

Construction & Robotics

RESEARCH DRIVEN PROJECT VOL. 7

Research Paper / SS 2024

Sigrid Brell-Cokcan
Thomas Adams

AUTHORS

Xiangcheng Li
Yufei Hu
Zeynep Sertkaya
Jiani Zhu Xingying
Li Zonghai Yang
Alperen Balcin
Merve Yanik
Damla Yigit
Nalan Yilmazarslan

construction
robotics

www.cr.rwth-aachen.de

international
M.Sc. programme

www.cr.rwth-aachen.de
cr@ip.rwth-aachen.de

Editors:

Univ.-Prof. Dr.-techn. Sigrid Brell-Cokcan
Dr.-Ing. Thomas Adams

RWTH Aachen University
Chair of Individualized Production
Campus-Boulevard 30
52074 Aachen
Germany
www.ip.rwth-aachen.de

Layout:

David Lukert B.Sc.

Original cover:

Lukas Kirner M.Sc.

Funded by Production Engineering - Grant of RWTH Aachen University

The content of the book was created for teaching purposes as part of the Research Driven Projects course.

RWTH Aachen University
Templergraben 55
52066 Aachen

First published 2024

Available via the institutional repository of RWTH Aachen University:
DOI: 10.18154/RWTH-2024-09253

Semi-Automated Pavement Fleet Management System

ABSTRACT

The German Road Construction market is expected to grow significantly from 2024 to 2030, primarily driven by increased government investment in infrastructure and technological advancements. Innovations, including self-driving vehicles and automated paving systems, have significantly improved construction precision and efficiency. However, the deployment of fully automated systems presents several challenges, including extended setup times, as well as reliability concerns in unpredictable environmental conditions, which highlight the limitations of current technologies.

To address these issues, the Semi-Automated Pavement Fleet Management (SAPFM) System was developed, integrating advanced sensors with adaptive control strategies.

This system is demonstrated through pavement machinery equipped with features like Adaptive Cruise Control, Simulated Pavement Monitoring, and Adaptive Compaction. The SAPFM system balances automation with human oversight, ensuring safety and reliability by dynamically assessing automation feasibility and prompting manual intervention when necessary.

The SAPFM prototype has demonstrated that automation in road construction is feasible even on a small scale, utilizing low-cost sensors. Future development efforts will focus on expanding the SAPFM system's application across the entire pavement fleet, with the objective of optimizing automation and enhancing construction efficiency in complex operational environments.

Keywords: Upcycling; Object Detection; pd-AAC; Residue; Inspection Method

1. Introduction

The road construction industry is rapidly transforming, driven by technological advancements and increased government investment in infrastructure [1]. This growth is driven by the need to modernize and expand transportation networks to meet the demands of a growing population and economy. Innovations in automation and digitalization, including autonomous vehicles and automated paving systems, have significantly enhanced construction precision and efficiency. However, the deployment of fully automated systems presents challenges, including extended setup times for scanning and networking, as well as reliability concerns in unpredictable environmental conditions, which highlight the limitations of current technologies [3].

To address these challenges, this research proposes the Semi-Automated Pavement Fleet Management (SAPFM) System, designed to bridge the gap between full automation and manual operation. The SAPFM System integrates advanced sensors with adaptive control strategies. The prototype vehicle, part of a simulated pavement fleet, incorporates features such as Adaptive Cruise Control (ACC) with Path Tracking, Simulated Pavement Monitoring, and Adaptive Compaction, enabling dynamic assessment of automation feasibility and prompting manual intervention when necessary. This research aims to demonstrate the SAPFM System's potential to enhance the durability and precision of road construction, contributing to the optimization of automation in the pavement construction industry.

2. Literature Review

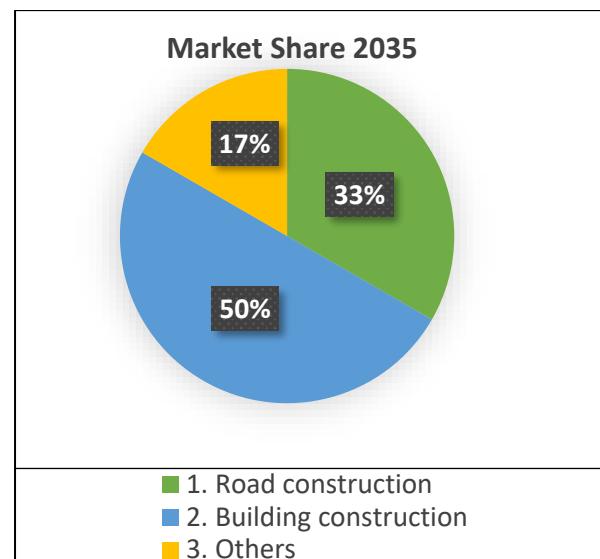
2.1 Market & Technology Analysis

The German Road Construction market is projected to expand at a compound annual growth rate (CAGR) of 9.5% from 2024 to 2030, primarily driven by increased government investment in infrastructure and advancements in construction technology [1]. The global autonomous construction

equipment market is expected to grow at a CAGR of 6.6% from 2023 to 2036, increasing in market size from USD 10.66 million to USD 24.47 million, according to Research Nester. By 2036, setup costs may account for 10-20% of expenditures, while labor cost savings are projected at 30-40%. Equipment lifespan is expected to increase by 10-15%, with emission reductions of 15-20%, reflecting significant efficiency and environmental benefits [4].

Notably, as shown in Diagram 1, the Road Construction Machinery segment constitutes nearly one-third of the market share, underscoring its significance within the infrastructure construction [4]. The growing demand for infrastructure development, especially pavement construction, is the primary driving factor for the adoption of autonomous construction machinery. Key innovations, including self-driving construction vehicles, automated paving systems, and robotic arms, are enhancing precision and efficiency in construction tasks [5].

A notable application case of these technological advancements is illustrated by the Robot Road Construction 4.0 Project (2017-2021), led by STRABAG [3], which highlights significant advancements of autonomous in pavement construction technology. Conducted in collaboration with research and industry partners, the project aimed to develop an interconnected system for autonomous asphalt pavement construction. This system was successfully applied during the renovation of Federal Highway B-189 near Wolmirstedt, Magdeburg, Germany, demonstrating the effectiveness of autonomous asphalt pavers, material handling automation, and digital integration for precise operations. Key developments included the utilization of interconnected measurement and sensor technology, which facilitated real-time data exchange and remote monitoring through a centralized control system, thereby eliminating the need for a physical workstation at the construction site [6].


The project yielded significant outcomes, particularly in enhancing safety and health on construction sites. By distancing operators from traffic and harmful fumes, the project

adhered to mandatory safe distance guidelines, which prescribe a minimum distance of 80 cm between workers and moving traffic, with an additional speed-dependent safety margin, as stipulated by German safety standards (ASTA) [7]. Furthermore, the project reduced the need for workers in hazardous positions and allowed for the autonomous regulation of paving parameters. These advancements underscore the potential for future paving processes to be fully managed via a control center within the road paver, marking a substantial step forward in the field of autonomous road construction.

However, fully automated systems may face challenges in ensuring safety and reliability under all conditions, such as unexpected obstacles or environmental changes [5]. As noted by Sebastian Czaja, the Project Manager, "The lead time due to 3D scanning and geometry data collection, and the networking of the entire installation process increases the operating time considerably." Additionally, maintaining consistent quality in repetitive tasks remains a challenge [3].

Table 1: Global market forecast for autonomous construction machinery 2024 – 2036 [4]

2023-2036 Forecast	
CAGR	6.6%
Market Size (2023~2026)	10.66 ~ 24.47 Mio \$
Setup Costs Percentage (2023~2026)	10-20%
Labor Cost Savings (2023~2026)	30-40%
Lifespan Increase (2023~2026)	10-15%
Emission Reduction (2023~2026)	15-20%

Figure 1: Market share forecast for autonomous construction machinery 2035 [4].

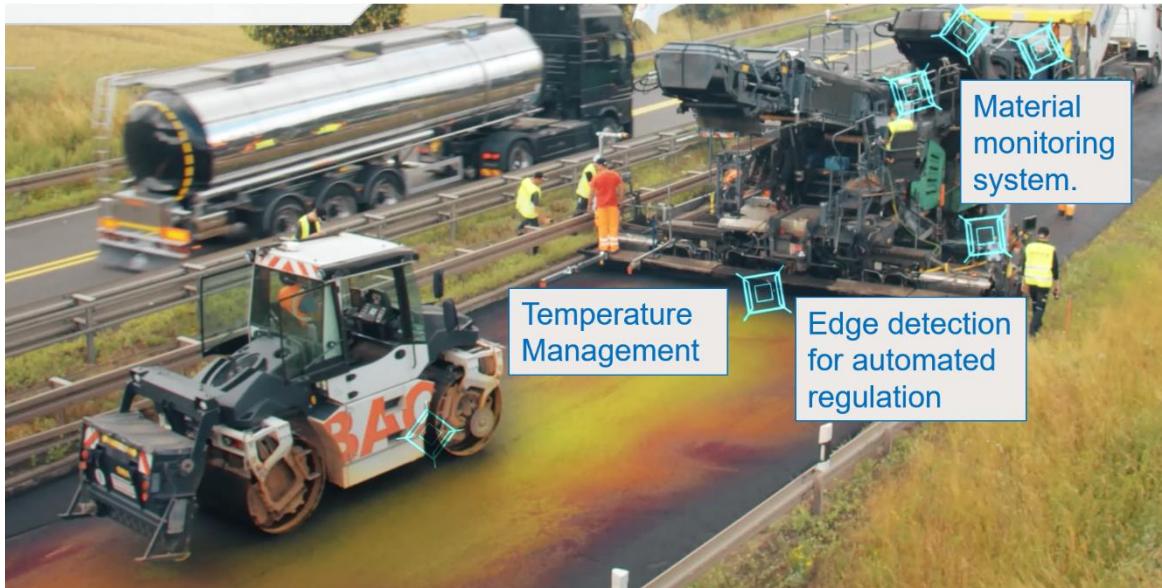


Figure 1: Robot Road Construction 4.0 'Research Project [3] (adapted from STRABAG).

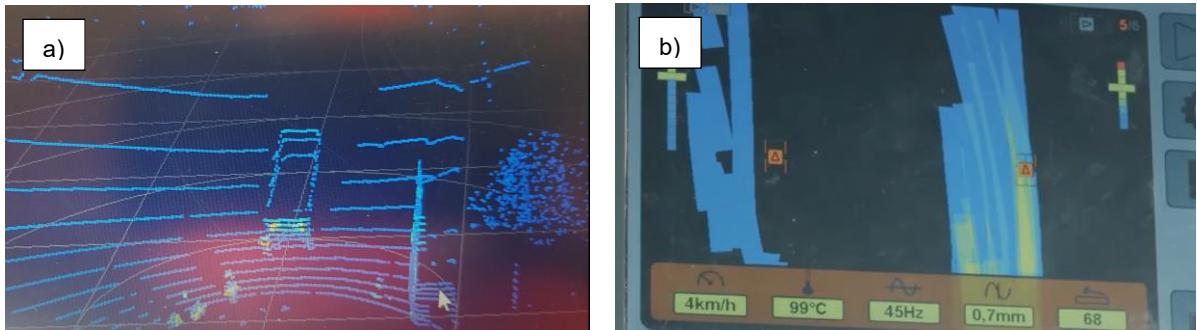
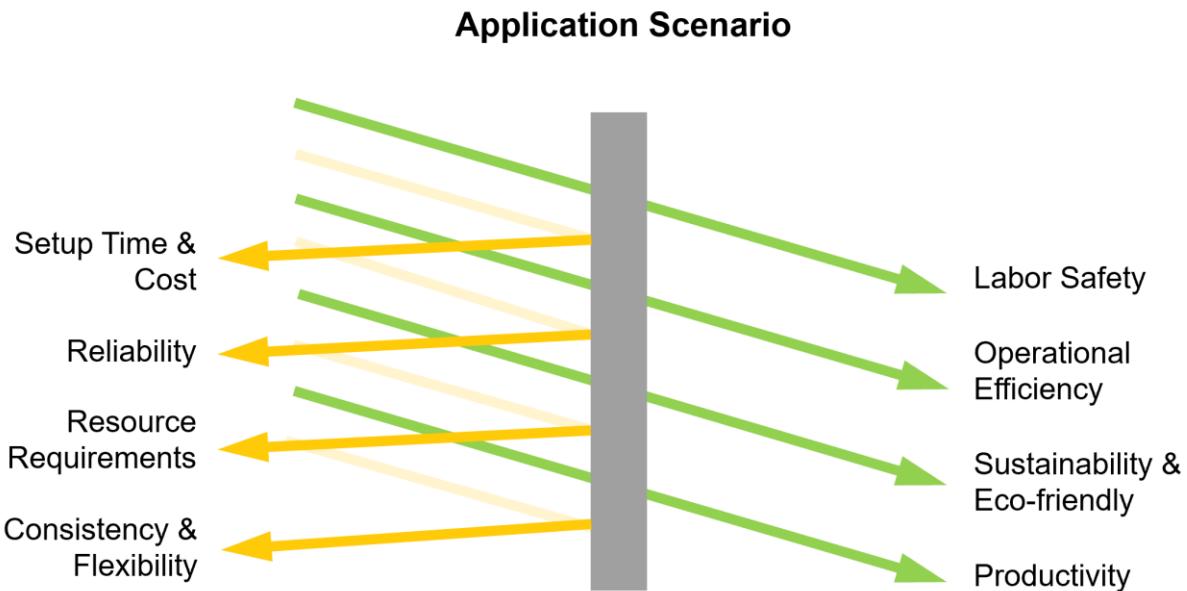


Figure 2: Robot Road Construction 4.0 BG BAU (Fig. 2A) LiDAR scanning (Fig. 2B) pavement geometry.

2.2 Functionality Analysis

The feasibility of automation in road paving has been effectively demonstrated by the Robot Road Construction 4.0 project powered by STRABAG. However, the extensive setup required for autonomous systems can diminish the time efficiencies achieved during the paving process [3]. Fully automated systems face significant challenges in ensuring safety and reliability under varying conditions [9], particularly when confronted with unexpected obstacles or environmental changes.


The implementation of full automation in pavement construction involves substantial challenges. The setup and maintenance of such systems are complex and demand considerable effort. The integration of advanced technologies, such as 3D scanning and real-time networking, can prolong project timelines, thus negating anticipated efficiency

gains [3]. Additionally, ensuring reliability in complex and dynamic environments is challenging, as autonomous systems may struggle to adapt to unforeseen obstacles or environmental shifts [8]. The resource demands for deploying and sustaining these systems are also significant, potentially limiting their widespread adoption. Moreover, maintaining consistency and flexibility across diverse operational conditions remains a persistent challenge [9].

This section provides an in-depth analysis of the various aspects, advantages, challenges, functions, and technologies associated with the automation of road pavement construction.

2.3 Literature Conclusion

A critical concern and potential breakthrough in this field is determining the optimal transition point from automation to

Figure 2: Advantages and challenges of automation's construction.

manual intervention in pavement machinery. Identifying this critical disengagement point is essential for optimizing the balance between full automation and human oversight.

The concept of semi-automation is well-illustrated by products like the SAM (Semi-Automated Mason) system powered by Construction Robotics, USA; and Taleo's Supervised Autonomy technology. SAM boosts productivity by automating repetitive tasks while allowing human operators to focus on critical decision-making, thus enhancing overall efficiency and quality [12]. Similarly, Taleo's technology retrofits existing construction equipment to enable semi-autonomous operations, where machines can be controlled remotely by a single operator. This system provides the flexibility to switch to manual control during critical operations, ensuring both safety and adaptability in complex environments [13]. These examples demonstrate the substantial benefits of semi-automation: increased efficiency, cost-effectiveness, and the ability to maintain human oversight where necessary, making it a highly effective approach in the evolving landscape of road construction.

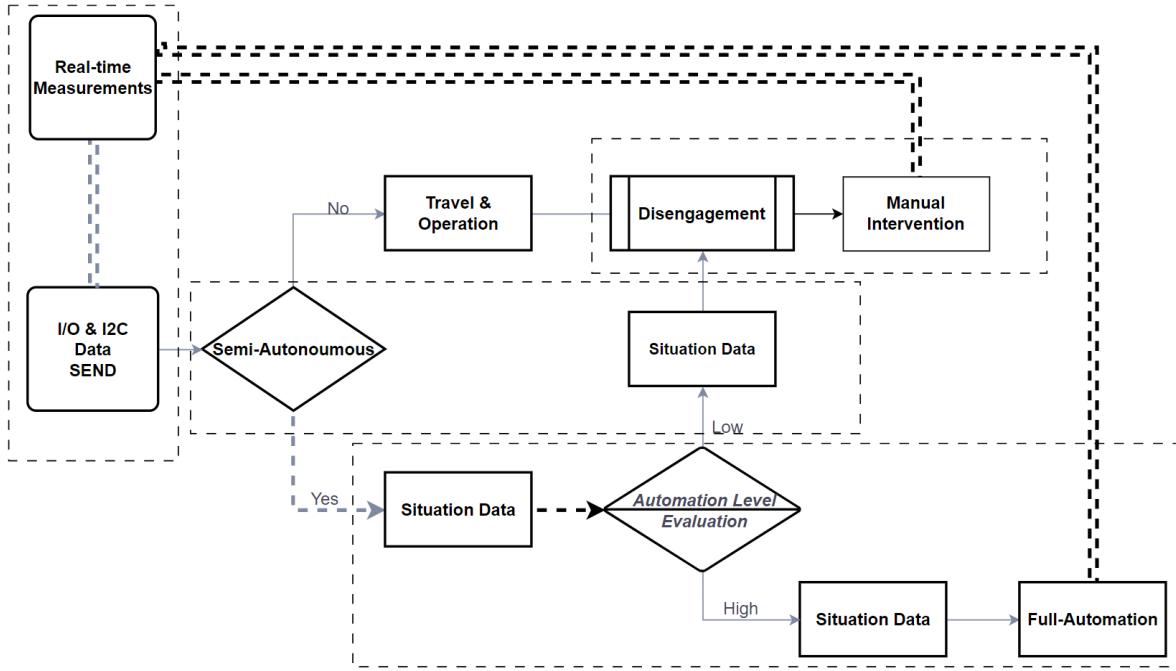
Semi-automation allows machines to efficiently handle repetitive, labor-intensive tasks, thereby increasing productivity and reducing operational costs. At the same time, human operators remain engaged in critical

decision-making roles, ensuring quality and adaptability to unforeseen challenges. In road construction, this approach offers the best of both worlds: the speed and consistency of automation with the flexibility and precision of human intervention, making it a highly effective solution in complex environments where full automation may not yet be feasible.

3. Methodology

To develop an effective and adaptive AI-based semi-autonomous road paver prototype, this study adopts a balanced approach between automation and manual control, ensuring efficient operation under varying road conditions. The system is designed to seamlessly switch between manual and fully automated modes, enhancing operational flexibility and safety.

Table 2: Key Aspects of Autonomous Road Pavement Construction


Aspect	Advantages	Challenges	Function	Technology
Labor & Functional Safety	<ul style="list-style-type: none"> Enhanced safety by distancing operators from traffic and harmful fumes [3] Reduced need for workers in hazardous positions [7] 	<ul style="list-style-type: none"> Setup & Maintaining effort [3] Increased lead time due to 3D scanning and networking [8] 	Autonomous driving Path guidance	<ul style="list-style-type: none"> - Lidar and Radar Systems [8] - Adaptive Path Guidance [8]
Operational Efficiency	<ul style="list-style-type: none"> Improved precision and efficiency in construction tasks [6] 	<ul style="list-style-type: none"> Reliability under complex environments [9] 	Disengagement	<ul style="list-style-type: none"> - Sensor Fusion Technology [6] - Predictive Analytics [9]
Productivity & Quality control	<ul style="list-style-type: none"> Autonomous regulation of paving parameters [8] Enhanced process control [5] 	<ul style="list-style-type: none"> Consistency & Flexibility [9] 	Adaptive Compaction Rolling drum pattern Real- time Pavement monitoring	<ul style="list-style-type: none"> - Advanced Control Systems [5] - Automated Calibration [8] - Real-Time Data Processing [6]
Sustainability & Eco-friendliness	<ul style="list-style-type: none"> Reduced environmental impact through efficient operation [2] 	<ul style="list-style-type: none"> Resource Requirements [3] 	Fuel consumption Reduce Rework	<ul style="list-style-type: none"> - Emission Monitoring Systems [10] - Sustainable Material Utilization [10]

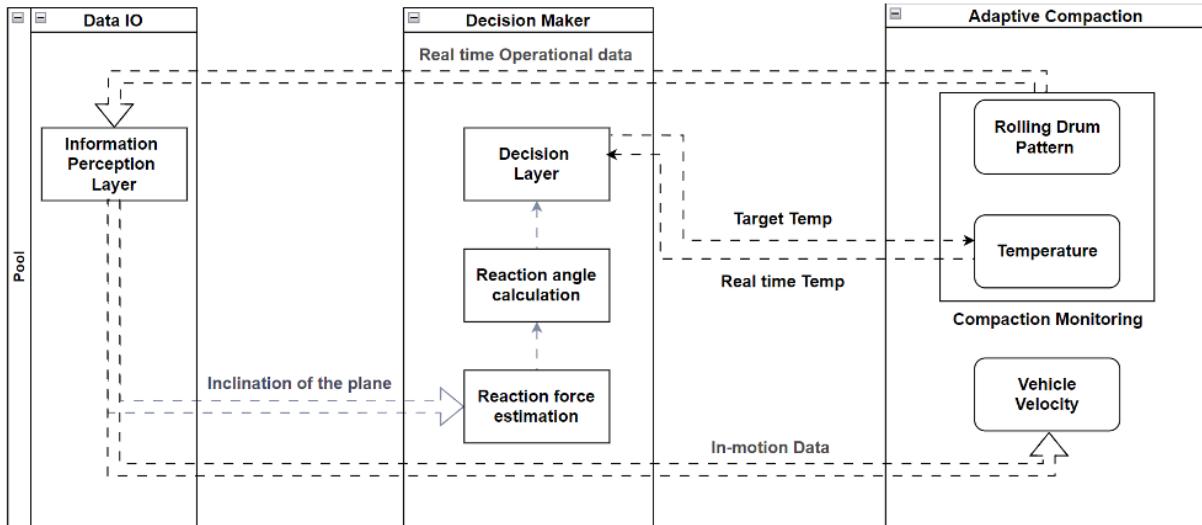

Figure 3: SAM 100 MAson Robot

Figure 4: Supervised Autonomy Machinery Fleet [13]

Figure 5: Concept of SAPFM: Automation Evaluation System

Figure 6: Concept of Adaptive Compaction

3.1 System Architecture

The system architecture is illustrated in Diagram 3, which provides an overview of the core functional modules and data flow.

A. Real-time Measurements and Data Input:

The system initially collects real-time measurement data through various sensors integrated into the paver. These data are sent to the central control unit via I/O and I2C interfaces, crucial for assessing the current state of the machine and environment.

B. Automated Operation: The system evaluates whether it can enter automated operation mode based on real-time data. If conditions are favorable, the system transitions into automated operation mode, closely monitoring the situation data and adjusting operations as conditions change.

C. Decision-Making and Control: The decision-making process involves assessing the automation level based on situational data. If conditions are suitable for full automation, the system escalates to that mode; if conditions are less than ideal, the system uses indicators like LEDs to prompt

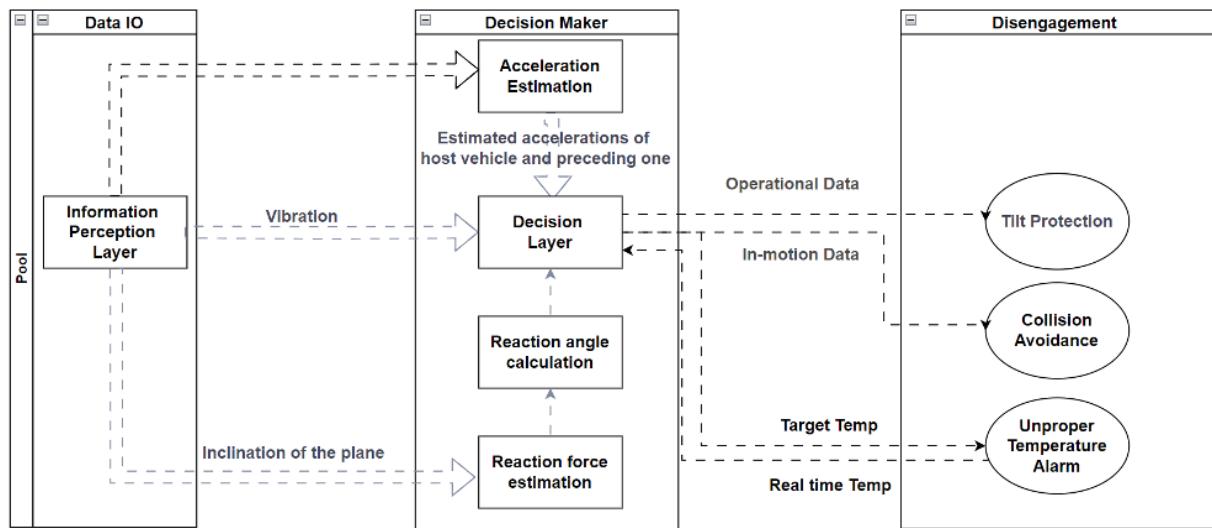


Figure 6: Concept of Adaptive Compaction

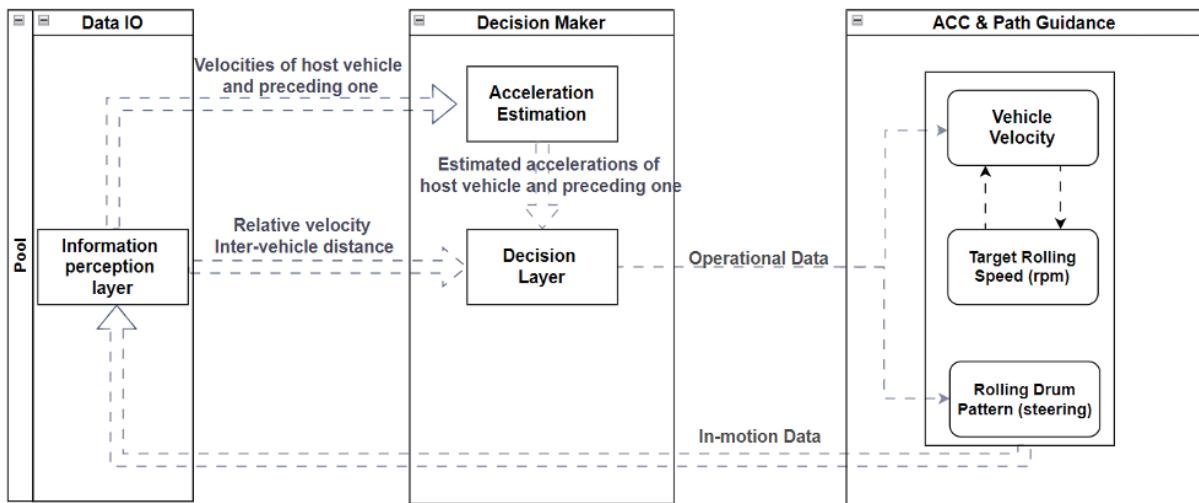


Figure 7: Concept of Adaptive Compaction

the operator to manually intervene. This ensures that the machine remains safe and controllable in complex road conditions.

D. Manual Intervention and Automation Disengagement: When suboptimal conditions are detected, the system prompts the operator via LED indicators to stop full automation and switch to manual mode. While this prompt mechanism does not achieve fully automatic disengagement, it ensures that the operator can respond promptly in critical situations, thereby enhancing operational safety and reliability.

3.2 Experiments and Validation

To validate the system's performance, several experiments were designed and conducted,

focusing on the system's automated responses under different conditions.

1. Adaptive Compaction as shown in Diagram 4

The prototype was tested under various environmental conditions. The system automatically adjusted speed, rolling drum pattern, and operation trajectory based on real-time data received from the sensors to adapt to current working conditions.

The system dynamically adjusted the rolling drum pattern and temperature control to ensure optimal compaction quality under different conditions.

2. Disengagement as shown in Diagram 5

When the system detected unfavorable conditions (e.g., excessive tilt, improper

temperature, or potential collision risks), it prompted the operator via LED indicators to stop full automation and switch to manual mode.

This part tested the system's response speed and reliability in scenarios involving tilt protection, collision avoidance, and temperature anomalies, ensuring that the operator could manually take over in a timely manner.

3. ACC and Path Guidance as shown in Diagram 6

During testing process, the system automatically adjusted the paver's speed and guided its path based on real-time data to ensure consistent operation under various conditions.

The system's ability to dynamically adjust the target rolling speed and path, based on data such as the relative speed and distance between the host vehicle and preceding vehicles, was evaluated to ensure the paver could complete tasks stably and safely.

3.3 Performance Evaluation:

The evaluation primarily focused on the system's adaptive cruise control (ACC) performance under various conditions, particularly the interaction between ultrasonic sensor data, motor control, and LED indicators. Of course, this capability is not limited to the ACC function alone but also includes other key components, such as temperature sensors and triaxial sensors. The core of the assessment was how effectively

the system could use LED prompts to signal when manual intervention was needed, thereby effectively automating or semi-automating the paver's operation. This demonstrated the system's semi-automation capabilities by accurately reflecting the need for human input based on real-time sensor data.

4. Prototype (Simulated Demonstrator)

The **Semi-Automated Pavement Fleet Management (SAPFM)** system prototype was developed as a conceptual demonstrator to integrate automation into pavement construction processes. Given their critical role in achieving precise compaction, road rollers are particularly well-suited for automation. Consequently, the road roller was selected as the prototype vehicle within the SAPFM framework. The prototype specifically focuses on the implementation and testing of an automated road roller within a series of simulated pavement operations.

4.1 Concept development

The concept of SAPFM centers on balancing automated processes with necessary human intervention. The prototype road roller is designed to adapt to various operational conditions, such as inclines and varying material conditions, using a combination of sensors, microcontrollers, and

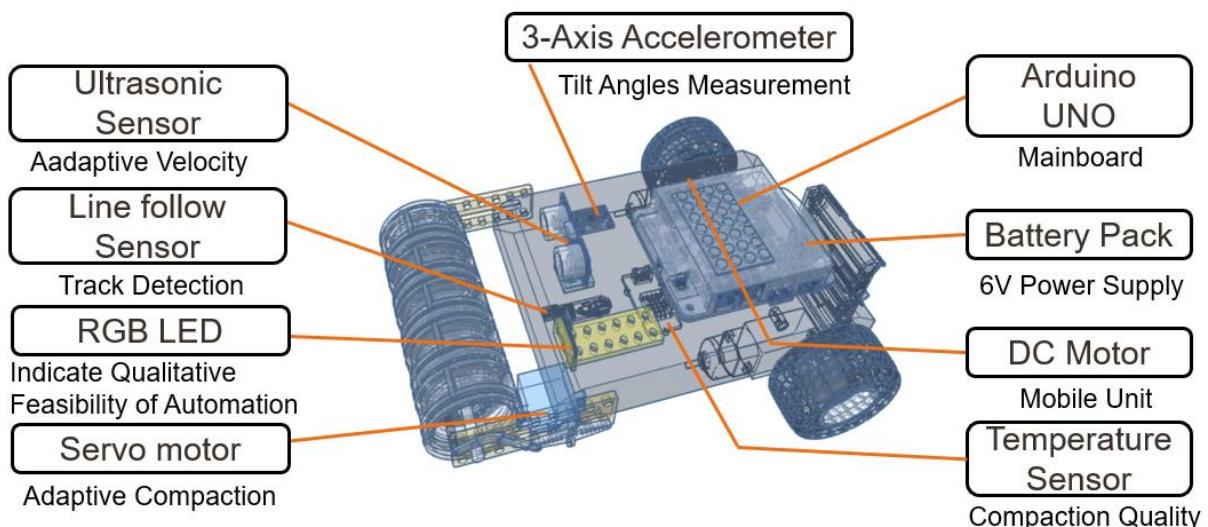


Figure 5: Prototype Hardware Components

control algorithms. As shown in Figure 5, the key components include:

- Arduino UNO: as the central microcontroller, mainboard.
- Ultrasonic sensors: for distance measurement and obstacle detection. 3-axis accelerometer: for monitoring the tilt and angle during operations.
- Line-follow sensors: to ensure the roller maintains its correct path.
- Servo motor: for simulating the compaction force adjustment.
- Temperature sensor: for simulating the temperature difference of actual working conditions, to detect the compaction quality.
- DC motor: for supporting the prototype mobile unit.
- Battery pack: for supporting the prototype movement energy.

The prototype also integrates **RGB LEDs** as a visual indicator of automation feasibility, providing immediate feedback on the system's status based on real-time sensor data.

4.2 Prototype development

The development of the Semi-Automated Pavement Fleet Management (SAPFM) prototype was systematically structured into five key phases, each focusing on specific tasks to ensure a robust and functional system. Below is a detailed breakdown of each phase:

4.2.1 Hardware Preparation

Component Selection: The first step involved selecting the appropriate hardware components essential for the prototype. This included the Arduino UNO as the microcontroller, various sensors such as ultrasonic sensors for distance measurement, 3-axis accelerometers for detecting tilt and angle, and line-follow sensors for path tracking. Additionally, servo motors were selected to simulate compaction force adjustments.

- **Sensor and Actuator Preparation:** Each sensor and actuator was prepared and tested individually to

ensure they met the project's technical requirements before being integrated into the system.

4.2.2 Connections and Wiring

- **Circuit Design:** A detailed circuit diagram was created to outline how each component would be connected to the Arduino board. The design ensured that all components could communicate effectively and that the power supply was sufficient and stable.
- **Wiring and Assembly:** The components were then wired according to the circuit design. Exceptional care was taken to ensure that all connections were secure and that there was minimal interference between different signals. The wiring was also organized to facilitate troubleshooting and future modifications.

4.2.3 Software Development

- **Programming Environment Setup:** The software development began with setting up the programming environment. The Arduino IDE was used, and necessary libraries and dependencies were installed to support the sensors and actuators used in the prototype.
- **Code Implementation:** Custom firmware was developed for the Arduino UNO. The code was written to handle sensor inputs, process data, and control the actuators based on real-time conditions. This included implementing control logic for adaptive speed control, path correction, and automated compaction adjustments.
- **Sensor Data Processing:** Algorithms were developed to interpret data from the sensors accurately, ensuring the system could make informed decisions about speed, direction, and compaction force.

4.2.4 Testing and Debugging

- **Unit Testing:** Each component and module were individually tested to verify that it performed as expected. This included testing sensor accuracy, actuator responsiveness, and communication between the Arduino board and peripheral devices.
- **Integration Testing:** Once the individual components were verified, they were integrated, and the entire system was tested in a simulated environment. This phase focused on ensuring that all parts of the system worked together seamlessly, and that the system could handle various operational scenarios such as different road inclines and obstacles.

4.2.5 Optimization and Improvement

- **Performance Optimization:** After initial testing, the system's performance was analyzed, and optimizations were made to improve response times, reduce power consumption, and enhance overall stability. This included fine-tuning sensor sensitivity and refining the control algorithms.
- **Function Expansion:** Based on the results from testing and feedback from initial demonstrations, additional features were developed to expand the prototype's capabilities. This included improving the system's adaptability to more complex paving scenarios and enhancing the user interface for better manual control and monitoring.

4.2.6 Prototype demonstration

During the demonstration, the Semi-Automated Pavement Fleet Management (SAPFM) prototype exhibited its advanced capabilities in automated control, sensor integration, and user-friendly status indication, particularly aiding in the transition

between fully automated and semi-automated modes.

Link to "Semi-Automated Pavement Prototype"

<https://github.com/Felix1199/Xiangcheng>

The prototype leveraged the ultrasonic sensor to implement Adaptive Cruise Control (ACC). This sensor accurately measured the distance to obstacles and automatically adjusted the wheel's speed accordingly. This feature ensured safe and efficient operation under varying distance conditions, adapting the speed based on real-time data.

The 3-axis accelerometer allowed the prototype to detect changes in road incline. When an uphill or downhill slope was detected, the system automatically adjusted the roller's speed according to the detected angle, ensuring consistent compaction quality and operational safety. Additionally, the accelerometer data was utilized to control the servo motor, adjusting the roller's center of gravity under different slope conditions, further enhancing stability and compaction effectiveness.

The temperature sensor played a vital role by monitoring the road surface temperature in real-time. The prototype adjusted the wheel's speed based on this temperature data, ensuring optimal operation in various temperature conditions, thereby achieving the best possible compaction results.

Moreover, the prototype included line-follow sensors that enabled the roller to adhere to a predetermined path accurately. This ensured that the roller maintained the correct trajectory during operation, further enhancing the precision of the pavement construction process.

One of the standout features of the prototype was its ability to integrate data from multiple sensors—ultrasonic, 3-axis accelerometer, and temperature sensors—and use this information to control the RGB LED indicators. The RGB LED system provided a clear visual representation of the machine's working status, changing colors to reflect the current operational mode and sensor readings. This feature facilitated the transition between fully automated and semi-automated modes, allowing operators to make informed decisions quickly.

Link to "Semi-Automated Pavement Prototype code"

<https://github.com/Felix1199/Xiangcheng>

Overall, the SAPFM prototype demonstrated its capability to respond not only to individual sensor inputs but also to synthesize data from all sensors, enabling synchronized operations and seamless mode transitions. The system's intuitive RGB indicators, responsive control mechanisms, and precise path-following functionality collectively ensure that the prototype meets the demands of modern, automated pavement construction.

5. Scientific Analysis, Results and Discussion

5.1 Scientific analysis

5.1.1 Ultrasonic sensor

The distance d to the target is calculated using the speed of sound v and the total time t it takes for the sound to travel to the target and return. The formula is:

$$d = \frac{v * t}{2}$$

Here, $\frac{t}{2}$ is the time for a one-way trip, and $v * t$ gives the distance traveled by the sound wave.

5.1.2 3-Axis Sensors:

3-axis sensors measure acceleration or magnetic field components along the x, y, and z axes. Key formulas include:

Acceleration Vector Calculation: For an accelerometer measuring acceleration components a_x , a_y , and a_z , the total acceleration magnitude a is:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Tilt Angle Calculation: To calculate the tilt angle σ of a device using accelerometer data, assuming a_x and a_z are the acceleration components along the x and z axes, the angle is:

$$\sigma = \arctan\left(\frac{a_x}{a_z}\right)$$

Pitch Angle (θ): The pitch angle is the rotation around the device's x-axis (tilting forward or backward), and it can be calculated using the formula:

$$\theta = \arctan\left(\frac{a_y}{\sqrt{a_x^2 + a_z^2}}\right)$$

Roll Angle (ϕ): The roll angle is the rotation around the device's y-axis (tilting sideways), and it can be calculated using the formula:

$$\phi = \arctan\left(\frac{a_x}{a_z}\right)$$

5.1.3 Temperature sensor:

Temperature sensors measure temperature using different principles. For thermocouples, the formulas is:

Thermocouple Temperature Calculation: Thermocouples generate a voltage V that relates to temperature T . The approximate formula for temperature is:

$$T = \frac{V}{S} + T_0$$

Where S is the sensitivity of the thermocouple (in mV/°C), and T_0 is the reference temperature (usually 0°C).

5.1.4 Sensor Fusion:

Combining data from multiple sensors can improve accuracy and reliability. A common fusion method is weighted averaging:

Weighted Average: When combining sensor readings X_i with corresponding weights w_i , the fused result \bar{x}_{fused} is calculated as:

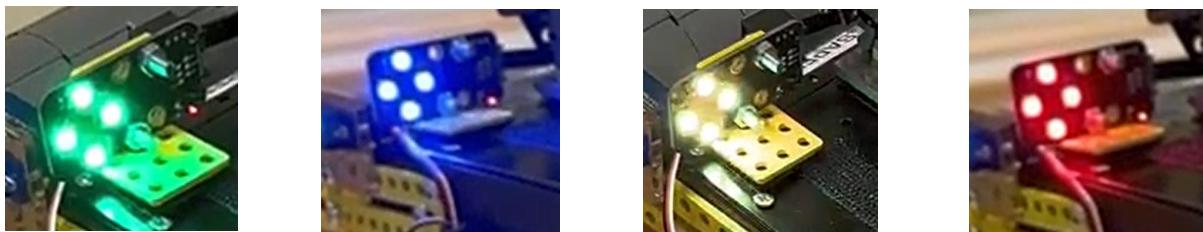

$$\bar{x}_{fused} = \frac{\sum_{i=1}^N w_i x_i}{\sum_{i=1}^N w_i}$$

Table 3: SAPFM simulation track-test results

Distance (cm)	Pitch (degrees)	Roll (degrees)	Sensor Value	Speed L/R	LED Color	Automation Feasibility %
23,79	6,27	-4,87	0	255/255	GREEN	80
22,5	-8,72	-8,43	1	80/255	GREEN	90
12,54	2,34	-4,29	2	255/80	BLUE	70
19,63	-3,46	-7,87	3	0/0	BLUE	75
19,25	9,32	-8,51	1	80/255	BLUE	65
6,72	-2,16	1,65	1	80/255	YELLOW	50
9,11	2,58	-3,01	1	80/255	YELLOW	50
8,82	-7,72	-9,6	0	80/80	YELLOW	30
0,23	4,69	4,66	3	0/0	RED	10
2,68	0,31	-3,61	1	80/255	RED	5

Table 4: Full automation simulation track test result

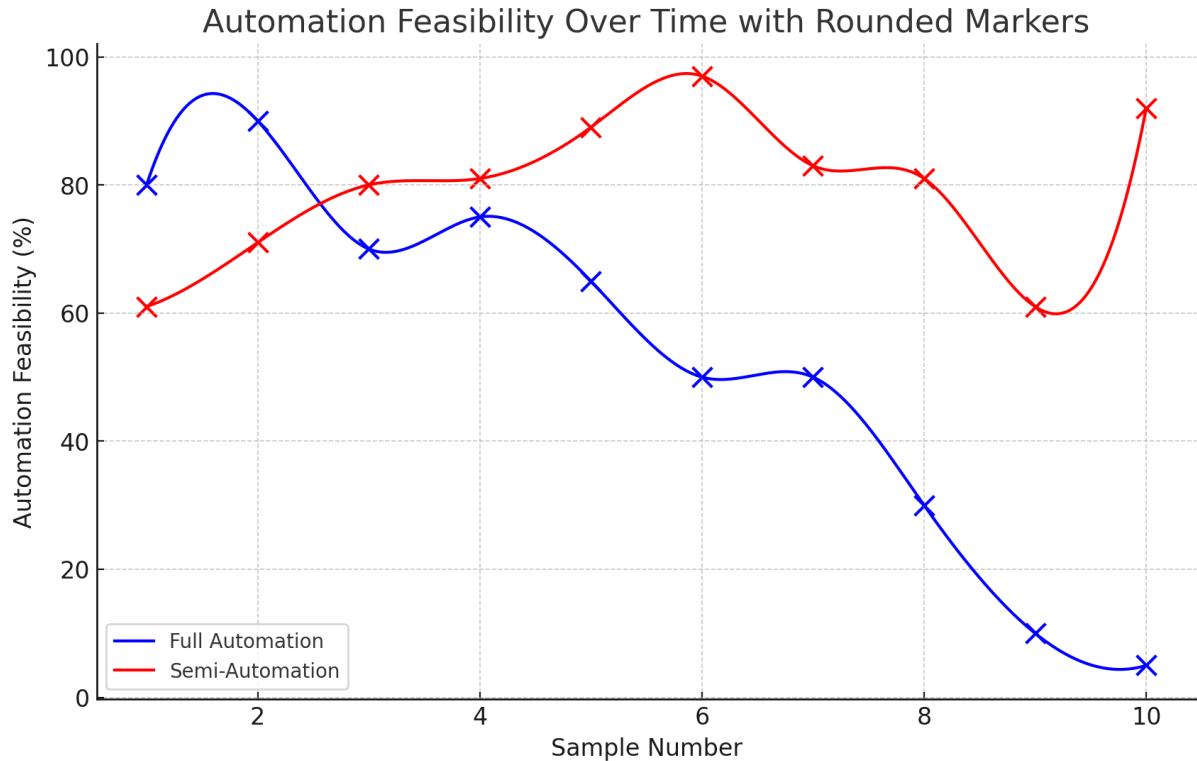
Distance (cm)	Sensor Value	Speed L/R	LED Color	Automation Feasibility %
9,68	0	0	GREEN	61
23,03	1	360	GREEN	71
6,74	1	0	GREEN	80
16,24	1	240	GREEN	81
22,96	0	360	GREEN	89
9,68	1	0	GREEN	97
26,96	0	360	BLUE	83
26,24	1	360	BLUE	81
33,52	1	510	RED	61
30,99	0	510	RED	92

Figure 7: RGB indicate qualitative feasibility of automation under various conditions.

Table 5: Automation Feasibility Criteria

Color	Green	Blue	Yellow	Red
Automation Feasibility %	>70	55~70	25~55	<25

5.2 Analysis of the experimental results


This experiment analyzed the feasibility of both full automation and semi-automation modes under varying environmental conditions. Through a comprehensive assessment of factors such as distance, pitch angle, roll angle, sensor values, speed, and LED color, it was observed that the full automation mode performs well in simple and stable environments but experiences a significant decrease in feasibility when confronted with complex and dynamic conditions. In contrast, the semi-automation mode demonstrated greater adaptability, maintaining stable feasibility in challenging environments. Consequently, it is recommended to utilize the strengths of both full automation and semi-automation, selecting the most suitable mode based on specific environmental conditions to ensure both efficiency and safety in construction operations.

5.2.1 Results Analysis

- Automation Feasibility:** The blue curve representing full automation feasibility illustrates how the system responds under varying conditions. When the sample number increases, representing different testing scenarios, the automation feasibility fluctuates significantly, especially in later stages. This pattern indicates that maintaining

consistent automated operations is challenging in dynamic and complex environments. The pronounced dips in the curve highlight the difficulties of relying solely on full automation in construction settings, where environmental factors can drastically affect performance.

- The Necessity of Semi-Automation:** The red curve emphasizes the importance of a semi-automated approach. While full automation shows promise in specific scenarios, such as stable and straightforward conditions, the semi-automated approach demonstrates better adaptability in complex situations. The semi-automation line remains more stable across various sample numbers, suggesting that combining automation with human oversight ensures greater safety and quality, especially in challenging environments. This approach allows for better handling of unexpected variables, making it a more viable solution for current and future road construction projects.

Figure 8: Simulated Track-Test Results

5.2.2 Discussion:

The SAPFM system has demonstrated high flexibility and adaptability under various test conditions, particularly when frequent adjustments to speed and operational strategies are required. While the system performs excellently in automated operations under stable conditions, its feasibility is challenged in more complex or rapidly changing construction environments. This indicates that a hybrid approach, combining full automation and manual control—semi-automation—can provide the optimal balance in practical construction scenarios. Future research could focus on further improving sensor stability and response time to enhance the system's performance in diverse construction environments and explore additional balance points between automation and semi-automation.

5.3 Outlook

The module explores the future potential of the SAPFM system and related technologies. It identifies emerging trends, potential research areas, and practical applications that

could drive further advancements and improve the system's capabilities.

- **Advancements in Sensor and Data Processing Technologies:** This section outlines potential technological advancements that could enhance the SAPFM system. It includes discussions on emerging sensor technologies, data fusion techniques, and improvements in processing algorithms. These advancements are expected to address current limitations and enhance the system's performance in various operational scenarios.
- **Integration of AI and Machine Learning:** Explore how artificial intelligence (AI) and machine learning (ML) algorithms can be integrated into the SAPFM system to enhance its adaptability and decision-making capabilities [14]. The focus is on developing intelligent algorithms that can dynamically adjust system parameters and optimize performance based on real-time data and environmental changes.

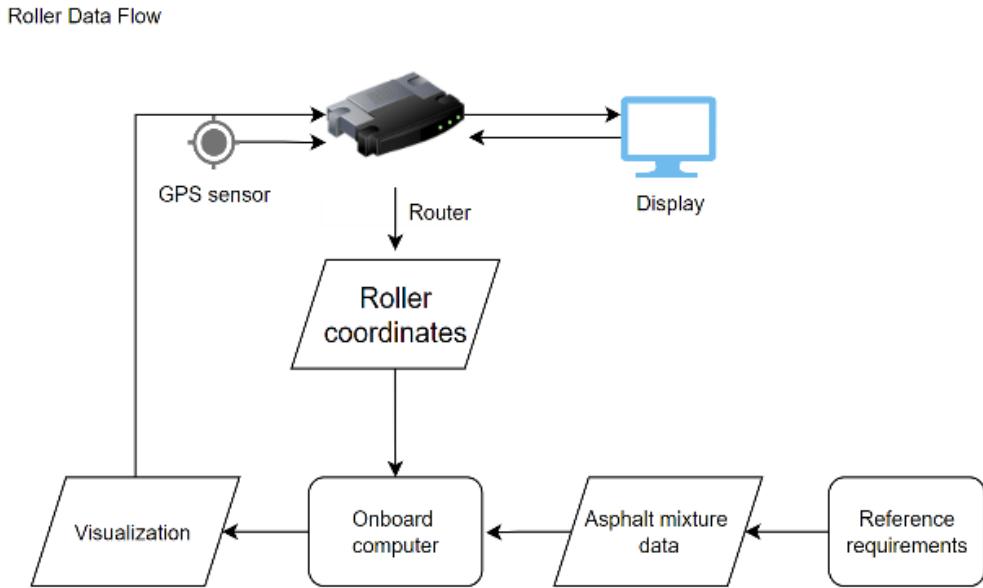


Figure 8: Road roller communication Data flow

- **Enhancing Semi-Automation Effectiveness:** It includes exploring how to better integrate manual intervention with automation, improving the flexibility and responsiveness of the system in various construction environments. The goal is to maximize the benefits of semi-automation and address any remaining challenges.
- **Communication:** Connected and autonomous vehicles (CAVs) is crucial for optimizing the Semi-Automated Pavement Fleet Management (SAPFM) system, enabling real-time data exchange between vehicles and the central processing center [15]. This ensures synchronization and enhances the effectiveness of semi-automated operations through dynamic response capabilities. Future advancements in CAV could further elevate the system's performance, solidifying its role in next-generation road construction technologies. For more detailed insights, you can explore further [here](#).
- **Expansion and Real-World Testing:** Impact on the practical application of the SAPFM system in a wider range of construction environments. It includes plans for field trials and real-world testing to validate system performance and

gather feedback for further refinement. Successful deployment in diverse settings will facilitate broader adoption and application of the technology.

6. Conclusion

The development and implementation of the Semi-Automated Pavement Fleet Management (SAPFM) System present a preliminary investigation into the feasibility of automation in road construction. SAPFM offers an initial exploration into small-scale automation in road construction. By low-cost sensors and adaptive control strategies, the prototype demonstrates feasibility in adaptive pavement settings. The SAPFM system effectively addresses the challenges posed by simulated fully automated systems, particularly in complex and unpredictable environments. The system's ability to dynamically assess the feasibility of automated operations and seamlessly transition to manual intervention when necessary, underscores its practical value in balancing automation with human oversight.

This research demonstrates that the SAPFM system not only enhances the precision and efficiency of road construction but also ensures the necessary flexibility to adapt to varying operational conditions. The hybrid approach of semi-automation proves especially beneficial in scenarios where full

automation may fall short, highlighting the critical role of human intervention in maintaining safety and adaptability. The system's performance in diverse test conditions confirms its potential to significantly improve the durability and precision of road construction projects.

Looking ahead, the SAPFM system presents significant opportunities for enhancement, particularly through advancements in sensor technology and data processing, which are crucial for enabling quicker and more accurate responses to environmental changes. These improvements will make the system more efficient and reliable across diverse construction scenarios. Future research should also aim to optimize the balance between automated and manual operations, refining the transition points to maximize operational efficiency while ensuring human oversight during critical decisions. Additionally, developing more sophisticated intervehicle communication systems will be vital for improving fleet coordination, enhancing safety, and streamlining operations. As the construction industry evolves, the SAPFM system is poised to become a key model for integrating automation with human expertise, driving safer, more efficient, and sustainable infrastructure development.

7. References

[1] Market Analysis Report, Construction Equipment Market Size & Share Report, 2020-2027 978-1-68038-118-4 www.grandviewresearch.com/ (Accessed June. 05, 2024).

[2] Research and Markets Analysis Report, "Autonomous Construction Equipment Global Market Opportunities and Strategies to 2033." www.researchandmarkets.com/ (Accessed June. 05, 2024).

[3] S. Czaja. "Autonomous asphalt paving in the real world" <https://newsroom.strabag.de/news-robot-strassenbau-40-schafft-basis-fuer-den-autonomen-asphalteinbau?id=150641&menueid=28033&languageid=deutsch> (Accessed June. 01, 2024).

[4] Research Nester. "Globale MarktgröÙe Prognose und Trendhighlights für autonome Baumaschinen im Zeitraum 2024 – 2036" <https://www.researchnester.com/de/reports/a-utonomous-construction-equipment-market/4818/> (Accessed June. 15, 2024).

[5] P. Wolf, et al. "Towards High-Quality Road Construction: Using Autonomous Tandem Rollers for Asphalt Compaction Optimization." ISARC Proceedings, 14 Oct. 2020, pp. 90–97, www.iaarc.org/publications/2020_proceedings_of_the_37th_isarc/towards_high_quality_road_construction-using_autonomous_tandem_rollers_for_asphalt_compaction_optimization.html. (Accessed June. 15, 2024).

[6] BG BAU, Forschungsprojekt "Robot - Straßenbau 4.0" [https://bauportal.bgbau.de/bauportal-12023/thema/tiefbau/projekt-robot-40-autonom-arbeitende-maschinen-im-strassenbau/](http://bauportal.bgbau.de/bauportal-12023/thema/tiefbau/projekt-robot-40-autonom-arbeitende-maschinen-im-strassenbau/) (Accessed June. 15, 2024).

[7] H. Leisering. "Die Arbeitsstättenregel ASR A5.2 Verbesserter Arbeits- und Gesundheitsschutz für Beschäftigte auf Straßenbaustellen, Arbeitsstellensicherung" ASTA (Accessed June. 18, 2024)

[8] W. Huang, et al. "Design and Implementation of PLC-Based Autonomous Construction System of Unmanned Vibratory Roller," 18, 2024)

[9] K. Sitaramanjaneyulu. "Smart Pavement Materials and Emerging Technologies." [https://www.nbmwcw.com/article-report/infrastructure-construction/roads-and-pavements/smart-pavement-materials-and-emerging-technologies.html/](http://www.nbmwcw.com/article-report/infrastructure-construction/roads-and-pavements/smart-pavement-materials-and-emerging-technologies.html/) (Accessed June. 28, 2024).

[10] A. Owais. "Robots in Construction: Bricklaying." AZoRobotics, 12 Dec. 2023, www.azorobotics.com/Article.aspx?ArticleID=654. (Accessed June. 28, 2024).

[11] V. Vince. "Precision Robotic Masonry - Vince Vasquez - Medium." Medium, Medium, 5 Dec. 2019, medium.com/@vincevasquez/precision-robotic-masonry-bb64a103559a. (Accessed June. 28, 2024).

[12] K. Jost. "Teleo Aims to Transform Off-Road Equipment Operations with Supervised Autonomy." Inside Autonomous Vehicles, Inside Autonomous Vehicles, 30 Aug. 2022, insideautonomousvehicles.com/teleo-aims-to-transform-off-road-equipment-operations-with-supervised-autonomy/. (Accessed June. 28, 2024).

[13] S. Burges. "Autonomous Vehicles: The Future of the Construction Industry.", www.burges-salmon.com/news-and-insight/legal-updates/autonomous-vehicles-the-future-of-the-construction-industry. (Accessed 31 July 2024).

[14] S. Heeseung, et al. "Autonomous Condition Monitoring-Based Pavement Management System." *Automation in Construction*, vol. 138, no. 0, 2022, trid.trb.org/view/1939875. (Accessed 31 July 2024).