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1. Introduction and main results

The goal of this paper is to construct transverse foliations for Reeb flows on the tight 
3-sphere with prescribed binding orbits. Our existence theorem uses specific assumptions 
that hold for energy levels of Hamiltonians with two degrees of freedom that appear in 
concrete problems. Hence, we are able to study certain classes of degenerate Reeb flows 
on the tight 3-sphere and attack questions in celestial mechanics.

The main motivation comes from the quest for homoclinics to the Lyapunov orbits 
in energy levels of the planar circular restricted 3-body problem. We are particularly 
interested in the case where the energy is slightly above the first critical value; in this 
case, a Lyapunov orbit appears between the massive bodies. The notion of chaos in the 
planar circular restricted 3-body problem is historically connected to such homoclinics. 
However, the existence of homoclinics to the Lyapunov orbit in this specific regime has 
only been proved for small mass ratios by Llibre, Martínez, and Simó in [24] and studied 
numerically in the same work. The existence of such homoclinic orbits for arbitrary mass 
ratio remains open. This problem is a point of entrance for symplectic methods since the 
desired homoclinic connection would follow if one can find a transverse foliation with the 
Lyapunov orbit as part of the binding.
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1.1. Transverse foliations and weakly convex Reeb flows

Let ψt, t ∈ R, be a smooth flow on a smooth closed oriented 3-manifold M . A trans-
verse foliation adapted to (M, ψt) is a singular foliation F of M satisfying the following:

(i) The singular set P of F consists of finitely many simple periodic orbits P1, . . . , Pm, 
called binding orbits. The set P is called the binding of F .

(ii) The complement M \ ∪P∈PP is smoothly foliated by surfaces, called the regular 
leaves of F . Every regular leaf of F is a properly embedded surface Σ̇ ↪→ M\∪P∈PP . 
The closure Σ = cl(Σ̇) is an immersed compact surface whose boundary is formed 
by binding orbits in P. The components of ∂Σ are called the asymptotic limits of 
Σ̇, and the ends of Σ̇ are called the punctures of Σ̇. Each Σ̇ is transverse to the flow, 
and each puncture has an associated asymptotic limit.

(iii) The orientation of M and the flow provide each regular leaf Σ̇ with an orientation 
in such a way that trajectories intersect leaves positively. A puncture of Σ̇ is called 
positive if the orientation of its asymptotic limit as the boundary of Σ coincides 
with the orientation of the flow. Otherwise, the puncture is called negative.

A transverse foliation, all of whose regular leaves have genus zero, is called a genus 
zero transverse foliation. This definition was introduced in [20] and is based on the finite 
energy foliations introduced by Hofer, Wysocki, and Zehnder in [19], where they prove 
the following remarkable result for Reeb flows on the tight three-sphere.

Theorem 1.1 (Hofer-Wysocky-Zehnder [19]). Let λ = fλ0 be a nondegenerate contact 
form on the tight three-sphere (S3, ξ0). Then the Reeb flow of λ admits a genus zero 
transverse foliation whose binding orbits have Conley-Zehnder index equal to 1, 2, or 3.

We want to construct genus zero transverse foliations adapted to Reeb flows on the 
tight 3-sphere (S3, ξ0) without assuming nondegeneracy on λ. We are particularly inter-
ested in transverse foliations whose binding contains a prescribed set of index-2 Reeb 
orbits.

Here, S3 = {(x1, x2, y1, y2) ∈ R4 | x2
1 + x2

2 + y2
1 + y2

2 = 1}, where (x1, x2, y1, y2)
are canonical coordinates on R4. The (tight) contact structure ξ0 on S3 is the one 
induced by the Liouville form on R4, that is ξ0 = kerλ0, where λ0 is the restriction of 
1
2
∑2

i=1(xidyi − yidxi) to S3.
Let λ be a contact form on (S3, ξ0), that is λ = fλ0 for some smooth function 

f : S3 → (0, +∞). Its Reeb vector field R = Rλ is uniquely determined by dλ(R, ·) = 0
and λ(R) = 1, and its flow φt is called the Reeb flow of λ.

A periodic orbit of λ, also called a Reeb orbit, is a pair P = (x, T ), where x : R → M

is a periodic trajectory of the Reeb flow of λ and T > 0 is a period of x. If T is the least 
positive period of x, P is called simple. The Reeb orbits (x, T ) and (y, T ′) satisfying 
x(R) = y(R) and T = T ′ are identified and we denote by P(λ) the set of equivalence 
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classes of periodic trajectories of λ. We may also denote by P the set x(R) ⊂ S3. The 
action 

∫
[0,T ] x

∗λ of P = (x, T ) coincides with its period T since λ(R) = 1. A periodic 
orbit P = (x, T ) ∈ P(λ) is said to be nondegenerate if 1 is not an eigenvalue of the 
linearized map dφT : ξx(0) → ξx(0). The contact form λ is called nondegenerate if every 
periodic orbit of λ is nondegenerate.

The symplectic vector bundle (ξ0, dλ|ξ0) → S3 admits a unique symplectic trivializa-
tion up to homotopy. Hence, the Conley-Zehnder index CZ(P ) of every periodic orbit 
P ∈ P(λ) is uniquely determined by any such trivialization; see section 2 for a definition 
of the Conley-Zehnder index. We will sometimes refer to the Conley-Zehnder index of 
a periodic orbit P simply as the index of P . Given j ∈ Z, denote by Pj(λ) ⊂ P(λ) the 
set of Reeb orbits with Conley-Zehnder index j, and denote by Pu,−1

j (λ) ⊂ Pj(λ) the 
subset of index-j Reeb orbits that are unknotted and have self-linking number −1; see 
section 2 for the definition of self-linking number.

Definition 1.2. A contact form λ on (S3, ξ0) is called weakly convex if CZ(P ) ≥ 2 for 
every P ∈ P(λ), that is Pj(λ) = ∅ ∀j ≤ 1.

The following theorem is a particular case of Theorem 1.1.

Theorem 1.3 (Hofer-Wysocki-Zehnder [19], Siefring [32]). If λ = fλ0 is a nondegenerate 
weakly convex contact form on the tight three-sphere (S3, ξ0), then its Reeb flow admits 
a genus zero transverse foliation satisfying the following conditions:

(i) Every binding orbit has index 2 or 3.
(ii) Every regular leaf is either a plane asymptotic to a binding orbit or a cylinder 

connecting an index-3 binding orbit at a positive end to an index-2 binding orbit at 
a negative end.

(iii) If there exists only one binding orbit, then its index is 3, and the transverse foliation 
determines an open book decomposition of (S3, ξ0) whose pages are disk-like global 
surfaces of section.

(iv) Every index-2 binding orbit bounds a pair of rigid planes whose closures form a C1

two-sphere. The complement of the union of these two-spheres in S3 contains an 
index-3 binding orbit in each component. Each index-3 binding orbit admits rigid 
cylinders connecting it to the index-2 orbits at the boundary of the corresponding 
component. The complement of the rigid cylinders in that component is foliated by 
finitely many families of planes asymptotic to the index-3 binding orbit.

Remark 1.4. Theorem 1.3 is discussed in [19, section 7.2] without further details. The 
existence of precisely two distinct rigid planes asymptotic to a given index-2 binding 
orbit follows from standard regularity, compactness, and intersection arguments. See 
the discussion in [23, Proposition 4.1]. If fact, the orbits that obstruct the existence of 
these rigid planes are the index-1 orbits, which do not exist by assumption. Siefring’s 
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intersection theory [32], see also [14], implies that these two planes approach the binding 
orbit through opposite directions forming a C1-embedded two-sphere. This is explained 
in [6, Appendix C].

The following definition was first introduced in [8], motivated both by Theorem 1.3
and the 3 − 2 − 3 foliations studied in [6,7], see Fig. 1.1 below.

Definition 1.5. A (genus zero) transverse foliation as described in Theorem 1.3 is called 
a weakly convex foliation if it has at least one index-2 binding orbit. In particular, all 
regular leaves are planes and cylinders.

It follows from Theorem 1.3 that every nondegenerate weakly convex Reeb flow on the 
tight three-sphere either admits an open book decomposition whose pages are disk-like 
global surfaces of section, or a weakly convex foliation whose regular leaves are planes 
and cylinders transverse to the flow. It is our goal to construct weakly convex foliations 
for a possibly degenerate Reeb flow on the tight three-sphere with a prescribed set of 
index-2 binding orbits.

1.2. Main results

In the following we assume that the contact form λ on the tight 3-sphere is weakly 
convex, that P2(λ) is non-empty and finite, and that every orbit in P2(λ) is hyperbolic, 
unknotted, and has self-linking number −1. Moreover, we assume that the orbits in P2(λ)
are mutually unlinked and that their actions are small when compared to the actions 
of the simple orbits with higher indices. We also assume that each orbit in P2(λ) does 
not link with any orbit in Pu,−1

3 (λ). Recall that a Reeb orbit P ′ = (x′, T ′), which is 
geometrically distinct from an unknotted periodic orbit P , is said to be linked with P
if 0 �= [x′] ∈ H1(S3 \ P ; Z) ∼= Z. Otherwise, we say that P ′ is not linked with P . The 
linking number between P and P ′ is denoted link(P, P ′).

Our main result states that under the above-mentioned hypotheses, the Reeb flow 
of λ admits a weakly convex foliation so that every orbit in P2(λ) is a binding orbit. 
Moreover, all other binding orbits have index 3. See also Theorem 3.19.

Theorem 1.6. Let λ = fλ0 be a weakly convex contact form on (S3, ξ0). Assume that the 
following conditions are satisfied:

I. P2(λ) = Pu,−1
2 (λ) is a non-empty finite set {P2,1, . . . , P2,l} of mutually unlinked 

hyperbolic periodic orbits.
II. If P ∈ P(λ) is geometrically distinct from any orbit in Pu,−1

2 (λ), then its action is 
greater than the action of every orbit in Pu,−1

2 (λ).
III. If P ∈ Pu,−1

3 (λ), then link(P, P2,i) = 0, ∀i = 1, . . . , l.

Then the Reeb flow of λ admits a weakly convex foliation F so that:
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Fig. 1.1. A weakly convex transverse foliation on (S3, ξ0), called 3 − 2 − 3 foliation. The binding is formed 
by precisely one index-2 orbit P2 and two index-3 orbits P3, P ′

3.

(i) Every orbit in P2(λ) is a binding orbit.
(ii) There are l + 1 remaining binding orbits P3,1, . . . , P3,l+1 ∈ Pu,−1

3 (λ).
(iii) For each i ∈ {1, . . . , l}, there exists a pair of rigid planes Ui,1, Ui,2 ∈ F , so that 

each one of them is asymptotic to P2,i at its positive puncture. Moreover, Si =
Ui,1 ∪ P2,i ∪ Ui,2 ↪→ S3 is a C1-embedded 2-sphere.

(iv) The open set S3\
⋃l

i=1 Si has l+1 components U1, . . . , Ul+1. For each j ∈ {1, . . . , l+
1} it holds P3,j ⊂ Uj.

(v) If Si ⊂ ∂Uj, then F contains a rigid cylinder Vj,i ⊂ Uj asymptotic to P3,j at its 
positive puncture and to P2,i at its negative puncture.

(vi) For each j ∈ {1, . . . , l+1}, there exist k̃j ≥ 1 families of planes parametrized by the 
interval (0, 1), so that each such plane is asymptotic to P3,j at its positive puncture. 
Here, k̃j is the number of components of ∂Uj. At each end, every such family of 
planes breaks onto a rigid cylinder Vj,i connecting P3,j to some P2,i and a rigid 
plane asymptotic to P2,i.

Remark 1.7. A similar result holds for general contact forms on (S3, ξ0), not necessarily 
weakly convex. Indeed, let λ = fλ0 be a contact form on (S3, ξ0). Let C = C(λ) > 0 be 
the constant given in Proposition 2.6. Suppose that there exist l orbits P2,1, . . . , P2,l ∈
Pu,−1

2 (λ) as in I, and that every other Reeb orbit with index −1, 0, 1 or 2 has action > C. 
Under the additional conditions II and III, the conclusions of Theorem 1.6 still hold.

Theorem 1.6 is inspired by Theorems 1.1 and 1.3. Our results only make non-
degeneracy hypotheses on the periodic orbits in P2(λ) and are intended to apply to 
classical problems emerging in Celestial Mechanics. (See Fig. 1.1.)

Our next result uses Theorem 1.6 to study certain Reeb flows of real-analytic con-
tact forms that appear in concrete problems. To prepare for the statement we need to 
introduce some notation.
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Consider a contact form λ on (S3, ξ0). Let F be a weakly convex foliation adapted 
to the Reeb flow of λ. Let U be a connected component of the complement of the union 
of the rigid spheres, and P be a binding orbit in ∂U . The stable manifold W s(P ) is 
an immersed cylinder transverse to the rigid sphere containing P . Hence, there are two 
well-defined local branches of W s(P ) through P , and only one of them is contained in 
U . We denote by W s

U(P ) the branch of W s(P ) that contains the local branch in U . The 
branch Wu

U (P ) of the unstable manifold Wu(P ) is defined analogously.

Theorem 1.8. Let λ = fλ0 be a real-analytic contact form on (S3, ξ0) satisfying the 
conclusions of Theorem 1.6, i.e., admitting a weakly convex foliation as described in 
Theorem 1.6. Suppose that the actions of the orbits in P2(λ) coincide. Let U be a con-
nected component of the complement of the rigid spheres. Then the following statements 
hold:

(i) Suppose that for every binding orbit P in ∂U there exist binding orbits P ′, P ′′ in ∂U
such that W s

U (P ) = Wu
U (P ′) and Wu

U (P ) = W s
U (P ′′). Then there exists an invariant 

set A ⊂ U which admits a cross-section. This cross-section is a punctured disk 
bounded by the index-3 binding orbit in U , and the first return map has an infinite 
twist near each puncture. In particular, A contains infinitely many periodic orbits.

(ii) Suppose that W s
U(P ) �= Wu

U (P ′) and that Wu
U (P ) �= W s

U (P ′) holds for all pairs of 
binding orbits P, P ′ in ∂U . Then there exists an invariant set Λ ⊂ U such that the 
Reeb flow restricted to Λ has positive topological entropy.

The assumption that the actions of the Reeb orbits in P2(λ) coincide and are small 
when compared to the actions of the other Reeb orbits are usually verified for Hamilto-
nian dynamics near certain critical energy surfaces as we later explain.

The foliations obtained and used in this paper, as well as the techniques involved in 
the proof of Theorem 1.6, were introduced by Hofer, Wysocki and Zehnder in [19]. In 
the degenerate case, such techniques were further developed in [16]. The argument to 
get intersections of stable and unstable manifolds of binding orbits with Conley-Zehnder 
index equal to 2 is originally found in [19]. In the real-analytic case, we use Conley’s ideas 
from [4]. As for the construction of a Bernoulli shift subsystem, we follow Moser’s book 
[27]. Genus zero transverse foliations with a single index-2 binding orbit were treated in 
[6,7,30], see also [23]. The reader finds more on transverse foliations in the surveys [8]
and [20] and references therein.

1.3. Sketch of proof of Theorem 1.6

Consider sequences λn → λ of non-degenerate contact forms and Jn → J of generic 
compatible complex structures on kerλn = kerλ so that for every n the R-invariant 
almost complex structure induced by (λn, Jn) admits a finite energy foliation Fn as in 
Theorem 2.5 below. We show in Proposition 2.6 that the actions of the binding orbits 
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of Fn are uniformly bounded and thus assumptions I and III imply that they consist of 
continuations of the l orbits in P2(λ), and of l + 1 index-3 orbits Pn

3,1, . . . P
n
3,l+1. More-

over, Fn projects to a genus zero transverse foliation whose regular leaves are planes 
and cylinders asymptotic to the binding orbits, see Proposition 3.1. Now we want to 
push Fn to a limiting finite energy foliation F adapted to (λ, J). At this point, some 
difficulties show up in the compactness argument. It is crucial that we start with an 
almost complex structure J which is generic enough so that some particular low energy 
pseudo-holomorphic curves asymptotic to the orbits in P2(λ) do not exist. Here we use 
assumption II, see Lemma 3.3. For such generic J ’s we are able to control the rigid planes 
asymptotic to the index-2 orbits proving that they converge to corresponding rigid planes 
associated with (λ, J), see Proposition 3.5. The action boundedness of the binding orbits 
Pn

3,1, . . . , P
n
3,l+1 allows us to find distinct limiting Reeb orbits P 0

3,1, . . . , P
0
3,l+1 ∈ Pu,−1

3 (λ)
in the complement of the rigid planes. Now some undesired low action Reeb orbits of λ
that are unlinked with any of those index-3 orbits may obstruct the existence of a trans-
verse foliation with binding orbits P 0

3,1, . . . , P
0
3,l+1 and the orbits in P2(λ). To overcome 

this difficulty we may need to re-start the procedure of taking sequences λn, Jn as above 
so that the previously found index-3 orbits and an undesired unlinked orbit are also Reeb 
orbits of λn for every n. Then we obtain new limiting index-3 Reeb orbits P 1

3,1, . . . , P
1
3,l+1

that necessarily link with the previous unlinked orbit. Repeating the aforementioned pro-
cedure of taking new sequences λn, Jn that freeze not only an eventual new unlinked 
Reeb orbit of λ, but also the previously frozen Reeb orbits, we show that the process 
must terminate after finitely many steps. Hence we eventually find special index-3 orbits 
P3,1, . . . , P3,l+1 ∈ Pu,−1

3 (λ) that are necessarily linked with all Reeb orbits that are not 
covers of the orbits in P2(λ), see Proposition 3.10. These special orbits and the orbits 
in P2(λ) are candidates for binding orbits of the desired foliation. We then take limits 
of the planes asymptotic to the index-3 orbits and of the rigid cylinders connecting the 
index-3 to the index-2 orbits, to obtain a genus zero transverse foliation. This foliation, 
however, may include leaves with more than one negative puncture asymptotic to dis-
tinct orbits in P2(λ). Using uniqueness of such pseudo-holomorphic curves, we show in 
Proposition 3.15 the existence of at least one plane asymptotic to each index-3 orbit. Af-
ter slightly changing the almost complex structure near the rigid planes to rule out such 
non-generic curves with multiple negative ends at index-2 orbits, we obtain the desired 
foliation from the compactness properties of the planes asymptotic to the index-3 orbits 
and an application of the gluing theorem.

1.4. Potential applications

Let H : R4 → R be a smooth Hamiltonian. Assume that 0 ∈ R is a critical value of H
and that the critical set H−1(0) contains finitely many saddle-center equilibrium points 
p1, . . . , pm. Assume that as the energy changes from negative to positive, a sphere-like 
component CE ⊂ H−1(E), E < 0, gets connected to other components of the energy 
surface, precisely at p1, . . . , pm. In particular, CE becomes a singular sphere-like subset 
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C0 ⊂ H−1(0) with singularities at p1, . . . , pm. For every E > 0 small, H−1(E) contains 
an index-2 hyperbolic orbit γi in the neck-region about pi, i = 1, . . . , m. The orbit γi, 
called the Lyapunoff orbit, bounds a pair of planes in the energy surface, which are 
transverse to the flow and form with γi a 2-sphere Si ⊂ H−1(E), ∀i. We may wish to 
study the dynamics on the subset SE ⊂ H−1(E) near C0, which is bounded by the 
union of the 2-spheres Si. The subset SE is diffeomorphic to a 3-sphere with m disjoint 
3-balls removed. In many situations, SE is the region in H−1(E) where the interesting 
dynamics takes place. We thus may assume, possibly after changing H away from SE , 
that the components which get connected to CE are formed by m suitable sphere-like 
hypersurfaces. In particular, SE, E > 0 small, is a subset of a non-convex sphere-like 
subset ŜE ⊂ H−1(E). The Hamiltonian flow on ŜE is equivalent to a Reeb flow on the 
tight 3-sphere. If H satisfies some mild convexity conditions on C0, then, for energies 
E > 0 sufficiently small, ŜE satisfies the hypotheses of Theorem 1.6. Indeed, ŜE admits 
no periodic orbits with index ≤ 1, and index-3 orbits do not intersect the 2-spheres Si. 
The transverse foliation given in Theorem 1.6 restricts to a transverse foliation on SE

that contains the Lyapunoff orbits and an index-3 orbit as binding orbits. Dynamical 
properties such as multiplicity of periodic orbits and the existence of homoclinics/het-
eroclinics to the Lyapunoff orbits follow from the transverse foliation. If H satisfies a 
particular Zm-symmetry, then Theorem 1.8 applies, deriving more information about 
the dynamics. As an example, the Hénon-Heiles system is Z3-symmetric and thus the 
three index-2 Lyapunoff orbits exist and have the same arbitrarily small action for ener-
gies slightly above its critical value 1

6 . We will explore this example further in [5]. The 
circular planar restricted three-body problem is Z2-symmetric and fits a similar setting 
after regularizing collisions with one of the primaries. We expect to find applications 
of Theorems 1.6 and 1.8 for certain mass ratios and energies slightly above the first 
Lagrange value.
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2. Basic definitions

Let M be a closed three-manifold equipped with a contact form λ. Let P = (x, T ) ∈
P(λ), xT := x(T ·) : R/Z → M and J ∈ J (λ), where J (λ) denotes the set of dλ-
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compatible almost complex structures on the contact structure ξ = kerλ. The asymptotic 
operator AP = AP,J is the unbounded self-adjoint operator acting on sections of ξ along 
P

AP (η) := −J |xT
· LẋT

η ∈ L2(x∗
T ξ),

for every η ∈ W 1,2(x∗
T ξ), where LẋT

η is the Lie derivative of η in the direction of ẋT

(LẋT
η)(t) := d

ds

∣∣∣∣
s=0

{
Dϕ−1

sT (xT (t + s)) · η(t + s)
}
.

The eigenvalues of AP are real and accumulate only at ±∞. A non-trivial eigenvector 
never vanishes and thus, for a fixed frame Ψ of the contact structure along P , determines 
a winding number windΨ(μ) ∈ Z that depends only on the eigenvalue μ. The function 
μ 
→ windΨ(μ) is monotonically increasing and surjective and satisfies #wind−1

Ψ (k) =
2, ∀k ∈ Z, where the multiplicities are counted. See [14, Section 3].

The periodic orbit P is degenerate if and only if 0 is an eigenvalue of AP . Denoting by 
wind<0

Ψ (AP ) the winding number of the largest negative eigenvalue and by wind≥0
Ψ (AP )

the winding number of the smallest non-negative eigenvalue, the (generalized) Conley-
Zehnder index of P with respect to the frame Ψ is defined as CZΨ(P ) := wind<0

Ψ (AP ) +
wind≥0

Ψ (AP ). It depends on the frame Ψ but not on J . If (M, ξ) = (S3, ξ0), we fix a 
frame induced by a global trivialization of ξ and omit Ψ in the notation.

Now let x : R/Z → (S3, ξ0) be an unknot transverse to the standard contact structure 
ξ0, and let u : D → S3 be an embedded disk, where D = {z ∈ C : |z| ≤ 1}. Assume that u
is a spanning disk for x, that is x(t) = u(e2πit), ∀t ∈ R/Z. Choose a non-vanishing section 
X of the pullback bundle u∗ξ0 → D. Fix a Riemannian metric g on S3 and denote by exp 
the associated exponential map. If X is sufficiently small, then xX(R/Z) ∩ x(R/Z) = ∅, 
where xX(t) := expx(t) X(t), ∀t ∈ R/Z. We may assume that xX is transverse to u. The 
self-linking number of x, denoted by sl(x), is defined as the algebraic intersection number 
xX · u. Here, S3 is oriented in such a way that λ ∧ dλ > 0. The orientation of xX is the 
one induced by x, and x is oriented as the boundary of u. The self-linking number is 
independent of the involved choices.

2.1. Pseudo-holomorphic curves

In this section, λ is a contact form on a smooth closed three-manifold M and ξ = kerλ
is the induced contact structure. The Reeb vector field R = Rλ is defined as before. 
The symplectization of M is the symplectic manifold (R ×M, d(erλ)), where r is the R-
coordinate. For each J ∈ J (λ), the pair (λ, J) determines an R-invariant almost complex 
structure J̃ on R ×M so that J̃ · ∂r = R and J̃ |ξ = J . Let (S, j) be a closed connected 
Riemann surface, and let Γ ⊂ S be a finite set of punctures. We consider finite energy 
J̃-holomorphic curves in R ×M , i.e. smooth maps ũ = (a, u) : S \Γ → R ×M satisfying 
dũ◦j = J̃(ũ) ◦dũ, and having finite Hofer’s energy 0 < E(ũ) = supψ∈Λ

∫
ũ∗d(ψ(a)λ) <
S\Γ
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+∞, where Λ is the set of non-decreasing smooth functions ψ : R → [0, 1]. If S = S2 and 
#Γ = 1, then ũ is called a finite energy plane.

Definition 2.1. A J̃-holomorphic map ũ : S \ Γ → R ×M is called somewhere injective if 
there exists z0 ∈ S \ Γ such that dũ(z0) �= 0 and ũ−1(ũ(z0)) = {z0}.

Given a puncture z0 ∈ Γ, choose a holomorphic chart φ : (D\∂D, 0) → (φ(D\∂D), z0)
centered at z0. The map ũ ◦ φ(e−2π(s+it)), (s, t) ∈ [0, +∞) × R/Z, will be still denoted 
by ũ = (a, u). The finite energy condition implies that ũ is non-constant and the limit 
m = mz0 := lims→+∞

∫
{s}×S1 u

∗λ exists. The puncture z0 is said to be removable 
if m = 0. In this case, ũ can be smoothly extended over z0 by Gromov’s removable 
singularity theorem. The puncture z0 is called positive or negative if m > 0 and m < 0, 
respectively. In the following, we tacitly assume that all punctures are non-removable. 
Stokes’ theorem tells us that the set Γ is non-empty. We assign the sign ε = ±1 to each 
puncture, depending on whether it is positive or negative, respectively. This induces a 
decomposition Γ = Γ+ ∪ Γ−.

Theorem 2.2 (Hofer [13, Theorem 31]). Let z0 ∈ Γ be a non-removable puncture of 
a finite energy pseudo-holomorphic curve ũ = (a, u) : S \ Γ → R × M . Let (s, t) ∈
[0, +∞) ×R/Z be holomorphic polar coordinates centered at z0 as above, and set ũ(s, t) =
(a(s, t), u(s, t)). Let ε ∈ {−1, 1} be the sign of z0. Then, for every sequence sn → +∞, 
there exist a subsequence snk

of sn and a periodic orbit P = (x, T ) ∈ P(λ) so that 
u(snk

, ·) → x(εT ·) in C∞(R/Z, M) as k → +∞.

The periodic orbit in the previous statement is referred to as an asymptotic limit of 
ũ at z0 ∈ Γ. Denote the set of asymptotic limits of ũ at z0 by Ω = Ω(z0) ⊂ P(λ). This 
set is non-empty, compact and connected. See for instance [12, Lemma 13.3.1]. Explicit 
examples of finite energy curves with the image of Ω being diffeomorphic to the two-torus 
are provided by Siefring in [32].

The following theorem due to Hofer, Wysocki and Zehnder tells us that if an asymp-
totic limit of ũ at z0 ∈ Γ is non-degenerate, then Ω consists of a single Reeb orbit. 
Moreover, ũ has exponential convergence to the asymptotic limit.

Theorem 2.3 (Hofer-Wysocki-Zehnder [15]). Let z0 ∈ Γ be a non-removable puncture of a 
finite energy pseudo-holomorphic curve ũ = (a, u) : S \Γ → R ×M . Choose holomorphic 
polar coordinates (s, t) ∈ [0, +∞) × R/Z near z0, and set ũ(s, t) = (a(s, t), u(s, t)) as 
before. Assume that P = (x, T ) ∈ P(λ) is a non-degenerate asymptotic limit of ũ at z0. 
Then there exist c, d ∈ R such that

(i) supt∈S1 |a(s, t) − εTs − d| → 0 as s → +∞.
(ii) u(s, ·) → x(εT · +c) in C∞(R/Z, M) as s → +∞.
(iii) let π : TM → ξ be the projection along the Reeb direction. If π ◦ du does not vanish 

identically near z0, then π ◦ du(s, t) �= 0 for every s � 0.
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(iv) define ζ(t, s) by u(s, t) = expx(εTt+c) ζ(εT t + c, s), ∀t ∈ R/Z. Then there exist 
an eigenvalue μ of AP , with εμ < 0, and a μ-eigenfunction e(t) ∈ ξ|x(Tt), t ∈
R/Z, so that ζ(t, s) = eεμs (e(t) + R1(s, t)) , s � 0, where the remainder R1 and its 
derivatives converge to 0, uniformly in t, as s → +∞.

If ũ admits a single asymptotic limit P at z0 ∈ Γ and the asymptotic behavior of 
ũ near z0 is as in Theorem 2.3 for a non-vanishing eigenvalue μ of AP , then we say 
that z0 is a non-degenerate puncture of ũ and that ũ exponentially converges to P
at z0. In the case every asymptotic limit of a finite energy pseudo-holomorphic curve 
ũ = (a, u) is non-degenerate, its Conley-Zehnder index and Fredholm index are defined 
as CZ(ũ) :=

∑
z∈Γ+

CZ(Pz) −
∑

z∈Γ−
CZ(Pz), where Pz is the asymptotic limit of ũ at 

z ∈ Γ, and Ind(ũ) := CZ(ũ) −χ(S) + #Γ, respectively. Here, CZ is computed in a frame 
along the asymptotic limits induced by a trivialization of u∗ξ. The integer CZ(ũ) does not 
depend on this trivialization. Moreover, one can define the following algebraic invariants: 
suppose that π ◦ du does not vanish identically. Then 

∫
S\Γ u∗dλ > 0, and Carleman’s 

similarity principle tells us that the zeros of π ◦du are isolated. The asymptotic behavior 
of ũ described in Theorem 2.3 implies that π ◦ du does not vanish near the punctures. 
It follows that the zeros of π ◦ du are finite, and each zero of π ◦ du has a positive local 
degree. We define windπ(ũ) := #{zeros of π ◦ du} ≥ 0, where the zeros are counted with 
multiplicity.

Let z ∈ Γ be a puncture, and let P = (x, T ) ∈ P(λ) be the asymptotic limit of ũ
at z. Let e ∈ Γ(x∗

T ξ) be the associated eigenfunction as in Theorem 2.3-(iv). Define 
the winding number wind∞(ũ; z) of ũ at z to be the winding number of t 
→ e(t) in 
a frame of x∗

T ξ induced by a trivialization of u∗ξ. The winding number of ũ is then 
defined as wind∞(ũ) =

∑
z∈Γ+

wind∞(ũ; z) −
∑

z∈Γ−
wind∞(ũ; z). This integer does 

not depend on the choice of trivialization. The two winding numbers are related by 
windπ(ũ) = wind∞(ũ) − χ(S) + #Γ, see [14, Proposition 5.6].

Definition 2.4 (Siefring [31]). Let ũ, ̃v be finite energy planes which are exponentially 
asymptotic to the same periodic orbit P ∈ P(λ). Let e+, e− be the respective eigensec-
tions of AP that describe ũ, ̃v near ∞. We say that ũ and ṽ are asymptotic to P through 
opposite directions (resp. through the same direction) if e+ = ce− for some c < 0 (resp. 
for some c > 0).

2.2. Finite energy foliations

Suppose that the contact form λ on (S3, ξ0) is non-degenerate, and choose J ∈ J (λ). 
A stable finite energy foliation for (S3, λ, J) is a two-dimensional smooth foliation F̃ of 
R × S3 having the following properties:

(1) Every leaf F̃ ∈ F̃ is the image of an embedded finite energy J̃-holomorphic sphere 
ũF̃ = (aF̃ , uF̃ ) that has precisely one positive puncture but an arbitrary number 



N.V. de Paulo et al. / Advances in Mathematics 457 (2024) 109909 13
of negative punctures. The energies of such finite energy spheres are uniformly 
bounded.

(2) The asymptotic limits of every F̃ ∈ F̃ , defined as the asymptotic limits of ũF̃ , 
have Conley-Zehnder indices belonging to the set {1, 2, 3} and self-linking number 
−1.

(3) There exists an R-action T : R × F̃ → F̃ , defined by Tc(F̃ ) := T (c, F̃ ) = {(c + r, z) |
(r, z) ∈ F̃} ∈ F̃ , ∀c, so that if F̃ ∈ F̃ is not a fixed point of T , then Ind(ũF̃ ) ∈ {1, 2}, 
and uF̃ is an embedding, transverse to the Reeb vector field. If F̃ is a fixed point of 
T , i.e. Tc(F̃ ) = F̃ , ∀c ∈ R, then Ind(ũF̃ ) = 0, and ũF̃ is a cylinder over a periodic 
orbit.

The following statement on the existence of a stable finite energy foliation is due to 
Hofer, Wysocki and Zehnder.

Theorem 2.5 (Hofer-Wysocki-Zehnder [19]). Let λ be a non-degenerate contact form on 
the tight three-sphere (S3, ξ0). There exists a residual subset Jreg(λ) ⊂ J (λ), in the C∞-
topology, such that every J ∈ Jreg(λ) admits a stable finite energy foliation F̃ . Moreover, 
the projected foliation F := p(F̃), where p : R ×S3 → S3 denotes the projection onto the 
second factor, is a genus zero transverse foliation adapted to the flow of λ. If the binding 
P consists of a single periodic orbit P , then CZ(P ) = 3 and the foliation F provides 
an open book decomposition of S3 whose pages are disk-like global surfaces of section. If 
#P ≥ 2 and the binding has no periodic orbit with CZ = 1, then the foliation F is a 
weakly convex foliation satisfying the following properties:

(i) The binding P consists of � periodic orbits P2,1, . . . , P2,� with Conley-Zehnder index 
2 and � +1 periodic orbits P3,1, . . . , P3,�+1 with Conley-Zehnder index 3. The binding 
orbits are unknotted and mutually unlinked and have self-linking number −1. The 
orbits P2,1, . . . , P2,� are hyperbolic.

(ii) For every P2,i, there exists a pair of rigid planes Ui,1, Ui,2 ∈ F both asymptotic to 
P2,i through opposite directions. The set Si := Ui,1 ∪ P2,i ∪ Ui,2 is a C1-embedded 
2-sphere which separates S3 into two components. In particular, S3 \∪iSi has l+1
components, denoted by Uj, j = 1, . . . , l + 1.

(iii) Each P3,j is contained in Uj and spans k̃j one-parameter families of planes 
parametrized by the interval (0, 1). The integer k̃j coincides with the number of 
components of ∂Uj. At their ends, the families break onto a cylinder connecting 
P3,j to some P2,i ⊂ ∂Uj and a plane asymptotic to P2,i.

Let λ = fλ0 be a possibly degenerate contact form on (S3, ξ0), and let J ∈ J (λ). As 
proved in [16, Proposition 6.1], there exists a sequence of non-degenerate contact forms 
λn = fnλ0 on (S3, ξ0) such that λn → λ in C∞ as n → +∞. Since Jreg(λn), given in 
Theorem 2.5, is dense in J (λn) = J (λ), for each large n one can find an almost complex 
structure Jn ∈ Jreg(λn) such that Jn → J in C∞ as n → +∞ and, moreover, each 
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(λn, Jn) admits a genus zero transverse foliation Fn which is the projection to S3 of a 
stable finite energy foliation on R × S3. The following proposition will be useful in our 
argument later on.

Proposition 2.6. Let λn → λ and Jn → J as n → ∞, and let Fn be a genus zero trans-
verse foliation associated with (λn, Jn) as in Theorem 2.5. Then there exists a universal 
constant C > 0, depending only on λ, such that the binding orbits of Fn have action less 
than C for every large n.

Proof. The assertion follows from the construction of the foliations Fn due to Hofer, 
Wysocki and Zehnder [19]. In fact, the actions of the binding orbits depend only on the 
C0-norm of f . The uniform upper bound for every large n then follows. �
2.3. Topological entropy

Let X be a nowhere vanishing vector field on a closed manifold M . Abbreviate by ψt

the flow of X. We fix a metric d that generates the topology of M . For every T > 0, we 
define dT (x, y) := maxt∈[0,T ] d(ψt(x), ψt(y)), ∀x, y ∈ M . Fix ε > 0. A subset U is said to 
be (T, ε)-separated if dT (x, y) ≥ ε for every x �= y ∈ U . Let N(T, ε) denote the maximal 
cardinality of a (T, ε)-separated set. The topological entropy htop(ψt) of the flow ψt is 
defined to be the growth rate of N(T, ε):

htop(ψt) := lim
ε→0+

lim sup
T→+∞

1
T

logN(T, ε).

It is well-known that the topological entropy of a smooth flow is finite. For more details 
on topological entropy, we refer to [22,29].

Remark 2.7. The topological entropy htop(f) of a continuous map f on a compact Haus-
dorff metric space (M, d) is defined in the same way as above, with

dn(x, y) := max{d(fk(x), fk(y)) | k = 0, 1, . . . , n− 1}, ∀x, y ∈ M, n ∈ N.

If M is a smooth manifold whose topology is determined by the metric d and if the flow 
ψt of a nowhere vanishing vector field X is smooth, then htop(ψt) = htop(ψ1). See [22, 
Proposition 3.1.8].

The following theorem due to Katok [21] relates topological entropy to periodic orbits.

Theorem 2.8 (Katok). Let ψt be the flow of a nowhere vanishing vector field X on a 
closed three-manifold and let PT (ψt) denote the number of periodic orbits of ψt with 
period smaller than T > 0. If htop(ψt) > 0, then lim supT→+∞

logPT (ψt) > 0.
T
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A standard way to detect chaotic behavior of a flow is to build a Bernoulli shift. 
In order to recall its definition, let A = {1, . . . , N} be a finite alphabet. The set ΣN

consisting of all doubly infinite sequences a = (aj)j∈Z, aj ∈ A, is equipped with the 
metric

d(a, b) =
∑
j∈Z

1
2|j|

|aj − bj |
1 + |aj − bj |

, ∀a, b ∈ ΣN ,

which makes (ΣN , d) a compact Hausdorff metric space. The Bernoulli shift on ΣN is 
the homeomorphism σ : ΣN → ΣN , defined as σ(a) = (σ(a)j)j∈Z, where σ(a)j := aj+1.

A homeomorphism φ on a compact Hausdorff metric space Λ is said to be semi-
conjugate to a Bernoulli shift if there exists a continuous surjective map τ : Λ → ΣN for 
some N ≥ 2 such that τ ◦ φ = σ ◦ τ .

Let Q ⊂ R2 be the unit square [0, 1] × [0, 1]. We denote its right, left, upper and 
lower edges by V0, V∞, H0 and H∞, respectively. The compact region bounded by two 
disjoint and vertically monotone curves connecting H0 to H∞ is called a vertical strip 
in Q. Similarly, one defines a horizontal strip in Q.

We refer the reader to [27, Chapter III] for the proof of the following statement.

Proposition 2.9. Let φ : Q → R2 be a mapping that satisfies the following:

(N1) In the square Q, there exist disjoint vertical strips V1, . . . , VN and disjoint hori-
zontal strips H1, . . . , HN such that φ(Hi) = Vi for every i = 1, . . . , N . The vertical 
strips and horizontal strips are ordered from right to left and from top to bottom, 
respectively.

(N2) If V ⊂ Q is a vertical strip, then for each i, the set φ(V ) ∩ Vi contains a vertical 
strip. Similarly, if H ⊂ Q is a horizontal strip, then φ−1(H) ∩ Hi contains a 
horizontal strip for every i.

Then there exists a compact invariant set Λ ⊂ Q such that φ|Λ is semi-conjugates to a 
Bernoulli shift with N symbols. Consequently, htop(φ) > 0.

Proposition 2.9 generalizes to the case of countably many disjoint vertical strips 
V1, V2, . . ., considering an alphabet with countably many symbols.

3. Proof of Theorem 1.6

Let λ be a weakly convex contact form on (S3, ξ0) and let P2(λ) = {P2,1, . . . , P2,l} be 
a finite set of index-2 periodic orbits satisfying the hypotheses of Theorem 1.6.

Given C > 0, we denote by P≤C(λ) ⊂ P(λ) the set of periodic orbits with action 
≤ C. For every j ∈ Z we define P≤C

j (λ) := Pj(λ) ∩ P≤C(λ) and Pu,−1,≤C
j (λ) :=

Pu,−1
j (λ) ∩P≤C(λ), where Pj(λ) and Pu,−1,≤C

j (λ) were established in the introduction.
Take any sequence λn of contact forms converging to λ as n → ∞, and satisfying
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(a) λn is non-degenerate, ∀n ∈ N.
(b) P2,i ∈ P2(λn), and P2,i is hyperbolic, ∀i ∈ {1, . . . , l}, ∀n ∈ N.

As mentioned before, the non-degeneracy in condition (a) is achieved as in [16, Propo-
sition 6.1]. To achieve condition (b), we restrict to the space of contact forms λn = fnλ

satisfying fn|P2,i ≡ 1 and dfn|P2,i ≡ 0, ∀i, n, see [16, Lemma 6.8].
Since P2,1, . . . , P2,l are hyperbolic, we can assume, moreover, that for any fixed C > 0

sufficiently large, the following assertion holds:

(c) P≤C
2 (λn) = {P2,1, . . . , P2,l}, ∀n.

Indeed, let C > 0 be large enough so that P2,i ∈ P≤C
2 (λn), ∀i, ∀n. If for each n we 

can find an index-2 Reeb orbit Qn of λn, which is geometrically distinct from P2,i, ∀i =
1, . . . , l, and whose action is ≤ C, then the Arzelà-Ascoli Theorem provides us with 
Q ∈ P≤C(λ) so that Qn → Q in C∞ as n → +∞, up to the extraction of a subsequence. 
The lower semi-continuity of the Conley-Zehnder index and the weak convexity of λ
imply that CZ(Q) = 2. Since P2(λ) = {P2,1, . . . , P2,l}, Q must coincide with P2,i for 
some i = 1, . . . , l. However, this contradicts the hyperbolicity of the orbits in P2(λ) and 
condition (b).

The present goal is to show that λn admits a weakly convex foliation Fn for every 
large n, so that every P2,i, i = 1, . . . , l, is a binding orbit.

Proposition 3.1. Let Jn ∈ Jreg(λn) be a sequence of almost complex structures satisfying 
Jn → J ∈ J (λ) in C∞ as n → +∞, where Jreg(λn) is given in Theorem 2.5. Let J̃n
be the almost complex structure on R × S3 induced by λn and Jn. Then, for every n
sufficiently large, the following holds.

(i) The Reeb flow of λn admits a weakly convex foliation Fn, whose leaves are projections 
to S3 of embedded finite energy J̃n-holomorphic planes and cylinders.

(ii) The binding of Fn consists of the orbits P2,1, . . . , P2,l ∈ P2(λn) and l + 1 orbits 
Pn

3,1, . . . , P
n
3,l+1 ∈ Pu,−1,≤C

3 (λn), where C > 0 is a fixed large number that does not 
depend on n.

Fix any C > 0 sufficiently large so that property (c) above holds. Before proving 
Proposition 3.1, we show that for all large n the orbits in Pu,−1,≤C

3 (λn) do not link with 
any orbit in P≤C

2 (λn) and, moreover, λn does not admit orbits with CZ = 1 up to the 
action C.

Lemma 3.2. Let Qn
1 , Q

n
2 ∈ Pu,−1,≤C

3 (λn) such that Qn
1 �= Qn

2 , ∀n. Then

(i) there exist Q∞
1 , Q∞

2 ∈ Pu,−1,≤C
3 (λ) so that, up to a subsequence, Qn

1 → Q∞
1 and 

Qn
2 → Q∞

2 as n → +∞. In particular, link(Qn
j , P2,i) = 0, ∀j, i, and large n.
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(ii) if link(Qn
1 , Q

n
2 ) = 0, ∀n, then Q∞

1 �= Q∞
2 . In particular, link(Q∞

1 , Q∞
2 ) = 0.

(iii) P≤C
1 (λn) = ∅, ∀n large.

Proof. Because of the uniform upper bound on the actions of Qn
j , j = 1, 2, we can 

apply the Arzelà-Ascoli Theorem to extract a subsequence, still denoted by Qn
j , so that 

Qn
j → Q∞

j ∈ P≤C(λ) in C∞ as n → +∞. The lower semi-continuity of the Conley-
Zehnder index implies that CZ(Q∞

j ) ≤ 3. Since λ is weakly convex, we conclude that 
Q∞

j is simple. Indeed, if Q∞
j = Qd for some Q ∈ P(λ) and an integer d > 1, then 

CZ(Qd) ≥ 4, a contradiction. It turns out that, as a C∞-limit of Qn
j ∈ Pu,−1,≤C

3 (λn), 
Q∞

j is unknotted, has self-linking number −1 and CZ(Q∞
j ) ∈ {2, 3}, j = 1, 2. For large 

n, the orbits P2,1, . . . , P2,l are the only orbits of λn with CZ < 3 and action ≤ C. Since 
these orbits are hyperbolic, we conclude that the limit Q∞

j is not an orbit in P2(λ). 
Hence CZ(Q∞

j ) = 3 which implies Q∞
j ∈ Pu,−1,≤C

3 (λ), j = 1, 2. In view of hypothesis 
III in Theorem 1.6, Q∞

j is not linked with the orbits in P2(λ). Hence, for every large n, 
link(Qn

j , P2,i) = 0, ∀j, i. This proves (i).
Assume now that link(Qn

1 , Q
n
2 ) = 0, ∀n. Arguing indirectly, suppose that Q∞

1 = Q∞
2 . 

Then Qn
1 and Qn

2 are arbitrarily close to each other as n → ∞. Lemma 5.2 in [16]
provides a lower bound on the winding of non-vanishing solutions of the transverse 
linearized flow along orbits with index 3. In our case, since CZ(Qn

1 ) = CZ(Qn
2 ) = 3, ∀n

and both sequences converge to the same limit, which has also index 3, we may apply 
[16, Lemma 5.2] for every large n to conclude that link(Qn

1 , Q
n
2 ) is necessarily positive, 

which is absurd. Thus Q∞
1 �= Q∞

2 and as C∞-limits of Qn
j , j = 1, 2, we conclude that 

link(Q∞
1 , Q∞

2 ) = 0. This proves (ii).
Suppose, by contradiction, that P≤C

1 (λn) �= ∅ for n arbitrarily large. Then, after 
taking a subsequence, we may assume from the Arzelà-Ascoli Theorem that Pn

1 → P∞
1

in C∞ as n → +∞, where Pn
1 ∈ P≤C

1 (λn), ∀n, and P∞
1 ∈ P≤C(λ). The lower semi-

continuity of the Conley-Zehnder index implies that CZ(P∞
1 ) ≤ 1, which contradicts the 

weak convexity of λ. Item (iii) is proved. �
Proof of Proposition 3.1. Since λn is non-degenerate and Jn ∈ Jreg(λn), it follows from 
Theorem 2.5 that the Reeb flow of λn admits a genus zero transverse foliation Fn whose 
regular leaves are projections of embedded finite energy J̃n-holomorphic curves, where 
J̃n is the R-invariant almost complex structure in R × S3 induced by λn and Jn. By 
Proposition 2.6, there exists C > 0 so that the actions of the binding orbits of Fn are 
bounded by C for every n. By Lemma 3.2-(iii), P≤C

1 (λn) = ∅, for every large n, and 
hence we conclude that the binding orbits of Fn have index 2 or 3 and that regular 
leaves of Fn are embedded planes and cylinders. Since, for large n, each P2,i, i = 1, . . . , l, 
is not linked with any orbit in Pu,−1,≤C

3 (λn), see Lemma 3.2-(i), it follows that each 
P2,i, i = 1, . . . , l, is necessarily a binding orbit of Fn. Each P2,i bounds a pair of planes, 
which are regular leaves of Fn. Together with P2,i, these planes form a 2-sphere which 
separates S3 into two components. In particular, the complement of the union of these 
2-spheres has l+1 components. Each such a component Uj has a unique index 3 binding 
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orbit P3,j . We conclude that the binding of Fn is formed by the orbits in P2(λ) and l+1
binding orbits P3,1, . . . , P3,l+1 ∈ Pu,−1,≤C

3 (λn). �
In order to construct the desired genus zero transverse foliation F adapted to the 

Reeb flow of λ as in Theorem 1.6, we shall study the compactness properties of the finite 
energy curves in the foliations F̃n, which are adapted to (S3, λn, Jn) and project to 
genus zero transverse foliations Fn as in Proposition 3.1. Recall that the almost complex 
structures J̃n were taken in the residual set Jreg(λn) ⊂ J (λn) = J (λ) in such a way 
that Jn → J in C∞ as n → +∞ for a fixed J ∈ J (λ). From now on we choose J in 
a generic set in order to prevent some unsuitable curves that may arise as limits in the 
compactness argument. More precisely, we need to rule out certain somewhere injective 
holomorphic curves whose asymptotic limits are contained in P2(λ). The space of J ’s for 
which such curves do not exist is residual in the C∞-topology.

Lemma 3.3. There exists a residual subset J ∗
reg(λ) ⊂ J (λ) in the C∞-topology so that for 

every J ∈ J ∗
reg(λ), the following assertion holds: let J̃ be the almost complex structure 

on R × S3 induced by λ and J . Let ũ : C \ Γ → R × S3, #Γ < +∞, be a somewhere 
injective finite energy J̃-holomorphic curve having positive dλ-area and a unique positive 
puncture whose asymptotic limit is an orbit in P2(λ). Then Γ = ∅.

Proof. An application of [9, Corollary 1.10] provides us with a residual subset J ∗
reg(λ) ⊂

J (λ) such that for every J ∈ J ∗
reg(λ) the following holds: if ũ : C \ Γ → R × S3 is a 

somewhere injective finite energy J̃-holomorphic curve as in the statement, then Ind(ũ) =
CZ(ũ) − 2 + 1 + #Γ ≥ 1, provided π ◦ du �≡ 0. Our standing assumptions on the actions 
of the orbits in P2(λ) imply that the asymptotic limits of ũ at the negative punctures in 
Γ are covers of orbits in P2(λ).

Set Γ = {z1, . . . , z#Γ} and denote by Ni ≥ 1 the covering number of the asymptotic 
limit corresponding to zi, i = 1, . . . , #Γ. Then its Fredholm index satisfies 1 ≤ Ind(ũ) =
2 −

∑#Γ
i=1 2Ni − 1 + #Γ ≤ 1 − #Γ, from which we obtain Γ = ∅. �

3.1. Rigid planes asymptotic to the index-2 orbits

In this section we prove that for a generic choice of J ∈ J (λ), each P2,i ∈ P2(λ)
is the asymptotic limit of a pair of J̃-holomorphic planes so that the closures of their 
projections to S3 form a C1-embedded 2-sphere.

Proposition 3.4. Fix J ∈ J ∗
reg(λ) as in Lemma 3.3. Then for each i = 1, . . . , l, there exist 

embedded finite energy J̃-holomorphic planes ũi,1 = (ai,1, ui,1), ũi,2 = (ai,2, ui,2) : C →
R × S3 which are asymptotic to P2,i through opposite directions (see Definition 2.4). 
In addition, the union Si = ui,1(C) ∪ P2,i ∪ ui,2(C) is a C1-embedded 2-sphere and 
Si ∩ Sj = ∅, ∀i �= j.
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To prove Proposition 3.4, we choose a sequence of non-degenerate contact forms λn

converging to λ and satisfying conditions (a), (b) and (c) at the beginning of section 3, 
and a sequence of almost complex structures Jn ∈ Jreg(λn) converging to J ∈ J ∗

reg(λ) in 

C∞ so that the almost complex structure J̃n induced by (λn, Jn) admits a finite energy 
foliation F̃n of R × S3 whose projection to S3 is a genus zero transverse foliation Fn

adapted to the flow. Moreover, the binding of Fn consists of the orbits P2,1, . . . , P2,l ∈
P2(λn) and P3,1, . . . , P3,l+1 ∈ P−1,u,≤C

3 (λn), see Proposition 3.1.
For every large n, P2,i ∈ P≤C

2 (λn) is the boundary of a pair of rigid planes Un
i,1, U

n
i,2 ∈

Fn, both transverse to the Reeb vector field Rλn
, so that the 2-spheres Sn

i = Un
i,1∪P2,i∪

Un
i,2, i = 1, . . . , l, are mutually disjoint and do not intersect any Pn

3,j, j = 1, . . . , l + 1. 
The open set S3 \ ∪l

i=1Sn
i contains l + 1 components Un

j such that Pn
3,j ⊂ Un

j , ∀j, n. 
For each i = 1, . . . , l, there exists a pair of embedded J̃n-holomorphic planes ũn

i,k =
(ani,k, un

i,k) : C → R ×S3, k = 1, 2, asymptotic to P2,i through opposite directions so that 
Un
i,k = un

i,k(C) for every large n.
The following proposition implies Proposition 3.4.

Proposition 3.5. For each i = 1, . . . , l, the embedded J̃n-holomorphic rigid planes 
ũn
i,1, ̃u

n
i,2 : C → R × S3 converge in C∞

loc as n → ∞, up to reparametrizations 
and R-translations, to embedded J̃-holomorphic rigid planes ũi,1 = (ai,1, ui,1), ̃ui,2 =
(ai,2, ui,2) : C → R × S3 asymptotic to P2,i through opposite directions. The 2-sphere 
Si = ui,1(C) ∪ P2,i ∪ u2,i(C) is C1-embedded. Moreover, Si ∩ Sj = ∅, ∀i �= j, and 
given neighborhoods Vi ⊂ S3 of Si = ui,1(C) ∪ P2,i ∪ ui,2(C), i = 1, . . . , l, we have 
Sn
i ⊂ Vi, ∀i = 1, . . . , l, ∀large n.

Proof. Fix i ∈ {1, . . . , l}. For simplicity, denote ũn
i,1 by ũn = (an, un), ∀n. The case 

of ũn
i,2 is treated similarly. Let U ⊂ S3 be a small compact tubular neighborhoods 

U ≡ R/T2,iZ × Bδ(0) of P2,i, where δ > 0 is small and T2,i > 0 denotes the action of 
P2,i and Bδ(0) ⊂ R2 is the closed ball of radius δ centered at the origin. Since P2,i is 
hyperbolic, we can take U sufficiently small so that

• U contains no periodic orbits that are contractible in U .
• if P ⊂ U is a periodic orbit that is homotopic to P2,i in U , then P = P2,i.

Choose a parametrization of ũn so that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
un(C \D) ⊂ U ,
un(1) ∈ ∂U ,
un(z∗n) ∈ ∂U for some z∗n ∈ ∂D satisfying Re(z∗n) ≤ 0,
an(2) = 0.

(3.1)

The existence of such a parametrization is guaranteed as follows. For a fixed parametriza-
tion of ũn, the closure K of the set u−1

n (S3 \U) is compact with non-empty interior. Take 
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the closed disk D ⊂ C containing K which has the smallest radius among all closed 
disks containing K. Then there exist w1 �= w2 ∈ K ∩ ∂D so that un(w1), un(w2) ∈ ∂U . 
Reparametrizing ũn under a map of the form z 
→ az + b, a, b ∈ C we may assume that 
D = D = {z ∈ C : |z| ≤ 1} and that w1 = 1 ∈ K ⊂ D. If K∩∂D does not contain a point 
w2 ∈ ∂D with non-positive real part, then shifting K slightly to the left, it is possible 
to find a disk containing K of radius smaller than 1. This contradicts the minimizing 
property of D, thus the existence of z∗n as in (3.1) follows. The last condition in (3.1)
may be achieved by considering a suitable R-translation of ũn for each n.

Lemma 3.6. Let ũn = (an, un) : C → R × S3 satisfy the normalizations in (3.1). Assume 
that there exist a subsequence of ũn, still denoted by ũn, and a finite energy J̃-holomorphic 
map ṽ = (a, v) : C\D → R ×S3 so that ũn|C\D converges in C∞

loc(C\D) to ṽ as n → +∞. 
Then the following assertions hold:

(i) ṽ is non-constant;
(ii) ṽ is asymptotic to P2,i at ∞.

Proof. For every R > 1 the image of the loop t 
→ γR(t) := v(Reit), ∀t ∈ R/2πZ, 
is contained in U since it is the C∞-limit of the loops t 
→ γn

R(t) := un(Reit), ∀t ∈
R/2πZ, ∀n, which are contained in U . Hence γR is homotopic to γn

R in U for n sufficiently 
large. Since un(C \ D) ⊂ U for every n, and γn

R converges to P2,i in U as R → +∞, we 
conclude that γR is homotopic to P2,i in U for every R > 1. This implies, in particular, 
that γR is non-contractible in U and thus non-constant. As a result, ṽ is non-constant. 
Moreover, any asymptotic limit P ⊂ U of ṽ at ∞ must be homotopic to P2,i in U since 
each γR has this property for every R > 1. Thus our choice of U implies that the unique 
asymptotic limit of ṽ at ∞ is P2,i. �

We aim at showing that under the normalizations in (3.1) a bubbling-off phenomenon 
cannot occur for the sequence ũn, i.e. there is no subsequence of ũn, still denoted by 
ũn, satisfying |∇ũn(zn)| → +∞ as n → ∞ for a sequence zn ∈ C. Here, |∇ũn(zn)| is 
induced by the inner product on R ×S3 associated with the pair (λn, Jn). In the absence 
of bubbling-off, the sequence ũn has gradient bounds which, in this setup and under 
the normalizations in (3.1), imply C∞

loc-bounds for ũn from an elliptic bootstrapping 
argument, see [13]. As a result we will be able to conclude that, up to extraction of a 
subsequence, ũn converges in C∞

loc to a J̃-holomorphic plane ũi,1 : C → R ×S3 asymptotic 
to P2,i as n → ∞.

An important tool in the bubbling-off analysis is the topological result known as 
Hofer’s Lemma, see [13, Lemma 26]. More specifically, assume ũn admits a subsequence, 
still denoted by ũn, such that |∇ũn(zn)| → +∞ as n → ∞ for a sequence zn ∈ C. 
Hofer’s Lemma allows us to perturb zn (the new points are still denoted by zn) and find 
a sequence of positive numbers δn → 0, satisfying rn := δn|∇ũn(zn)| → +∞, and so that 
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an appropriate rescale ṽn : Brn(0) → R ×S3 of ũn|Bδn (zn) has C0
loc- and C1

loc-bounds and 
satisfies |∇ṽn(0)| = 1. To be precise, ṽn is defined by

ṽn(z) =
(
an

(
zn + δn

rn
z

)
− an(zn), un

(
zn + δn

rn
z

))
, ∀z ∈ Brn(0).

From an elliptic bootstrapping argument, we obtain C∞
loc-bounds and then, up to extrac-

tion of a subsequence, ṽn converges in C∞
loc to ṽ : C → R × S3, where ṽ is non-constant 

and has bounded energy by Fatou’s Lemma.
If |zn| → +∞ or zn converges to a point in C \D, then in view of the normalizations 

in (3.1), the image v(C) is contained in U and thus any of its non-trivial asymptotic 
limits is a contractible periodic orbit in U , a contradiction to the choice of U . With 
this contradiction we conclude that the sequence zn must be bounded and, up to a 
subsequence, converges to some point z∗ ∈ D. Such a point is called a bubbling-off point 
for ũn.

Each bubbling-off point in D takes away at least γ0 > 0 of the dλn-area of ũn. Here, 
γ0 > 0 is any positive number smaller than the period of the shortest periodic orbit of 
λ, which exists because of the assumptions on λ. Hence, after passing to a subsequence, 
we may assume that the set of bubbling-off points Γ ⊂ D is finite. In particular, |∇ũn|
is locally bounded on C \ Γ.

The normalizations in (3.1) provide C0
loc-bounds for ũn in C\Γ. Hence, up to extraction 

of a subsequence, ũn converges in C∞
loc(C\Γ) to a J̃-holomorphic curve ṽ = (b, v) : C\Γ →

R ×S3. By Lemma 3.6, ṽ is asymptotic to P2,i at ∞. Since P2,i is simple, it is somewhere 
injective.

Let z∗ ∈ Γ. We claim that ∫
∂Bε(z∗)

v∗λ > γ0, ∀ε > 0 small. (3.2)

Here, Bε(z∗) is the ball centered at z∗ of radius ε > 0 and ∂Bε(z∗) has the counterclock-
wise orientation. To prove (3.2), recall that ũn can be appropriately reparametrized in 
a small neighborhood of zn → z∗ so that it converges in C∞

loc to a non-constant finite 
energy plane with dλ-area > γ0. These neighborhoods of zn are strictly contained in 
Bε(z∗) for every n sufficiently large. Stokes’ theorem then gives the desired estimate 
(3.2). The positivity of the integral in (3.2) implies that every puncture in Γ is negative 
and therefore ∞ is the only positive puncture of ṽ.

Lemma 3.7. Γ = ∅.

Proof. The first step is to show that the asymptotic limit of ṽ at each z∗ ∈ Γ is a cover 
of an orbit in P2(λ). Indeed, the hypothesis II in Theorem 1.6 implies that if there exists 
an asymptotic limit P = (x, T ) at z∗ which is not a cover of an orbit in P2(λ), then its 
period T is greater than T2,i. In particular, 

∫
v∗dλ < T2,i − T < 0, a contradiction.
C\Γ
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We conclude that ṽ is asymptotic to covers of orbits in P2(λ) at its negative punctures. 
Suppose that the dλ-area of ṽ vanishes. Then ṽ is a trivial cylinder over P2,i. In particular, 
#Γ = 1. If Γ �= {1}, then v(1) ∈ ∂U since un(1) ∈ ∂U for every n. This is a contradiction. 
If Γ = {1}, we know from our normalizations in (3.1) that un(z∗n) ∈ ∂U , and we can 
assume that z∗n → z∗∞ ∈ ∂D, where Re(z∗∞) ≤ 0, and hence z∗∞ �= 1 and v(z∗∞) ∈ ∂U , 
again a contradiction. It follows that the dλ-area of ṽ is positive. Since J ∈ J ∗

reg(λ), we 
conclude that Γ = ∅, see Lemma 3.3. �

We have proved that, under the normalizations (3.1), we can extract a subsequence of 
ũn, still denoted by ũn, so that it converges in C∞

loc to a finite energy J̃-holomorphic plane 
ṽ : C → R ×S3 asymptotic to P2,i at ∞. We denote this plane by ũi,1 = (ai,1, ui,1) : C →
R × S3. Note that it is embedded. Indeed, since ui,1 does not intersect its asymptotic 
limit, an application of Siefring’s result [31, Theorem 5.20], see also [12, Theorem 14.5.5], 
shows that ũi,1 (and also ui,1) is embedded.

Now the analysis of holomorphic cylinders with small area (see [19, Lemma 4.9]) shows 
that given any S1-invariant neighborhood W of P2,i, there exist R0 > 0 and n0 ∈ N

such that the loop t 
→ ũn(Re2πit/T2,i) belongs to W for every R > R0 and n > n0. 
This implies that un(C) is arbitrarily C0-close to ui,1(C) ∪ P2,i. For a proof of these 
statements in the same setting, see [6, Lemma 7.5].

Considering the sequence of J̃n-holomorphic planes ũn
i,2, we proceed as before to ob-

tain an embedded finite energy J̃-holomorphic plane ũi,2 = (ai,2, ui,2) : C → R × S3, 
asymptotic to P2,i as the C∞

loc-limit of ũn
i,2. Moreover, un

i,2(C) is arbitrarily C0-close to 
ui,2(C) ∪ P2,i for n large.

From the uniqueness of J̃-holomorphic planes asymptotic to P2,i through each direc-
tion, see [6, Proposition C.3], we know that there exist at most two J̃-holomorphic planes 
asymptotic to P2,i, up to reparametrizations and R-translations. In this case, they are 
asymptotic to P2,i through opposite directions, as shown below.

Lemma 3.8. ui,m(C) ∩ uj,n(C) = ∅, ∀(i, m) �= (j, n).

Proof. The transverse foliation Fn admits l + 1 binding orbits Pn
3,j , j = 1, . . . , l + 1. By 

Lemma 3.2 these orbits converge, up to a subsequence, to mutually unlinked periodic 
orbits P∞

3,1, . . . , P
∞
3,l+1 ∈ Pu,−1,≤C

3 (λ), which are not linked with any index-2 Reeb orbits.
We first show that the planes ui,1(C) and ui,2(C) cannot be the same. Assume by 

contradiction that this is the case. Since un
i,1(C) and un

i,2(C) are C0-close to ui,1(C) ∪
P2,i = ui,2(C) ∪P2,i, we conclude that un

i,1 is homotopic to un
i,2, relative to P2,i, in a small 

neighborhood V ⊂ S3 of ui,1(C) ∪ P2,i. Since the 2-sphere Sn
i = un

i,1(C) ∪ P2,1 ∪ un
i,2(C)

separates S3 into two components and in each component there exists some index-3 
binding orbit of Fn, any homotopy from un

i,1 to un
i,2 necessarily intersects some Pn

3,j . 
Since the limit P∞

3,j is not linked with P2,i, ∀i, we know that for n sufficiently large 
Pn

3,j ∩ V = ∅.
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We now assume by contradiction that ui,1(C) ∩ ui,2(C) �= ∅, and hence ũi,1(C) ∩
ũi,2(C) �= ∅. Then the positivity and stability of intersections of pseudo-holomorphic 
curves (see [25, Appendix E]) tell us that ũn

i,1(C) ∩ ũn
i,2(C) �= ∅ for all n large enough, a 

contradiction. This finishes the proof. �
We conclude from Lemma 3.8 and the uniqueness of planes asymptotic to P2,i, through 

each direction, that ũi,1 and ũi,2 are asymptotic to P2,i through opposite directions.

Lemma 3.9. The 2-sphere Si = ui,1(C) ∪ P2,i ∪ ui,2(C) is C1-embedded.

Proof. Since CZ(P2,i) = 2, the leading eigenvalues of AP2,i,J , which describe the behavior 
of ũi,1 and ũi,2 near ∞, coincide with the unique eigenvalue μ < 0 with winding number 
1. This means that we can write

ui,j(e2π(s+it)) = expx2,i(T2,it){e
μs(ej(t) + Rj(s, t))}, s � 0, j = 1, 2,

where P2,i = (x2,i, T2,i) and ej : R/Z → x∗
2,iξ, j = 1, 2, is a μ-eigensection with winding 

number 1. The remainder term Rj and its derivatives converge to 0, uniformly in t as 
s → +∞. See Theorem 2.3.

Since the μ-eigenspace is one-dimensional, we have e2 = ce1 for some c �= 0. If c > 0, 
then ui,1(C) ∩ui,2(C) �= ∅, see [6, Proposition C.0]. This contradicts Lemma 3.8, and we 
conclude that c < 0.

Defining r = eμs ⇔ s = 1
μ ln r, we see that the maps

vj(r, t) := ui,j(e2π(s+it)) = expx2,i(T2,it){r(ej(t) + R̄j(r, t))}, ∀(r, t), j = 1, 2,

extend continuously to [0, ε] ×R/Z with ε > 0 small. Since limr→0 R̄j(r, t) = 0 uniformly 
in t, we conclude that vj is at least C1. Moreover, the tangent space of vj along P2,i
coincides with Rej ⊕ TP2,i. Now, since windπ(ũ) = wind∞(ũ; ∞) − 1 = 0, we conclude 
that ui,j is an immersion transverse to Rλ, j = 1, 2. Hence ui,1(C) ∪ P2,i ∪ ui,2(C) is a 
C1-embedded 2-sphere. �

Given a neighborhood V ⊂ S3 of Si, we have Sn
i ⊂ V for every large n. Since the same 

argument holds for every i = 1, . . . , l, the proof of Proposition 3.5 is finished. �
3.2. Special index-3 orbits

Although Lemma 3.2 provides candidates P∞
3,1, . . ., P∞

3,l+1 in Pu,−1,≤C
3 (λ) for the index 

3 binding orbits of the desired foliation, we cannot guarantee that every periodic orbit 
U , which is not a cover of an orbit in P2(λ) nor a cover of any P∞

3,j, is linked with some 
P∞

3,i. Such an orbit U might a priori exist. We shall rule out this unpleasant scenario by 
appropriately choosing new sequences λn → λ so that the corresponding limiting orbits 
P∞

3,1, . . . , P
∞
3,l+1 do not admit such an unlinked orbit U .
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Proposition 3.10. Let C > 0 be as in Proposition 2.6, and let J ∈ J ∗
reg(λ). Then there 

exist a sequence of non-degenerate contact forms λn = fnλ converging in C∞ to λ and 
a sequence of almost complex structures Jn ∈ Jreg(λn) converging in C∞ to J so that 
the following holds.

(i) P2,1, . . . , P2,l ∈ P2(λn), ∀n, and the almost complex structure J̃n on R ×S3 induced 
by (λn, Jn) admits a stable finite energy foliation F̃n that projects to a genus zero 
transverse foliation Fn, whose binding orbits are P2,1, . . . , P2,l and Pn

3,1, . . . , P
n
3,l+1 ∈

Pu,−1,≤C
3 (λn).

(ii) there exist l + 1 periodic orbits Ps
3(λ) := {P3,1, . . . , P3,l+1} ⊂ Pu,−1,≤C

3 (λ), so that 
for every j, Pn

3,j → P3,j as n → +∞. Moreover,
– link(P3,i, P3,j) = 0, ∀i �= j.
– link(P3,i, P2,j) = 0, ∀i, j.
– every P ∈ P≤C(λ), which is not a cover of any orbit in P2(λ) ∪ Ps

3(λ), is linked 
with some orbit in Ps

3(λ).
(iii) let ũi,1 = (ai,1, ui,1), ̃ui,2 = (ai,2, ui,2) : C → R × S3, i = 1, . . . , l, be the unique 

J̃-holomorphic planes asymptotic to P2,i which are C∞
loc-limits of planes ũn

i,1, ̃u
n
i,2 in 

F̃n, asymptotic to P2,i through opposite directions, and whose existence is assured by 
Proposition 3.5. Denote by Uj ⊂ S3, j = 1, . . . , l+1, the components of S3 \∪l

i=1Si, 
where Si = ui,1(C) ∪ P2,i ∪ ui,2(C). Then P3,j ⊂ Uj , ∀j = 1, . . . , l + 1.

Proof. Take a sequence of non-degenerate contact forms λn = fnλ, n ∈ N, converging 
in C∞ to λ and a sequence Jn ∈ Jreg(λn) converging in C∞ to J ∈ J ∗

reg(λ) as in the 
previous section. We assume that every λn satisfies conditions (a), (b), and (c) from the 
beginning of section 3. By Lemma 3.2 every orbit in Pu,−1,≤C

3 (λn) is not linked with any 
orbit in P≤C

2 (λn) for every large n. We conclude in view of Proposition 3.1 that the almost 
complex structure J̃n induced by (λn, Jn) admits a stable finite energy foliation which 
projects to a weakly convex foliation Fn so that the orbits P2,1, . . . , P2,l ∈ P≤C

2 (λn) are 
binding orbits of Fn. Moreover, the remaining binding orbits of Fn are periodic orbits 
in the set

Pn,0
3 (λn) := {Pn,0

3,1 , . . . , P
n,0
3,l+1} ⊂ Pu,−1,≤C

3 (λn).

They satisfy the additional properties:

• link(Pn,0
3,i , P

n,0
3,j ) = 0, ∀i �= j.

• link(Pn,0
3,i , P2,j) = 0, ∀i, j.

• given P ∈ P(λn), which is not a cover of any orbit in P2(λn) ∪Pn,0
3 (λn), there exists 

j ∈ {1, . . . , l + 1} so that link(P, Pn,0
3,j ) �= 0.

We claim that as n → +∞ the orbits Pn,0
3,1 , . . . , P

n,0
3,l+1 converge, up to a subsequence, to 

mutually distinct and mutually unlinked periodic orbits P∞,0
3,1 , . . . , P∞,0

3,l+1 in Pu,−1,≤C
3 (λ). 
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First of all, the upper bound C on the actions of Pn,0
3,1 , . . . , P

n,0
3,l+1 and the Arzelà-Ascoli 

Theorem imply that the orbits Pn,0
3,j , j = 1, . . . , l + 1, converge, up to a subsequence, to 

elements P∞,0
3,j ∈ P≤C(λ), j = 1, . . . , l + 1. Their Conley-Zehnder indices are ≤ 3 by the 

lower semi-continuity. Since λ is weakly convex and the orbits in Pu,−1,≤C
2 (λn) are the 

only orbits converging to the corresponding orbits in P2(λ), we have CZ(P∞,0
3,j ) = 3, ∀j. 

In particular, P∞,0
3,j is simply covered for every j. As limits of the Reeb orbits Pn,0

3,j
as n → +∞, we conclude that P∞,0

3,j is unknotted and has self-linking number −1. 
If P∞,0

3,j = P∞,0
3,k for some j �= k, then, since CZ(P∞,0

3,j ) = 3, we conclude from [16, 
Lemma 5.2] that, for every large n, link(Pn,0

3,j , P
n,0
3,k ) > 0, a contradiction. Hence the 

orbits P∞,0
3,1 , . . . , P∞,0

3,l+1 are mutually distinct and mutually unlinked. The claim is then 
proved.

Next we show that the orbits P∞,0
3,j , j = 1, . . . , l + 1, lie in distinct components Uj

of S3 \ ∪l
i=1Si, where Si = ui,1(C) ∪ P2,i ∪ ui,2(C) is the C1-embedded 2-sphere such 

that for every i, the maps ui,1, ui,2 are the projections to S3 of the J̃-holomorphic planes 
ũi,1 = (ai,1, ui,1), ̃ui,2 = (ai,2, ui,2) : C → R × S3, asymptotic to P2,i through opposite 
directions, and obtained as C∞

loc-limits of the corresponding J̃n-holomorphic planes of 
F̃n, see Proposition 3.5.

Lemma 3.11. After reordering Uj, if necessary, we have P∞,0
3,j ⊂ Uj , ∀j = 1, . . . , l + 1.

Proof. For every large n and for every i, there exist J̃n-holomorphic planes ũn
i,1 =

(ani,1, un
i,1), ̃un

i,2 = (ani,2, un
i,2) : C → R × S3 which are asymptotic to P2,i through op-

posite directions, and which converge in C∞
loc, up to a subsequence, to J̃-holomorphic 

planes ũi,1 = (ai,1, ui,1), ̃ui,2 = (ai,2, ui,2) : C → R × S3, also asymptotic to P2,i through 
opposite directions.

Let Sn
i = un

i,1(C) ∪ P2,i ∪ un
i,2(C), ∀i = 1, . . . , l. For every j = 1, . . . , l + 1, denote 

by Un
j ⊂ S3 the component of S3 \ ∪l

i=1Sn
i , which contains Pn,0

3,j . By Proposition 3.5, 
given small neighborhoods Vi of Si, i = 1, . . . , l, there exists n0 so that Sn

i ⊂ Vi for every 
n > n0. Since P∞,0

3,j is not linked with any P2,i, the orbits Pn,0
3,1 , . . . P

n,0
3,l+1 are contained 

in distinct components Un
1 , . . . , Un

l+1 for every large n. In particular, after relabelling the 
components U1, . . . , Ul+1, if necessary, these orbits are contained in distinct components 
U1, . . . , Ul+1 for every large n. Hence P∞,0

3,j ⊂ Uj , ∀j. The lemma follows. �
Abbreviate P∞,0

3 (λ) = {P∞,0
3,1 , . . . , P∞,0

3,l+1} ⊂ Pu,−1,≤C
3 (λ). From Lemma 3.11 we know 

that P∞,0
3,j ⊂ Uj , ∀j = 1, . . . , l+1. If every orbit in P≤C(λ), which is not a cover of an orbit 

in P2(λ) ∪ P∞,0
3 (λ), is linked with some orbit in P∞,0

3 (λ), then P∞,0
3 (λ) is the desired 

set of periodic orbits and there is nothing else to be proved. Otherwise, if there exists a 
simple periodic orbit U0 ∈ P≤C(λ) which is not a cover of an orbit in P2(λ) ∪ P∞,0

3 (λ)
and is not linked with any orbit in P∞,0

3 (λ), then we proceed as follows. Consider a new 
sequence of non-degenerate contact forms λn converging in C∞ to λ as n → +∞, so 
that every orbit in P2(λ) and every orbit in
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L0 := P∞,0
3 (λ) ∪ {U0},

is a periodic orbit of λn, ∀n. As before, for a suitable sequence Jn ∈ Jreg(λn) converg-
ing to J , we obtain a sequence of weakly convex foliations Fn whose binding orbits 
are the orbits in P2(λ) together with other mutually unlinked orbits Pn,1

3,1 , . . . , P
n,1
3,l+1 ∈

Pu,−1,≤C
3 (λn).
Taking the limit n → +∞, we obtain a new set of periodic orbits

P∞,1
3 (λ) = {P∞,1

3,1 , . . . , P∞,1
3,l+1} ⊂ Pu,−1,≤C

3 (λ),

so that each P∞,1
3,j is the C∞-limit of Pn,1

3,j as n → +∞. Arguing as before, we conclude 

that these orbits are mutually distinct and mutually unlinked and satisfy P∞,1
3,j ⊂ Uj , ∀j. 

Some of them may coincide with the corresponding orbits in P∞,0
3 (λ).

We claim that no orbit in P∞,1
3 (λ) coincides with U0. Indeed, observe that each Pn,1

3,j
is contained in Uj for all large n and either coincides with P∞,0

3,j or is linked with P∞,0
3,j . 

Hence P∞,1
3,j either coincides with P∞,0

3,j or is linked with P∞,0
3,j . In particular, since U0 is 

linked with some Pn,1
3,j for every large n, we conclude that U0 is linked with some P∞,1

3,j . 
The claim is proved.

Now if every orbit in P≤C(λ), which is not a cover of an orbit in P2(λ) ∪ P∞,1
3 (λ), 

is linked with some orbit in P∞,1
3 (λ), then P∞,1

3 (λ) is the desired set of periodic orbits 
and there is nothing else to be proved. Otherwise, if there exists a simple periodic orbit 
U1 ∈ P≤C(λ), which is not a cover of an orbit in P2(λ) ∪ P∞,1

3 (λ) and is not linked 
with any orbit in P∞,1

3 (λ), then we construct another new sequence of non-degenerate 
contact forms λn converging in C∞ to λ as n → +∞ as before, so that every orbit in 
P2(λ) and every orbit in

L1 := L0 ∪ P∞,1
3 ∪ {U1},

is a periodic orbit of λn for every n. Choosing a suitable sequence Jn → J , we find a 
new set P∞,2

3 (λ) = {P∞,2
3,1 , . . . , P∞,2

3,l+1} ⊂ Pu,−1,≤C
3 (λ), with P∞,2

3,j ⊂ Uj , ∀j, as the limit 
of the new binding orbits Pn,2

3,j , j = 1, . . . , l + 1.
As before, we claim that no orbit in P∞,2

3 (λ) coincides with U0 or U1. To see this, 
observe that each Pn,2

3,j is contained in Uj for all large n and either it coincides with one 

of the orbits P∞,0
3,j or P∞,1

3,j or is linked with both of them. Hence P∞,2
3,j either coincides 

with one of the orbits P∞,0
3,j , P∞,1

3,j , or is linked with both of them. In particular, since 

U0 is linked with some Pn,2
3,j for every large n, we conclude that U0 is linked with some 

P∞,2
3,j . The same holds with U1. The claim follows.
Again, if we find a simple periodic orbit U2 ∈ P≤C(λ) which is not a cover of an orbit 

in P2(λ) ∪ P∞,2
3 (λ) and is not linked with any orbit in P∞,2

3 (λ), we define a new set

L2 := L1 ∪ P∞,2
3 (λ) ∪ {U2},
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and consider again a new sequence λn → λ (and Jn → J) as before to obtain P∞,3
3 (λ)

with similar properties and so on.
Repeating this process indefinitely, if necessary, we end up with sequences

P∞,k
3 (λ) ⊂ Pu,−1,≤C

3 (λ) and Uk ∈ P≤C(λ), k ∈ N,

so that

• P∞,k
3 (λ) ⊂ Pu,−1,≤C

3 (λ) is formed by l + 1 mutually distinct and mutually unlinked 
orbits P∞,k

3,j ⊂ Uj , ∀j = 1, . . . , l + 1.
• Uk is not a cover of any orbit in P2(λ) ∪ P∞,k

3 (λ).
• Uk is not linked with any orbit in P∞,k

3 (λ).
• for every p > k there exists an orbit in P∞,p

3 (λ) which is linked with Uk.

We may extract a subsequence so that the orbits P∞,k
3,1 , . . . , P∞,k

3,l+1 ∈ P∞,k
3 (λ) are converg-

ing to Q∞
1 , . . . , Q∞

l+1 ∈ Pu,−1,≤C
3 (λ) as k → +∞. The periodic orbits Q∞

j , j = 1, . . . , l+1, 
are mutually distinct, mutually unlinked and Q∞

j ⊂ Uj , ∀j. Moreover, CZ(Q∞
j ) = 3, ∀j.

Using the Arzelà-Ascoli theorem, we may assume that Uk → U∞ as k → +∞, where 
the action of U∞ is ≤ C. Since P2,i is hyperbolic and each Uk is geometrically distinct 
from the orbits in P2(λ), we conclude that U∞ is not a cover of any orbit in P2(λ). 
Observe that:

• If U∞ is a cover of Q∞
j for some j, then since CZ(Q∞

j ) = 3 we conclude that Uk is 
linked with P∞,k

3,j for every k sufficiently large, a contradiction.
• If U∞ is not a cover of Q∞

j for any j and is linked with some Q∞
j , then Uk is linked 

with P∞,k
3,j for k sufficiently large, a contradiction.

• If U∞ is not a cover of Q∞
j for any j and is not linked with any Q∞

j , then for k
sufficiently large Uk is not linked with any P∞,p

3,j for every p > k. This is also a 
contradiction.

We have proved that the process of constructing such new sequences of non-degenerate 
contact forms converging to λ must terminate after finitely many steps. Hence we 
find a sequence λn → λ with the desired properties whose limiting periodic orbits 
P3,1, . . . , P3,l+1 satisfy all properties in the statement of Proposition 3.10. The proof 
is complete. �
3.3. Compactness properties of holomorphic cylinders

Let λn and Jn ∈ Jreg(λn) be sequences of non-degenerate contact forms and almost 
complex structures converging to λ and J ∈ J ∗

reg(λ), respectively, as obtained in Propo-
sition 3.10. For every n, the almost complex structure J̃n induced by (λn, Jn) admits 
a stable finite energy foliation F̃n that projects to a genus zero transverse foliation Fn
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whose binding orbits are P2,1, . . . , P2,l, Pn
3,1, . . . , P

n
3,l+1, where, for every j, the orbit Pn

3,j
converges to P3,j ∈ Ps

3(λ).
Fix j ∈ {1, . . . , l + 1}, so that Pn

3,j ⊂ Uj for every n. Choose an arbitrary boundary 
component, say Si, of the closure of Uj. Then every Fn contains a unique rigid cylinder 
connecting Pn

3,j to P2,i. This cylinder is the projection of an embedded finite energy 

J̃n-holomorphic cylinder ṽn = (bn, vn) : R × R/Z → R × S3. It is asymptotic to Pn
3,j at 

its positive puncture +∞ and to P2,i at its negative puncture −∞.
We shall study the compactness properties of the sequence ṽn. Consider U ⊂ Uj

a small compact tubular neighborhood of P3,j. Since CZ(P3,j) = 3, we can choose U
sufficiently small so that

• U contains no periodic orbits that are contractible in U .
• there exists no Reeb orbit P ⊂ U of λ which is geometrically distinct from P3,j , is 

homotopic to P3,j in U and satisfies link(P, P3,j) = 0.

The first property follows from the fact that for U sufficiently small, every periodic orbit 
in U must be homotopic in U to a positive cover of P3,j and hence is non-contractible 
in U . The second property can be achieved since P3,j ∈ Pu,−1

3 (λ). Indeed, the flow near 
P3,j twists fast enough so that any periodic orbit sufficiently close to P3,j , if it exists, 
must be linked with P3,j . See Lemma 5.2 in [16].

Using that Pn
3,j → P3,j as n → +∞, we observe that Pn

3,j ⊂ int(U) for every large n
and, moreover, due to the asymptotic properties of ṽn, we can normalize ṽn to satisfy 
the following conditions

⎧⎪⎪⎨⎪⎪⎩
vn(s, t) ∈ U for all s > 0, t ∈ R/Z.

vn(0, 0) ∈ ∂U .
bn(1, 0) = 0.

(3.3)

Lemma 3.12. Let ṽn satisfy the normalizations (3.3). Assume that there exist a sub-
sequence of ṽn, still denoted by ṽn, and a finite energy J̃-holomorphic map ṽ =
(b, v) : (0, ∞) × R/Z → R × S3 so that ṽn|(0,∞)×S1 converges in C∞

loc((0, ∞) × R/Z)
to ṽ as n → +∞. Then ṽ is asymptotic to P3,j at ∞.

Proof. We argue as in Lemma 3.6. Let R > 0. Since the loop t 
→ γn
R(t) := vn(R, t), t ∈

R/Z, lies in U for every n and since γn
R converges in C∞(R/Z) to the loop t 
→ γR(t) :=

v(R, t), t ∈ R/Z, as n → +∞, we have γR(t) ∈ U , ∀t. In particular, γR is homotopic to 
γn
R in U for every large n.

The fact that vn((0, ∞) ×R/Z) ⊂ U for every n and that γn
R converges to Pn

3,j in U as 
R → +∞ implies that γR is homotopic to Pn

3,j in U for every R > 0. Since Pn
3,j → P3,j

as n → +∞, γR is homotopic to P3,j in U for every R > 0. In particular, γR is non-
contractible in U and thus non-constant. Hence ṽ is non-constant as well.
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Any asymptotic limit P ⊂ U of ṽ at ∞ is homotopic to P3,j in U since each γR is 
homotopic to P3,j in U for every R > 0. Assume P �= P3,j . Then P must be linked with 
P3,j . This follows from the choice of U . But since γR is the C∞-limit of the loops γn

R as 
n → +∞, which are all unlinked with Pn

3,j , we conclude that γR is not linked with P3,j , 
a contradiction. Hence P3,j is the unique asymptotic limit of ṽ at ∞. This finishes the 
proof. �

We next show that, up to a subsequence, the sequence ṽn : R ×R/Z → R ×S3 converges 
to a J̃-holomorphic map ṽ = (b, v) : (R ×R/Z) \Γ → R ×S3 which is asymptotic to P3,j
at its unique positive puncture +∞ and to orbits in P2(λ) at the negative punctures in 
Γ ∪ {−∞}.

Proposition 3.13. Let ṽn = (bn, vn) : R × R/Z → R × S3 be the sequence of embedded 
finite energy J̃n-holomorphic cylinders as above. Under the particular choice of a small 
compact tubular neighborhood U ⊂ Uj of P3,j and the normalizations (3.3), there exists 
an embedded finite energy J̃-holomorphic curve ṽ = (b, v) : (R × R/Z) \ Γ → R × S3, 
asymptotic to P3,j at its unique positive puncture +∞, to P2,i at −∞ and to other 
distinct orbits in P2(λ) at the punctures in Γ, so that, up to a subsequence, ṽn → ṽ in 
C∞

loc as n → +∞. Moreover, v((R ×R/Z) \Γ) ⊂ Uj, and the convergence of ṽ to P3,j at 
+∞ is exponential.

Proof. Arguing as in the proof of Proposition 3.5, we take a subsequence of ṽn, still 
denoted by ṽn, which admits a sequence (sn, tn) ∈ R ×R/Z so that |∇ṽn(sn, tn)| → +∞
as n → +∞. Then we have lim supn→∞ sn ≤ 0 and, up to a subsequence, we assume that 
(sn, tn) converges to a point in (−∞, 0] ×R/Z. Moreover, extracting a subsequence, we 
can assume that the set of bubbling-off points Γ ⊂ (−∞, 0] ×R/Z is finite. Because of the 
normalizations (3.3), we can find a J̃-holomorphic map ṽ = (b, v) : (R ×R/Z) \Γ → R ×S3

so that ṽn converges to ṽ in C∞
loc((R ×R/Z) \Γ) as n → +∞. Moreover, ṽ is asymptotic 

to P3,j at +∞, see Lemma 3.12, and v((R ×R/Z) \Γ) ⊂ Uj by positivity and stability of 
intersections. Every puncture in Γ is negative. For a proof, see the argument just after 
(3.2). The puncture at −∞ is also negative since 

∫
{s}×R/Z v∗nλn > T2,i for every n and 

every fixed s � 0. Since +∞ is the only positive puncture of ṽ and its asymptotic limit 
is simple, we also conclude that ṽ is somewhere injective.

Next we claim that the asymptotic limit of ṽ at each (s∗, t∗) ∈ Γ is a cover of an 
orbit in P2(λ). Assume by contradiction that there exists an asymptotic limit Q ⊂ Uj

at (s∗, t∗) ∈ Γ, which is not a cover of an orbit in P2(λ). If Q is not a cover of P3,j , then 
Q is linked with P3,j , see Proposition 3.10. Let ε > 0 be sufficiently small so that the 
loop v(|(s, t) − (s∗, t∗)| = ε) ⊂ S3 is arbitrarily close to Q. Then the loop vn(|(s, t) −
(s∗, t∗)| = ε) is linked with P3,j , if n is large enough. In particular, vn(|(s, t) −(s∗, t∗)| ≤ ε)
intersects Pn

3,j for every large n, a contradiction. It follows that Q is a cover of P3,j . But 
this implies that 

∫
(R×R/Z)\Γ v∗dλ ≤ T3,j − T2,i − T3,j < 0, a contradiction. A similar 

argument shows that the asymptotic limit of ṽ at −∞ is a cover of an orbit in P2(λ). We 
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conclude that the asymptotic limits of ṽ at its negative punctures are covers of orbits in 
P2(λ).

Now we show that the dλ-area of ṽ is positive. Otherwise, ṽ is a cylinder over 
some periodic orbit P , see [14, Theorem 6.11]. In particular, Γ = ∅ and ṽ is a triv-
ial cylinder over P3,j . But this contradicts our normalization (3.3) since it implies 
v(0, 0) ∈ ∂U .

We have showed that ṽ is asymptotic to P3,j at +∞, and to covers of orbits in P2(λ) at 
its negative punctures in Γ ∪{−∞}. The usual analysis near P3,j (see [16, Theorem 7.2]
and also [6, Proposition 9.3]) implies that the convergence of ṽ to P3,j is exponential with 
a negative leading eigenvalue of AP3,j ,J , whose eigenvector has winding number 1 with 
respect to any global trivialization of the contact structure. The asymptotic behavior of 
ṽ at +∞ is as in Theorem 2.3.

We still need to prove that ṽ is asymptotic to P2,i at −∞ and to other distinct 
orbits of P2(λ) at the remaining negative punctures in Γ. Assume, by contradiction, 
that ṽ is asymptotic to a p0-cover, p0 > 1, of some P2,i0 ∈ P2(λ) at a negative punc-
ture (s0, t0) ∈ Γ. In particular, P2,i0 ⊂ ∂Uj . Since P2,i0 is hyperbolic and satisfies 
μCZ(P2,i0) = 2, the asymptotic operator AP2,i0 ,J

associated with P2,i0 and J admits 
a unique positive eigenvalue μ with winding number 1 (the least positive eigenvalue) and 
associated μ-eigenfunctions e, e′ which point inside and outside Uj, respectively. More-
over, the asymptotic operator AP

p0
2,i0

,J associated with the p0-cover P p0
2,i0 of P2,i0 and 

J admits an eigenfunction ep0 , which equals to e covered p0 times, whose associated 
eigenvalue is p0μ. Its winding number is p0 with respect to a global trivialization of ξ. 
Since P p0

2,i0 is also hyperbolic and satisfies μCZ(P p0
2,i0) = 2p0, the eigenvalue p0μ is the 

least positive eigenvalue of AP
p0
2,i0

,J , and the other positive eigenvalues admit winding 
numbers larger than p0. Since the image of v lies in Uj , this implies that the eigen-
function ep0 describes the asymptotic behavior of ṽ near the puncture (s0, t0). Since 
p0 > 1, the map v admits self-intersection, see [6, Proposition C.0-i)], which is impos-
sible since the somewhere injective curve ṽ is the C∞-limit of embedded curves whose 
projections to S3 are embedded surfaces. We conclude that the asymptotic limit of ṽ
at a puncture in Γ is an orbit in P2(λ). In a similar way, if ṽ is asymptotic to the 
same orbit in P2(λ) at distinct punctures in Γ ∪ {−∞}, then v also self-intersects, 
see [6, Proposition C.0-ii)]. Again, this is a contradiction since the somewhere injec-
tive curve ṽ is the C∞

loc-limit of embedded curves whose projections to S3 are embedded 
surfaces.

We conclude that, up to extraction of a subsequence, the sequence ṽn of em-
bedded finite energy J̃n-holomorphic planes, normalized as in (3.3), converges in 
C∞

loc((R × R/Z) \ Γ) to a somewhere injective curve ṽ as n → +∞. Moreover, ṽ is 
asymptotic to P3,j at +∞, and to distinct orbits in P2(λ) at its negative puncture in 
Γ ∪ {−∞}. Moreover, ṽ and v are embeddings, and v((R ×R/Z) \ Γ) ⊂ Uj .

It remains to show that ṽ is asymptotic to P2,i at −∞. To see this, let P2,l0 ∈ P2(λ)
be the asymptotic limit of ṽ at −∞. Assume l0 �= i. For suitable sn, cn ∈ R, with 
sn → −∞, the shifted maps w̃n(s, t) = (b(s − sn) + cn, v(s − sn)), ∀(s, t) ∈ R × R/Z, 
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converges in C∞
loc to a finite energy J̃-holomorphic curve w̃ : (R × R/Z) \ Γ′ → R × S3

with Γ′ finite, which is asymptotic to P2,l0 at its positive puncture at +∞. Moreover, 
sn, cn can be appropriately chosen so that w̃ is not a trivial cylinder over P2,l0 . Indeed, 
since all orbits with action ≤ T2,l0 are hyperbolic, one can apply the SFT-compactness 
theorem (see [2]) to obtain a genus zero building of J̃-holomorphic curves so that the 
building has a positive puncture at P2,l0 and a negative puncture at P2,i. The first level 
of this building is the non-trivial curve w̃. Moreover, arguing as above, the punctures 
of w̃ in Γ′ ∪ {−∞} are negative and w̃ is asymptotic to distinct orbits in P2(λ) at 
Γ′ ∪{−∞}. Hence w̃ is somewhere injective and has positive dλ-area. Since J ∈ J ∗

reg(λ), 
we can apply Lemma 3.3 to conclude that the set of negative punctures of w̃ is empty, 
a contradiction. This proves that l0 = i and finishes the proof of this proposition. �

3.4. Compactness properties of holomorphic planes

In this section we study the compactness properties of the families of J̃n-holomorphic 
planes asymptotic to Pn

3,j ∈ Pu,−1,≤C
3 (λn), j = 1, . . . , l + 1. Recall that Pn

3,j → P3,j

as n → +∞, ∀j = 1, . . . , l + 1, where P3,j ∈ Pu,−1,≤C
3 (λ). The orbit P3,j lies in the 

component Uj ⊂ S3 \
⋃l

i=1 Si, j = 1, . . . , l + 1, where Si = Ui,1 ∪ P2,i ∪ Ui,2 ⊂ S3 is 
a C1-embedded 2-sphere. We may assume that the sequences λn and Jn are given as 
in Proposition 3.10 so that the orbits P3,j satisfy the properties stated in that proposi-
tion.

Fix j and denote by k̃j the number of boundary components of Uj. Let i1, . . . ik̃j
∈

{1, . . . , l} be such that ∂Uj =
⋃k̃j

k=1 Sik . For each n ∈ N, j ∈ {1, . . . , l + 1} and 
k ∈ {1, . . . , ̃kj}, there exists a one-parameter family of planes Fj,n

k,τ , τ ∈ (0, 1), asymp-
totic to Pn

3,j . For simplicity, we omit j, k in the notation, i.e. Fn
τ = Fj,n

k,τ , ∀τ . Let 
ũn
τ = (anτ , un

τ ) : C → R × S3, τ ∈ (0, 1), be the family of J̃n-holomorphic planes so 
that un

τ (C) = Fn
τ , ∀n, τ .

Fix p ∈ Uj \ P3,j and consider a sequence pn → p, where pn ∈ un
τn(C) ⊂ Uj for some 

τn ∈ (0, 1). Denote by ṽn = (bn, vn) : C → R × S3 the J̃-holomorphic plane ũn
τn . In 

particular, pn ∈ vn(C), ∀n.
We consider a small compact tubular neighborhoods U ⊂ Uj of P3,j . As in Section 3.3, 

since CZ(P3,j) = 3, we can choose U sufficiently small so that

• p �∈ U .
• U contains no periodic orbits that are contractible in U .
• there exists no periodic orbit P ⊂ U which is geometrically distinct from P3,j , is 

homotopic to P3,j in U and satisfies link(P, P3,j) = 0.

Using that Pn
3,j → P3,j as n → +∞, we observe that Pn

3,j ⊂ int(U) for every large n
and, moreover, we can normalize ṽn to satisfy the following conditions
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vn(C \D) ⊂ U ,
vn(1) ∈ ∂U ,
vn(z∗n) ∈ ∂U for some z∗n ∈ ∂D satisfying Re(z∗n) ≤ 0,
bn(2) = 0.

(3.4)

This normalization is constructed exactly as in (3.1).
The proof of the following lemma is similar to the proof of Lemma 3.12.

Lemma 3.14. Let ṽn satisfy the normalizations in (3.4). Assume that there exist a subse-
quence of ṽn, still denoted by ṽn, and a J̃-holomorphic map ṽ = (b, v) : C \D → R × S3

so that ũn|C\D converges in C∞
loc(C \D) to ṽ as n → +∞. Then ṽ is asymptotic to P3,j

at ∞.

Recall that ṽn = (bn, vn) is such that pn ∈ vn(C), ∀n, where pn → p ∈ Uj \ P3,j
is fixed. Next we show that there exists an open subset of Uj \ P3,j of full measure so 
that if the limit point p is fixed in this subset, then the sequence ṽn, normalized as in 
(3.4) (for particular choices of the small tubular neighborhood U ⊂ Uj of P3,j), does not 
admit bubbling-off points and converges in C∞

loc as n → +∞ to a J̃-holomorphic plane 
ṽ : C → R × S3 asymptotic to P3,j . The cases for which this compactness property fails 
occur when the sequence ṽn admits bubbling-off points in D, and the limiting curve is 
asymptotic to P3,j at ∞ and to distinct orbits in P2(λ) at its negative punctures. As we 
shall prove below, there are only finitely many such curves. Therefore, if p is taken in 
the complement of the image of these curves, the compactness property holds, and the 
limiting curve is a J̃-holomorphic plane asymptotic to P3,j .

Proposition 3.15. There exists an open subset U ′
j ⊂ Uj \ P3,j of full measure in Uj \ P3,j

so that if pn → p ∈ U ′
j and ṽn = (bn, vn) : C → R × S3 is such that pn ∈ vn(C), ∀n, 

then, under the particular choice of a small compact tubular neighborhood U ⊂ Uj of P3,j
depending on p as above and the normalizations in (3.4), there exists a J̃-holomorphic 
plane ṽ = (b, v) : C → R × S3, exponentially asymptotic to P3,j, so that ṽn → ṽ in C∞

loc
as n → +∞ and p ∈ v(C).

Proof. Arguing as in the proof of Proposition 3.5, we take a subsequence of ṽn, still 
denoted by ṽn, which admits a sequence zn ∈ C so that |∇ṽn(zn)| → +∞ as n → ∞. 
Then zn is bounded and, up to extraction of a subsequence, converges to a point in D. 
Moreover, extracting a subsequence, we can assume that the set of bubbling-off points 
Γ ⊂ D is finite. Because of the normalizations (3.4), we find a J̃-holomorphic map 
ṽ = (b, v) : C \ Γ → R × S3 so that ṽn converges to ṽ in C∞

loc(C \ Γ) as n → +∞. 
Moreover, ṽ is asymptotic to P3,j at ∞ (see Lemma 3.14) and to distinct orbits in P2(λ)
at the negative punctures in Γ. The convergence of ṽ to P3,j is exponential with a negative 
leading eigenvalue whose eigenfunction has winding number 1 with respect to any global 
trivialization of the contact structure. We also have v(C \ Γ) ⊂ Uj .



N.V. de Paulo et al. / Advances in Mathematics 457 (2024) 109909 33
Performing a soft-rescaling of ṽn near each puncture in Γ where ṽ is asymptotic to 

some P2,i ∈ P2(λ), we find a new J̃-holomorphic curve w̃ = (d, w) : C \ Γ′ → R × S3, 
with Γ′ finite, which is asymptotic to P2,i at ∞ and, at its punctures in Γ′ ⊂ D, the 

curve is asymptotic to covers of orbits in P2(λ) (see hypothesis II in Theorem 1.6). See 

also [19] and [6] for more details on the soft-rescaling. Since J ∈ J ∗
reg(λ), we can apply 

Lemma 3.3 to conclude that w̃ is a plane asymptotic to P2,i. In particular, by uniqueness 
of such planes, w(C) ⊂ ∂Uj .

Define the points qn ∈ C by vn(qn) = pn, ∀n. We observe that the sequence qn
is bounded and stays away from any puncture of w̃. Indeed, the usual analysis using 

cylinders of small area implies that every point sufficiently close to the punctures in Γ
are mapped under vn to a point arbitrarily close to P2,i ∪w(C) ⊂ ∂Uj , see [19, Theorem 

6.6]. Thus, after taking a subsequence, we may assume that qn → q∞ ∈ D, where q∞ �∈ Γ
and w(q∞) = p. Denote w̃1 = ṽ and Γ1 = Γ.

Now take p′n → p′ �= p ∈ Uj \ (w1(C \ Γ1) ∪ P3,j), and, as before, consider the J̃n-
holomorphic planes, suitably normalized as in (3.4) and again denoted by ṽn = (bn, vn), 
so that p′n ∈ vn(C). After taking a subsequence, we can assume that there exists Γ2 ⊂ D, 
and a J̃-holomorphic curve w̃2 = (c2, w2) : C \ Γ2 → R × S3 so that ṽn → w̃2 in 

C∞
loc(C \Γ2) as n → +∞. The asymptotic limits of w̃2 at the punctures in Γ2 are distinct 

orbits in P2(λ). A soft-rescaling near each z′ ∈ Γ2 produces a J̃-holomorphic plane whose 

asymptotic limit coincides with the asymptotic limit of w̃2 at z′. Moreover, if q′n ∈ D is 
such that vn(q′n) = p′n → p′ then, up to a subsequence, q′n → q′∞ /∈ Γ2 and w2(q′∞) = p′. 
In particular, the image of w2 differs from the image of w1.

Assume that w̃1 and w̃2 are asymptotic to the same orbit P2,i ∈ P2(λ) at punctures 
z1 ∈ Γ1 and z2 ∈ Γ2, respectively. Then Proposition C.0 in [6] implies that w1 and w2

must intersect each other (the intersections of w̄1 and w̄2 are isolated) and, as C∞
loc-limits 

of curves that do not intersect each other, the positivity and stability of intersections of 
pseudo-holomorphic curves (see [25, Appendix E]) give a contradiction. Thus w1 and w2

have mutually distinct asymptotic limits at their negative punctures.
We can repeat the process with a point p′′ ∈ Uj \ (w1(C \Γ1) ∪w2(C \Γ2) ∪P3,j) and 

find the limiting curve associated with the sequence ṽn = (bn, vn), suitably normalized 

and satisfying p′′n ∈ vn(C) → p′′. As before, if the limiting curve w̃3 = (c3, w3) has 
negative punctures, then it is asymptotic to an orbit in P2(λ) at these punctures. These 

asymptotic limits are distinct from the asymptotic limits of w̃1 and w̃2 at any of their 
negative punctures. Hence, we conclude that when we vary the point p in Uj \P3,j there 

can be at most k̃j of such limiting curves admitting negative punctures. A choice of 
p ∈ Uj \ P3,j in the complement of the image of these curves implies that the limiting 

curve does not admit bubbling-off points and thus is a J̃-holomorphic plane exponentially 

asymptotic to P3,j . The proof is complete. �
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3.5. Another generic set of almost complex structures

Let J ∈ J ∗
reg(λ) be chosen as in Lemma 3.3. In Section 3 we constructed a transverse 

foliation FJ adapted to the Reeb flow of λ, so that the binding is formed by the orbits 
P2,i ∈ P2(λ), i = 1, . . . , l, and finitely many orbits P3,j ∈ Pu,−1,≤C

3 (λ), j = 1, . . . , l + 1, 
where C > 0 is as in Proposition 2.6. Each P2,i is the boundary of a pair of rigid planes 
Ui,1, Ui,2 ∈ FJ so that Si = Ui,1 ∪ P2,i ∪ Ui,2 ⊂ S3 is a C1-embedded 2-sphere that 
separates S3 into two distinct components. The union of these 2-spheres is denoted by 
S. Each P3,j , j = 1, . . . , l + 1, lies in the component Uj of S3 \

⋃l
i=1 Si. The closure of 

Uj has k̃j boundary components, denoted by Snj
k
, k = 1, . . . , ̃kj , where nj

k ∈ {1, . . . , l}. 
The leaves of the transverse foliation FJ are projections to S3 of embedded finite energy 
J̃-holomorphic curves, where J̃ is the almost complex structure in R ×S3 associated with 
the pair (λ, J). For every i = 1, . . . , l, there exist two embedded J̃-holomorphic planes 
ũi,j = (ai,j , ui,j) : C → R × S3, j = 1, 2, asymptotic to P2,i ∈ P2(λ) at ∞, and so that 
Ui,j = ui,j(C) ⊂ Si, ∀i, j.

Let ε > 0 be small. For each j = 1, . . . , l + 1 and for every k = 1, . . . , ̃kj , take a 
compact ε-neighborhood Uε

j,nj
k

⊂ closure(Uj) of Snj
k
. Abbreviate

Uε
j =

k̃j⋃
k=1

Uε
j,nj

k

⊂ closure(Uj) and Uε =
l+1⋃
j=1

Uε
j ⊂ S3.

Denote by J ε
J (λ) ⊂ J (λ) the space of dλ-compatible almost complex structures J ′

satisfying J ′ = J in (S3 \Uε) ∪S. The set J ε
J (λ) inherits the C∞-topology from J (λ). 

Denote by J̃ ′ the almost complex structure on R ×S3 determined by λ and J ′ ∈ J ε
J (λ). 

In particular, ũi,j is J̃ ′-holomorphic for every J ′ ∈ J ε
J (λ).

Taking ε > 0 sufficiently small, we can assure that for every j = 1, . . . , l+1, there exists 
an embedded J̃-holomorphic plane w̃j = (cj , wj) : C → R × S3, which is exponentially 
asymptotic to P3,j at ∞ and satisfies wj(C) ⊂ Uj \ Uε. In particular, w̃ is also J̃ ′-
holomorphic for every almost complex structure J̃ ′ associated with λ and J ′ ∈ J ε

J (λ).
The foliation FJ constructed in the previous section may contain regular leaves which 

are projections to S3 of a J̃-holomorphic curve w̃ = (b, w) : C \ Γ → R × S3, satisfying

• Γ �= ∅.
•

∫
C\Γ w∗dλ > 0.

• ∞ is a positive puncture of w̃ and every puncture in Γ is negative.
• ∃ j ∈ {1, . . . , l+1} so that w̃ is exponentially asymptotic to P3,j at ∞ and to distinct 

orbits in P2(λ) at the punctures in Γ and w(C \ Γ) ⊂ Uj .

The Fredholm index of w̃ is Ind(w̃) = CZ(P3,j) −
∑

z∈Γ CZ(P2,z) − 1 + #Γ = 2 − #Γ. 
Here, P2,z ∈ P2(λ) is the asymptotic limit of w̃ at z ∈ Γ. Therefore, #Γ > 1 implies that 
Ind(w̃) ≤ 0.
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Fig. 3.1. (top) A non-generic J̃-holomorphic curve ṽ : C \{z2, z′
2} → R ×S3, asymptotic to P3 at its positive 

puncture ∞ and to P2 and P ′
2 at the negative punctures z2 and z′

2, respectively. (bottom) For a small 
generic perturbation of J, this curve unfolds into generic J̃-holomorphic cylinders, one connecting P3 to P2
and the other connecting P3 to P ′

2.

The following theorem, based on the weighted Fredholm theory developed in [17], 
states that it is always possible to find J ′ ∈ J ε

J (λ), which is C∞-close to J , so that the 
Fredholm index of w̃ as above is at least 1. In particular, such curves are rigid cylinders 
asymptotic to some P3,j at the positive puncture and to an orbit in P2(λ) at the negative 
puncture. See Fig. 3.1.

Theorem 3.16 (Hofer-Wysocki-Zehnder [17], Dragnev [9]). Given J ∈ J ∗
reg(λ) and ε > 0

sufficiently small, there exists a residual set J ε
J,reg(λ) ⊂ J ε

J (λ) in the C∞-topology so 
that the following holds: let J ′ ∈ J ε

J,reg(λ) and let ṽ = (b, v) : C\Γ → R ×S3, Γ �= ∅, be a 

somewhere injective finite energy J̃ ′-holomorphic curve, where J̃ ′ is the almost complex 
structure in R × S3 induced by the pair (λ, J ′). Assume that all punctures in Γ are 
negative and that ṽ is exponentially asymptotic to some P3,j at the positive puncture 
+∞ and to distinct orbits in P2(λ) at the punctures in Γ. Then #Γ = 1. In particular, 
ṽ is a J̃ ′-holomorphic cylinder asymptotic to P3,j at ∞ and to an orbit in P2(λ) at its 
negative puncture.

3.6. Finding the desired transverse foliation

Take ε > 0 sufficiently small and let J ′ ∈ J ε
J,reg(λ) be as in Theorem 3.16. Then for 

every i = 1, . . . , l, the rigid planes Ui,1, Ui,2 are projections of embedded J̃ ′-holomorphic 
planes ũi,1, ̃ui,2 : C → R ×S3, which are asymptotic to P2,i at ∞. For every j = 1, . . . , l+1, 
there exists an embedded J̃ ′-holomorphic plane w̃j : C → R ×S3 asymptotic to P3,j at ∞. 
Our goal is to construct a transverse foliation which contains only planes and cylinders 
asymptotic to the orbits P2,i, i = 1, . . . , l, and P3,j , j = 1, . . . , l+1, and so that the given 
planes are part of the regular leaves.
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Denote by MJ̃ ′(P3,j) the space of J̃ ′-holomorphic planes exponentially asymptotic to 
P3,j at ∞. We identify those planes which have the same image in S3, that is, w̃1 ∼ w̃2
if there exists a, b ∈ C and c ∈ R so that w̃1(z) = c + w̃2(az+ b), ∀z ∈ C, where c + w̃2 is 
the c-translation of w̃2 in the R-direction. The intersection theory developed in [14,17,31]
implies the following proposition.

Proposition 3.17. Let j ∈ {1, . . . , l + 1}. Then the following assertions hold:

(i) MJ̃ ′(P3,j) has the structure of a 1-dimensional smooth manifold.
(ii) if [w̃ = (c, w)] ∈ MJ̃ ′(P3,j), then w(C) ⊂ Uj.
(iii) if [w̃1 = (c1, w1)] �= [w̃2 = (c2, w2)] ∈ MJ̃ ′(P3,j), then w1(C) ∩ w2(C) = ∅.

The last step toward the proof of Theorem 1.6 is the following assertion.

Proposition 3.18. Fix j ∈ {1, . . . , l + 1} and let k̃j be the number of components of ∂Uj. 
Then there exist k̃j embedded J̃ ′-holomorphic cylinders

ṽj,m = (bj,m, vj,m) : C \ {0} → R× S3, ∀m = 1, . . . , k̃j ,

and k̃j families of embedded J̃ ′-holomorphic planes w̃j,m,τ ∈ MJ̃ ′(P3,j),

w̃j,m,τ = (cj,m,τ , wj,m,τ ) : C → R× S3, τ ∈ (0, 1), ∀m = 1, . . . , k̃j ,

so that the following properties hold:

(i) ∞ is a positive puncture of ṽj,m, where it is exponentially asymptotic to P3,j, 
and 0 ∈ C is a negative puncture of ṽj,m, where it is asymptotic to P2,nj

m
, ∀m =

1, . . . , ̃kj. Moreover, vj,m(C \ {0}) ⊂ Uj , ∀m, and

vj,m(C \ {0}) ∩ vj,n(C \ {0}) = ∅, ∀m �= n.

(ii) ∞ is a positive puncture of w̃j,m,τ , where it is exponentially asymptotic to P3,j, and 
wj,m,τ (C) ⊂ Uj , ∀m.

(iii) vj,m(C \ {0}) and wj,m,τ (C), m = 1, . . . , ̃kj , τ ∈ (0, 1), are regular leaves of a 
transverse foliation of Uj.

(iv) for every m ∈ {1, . . . , ̃kj}, w̃j,m,τ converges in the SFT-sense (see [2]) to ṽj,m ⊕
ũnj

m,1 as τ → 0+ and to ṽj,m+1 ⊕ ũnj
m+1,2

as τ → 1−. Here, ũnj
m,1 = (anj

m,1, unj
m,1)

and ũnj
m+1,2

= (anj
m+1,2

, unj
m+1,2

) are rigid planes asymptotic to orbits in P2(λ). 
Moreover, given neighborhoods Vj,m,1 ⊂ closure(Uj) of unj

m,1(C) ∪P2,nj
m
∪ vj,m(C \

{0}) and Vj,m+1,2 ⊂ closure(Uj) of unj
m,2(C) ∪P2,nj

m+1
∪vj,m+1(C\{0}), there exists 

δ > 0 so that wj,m,τ (C) ⊂ Vj,m,1, ∀0 < τ < δ, and wj,m,τ (C) ⊂ Vj,m+1,2, ∀1 − δ <

τ < 1. By convention, k̃j + 1 ≡ 1.
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Proof. The choice of ε > 0 sufficiently small and the definition of J̃ ′ guarantee the 
existence of an embedded J̃ ′-holomorphic plane w̃ = (a, w) : C → R × S3, which is 
exponentially asymptotic to P3,j and satisfies w(C) ⊂ Uj \ P3,j . By Proposition 3.17, 
w̃ ∈ MJ̃ ′(P3,j) lies in a 1-parameter family w̃τ = (cτ , wτ ) : C → R × S3, τ ∈ (−δ, δ), of 
embedded J̃ ′-holomorphic planes which are exponentially asymptotic to P3,j for some δ
small enough. For each τ ∈ (−δ, δ), wτ : C → S3 is an embedding transverse to the Reeb 
flow, and wτ1(C) ∩ wτ2(C) = ∅, ∀τ1 �= τ2. Consider the maximal one-parameter family 
of planes containing the family w̃τ , τ ∈ (−δ, δ), i.e. the smooth family of embedded J̃ ′-
holomorphic planes w̃τ ∈ MJ̃ ′(P3,j) so that the family wτ (C) fills the maximal volume 
in S3. Parametrize this maximal family by

w̃τ = (cτ , wτ ) : C → R× S3, τ ∈ (0, 1). (3.5)

Such a family is not compact since otherwise the S1-family of such planes in the comple-
ment of P3,j determines an open book decomposition of S3 whose binding is P3,j and, 
as a consequence of the transversality of the pages with respect to the flow, the orbits 
in P2(λ) �= ∅ are linked with P3,j , a contradiction.

We fix the convention that τ increases in the direction of the Reeb flow and that 
the Reeb vector field points inside Uj along Unj

m,1 = unj
m,1(C) and outside Uj along 

Unj
m,2 = unj

m,2(C), ∀m = 1, . . . , ̃kj .
For each τ ∈ (0, 1), we choose the following normalization of w̃τ . Consider a small 

compact tubular neighborhood U ⊂ Uj of P3,j , so that

• U contains no periodic orbits that are contractible in U .
• there exists no Reeb orbit P ⊂ U of λ which is geometrically distinct from P3,j , is 

homotopic to P3,j in U and satisfies link(P, P3,j) = 0.
• wτ (C \D) ⊂ U .
• wτ (1) ∈ ∂U .
• wτ (z∗τ ) ∈ ∂U for some z∗τ ∈ ∂D satisfying Re(z∗τ ) ≤ 0.
• cτ (2) = 0

Let us study the compactness properties of the family (3.5) under the normalizations 
above. Take a strictly increasing sequence τn → 1− and denote w̃n = w̃τn . Arguing 
as in the proof of Proposition 3.5, we take a subsequence of w̃n, still denoted by w̃n, 
which admits a sequence zn ∈ C so that |∇w̃n(zn)| → +∞ as n → +∞. Then zn is 
bounded and, up to a subsequence, zn converges to a point in D. Moreover, extracting 
a subsequence, we can assume that the set of bubbling-off points Γ ⊂ D is finite. The 
normalizations of w̃n imply the existence of a J̃-holomorphic curve ṽ = (b, v) : C \ Γ →
R × S3, so that w̃n → ṽ in C∞

loc(C \ Γ) as n → +∞. By Lemma 3.14, ṽ is non-constant 
and exponentially converges to P3,j at the positive puncture ∞. Every puncture in Γ is 
negative.



38 N.V. de Paulo et al. / Advances in Mathematics 457 (2024) 109909
Observe that Γ �= ∅. Indeed, if Γ = ∅, then ṽ is an embedded finite energy J̃ ′-
holomorphic plane exponentially asymptotic to P3,j . In particular, [ṽ] ∈ MJ̃ ′(P3,j). By 
Proposition 3.17, the family (3.5) can be continued, contradicting its maximality and 
the fact that τn → 1−.

The image of v is contained in Uj since, otherwise, by stability and positivity of 
intersections of pseudo-holomorphic curves (see [25, Appendix E]) in R × S3, for every 
n sufficiently large, wn intersects one of the rigid planes asymptotic to some orbit in 
P2(λ) which implies that w̃n intersects the corresponding J̃ ′-holomorphic plane, absurd. 
Hence, we obtain v(C \ Γ) ⊂ Uj .

Arguing again as in the proof of Proposition 3.5, we obtain that ṽ is asymptotic to P3,j

at +∞ and to an orbit in P2(λ) at each negative puncture in Γ �= ∅. By Theorem 3.16, 
Γ = 1 and thus ṽ is a J̃ ′-holomorphic cylinder, exponentially asymptotic to P3,j at 
+∞, and asymptotic to P2,nj

m
∈ P2(λ) for some m ∈ {1, . . . , ̃kj} at its unique negative 

puncture. We can assume that Γ = {0}, so that ṽ is asymptotic to P2,nj
m

at 0.
Performing a soft-rescaling of w̃n near the negative puncture 0, we find a new J̃ ′-

holomorphic curve ũ = (a, u) : C \ Γu → R × S3, which is asymptotic to P2,nj
m

at +∞
and to covers of orbits in P2(λ) at its punctures in Γu. As before, the generic choice of 
J and the soft-rescaling process imply that Γu = ∅, and hence ũ is a plane asymptotic 
to P2,nj

m
.

We conclude that w̃n converges to a 2-level building B of embedded J̃ ′-holomorphic 
curves. The top level contains the cylinder ṽ : C\{0} → R ×S3, exponentially asymptotic 
to P3,j at ∞, and asymptotic to P2,nj

m
at its negative puncture 0 ∈ C. The bottom level 

consists of a plane ũ : C → R × S3, asymptotic to P2,nj
m

at ∞. The usual analysis of 
cylinders with small area, see [18] and also [6, Proposition 9.5], implies that given a 
neighborhood V ⊂ S3 of v(C \ {0}) ∪P2,nj

m
∪ u(C) we have wn(C) ⊂ V for n sufficiently 

large.
The uniqueness of J̃ ′-holomorphic planes asymptotic to orbits in P2(λ), see [6, Propo-

sition C.-3], and the fact that τn → 1− implies that ũ = ũnj
m,2.

For every large n0, we can patch wn0(C) ∪ P3,j ∪ v(C \ {0}) ∪ P2,nj
m
∪ u(C) to form 

a topological embedded 2-sphere Sn0 ⊂ closure(Uj). The 2-sphere Sn0 separates S3 into 
two disjoints subsets, one of them, denoted by An0 , contains wn(C) for n > n0. The 
volume of An0 tends to 0 as n0 → +∞. It then follows that for every sequence τn → 1−, 
the image of wτn(C) is contained in An0 for every n sufficiently large. This implies that 
the limiting building B is the unique SFT-limit of w̃τ as τ → 1−.

According to C. Wendl [33, Theorem 1], the curves ṽ and ũ are automatically trans-
verse. In particular, we can glue ṽ =: ṽj,m with ũnj

m,1 along P2,nj
m

to form a new family of 
embedded J̃ ′-holomorphic planes, all of them exponentially asymptotic to P3,j. See [28, 
Section 7] or [34, Section 10]. Such planes lie in a maximal family of planes in MJ̃ ′(P3,j)
and will be denoted by w̃′

τ = (c′τ , w′
τ ) : C → R × S3, τ ∈ (0, 1), so that w′

τ (C) ⊂ Uj , ∀τ . 
Under our parametrizations, w̃′

τ converges to the holomorphic building formed by ṽ and 
ũ j as τ → 0+. In our notation the family w̃′

τ now corresponds to w̃j,m,τ , τ ∈ (0, 1).
nm,1
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If k̃j = 1, then the family w̃′
τ , τ ∈ (0, 1), coincides with the family w̃τ , τ ∈ (0, 1), 

and the compactness properties above show that the ∪τ∈(0,1)wτ (C), is open and closed 
in Uj \ (P3,j ∪ v(C \ {0})) and thus coincides with Uj \ (P3,j ∪ v(C \ {0})). If k̃j > 1, 
then the families w̃τ , τ ∈ (0, 1), and w̃′

τ , τ ∈ (0, 1), do not coincide, and we consider the 
compactness properties of the family w̃′

τ as τ → 1−. As before, this family converges to a 
building whose top level consists of an embedded J̃ ′-cylinder ṽ′ : C\{0} → R ×S3, which 
is exponentially asymptotic to P3,j at ∞ and asymptotic to some other P2,i ∈ P2(λ) at 
0, and whose lower level consists of an embedded J̃ ′-holomorphic plane ũ′, which is 
asymptotic to P2,i at +∞.

We necessarily have P2,nj
m
�= P2,i =: P2,nj

m+1
since the families w̃τ and w̃′

τ are distinct 
and hence, by the uniqueness and intersection properties of the J̃ ′-holomorphic planes 
exponentially asymptotic to P3,j , points of w′

τ (C) cannot accumulate at P2,nj
m

as τ → 1−. 
It follows from the normalizations of w̃′

τ , τ ∈ (0, 1), that ũ′ =: ũnj
m+1,2

and, as before, 
we glue ṽ′ =: ṽj,m+1 with ũnj

m+1,1
to obtain a new maximal family of embedded J̃ ′-

holomorphic planes w̃′′
τ , τ ∈ (0, 1), which are exponentially asymptotic to P3,j .

If k̃j = 2, then the new family w̃′′
τ coincides with the family w̃τ and v′′(C \ {0}) =

v(C \{0}), where ṽ′′ is the embedded J̃ ′-holomorphic cylinder consisting of the top level 
of a holomorphic building associated with the family w̃′′

τ , as τ → 1−, and⋃
τ∈(0,1)

wτ (C) ∪
⋃

τ∈(0,1)

w′
τ (C)

fills Uj \(P3,j ∪ v(C \ {0}) ∪ v′(C \ {0})). Otherwise, we glue v′′ =: ṽj,m+2 with the rigid 
plane ũnj

m+2,1
and continue in a similar manner. It has to stop after a finite number of 

steps. Indeed, the number of such families of J̃ ′-holomorphic planes asymptotic to P3,j
is precisely k̃j , the number of components in ∂Uj .

We conclude that there exist k̃j embedded J̃ ′-holomorphic cylinders ṽj,m : C \ {0} →
R ×S3, m = 1, . . . , ̃kj , which are exponentially asymptotic to P3,j at the positive puncture 
∞ and to P2,nj

m
⊂ Snj

m
at their negative puncture 0. In the complement of such cylin-

ders, there exist k̃j families of embedded J̃ ′-holomorphic planes w̃j,m,τ , τ ∈ (0, 1), which 
are exponentially asymptotic to P3,j at ∞. Moreover, each family converges to the holo-
morphic building formed by ṽj,m⊕ ũnj

m,1 as τ → 0+ and to the building ṽj,m+1⊕ ũnj
m+1,2

as τ → 1− for every m = 1, . . . , ̃kj . Here, k̃j + 1 ≡ 1. This finishes the proof. �
Summarizing the results from Propositions 3.4, 3.10 and 3.18, we obtain the following 

statement, which implies Theorem 1.6.

Theorem 3.19. Given a weakly convex contact form λ = fλ0 on (S3, ξ0) satisfying 
hypotheses I-III of Theorem 1.6, there exists a dense subset J̃reg(λ) ⊂ J (λ) in the 
C∞-topology, so that for every J ∈ J̃reg(λ), the pair (λ, J) admits a stable finite energy 
foliation F̃ satisfying the following properties:
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(i) For each i = 1, . . . , l, there exists a pair of embedded finite energy J̃-holomorphic 
planes ũi,1 = (ai,1, ui,1), ũi,2 = (ai,2, ui,2) : C → R × S3 which are asymptotic to 
P2,i. The union Si = ui,1(C) ∪P2,i∪ui,2(C) is a C1-embedded 2-sphere separating S3

into two components and Si ∩ Sj = ∅, ∀i �= j. Every component Uj , j = 1, . . . , l + 1, 
of S3 \ ∪l

i=1Si contains an index-3 orbit P3,j satisfying the linking properties given 
in Proposition 3.10.

(ii) Given j ∈ {1, . . . , l + 1}, denote by k̃j the number of boundary components of Uj, 
denoted by Snj

k
, k = 1, . . . , ̃kj, where nj

k ∈ {1, . . . , l}.
(a) Then there exist k̃j embedded finite energy J̃-holomorphic cylinders

ṽj,m = (bj,m, vj,m) : C \ {0} → R× S3, ∀m = 1, . . . , k̃j ,

which is exponentially asymptotic to P3,j at its positive puncture +∞ and to 
P2,nj

m
at its negative puncture 0, ∀m = 1, . . . , ̃kj. Moreover, they satisfy vj,m(C\

{0}) ⊂ Uj , ∀m, and

vj,m(C \ {0}) ∩ vj,n(C \ {0}) = ∅, ∀m �= n.

(b) The complement (R × Uj) \ ∪k̄j

m=1ṽj,m(C \ {0}) is foliated by k̄j families of 
embedded finite energy J̃-holomorphic planes

w̃j,m,τ = (cj,m,τ , wj,m,τ ) : C → R× S3, τ ∈ (0, 1), ∀m = 1, . . . , k̃j ,

exponentially asymptotic to P3,j at its positive puncture +∞. Moreover, each 
plane w̃j,mτ satisfies the compactness property described in Proposition 3.18-
(iv).

(iii) Every finite energy J̃-holomorphic curve described above satisfies windπ = 0, so 
that its projection to S3 is transverse to the Reeb vector field of λ.

Consequently, the projection F of the finite energy foliation F̃ to S3 provides the weakly 
convex foliation as in Theorem 1.6.

4. Transition maps

Throughout this section, we assume that the Reeb flow of λ is real-analytic. Let F be a 
genus zero transverse foliation adapted to the Reeb flow of λ = fλ0 as in Theorem 1.6. We 
shall set some notations to represent the elements associated with F , see Fig. 4.1. First 
recall that all the orbits in P2(λ) are binding orbits of F and, for each i = 1, . . . , l, the 
orbit P2,i ∈ P2(λ) bounds two rigid planes Ui,1, Ui,2 ∈ F , so that the embedded 2-sphere 
Si = Ui,1 ∪ P2,i ∪ Ui,2 ⊂ S3 is C1. The 2-spheres Si, i = 1, . . . , l, are mutually disjoint 
and each one of them separates S3 into two components. In this way, the complement of 
their union is formed by l+1 components, denoted by Uj ⊂ S3 \∪l

i=1Si, j = 1, . . . , l+1.
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P2,1 P3,1P3,2

P2,2

P2,3

P3,3

P3,4

F1,1

F3,1

F4,1

F2,1

F2,3

F2,2
Bs

2,2

Bu
2,3Bs

1,1

Bu
1,1 lint

2,2
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1,1

lext
2,2
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1,1
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V −
1,1 = V +

1,1

U+
1,1 = U−

2,3−

U−
1,1 = U+

2,2

U+
2,3 = U−

4,1

U−
2,2 = U+

3,1

U−
2,1 = U+

4,1

U+
2,1 = U−

3,1

V −
2,1 = V +

2,3

V +
2,1 = V −

2,2

V +
2,2 = V −

2,3

V −
4,1 = V +

4,1

V −
3,1 = V +

3,1

Fig. 4.1. This example illustrates a section of a weakly convex foliation on S3 with � = 3. The blue and red 
dots represent the binding orbits with Conley-Zehnder indices 3 and 2, respectively. The rigid planes and 
rigid cylinders are represented by bold curves, and the families of planes are represented by dotted curves. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Inside Uj , there exist a binding orbit P3,j ∈ Pu,−1
3 (λ) and k̃j one-parameter fami-

lies of planes asymptotic to P3,j , denoted Fj,1, . . . , Fj,k̃j
⊂ F , j = 1, . . . , l + 1, where 

k̃j ∈ N∗ coincides with the number of components in ∂Uj. The family Fj,k = (Fj,k,τ )τ
is parametrized by τ ∈ (0, 1). It breaks, as τ → 0+, onto a rigid plane U−

j,k ∈
{U1,1, U1,2, . . . , Ul,1, Ul,2} ⊂ F , asymptotic to a binding orbit P−

j,k ∈ P2(λ), and a 
rigid cylinder V −

j,k ∈ F , asymptotic to P3,j at its positive puncture and to P−
j,k at 

its negative puncture. In a similar manner, as τ → 1−, it breaks onto a rigid plane 
U+
j,k ∈ {U1,1, U1,2, . . . , Ul,1, Ul,2} ⊂ F , asymptotic to a binding orbit P+

j,k ∈ P2(λ), and 
a rigid cylinder V +

j,k ∈ F , asymptotic to P3,j at its positive puncture and to P+
j,k at its 

negative puncture.
Let C := {(j, k) ∈ N∗ × N∗ | j = 1, . . . , l + 1, k = 1, . . . , ̃kj}. It parametrizes the 

space of families of planes asymptotic to the index 3 binding orbits: each (j, k) ∈ C
corresponds to a family Fj,k of planes in Uj asymptotic to P3,j . After relabelling the 
families of planes, we can assume that P+

j,k = P−
j,k+1, ∀k mod k̃j .

For every (j, k) ∈ C, there exist a unique branch of the local unstable manifold of 
P−
j,k and a unique branch of the local stable manifold of P+

j,k, which intersect Fj,k,τ for 
τ sufficiently close to 0 and τ sufficiently close to 1, respectively. Denote these local 
branches by Bu

j,k ⊂ Wu
loc(P−

j,k) and Bs
j,k ⊂ W s

loc(P+
j,k). We shall fix planes F−

j,k := F−
j,k,τ−

and F+
j,k := F+

j,k,τ+
, where τ− > 0 is sufficiently close to 0 and τ+ < 1 is sufficiently close 

to 1. In particular, the intersections of F−
j,k and F+

j,k with Bu
j,k and Bs

j,k, respectively, are 
simple closed curves, denoted by
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Cu
j,k := F−

j,k ∩ Bu
j,k and Cs

j,k := F+
j,k ∩ Bs

j,k. (4.1)

The closed disks bounded by Cu
j,k and Cs

j,k will be denoted by

Du
j,k ⊂ F−

j,k and Ds
j,k ⊂ F+

j,k, (4.2)

respectively. These disks have dλ-area equal to the actions of P−
j,k and P+

j,k, respectively.
For each (j, k) ∈ C, we have the following transition maps that preserve the area form 

induced by dλ.

• The global transition map gj,k : F−
j,k → F+

j,k is defined as the first intersection point 
of the forward trajectory with the plane F+

j,k. This map is well-defined since P3,j has 
index 3.

• The local exterior transition map lext
j,k : F+

j,k \Ds
j,k → F−

j,k+1 \Du
j,k+1 is defined as the 

first intersection point of the forward trajectory with F−
j,k+1. Any such a trajectory 

crosses V +
j,k before hitting F−

j,k+1.
• The local interior transition map lint

j,k : Ds
j,k \ Cs

j,k → Du
j′,k′ \ Cu

j′,k′ is defined as the 
first intersection point of the forward trajectory with F−

j′,k′ , where (j′, k′) is such 
that U+

j,k = U−
j′,k′ . Any such a trajectory crosses U+

j,k before hitting F−
j′,k′ .

4.1. Real-analytic models

Let P2,i = (x2,i, T2,i) ∈ P2(λ). In this section, we show the existence of suitable real-
analytic coordinates near P2,i that will be used to model neighborhoods of Cs

j,k ⊂ F+
j,k

and Cu
j,k ⊂ F−

j,k.

Proposition 4.1. There exist real-analytic coordinates (t, x, y) ∈ (R/T2,iZ) ×Bδ′(0), δ′ >
0 small, on a small tubular neighborhood Uδ′ ⊂ S3 of P2,i, so that P2,i ≡ (R/T2,iZ) ×{0}, 
and, up to time reparametrization, the trajectories of the Reeb flow of λ in Uδ coincide 
with the trajectories of

ṫ = 1, ẋ = −u(xy)x, ẏ = u(xy)y, (4.3)

where u(w) = ln η + η1w + η2w
2 + · · · (η > 1) is a convergent power series near w = 0. 

In particular, the quantity xy is preserved by the flow.

Proof. The proof is a direct application of a result due to Moser in [26] which asserts 
that a real-analytic mapping φ defined near a hyperbolic fixed point at 0 ∈ R2 admits 
coordinates (x, y) so that it has the form φ(x, y) =

(
xe−u(xy), yeu(xy)), where u(w) =

ln η + η1w + η2w
2 + · · · is a convergent power series near w = 0. Such coordinates on a 

cross section of P2,i induce the desired coordinates on a tubular neighborhood of P2,i. �



N.V. de Paulo et al. / Advances in Mathematics 457 (2024) 109909 43
In the coordinates given in Proposition 4.1, the local stable and unstable manifolds 
of P2,i are W s

loc(P2,i) ⊂ (R/T2,iZ) × R × {0} and Wu
loc(P2,i) ⊂ (R/T2,iZ) × {0} × R, 

respectively.

4.1.1. The local exterior transition maps
Fix (j, k) ∈ C and set k′ = k + 1. Fix also τ− and τ+ close enough to 0 and 1, 

respectively, so that the circles Cs
j,k and Cu

j,k′ , see (4.1), are contained in the tubular 
neighborhood Uδ′ of P+

j,k = P−
j,k′ as in Proposition 4.1. Choose sufficiently small annular 

neighborhoods Rs
j,k ⊂ F+

j,k of Cs
j,k and Ru

j,k′ ⊂ F−
j,k′ of Cu

j,k′ that are modelled in the 
real-analytic coordinates (t, x, y) near P2,i by

Rs := {(t, x, y) | x = δ
2 , y ∈ (− δ

4 ,
δ
4 )},

Ru := {(t, x, y) | x ∈ (− δ
4 ,

δ
4 ), y = δ

2},

respectively, where 0 < δ � δ′. Set Aext,s
j,k := Rs

j,k \Ds
j,k and Aext,u

j,k′ := Ru
j,k′ \Du

j,k′ . These 
annuli are modelled in our real-analytic coordinates by

Aext,s := {(t, x, y) | x = δ
2 , y ∈ (0, δ

4 )},
Aext,u := {(t, x, y) | x ∈ (0, δ

4 ), y = δ
2},

(4.4)

respectively. Note that Aext,s
j,k is mapped under lext

j,k onto Aext,u
j,k′ .

Consider the real-analytic maps

F ext,s
j,k : (R/T2,iZ) × (0, δ

4 ) → Aext,s
j,k ,

F ext,u
j,k′ : (R/T2,iZ) × (0, δ

4 ) → Aext,u
j,k′ ,

(4.5)

given in our coordinates by (t, y) 
→ (t, δ2 , y) and (t, x) 
→ (t, x, δ2), respectively. In these 
coordinates, the local exterior transition map lext

j,k : Aext,s
j,k → Aext,u

j,k′ admits a lift

l̃ : R× (0, δ
4 ) → R× (0, δ

4 ), (t, r) 
→ (t + Δt(r), r),

where

Δt(r) = T2,i
1

u(δr/2) ln δ

2r = g(r) − h(r) ln r, (4.6)

for real-analytical functions g(r), h(r) defined near r = 0, with h(0) > 0. Notice that 
Δt(r) → +∞ as r → 0+.

Lemma 4.2. Let γ : [0, 1) → R × [0, δ4 ) be a real-analytic curve such that γ(s) ∈ R × {0}
only at s = 0. Then l̃ ◦ γ is a monotone curve in the R-direction for s > 0 sufficiently 
small. Moreover, writing l̃ ◦ γ as a graph r = η(t), t � 0, we have dη → 0 as t → +∞
dt
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Proof. Write γ(s) = (t(s), r(s)) such that t(0) = t0 and r(0) = 0. Since r(s) is real-
analytic, we find a > 0 and n ∈ N such that

r(s) = asn + O(sn+1) (4.7)

and thus r(s) is strictly increasing for s ≥ 0 sufficiently small. Moreover, there exists 
b, B > 0 such that

B

s
>

r′(s)
r(s) >

b

s
, ∀s > 0 small. (4.8)

This implies that there exists c1 > 0 so that

d

ds
(t(s) + Δt(r(s))) = t′(s) +

(
g′(r(s)) − h′(r(s)) ln r(s) − h(r(s))

r(s)

)
r′(s)

< −c1
s
,

(4.9)

for every s > 0 sufficiently small. Hence t(s) +Δt(r(s)) increases monotonically to +∞ as 
s → 0+. From the conclusion above, we can write the curve ̃l◦γ as a graph r = η(t), t � 0, 
where η is real-analytic. It satisfies η(t(s) + Δt(r(s))) = r(s), ∀s > 0 small. From (4.8)
and (4.9), we see that

0 > η′(t(s) + Δt(r(s))) = r′(s)
d
ds (t(s) + Δt(r(s)))

> −B

c1
r(s) → 0

as s → 0+. Since t(s) + Δt(r(s)) → +∞ as s → 0+, this completes the proof. �
Now assume that every orbit in P2(λ) has the same action T2 > 0, so that the disks 

Ds
j,k and Du

j,k, see (4.2), have the same dλ-area equal to T2 for all (j, k) ∈ C.
Using an area-preserving argument, we check below that for any fixed P2,i ∈ P2(λ), 

the branch of its unstable manifold in Uj must intersect the branch in Uj of the sta-
ble manifold of an orbit P2,i′ ⊂ ∂Uj . Note that such an intersection corresponds to a 
heteroclinic/homoclinic trajectory in Uj connecting P2,i to P2,i′ .

Let G : C → C be defined so that (J, K) = G(j, k) is the family of planes so that 
Ds

J,K ⊂ F+
J,K is the first disk intersected by the forward flow of Du

j,k. To be more precise 
in the definition of G, fix (j, k) ∈ C and set D0 = Du

j,k. If gj,k(D0) ∩ Cs
j,k �= ∅, then 

we define G(j, k) = (j, k). Otherwise, since all index 2 orbits have the same action, we 
have gj,k(D0) ⊂ F+

j,k \ Ds
j,k, and then define D1 := lext

j,k (gj,k(D0)) ⊂ F−
j,k+1. Now we 

repeat the procedure with D1: if gj,k+1(D1) ∩ Cs
j,k+1 �= ∅, then we define G(j, k) =

(j, k + 1). Otherwise, we have gj,k+1(D1) ⊂ F+
j,k+1 \ Ds

j,k+1 and then define D2 :=
lext
j,k+1(gj,k+1(D1)) ⊂ F−

j,k+2. Repeating this process we obtain a sequence (j, k(n)) ∈ C, 
where k(n) ≡ k + n (mod k̃j), and disks Dn ⊂ F−

j,k(n) , n ∈ N. By construction and 
uniqueness of solutions, the disks Dn are mutually disjoint. Since the dλ-area of Dn is 
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independent of n (indeed, it is equal to T2 for all n) and the available area in all F±
j,k is 

finite (it coincides with the action of P3,j), the procedure above has to terminate after 
finitely many steps and we find (j, k(N)) for some N ≥ 0 so that gj,k(N)(DN ) ∩Cs

j,k(N) �= ∅. 
In this case we set (J, K) = (j, k(N)) and define G(j, k) = (J, K), where J = j since along 
the process we remain inside the same component Uj via the global and the local exterior 
transition maps.

We also consider a map

Ψj,k : N (Du
j,k) → F+

J,K , (j, k) ∈ C, (4.10)

where (J, K) = G(j, k) and N (Du
j,k) denotes a small neighborhood of Du

j,k in the plane 
F−

j,k. The first hit of N (Du
j,k) into F+

J,K under the forward flow is precisely Ψj,k.

Definition 4.3. We say that (j, k) ∈ C is coincident if Ψj,k(Du
j,k) = Ds

J,K , where (J, K) =
G(j, k). Otherwise, we say it is non-coincident.

Pick (j, k) ∈ C and abbreviate (J, K) = G(j, k). By definition of G, we have 
Ψj,k(Du

j,k) ∩ Cs
J,K �= ∅. Since all index-2 orbits have the same action and the flow is 

real-analytic, we find one of the following scenarios associated with the pair (j, k):

(a) Ψj,k(Du
j,k) = Ds

J,K , i.e. (j, k) is coincident.
(b) Ψj,k(Du

j,k) ∩ (Ds
J,K \ Cs

J,K) = ∅, and Ψj,k(Du
j,k) intersects the circle Cs

J,K at finitely 
many points.

(c) Ψj,k(Du
j,k) intersects both F+

J,K \ Ds
J,K and Ds

J,K \ Cs
J,K . In this case the disk 

Ψj,k(Du
j,k) also intersects the circle Cs

J,K at finitely many points.

Notice that every intersection in (b) is tangent and an intersection in (c) is not nec-
essarily transverse.

5. Proof of Theorem 1.8

5.1. Proof of Theorem 1.8-(i)

Fix j ∈ {1, . . . , l} and assume that for every k ∈ {1, . . . , ̃kj} the branch in Uj of the 
unstable manifold of P2,nj

k
coincides with the branch in Uj of the stable manifold of 

P2,nj
l
, for some l ∈ {1, . . . , ̃kj}. This means that all pairs (j, k) ∈ C are coincident as in 

scenario (a).
Fix (j, k1) ∈ C as above, let (j, K1) = G(j, k1), and let (j, k2) := (j, K1 + 1). 

Our assumptions imply that we can construct an N -periodic sequence of distinct 
k1, . . . , kN , . . ., so that G(j, ki) = (j, Ki), and ki+1 = Ki + 1, ∀i. In particular, the map-
ping Ψj,ki

: N (Du
j,ki

) → F+
j,Ki

satisfies Ψj,ki
(Du

j,ki
) = Ds

j,Ki
, ∀i = 1, . . . , N . Moreover, 

due to the coincidences, the mapping
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Ψ := Ψj,k1 ◦ lext
j,KN

◦ . . . ◦ Ψj,k2 ◦ lext
j,K1

, (5.1)

is well-defined in V1 \ Ds
j,K1

, where V1 ⊂ F+
j,K1

is a sufficiently small neighborhood of 
Ds

j,K1
. For simplicity, assume that T2,i = 1, ∀i. Let l̃i : R × (0, δ) → R × (0, δ) be a lift of 

lext
j,Ki

in coordinates (t, r), see Section 4.1.1.

Proposition 5.1. There exist real-analytical functions gi, hi : (−ε, ε) → R, hi(0) > 0, so 
that l̃i(t, r) = (t + gi(r) − hi(r) ln r, r), ∀(t, r).

Proof. Recall that l̃i(t, r) = (t + Δti(r), r), where Δti(r) = 1
ui(δ̃r/2)

ln δ̃i
2r , ui > 0 is 

real-analytic and δ̃i > 0. This implies the existence of gi, hi as in the statement. �
Now we describe the global mappings Ψj,ki

, i = 1, . . . , N , in coordinates (t, r). Denote 
by ψ̃i : R × (−δ, δ) → R × (−δ′, δ′), 0 < δ � δ′, a lift of Ψj,ki

, defined in a small 
neighborhood of Cu

j,ki
⊂ F−

j,ki
.

Proposition 5.2. [7, Lemma 7.1] The global mapping ψ̃i = (Xi, Yi) has the form Xi(t, r) =
Hi(t) +rX̃i(t, r) and Yi(t, r) = rỸi(t, r), where Hi−Id : R → R and X̃i, Ỹi : R ×(−δ, δ) →
R are real-analytic functions, 1-periodic in t, and satisfy H ′

i, Ỹi > 0.

Consider the sequence (Ti, Ri) := ψ̃i+1 ◦ l̃i ◦ . . . ◦ ψ̃2 ◦ l̃1, so that (TN , RN ) represents 
the mapping Ψ in (5.1). Then (Ti+1, Ri+1) = ψ̃i+2 ◦ l̃i+1(Ti, Ri), ∀i, implying

Ti+1 = Hi+2 (Ti + gi+1(Ri) − hi+1(Ri) lnRi)

+ RiX̃i+2(Ti + gi+1(Ri) − hi+1(Ri) lnRi, Ri),

Ri+1 = RiỸi+2(Ti + gi+1(Ri) − hi+1(Ri) lnRi, Ri),

(5.2)

for every i ≥ 1, see Propositions 5.1 and 5.2.

Proposition 5.3. For every i ≥ 1, there exist Ai, Bi, Ci > 0 so that

Ti(t, r) − t > −Ci ln r and Air < Ri(t, r) < Bir, (5.3)

uniformly in t, for every r > 0 sufficiently small.

Proof. We prove by induction. Notice that for i = 1, we have

T1(t, r) = H2(t + g1(r) − h1(r) ln r) + rX̃2(t + g1(r) − h1(r) ln r, r),

= t + g1(r) − h1(r) ln r + (H2 − Id)(t + g1(r) − h1(r) ln r)

+ rX̃2(t + g1(r) − h1(r) ln r, r),

R (t, r) = rỸ (t + g (r) − h (r) ln r, r).

(5.4)
1 2 1 1



N.V. de Paulo et al. / Advances in Mathematics 457 (2024) 109909 47
The claim follows for i = 1 since H2 − Id, X̃2 and Ỹ2 are 1-periodic in t, and Ỹ2(·, 0) and 
h1(0) are positive.

Next assume (5.3) holds for i. We shall prove that (5.3) holds for i + 1. Using that 
Hi+2 = Id + H̃i+2, for some 1-periodic function H̃i+2, we obtain from (5.2)

Ti+1 = Ti + gi+1(Ri) − hi+1(Ri) lnRi + H̃i+2 (Ti + gi+1(Ri) − hi+1(Ri) lnRi)

+ RiX̃i+2(Ti + gi+1(Ri) − hi+1(Ri) lnRi, Ri),

Ri+1 = RiỸi+2(Ti + gi+1 − hi+1) lnRi, Ri),

where gi+1 and hi+1 are real-analytic near 0. Since Ỹi+2, X̃i+2 are 1-periodic in t, and 
Ỹi+2(·, 0), hi+1(0) > 0, it follows from the induction hypothesis that (5.3) holds for 
i + 1. �

Fix any component Uj of S3 \
⋃�

i=1 Si so that (j, k) ∈ C is coincident for every 
1 ≤ k ≤ k̃j . Recall that Uj is homeomorphic to a 3-sphere with k̃j disjoint closed 3-
balls removed. Fix a plane F+

j,k1
of the genus zero transverse foliation in Uj, bounded 

by P3,j . The branches in Uj of the stable/unstable manifolds of the orbits in P2(λ)
transversely intersect F+

j,k1
at mutually disjoint circles. Indeed, these circles bound closed 

disks Bα, α = 1, . . . , ν. Since their symplectic areas coincide, Bα have mutually disjoint 
interiors. The trajectories through the interior of each Bα eventually leave Uj to an 
adjacent component Ui, i �= j. The points in ∂Bα converge to some P2,i ⊂ ∂Uj .

Consider the connected subset of F+
j,k1

given by A := F+
j,k1

\ ∪ν
α=1Bα. Since the 

Reeb flow is transverse to F+
j,k1

, the successive local and global maps determine a diffeo-
morphism Ψ: A → A that preserves the finite area form induced by dλ. Abbreviating 
by UA ⊂ Uj an invariant open subset, defined by the Reeb trajectories through A, we 
conclude that A is a global surface of section for the Reeb flow restricted to UA. The 
mapping Ψ is the first return map to A, and thus periodic orbits of Ψ correspond to 
periodic orbits of the Reeb flow in UA.

Notice that the outer boundary component of A, i.e. the binding orbit P3,j, is pre-
served by Φ, and hence points near P3,j are mapped under Ψ to points near P3,j . However, 
near the inner boundary components, Ψ behaves as a permutation. More precisely, given 
α ∈ {1, . . . , ν} there exists α′ (possibly α′ = α) such that Ψ maps points near ∂Bα to 
points near ∂Bα′ .

Now we proceed as in [7, Section 7]. Define the equivalence relation ∼ on F+
j,k1

such 

that x ∼ y ⇔ x, y ∈ Bα for some α. Abbreviate by Π: F+
j,k1

→ F̃+
j,k1

:= F+
j,k1

/ ∼ the 

natural projection. It induces the quotient topology on F̃+
j,k1

, which becomes an open 

disk. For each α, put pα = Π(Bα) ∈ F̃+
j,k1

. The restriction Π|A : A → F̂+
j,k1

:= F̃+
j,k1

\{pα |
α = 1, . . . , ν} is a bijection. We endow F̂+

j,k1
with a natural smooth structure by declaring 

Π|A to be a smooth diffeomorphism onto F̂+
j,k1

. In this way, we obtain the finite area 

form ω on F̂+
j,k1

which is defined as the push-forward of the area form on A induced 

by dλ. The area form ω naturally extends to a finite area form on F̃+
j,k , still denoted 
1
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by ω. This enables us to define a homeomorphism Φ: F̃+
j,k1

→ F̃+
j,k1

, which preserves 
ω, permutes the points p1, . . . , pν , and satisfies Φ(z) = Π ◦ Ψ ◦ Π−1(z), ∀z ∈ F̂j

k1+. In 
particular, the points p1, . . . , pν are periodic.

Case 1. ν ≥ 2.
In this case, Brouwer’s fixed point theorem [3] gives a fixed point of Φ, say p ∈ F̃+

j,k1
. 

The restriction Φ|F̃+
j,k1

\{p} is an area preserving homeomorphism of the open annulus 

F̃+
j,k1

\ {p}, containing at least one periodic point pj �= p. An application of Franks’ 
Theorem [11] implies that Φ has infinitely many periodic points. It follows that Ψ admits 
infinitely many periodic points, and hence the Reeb flow admits infinitely many periodic 
orbits in UA.

Case 2. ν = 1.
In this case, there exists only one such disk Bα ⊂ F+

j,k1
which coincides with Ds

j,k1
. 

Its boundary is necessarily the intersection of the unstable manifold of P−
j,k1

with F+
j,k1

, 
which coincides with the intersection of the stable manifold of P+

j,k1
with F+

j,k1
. Moreover, 

F+
j,k1

\ Bα is mapped under lext
j,k1

to F−
j,k1+1 \ Du

j,k1+1. In particular, since ν = 1, the 
branch of the unstable manifold of P−

j,k1+1 inside Uj coincides with the branch of the 
stable manifold of P+

j,k1+1. Now we can consider the global map gj,k1+1, which necessarily 
maps Cu

j,k1+1 ⊂ F−
j,k1+1 to Cs

j,k1+1 ⊂ F+
j,k1+1. Continuing this process, we conclude that 

the first return map Ψ: F+
j,k1

\ Bα → F+
j,k1

\ Bα, is given by successive compositions of 
local and global maps

Ψ = gj,k1 ◦ lext
j,k1+k̃j−1 ◦ · · · gj,k1+2 ◦ lext

j,k1+1 ◦ gj,k1+1 ◦ lext
j,k1

, (5.5)

where k̃j is the number of boundary components of Uj.
Recall that, in the special coordinates (t, r) ∈ R × (0, εi), εi > 0 small, de-

fined near Cs
j,ki

⊂ F+
j,ki

, the local mapping lext
j,ki

has a lift of the form l̃i(t, r) =
(t + gi(r) − hi(r) ln r, r), for real-analytic functions gi(r), hi(r) defined near r = 0 with 
hi(0) > 0, see Proposition 5.1.

The global mapping gj,ki
has a lift of the form ψ̃(t, r) = (t +Hi(t) +rX̃i(t, r), rỸi(t, r)), 

where H̃i, X̃i, Ỹi are real-analytic and 1-periodic in t and satisfy H̃ ′
i > 1 and Ỹi > 0, 

see Proposition 5.2. A lift Ψ̃ of Ψ in coordinates (t, r) ∈ R × (0, 1) is then given by the 
composition Ψ̃ = ψ̃1◦l̃k̃j

◦. . .◦ψ̃2◦l̃1, for every r > 0 sufficiently small. By Proposition 5.3, 
Ψ̃ has the form Ψ̃(t, r) = (Tk̃j

(t, r), Rk̃j
(t, r)), where Tk̃j

(t, r) − t > −C ln r and Ar <

Rk̃j
(t, r) < Br for every (t, r) ∈ R × (0, 1) with r > 0 sufficiently small. Here, 0 < A < B

and 0 < C are positive constants. In particular, Ψ has infinite twist near R/Z ×{0} which 
implies that Ψ has infinitely many fixed points. Let Ψ̃k(x, y) := Ψ̃(x, y) −(k, 0), ∀k ∈ N∗. 
Proposition 7.2 from [7] says that Ψ̃k has a fixed point for every k large. The proof is 
based on Franks’ generalization of the Poincaré-Birkhoff theorem [10]. Moreover, fixed 
points of Ψ̃k1 and Ψ̃k2 , with k1 �= k2, correspond to distinct fixed points of Ψ. Therefore, 
the existence of infinitely many periodic orbits in UA follows, and this finishes the proof 
of Theorem 1.8-(i).
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Cs
J,KΨj,k(Du

j,k) =

Ψj,k(Du
j,k) =Cs

J,K

F+
J,K

(a)

Cs
J,K

Ψj,k(Du
j,k)

F+
J,K

Cs
J,K

Ψj,k(Du
j,k)

(b)

Cs
J,K

Ψj,k(Du
j,k)

F+
J,K

Cs
J,K

Ψj,k(Du
j,k)

(c)

Fig. 5.1. Possible scenarios for Ψj,k(Du
j,k) ∩ Cs

J,K .

5.2. Proof of Theorem 1.8-(ii)

Fix j ∈ {1, . . . , l}, and assume that Ψj,k(Cu
j,k) �= Cs

j,K , ∀k ∈ {1, . . . , ̃kj}, where the 
map Ψj,k is as in (4.10) and (j, K) = G(j, k). This means that for every k = 1, . . . , ̃kj , 
the branch in Uj of the unstable manifold of P2,nj

k
does not coincide with the branch in 

Uj of the stable manifold of any P2,nj
l
. Hence, for every (j, k), with k = 1, . . . , ̃kj , we are 

in scenario (b) or (c), see Fig. 5.1.

Proposition 5.4. There exists P2,nj
k
⊂ ∂Uj with a transverse homoclinic in Uj.

To prove Proposition 5.4, we find k ∈ {1, . . . , ̃kj} so that (j, k) ∈ C is periodic under G. 
To find such k, choose any (j, k1) ∈ C, let (j, K1) = G(j, k1), and let (j, k2) := (j, K1+1). 
Define the sequences k1, k2, k3, . . ., and K1, K2, K3, . . ., accordingly, as (j, Ki) = G(j, ki)
and ki+1 = Ki +1 for every i. The sequence k1, k2, . . ., is eventually periodic, so we may 
ignore the first elements and assume that k1, k2, . . . , kN , k1, . . . is periodic with least 
period N > 0.

Next we show that for every i the branch in Uj of the unstable manifold of P−
j,ki

intersects transversely the branch in Uj of the stable manifold of P−
j,ki+m

, ∀m ≥ 2. In 

particular, the orbits P−
j,ki

admit transverse homoclinics for every i. Take a real-analytic 
curve γ : [0, ε) → Ψj,ki

(Cu
j,ki

), ε > 0 small, such that γ(0) ∈ Ψj,ki
(Cu

j,ki
) ∩ Cs

j,Ki
and 

γ(t) /∈ Ds
j,Ki

, ∀t. Let γ̇ = γ \ {γ(0)}.
Recall that the mapping Ψj,ki+1 is defined on a small neighborhood N (Du

j,ki+1
) of 

Du
j,ki+1

. Let β : [0, ε) → N (Du
j,ki+1

) be a real-analytic arc intersecting Cu
j,ki+1

only at 
t = 0 and satisfying β(s) ∈ N (Du

j,ki+1
) \ Du

j,ki+1
, ∀s ∈ (0, ε), and Ψj,ki+1(β) ⊂ Cs

j,Ki+1
. 

The following lemma is based on Conley’s ideas [4].
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Proposition 5.5. The real-analytic arc lext
j,Ki

(γ̇) is a spiral around Cu
j,ki+1

⊂ F−
j,ki+1

inter-
secting β transversely infinitely many times near Cu

jki+1
. In particular, the branch in Uj

of the unstable manifold of P−
j,ki

transversely intersects the branch in Uj of the stable 
manifold of P−

j,ki+2
.

Proof. As before, let l̃i : R ×(0, δ) → R ×(0, δ) denote a lift of lext
j,Ki

. In view of Lemma 4.2, 
lext
j,Ki

(γ̇) intersects β infinitely many times. The curve γ is written as γ = {(tγ(r), r) |
r ∈ (0, ε)} for some real analytic function tγ : (0, δ′) → R × (0, ε), which continuously 
extends over [0, δ′). We then obtain l̃(γ̇) = {(t̃γ(r) = tγ(r) +Δt(r), r) | r ∈ (0, ε)}, where 
Δt(r) = g(r) − h(r) ln r, and g(r), h(r) are real-analytic functions defined near r = 0, 
with h(0) > 0. See (4.6). Hence t̃′γ(r) = t′γ(r) +g′(r) −h′(r) ln r− h(r)

r for every r ∈ (0, ε). 
Due to the estimates in the proof of Lemma 4.2, we find a constant c1 > 0 and ε0 ∈ (0, ε)
such that

t̃′γ(r) < −c1
r
, ∀r ∈ (0, ε0). (5.6)

Now we proceed similarly with β. We may assume that β(0) = (0, 0). Hence there 
exists a continuous function tβ : [0, ε) → [0, ε0), which is real-analytic in (0, ε) such 
that tβ(0) = 0 and β = {(tβ(r), r) | r ∈ [0, ε)}. Because of real analyticity of β, the 
intersection at β(0) = (0, 0) is either transverse to {r = 0} or has finite order tangency. 
Hence, we have either tβ ≡ 0 or tβ(r) = rmg(r), where g is real-analytic on r > 0 and 
satisfies g(0) �= 0, and m ∈ N∗ or 1

m ∈ N∗, depending on the way β intersects Cu
jki+1

at 
β(0) = (0, 0). In all cases, we can choose λ ∈ (0, 1) and c2 > 0 such that

t′β(r) = mrm−1g + rmg′ > − c2
r1−λ

(5.7)

for every r > 0 small enough. We conclude from (5.6) and (5.7) that t′γ(r) < t′β(r), for 
every r > 0 sufficiently small. �

Instead of γ̇, we can now repeat the above construction using a small arc γ̇1 ⊂ Ψj,ki+1 ◦
lext
j,Ki

(γ̇) in F+
j,Ki+1

\Ds
j,Ki+1

, which corresponds to a transverse intersection of the branch 
in Uj of the unstable manifold of P−

j,ki
with the branch in Uj of the stable manifold of 

P−
j,ki+2

. Proposition 5.5 then provides a transverse intersection between the branch in Uj

of the unstable manifold of P−
j,ki

and the branch in Uj of the stable manifold of P−
j,ki+3

. 
Using the periodicity of the sequence k1, k2, . . . , kN , . . ., which satisfies (j, ki+1 − 1) =
G(j, ki), ∀i, we repeat this construction to find, for every i, a transverse homoclinic to 
P−
j,ki

.
The proof of Proposition 5.4 is complete. We are ready to prove Theorem 1.8-(ii).
It is well-known that a transverse homoclinic forces positivity of topological entropy. 

For completeness, we include the construction of an invariant subset Λj ⊂ Uj whose 
dynamics contains the Bernoulli shift as a sub-system. We follow Moser’s book [27], see 
also [1].
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Let (j, k) ∈ C be such that P−
j,k admits a transverse homoclinic orbit, as obtained 

in Proposition 5.4. Consider a point q0 ∈ Cs
j,k−1 ⊂ F+

j,k−1 which corresponds to a 
transverse homoclinic to P+

j,k−1 = P−
j,k. This point lies in a small arc V∞ ⊂ F+

j,k−1 which 
is transverse to Cs

j,k−1 and is the image of an arc V ′
∞ ⊂ Cu

j,k under the forward flow. 
Denote by G : V ′ ⊂ F−

j,k → V ⊂ F+
j,k−1, the corresponding diffeomorphism, given by the 

first forward hitting point, so that G(V ′
∞) = V∞. Notice that V ′

∞ ⊂ {r = 0}, where (t, r)
are the real-analytic canonical coordinates near Cu

j,k ⊂ F−
j,k as in Section 4.

There exists a small arc H∞ ⊂ Cs
j,k−1, starting from q0 which, except for q0, does not 

intersect G(V ′ ∩ Du
j,k). In this way, we find a small topological square Q0 ⊂ V near q0, 

whose boundary is formed by the following arcs.

(i) the two arcs H∞, V∞ above.
(ii) an arc H0 starting from G(V ′ ∩ Cu

j,k) which, except for this extreme point, is con-
tained in the exterior of Ds

j,k−1 and does not intersect G(V ′ ∩ Du
j,k).

(iii) an arc V0 starting from Cs
j,k−1 which, except for this extreme point, is contained in 

the exterior of Ds
j,k−1 and does not intersect G(V ′ ∩ Du

j,k).

In local coordinates (t, r) defined on a neighborhood of Cs
j,k−1 we may assume that H0

is a horizontal segment r = r0 > 0 and V0 is a horizontal shift of V∞.
We can always find coordinates (u, v) near Q0 so that Q0 ≡ [0, 1] × [0, 1], V∞ ≡

{0} × [0, 1], H∞ ≡ [0, 1] × {0}, V0 ≡ {1} × [0, 1], H0 ≡ [0, 1] × {1}. We may assume that 
q0 = (0, 0) and that the mapping (t, r) 
→ (u, v) has the form

(u, v) = M(t, r) + O(t2 + r2), (5.8)

for some invertible linear mapping M .
A vertical strip V in Q0 is a topological closed disk whose boundary consists of 

horizontal arcs h0 ⊂ H0, h∞ ⊂ H∞ and two regular arcs v1, v2 ⊂ Q0 that connect H0
and H∞. We assume that the arcs v1, v2 are transverse to the horizontals [0, 1] × const. 
A horizontal strip in Q0 is similarly defined.

Let P := G ◦ lext
j,k−1 : H−1 ⊂ Q0 → Q0, where H−1 ⊂ Q0 is its domain of definition. 

Abusing the notation, we denote by P−1 := (lext
j,k−1)−1 ◦ G−1 : P(H−1) =: V1 → Q0, the 

first return map under the backward flow.

Lemma 5.6. If Q0 is (suitably chosen) sufficiently small, then H−1 is formed by count-
ably many horizontal strips Hn, n ∈ N, in Q0, monotonically accumulating on H∞ as 
n → ∞. Moreover, V1 is formed by countably many vertical strips Vn, n ∈ N, in Q0, 
monotonically accumulating on V∞ as n → ∞. For every n, G ◦ lext

j,k−1(Hn) = Vn, and 
the vertical (horizontal) boundary components of Hn are mapped to the respective vertical 
(horizontal) boundary components of Vn.

Proof. Let Q̃0 := G−1(Q0) ⊂ F−
j,k. In coordinates (t, r) on F−

j,k, Q̃0 is a square whose 
sides are H̃∞ := G−1(V∞), H̃0 := G−1(V0), Ṽ∞ := G−1(H∞), Ṽ0 := G−1(H0). Notice 
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that H̃∞ = V ′
∞. Recall that in coordinates (t, r) on F+

j,k−1, we have H0 ⊂ {r = r0}, 
for some r0 > 0 small, and V0 = V∞ + (t0, 0) for some |t0| > 0 small. Taking r0 and 
|t0| sufficiently small, we can assume that H̃0 is arbitrarily C1-close to H̃∞ ⊂ {r = 0}
and Ṽ0 is arbitrarily C1 close to Ṽ∞. Moreover, the images under G−1 of the curves 
vt = V∞ + (t, 0), |t| ≤ |t0|, are also C1-close to H̃0 and H̃∞.

Now observe that lext
j,k−1(V∞ \ {q0}) transversely intersects Ṽ∞ and is arbitrarily C1-

close to the horizontal line {r = 0}. This follows from Propositions 5.3 and 5.5. Hence, if 
r0, |t0| > 0 are sufficiently small and suitably chosen, then lext

j,k−1(Q0 \H∞) ∩ Q̃0 consists 
of countably many horizontal strips H̃n, n ∈ N, in Q̃0. In particular, the images of such 
strips under G are vertical strips Vn, n ∈ N, in Q0, ordered from right to left.

Finally, notice that a lift l̃−1 of (lext
j,k−1)−1 in coordinates (t, r) has the form l̃−1(t, r) =

(t − g(r) +h(r) ln r, r), ∀(t, r), for suitable real-analytic functions g(r), h(r), defined near 
r = 0, with h(0) > 0. Therefore, l̃−1 shares the same properties of a lift l̃ representing 
lext
j,k−1 and we can apply Propositions 5.3 and 5.5 to the curve Ṽ∞ (or Ṽ0) to conclude 
that Hn := (lext

j,k−1)−1(H̃n) are horizontal strips in Q0 that accumulate on H∞, and are 
ordered from top to bottom. Moreover, the horizontal (vertical) boundary components 
of H̃n are mapped under l̃−1 to vertical (horizontal) boundary components of Hn. The 
interchanging of vertical (horizontal) strips between Q̃0 and Q0 under the mapping G
finishes the proof of this proposition. �

Each vertical strip Vn ⊂ V1 is regarded as a new square and its image under P
consists of infinitely many vertical strips, precisely one sub-strip of each strip in V1. 
Hence V2 := P(V1) ⊂ V1 consists of countably many vertical strips, with countably 
many sub-strips of each strip in V1. Similarly, V2 = P(H−2), where H−2 ⊂ H−1 consists 
of countably many horizontal strips, with countably many sub-strips of each strip in 
H−1.

Repeating indefinitely this construction, we obtain sequences V1 ⊃ V2 ⊃ V3 ⊃ . . .

and H−1 ⊃ H−2 ⊃ H−3 ⊃ . . ., so that Vn+1 consists of countably many vertical strips, 
with countably many sub-strips of each strip in Vn. In the same way, H−n−1 consists of 
countably many horizontal strips, with countably many sub-strips of each strip in H−n. 
The image of H−n under P coincides with Vn.

The non-empty compact subsets of Q0, defined as Λ̄H := ∩+∞
i=1 closure(H−i) and Λ̄V :=

∩+∞
i=1 closure(Vi), contain points whose forward and backward trajectories remain in the 

fixed component Uj of S3 \ ∪l
i=1Si, respectively.

The non-empty compact subset Λ̄ := Λ̄H ∩ Λ̄V ⊂ Q0, contains points whose entire 
trajectories remain in Uj . It admits a symbolic dynamics as we outline below. Notice that 
some points in Λ̄ are eventually mapped to H∞ where P is not well-defined. Similarly, 
P−1 is not well-defined on V∞.

Let Σ̄ be the set of doubly infinite sequences a = (an)n∈Z of the form

. . . ,∞,∞, al0 , . . . , a−2, a−1, a0, a1, a2, . . . , ar0 ,∞,∞, . . . ,
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where an is a positive integer for every l0 ≤ n ≤ r0, and an = ∞ for n < l0 and for n > r0. 
Here, −∞ ≤ l0 ≤ 0 ≤ r0 ≤ +∞. The usual shift in Σ̄ is given by σ(a)n := an+1, ∀n, and 
is defined only if a0 �= ∞. Similarly, one has the inverse σ−1.

The conjugation h : (Λ̄, P) → (Σ̄, σ) maps each x ∈ Λ̄ to (an)n∈Z satisfying Pn(x) ∈
Van

, −∞ ≤ l0 ≤ n ≤ r0 ≤ +∞. If Pr0(x) ∈ H∞ for some 0 < r0 < +∞, then Pr0+1(x)
is not well-defined. In this case, we define h(x)n := ∞ for every n > r0. In the same 
way, if P l0(x) ∈ V∞ for some −∞ < l0 < 0, then P l0−1(x) is not well-defined, and we 
define h(x)n := ∞ for every n < l0. We also define h(q0) = (. . . , ∞, ∞, ∞, . . .). Hence 
h ◦ P = σ ◦ h wherever defined. By Lemma 5.6 and the reasoning just after it, we see 
that h(Λ̄) = Σ̄.

The subset Σ ⊂ Σ̄ of sequences whose entries are positive integers, that is l0 = −∞ and 
r0 = +∞, corresponds to an invariant subset Λ ⊂ Λ̄, all whose iterates of P (positive and 
negative) are defined. Our estimates below show that Λ is in one-to-one correspondence 
with Σ.

Now we study the hyperbolic structure of the invariant set Λ. To do that, we first 
compute the derivative of P = G ◦ lext

j,k−1 in coordinates (t, r). Since the lift l̃ representing 
lext
j,k−1 has the form l̃(t, r) = (t + g(r) − h(r) ln r, r), ∀(t, r), for suitable real-analytic 
functions g(r) and h(r) defined near r = 0, with h(0) > 0, we find

dl̃(t, r) ≡
(

1 g′(r) − h′(r) − h(r)
r

0 1

)
, ∀(t, r).

Observe that the dominating term in dl̃(t, r) is L(r) := g′(r) − h′(r) − h(r)/r → −∞ as 
r → 0. A lift of G is represented by ψ̃ = ψ̃(t, r). We may assume that q0 ≡ (0, 0) and 
q̃0 = G−1(q0) ≡ (0, 0). Due to the transversality of the homoclinic trajectory, we may 
also assume that

dψ̃(t, r) ≡
(

A(t, r) B(t, r)
C(t, r) D(t, r)

)
→

(
A0 B0
C0 D0

)
= dψ̃(0, 0) as (t, r) → (0, 0),

where A0D0 −B0C0 = 1 and C < 0. Notice that (A0, C0)T = dψ̃(0, 0) · (1, 0)T is tangent 
to V∞ at (0, 0). Hence, dP = dG · dlext

j,k−1 is represented by

dψ̃ · dl̃ ≡
(

A(t, r) A(t, r)L(r) + B(t, r)
C(t, r) C(t, r)L(r) + D(t, r)

)
,

whose eigenvalues are λ± = tr
2 ±

√
tr2−4
2 , where tr := A(t, r) + D(t, r) + C(t, r)L(r) →

+∞ as r → 0. Hence λ+ → +∞ and λ− → 0+ as r → 0. The respective eigenspaces 
E+(t, r) and E−(t, r) converge to E+ := R(A0, C0)T and E− := R(1, 0)T as r → 0. Notice 
that E+ is tangent to V∞ and E− is tangent to H∞ at q0 ≡ (0, 0). In coordinates (u, v), 
see (5.8), E+ and E− converge to R(0, 1)T and R(1, 0)T , respectively, as (u, v) → (0, 0).
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Fixing 0 < μ < 1
2 and taking Q0 sufficiently small, we conclude that the cones 

ζ(u,v) := {|δv| < μ|δu|} and η(u,v) := {|δu| < μ|δv|}, with δu ∂
∂u + δv

∂
∂v ∈ T(u,v)Q0 ≡ R2, 

satisfy dP · η(u,v) ⊂ ηP(u,v), dP−1 · ζ(u,v) ⊂ ζP−1(u,v),

|dP · η| > μ−1|η|, ∀η ∈ η(u,v) and |dP−1 · ζ| > μ−1|ζ|, ∀ζ ∈ ζ(u,v).

As proved in [27, chapter III], the mapping h : Λ̄ → Σ̄ is a conjugation between P
and σ. In particular, the topological entropy of P is positive. The trajectories through Λ
form an invariant subset Λj ⊂ Uj , where the Reeb flow has positive topological entropy. 
This completes the proof of Theorem 1.8-(ii).
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