem is important for the correctness of
Corollary 1. After the example, we show how the corollary can be generalized for
lower-dimensional polyhedra.

Example 4 Consider the four-dimensional polyhedron with five variables

x1+x=1
CROB _ conv x, p,z) €{0,1}* xR .
2.2 (0.1) 2 4 pi=x Viel2]

The inequality 2x; + x» < 2 defines a facet for the corresponding 1-dimensional
CNOM However, the recycled inequality 2z 4+ 2p1 + p2 > 2x1 + x» is the sum of
z+ p1 = x1 and 7+ p1 + p2 > x1 + x2, where the latter is recycled from x| +x, = 1.
Hence, the face of CROB induced by 2z 4+ 2p; + p2 > 2x1 + x3 is the intersection of
the faces induced by z + p1 > x1 and z 4+ p1 + p2 > x1 + x2. Since these are not
equal, the face induced by 2z +2p1 + p> > 2x1 + x2 has a lower dimension, and thus
cannot be a facet.

Note that the mapping from the set of recyclable inequalities to the correspond-
ing recycled inequalities is a homomorphism in the sense that the recycled inequality
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of D icin] (! + 7?)x; < m} + nd equals the sum of the recycled inequalities of
> ien] rrilxi < n(} and )’ iemn] nizxi < ng. Asrecycled inequalities are proper inequal-
ities, their sum is weaker than the separate inequalities (if they do not define the same
face) and itis better to recycle each inequality individually. This applies to the example,
where 2x1 4 x2 < 2 is the sum of the recyclable inequality x; < 1 and the recyclable
equation x; + xp = 1. Although x; < I and 2x; + x» < 2 define the same face,
recycling x| < 1 yields a facet-defining inequality, while recycling 2x1 +x2 < 2 does
not. Hence, for lower dimensional CNOM, one cannot decide whether recycling yields
a facet-defining inequality by solely relying on the face induced by the recyclable
inequality.

However, as in the example, we can eliminate equations from an inequality and
recycle the resulting one, which is equivalent for CNOM. Formally, we call two inequal-
ities Zie[n] m/x; <myand ) ; cln] TiXi < o equivalent for a polyhedron P if there

ien] wfxi = a)g with k € [£], satisfied by all x € P, such that
{7, o', '} are linearly independent and A7’ + > kele] rwk = 7 holds for
some Ag > 0 and Ay, ..., Ay € R [27]. Note that two equivalent inequalities define
the same face.

exist equations Y

Algorithm 1: Procedure for eliminating equations from 7.

Input: A recyclable, uncertainty-exclusive inequality Y _; clnl y'ri/x,- < né and equations

Zie[n] a)ffxi = a)lé for k € [£], satisfied by all x € CNOM, such that {rr’, a)l, e, a)‘z} are
linearly independent
Output: An equivalent recyclable, uncertainty-exclusive inequality Zie[n] wix; < mo with
l{i € [n]lm; =0} = ¢
1 Setw =7’
2 for k € [¢] do

3 Choose i* eargmm{ Tlc ieln], w #0, }
l
4 Updaten<—ﬂ—— k
@jx
5 fork/e{k+1,...,€}do
k/
6 L Update oF < o — w’—}:wk
w.
i*

7 return 3 cp,) TiX < 7o

We already noted below Corollary 1 that having many zero coefficients in a
recyclable inequality is beneficial for obtaining facet-defining recycled inequal-
ities. Accordingly, when eliminating equations from a recyclable inequality, we
want to increase the number of zero coefficients, if possible. For given equations
Yie eln ]a)kxl = wg, with k € [£], Algorithm 1 performs a specialized Gaussian elim-
ination on a recyclable inequality D ;. 77/x; < 7 in order to obtain an equivalent
inequality Zl e[n] TiXi = 70 with at least £ zero coefficients. For this, Algorithm 1

subtracts for each equation given by ¥ in line 4 a multiple == s * of @* from 7 such

%

that the coefficient 7;+ becomes or stays zero. The index i * is chosen with respect to a
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bottleneck condition in line 3, which ensures that = k is the multiple with the smallest

absolute value for all i € [n] with a) # 0. This has two desirable 1mphcat10ns First,
if r; was positive before, then it will be non-negative after subtracting = k a) . Second,

if w; was already zero before, then it will still be zero afterwards. This 1mp11es that if
> e T 'x; < m; is recyclable and uncertainty-exclusive, then this also holds for the
resulting Z n) TiXi < 0. After ehmlnatmg 7+, we make sure in line 6 that w =0
holds for all remammg equations such that i* will be different in every 1terat10n By
doing so, we guarantee that we have at least £ indices i € [n] with 7; = 0 at the end
of Algorithm 1.

The following proposition uses Algorithm 1 to generalize Corollary 1 for lower-
dimensional CROB,

Proposition 2 Let Y, 7/xi < 7 be a recyclable, uncertainty-exclusive inequality
such that FNOM (z') is either a facet of CNOM or FNOM (z') = CNOM_ Let fur-
thermore £ be the maximum number of equations Z a)kx, = a)o for k € [£],
satisfied by all x € CNOM, such that {JT Jol, a)z} are llnearly independent. Then
Algorithm 1 computes an equivalent recyclable inequality Zie[n] wix; < my whose
recycled inequality is facet-defining for CROB.

Proof Since the returned inequality Zie[n] mwix; < mo from Algorithm 1 is recy-
clable and uncertainty-exclusive, it only remains to show by Theorem 3 that
dim (projg (FNM ())) = |S| — 1 holds, with S = {i € [n]|7; > 0}. Remember
that FNOM (1) = FNOM (77 holds. Due to the choice of ¢, we have

n —dim (CNOM) — 1, if FNOM () = cNOM
n — dim (CNOM) | otherwise.

Hence, there exists a set {xl o xt } c FNOM () of affinely independent vectors.
Let furthermore T C [n]\ S consist of the £ indices i * that were chosen in Algorithm 1.
We show that the vectors { Projp,p\r (xl) s ooy PIOJiu\ T (x"_z)} are affinely indepen-
dent, i.e., dim (projp, 7 (FNM (1))) > n — |T| — L. Since S C [n] \ T holds, this
implies dim (proj S (F NOM (n))) > |S| — 1. Furthermore, since the equation induced
by 7 is only on the variables {x;|i € S}, we have dim (projs (FNOM (7{))) < |5,
which then proves the proposition.

Assume that the projections projp,\ r (xj ) are not affinely independent. Then there
exist coefficients . € R" " with A # 0, 3", g4 = 0,and 3¢, Ajx] =0
foralli € [n]\ T. Consider a fixed but arbitrary index i* € T'. Since i * was chosen in
Algorithm 1, there exists an equation ) _; ] a)f.‘xi = wg with a)fik # 0. Without loss

of generality, we can assume a)f.‘* = 1 and obtain

k. J
> o

ie[n\{i*}

@ Springer



114 C. Bising et al.

for all j € [n — £], and thus

Y N PN k_J
Z AjXie = Z Aj | @ w; X;

jeln—1] jeln—1] i€[n] \{'*}
— kK _ —
b Y - Y dh X ad -
jen—¢] ie[n]\{i*} je[n l]
~——— ——
=0 =0

However, as this applies for all i* € T, we have Zje[n—l] )\jxi] = (Qforalli e
[n], since this was already true for all i € [n] \ T. This implies that the vectors
{xl, e, x”‘z} are affinely dependent, which contradicts their choice and completes
the proof. O

Note that we do not always know the dimension of CNOM in practice, let alone all equa-

tions > icln] wfxi = wé. We tested Algorithm 1 using the already present equations in
the constraint matrix Ax < b of the robust instances generated from the MIPLIB 2017,
which we use in our computational study in Sect. 6.6. Interestingly, we observed no
improvement in the dual bound provided by the linear relaxation compared to the
setting in which we didn’t use Algorithm 1. Thus, Algorithm 1 is more of a theoretical
tool for Proposition 2.

Now that we have established a good theoretical understanding of the strength of
recycled inequalities, we discuss in the next section how to use them in practice.

4 Separating recycled inequalities

In the previous section, we have seen that recycling can yield a vast number of facet-
defining inequalities. For example, in the case of the independent set problem, every
clique inequality can be recycled to a facet-defining inequality. Therefore, potentially
exponentially many facet-defining recycled inequalities exist, which raises the need
for an efficient separation.

4.1 Separation of recycled constraints

A straightforward separation approach is to recycle the constraints Ax < b of the
nominal problem. Given a row Zle[n ajix; < bj of the constraint matrix, we trans-
form it into a recyclable inequality by tentatively fixing x; = 1 for all i € [n] with
aj; < 0. Since the variables x; are binary,

E ajixi < bj — E aji

i€[n]:a;; >0 i€[nlaj; <0

is a recyclable inequality for CROB. We may either add the corresponding recycled
inequalities directly to the formulation PROB or precalculate and store them for later
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separation during branch and cut. In both cases, we restrict ourselves to inequalities

with
Z aji >bj— Z aji,

i€[n]a;; =0 i€[nlaj;i <0

as the corresponding recycled inequality is otherwise dominated by the robustness
constraints p; + z > ¢;x;. When using the precalculated recyclable inequalities for
separation to cut off a fractional solution (x, p,z) € PROB  we also make sure
to only include variables x; with ¢;X; — p; > 0, as this maximizes the violation
Zie[n] T (Eii,- — ﬁi) — moz of the recycled inequality. That is, we iterate over every
row in the constraint matrix Ax < b and recycle

Y. ixisbi— ) aj
i€[nl:aj; >0, i€[nl:aj; <0
Ci%i—pi=0

if the resulting recycled inequality is violated. We will see in our computational study
that this simple approach already improves the solvers performance drastically in many
cases.

4.2 Separation of recycled cuts

Another approach is to benefit from the research on the nominal problem and recycle
well studied cutting planes, i.e., inequalities that are valid for the convex hull CNOM but
not for the linear relaxation PNOM Let [T C Ri‘gl be such that Zi ey TiXi = 700 isa
recyclable inequality forall ¥ € T1. When separating inequalities to cut off a fractional
solution to the nominal problem X € PNOM e would usually search for a w € I1
with positive violation ) ; cn) Tixi — 70 > 0. When separating recycled inequalities
for a given solution (%, p, Z) € PROB, we require Zie[n] T (6@,- — ﬁ,-) —mpz > 0
instead. Note that the coefficients ¢; X; — p; and Z are fixed in this case. Therefore, the
same algorithms for finding a violated nominal inequality can be applied for separating
violated recycled inequalities, provided these do not rely on some special structure of
the objective function of the separation problem. In our computational study, we will
test a heuristic separation of recycled clique inequalities for the robust independent
set problem. We will show that these facet-defining recycled inequalities improve the
formulation significantly.

4.3 Exact separation via recycling combined constraints

An exact separation of violated recycled inequalities is /P-hard in general. For exam-
ple, in the case of recycled clique inequalities, an exact separation would require
solving a maximum weighted clique problem. However, we show below how we can
separate recycled inequalities from valid inequalities for PNOM in polynomial time
in the size of the constraint matrix Ax < b via solving an LP. In particular, if we
already know the convex hull of the nominal problem, i.e., CNOM = PNOM thep
an exact separation of recycled inequalities can be done in polynomial time. To see

@ Springer



116 C. Bising et al.

this, note that an inequality Y, 7ix; < 7o is valid for PNOM if and only if it

can be expressed as a conic combination of the rows in Ax < b as well as the box
constraints x; < 1 and —x; < 0. That is, we have v; — u; + Zje[m] ajilj = m;
and Zie[n] v + Zje[m] bj); = mo for some A € R’;O, w,v € IR{’;O. Hence, there
exists a recyclable inequality for PNOM whose recycled inequality is violated by
(%, p, Z) € PROB if and only if the following separation LP has a solution with posi-
tive objective value

max Z T (5,-)E,~ - ﬁ,') — o2

i€ln]
s.t.y, — i + Zajikani Vi € [n]
(SLP) Jjelm]
Zvi-i- Z bikj =mg
i€ln] J€lm]
m e R A eRY), u,veRY,.

Note that we demand 7 > 0 so that the inequality ) _; e[y Tixi = 7o is recyclable. As
the optimal objective value of the SLP is either zero or unbounded due to arbitrary
scaling, we normalize the recyclable inequality Zi e[n] TiXi < 70 by fixing mp = 1.
This imposes no restriction on finding violated recycled inequalities, as we always
have 7y > O for all relevant recyclable inequalities and can thus achieve 7y = 1
via scaling. This is because the left-hand side } ; c[n] iXi is non-negative, and thus
o = 0 would imply x; = O for all x € PNOM and i e [n] with 7r; > 0. In this case,
the right-hand side of the recycled inequality ) ; en] 7;¢;ix; would always be zero,
which renders the inequality redundant.

Remember that recycling is a homomorphism on the set of recyclable inequalities.
Hence, recycling a conic combination of inequalities, as given by a solution to SLP,
is only reasonable if some of the combined inequalities are not recyclable themselves.
That is, if we have w7 = 7! + 72, with 7!, 72 linearly independent and both define
recyclable inequalities, then it would be better to recycle each of these inequalities
separately. In practice, this is achieved by fixing o = 1, as a combination of 77! and
72 is never a vertex of SLP and can only be an optimal solution if the violation of
their respective recycled inequalities is equal.

We observe two issues when using SLP for separation in practice. First, solving SLP
is relatively time consuming if the number of inequalities is large. Second, we obtain
only one optimal solution when solving SLP, and can thus only separate one recycled
inequality at a time. However, MILP solvers usually perform better when several cuts
are added at once. The following proposition helps in this regard, showing that we can
partition the constraints into sets that can be considered independently for combination.
Doing so, we can solve one smaller LP for each set of the partition, yielding multiple
(possibly violated) recycled inequalities within the same separation round.

Proposition3 Let A = (aj,-)je[m] ieln] be the left-hand side of the constraints Ax < b
(not including 0 < x < 1) and let G = (V, E) be the graph with nodes V = [m]

@ Springer



Recycling valid inequalities for robust combinatorial... 117

and edges E = {{j,j/} € (‘2/) dien]:a;; <0< aj/,'}. Let {Cy,...,C} € 2V
be the connected components in G. Then every inequality that is recycled from a valid

inequality for PNOM is dominated by inequalities recycled from recyclable inequalities
of the form

Do\ Y iy | = Y v+ Y by @

i€[n] jeCy i€[n] jeCy
with £ € [k], A € R”go, and /LE, vt e R’;O.

Proof Let ), c[n] TiXi < 7o be a valid inequality for PNOM We write it as

Z H1+Za]l' xtfzvz‘i‘zb)\]v

i€[n] Jj€lm] i€[n]

which is a conic combination of Ax < band —x < Qas well as x < 1 with coefficients
NS R’;O, w,v € R’éo. We show that if Zie[n] mix; < 7o is recyclable, then it is also
a conic combination of the recyclable inequalities from the statement. For this, we
show that vf — Mf + Zjng ajirj > Oholds foralli € [n] and £ € [k]. Then we also
have Zie[n] vf + Z,/ecg bjir; = 0forall £ € [k], since the inequalities (2) are valid
with non-negative left-hand sides.

Note that we can assume v; = 0 or u; = O for all i € [n], since we would

otherwise decrease both and then recycle Zie[n] mixi < Mo — Yy, cpn] TN {vi, g}

+
instead. We can also assume v; = (— > jeim ajizkj) for all i’ € [n], as otherwise

> epn) Tixi < 7o would be a combination of x;; < 1 and the recyclable inequality

+
obtained by decreasing v;/ to (— Zje[m] aj,v)»j) . It follows that w@;; = 0 holds for
all i’ € [n] with Zje[m] ajihj < 0, because we have vy = — Zje[m] ajpr; > 0in
this case. If 3 ;¢

This is because both values result in recyclable inequalities and all values in between
would imply that ), 7ix; < 7o is a convex combination of the two inequalities
obtained by choosing u;; = 0 or u;r = Zje[m] aji’)j. We conclude that we only
choose p;r > 0 or vy > 0 if we want to obtain 7y = 0. Otherwise, we have u; =
vy = 0 and thus 7;; = Zje[m] aji A ;. Hence, we have py = 0 for yy > 0 and

+ +
Wi = (Zje[m] aji/kj) for m;; = 0. Together with v;y = (— Zje[m] aji/kj> from
above, we can rewrite Y

ajihj > 0holds, then we can assume p; € {0, Zje[m] aji/kj}.

ie[n] TiXi < mo as

+

+
Z Z ajirj | + Z ajirj | xi — Z Z ajikj | Xi

i€[n] jelm] jelm] i€[n]m;=0 \ jelm]
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+
Y (-] + X
i€ln] j€lm] Jj€lm]
Note that ) ;¢ ajirj and 3 ;cc, ajik; have the same sign for all i € [n] and

£ € [k]. Otherwise, there existed i € [n] and £, £’ € [k] with ZjECg ajirj < 0and
> jec, @jirj > 0. Then there exists j € Cyand j' € Cp such thataj; < 0 < aj;
holds. However, this implies that constraints j and j’ are adjacent in the graph G, and

+ +
thus ¢ = ¢'. It follows (:I: > jcim] Clj,')\,j) = teik) (:i: > jec, Clji)hj> , and thus

We can rewrite ) 1, TiX; < 7o again as

S =ub+ D aiin |xi | = [ Do v+ D b |

Lelk] \i€[n] jeCy Lelk] \i€[n] jeCe

+
with !t = (ZjECg ajikj) for 7; = 0 and puf = 0 for m; > 0 as well as v} =

+
(— Ljec, a,-,xj)

Thus, the above inequality decomposes into the k inequalities (2), all of which are
recyclable since vf - uf + Zjng aj;jXj > 0 holds by the definition of vt ut. O
In the special case where all constraints are recyclable, the graph G from the propo-
sition above contains no edges. Thus, we don’t have to consider any combinations of
constraints but can solely rely on recycling constraints as in Sect.4.1.

Corollary 2 Let all constraints in Ax < b be recyclable. Then every inequality that is
recycled from a valid inequality for PNOM s dominated by the recycled inequalities
from Y i yajixi <bjforje[mland I C [n].

In the case where we have PNOM = CNOM an( 411 constraints are recyclable, the
above corollary shows together with Proposition 1 that we can separate inequalities
of the form 70z + D ;¢ TiPi = D icpn) WiCiXi exactly in linear time. Given such
favorable conditions, one might ask whether we even obtain the convex hull CROB by
separating recycled inequalities. This seems especially plausible since PNOM = ¢NOM
implies that ROB can be solved in polynomial time according to the famous result of
Bertsimas and Sim [6]. However, the following example shows that we do not obtain
CROB for a robust bipartite matching problem, although all constraints are recyclable
in this case and we have PNOM = CNOM for the bipartite matching polytope [28].

Example 5 Consider a bipartite graph G = (V, E) with V = {1,2} U {3, 4} and
E = {ey,...,es} = {{1,3},{1,4},{2,3}, {2,4}}. The convex hull of the robust
weighted matching problem with variables x; € {0, 1} and deviations ¢; = i for every
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e € Eis
X1 +x <1
x3+x4 <1
CROB — conv (x, p,z) €0, 1)* x RSEO x1+x3=<1
X2 +x4 <1
pi+z>¢ixi Vield]

We use PORTA [29] to compute a representation of CROB for this problem and see
that the inequality ps + p3 4+ z > 2x2 + x3 is facet-defining for CROB. The validity
is easily verified, because the inequality is implied by p; + z > 2x; for x3 = 0 and
by p3 + z > 3x3 for x3 = 1 due to 2x» + x3 < 3 = 3x3. To see that it is also
facet-defining, one verifies that the following dim (CROB) = 9 solutions are affinely
independent and satisfy the inequality with equality

X1 0 1 1 0 0 0 0 0 0
X3 0 0 0 1 0 0 1 0 1
X3 0 0 0 0 1 0 0 1 1
X4 0 0 0 0 0 1 0 0 0
P | e ot.11¢1,1211.10¢4,10¢1,1J0¢},101(,10¢},10
P2 0 0 0 2 0 0 0 0 0
3 0 0 0 0 3 0 0 0 1
Da 0 0 0 0 0 4 0 0 0

Z 0 0 0 0 0 0 2 3 2

Note that p» + p3 + z = 2x3 + x3 is not a recycled inequality, since the quotient of
the coefficients of x3 and p3 is not ¢3 = 3.

In our computational study, we show that recycled inequalities nevertheless almost
completely close the gap between optimal integer and continuous solutions for some
robust bipartite matching problems. This highlights the large potential of recycled
inequalities when all constraints are recyclable and PNOM = ¢NOM pojds.

Even if not all constraints are recyclable, an optimal solution to SLP often corre-
sponds to an already recyclable constraint in Ax < b in practice. Hence, we observe
that it is beneficial to first check whether we can separate violated recycled inequal-
ities from constraints, as described in Sect.4.1. Only if none of these are violated,
we solve SLP to check whether there exists a violated recycled inequality from a
combined inequality. We will see in our tests on robust instances generated from the
MIPLIB 2017 that solving SLP sometimes yields very strong recycled inequalities,
even if recycling the constraints in Ax < b has no effect at all (cf. Sec 6.6).

5 Partially recycling of non-recyclable inequalities

Let); c[n] TiXi < 7o be a non-recyclable valid inequality for CNOM 1p the previous
section, we transformed such inequalities into Y, (1.7 5.0 TiXi < 70— i c(n)om <0 i
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for recycling, by tentatively fixing x; = 1 for all i € [n] with 7; < 0. Intuitively, the
resulting recycled inequality seems to be unnecessarily weak if X; is actually (near
to) zero for an i € [n] with w; < 0 and a fractional solution (%, p,z) € PROB to
be cut off. To resolve this, we propose another procedure, using the recyclable part
of generally non-recyclable inequalities. For the remainder of this section, let ST =
{i € [n]lwr; > 0} and S~ = {i € [n]|m; < 0} be the sets of indices corresponding to
positive and negative coefficients, respectively.

Note that Zi es+ TiX; < mo is a recyclable inequality for the restricted nomi-
nal solution space {x € CNOM|x,- =0VielS _}, and can thus be recycled to a valid
inequality for {(x, p.z) € CROB |x,~ =0VieS™ } In order to obtain a valid inequal-
ity for CROB we can lift the fixed variables into the recycled inequality. For this, we
compute lifting coefficients o; € R fori € S~ such that

moz + Z T pi = Z miéixi + Z o X;
ieSt ieSt ieS—
is a valid inequality for CROB,

In general, one wants to choose maximal lifting coefficients «, so that the lifted
inequality is as strong as possible. Whether one obtains a facet-defining inequality
is not trivial to say, as this not only depends on the inequality to be lifted and the
maximality of the lifting coefficients but also on the considered polyhedron. However,
roughly speaking, lifting is more likely to yield a facet-defining inequality if the orig-
inal inequality is facet-defining for the restricted solution space, where the variables
to be lifted are fixed to zero [30-32]. Using Theorem 3, we can state in which case
this applies for our recycled inequalities.

Corollary 3 Let Zielnl wix; < mo be a valid inequality for CNOM with o > 0.
The recycled inequality oz + Y jcq+ TiPi = Y e+ TiCiXi is facet-defining for the
restricted solution space {(x, p,2) € CROB|xi =0Vie S_} if ¢; > 0 holds for all
ieSt e, itis uncertainty-exclusive on {x,- |i S S+}, and

dim (projg+ ({x € FNM (m)|x; =0Vi e $7})) = [ST| - 1.

The approach of fixing, recycling, and lifting is especially promising if the original
inequality meets the criteria of the corollary above and if we are able to compute high
lifting coefficients «. Computing maximal lifting coefficients often involves solving
multiple A/P-hard optimization problems. For example, when only lifting the variable
x¢ into the recycled inequality moz + ) ; g+ Tipi = D _;cg+ TiCiX;, then we need to
solve

min 7oz + Z i pi — Z ;i Ci X
ieSt ieSt

CROB

s.t. (x,p,2) € ,xe = 1.

That is, we minimize the slack of the inequality to be lifted while fixing x, = 1.
This (in our case non-positive) slack is then the maximal lifting coefficient of x,. The
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theoretical complexity of lifting implies the need for an efficient heuristic approach.
The following proposition shows how to compute lifting coefficients by solving a
sequence of easy fractional knapsack problems.

Proposition 4 Let Zie[n] wix; < mo be a valid inequality for CNM with 7o > 0.
Consider the fractional knapsack problem

f ) =max{ Y méixi| Yy mx <y, xel0,1]
ieSt ieSt

for a capacity y € R>o and let a; = f (7o) — f (mo — ;) fori € S™. Then

oz + Z Tipi > Z micix; + Z ;X

ieSt ieSt ieS™

is a valid inequality for CROB.

Proof We sequentially lift the variables {x,-l, R x,-k} = {xi |i es _} and show via
induction over £ € {0, ..., k} that
Tz + Z TTipi = Z TiCixi + Z i Xijs
ieSt ieSt Jjele]

with [0] = ¥ and &;; = f (m9) — f (70 — 7i;), is a valid inequality for the restricted
solution space {(x, p,z) € CROB|)C,-Hl = .- =x;, = 0}. The induction statement
holds true for the base case £ = 0, where no variables are lifted. Now, consider
some £ € [k] and assume that the induction statement holds true for £ — 1. Then the
following lifting problem yields the maximal lifting coefficient for variable x;,

min gz + E Tipi — E TiCiXi — Z o Xi

ieSt ieSt jele—1]
S.t.xj, = 1, Xigyg =+ = Xjp = 0,

(x, p, z) € CROB.

We relax the lifting problem in order to obtain a valid but not necessarily maximal
lifting coefficient. We can assume that the bilinear constraints p; + x;z7 > ¢;x; are
met, since it is sufficient to only consider integer-feasible solutions for the lifting
problem. In the relaxation, we only consider the bilinear constraints as well as the
reduced constraint ) ; g+ wix; < moy — mi, — Zje[/é—l] Ti;Xi; obtained from the

original constraint Zie[n] wixi < moand x;, = laswellas x;,,, =--- = x;, =0.
Furthermore, we allow all variables but x;,, ..., x;, to be fractional. By assuming that
S C [€ — 1] defines an optimal choice for the already lifted variables x;,, ..., x;,_,,
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with x;; = L'iff j € S, we obtain the following relaxed lifting problem

min 7oz + Z T pi — Z T CiXj — Zai.i

ieSt ieSt jeS

(RLP) S.t. Z X <y

ieSt

pi +xiz > Cix; VieSt

x €10, 1]S+,p € Rg,z € Rx>o

withy = mo—mj, — ) jes T We will first show that the optimal solution value of the
RLPequals f (mp) — f (y)_ZjeS o forally > mgand S C [£ — 1]. Afterwards, we
show that § = ¢ is an optimal choice, which proves that f (7r0) — f (70 — 7;,) = a;,
is a feasible lifting coefficient.

Since f (y) is a fractional knapsack problem with capacity y, values 7;¢;, and
weights m;, we can sort the variables with respect to ”7;—? = ¢; and greedily fill the
knapsack until the capacity is reached. Let x* be such an optimal greedy solution to
f (v). We show that x*, together with appropriate p*, z*, is also an optimal solution
to RLP. For this, let (x, p, z) be an optimal solution to RLP. We can assume p; =

(¢ — z)+ x;, and thus obtain for the objective of RLP

Tz + Z i pi — Z i Ci X —Zaij = Moz — Z 7 min {¢;, 2} x; —Zai,--

ieSt ieSt jes ieSt JES

Hence, for fixed z, we have a fractional knapsack problem with values 7; min {Ei, z}

and weights 7r;. Since sorting with respect to ¢; also yields a sorting with respect to

%I{L’Z} = min {¢;, z}, the above greedy solution x* is again optimal.
Now, we choose

7 = min ze{O,él,...,én} E mix] < mo

ieSt,ci>z

together with pf = (éi — z*)+ x7. We first show that the value of this solution equals
f@o)—fO) = jes i and show afterwards that it is optimal.
If Y ;cg+ mi < 7o holds, then we have z* = 0, and thus

moz* + Z i p; — Z micix; — Zaij

ieSt ieSt jes
A + % Ak
= E T (ci —0) x; — Znicixi — E o = — E o -
ieSt ieSt JjeS =
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Since all items i € ST already fit into the knapsack of capacity 7, increasing the
capacity up to y > mg has no effect on the solution value. Hence, we have f (mg) =
£ () andthus f (o) = £ (1) = ¥ jes @) = — X jes -

Otherwise, if ) ; g+ ; > 7o holds, we assume 0 =: ¢p < ¢; < --- < &, and
let j* € {0, ..., n} be the smallest index such that ZieS+:i>j* w; < mo. It follows
z* = ¢« by the definition of z* and we can assume xl?“ = 1foralli € ST withi > j*
by the definition of our greedy solution. This implies that (x*, p*, z*) is a solution to
RLP of value

k * A *
Tz + E Tip; — E TiCiX; —Zaij

ieSt ieSt jEeS
=molp+ Yy wi (G =)= FO) =)
ieSti>j* JjES
=|m— Y mlé+ D ma—-foy-) a
ieStis>j* ieStis>j* JjeS
=f (@)~ fO) =) .
jes

Here, the last equation holds since x* = 1 foralli € ST withi > j* and

o — Z TTi

ieStis>j*

j 7

is an optimal solution to f (mq).
To see that the choice of p*, z* is actually optimal, first consider z/ > z* and p’

with p! > (éi — z/) x}*. By definition of z*, we have Zies+:6i>z* mix} < mo, and thus

mozt+ Y mipf=mt+ Y m(d -t +é )
ieSt ieStiei>z*
< moz* + 1o (Z/ - Z*) + Z i (5,' - Z/) x;
ieSt:éi>z*

< moz + Z T (é, — Z/) x;k
ieSt:i¢i>7

<moZ + Z i pl.
ieSt

Second, consider 7/ < z* with an appropriate p’. Due to the minimality of z* and

0 <z’ <z* wehave ) g+.zs « TiX] > 7o, and thus

moz* + Znipj‘zno(z’+z*—z/)+ Z mi (6 — %) x}

ieSt ieSt:e;>z*
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ieSt:e;>z*

<moz + Z T (6, — Z/) x;k
ieSt:iéi>7
<mz + Z i p;,

ieSt

which shows the optimality of z* and p*.

We have shown that f (79) — f (m) — W, — Z/eS nij) — Z;’es a;, is the optimal
value of RLP for some § C [¢ — 1]. Thus, it only remains to show that S = ¢
is optimal. To see this, note that f is submodular due to the diminishing utility of
additional capacity. That is, we have f (y' +¢) — £ ())) = f(y+¢&) — f (y) for
y' < yand ¢ > 0. Since all 7r; ; are negative, this implies

Z(f(ﬂo—ﬂij)—f(ﬂo))ZZf ﬂo—ﬂi,-—Zﬂi_,* - f ﬂo—ij*

Jjes JjEeS j*es: j*es:
Jt<j j*<ij
=f No—zﬂij — f (o),
Jjes

where the equality follows from the second term being a telescope sum. Using o;; =
f (w0 — mi;) — f (mo) forall j € [£ — 1], we obtain

f o) = f |\ mo—mi,— Y mi, | =Y e

Jjes jes
=f o) — f 7o —mi, =Y i | + D (f (mo— ;) — f (0))
jes jes
Zf T[O_Znij _f T[O_niz_znij
JeS jes

> f (o) — f (w0 — i) ,
which proves the statement. O

In practice, when cutting off a fractional solution (x, p,z) € PROB with a lifted
recycled inequality, we again drop all variables x; from the inequality with r; > 0 and
CiXi < pi, as these negatively impact the violation of the recycled inequality. We do
this before lifting the variables x; with r; < 0, as doing so restricts the lifting problem
RLP, and thus yields potentially better lifting coefficients.
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Note that we require o > 0 in the above proposition, as a negative coefficient of the
unbounded variable z would imply infinite lifting coefficients « for obtaining a valid
inequality. Hence, if the original inequality has my < 0, we first have to tentatively
fix x; = 1 for some i € S~ to obtain a non-negative right-hand side. This raises the
question of which variables should be fixed and which should be lifted. Moreover,
even if mg > 0 holds, it is reasonable to check whether lifting or fixing a variable
yields a higher violation. For example, when cutting off a fractional solution (X, p, )
with 7 = 0, we obtain a higher violation by fixing x; = 1 forall i € S~ and recycling
Y ies+ Tixi < W0 — Y ;s T, as the higher coefficient of z in the recycled inequality
is irrelevant in this case. Contrary to that, if 7 > 0 and x; = 0 hold, then it is preferable
to lift x;.

Since we add «;X; to the violation when lifting and 7;z when fixing, we want
to lift those variables with «;X; > m;Z. However, if we decide to fix x; = 1
fori € § € S, then we obtain a new inequality with a greater right-hand side
o — ;s i, Which influences the lifting coefficients «r; (S) = f (710 — D ics m) -
f (no - es Wi — nj) of the other variables x;, and thus our lifting decision. Let
{i1,....ik} = S~ such that X;; > --- > X;,. Since variables with higher solution
values x; are less preferable for lifting, it is reasonable to assume that a good deci-
sion for S consists of variables x;,, ..., Xi; for some j € [k]. Therefore, we first set
S = ¢ and assume that all variables will be lifted. Afterwards, we greedily decide for
i €{iy, ..., i} whether x; should better not be lifted and instead added to S. For this,
we check whether

mit ) i SUliDE = Y e (9

Jelit, .., ig \(SU{ih Jelit ., ix\S

holds, i.e., whether the change of the violation is positive when not lifting x;. Note that
the values «; (S U {i}) can be updated efficiently from «; (S) by greedily extending
the solutions of the corresponding fractional knapsack problems.

We use this approach in the following computational study, which shows the prac-
tical relevance of recycling in general and also indicates the potential of partially
recycling.

6 Computational study

In this section, we assess the performance of recycled inequalities computationally.
We first discuss numerical pitfalls that can occur in practice when using recycled
inequalities and present a remedy for these. Afterwards, we lay out our methodology
for measuring an algorithm’s performance. Using this methodology, we test different
aspects of recycling inequalities for different classes of robust combinatorial optimiza-
tion problems.

With the study of the robust independent set problem in Sect. 6.3, we examine the
contribution of recycling problem specific cuts. For this, we heuristically separate
recycled clique inequalities, which are always facet-defining for the robust problem
(cf. Sect. 3). In Sect. 6.4, we test the recycling of model constraints for the robust bipar-
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tite matching problem. Since the standard formulation of the nominal version consists
exclusively of recyclable inequalities and also describes the convex hull CNOM [28],
every non-dominated recycled inequality corresponds to a model constraint (cf. Corol-
lary 2). This allows us to test the influence of recycled inequalities to their limits. In
Sect. 6.5, we consider the robust bipartite matching problem with penalties, in which
we allow the violation of matching constraints at the cost of a penalty. Using the adapted
model constraints, which are no longer recyclable, we test the partially recycling of
non-recyclable inequalities.

After considering the combinatorial problems above, we evaluate the practical rel-
evance of recycling on a broad set of robustified real world instances from the MIPLIB
2017 [20], which have been used for benchmarking in [11]. For these instances, we
also test the generic approach of separating recycled inequalities via solving SLP.
Finally, we close our study by comparing the performance of our recycling approach
with the performance of different approaches from the literature.

All algorithms have been implemented in Java 11 and tests are performed on a
single core of a Linux machine with an Intel® Core™ i7-5930K CPU @ 3.50GHz,
with 2 GB RAM reserved for each calculation. All LPs and MILPs are solved using
Gurobi version 9.5.0 [33] in single thread mode and all other settings at default.
Furthermore, we use a time limit of 3600 seconds for each algorithm and instance.

All implemented algorithms [21] and generated test instances [22] are freely avail-
able online.

6.1 Dealing with numerical issues

MILP solvers relying on numeric arithmetic have to face the threat of numerical insta-
bility, leading to inconsistent results. One source of numerical instability is a constraint
matrix Ax < b with a high range in the order of magnitude of coefficients a;;, e.g.,
witha; = 10~% and aj» = 109, In fact, the Gurobi documentation recommends that
the range of coefficients in the constraint matrix should be within six orders of magni-
tude [34]. In the case of recycled inequalities woz + Y _; el TiPi = > clnl ;i Cix;, the
coefficients 7r;¢; on the right-hand side might violate this desirable property if ¢; and
7; are both very large or both very small. As a consequence, we observed for three
instances in our computational study on the MIPLIB that sub-optimal solutions were
reported as optimal.

To tackle this problem, we scale the deviations ¢; as well as the variables p, z
in an attempt to reduce the range of coefficients in the recycled inequalities. Let
Cmax = Max {61, e 6,,} and Cpin = min {5i|i €n], ¢ > 0} be the maximum and
minimum (proper) deviations. If ¢y is very large and ¢y, simultaneously very small,
then our problem is predisposed to be numerically unstable anyway. However, if both
are either very large or very small, then we can scale the deviations such that ¢pax and
Cmin are closer to one. For this, we divide all deviations ¢; by A = \/CmaxCmin. This
implies ‘”A"X C"i‘" = 1, i.e., the scaled maximum and minimum deviation have the same
distance to one in orders of magnitudes. To compensate this change, we multiply z
and p in the objective function with A. Thus, our new problem, which is equivalent to
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ROB, reads

min ATz + Z (cixi +Ap;i)
iel]

s.t. Ax <b

A

Y
pH—zzfxl' Vi € [n]

xe{0,1}", p e Ry, z e Ry

and the recycled inequalities are

7oz + Z Tipi = Z ”i%xi-

i€[n] i€[n]

This small change resolves the observed issues for the MIPLIB instances. For compa-
rability, we will always use the scaled problem when solving ROB. However, for the
sake of simplicity, we will only write down the non-scaled problem in the following
sections.

6.2 Performance indicators

Rating the performance of generic algorithms is not trivial, as different use cases imply
different requirements for an algorithm. While we aim to find an optimal solution as
fast as possible for some practical problems, it is important to find any good solution
within seconds for other problems. Therefore, we need performance indicators that
appropriately reflect the spectrum of use cases.

To reflect the aim of solving problems as fast as possible to optimality, we consider
the elapsed time required to solve an instance. As it is standard in the literature, we set
the elapsed time to the time limit in case an algorithm is not able to solve an instance
within this limit. Note that this favors algorithms that often hit the time limit.

In addition, we use the primal-dual integral, which was proposed by Berthold [35]
with the aim that this metric “reflects the development of the solution quality over the
complete optimization process”. The primal-dual integral is defined to be the integral
of the gap between the current primal and dual bound for each point in time. Since
the optimality gap, as reported by, e.g., Gurobi, is in general not bounded and at the
start even infinite, the primal-dual integral is defined over an adapted gap. Let v (¢)
be the primal bound and v (¢) be the dual bound at time step ¢, with v (f) = oo or

v (t) = —oo respectively if no bound is known. We define the step function
1, ifv(t) =occorv(t) =—occorv(t) -v(t) <O,
g (1) =10, ifv() =7,

v(1)—v(t)

max (Ol o)) 1S
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with respect to the piecewise constant bounds v (¢) , v (), for which we can easily
compute the primal-dual integral

T
G(T) = / gdr,
t

=0

with T being the time at which the algorithm is terminated or finishes. The primal-dual
integral reflects improvements of the gap over the whole computation process, and is
thus a reasonable additional performance indicator alongside the computation time.

Since displaying our performance indicators for all algorithms and instances is
impractical, we give aggregate values using the shifted geometric mean [36]. This is
defined as (TT5_, (v; + 5)"/¥) —s forvalues vy, ..., vk € R>qanda shifting parameter
s € Rxo. In the following, we always use s = 1 second for computation times and
s = 100% for primal-dual integrals, which corresponds to the integral of one second
at maximum gap.

Besides computation times and primal-dual integrals, we will also report integrality
gaps, that is the relative difference between the optimal integer solution value and
the optimal continuous solution value, in order to compare the strength of the linear
relaxation with and without recycled inequalities. Let v be the objective value of an
optimal integer solution and v® the objective value of an optimal continuous solution.

R_
Then we compute the integrality gap as v ] Y| for v # 0. For v = 0, we define it to be

zero if ¥R = 0 holds, and co otherwise. In practice, if we are not able to compute the
optimal objective value v, then we instead use the best primal bound computed by any
approach. For vR, we use the dual bound obtained by separating recycled inequalities
for subsequent continuous relaxations until no violated inequalities are found or until
we reach a total time limit of 3600 seconds. For aggregating integrality gaps, we use
the shifted geometric mean with s = 1%.

6.3 Robust independent set

To show the effect of recycling a class of well-known valid inequalities in a separation
procedure, we consider the robust maximum weighted independent set problem on a
graph G with nodes V and edges E. The robust counterpart of the standard formulation
with decision variables x,, € {0, 1} for each v € V and edge constraints x,, + x,, < 1
for {v, w} € E reads

max chxv — (Fz + Z pv)

veV veV
S.t.xy +xy <1 V{v,w}e E
P+ 2= Cyxy YveV

xef{0,1}V, peRl) zeRs.
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As seen in Sect. 3, recycling a clique inequality ) co *v = lyields a facet-defining
inequality for all cliques Q < V. We compare the separation of recycled clique
inequalities in the root node of the branching tree against the robust default formulation
PROB which solely uses the constraints p; + z > ¢;x;. For this, we use Gurobi’s
callback to add the recycled inequalities as user cuts [33]. Every time Gurobi invokes
the callback in the root node and reports a current optimal fractional solution (X, p, 7) €
PROB | we heuristically separate cliques Q C V for which the recycled inequality
24D ,c0 Pv = D_ye Coxyisviolated. Wedosoasin Sect. 4.2, that s, we heuristically
solve maximum weighted clique problems on the graph G = (V, E) with weights
CyXy — Py- To separate many recycled inequalities at once, we extend eachnode v € V
with ¢, X, — py > 0 greedily to a clique @, C V with v € Q,. For this, we start with
Q. = {v} and then iteratively add v’ € N (Q,) such that ¢,/X,, — p,s is maximal and
non-negative. Finally, we return the corresponding recycled inequality to Gurobi as a
user cut if its violation is positive.

As abasis for our instances, we use the graphs of the second DIMACS implementa-
tion challenge on the clique problem [37]. Of the 66 DIMACS graphs, we choose the 46
graphs that have at most 500 nodes, as otherwise the nominal problem is already very
hard. For each node v € V, we generate independent and uniformly distributed values
¢y € {900, ..., 1000} and correlated deviations ¢, = [&,c, ], with &, € [0.45, 0.55]
being an independent and uniformly distributed random variable. Since robust prob-
lems tend to be hard for I being somewhere around half the number of variables
with x; = 1 [11], we greedily compute a maximal independent set S € V and define

r= L%J Using this procedure, we randomly generate five robust independent set

problems for each of the 46 DIMACS graphs, leaving us with 230 robust instances.

We show computational results for the default formulation (DEF) and the separation
of recycled clique inequalities (RECsepClq) in Table 1. The table shows the number of
instances that could not be solved within the time limit (timeout), the shifted geometric
mean of the computation times (time), the shifted geometric mean of the primal-dual
integrals (P-D integral) and the shifted geometric mean of the integrality gaps (int
gap). We show results once with Gurobi’s own cutting planes enabled and once with
them disabled (GCuts).

We see that the shifted geometric mean of the integrality gaps is reduced absolutely
by roughly 220% from 1427.09% to 1206.91% when using recycled clique inequali-
ties. While the absolute reduction of the integrality gap is quite impressive, the relative
reduction does not adequately reflect the strength of the recycled inequalities. This is
due to the large integrality gap of the nominal problem, which constitutes a major part
of the total gap. To reduce the integrality gap of the nominal problem, we test an addi-
tional formulation for the independent set problem. Here, we replace every constraint
Xy + xy < 1 for an edge {v, w} € E with a constraint ZUEQ xy < 1 for a clique
O C V with {v, w} € Q. This clique formulation has a much tighter linear relaxation
compared to the previous edge formulation, and thus reduces the contribution of the
nominal problem to the integrality gap. Indeed, Table 1 shows that separating recycled
clique inequalities reduces the integrality gap by more than half when using the clique
formulation. Figure 1 gives a more detailed view of the improvement, by showing for
how many instances the integrality gap is reduced by at least a specific percentage.
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Fig. 1 Cumulative distribution =DEF =RECsepClq
of integrality gap reductions
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Fig.2 Cumulative distribution of computation times and primal-dual integrals when using the edge formu-
lation

Here, we see that recycling cliques reduces the integrality gap by at least 30% for more
than 50% of all instances. Moreover, we have a reduction of 90% for almost 20% of
the instances.

Apart from the analysis of the integrality gap, the clique formulation is not of prac-
tical interest, as Gurobi seems to be better trained on the edge formulation. Table 1
shows for the edge formulation that we solve one more instance when recycling
clique inequalities but have an increase in the computation time and the primal-
dual integral. This seems to be due to some interference with Gurobi’s own cutting
planes. When disabling Gurobi’s cutting planes, then recycling is much better than
using the default formulation, as it approximately halves the computation time and
the primal-dual integral. In fact, disabling Gurobi’s cuts and using recycled clique
inequalities (RECsepClg-noGCuts) is the overall best performing approach, solving
the most instances in the least amount of computation time. This is supported by
Fig. 2, which shows for each approach the proportion of instances whose computation
time or primal-dual integral are below a specific value. While DEF, RECsepClq, and
RECsepClg-noGCuts solve roughly the same number of instances within the first 280 s
and up to a primal-dual integral of 160, RECsepClg-noGCuts clearly performs better
afterwards on the harder instances.
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6.4 Robust bipartite matching
To study the recycling of model constraints, we now consider the robust maximum

weighted matching problem on a bipartite graph with nodes V and edges E. Using
decision variables x, € {0, 1} for each edge e € E, the robust problem reads

max Z CeXe — (FZ + Z Pe>

ecE ecE

s.t.ergl YveV
e€d(v)
Pe + 2> Cexe Ve e E

xef{0, 1}, peRE ze Ry

As mentioned above, the bipartite matching problem has the interesting property that
the constraints » ees(v) e = 1forv e Vand 0 < x, for e € E already define the
convex hull of the nominal problem [25]. Moreover, since all constraints are recyclable,
the properties from Corollary 2 are fulfilled, which allows for an exact separation of
recycled inequalities in linear time, and thus enables us to test their strength to the
limit.

We randomly generate instances by first dividing a given set of nodes V = [r] into
two partitions U = ”%—H and W = ”%1 +1,..., n} Afterwards, we sample for
each node u € U arandom number ¢, € [0, 1], modeling the probability with which
an edge incident to u exists. Then for every w € W, we add the edge {u, w} with
probability ¢,. Given the constructed graph, we generate weights ¢, and deviations ¢,
analogously to the independent set problem. Every weight is a random number ¢, €
{900, ..., 1000} and the correlated deviations are ¢, = [£.c.] with &, € [0.45, 0.55].
Finally, as the number of edges in a solution will most likely be near to 7, we set
r = L%J We use this procedure to generate ten instances for different numbers of
nodes n € {50, 100, 150}.

Table 2 shows computational results for the robust default formulation (DEF) and
two different approaches for using recycled inequalities. The first approach recycles
all constraints » _,s, Xe < 1 for v € V (RECcons). The second approach addition-
ally separates violated recycled inequalities corresponding to the nominal inequalities
ZeeE, Xxe < 1 with E’ € § (v) for v € V in the root node of the branch and bound
tree (RECconsSepCons).

It is evident that recycling inequalities is significantly better than solely using the
default formulation. We observe a considerable strengthening of the formulation, lead-
ing to a reduction of the integrality gap to nearly one-hundredth for » = 150 nodes.
This strength also translates to a higher number of instances solved and much lower
computation times. For n = 150 with Gurobi’s cuts enabled, RECcons has 93% lower
computation times compared to DEF. Still, the primal-dual integral is quite low for
DEEF, suggesting that the solver is very close to optimality from the beginning. This
changes once we disable Gurobi’s cuts. In this case, DEF is not even able to solve any
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134 C. Bising et al.

instance. Furthermore, the primal-dual integrals of DEF are 253-times as large as the
ones of RECcons for n = 150.

The recycling of dominated inequalities ), x. < 1 compared to the sole recy-
cling of constraints ), sw)Xe = 1 yields an improvement of the integrality gap.
However, as the recycled constraints already perform well for these instances, the
improvement in the linear relaxation is very small. In fact, the minor strengthening
of the linear relaxation cannot compensate for the computational load imposed by the
additional inequalities, which leads to higher computation times. Our study on the
MIPLIB instances will reveal that recycling dominated inequalities can have a much
greater effect on the integrality gap, and thus lead to lower computation times.

6.5 Robust bipartite matching with penalties

Until now, we only considered problems for which all valid inequalities are recyclable.
In order to test our approach of partially recycling from Sect. 5, we alter the bipartite
matching problems from above such that none of the constraints is recyclable. To this
end, we allow a solution to match each node v € V up to two times. However, when
matching v more than once, we have to pay a penalty ¢, > 0. We introduce decision
variables y, € {0, 1} indicating whether node v € V is matched twice and obtain the
following robust problem

max chxg - Z CoYy — (FZ + Zpe)

ecE veV ecE

s.t. er—yvfl YveV
ecd(v)
Pe +2 > Cexe Veec E

xef0.1})F,ye{0, 1}V, peREy zeRx,

We use the same graphs and parameters as in the previous section, together with
random penalties ¢, € {450, ...,500}, which is on average half the value c, €
{900, ..., 1000} of the edge e € E. Note that we do not consider uncertainties on
the penalty coefficients.

Table 3 shows computational results for the robust default formulation (DEF) as
well as the separation of recycled inequalities via tentatively fixing y, = 1, which
yields ) . s XYe = 2, as in Sect.4.1 (RECsepFix), and the separation of partially
recycled inequalities (RECsepPart), as in Sect. 5. Again, we only separate within the
root node of the branch and bound tree.

The separation of recycled inequalities via fixing still significantly improves the
formulation, cutting the integrality gap in half. However, the effect is clearly weaker
compared to the improvement for the original matching problem. The partially recy-
cling approach is considerably stronger, reducing the integrality gap to one-tenth. We
have a closer look at the computed solutions in order to assess whether this observed
reduction is meaningful. Note that partially recycled inequalities are especially strong
when the variables to be lifted are zero. Hence, if we had y, = O for all v € V,
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136 C. Bising et al.

then the reduction might only be due to a favorable problem generation. However, we
observe that we have y, = 1 for approximately three-fourths of all nodes v € V in
the computed solutions, showing that the instance generation is not in our favor.

Even with the partially recycling procedure, the matching with penalties is appar-
ently much harder to solve. Since all approaches always hit the time limit for
n € {100, 150}, we cannot compare computation times. However, we still see that
the partially recycling results in significantly smaller primal-dual integrals compared
to the other approaches, especially when Gurobi’s cuts are disabled.

6.6 Robustified MIPLIB instances

So far, we have seen that, given the right setting, recycling inequalities can have a
significant impact on the strength of the formulation, and thus on the computational
performance. To evaluate the use of recycled inequalities for practical instances, we
also perform tests on a broad set of robust instances that have been generated in
[11]. The test set contains 804 robust instances based on 67 nominal benchmark
instances from MIPLIB 2017 [20]. For each nominal instance, 12 robust instances
were generated by combining three different ranges of deviations and four different
values for I'.

We consider four different approaches for integrating recycled inequalities in the
optimization process. Note that we don’t have any insight into the structure of the
nominal problems of our test instances, and thus we only recycle inequalities in a
generic fashion based on the constraints in Ax < b. Our first two approaches are
as described in Sect.4.1: We test the direct addition of recycled constraints to the
default formulation (RECcons) and the separation of violated recycled (weakened)
constraints in the root node of the branch and bound tree (RECsepCons). For the third
approach, we first separate recycled constraints as for RECsepCons. Once we do not
find any violated recycled constraints, we solve SLP from Sect. 4.3 for a more refined
separation (RECsepLP). The fourth approach is as RECsepCons, but we also consider
partially recyclable constraints as in Sect.5 (RECsepPart).

Table 4 shows computational results for the four recycling approaches and the
default formulation. To show the effect of scaling deviations together with variables
p, z from Sect. 6.1, we also test the default formulation without scaling (DEFnoScale).
We see that scaling clearly improves the performance of the approach, with 7% fewer
timeouts, 10% lower computation times, and 15% lower primal-dual integrals over all
instances when Gurobi’s cuts are enabled. In the following, we compare our recycling
approaches only with the default formulation using scaling (DEF).

As for the combinatorial problems in the last sections, recycling inequalities is very
effective when Gurobi’s cuts are disabled. In this setting, the recycling approaches
require between 39% and 45% less time in the shifted geometric mean of the com-
putation time over all instances. When only considering the affected instances, that
are the instances for which at least one of the recycling approaches provides a better
integrality gap compared to the default formulation, the speed-up is even higher. Out
of the 804 instances in our test set, 608 were affected by recycling. For these, the recy-
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Fig.3 Cumulative distribution of integrality gap reductions for affected instances

cling approaches require between 49% and 55% less time, which clearly highlights
the practical potential of recycling inequalities.

This performance boost is due to the substantially strengthened linear relaxations.
RECcons already cuts the integrality gap nearly in half, from 15.90% to 8.61%. REC-
sepCons yields an even better integrality gap, since we also recycle dominated nominal
inequalities in this approach. Note that the relative improvement of the integrality gap
using RECsepCons is much larger compared to our observations for the robust bipar-
tite matching problem. We deduce from this that considering dominated inequalities
is more important when the coefficients in the constraints are not all the same, as in
Example 2 in contrast to the matching problem.

RECsepPart yields nearly no improvement of the integrality gap compared to REC-
sepCons. While we were able to prove the great potential of this approach for the
matching with penalties, the considered instances of the MIPLIB apparently don’t
contain many constraints of the necessary structure with both positive and negative
coefficients on the left-hand side.

In contrast, RECsepLP yields another substantial improvement down to 6.60%. In
comparison with the integrality gap of the default formulation, this is a relative reduc-
tion of 59% in the shifted geometric mean over all instances. When only considering
the affected instances, we even see an improvement from 24.64% to 7.92%, which is
a relative reduction of 68%.

To get a better picture of the improvement on the affected instances, we show
in Fig.3 for how many of these the integrality gap is reduced by at least a specific
percentage. Note that RECsepCons and RECsepPart have nearly identical lines, as
they mostly compute the same cuts for these instances. Of the 608 affected instances,
RECcons, RECsepCons, and RECsepPart close the integrality gap completely for 19
and RECsepLP even for 22 instances. Interestingly, this includes not only instances
with a low default integrality gap, but 12 instances with a default gap of more than
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Fig. 4 Cumulative distribution of computation times and primal-dual integrals for the set of affected
instances

10%, of which one is even 74, 417%. Moreover, these 12 instances are based on 7
different nominal instances from the MIPLIB 2017. That is, for more than every tenth
nominal instance, there is at least one corresponding robust instance for which we
close the integrality gap completely.

In addition to these extreme cases, we see that RECsepLP is able to halve the
integrality gap for 51% of the instances. Furthermore, RECsepLP achieves a reduction
for some problems on which RECcons, RECsepCons, and RECsepPart have no effect.
This gives hope that practitioners with a good understanding of their problem might
be able to benefit from problem specific fast separations of recycled inequalities that
don’t correspond directly to the constraints Ax < b.

The strong linear relaxations also translate to an improved performance when
Gurobi’s cuts are enabled, with all recycling approaches solving more instances in
shorter time. Table 4 shows that RECsepCons has the lowest shifted geometric mean
for the computation time and primal-dual integral. Compared to the default formula-
tion, the computation times are 14.5% lower for all instances and 18.7% for the affected
ones. Moreover, the lower primal-dual integral implies that separating recycled con-
straints usually improves the performance across the whole optimization process.
RECsepLP solves one instance more, but is on average slightly slower than RECsep-
Cons. This is because the overhead of handling and solving SLP only pays off for
specific instances. RECsepPart performs worse than RECsepCons, as both compute
almost the same cuts, with RECsepPart requiring more time doing so. RECcons is on
average clearly slower compared to the other recycling approaches because many of
the added recycled constraints are actually uninteresting for strengthening the linear
relaxation, and thus impose unnecessary computational load due to the bigger con-
straint matrix. Nevertheless, we will see later that RECcons can actually be very useful
in practice.

Just like for the integrality gap, Fig.4 shows the cumulative distribution of per-
formance indicators for each approach on the set of affected instances. We see that
each recycling approach solves at any point in time more instances than DEF. The
same holds for the primal-dual integral with the exception of RECcons, which has
a high primal-dual integral for more instances than DEF. While the differences in
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Fig. 5 Cumulative distribution of computation times and primal-dual integrals relative to the default for-
mulation for the set of affected instances

the primal-dual integrals appear to be small, a paired Wilcoxon signed-rank test [38]
reveals that for all algorithms but RECcons the improvement in the computation time
and the primal-dual integral is significant with a confidence level of at least 98%.

Figure 5 displays the performance indicators of our recycling approaches relative
to the default formulation. In the left graphic, we see that all recycling approaches are
8-times as fast for roughly 5%, while requiring 8-times as much time for only 0.5%
of the instances. The most balanced of all approaches is RECsepCons, which is 2-
times as fast for 9.5% and halve as fast for 3.3% of the instances. Similar observations
can be made for the primal-dual integral in the right graphic. However, the most
interesting observation about Fig. 5 is that RECcons’ and RECsepLP’s performance is
quite extreme. Regarding computation time and primal-dual integral, both approaches
perform badly for more instances than RECsepCons, but the number of instances on
which they perform very well is also higher.

The extreme performance is no surprise for RECsepLP, as we already observed
above that the higher effort in separating cuts pays off for some specific instances.
For RECcons, we see that, given the proper problem structure, recycling constraints
directly is not only the most easy approach, but also very efficient. This is good
news for the practical use of recycled inequalities, as practitioners will often know
whether their optimization problem contains promising recyclable constraints, like
clique constraints or almost binding capacity restrictions, that are worth recycling.
Recycling precisely these constraints, and not all as we do here for RECcons, might
result in a good speed-up for the respective problem. In comparison to RECsepCons,
this yields the advantage that the added recycled inequalities are present from the
beginning of the optimization process, which is beneficial because the solver can use
the additional information for preprocessing. When integrated into a general robust
optimization solver, some further engineering might enable us to combine the stable
performance of RECsepCons with the performance peaks of RECcons.
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6.7 Comparing algorithms from the literature

We close our study by comparing the performance of our recycling approach with that
of the following approaches from the literature

DEF solves the problem over the default formulation PROB,

SCE starts with solving NOM and then separates constraints cor-
responding to the objective coefficients ¢’ of scenarios from
the budgeted uncertainty set, as described by Bertsimas et
al. [12].

SUB solves the problem over the default formulation PROB and
separates submodular-cuts dominating the above scenario
cuts of SCE, as proposed by Joung and Park [14].

RP1,...RP4 solve the corresponding reformulations of Atamtiirk [15].

BS iterates over all z € {é, ..., &, } for fixing z and solves the
corresponding nominal problems, as proposed by Bertsimas
and Sim [6].

DnC also solves nominal problems by fixing z € {co, ..., &, } but

reduces the number of iterations by using a relation between
the nominal problems to prune non-optimal choices of z, as
proposed by Hansknecht et al. [19].

BnB branches on the variable z in order to prune non-optimal
choices for z and resorts to simpler robust subproblems by
using the obtained bounds on z, as proposed in [11] and
developed further in [39].

A description of the implementation of all considered approaches is given in [39].
For the sake of comparability, we always use scaled deviations and variables p, z, as
in Sect.6.1, for DEF and SUB, which both rely on the formulation PROB just like
RECsepCons.

Just like in the previous section, we try to solve the 804 robust problems based on
the MIPLIB instances within a time limit of 3,600s. Table 5 shows for the approaches
above and RECsepCons the number of timeouts and shifted geometric means of com-
putation times and primal-dual integrals.

We see that RECsepCons is better than any other algorithm from the literature
except for BnB in terms of computation times and primal-dual integrals. The separation
approach SCE is clearly worse than DEF, and thus also worse than RECsepCons. The
separation of submodular cuts in SUB yields an improvement over DEF, but still per-
forms worse than RECsepCons. The reformulations RP1, RP3, and RP4 of Atamtiirk
are theoretically strong but too big to be practical. For each of these three approaches,
we run out of memory for more than 50% of the instances. Together with timeouts for
instances that did not run out of memory, we obtain more than 650 unsolved instances
for each of these approaches. The reformulation RP2, which is implemented as a
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separation approach, does not run out of memory but still yields no computational
improvement over DEF. Solving all nominal problems for z € {¢o, ..., &} in BS
appears to be slower than DEF, as the number of iterations grows too large. Note that
the computation time and the primal-dual integral for this approach are equal, as BS
yields no dual bound before all nominal problems are solved. The divide and conquer
approach DnC dominates BS, as it solves less nominal problems. In fact, DnC solves
more problems than RECsepCons, but it is slower in the shifted geometric mean. The
branch and bound approach BnB clearly outperforms every other approach, with 73%
fewer timeouts than DnC as well as 65% lower computation times and 62% lower
primal-dual integrals than RECsepCons. However, BnB is much more complex than
the recycling approach, and thus RECsepCons might be a practical alternative to BnB.
Moreover, the recycling might be interesting to improve other approaches that benefit
from a strengthened formulation. In particular, the recycling of inequalities might be
useful within the branch and bound algorithm to improve the performance of BnB
even more.

7 Conclusions

In this paper, we proposed and analyzed recycled inequalities for robust combinatorial
optimization problems with budgeted uncertainty. Given a valid knapsack inequality
for the nominal problem, the corresponding recycled inequality can be derived in linear
time, which gives the possibility to reuse model-constraints and well known classes of
valid inequalities in order to strengthen the linear relaxation of the robust problem. We
highlighted the theoretical strength of such recycled inequalities by proving that they
often define facets of the convex hull of the robust problem, even when the underlying
valid inequality is dominated.

To make recycled inequalities usable in practice, we discussed different separation
procedures that either depend on separation algorithms for classical cutting planes or
simply work on the constraint matrix in a generic fashion. One of these separation
procedures even implies that recycled inequalities can be separated exactly in poly-
nomial time if the convex hull of the nominal problem is known. Furthermore, we
showed that inequalities that are not of the knapsack type can be partially recycled
on a restricted solution space and lifted afterwards to obtain a valid inequality for the
robust problem.

To test the strength of recycled inequalities and the practicability of their separation,
we conducted an extensive computational study on robust versions of three classes of
combinatorial problems and a set of nominal benchmark instances. Our experiments
show that recycled inequalities are not only interesting from a theoretical point of
view, but can also yield a substantial speed-up in the optimization process over the
standard formulation.

For future research, it would be interesting to further analyze the recycling of
non-knapsack inequalities and evaluate whether one can obtain facet-defining robust
inequalities from specific classes of nominal inequalities. Furthermore, recycling
should be tested in combination with other tailored approaches and the effect of recy-
cling should be evaluated for robust problems with uncertain constraints. Another
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interesting line of research is to investigate whether the recycling approach can be
generalized to other uncertainty sets that have similar structures as the budgeted uncer-
tainty set.
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