
nAIxt: A Light-Weight Processor
Architecture for Efficient Computation

of Neuron Models

Kevin Kauth(B), Christian Lanius, and Tobias Gemmeke

IDS, RWTH Aachen University, Aachen, Germany

kauth@ids.rwth-aachen.de

Abstract. The simulation of biological neural networks holds immense
promise for advancing both neuroscience and artificial intelligence. Due
to its high complexity, it requires powerful computers. However, the high
proportion of communication and routing makes general-purpose pro-
cessing architectures, as used in supercomputers, inefficient. Dedicated
hardware, such as ASICs, on the other hand, can be specifically adapted
to this type of workload. However, integrated circuits are rigid, thereby
eliminating the use of future neuron models.

To address this contradiction, this paper presents a programmable
architecture for the computation of neuron models. Thanks to its Turing
completeness, it enables embedding biological neural networks simula-
tors into integrated circuits while simultaneously allowing adaptation of
the neuron model. To assess suitability, both dedicated circuits and off-
the-shelf processors are examined regarding AT efficiency. The proposed
versatile architecture turns out to be up to 1800x more area efficient
than a RISC-V processor, thereby playing a vital role in accelerating
neuroscience simulation and research in AI.

Keywords: neuroAIx · Neuromorphic · Accelerator · Neuron ·
Processor · Biological Neural Network · Simulation · Software
Pipelining · VLIW

1 Introduction

Improving our understanding of the human brain promises major advances in
the fields of medicine [2,17] and artificial intelligence [12]. However, due to poor
in vivo observability, research relies primarily on simulations [16]. These sim-
ulations are based on well-understood mechanisms of individual neurons and
synapses and aim to enable controlling and studying their interplay on a large
scale. During their execution, neuron states are continuously updated based on
physical models, while generated action potentials must be distributed through

This work was supported in part by the Federal Ministry of Education and Research
(BMBF), Germany, through the NEUROTEC II Project under Grant 16ME0399.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Fey et al. (Eds.): ARCS 2024, LNCS 14842, pp. 3–17, 2024.
https://doi.org/10.1007/978-3-031-66146-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66146-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-66146-4_1


4 K. Kauth et al.

a large network to connected post-synaptic neurons. While communication and
routing have shared common requirements across typical network models, which
can be estimated precisely even for future systems [9], neuron and synapse mod-
els constantly evolve along with scientific progress and, therefore, suffer from
extensive alterations.

Due to the high complexity of biological neural networks (BNNs), their simu-
lation requires high computing power. In addition, modern general-purpose com-
puting systems are not designed to handle the high amount of irregular and com-
parable small messages. This makes the use of dedicated architectures inevitable.
For example, digital circuits based on FPGAs have led to significantly higher
simulation speeds and energy efficiencies compared to general-purpose CPU or
GPU systems [10]. Although such FPGA systems inherently support the benefit
of adaptability to new findings in neuroscience through reconfigurability, port-
ing digital circuits to application-specific integrated circuit (ASICs) can provide
an even greater increase in speed and energy efficiency. For this purpose, all
system parts subject to continuous evolution would require implementation as
programmable parts rather than as fixed, dedicated digital circuits.

One of these affected parts is the calculation of the neuron model. There is
a large variety of neuron models with different levels of biological realism, accu-
racy, and complexity. Their contribution to the computational load of the overall
simulation is comparatively low, and their models can, unlike the communication
part, be calculated very efficiently on GPUs [11], for example, due to their good
parallelization capability. However, low latencies are crucial for simulations with
high acceleration factors, making tight coupling between neuron calculation and
network essential. While most dedicated systems are based on hardwired cir-
cuits, which come optimized for only one neuron model with mainly changeable
parameters [4,5,8,14,18,19,22,24], only few support fully flexible processors for
the implementation of arbitrary neuron models. One of the latter is SpiNNaker
[6], which combines dedicated hardware for spike routing with a general-purpose
CPU on ARM basis. Another one is Loihi2 [15], which implements a custom
processor architecture for neuron computation. Here, we focus on comparing to
general-purpose processors based on RISC-V, which are comparable with ARM
processors while offering open source implementations.

This work aims to answer the research question of which processor archi-
tecture is suited for use in ASICs simulating BNNs and whether simple in-
house developments can compete with established sophisticated architectures.
To answer this question, this paper presents a configurable processor architec-
ture that aims for the highest possible efficiency while maintaining Turing com-
pleteness. Considering the aforementioned possibility to compute neuron updates
independently, the concept of scaling architectures applies, i. e., the product of
area A being proportional to the degree for parallelism and the computation
time T is to first order constant. In this study, area is quantified in terms of
used lookup tables (LUTs). Hence, the classic A · T cost product is represented
in this study as number of LUTs times the duration to finish a neuron update.
In this classic way, optimization of AT -efficiency is independent of the actual



nAIxt: An Area Efficient Neuron Model Processor 5

silicon resources dedicated to parallelization. The presented processor “nAIxt”
is compared with processors based on the RISC-V instruction set, as well as
the Xilinx MicroBlazeTM by calculating leaky integrate-and-fire neuron models
with current-based (CUBA) synapses and conductance-based (COBA) synapses
[23]. Furthermore, various numerical integration methods are considered. A ded-
icated, fully pipelined digital circuit, representing non-programmable systems,
serves as the AT optimal reference in each case. Compared to all programmable
processors tested, the AT efficiency achieved by nAIxt is at least one order of
magnitude higher.

2 Processor

One design goal to optimize the AT efficiency is to utilize all instantiated com-
puting units as intensively as possible and, conversely, to avoid instantiating
units with poor utilization. The consequence of this goal is the simultaneous
utilization of multiple of these units, i.e., a superscalar architecture, plus out-
sourcing control logic, such as scheduling and microcode, from the processor to
the compiler. This corresponds to a very large instruction word (VLIW) architec-
ture. Admittedly, this architecture never took hold in the general purpose area
due to sub-optimal scheduling at compile time and the comparably low overhead
of out-of-order execution units in competitive architectures. However, the spe-
cific metrics of the underlying use cases and the short executables required for
a single neuron update enable high unit utilization at low hardware complexity.

A vector processor approach is not considered, as multiple instances of the
processor developed here can also be operated in parallel. However, multiple
instantiations of single units are examined to balance the unit utilization.

Although the decision against a micro opcode increases the executable size,
this disadvantage is not decisive given the comparatively small size of neuron
models already discussed. On the other hand, it reduces the processor’s size
and latency. Moreover, the resulting ability to directly control data flows offers
possibilities like reusing data or realizing jumps without special commands.

2.1 Initial Architecture

The initial architecture of nAIxt is shown in Fig. 1. It is based on a 32-bit in-order
Harvard architecture, which operates solely word-wise and has 16 registers, 13
of which are general-purpose. Register r13 contains the program counter (PC)
and is equipped with its own adder for advancing the program. Jumps are made
by writing to this register. Two 32-bit input/output ports, e.g., for processing
incoming and transmitting generated spikes, are mapped onto the pseudo regis-
ters r14 and r15. Here, we explicitly opted against memory mapping, so input
data is available immediately rather than one clock cycle later. In each cycle,
a maximum of three registers can be written, and six can be read. All six read
outputs can be used as ALU inputs, while the last two can also serve as memory
addresses. The ALU contains six units that can operate fully in parallel:



6 K. Kauth et al.

Fig. 1. Architecture and instruction word overview of nAIxt showing registers in blue,
ALU in green, immediates in red, memory in purple, and predicate register in yellow.
(Color figure online)

1. The move unit (mov) supports transferring the input, e.g., for copying reg-
isters, plus the opportunity to select either input A or input B (select) based
on a condition. This function is essential to avoid conditional branches.

2. The integer unit allows the arithmetic operations add, subtract, as well as
the logic operations and, or, xor and not.

3. The integer-multiplier (mul) performs 32-bit signed multiplications.
4. The itof/ftoi unit converts between floating-point and fixed-point numbers.

One input specifies the decimal point position of the fixed-point number.
5. A floating-point adder/subtractor (fadd/fsub)
6. A floating-point multiplier (fmul)

Based on the knowledge about the dynamic range of numbers in neuron
model computations, we streamlined the floating point units for better efficiency
without changing their results compared to fully IEEE 754 compliant units.

Both inputs of each unit can be selected from 14 different sources. These
include the six register outputs, four immediate values of various sizes, and four
memory outputs. The immediate values are part of each instruction word and
always get sign extended. The four memory outputs consist of two consecutive
32-bit words of a 64-bit wide main memory with two independent ports featuring



nAIxt: An Area Efficient Neuron Model Processor 7

separate addresses. For addressing the two memory ports, the last two register
outputs can each be combined with a separate immediate value, for example, to
apply an offset to variables such as counters. The ALU supports seven outputs,
each able to select the result of any instruction unit. Three of the outputs lead
to the register file inputs, and four others to the two 64-bit ports of the main
memory described above. Another 4-bit output of the ALU selects the predicates
zero, negative, carry, and overflow of the result of one unit. These can be stored
to the predicate register using a flag in the instruction word and then be used
for both the select operation and conditional register write instructions. The
latter also serves the purpose of avoiding program branches, thus enabling more
efficient program loops. In both cases, the four predicates can be combined to
form the following conditions (or integer relations after subtraction):

– always
– never
– if zero (equal)
– if negative (lower than)
– if negative or zero (lower or equal)

– if positive (greater than)
– if positive or zero (greater or equal)
– if not zero (not equal)
– if carry occurred
– if overflow occurred

The jump avoidance measures are intended to compensate for the fundamen-
tal disadvantages of the VLIW architecture by leading, in combination with soft-
ware pipelining, to a high computing unit utilization. In addition, these measures
enable significant potential to increase the maximum clock frequency (Fmax) by
avoiding pipeline stalls even for extensively pipelined hardware.

The optimization of the processor for the highest clock frequency is not part
of this work. Hence, no extensive hardware pipelining was applied to cut any
timing-critical path. However, the floating-point adder and multiplier each con-
tain one pipeline stage, which delays their result by one clock cycle. In addition,
all memories have a register stage on both the input (address bus) and output
side (data read bus). This also applies to the instruction memory, so the nAIxt
toolchain already includes all necessary features to support hardware pipelining.

3 Toolchain

Within this work, the focus was on architectural exploration. In this context, the
realized toolchain focuses on elements ultimately necessary to evaluate the pro-
posed architecture’s performance. Since software pipelining is a key optimization
opportunity in the context of running many similar neuron updates in sequence,
related support by mapping tools is compulsory.

3.1 Assembler

Since nAIxt is considered an evaluation platform, the most important require-
ment for the assembler is to support varying architectures, e.g., an adaptation of
the computing units, registers, and data buses. Therefore, all supported instruc-
tions, including possible inputs, outputs, and bit widths, are declared in the
assembler in the form of a table. The assembler realizes the conversion of simple
instructions, such as r0 = r1 + r2 into the atomic multiplexer configurations.



8 K. Kauth et al.

3.2 Scheduler

To evaluate a processor’s performance, a program’s instructions need to be
arranged to fully exploit all features of an architecture. The scheduler is intended
to automate this arrangement to support explorations on nAIxt. It comprises
the three stages analysis, scheduling, and register allocation, as detailed in the
following.

Analysis. In this first stage, the code is loaded into suitable data structures
and analyzed for dependencies. First, static definitions are separated, and the
remaining code is divided into basic blocks based on jumps and jump labels.
Afterwards, relationships between these blocks are identified. Data dependencies
between individual instructions are then created for each basic block. Finally,
these dependencies are optimized in two ways. Firstly, dependencies between
identical instructions are combined. Secondly, in a multi-stage process, new
dependencies are introduced between two instructions that are only indirectly
interdependent through a third instruction. This significantly reduces the num-
ber of combinations for the next step, resulting in faster scheduling.

Scheduling. Since this work aims to compare the architectures’ full potential,
the scheduling algorithm is not based on a heuristic but on back-tracking. In
other words, all combinations are traversed while attempting to exclude impos-
sible schedules early. The recursive procedure has the following structure:

1. For each unplaced instruction: Calculate a set of possible target addresses at
which this instruction satisfies all dependencies from/to placed instructions.

2. If no instruction is left, a schedule is found.
3. If even one of the sets from step 1 is empty, scheduling is no longer possible.

Return from one recursion level.
4. Heuristic: Choose the instruction with the smallest set.
5. For each address in the set, starting with the smallest:

(a) Place the instruction.
(b) If all resource dependencies in this cycle are fulfilled, continue with the

next instruction (point 1 in the next recursion step).
6. If no schedule was found for any address, return from one recursion level.

This algorithm has the disadvantage of a relatively long runtime. However,
back-tracking guarantees an optimal solution and is therefore well suited for
evaluating an architecture. In any case, the schedule of each benchmark was
calculated in a few minutes at most.

Register Allocation. A simple greedy algorithm is used to carry out register
allocation. It determines the validity range of all variables and then assigns each
variable a register that is unoccupied in this range. To keep this step as simple as
possible, variables are not offloaded to the main memory. Instead, the process is
aborted if there are insufficient registers, and offloading is left to the developer.



nAIxt: An Area Efficient Neuron Model Processor 9

3.3 Software Pipelining

As already discussed, the processor architecture presented here aims for the
highest possible throughput per resource, which implies a high utilization of all
computing units. In general, VLIW architectures support this, but only if the
dependencies between the instructions allow dense placement. Using the example
of one benchmark, a program with 27 arithmetic and logical instructions and a
critical path of 13 cycles, it can already be seen that even without considering
congestion, utilization of the six computing units is upper limited by 27

13·6 ≈ 35%.

Fig. 2. Scheme of software pipelining: After splitting a loop, e.g., of neuron calculations,
into prologue, kernel, and epilogue, several iterations are executed in parallel, whereby
the kernel is repeated, and a new calculation is started every II cycles.

Improving this is generally difficult, but not in the case of simulating BNNs.
Since each processor calculates a large number of neurons, the calculation of sev-
eral neurons can be interleaved. As there are no dependencies between different
neurons, latencies can be hidden, and schedule gaps filled.

In our case, it is even assumed that many neurons are based on the same
model. This allows so-called software pipelining [13] to be used, in which the
compiler splits the loop across all neurons into a prologue, a kernel, and an epi-
logue (cf. Fig. 2). With this method, the kernel still represents a loop with all the
original instructions, but these now relate to different neurons. The advantage
is that instructions not belonging to the calculation of the same neuron have no
interdependencies and can, therefore, be placed freely. While the latency of a neu-
ron calculation does not benefit from this approach, the throughput is increased
because the kernel becomes more densely packed, reducing the distance between
two iterations, i.e., the initiation interval (II). Prolog and epilog are only needed
to fill and finalize the pipeline. An essential condition for the applicability of
software pipelining is a sufficiently high number of available registers, as more
data is now processed simultaneously.

Extension of the Scheduler. Since the software pipelining of a loop is another
scheduling problem, the aim is to reuse the presented scheduling algorithm and
its implementation with minimal changes. To this end, various approaches are
compared in the following.



10 K. Kauth et al.

1. Since software pipelining of BNN computation involves executing instructions
of different loop iterations, which are independent, an obvious approach is to
delete all dependencies. The subsequent scheduling becomes almost trivial,
as it is only constrained by resource dependencies. However, the prolog and
epilog subsequently need to be fitted to the resulting kernel using a further
algorithm yet to be developed. It is also possible that this schedule leads
to the interlacing of an unnecessarily large number of loop iterations. This
should be avoided, as more parallel iterations are associated with a higher
register requirement and greater overall latency.

2. On the other hand, the solution with presumably the least implementation
effort is to duplicate the source code before starting the scheduler, for exam-
ple, in the form of a preprocessor, and to apply the unmodified scheduler to it.
This corresponds to loop unrolling. The major disadvantage here is that the
runtime of the scheduler can be increased dramatically due to a significantly
larger problem size. Since a scheduling algorithm based on back-tracking is
used here, the runtime increases exponentially with the problem size.

3. A modification of the modulo scheduling [20] represents the use of the original
scheduling algorithm with the following adaptations:
(a) An eligible II is selected iteratively or based on a heuristic.
(b) In the scheduling step 5(b) for checking resource dependencies, not

only the units at the placement address addrplaced of an instruction are
checked, but also the units of all alias addresses (i.e., addrplaced+x∗II, x ∈
R) are marked occupied.

(c) Some additional data dependencies must be added to ensure a correct
sequence of data accesses even after the code is rolled up to a loop. For
example, variables can be written in the lower part of a loop before they
are read in the upper part. In this case, an overlap would lead to the use
of a value of a different neuron.

(d) Finally, as illustrated in Fig. 2, the resulting schedule for one neuron is
placed next to each other several times, shifted by II, until the obtained
new schedule can be divided into a kernel of length II, as well as a prologue
and an epilogue. The additional check of all alias addresses in 3(b) ensures
that no resource can be reused despite parallelization.

The last proposed approach combines the advantages of the previous two:
After applying these minimal adaptations to the original algorithm, dense soft-
ware pipelined schedules with a small number of interlaced iterations can now
successfully be found without increasing the problem size.

4 Results and Discussion

In this chapter, different configurations of nAIxt are first compared with each
other. Then, the best configuration is compared to state-of-the-art solutions.



nAIxt: An Area Efficient Neuron Model Processor 11

4.1 Benchmarks

For the following comparisons, four benchmarks are used, all calculating a leaky
integrate-and-fire neuron model. While the first one uses CUBA synapses and an
exact integration method [21], the others use COBA synapses and three different
numerical integration methods forward Euler method and Runge-Kutta methods
of order three (RK3) and four (RK4). The CUBA model corresponds to the
NEST:: [7] neuron model iaf psc exp, while the COBA models correspond to the
NEST:: neuron model iaf cond exp with a customized solver.

A numerical solver is required since the COBA synapse model does not allow
for analytical solutions. In the following, three different solvers are evaluated
because of significant differences in accuracy, stability, and computation effort.
While the explicit Euler method is the simplest, the Runge-Kutta method rep-
resents a good compromise and is, therefore, often used in the calculation of
neuron models. Moreover, it can be adjusted in the number of order and thus
in the precision and computation effort. In our case, the highest order consid-
ered was set to 4, as in this case, the computational effort required to calculate
the Runge-Kutta method already exceeds that of the rest of the neuron model,
and the entire program is based almost entirely on floating-point additions. A
significant change through higher orders is therefore not expected.

The memory accesses for neuron variables and excitations by spikes, arriving
as fixed-point numbers, thus requiring conversion to floating-point, were added
to all benchmarks. In the case of the RISC-V and MicroBlaze processors, the
compilation was carried out without debug information and optimization enabled
(-O2). For the two Runge-Kutta benchmarks on nAIxt, the original neuron cal-
culation loop had to be split into two parts, each running through software
pipelining independently. This step became necessary due to insufficient regis-
ters and can reduce optimization potentials.

4.2 Design Space Exploration

To optimize nAIxt, design changes are applied to the initial architecture shown
in Fig. 1 and the AT efficiency is computed as ηAT = Fmax

II·#LUTs for each case.
The changes include a variation of the register file size and a gradual increase in
the number of floating-point adders and multipliers (cf. Fig. 3). To cover possi-
ble bottlenecks and downsizing, the number of register file in- and output ports
was also examined in the two edge cases - in the case of the maximum floating
point units to 12, respectively six, and in the case of only one unit each, to four,
respectively two. The initial architecture from Fig. 1 clearly represents the opti-
mal solution of this comparison for all benchmarks. However, its margin reduces
for larger benchmarks. The number of registers is also already optimal at 16–24
is preferable only in some cases of larger configurations. In addition to the exper-
iments shown with 16 and 24 registers, 12 and 32 were also examined. However,
these were not plotted to enhance clarity as they performed significantly worse.
In the following sections, the initial architecture is used.



12 K. Kauth et al.

Fig. 3. AT efficiencies for benchmarks on different nAIxt configurations, comprising
different numbers of floating-point units, register file in-, and output ports.

4.3 Comparison

In this section, the AT efficiency of the derived nAIxt architecture will be com-
pared to that of other freely programmable processors. These are firstly the
MicroBlaze using two optimization targets Area and Performance, and secondly
four different RISC-V open source implementations Rocket Chip [3], CVA6 [25]
and Berkeley Out-of-Order Machine (BOOM) [26] in the configurations Large
and Mega from the chipyard [1] v1.11.0 stable release. All processors contain
floating-point units and hardware multipliers. Table 1 shows the implementation
results of all processors in terms of occupied LUTs and maximum frequency. The
synthesis results do not contain the main memory and memory controller. Here
and for all following results, the synthesis tool Xilinx VivadoTM2022.1 was used,
and the Xilinx ZCU106 evaluation board was selected as the target FPGA.

Table 1. Full synthesis results of nAIxt, MicroBlaze (MB) and RISC-V processors
under Xilinx VivadoTM2022.1 for a ZCU106 FPGA board.

Processor nAIxt MB (A) MB (P) Rocket CVA6 BOOM (L) BOOM (M)

Max. Freq. [MHz] 140 380 350 154 117 119 93

Occupied LUTs 841 1730 2788 39600 41143 226124 402389

To obtain a quasi-optimal design point as a reference, a dedicated digital
circuit was created for each benchmark with the help of AMD VitisTMHLS. For
this purpose, full pipelining was enforced using the pragma II=1. The target
frequency of 200 MHz was chosen as a compromise in the mid-range between
the processors. All neuron and synapse parameters, like membrane capacitance
or threshold voltage, were implemented as constants and are not changeable at
runtime. The evaluation of the occupied LUTs is based on a complete synthesis,



nAIxt: An Area Efficient Neuron Model Processor 13

as HLS synthesis only provides a coarse estimate. Table 2 shows the resulting
sizes of these reference circuits.

Table 2. Implementation results of the dedicated digital circuits for all benchmarks
using HLS and Xilinx Vivado 2022.1 for implementation on the target board ZCU106.

Benchmark CUBA (Exact) COBA (Euler) COBA (RK3) COBA (RK4)

Occupied LUTs 4507 5066 11602 13573

To compare the AT efficiency of the processors, the II of the neuron calcu-
lation is first captured cycle accurately. In the case of nAIxt and the RISC-V
processors, this was done with the help of a Verilog simulation in Verilator 5.020.
In the case of the MicroBlaze, a measurement was carried out on an FPGA using
an (ILA) IP core, which observes a certain memory access generated in each neu-
ron calculation.

Table 3. Schedule of software pipelined kernel of the COBA (Euler) benchmark for
nAIxt. White fields indicate nop operations, others the corresponding neuron index.

Cycle Unit

Move Int. Arith. Int. Mul. FP Conv. FP Add. FP Mul.

0 i i-1 i-1 i-1

1 i i i-2 i-1 i-1

2 i i i-2 i-1

3 i-1 i-2

4 i-1 i-2

5 i-2 i-1 i-2

6 i-2 i-2 i-1 i-2

7 i-1 i-2

8 i i i-2

9 i-1 i-1

Given the kernel schedule of the COBA (Euler) benchmark for nAIxt in
Table 3, it is apparent that floating-point additions are the limiting instructions
of this architecture. This also applies to the other benchmarks. Since the explo-
ration in Sect. 4.2 did not determine any benefit for adding extra floating-point
units, this approach is not pursued. Consequently, the number of floating-point
additions per benchmark can be considered a minimum bound for the II.

Table 4 shows the obtained II for the four different benchmarks on all pro-
cessors. The II of the digital reference circuit is not listed, as it was forced to



14 K. Kauth et al.

Table 4. Measured II of all benchmarks executed on each processor between two
neuron computations and the number of required floating-point additions as reference.

Benchmark CUBA (Exact) COBA (Euler) COBA (RK3) COBA (RK4)

No. of FP Additions 6 9 21 27

MicroBlaze (Area) 241 255 443 490

MicroBlaze (Perf.) 189 201 358 398

Rocket Chip 51 65 131 142

CVA6 79 85 151 166

Large BOOM 16 19 67 81

Mega BOOM 12 15 54 65

nAIxt 7 10 23 30

be always one. As expected, the larger RISC-V processors achieve significantly
lower IIs, i.e., higher throughputs than their smaller counterparts or the MicroB-
laze processors. However, despite its small size, nAIxt can outperform even the
BOOM in Mega configuration by a factor of around two. Comparing the II to the
number of floating-point additions indicates that nAIxt works almost optimally
regarding its number of floating-point units.

Fig. 4. Performance comparison of all processors in relation to their size based on four
neuron models as benchmarks.

Finally, Fig. 4 shows the comparison in terms of AT efficiency. Now, a differ-
ent picture emerges for larger RISC-V and MicroBlaze processors. The higher
throughput cannot compensate for the higher resource requirements. The instan-
tiation of many low-performance processors would therefore be the better choice
in systems for BNN simulations. Interestingly, the AT efficiency of the two
MicroBlaze processors exceeds the one of the RISC-V processors by one to



nAIxt: An Area Efficient Neuron Model Processor 15

two orders of magnitude, presumably due to their optimization for FPGAs. As
expected, the dedicated digital circuits represent the fastest solution. However,
the number of pipeline stages to reach a frequency of 200 MHz is significant here
(136 in case of COBA (RK4)) and, therefore, may not meet possible restric-
tions depending on the use case. Compared to this reference, nAIxt is two to
three times worse, indicating an opportunity for further optimization. Compar-
ing only programmable solutions, both RISC-V and MicroBlaze processors are
not competitive with nAIxt, with an AT efficiency of two to three orders lower.

4.4 Analysis and Optimization

Since one way of optimizing the processor is to reduce its resource require-
ments, Fig. 5 illustrates the breakdown of LUTs between the functional units
register file, floating-point adder, floating-point multiplier and integer
multiplier. All other units are included in others. It is worth noting that
the floating-point units, which are mainly responsible for the calculations, only
occupy less than a quarter of the resources. Instead, a large part of the resources
(here: register file) is required for the multiplexers, i.e., the data management
between ALU and register file. This is indispensable in superscalar architectures,
as large amounts of data need to be accessed selectively and in parallel by the
ALU. However, one optimization approach could be reducing supported sources
and/or sinks, for example, by giving specific units access to only a subset of all
registers. This could theoretically increase the throughput per resource at the
cost of a higher scheduling complexity and, thus, longer compiler runtimes.

Fig. 5. Breakdown of utilized LUTs over main parts of nAIxt. Due to the flattening of
the synthesis, the “Register File” section also contains the multiplexers of the ALU.

5 Conclusion

This work demonstrates that conventional general-purpose CPUs are well suited
for the computation of neuron models but at the expense of high resource require-



16 K. Kauth et al.

ments. If high parallelization capability is combined with jump avoidance, soft-
ware pipelining allows an enormous leap in performance even for basic VLIW
architectures with extremely low resource requirements. Exactly these condi-
tions are fulfilled in large digital systems for the simulation of BNNs and can,
therefore, be exploited by processor architectures of the kind presented here.

Contrary to the often problematic utilization of a VLIW architecture in the
past, even rudimentary scheduling algorithms can deliver good results for the
very regular and mathematical structures of neuron models, as shown here.

The presented solution achieves 200 to 1800 times higher AT efficiencies
than open source RISC-V processors while maintaining full programmability.
This brings it close to highly optimized dedicated circuits and thus facilitates
the transition of BNNs simulators from reconfigurable hardware to integrated
circuits, still supporting rapid adaptation to future findings in neuroscience.

References

1. Amid, A., et al.: Chipyard: integrated design, simulation, and implementation
framework for custom SoCs. IEEE Micro 40(4), 10–21 (2020). https://doi.org/
10.1109/MM.2020.2996616

2. Andalman, A.S., et al.: Neuronal dynamics regulating brain and behavioral state
transitions. Cell 177(4), 970–985 (2019)

3. Asanovic, Ket al.: The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4, 6–2 (2016)

4. Cheung, K., Schultz, S.R., Luk, W.: NeuroFlow: a general purpose spiking neural
network simulation platform using customizable processors. Front. Neurosci. 9, 516
(2016)

5. Frenkel, C., Legat, J.D., Bol, D.: MorphIC: a 65-nm 738k-Synapse/mm2 quad-core
binary-weight digital neuromorphic processor with stochastic spike-driven online
learning. IEEE Trans. Biomed. Circuits Syst. 13(5), 999–1010 (2019)

6. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The SpiNNaker project. Proc.
IEEE 102(5), 652–665 (2014)

7. Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia
2(4), 1430 (2007)

8. Heittmann, A., et al.: Simulating the cortical microcircuit significantly faster than
real time on the IBM INC-3000 neural supercomputer. Front. Neurosci. 15, 728460
(2022)

9. Kauth, K., Stadtmann, T., Brandhofer, R., Sobhani, V., Gemmeke, T.: Communi-
cation architecture enabling 100x accelerated simulation of biological neural net-
works. In: Proceedings of the Workshop on System-Level Interconnect: Problems
and Pathfinding Workshop, SLIP 2020. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3414622.3431909

10. Kauth, K., Stadtmann, T., Sobhani, V., Gemmeke, T.: neuroAIx: FPGA cluster
for reproducible and accelerated neuroscience simulations of SNNs. In: 2023 IEEE
Nordic Circuits and Systems Conference (NorCAS), pp. 1–7 (2023). https://doi.
org/10.1109/NorCAS58970.2023.10305473

11. Knight, J.C., Nowotny, T.: Gpus outperform current hpc and neuromorphic solu-
tions in terms of speed and energy when simulating a highly-connected cortical
model. Front. Neurosci. 12, 941 (2018)

https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1145/3414622.3431909
https://doi.org/10.1109/NorCAS58970.2023.10305473
https://doi.org/10.1109/NorCAS58970.2023.10305473


nAIxt: An Area Efficient Neuron Model Processor 17

12. Kudithipudi, D., et al.: Biological underpinnings for lifelong learning machines.
Nat. Mach. Intell. 4(3), 196–210 (2022)

13. Lam, M.: Software pipelining: an effective scheduling technique for VLIW
machines. SIGPLAN Not. 23(7), 318–328 (1988). https://doi.org/10.1145/960116.
54022

14. Moore, S.W., Fox, P.J., Marsh, S.J., Markettos, A.T., Mujumdar, A.: Bluehive-
a field-programable custom computing machine for extreme-scale real-time neu-
ral network simulation. In: 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, pp. 133–140. IEEE (2012)

15. Orchard, G., et al.: Efficient neuromorphic signal processing with Loihi 2. In: 2021
IEEE Workshop on Signal Processing Systems (SiPS), pp. 254–259. IEEE (2021)

16. O’reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuro-
science: Understanding the Mind by Simulating the Brain. MIT press, Cambridge
(2000)

17. Pandarinath, C., et al.: Inferring single-trial neural population dynamics using
sequential auto-encoders. Nat. Methods 15(10), 805–815 (2018)

18. Pani, D., et al.: An FPGA platform for real-time simulation of spiking neuronal
networks. Front. Neurosci. 11, 90 (2017)

19. Park, J., Ha, S., Yu, T., Neftci, E., Cauwenberghs, G.: A 65k-neuron 73-Mevents/s
22-pJ/event asynchronous micro-pipelined integrate-and-fire array transceiver. In:
IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 675–678. IEEE
(2014)

20. Rau, B.R., Glaeser, C.D.: Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. ACM SIGMI-
CRO Newsl. 12(4), 183–198 (1981)

21. Rotter, S., Diesmann, M.: Exact digital simulation of time-invariant linear systems
with applications to neuronal modeling. Biol. Cybernet. 81(5–6), 381–402 (1999)

22. Trensch, G., Morrison, A.: A system-on-chip based hybrid neuromorphic compute
node architecture for reproducible hyper-real-time simulations of spiking neural
networks. Front. Neuroinf. 16, 884033 (2022)

23. Vogels, T.P., Abbott, L.F.: Signal propagation and logic gating in networks of
integrate-and-fire neurons. J. Neurosci. 25(46), 10786–10795 (2005)

24. Yeh, Z.W., et al.: Poppins: a population-based digital spiking neuromorphic proces-
sor with integer quadratic integrate-and-fire neurons. In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2021)

25. Zaruba, F., Benini, L.: The cost of application-class processing: energy and per-
formance analysis of a linux-ready 1.7-GHz 64-bit RISC-V core in 22-nm fdsoi
technology. IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 27(11), 2629–
2640 (2019)

26. Zhao, J., Korpan, B., Gonzalez, A., Asanovic, K.: Sonicboom: the 3rd generation
berkeley out-of-order machine. In: Fourth Workshop on Computer Architecture
Research with RISC-V, vol. 5 (2020)

https://doi.org/10.1145/960116.54022
https://doi.org/10.1145/960116.54022

	nAIxt: A Light-Weight Processor Architecture for Efficient Computation of Neuron Models
	1 Introduction
	2 Processor
	2.1 Initial Architecture

	3 Toolchain
	3.1 Assembler
	3.2 Scheduler
	3.3 Software Pipelining

	4 Results and Discussion
	4.1 Benchmarks
	4.2 Design Space Exploration
	4.3 Comparison
	4.4 Analysis and Optimization

	5 Conclusion
	References


