
NVM-Flip: Non-Volatile-Memory BitFlips on the System Level
Felix Staudigl

staudigl@ice.rwth-aachen.de

RWTH Aachen

Aachen, NRW, Germany

Jan Philipp Thoma

jan.thoma@rub.de

Ruhr-University Bochum

Bochum, NRW, Germany

Christian Niesler

christian.niesler@uni-due.de

University of Duisburg-Essen

Essen, NRW, Germany

Karl Sturm

sturm@ice.rwth-aachen.de

RWTH Aachen

Aachen, NRW, Germany

Rebecca Pelke

pelke@ice.rwth-aachen.de

RWTH Aachen

Aachen, NRW, Germany

Dominik Germek

dominik.germek@de.bosch.com

Corporate Research Robert Bosch

GmbH

Germany

Jan Moritz Joseph

joseph@ice.rwth-aachen.de

RWTH Aachen

Aachen, NRW, Germany

Tim Güneysu

tim.gueneysu@rub.de

Ruhr-University Bochum

Bochum, NRW, Germany

Lucas Davi

lucas.davi@uni-due.de

University of Duisburg-Essen

Essen, NRW, Germany

Rainer Leupers

leupers@ice.rwth-aachen.de

RWTH Aachen

Aachen, NRW, Germany

ABSTRACT
Emerging non-volatile memories (NVMs) are promising candidates

to substitute conventional memories due to their low access latency,

high integration density, and non-volatility. These superior proper-

ties stem from the memristor representing the centerpiece of each

memory cell and is branded as the fourth fundamental circuit ele-

ment. Memristors encode information in the form of its resistance

by altering the physical characteristics of their filament. Hence,

each memristor can store multiple bits increasing the memory den-

sity and positioning it as a potential candidate to replace DRAM

and SRAM-based memories, such as caches.

However, new security risks arise with the benefits of these

emerging technologies, like the recent NeuroHammer attack, which

allows adversaries to deliberately flip bits in ReRAMs. While Neu-

roHammer has been shown to flip single bits within memristive

crossbar arrays, the system-level impact remains unclear. Consid-

ering the significance of the Rowhammer attack on conventional

DRAMs, NeuroHammer can potentially cause crucial damage to

applications taking advantage of emerging memory technologies.

To answer this question, we introduceNVgem5, a versatile system-

level simulator based on gem5. NVgem5 is capable of injecting bit-

flips in eNVMs originating from NeuroHammer. Our experiments

evaluate the impact of the NeuroHammer attack on main and cache

memories. In particular, we demonstrate a single-bit fault attack on

cache memories leaking the secret key used during the computation

This work is licensed under a Creative Commons Attribution-

NonCommercial International 4.0 License.

SaT-CPS ’24, June 21, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0555-7/24/06

https://doi.org/10.1145/3643650.3658606

of RSA signatures. Our findings highlight the need for improved

hardware security measures to mitigate the risk of hardware-level

attacks in computing systems based on eNVMs.

CCS CONCEPTS
• Computer systems organization→ Architectures; • Secu-
rity and privacy→ Hardware attacks and countermeasures;
Systems security.

KEYWORDS
ReRAM,NeuroHammer, disturbance errors, thermal corsstalk, eNVM

ACM Reference Format:
Felix Staudigl, Jan Philipp Thoma, Christian Niesler, Karl Sturm, Rebecca

Pelke, Dominik Germek, Jan Moritz Joseph, Tim Güneysu, Lucas Davi,

and Rainer Leupers. 2024. NVM-Flip: Non-Volatile-Memory BitFlips on the

System Level. In Proceedings of the 2024 ACM Workshop on Secure and Trust-
worthy Cyber-Physical Systems (SaT-CPS ’24), June 21, 2024, Porto, Portugal.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3643650.3658606

1 INTRODUCTION
Emerging non-volatile memories (NVMs), such as spin-torque trans-

fer memory (STT-RAM/MRAM)[36], phase-change random access

memory (PCRAM)[14], or redox-based random access memory

(ReRAM)[59], are disruptive technologies due to their unique char-

acteristics of low access latency, high integration density, and non-

volatility [21, 48]. Due to their various benefits NVMs are consid-

ered to replace SRAMs [1], eFlash [8] and SSD memories [17], while

also enabling novel computing paradigms. CPS (Cyber-Physical

Systems) will likely be the first to receive this new memory tech-

nology as the memory density in the first years will not reach the

requirements of PCs or servers. As CPS or embedded systems are

usually less memory intensive, they will likely implement emerging

11

https://orcid.org/0000-0001-9673-3070
https://orcid.org/0000-0003-1613-732X
https://orcid.org/0000-0002-8589-5231
https://orcid.org/0000-0003-2145-1380
https://orcid.org/0000-0001-5156-7072
https://orcid.org/0000-0003-3812-727X
https://orcid.org/0000-0002-3293-4989
https://orcid.org/0000-0002-7322-2777
https://orcid.org/0000-0002-6735-3033
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3643650.3658606
https://doi.org/10.1145/3643650.3658606
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643650.3658606&domain=pdf&date_stamp=2024-06-19

SaT-CPS ’24, June 21, 2024, Porto, Portugal Felix Staudigl et al.

Figure 1: ReRAM structure composed of (a) a crossbar array
and (b) the memristive device.
non-volatile memory first. Current research such as [10] already

describes the benefits of resistive memories with regard to energy

efficiency and performance. Despite the promising traits of NVMs,

their characteristics introduce new security threats, such as side-

channel and information leakage attacks [19, 24, 63]. These passive

attacks aim to leak information by observing system parameters.

However, active attacks similar to Rowhammer [34] are also possi-

ble. Staudigl et al. [47] proposed an active attack on ReRAMs, called

NeuroHammer.

Hardware-enabled attacks, such as Rowhammer, Spectre, and

Meltdown, have exposed the potential to disrupt essential com-

puting infrastructure. As a result, research on hardware security

vulnerabilities and countermeasures has become indispensable [38].

Hardware security primarily identifies design characteristics that

may be leveraged to seize control of the entire system [44]. Due to

the inflexible nature of integrated circuits (ICs), these vulnerabilities

are challenging to address and remain throughout the IC’s lifetime.

For instance, the Rowhammer attack capitalizes on disturbance er-

rors in dynamic random access memories (DRAMs) to intentionally

enable an adversary to modify the memory’s content [23]. Project

Zero by Google showed that exploiting Rowhammer can result in

privilege escalation attacks [32] or denial of service attacks in cloud

systems [5].

ReRAMs utilize crossbar structures that contain memristive ele-

ments connecting the word line to the bit lines. Fig. 1 (a) illustrates

the typical crossbar array structure of NVMs, which connects each

memory cell via bit and word lines. The row/column decoder, dri-

vers, and sense amplifiers (SA) are responsible for reading/writing

a certain memory cell by applying a respective voltage pulse to

the bit and word line.Fig. 1 (b) depicts a typical material stack of a

memristive device and its electrical equivalent circuit.

NeuroHammer demonstrated that an attack comparable to Rowham-

mer still functions withmemristor-basedmemories [47]. This attack

enables malicious actors to flip bits of adjacent memory cells de-

liberately. The attack takes advantage of disturbance errors based

on thermal crosstalk between memory cells. In particular, ReRAM

represents a promising alternative for DRAMs and could potentially

be used as cache memory in the future [25, 27]. Hence, intentional

bit-flips are no longer limited to main memories (Rowhammer) but

also potentially threaten cache memories (NeuoHammer).

CPS systems range from small embedded devices with limited

capabilities to devices capable of running full operating systems.

Among the more powerful systems for CPS, RTLinux is very popu-

lar, which is an extension of the Linux kernel that enables real-time

behavior [43]. Rowhammer-style attacks can be performed from

isolated processes or RTOS threads. Thus, CPS systems with NVM

memory will be vulnerable to NeuroHammer attacks from the sys-

tem level. However, there has been no evaluation yet as CPS systems

with NVM have not hit the industrial market yet. In the past, secu-

rity has been an afterthought; that is why there have been so many

attacks and (hardware) countermeasures in upgrades of DRAM

modules. DDR4, for example, has in-build hardware Rowhammer

protection, which was circumvented by Frigo et al. [13]. We want

to investigate Neurohammer attacks from the system level to help

develop secure memory modules for future CPS systems.

Contribution: we investigate the impact of deliberate bit-flips

on ReRAMs on a system level. In particular, we focus on the implica-

tions for the ReRAM-based main and cache memory of the system.

We propose an extension to the gem5 simulator, called NVgem5,
capable of simulating ReRAM-based memories. The simulator emu-

lates the NeuroHammer attack by injecting bit-flips based on the

access patterns of the adjacent cells. The main contributions of this

paper are:

• The implementation of NVgem5, modeling ReRAM-based

main and cache memory based on the gem5 simulator.

• The execution of a typical Rowhammer attack scenario on

the system’s main memory to verify the simulation platform.

• The execution of the first-ever attack on ReRAM-based caches

by intentionally triggering bit-flips to leak the secret key of

RSA during signature generation.

• A thorough discussion on countermeasures to mitigate Neu-

roHammer attacks on ReRAM-based memories.

2 BACKGROUND
This section summarizes the related work in the field of hardware

security attacks on emerging NVMs. In addition, it describes the

background of ReRAMs and the NeuroHammer attack.

2.1 Related Work
Emerging NVMs suffer from hardware security vulnerabilities due

to their unique physical characteristics [12]. In particular, side-

channel attacks use these characteristics to leak critical informa-

tion. Khan et al. [19] propose a side-channel attack, which takes

advantage of the asymmetric read/write currents of ReRAM devices.

The write operation of the victim injects supply noise propagating

to the adversary’s memory region. Due to the much lower read la-

tency, the adversary can sense the Hamming weight of the victim’s

data by analyzing the read failures within the adversary’s memory

space. However, this attack requires exhaustive testing of all pos-

sible patterns, locations, and has to consider bit-to-bit variations.

In contrast, Krautter et al. [24] use the self-terminating writing

scheme to expose information to an adversary. Self-terminating

writing schemes aim to increase the write latency by completing

the write sequence as soon as the intended state is reached. Conse-

quently, there is a strong correlation between the duration of the

write process and the information being written. The adversary

can recover the secret purely from software.

NVMs are also susceptible to differential power analysis (DPA)

attacks, as shown in [12]. DPA attacks are considered severe threats

to system security because of their noninvasive nature. To improve

the system’s resilience, Dodo et al. [12] propose a novel STT-MRAM

12

NVM-Flip: Non-Volatile-Memory BitFlips on the System Level SaT-CPS ’24, June 21, 2024, Porto, Portugal

bit-cell design, 500× more resilient than the standard design. In

addition, Yang et al. [63] suggest a mitigation technique to pre-

vent replication attacks on memristor-based computing systems.

NVMs are particularly vulnerable to replication attacks due to their

non-volatility property. Yang et al. utilize the obsolescence effect to

reduce the accuracy of the outputs for any unauthorized user. Fur-

thermore, the countermeasure is still effective even if the attacker

knows the defense mechanism.

Khan et al. [20] investigate the impact of ground bounce effects

in STT-RAMs. Due to high write currents and long write latencies,

STT-RAMs suffer from ground bounce, which eventually propa-

gates to adjacent cells. Through simulation, the authors exhibit that

repeatedly writing to a single cell may cause a bit-flip in nearby cells.

To the best of our knowledge, this work investigates for the first

time the impact of deliberate bit-flips in ReRAMs on the security of

a full-fledged system. In particular, our investigation demonstrates

the significant consequences of intentional bit-flips in ReRAM cache

memories, exhibiting a pristine attack surface for novel computing

paradigms.

Considering the impact of emerging memory technologies, var-

ious simulation platforms have been proposed to study reliabil-

ity, computational efficiency, and architectures. gem5-ndp [56] de-

scribes a near-data processing (NDP) simulator based on gem5 [2]

capable of modeling architectures and estimating performance val-

ues. On the one hand, the simulator allows easy integration of novel

architectures by offering a well-defined programming interface. On

the other hand, gem5-ndp supports only the ARM ISA, limiting its

feasibility for hardware security analysis. Likewise, PIMSim [61]

proposes a simulation framework offering three different modes:

fast, instrumentation-driven, and full-system. The platform inte-

grates established memory simulators, such as DRAMSim2 [40],

HMCSim [26], and NVMain [37], to support hybrid memory simula-

tions. Mao et al. [31] investigate programming strategies to optimize

the energy efficiency and reliability of ReRAMs. The authors use

gem5 [2] and CACTI [30, 53] to estimate read/write/leakage en-

ergy consumption and the latency of the ReRAMs. Conclusively,

various simulation frameworks have been proposed to investigate

the merits and shortcomings of emerging memory technologies

on an architectural and system level. However, none of these plat-

forms is equipped to investigate hardware security vulnerabilities,

in general, and NeuroHammer-based bit-flips, in particular. Hence,

we present NVgem5, a simulation platform capable of injecting

NeuroHammer-based bit-flips in ReRAMs.

2.2 Rowhammer
Emerging memories have the potential to replace existing mem-

ory technologies like DRAM or SRAM due to their advantageous

features, including non-volatile memory storage. Memristive mem-

ory, for instance, eliminates the need for refresh cycles, thereby

enhancing energy efficiency. However, DRAM chips are susceptible

to a severe hardware phenomenon called Rowhammer, where a

specific memory location is repeatedly accessed, leading to a bit-flip

in nearby memory cells due to electrical interaction, causing the

capacitor in the DRAM cell to leak its charge [22].

Despite having no capacitors to leak charge, memristive memory

is vulnerable to high temperatures, which can be attained through

repeated memory access. As a result, Rowhammer attack patterns

can be applied to memristive and classic DRAM chips [47]. The

intentional bit-flip can be exploited to undermine secure crypto-

graphic keys [39] or gain access to specific data [55]. Researchers

have successfully demonstrated that these attacks can be carried

out remotely, particularly affecting cloud providers that rely on

large clusters of vulnerable servers [6, 28, 50]. Even DRAM chips

with error correction are susceptible to Rowhammer attacks [7].

The correct access patterns are a critical factor in triggering

these vulnerabilities. DRAM and memristive memory will likely be

arranged in rows and columns, and depending on the number and

location of rows accessed near a victim row, the attack pattern is

referred to as single, double-sided, or n-sided [13]. Direct memory

access poses several obstacles, particularly cache memories, tem-

porarily storing frequently used data to improve access times. The

cflush instruction represents one way to overcome this obstacle by

flushing the data out of the cache [16]. However, this instruction

may not be available on other Instruction Set Architectures (ISAs),

making other methods like eviction sets a viable alternative [57].

An eviction set is a group of addresses that map to the same row

of cached entries and access them one after the other, filling the

cache row, replacing the older data, and clearing the victim’s data

from the cache. We provide detailed information about the working

principles of eviction sets in Section 2.5.

As bit-flips in DRAMs are primarily a hardware issue, prevent-

ing them entirely at the software level is challenging. Although

some software solutions have been proposed, they usually rely

on hardware features to provide protection. The latest software-

based defense, known as Copy-on Flip [11], utilizes an interrupt

triggered by ECC RAM to implement countermeasures. In addition

to these software solutions, manufacturers have implemented de-

fense mechanisms directly into the hardware. One such mechanism

is called Target Row Refresh (TRR) [18], which aims to identify the

memory rows being targeted by Rowhammer attacks and refresh

those memory cells before a bit-flip can occur. Nevertheless, the

implementation of TRR is highly dependent on the vendor [18],

and research has indicated that even TRR can be bypassed [13].

2.3 Resistive RAM (ReRAM)
ReRAM describes an emerging memory technology taking advan-

tage of memristive devices. In general, a memristive device stores

the information internally in the form of resistance. The internal

state is programmed via suitable voltage pulses applied to the two

terminals of the device. Based on the voltage pulse, the so-called

memristor switches between a high resistive state (HRS) and a low

resistive state (LRS) for a binary switching device.

Fig. 1 illustrates a crossbar structure that connects the mem-

ristors via vertical bit lines (BL) and horizontal word lines (WL).

The rows and columns of the crossbar structure are connected to

decoder/driver circuitry, which drives the necessary pulses and

multiplexes them to the respective WL and BL. For example, to

read a single device, 𝑉𝑟𝑒𝑎𝑑 is applied to the WL, while the corre-

sponding BL is set to GND. Due to the structure of the crossbar, all

non-selected cells must be protected from unintentional sneak-path

currents influencing the read operation. Hence, the so-called 𝑉 /2
scheme is used to set all remaining lines to 𝑉𝑟𝑒𝑎𝑑/2. Consequently,

13

SaT-CPS ’24, June 21, 2024, Porto, Portugal Felix Staudigl et al.

the voltage drop over non-selected devices results in |𝑉𝑟𝑒𝑎𝑑/2| com-

pared to 𝑉𝑟𝑒𝑎𝑑/2 over selected devices. Selector devices have been

proposed to isolate the memristor from the crossbar array to omit

the influence of sneak-path currents. The most common configura-

tion of a so-called 1T1R crossbar uses a transistor connected in a

row with the memristor.

2.4 NeuroHammer
In 2022, Staudigl et al. [47] introduced a new security attack named

NeuroHammer, targeting memristive crossbar array memories, en-

abling attackers to flip bits like the Rowhammer attack. This at-

tack leverages disturbance errors resulting from thermal crosstalk.

Prior research conducted by Von Witzleben et al. [58] showed that

the switching kinetics of redox-based memristive cells change sig-

nificantly based on the temperature of the filament. The study

concluded that the switching time reduces by over five orders of

magnitude with increased filament temperature. Fig.2 illustrates

the internal working principles of the attack, with the red cell sym-

bolizing the attacked cell and the blue cell representing the target

cell. The attack works as follows:

(a) Hammering: Initially, the red cell should be switched to

LRS, which maximizes the current through the cell. In order

to intentionally elevate the filament temperature of the target

cell, the attacker needs to apply pressure to the compromised

cell continuously. As a result, the blue cell is subjected to

repetitive stress caused by the 𝑉 /2 scheme.

(b) Temperature increase: Due to the attacker’s repeated ac-

cess, the red cell undergoes temporary heating with each

applied voltage pulse. In addition, the filaments in the blue

cell experience an increase in temperature due to thermal

crosstalk between the two cells. Meanwhile, the blue cell

is subjected to a regular 𝑉𝑆𝐸𝑇 /2 voltage pulse, further con-
tributing to its rising temperature.

(c) Switching kinetics: According to experiments conducted

by von Witzleben et al. [58], the change in temperature

affects the switching kinetics of the ReRAM device. Conse-

quently, the device becomes more prone to gradually switch-

ing its internal state.

(d) Bit-flip: Over time, the blue cell gradually changes its inter-

nal state with each applied voltage pulse from the attacker,

eventually resulting in a complete switch. By utilizing the

thermal crosstalk and the 𝑉 /2 scheme, the attacker can flip

a bit without ever directly accessing the ReRAM cell.

To validate the existence of NeuroHammer, Staudigl et al. pro-

posed a simulation methodology combining crossbar and circuit-

level simulations. First, a crossbar-level simulation was conducted

to examine the thermal crosstalk within crossbar structures and

generate a set of thermal coupling coefficients, referred to as alpha
values. Second, a circuit-level simulation used these alpha values

to simulate the behavior of a ReRAM tile, taking into account the

coupling effects. The results demonstrated that thermal coupling

significantly impacts the characteristics of the memristive crossbar,

enabling adversaries to flip bits intentionally.

The authors verified the attack based on crossbar- and circuit-

level simulations. Therefore, the system-level impact of NeuroHam-

mer still needs to be clarified. Furthermore, ReRAM has a much

broader application space than DRAM, taking into account its po-

tential to replace memories on different hierarchies [27].

2.5 Caches
Caches are small chunks of memory situated physically close to

CPU cores. These days, volatile SRAMs are commonly used for

building caches. Caches are utilized for storing regularly accessed

data to conceal the access latency of the main memory. Modern

CPUs generally have three cache levels: the first-level cache (L1)

is the smallest and fastest, the second-level cache (L2) is larger

and slower, and the last-level cache (LLC) is even larger but also

significantly slower. Additionally, L1 and L2 caches are specific to

each CPU core, while LLC is shared among all cores.

Inclusive caches contain copies of all data stored in the L1 and

L2 caches, enabling faster lookup times as the private caches of

other cores do not need to be queried during access. Inclusive

caches are extensively used in both consumer and server devices.

However, non-inclusive and exclusive cache solutions exist that do

not duplicate entries of private caches in the shared LLC. These

solutions necessitate a directory structure or a snoop-based setup.

However, the latter generates significant traffic on the memory bus,

making it less desirable [45].

Caches are primarily designed as a set-associative structure be-

cause access latency is critical to the system’s performance. In this

structure, anymemory address onlymaps to a few possible cache en-

tries (a set). During access, the cache controller only needs to search

these entries for the data to determine whether the data was cached

(cache hit) or not (cache miss). This structure significantly reduces

the lookup complexity and latency compared to fully-associative

caches, where an address may be mapped to any cache entry [62].

The set-associative structure can be visualized as a table with 2
𝑠

sets (rows) and𝑤 ways (columns). To map a given address to this

table, 𝑠 bits of the physical address are used, which determine the

cache set. The remainder of the address, except for some offset bits

that determine a shift within the stored data, is stored along with

the data as a tag. During access, the tag of the requested address

is compared to all tags stored in the given cache set, and if there

is a match, the data is returned. If there is no matching tag, i.e., a

cache miss occurred, the data is requested from the memory side of

the cache. Due to the temporal locality of most workloads, i.e., re-

cently accessed addresses are likely to be reaccessed, the requested

data will be loaded into the cache after a cache miss and replace

some other data. The entry to be replaced is determined by the

replacement policy, such as least-recently-used [49].

Caches, shared bymultiple components and have distinguishable

response times for cache hits and misses, have been exploited in

various cache attacks. Flush-based attacks [15, 64] are executed

when the attacker and the victim share some read-only data section.

The attacker flushes the data from the cache and monitors the

access pattern of the victim to reveal sensitive information. On the

other hand, contention-based attacks [35, 54] do not require shared

data but instead use the set-associative structure of caches. To

take advantage of the set-associative structure, these attacks utilize

eviction sets [29], a group of addresses that occupy all cache entries

in a given set. By accessing the addresses within an eviction set,

the attacker can replace all existing entries with the data from the

14

NVM-Flip: Non-Volatile-Memory BitFlips on the System Level SaT-CPS ’24, June 21, 2024, Porto, Portugal

Figure 2: NeuroHammer attack: (a) hammering the attack cell (red), (b) temperature increase of the target cell (blue), (c) change
of the target cell’s switching kinetics, and (d) gradual increase of the target cell’s resistance [47].

eviction set, thusmonitoring the victim’s subsequent cache accesses,

similar to flush-based attacks. Efficient construction methods for

eviction sets have been proposed in [46, 51].

3 METHODOLOGY
This section describes the simulation methodology consisting of

NVgem5 and the threat model. Fig. 3 (a) shows our simulation

platform. NVgem5 builds upon the architecture simulator gem5 [2],

which models a processor including caches and main memory. The

processor model simulates an out-of-order x86 processor clocked at

1GHz with L1 caches (instruction and data cache with 16 kB each),

a unified 256 kB L2 cache, and 2GB of main memory.

3.1 NVgem5
NVgem5 extends the gem5 simulator by a ReRAM-based memory

implementation which can be configured as cache or main memory.

Fig. 3 (b) depicts the general internal structure of the NVM module.

Main memory mode: The NVgem5 mimics the fundamental

structure of DRAM memory. The lowest level represents the cross-

bar structure consisting of binary bit-cells. Each cell holds certain

meta information to track the number of read/write accesses. If the

configurable bit-flip threshold is exceeded, the adjacent cells are

flipped based on a given pattern. The patterns are customizable

and represent a matrix of probabilities. We use the experimental re-

sults from [47] to define a simple pattern that changes the adjacent

cells above and below the target cell. All crossbars are combined

to banks and chips, following the typical DRAM hierarchy. The

memory controller translates the given address to determine the

correct crossbar and rows, respectively.

Cache mode: In the cache mode, the memory controller acts as

a standard SRAM cache controller. The same crossbar modules are

used, which features themeta information property of eachmemory

cell. To increase the performance of the memory model, we reduce

the bit-cell complexity by stripping the pattern of its probability

values. Hence, the pattern only consists of binary entries, which

determines the adjacent cells affected by bit-flips. As expected, the

memory controller intercepts read and write requests from the CPU

to the main memory. The given address of the request is divided

into the tag, the set index and the data offset. These three fields

determine the resulting memory location to store/fetch the data

to/from the crossbar.

3.2 Threat Model
The attacker is assumed to have the following capabilities:

(1) The attacker can run arbitrary code within his isolated user

process.

(2) The attacker cannotmanipulate data outside the virtual mem-

ory space of his process.

(3) The attacker has knowledge of the processor architecture

and the memory hierarchy.

Similar to existing Rowhammer attacks on DRAM, the adversary

intentionally triggers bit-flips within the victim’s memory region

by taking advantage of the NeuroHammer attack. To illustrate the

impact of this attack on a system level, we perform two case studies.

(1) Main memory: Fig. 4a depicts our first attack scenario aiming

to attack the main memory of the system. The adversary uses

eviction sets to circumvent the L1/2 caches. This scenario

mirrors the Rowhammer attack for DRAMs, which we use

to verify our simulation platform.

(2) Cache: The second case study targets the L1 data cache. To

the best of our knowledge, NeuroHammer is the only non-

intrusive attack capable of actively faulting bits in ReRAM

caches, yielding a completely new attack scenario. We show-

case the danger of this attack by compromising the secret

key during an RSA signature generation with a single attack

trace.

4 RESULTS
In this section, we evaluate system-level attacks on ReRAM-based

memory in our NVgem5 environment. First, we explore the tra-

ditional Rowhammer setting where vulnerable ReRAM is imple-

mented in main memory. After that, we consider attacks on cache

memory which has not previously been explored. We demonstrate

a fault attack on RSA-CRT and leak the private key during signa-

ture generation. Moreover, we discuss further attack vectors on

vulnerable cache memory.

4.1 Main Memory
In the following, we demonstrate the feasibility of the fault-attacks

on ReRAM when deployed as main memory. Therefore, we use

the proposed NVgem5 to simulate a system with 2GB of ReRAM.

The system is equipped with a single-issue in-order CPU and two

levels of SRAM cache memory. In our experiment, we show that

15

SaT-CPS ’24, June 21, 2024, Porto, Portugal Felix Staudigl et al.

Figure 3: Simulation overview: (a) system components and (b) internal structure of NVGem5.

Figure 4: Attack scenario: (a) deliberately flipping bits in non-volatile main memory and (b) provoking cache bit-flip.
traditional Rowhammer attack patterns are transferable to ReRAM

enabled systems.

Algorithm 1: ReRAM fault attack on main memory

Data: Target Address 𝑡 , Hammer Count 𝑐

Addr ℎ ← 𝑔𝑒𝑡𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑡𝐶𝑟𝑜𝑠𝑠𝑏𝑎𝑟𝐴𝑑𝑑𝑟 (𝑡) ;
for 𝑖 from 0 to (𝑐 − 1)/2 do

ℎ.𝑑𝑎𝑡𝑎 ← 0𝑏0000...1...000;

𝑐𝑙 𝑓 𝑙𝑢𝑠ℎ (ℎ) ;
ℎ.𝑑𝑎𝑡𝑎 ← 0𝑏0000...0...000;

𝑐𝑙 𝑓 𝑙𝑢𝑠ℎ (ℎ) ;
end
if v.data == 0 then

return 𝑓 𝑎𝑙𝑠𝑒 ;
else

return 𝑡𝑟𝑢𝑒 ;
end

Algorithm 1 shows the pseudo-code of our attack which we

used to determine the hammering threshold required to introduce

observable bit-flips to the target memory crossbar. Therefore, the

attacker first selects a target memory address at which they attempt

to inject bit-flips. Then the attacker needs to obtain an adjacent

memory address and repeatedly issue write accesses to it to trigger

faults in the target crossbar. Since theoretically it is only feasible

to inject 0→1 bit-flips, but not the other way around, we select a

target memory address and initialize it with zeros. This allows us

to observe any errors injected by the hammering process. Since

our simulated system includes a two-level cache hierarchy with

a write-back LLC, the attacker must bypass the cache to ensure

that the data-writes actually reach the main memory and are not

buffered in the LLC. For this, several well-documented solutions

exist. Since our system operates on an x86 architecture, we can

simply use the clflush instruction which forces the eviction of a

given memory address. After each write to the hammering address,

we use clflush to evict it from the cache. Since the evicted entry

is modified (dirty) after the write-access, the data is written back

to memory during the eviction. If the clflush instruction is not

available, the attacker could alternatively use an eviction set or

non-temporal write instructions to make sure that the changes

buffered in the cache actually reach the main memory.

For the attack demonstration, we allocate memory in a cross-

bar adjacent to our target address. The feasibility of finding such

adjacent memory lines in real-world environments has been demon-

strated among others by Seaborn et al. [42]. The results of our ex-

periment show a one-bit flip in the data located at the target address

when executing the algorithm with more than 40 000 writes to the

adjacent crossbar. Hence, the frequency that is achievable from

system level is sufficient to trigger bit-flips in the simulated cross-

bar. We therefore conclude that the current struggles to overcome

Rowhammer attacks on DRAM technology might continue even

further into the future and even a technology switch to ReRAM

will not necessarily mitigate this attack vector. For this reason, it is

crucial to investigate potential attacks and countermeasures at this

early stage.

4.2 Cache
We demonstrate the effects of an intentional bit-flip in the cache

memory by leaking an RSA secret key from a co-located process

during signature generation. Such attack are usually only feasible

trough physical fault attacks, e.g., on embedded devices and smart-

cards. The attack described in the following is purely executed from

software level and can therefore be exploited remotely. Moreover,

due to the short-lived nature of cache memory, the attack does not

leave any long-term traces in the CPU and is therefore especially

hard to detect.

To attack the RSA secret key, we use the well-known fault attack

on RSA-CRT [3]. We therefore implemented the RSA signature

scheme using the Chinese Remainder Theorem (CRT). In a nutshell,

16

NVM-Flip: Non-Volatile-Memory BitFlips on the System Level SaT-CPS ’24, June 21, 2024, Porto, Portugal

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

1

2

3

4

W
a
y

Set

Figure 5: Write access pattern for the L1-Data cache during
RSA signature generation without attacker.

the CRT divides the computation of the RSA signature in modular

residue classes of 𝑝 and 𝑞. By faulting the computation in one of

these module residues, only one part of the solution has a common

prime factor with 𝑁 , which allows factoring 𝑁 efficiently by calcu-

lating the 𝑔𝑐𝑑 of 𝑁 and the faulty signature. To exploit this property

using NeuroHammer, the attacker first needs to profile relevant

cache sets where parts of the RSA computations are stored. Fig. 5

shows a heatmap of the L1-cache write-activity during the RSA

signature generation. Noticeably, some cache sets are used much

more often than others. Since the attackers aim is to introduce a

single-bit fault, they are ideally looking for a cache set where one

entry is heavily used while the others are rarely used. An example

from Fig. 5 would be cache set 15. Since the attacker cannot simply

observe the entire cache activity as we did in Fig. 5, they must

use a different strategy to obtain this information. Therefore, the

adversary can allocate a large chunk of data and access it. After the

access, the data will be stored in the L1 cache and occupy many

entries there. Then, the attacker triggers the signature generation

and observes which entries are evicted by the computation. This

process is repeated several times and the attacker learns which ad-

dresses are frequently evicted. Those entries have a high probability

of colliding with data that is used during the computation of the

RSA signature. After the attacker has learned potential target cache

sets, they subsequently need an address in the adjacent cache set. If

the attacker has the ability to use huge pages, they can arbitrarily

select the cache set by changing the lower bits of the address within

the huge page. However, even without huge pages, the attacker

can easily obtain adjacent addresses. Therefore, they only need to

invert the least significant bit (LSB) of the virtual address that is

used for the set-indexing. The six LSBs of the virtual address are

usually used to determine the offset within the 64 Byte cache entry.

The following bits of the virtual address are then used to determine

the cache set. Hence, flipping the seventh bit of the virtual address

inverts the LSB of the set index and the resulting address will be

adjacent to the original address in the cache. Alternatively, the

attacker can choose an address with 64-Byte offset to the original

address which will also result in an adjacent cache line.

Algorithm 2 shows the pseudo code used to trigger the fault dur-

ing RSA signature generation in the cache.We assume the adversary

and the victim are co-located on a CPU core (hyper-threading) and

thus share the L1 cache. We discuss attacks in non-co-located envi-

ronments later in this paper. The algorithm takes a target address

as input. This address must map to a cache set that is used during

the computation of the RSA signature. We found that in order to

increase the success-rate of the attack, it is beneficial to hammer

the entire cache set instead of a single entry. Therefore, the attacker

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

1

2

3

4

W
a
y

Set

Figure 6: Write access pattern for the L1-Data cache during
RSA signature generation with active attacker hammering
the 26th cache set.

needs to construct an eviction set for the hammering address. This

can be achieved efficiently using either a top-down [46], or a bottom-

up strategy [51]. Using an eviction set for the hammering has the

advantage, that the attacker becomes independent of the caches’

replacement policy. If the attacker only uses a single address for

the hammering, the attacker must hope that the RSA-CRT data is

allocated in the same cache way as the hammering address. The

eviction set strategy on the other hand produces faults in all cache

ways and therefore has a higher chance of hitting the correct data.

However, with the additional faults, the probability of crashing the

process increases as well although during our evaluation, we found

that this rarely happens. Often the data is not crucial to the systems

stability and/or is not used anymore. Crucially, the bit-flips will

almost never be propagated outside the cache, since the entries

are not marked as 𝑑𝑖𝑟𝑡𝑦 when a NeuroHammer attack changes the

value.

Algorithm 2: ReRAM fault attack on RSA-CRT in the cache

Data: Target Address 𝑡
EvSet 𝑒𝑣 ← 𝑔𝑒𝑡𝐸𝑣𝑆𝑒𝑡 (𝑡 − 64) ;
(𝑒, 𝑁) ← 𝑔𝑒𝑡𝑃𝑢𝑏𝐾𝑒𝑦 (𝑣𝑖𝑐𝑡𝑖𝑚) ;
𝑠𝑒𝑛𝑑𝑆𝑖𝑔𝑛𝑅𝑒𝑞 (𝑣𝑖𝑐𝑡𝑖𝑚,𝑚𝑠𝑔) ;
while !𝑠𝑖𝑔 = 𝑟𝑒𝑐𝑣𝑆𝑖𝑔𝑛𝑅𝑒𝑠𝑝 (𝑣𝑖𝑐𝑡𝑖𝑚) do

for Addr 𝑎 in 𝑒𝑣 do
𝑎.𝑑𝑎𝑡𝑎 ← 0𝑏0000...1...0;

𝑎.𝑑𝑎𝑡𝑎 ← 0𝑏0000...0...0;

end
end
if 𝑠𝑖𝑔.𝑣𝑎𝑙𝑖𝑑 then

return 0;

else
return 𝑔𝑐𝑑 (𝑠𝑖𝑔𝑒 −𝑚𝑠𝑔, 𝑁) ;

end

Only entries that have been modified prior to the attack are writ-

ten back to main memory and may contain faults. In this context,

the profiling of frequently used cache sets by the attacker serves

a double purpose: First, the attacker learns potential target sets,

and secondly, the attacker evicts potentially modified cache entries

and therefore reduces the risk of writing back faulted data after the

attack.

Fig. 6 shows the write access pattern to the L1-data cache during

the attack. In this case, the attacker used an eviction set cache set 26

to flip bits in the 27th set. In our evaluation environment, we found

that the attacker can reliably introduce faults to the RSA signature

generation, while not crashing the program due to random faults in

other cache entries. Thus, we successfully calculated a prime factor

of 𝑁 , and recovered the RSA secret key.

17

SaT-CPS ’24, June 21, 2024, Porto, Portugal Felix Staudigl et al.

Attacks on the LLC: Above, we conducted the attack on the

L1 cache, which requires the attacker and the victim to share a

processor core. While this is feasible due to hyper-threading, many

security sensitive systems disable hyper-threading to reduce the

attack surface to microarchitectural attacks. However, an adversary

can execute the same attack on the shared last-level cache (LLC). If

the LLC is inclusive, this is trivial, since any write to an L1 cache

entry is automatically written to the LLC. Thus, the hammering in

the L1 cache automatically causes hammering of the same memory

line in the LLC, leading to bit-flips in both caches. Note that the

bit-flips will likely not occur on the same data in both caches since.

However, as we found in our experiment above, introducing a

random fault in the cache does in most cases not cause reliability

issues or crashes.

In non-inclusive LLCs, the opportunities for the attacker are

smaller. That is, since the coherency policy prohibits injecting bit-

flips in private caches of other cores. Therefore, the attacker needs

to find a cache set that holds the data required by the victim process,

but that is not present in the victim’s core private cache. While this

is more challenging than in the inclusive environment, in the RSA

example above, the attacker has an almost unlimited amount of

tries and a single success leaks the secret key.

Additional attack vectors: We demonstrated that ReRAM

memory in caches allows adversaries to inject faults in the data sec-

tion of the cache in order to leak sensitive information. In addition

to the data section, each cache entry contains several other bits

of information whose integrity is crucial for the system’s security.

For example, an adversary can manipulate the tag section of an

entry by repeatedly accessing eviction sets larger than the caches’

associativity for adjacent cache sets. In doing so, the tag sections

will be overwritten with different tags constantly, increasing the

risk of NeuroHammer-based bit-flips in target entry. There are two

scenarios where an attack on the tag section can be harmful: First,

the attacker can cause false cache hits for some addresses, i.e., by

faulting the tag, different addresses may cause a cache hit at the

cache entry with the faulted tag. Secondly, the attacker can delete

write operations by faulting the tag of a dirty entry. This can lead

to corrupted data states in a program, and, more crucially, cause

memory corruption outside the victims address space. That is, since

the faulty entry remains valid and dirty, and thus, the data is written

back to memory at some point. However, since the tag is corrupted,

the restored address for the write-back will be corrupted and could

potentially overwrite any address in memory.

Next to the tag, the attacker can also target the flags section of a

cache entry. For example, by repeatedly accessing and invalidating

the same entry, the valid flag is implicitly hammered. Since the Neu-

roHammer attack on NVMs only allows bit-flips from zero to one,

the attacker can re-validate entries invalidated before (assuming

a high-active valid flag). This can also cause data corruption and

incoherent cache states.

5 COUNTERMEASURES
In the following, we discuss countermeasures to mitigate the Neu-

roHammer attack on main and cache memories.

Error correction codes (ECCs) have been successfully used in

various applications to defend against data corruption [33]. Each

line of memory (e.g., a crossbar) is extended by some additional

bits that are used to store an error correcting code. On each access,

the ECC is validated and if a corruption is detected, the data is

restored. ECCs can only detect and correct a limited number of

faults whereby usually, the number of detectable faults is greater

than the number of correctable faults. Generally, the number of

correctable and detectable faults is a function of the length of the

code. Hence, the hardware and storage overhead depends on the

targeted capabilities of the error correction.

Notably, for Rowhammer it has been shown that even ECC pro-

tected memory is vulnerable to attacks since the error correction

creates a timing side channel that attackers can exploit to leak

information [7]. However, the severity of this attack is arguably

less since no data is corrupted. Hence, the timing attack on error

correction only allows data leakage but not corrupting attacks like

privilege escalation. In the cache setting, error correction can be

omitted in favor of error detection in most cases. That is, since

when an error is detected, the cache line can simply be invalidated

and the data will be loaded from memory on the next access. Only

if the cache entry was flagged as dirty, the data must be corrected

or a fault must be raised on access.

With NeuroHammer, it is much easier for attackers to inject

targeted single-bit errors than it is with Rowhammer. Therefore,

the application of ECC as a countermeasure is challenging. Consider

the following example, where the Hamming weight of the data is

stored as ECC alongside the memory line:

Data Checksum

Victim 0 0 1 1 0 1 1 0 1 0 0

Attacker 0 0 0 0 0/1 0 0 0 0 0 0/1

Now, if the attacker writes a single 0 and 1 in alternating order,

they not only hammer the respective bit in the victim’s data, but

also the checksum. In this simple example, the checksum remains

valid:

Data Checksum

Victim 0 0 1 1 1 1 1 0 1 0 1
Attacker 0 0 0 0 0/1 0 0 0 0 0 0/1

A trivial way to prevent this would be to store the inverted data

as a error correction. Since bit-flips occur only from low to high, the

attacker cannot construct a payload that modifies the data while

keeping the error correction data intact. However, this requires the

length of the checksum to be equal to the data, and is therefore very

expensive. While more complex functions increase the complexity

of constructing valid payloads for the hammering, it is intuitively

hard to construct an ECC resistant against checksum manipulation.

One possible solution would be to store the ECCs independently

of the actual ReRAM, and thus shield them from NeuroHammer

attacks. However, this significantly increases the complexity of the

memory/cache.

A further downside of using ECC, especially in the cache use-

case, it the increased complexity. Data can only be returned when

the ECC check (and possibly the correction) is successful and thus,

the access latency of the cache is negatively impacted.

Cache randomization [41, 52, 60] is a promising approach to

significantly reduce the threat of contention-based cache attacks,

like Prime+Probe [60]. By randomizing themapping of addresses to

cache sets, attackers can no longer efficiently construct eviction sets.

The randomization also increases the complexity of NeuroHammer

attacks in the cache, as the adversary can no longer construct

18

NVM-Flip: Non-Volatile-Memory BitFlips on the System Level SaT-CPS ’24, June 21, 2024, Porto, Portugal

addresses that map to adjacent cache sets. Therefore, the attacker

can only introduce faults at random positions, which reduces the

probability of success. Considering attack scenarios in which a

single bit-flip is sufficient for the attack, probabilistic protection by

cache randomization is not sufficient.

Likewise, randomization techniques may also be applied to main

memories. By randomizing the mapping of addresses to crossbars,

attackers can no longer conveniently find adjacent memory lines.

Especially considering the size of main memory, this approach

is promising, since the randomization space is large enough for

the attacker to only have a very small success probability. At the

same time, the overhead of a randomized mapping is small. Overall,

randomizing themapping can increase the complexity of both cache

and main memory NeuroHammer attacks. However, randomization

does not solve the underlying problem, and the attacker always has

a small chance of succeeding.

Cell Refreshment: Since DRAM is a volatile memory technol-

ogy, the cells need to be refreshed frequently. Traditional Rowham-

mer attacks can be prevented by increasing the cell refresh rate,

preventing sufficient charge leakage to flip the bit [23]. However,

ReRAMs are non-volatile and store the information in the form

of resistance, which is modulated by the redistribution of ionic

defects [59]. Therefore, usually the cells do not need to be refreshed

with ReRAM, and implementing a generic refreshmechanismwould

introduce significant overhead in energy consumption. More suited

would be a mechanism that monitors cell accesses and identifies

hammered cells during runtime, as discussed in [23]. Considering

the endurance problem of ReRAMs [65], an intelligent cell refresh-

ment would be applicable because it detects the likelihood of a

NeuroHammer attack on a particular cell with a certain probability.

The memory controller could then temporarily block access to this

memory region or map it to another memory location.

Detection: Another possibility to protect against ReRAM fault

attacks is using a detection mechanism to identify attack access

patterns before bit-flips can occur. The detection of attacks to main

memory is similar to detecting cache attacks. That is, since the ham-

mered data must be evicted from the cache repeatedly and therefore,

many cache misses occur. A variety of proposals [4, 9, 66] have

been made how to detect cache attacks using hardware perfor-

mance counters (HPCs). These counters are meant for performance

optimization and can be configured to count CPU internal events

like cache misses and flushes. When a attack pattern is detected

by such a mechanism, the memory controller could prevent either

remap the memory to a different crossbar, or prevent the attacker

from hammering the address by prohibiting cache flushes, e.g., by

locking the cache entry to the cache.

The cache use case is more difficult to detect using protection

mechanisms. That is, since it does not inherently require unusual

access patterns that raise events like cache misses in the CPU.

Hence, HPC-based detection is not feasible. Each cache entry could

be extended by a write counter that would identify memory lines

that are hammered. If such a threshold detection would trigger, it

would need to stop the attacking program which can be a threat

to safety assurances the target device might need to fulfill. While

it would also be possible to switch to a write-through policy on

a detected attack, this would then expose the main memory to

attacks.

6 CONCLUSION
In this paper, we investigated the system-level impact of Neuro-

Hammer attacks on NVMs. We implemented NVgem5, a gem5-

compatible NVM extension, which allows the injection of delib-

erate bit-flips on cache and main memory level. Our experiment

demonstrated an attack that recovers the secret key during an RSA

signature generation by introducing a single bit-flip in the cache.

With the presented work, we show that the implications of the

NeuroHammer attack go far beyond isolated bit-flips in NVMs,

allowing attackers to compromise full-fledged systems. In the fu-

ture, we want to verify the attack on real hardware to verify our

simulation results.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strat-

egy - EXC 2092 CASA - 390781972, under the Priority Program

SPP 2253 Nano Security (Project RAINCOAT - Number: 440059533)

and by the Federal Ministry of Education and Research (BMBF,

Germany) in the project NEUROTEC II (16ME0398K, 16ME0399).

REFERENCES
[1] An Chen. A Review of Emerging Non-Volatile Memory (NVM) Technologies

and Applications. Solid-State Electronics (2016).
[2] Binkert, N., Beckmann, B., Black, G., et al. The Gem5 Simulator. SIGARCH

(2011).

[3] Boneh, D., DeMillo, R. A., and Lipton, R. J. On the Importance of Eliminating

Errors in Cryptographic Computations. J. Cryptol. (2001).
[4] Chiappetta, M., Savas, E., and Yilmaz, C. Real Time Detection of Cache-based

Side-Channel Attacks Using Hardware Performance Counters. Applied Soft
Computing 49 (2016), 1162–1174.

[5] Cojocar, L., Kim, J., Patel, M., et al. Are We Susceptible to Rowhammer? An

End-to-End Methodology for Cloud Providers. In IEEE Symposium on Security
and Privacy (SP) (May 2020), IEEE.

[6] Cojocar, L., Kim, J., Patel, M., et al. Are we susceptible to rowhammer? an

end-to-end methodology for cloud providers. In 2020 IEEE Symposium on Security
and Privacy (SP) (2020), IEEE, pp. 712–728.

[7] Cojocar, L., Razavi, K., Giuffrida, C., et al. Exploiting correcting codes:

On the effectiveness of ecc memory against rowhammer attacks. In 2019 IEEE
Symposium on Security and Privacy (SP) (2019), IEEE, IEEE, pp. 55–71.

[8] De, A., Khan, M. N. I., Park, J., et al. Replacing eFlash with STTRAM in IoTs:

Security Challenges and Solutions. Journal of Hardware and Systems Security
(2017).

[9] Demme, J., Maycock, M., Schmitz, J., et al. On The Feasibility of Online Mal-

ware Detection With Performance Counters. In The 40th Annual International
Symposium on Computer Architecture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013
(2013), A. Mendelson, Ed., ACM, pp. 559–570.

[10] DeSalvo, B., Vianello, E., Thomas, O., et al. Emerging resistive memories

for low power embedded applications and neuromorphic systems. In 2015 IEEE
International Symposium on Circuits and Systems (ISCAS) (2015), IEEE, pp. 3088–
3091.

[11] Di Dio, A., Koning, K., Bos, H., et al. Copy-on-flip: Hardening ecc memory

against rowhammer attacks. In Proceedings of the Network and Distributed System
Security (NDSS) Symposium (2023).

[12] Dodo, S. B., Bishnoi, R., and Tahoori, M. B. Secure STT-MRAM Bit-Cell Design

Resilient to Differential Power Analysis Attacks. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems (2020).

[13] Frigo, P., Vannacc, E., Hassan, H., et al. Trrespass: Exploiting the many sides

of target row refresh. In 2020 IEEE Symposium on Security and Privacy (SP) (2020),
IEEE, pp. 747–762.

[14] Gallo, M. L., and Sebastian, A. An Overview of Phase-Change Memory Device

Physics. J. Phys. D Appl. Phys. 53, 21 (2020), 213002.
[15] Gruss, D., Maurice, C., Wagner, K., et al. Flush+Flush: A Fast and Stealthy

Cache Attack. InDetection of Intrusions andMalware, and Vulnerability Assessment
- 13th International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016,
Proceedings (2016), J. Caballero, U. Zurutuza, and R. J. Rodríguez, Eds., vol. 9721

of Lecture Notes in Computer Science, Springer, pp. 279–299.
[16] Guide, P. Intel® 64 and ia-32 architectures software developer’s manual. Volume

3B: System programming Guide, Part 2, 11 (2011).

19

SaT-CPS ’24, June 21, 2024, Porto, Portugal Felix Staudigl et al.

[17] Intel. Intel® Optane™ Memory Series, 2022.

[18] Jiang, Y., Zhu, H., Shan, H., et al. Trrscope: Understanding target row refresh

mechanism for modern ddr protection. In 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (2021), IEEE, pp. 239–247.

[19] Khan, M. N. I., Bhasin, S., Yuan, A., et al. Side-Channel Attack on STTRAM

Based Cache for Cryptographic Application. In 2017 IEEE International Conference
on Computer Design (ICCD) (2017), IEEE.

[20] Khan, M. N. I., and Ghosh, S. Analysis of Row Hammer Attack on STTRAM. In

IEEE 36th International Conference on Computer Design (ICCD) (Oct. 2018), IEEE.
[21] Khan, M. N. I., and Ghosh, S. Information Leakage Attacks on Emerging

Non-Volatile Memory and Countermeasures. In Proceedings of the International
Symposium on Low Power Electronics and Design (2018), ACM.

[22] Kim, Y., Daly, R., Kim, J., et al. Flipping bits in memory without accessing them:

An experimental study of DRAM disturbance errors. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA) (June 2014), IEEE.

[23] Kim, Y., Daly, R., Kim, J. S., et al. Flipping bits in memory without accessing

them: An experimental study of DRAM disturbance errors. In ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN,
USA, June 14-18, 2014 (2014), IEEE Computer Society, pp. 361–372.

[24] Krautter, J., Mayahinia, M., Gnad, D. R., et al. Data Leakage through Self-

Terminated Write Schemes in Memristive Caches. In 2022 27th Asia and South
Pacific Design Automation Conference (ASP-DAC) (2022), IEEE.

[25] Lee, M.-J., Lee, C. B., Lee, D., et al. A Fast, High-Endurance and Scalable

Non-Volatile Memory Device Made from Asymmetric Ta2O5-x/TaO2-x Bilayer

Structures. Nature Materials (2011).
[26] Leidel, J. D., and Chen, Y. HMC-Sim-2.0: A Simulation Platform for Exploring

Custom Memory Cube Operations. In IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (May 2016), IEEE.

[27] Li, H. H., Chen, Y., Liu, C., et al. Looking ahead for resistive memory technology:

A broad perspective on ReRAM technology for future storage and computing.

IEEE Consumer Electronics Magazine 6, 1 (Jan. 2017), 94–103.
[28] Lipp, M., Schwarz, M., Raab, L., et al. Nethammer: Inducing rowhammer faults

through network requests. In 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW) (2020), IEEE, pp. 710–719.

[29] Liu, F., Yarom, Y., Ge, Q., et al. Last-level cache side-channel attacks are practical.

In 2015 IEEE Symposium on Security and Privacy (May 2015), IEEE.

[30] Liu, F., Zhao, W., Zhao, Y., et al. SME: ReRAM-based Sparse-Multiplication-

Engine to Squeeze-Out Bit Sparsity of Neural Network, 2021.

[31] Mao, M., Cao, Y., Yu, S., et al. Programming Strategies to Improve Energy

Efficiency and Reliability of ReRAM Memory Systems. In IEEE Workshop on
Signal Processing Systems (SiPS) (Oct. 2015), IEEE.

[32] Mark Seaborn, T. D. Exploiting the DRAM Rowhammer Bug to Gain Kernel

Privileges, 2015.

[33] Morelos-Zaragoza, R. H. The Art of Error Correcting Coding. John Wiley &

Sons, 2006.

[34] Mutlu, O., and Kim, J. S. Rowhammer: A retrospective. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39, 8 (2019), 1555–1571.

[35] Osvik, D. A., Shamir, A., and Tromer, E. Cache Attacks and Countermea-

sures: The Case of AES. In Topics in Cryptology – CT-RSA 2006. Springer Berlin
Heidelberg, Berlin, Heidelberg, Jan. 2006, pp. 1–20.

[36] Parkin, S., Jiang, X., Kaiser, C., et al. Magnetically Engineered Spintronic

Sensors and Memory. Proc. IEEE 91, 5 (2003), 661–680.
[37] Poremba, M., and Xie, Y. NVMain: An Architectural-Level Main Memory

Simulator for Emerging Non-volatile Memories. In IEEE Computer Society Annual
Symposium on VLSI (Aug. 2012), IEEE.

[38] Rai, S., Garg, S., Pilato, C., et al. Vertical IP Protection of the Next-Generation

Devices: Quo Vadis? In Design, Automation Test in Europe Conference Exhibition
(DATE) (2021), pp. 1905–1914.

[39] Razavi, K., Gras, B., Bosman, E., et al. Flip feng shui: Hammering a needle

in the software stack. In 25th USENIX Security Symposium (USENIX Security 16)
(Austin, TX, Aug. 2016), USENIX Association, pp. 1–18.

[40] Rosenfeld, P., Cooper-Balis, E., and Jacob, B. DRAMSim2: A Cycle Accurate

Memory System Simulator. IEEE Computer Architecture Letters 10, 1 (Jan. 2011),
16–19.

[41] Saileshwar, G., and Qureshi, M. K. MIRAGE: Mitigating Conflict-Based Cache

Attacks with a Practical Fully-Associative Design. In 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021 (2021), M. Bailey and

R. Greenstadt, Eds., USENIX Association, pp. 1379–1396.

[42] Seaborn, M., and Dullien, T. Exploiting the DRAM Rowhammer Bug to gain

Kernel Privileges. Black Hat (2015).
[43] Serino, A., and Cheng, L. Real-time operating systems for cyber-physical

systems: Current status and future research. In 2020 International Conferences

on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics) (2020),
IEEE, pp. 419–425.

[44] Sisejkovic, D., and Leupers, R. Trustworthy Hardware Design with Logic

Locking. In IFIP/IEEE 29th International Conference on Very Large Scale Integration
(VLSI-SoC) (2021), pp. 1–2.

[45] Smith, A. J. Cache Memories. ACM Computing Surveys 14, 3 (Sept. 1982), 473–530.
[46] Song,W., and Liu, P. Dynamically FindingMinimal Eviction Sets Can Be Quicker

Than You Think for Side-Channel Attacks against the LLC. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses, RAID (2019).

[47] Staudigl, F., Al Indari, H., Schön, D., et al. NeuroHammer: Inducing Bit-Flips

in Memristive Crossbar Memories. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (2022), IEEE.

[48] Staudigl, F., Merchant, F., and Leupers, R. A Survey of Neuromorphic

Computing-in-Memory: Architectures, Simulators, and Security. IEEE Design &
Test (2022).

[49] Tanenbaum, A. S., and Goodman, J. Computerarchitektur: Strukturen, Konzepte,
Grundlagen. Pearson Studium München et al., 2006.

[50] Tatar, A., Konoth, R. K., Athanasopoulos, E., et al. Throwhammer: Rowham-

mer attacks over the network and defenses. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18) (2018), pp. 213–226.

[51] Thoma, J. P., and Güneysu, T. Write Me and I’ll Tell You Secrets - Write-After-

Write Effects On Intel CPUs. In 25th International Symposium on Research in
Attacks, Intrusions and Defenses, RAID (2022), ACM.

[52] Thoma, J. P., Niesler, C., Funke, D. A., et al. ClepsydraCache – Preventing

Cache Attacks with Time-Based Evictions. In 32nd USENIX Security Symposium
(USENIX Security 23) (Anaheim, CA, Aug. 2023), USENIX Association.

[53] Thoziyoor, S., Muralimanohar, N., Ahn, J. H., et al. CACTI 5.1. Tech. rep.,

Technical Report HPL-2008-20, HP Labs, 2008.

[54] Tromer, E., Osvik, D. A., and Shamir, A. Efficient Cache Attacks on AES, and

Countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.
[55] Van Schaik, S., Milburn, A., Osterlund, S., et al. Ridl: Rogue in-flight data

load. In 2019 IEEE Symposium on Security and Privacy (SP 2019) (United States,

May 2019), Proceedings - IEEE Symposium on Security and Privacy, Institute of

Electrical and Electronics Engineers Inc., pp. 88–105. 40th IEEE Symposium on

Security and Privacy, SP 2019 ; Conference date: 19-05-2019 Through 23-05-2019.

[56] Vieira, J., Roma, N., Falcao, G., et al. gem5-ndp: Near-Data Processing Archi-

tecture Simulation From Low Level Caches to DRAM. In IEEE 34th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD) (Nov. 2022), IEEE.

[57] Vila, P., Köpf, B., and Morales, J. F. Theory and practice of finding eviction

sets. In 2019 IEEE Symposium on Security and Privacy (SP) (2019), IEEE, pp. 39–54.
[58] von Witzleben, M., Fleck, K., Funck, C., et al. Investigation of the Impact of

High Temperatures on the Switching Kinetics of Redox-based Resistive Switching

Cells using a Highspeed Nanoheater. Adv. Electron. Mat. (2017).
[59] Waser, R., and Aono, M. Nanoionics-based Resistive Switching Memories.

Nature Materials (2007).
[60] Werner, M., Unterluggauer, T., Giner, L., et al. ScatterCache: Thwarting

Cache Attacks via Cache Set Randomization. In USENIX (2019), N. Heninger and

P. Traynor, Eds.

[61] Xu, S., Chen, X., Wang, Y., et al. PIMSim: A Flexible and Detailed Processing-

in-Memory Simulator. IEEE Computer Architecture Letters 18, 1 (Jan. 2019), 6–9.
[62] Yan, M., Sprabery, R., Gopireddy, B., et al. Attack directories, not caches: Side

channel attacks in a non-inclusive world. In 2019 IEEE Symposium on Security
and Privacy (SP) (2019), pp. 888–904.

[63] Yang, C., Liu, B., Li, H., et al. Thwarting Replication Attack Against Memristor-

Based Neuromorphic Computing System. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2020).

[64] Yarom, Y., and Falkner, K. FLUSH+RELOAD: A High Resolution, Low Noise,

L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014 (2014), K. Fu and J. Jung, Eds.,

USENIX Association, pp. 719–732.

[65] Zahoor, F., Zulkifli, T. Z. A., and Khanday, F. A. Resistive Random Access

Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance,

Multilevel Cell (MLC) Storage, Modeling, and Applications. Nanoscale Research
Letters (2020).

[66] Zhang, T., Zhang, Y., and Lee, R. B. CloudRadar: A Real-Time Side-Channel

Attack Detection System in Clouds. In Research in Attacks, Intrusions, and Defenses
- 19th International Symposium, RAID 2016, Paris, France, September 19-21, 2016,
Proceedings (2016), F. Monrose, M. Dacier, G. Blanc, and J. García-Alfaro, Eds.,

vol. 9854 of Lecture Notes in Computer Science, Springer, pp. 118–140.

20

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Rowhammer
	2.3 Resistive RAM (ReRAM)
	2.4 NeuroHammer
	2.5 Caches

	3 Methodology
	3.1 NVgem5
	3.2 Threat Model

	4 Results
	4.1 Main Memory
	4.2 Cache

	5 Countermeasures
	6 Conclusion
	Acknowledgments
	References

