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Abstract
This paper determines the types of the invariant quadratic forms over their respec-
tive (finite) fields of definition for all irreducible modules of the groups SL2(q) in
defining characteristic. We prove that for q > 2 any absolutely irreducible even
dimensional orthogonal SL2(q)-module W in defining characteristic carries a split
invariant quadratic form (i.e. it is of + type) unless dim(W ) ≡ 4 (mod 8) and the
field of definition of W is the subfield of index 2 in Fq ; in the latter case the type of
the invariant quadratic forms is −.

Keywords Representations of finite groups of Lie type · Defining characteristic ·
Invariant quadratic forms · Field of definition

Mathematics Subject Classification 20C20 · 20C33 · 11E08

1 Introduction

Let ρ : G → GLn(K ) be an absolutely irreducible representation of a finite group G.
Then ρ is called orthogonal, if ρ(G) preserves a non-degenerate quadratic form Q; in
this case Q is uniquely determined up to multiplication by non-zero scalars and ρ(G)

is a subgroup of the orthogonal group O(Q) of Q.
In a long term project with Richard Parker and Thomas Breuer we aim to determine

isomorphism type of O(Q). For a survey see Breuer et al. (2024). If K is a finite field
and n is even, there are two isomorphism classes of orthogonal groups, O+ and O−.
Also for odd dimension n there are two isometry classes of non-degenerate quadratic
forms (in odd characteristics), but they are represented by similar forms, having the
same orthogonal groups. Therefore for finite fields we only need to handle even degree
representations. As field extensions are well controlled (see Sin and Willems 1991,
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Proposition 4.9) it is enough to consider the minimal possible field K , the field of
definition. Note that we deal with positive characteristic, so there are no Schur indices
and the field of definition is generated by the traces of the matrices in ρ(G).

The present paper deals with the smallest infinite series of finite groups of Lie
type: the groups SL2(q) of 2 × 2 matrices of determinant 1 over a finite field Fq

with q elements. The paper Braun and Nebe (2017) provides the relevant information
for the orthogonal representations of SL2(q) over number fields K . This immedi-
ately yields the types over finite fields of all characteristics that do not divide the
group order. Using the methods of Nebe and Parker (2023) and the decomposition
matrices available in Burkhardt (1976) one can also deduce the orthogonal types in
non-defining characteristics. The present paper deals with the remaining case, where
char(K ) = p = char(Fq), the so-called defining characteristic. The main result is
given in Theorem 3.7: For q > 2 any absolutely irreducible even dimensional orthog-
onal SL2(q)-module W in defining characteristic carries a split invariant quadratic
form (i.e. it is of+ type) unless dim(W ) ≡ 4 (mod 8) and the field of definition ofW
is the subfield of index 2 in Fq ; in this case the type of the invariant quadratic forms
is −.

The proof of Theorem 3.7 is based on the observation that the restriction of all
relevant representations to a cyclic subgroup T ≤ SL2(q) of order |T | = q + 1 (a
non-split torus) is an orthogonal direct sum of irreducible unitary representations.

2 Quadratic forms over finite fields

2.1 Quadratic forms

Let K be a field and V a finite dimensional vector space over K . A quadratic form Q
is a map Q : V → K such that Q(ax) = a2Q(x) for all a ∈ K , x ∈ V and such that
the polarisation

BQ : V × V → K , BQ(x, y) := Q(x + y) − Q(x) − Q(y)

is a bilinear form. The quadratic form Q is called non-degenerate if the radical of BQ is
{0}. Note that the polarisation of a quadratic form is always a symmetric bilinear form.
Also 2Q(x) = BQ(x, x), so over a field of characteristic �= 2 quadratic forms and
symmetric bilinear forms are equivalent notions. If char(K ) = 2 then BQ(x, x) = 0
for all x , so BQ is alternating, and, in particular, the dimension of a non-degenerate
quadratic form is even.

2.2 Quadratic forms over finite fields

Let Fq denote the field with q elements. Then it is well known that every non-
degenerate quadratic form Q of dimension ≥ 3 contains isotropic vectors, i.e. vectors
v �= 0 with Q(v) = 0. We may conclude that such forms split off a hyperbolic plane

H(Fq) := (〈v,w〉, Q) with Q(av + bw) = ab
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as an orthogonal summand. There is a unique anisotropic form of dimension 2, N (Fq).
Here the underlying Fq -vector space is the extension field Fq2 and the quadratic form
is the norm form given by Q(x) := xxq for all x ∈ Fq2 .

Hence on a vector space V = F
2m
q of even dimension there are two non-isometric

non-degenerate quadratic forms

Q+
2m(q) := H(Fq)

m and Q−
2m(q) := H(Fq)

m−1 ⊥ N (Fq), (1)

which we call of + type and of − type respectively.

Remark 2.1 The orthogonal sums of these forms behave as expected:

Q+
2m(q) ⊥ Q+

2n(q) = Q−
2m(q) ⊥ Q−

2n(q) = Q+
2(m+n)(q),

Q−
2m(q) ⊥ Q+

2n(q) = Q−
2(m+n)(q).

Fact 2.2 (see for instance Kneser 2002, Kapitel IV)

• The Witt index, i.e. the dimension of a maximal totally isotropic subspace, of
Q+

2m(q) is m and Q−
2m(q) has Witt index m − 1.

• The number of non-zero isotropic vectors in Q+
2m(q) is (qm − 1)(qm−1 + 1) and

in Q−
2m(q) one gets (qm + 1)(qm−1 − 1).

Proposition 2.3 For any non-zero α ∈ Fqm the quadratic form

Qα : Fq2m → Fq , Qα(x) := traceFqm /Fq (αx
qm+1)

is isometric to Q−
2m(q).

Proof We check that for x, y ∈ Fq2m

Qα(x + y) − Qα(x) − Qα(y) = traceFqm /Fq (x
qmαy + yq

m
αx)

= traceFq2m /Fq (x
qmαy)

by the transitivity of the trace. Thus the polarisation of Qα is given by

Bα(x, y) = traceFq2m /Fq (x
qmαy) for all x, y ∈ Fq2m .

As the trace form of separable extensions is a non-degenerate bilinear form and the
Galois automorphism x �→ xq

m
of Fq2m is bijective, also Bα is non-degenerate.

One way to see that Qα is isometric to Q−
2m(q) is to count the number of isotropic

vectors: The norm N : Fq2m → Fqm , x �→ xq
m
x is a surjective anisotropic quadratic

form that restricts to a group epimorphism on the multiplicative groups. Hence for any
a ∈ Fqm \ {0} the number of x ∈ Fq2m \ {0} with N (x) = a is qm + 1. The quadratic
form Qα is the composition of N with multiplication by α followed by the trace. The
trace is an Fq -linear surjective map form Fqm to Fq , so the kernel of the trace is an
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(m − 1)-dimensional subspace of Fqm and, in particular, contains qm−1 − 1 non-zero
elements. Consequently the number of isotropic vectors of Qα is (qm−1−1)(qm +1).

�


Proposition 2.4 Let Q : V → Fq be a non-degenerate quadratic form andG ≤ O(Q)

an abelian subgroup of the orthogonal group of Q such that

(a) The Fq-algebra A spanned by the matrices in G is semi-simple, with A =⊕n
i=1 Ki for extension fields Ki of Fq

(b) All simple summands Ki are invariant under the adjoint involution of BQ.
(c) The restriction of this involution to Ki is non-trivial for all i .

Then Q is of + type if and only if the number of composition factors of the A-module
V is even.

Proof The set of isomorphism classes of simple A-modules is {Ki | 1 ≤ i ≤ n}
and the A-module V is hence the direct sum V ∼= ⊕n

i=1 K
di
i for some di ∈ N. As

the adjoint involution fixes each primitive idempotent of A, the summands Kdi
i are

pairwise orthogonal. The restriction of the involution to the simple summand Ki of A
is the field automorphism Fi of order 2, so the bilinear form BQ induces Hermitian
forms on these orthogonal summands. Hence there are αi1, . . . , αidi in the fixed field
of Fi such that

Q =⊥n
i=1⊥di

j=1 Qαi j

for quadratic forms Qαi j : Ki → Fq as in Proposition 2.3. As these are of − type, the
statement follows by applying the addition formulas from Remark 2.1. �


We remark that the assumption from Proposition 2.4 is equivalent to the assumption
that the representation ofG on V is orthogonally stable in the sense of Nebe and Parker
(2023, Definition 5.12). In the language of Nebe and Parker (2023) the statement of
Proposition 2.4 can also be deduced from Nebe and Parker (2023, Proposition 3.12).

3 The orthogonal representations of SL2(q)

In this section we fix the following notation:

• p is a prime, q := p f , where f is a positive integer

SL2(q) :=
{(

a b
c d

)

∈ F
2×2
q | ad − bc = 1

}

is the group of determinant 1 matrices over the finite field with q elements.
• V := F

2
q is the natural Fq SL2(q)-module.
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3.1 The irreducible modules and their fields of definition

The irreducible modules of SL2(q) in defining characteristic are already described in
Brauer and Nesbitt (1941, p. 588–589). We give two facts that can be found in van
Ham et al. (1982, Section 1.8).

Fact 3.1 The irreducible Fp SL2(p)-modules are given by W0, . . . ,Wp−1, where

Wk := Symk(V ) = Fp[x, y]deg=k

is the space of homogeneous polynomials on V of degree k. All Wk are absolutely
irreducible and the dimension of Wk is k + 1.

For arbitrary f ∈ N we know that Fq is a splitting field for SL2(q) and the irre-
ducible Fq SL2(q)-modules are given by Steinberg’s tensor product theorem: The
Galois group Gal(Fp f /Fp) = 〈F〉 acts on the group SL2(q) by applying the Galois
automorphism to the entries of the matrices. For 0 ≤ i ≤ f −1 let V [i] denote the nat-
ural Fq SL2(q)-module V where the action is twisted by Fi andW [i]

k := Symk(V
[i]).

Fact 3.2 The irreducible Fq SL2(q)-modules are given by

W (k) = W (k0, . . . , k f −1) = W [0]
k0

⊗ . . . ⊗ W [ f −1]
k f −1

for k := (k0, . . . , k f −1) ∈ {0, . . . , p − 1} f . The W (k) are pairwise non-isomorphic,

absolutely irreducible and of dimension dim(W (k0, . . . , k f−1)) = ∏ f −1
i=0 (ki + 1).

The action of the Galois group on these irreducible modules is given by cyclic
permutation:

W (k0, . . . , k f −1)
F ∼= W (k f −1, k0, . . . , k f −2).

As the modules W (k) are pairwise non-isomorphic, the representation on W (k)

can be realised over the fixed field of F� if and only if

(k0, . . . , k f −1) = (k f −�, k f −�+1, . . . , k f −�−1).

Remark 3.3 Let � ≥ 1 be minimal such that

k := (k0, . . . , k f −1) = (k f −�, k f−�+1, . . . , k f−�−1).

Then � divides f . Put F(k) := Fp� to be the fixed field of F� in Fq . Then F(k) is the
field of definition of the module W (k).

By abuse of notation we denote the corresponding F(k)SL2(q)-module again by
W (k).
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3.2 Invariant quadratic forms

For A =
(
a b
c d

)

∈ F
2×2
q and J :=

(
0 1

−1 0

)

we have AJ Atr = det(A)J , so

the natural Fq SL2(q)-module V = F
2
q carries an SL2(q)-invariant non-degenerate

alternating bilinear form. This yields a non-degenerate SL2(q)-invariant bilinear form
Bk on the space of homogeneous polynomials

Bk : Fq [x, y]deg=k × Fq [x, y]deg=k → Fq : Bk(g, h) := g

(

− ∂

∂ y
,

∂

∂x

)

(h(x, y)).

The form Bk is symmetric if k is even and alternating if k is odd.

Remark 3.4 There is a special case for q = 2. Here V carries a non-degenerate
quadratic form of − type and SL2(2) ≤ O−

2 (2).

Remark 3.5 (see Sin and Willems 1991, Proposition 3.4, Garibaldi and Nakano 2016,
Proposition 9.1.2) Let G be a group, K a field, and let (V , B) and (W , B ′) be G-
invariant non-degenerate alternating bilinear forms on the KG-modules V and W .
Then

Q : V ⊗ W → K , Q

(
n∑

i=1

vi ⊗ wi

)

:=
∑

i< j

B(vi , v j )B
′(wi , w j )

is a G-invariant quadratic form on V ⊗ W with polarisation B ⊗ B ′. If U ≤ V is an
isotropic subspace for the bilinear form B, i.e. B(U ,U ) = {0}, thenU ⊗W is a totally
isotropic subspace for the quadratic form Q, i.e. Q(U ⊗ W ) = {0}. In particular, the
Witt index of Q is m := dim(V ⊗ W )/2. If K = Fq is a finite field, this shows that
Q is isometric to Q+

2m(q).

Proposition 3.6 Assume that q �= 2. Let k := (k0, . . . , k f −1) and F(k) be the field
of definition of W (k) as in Remark 3.3 and put e(k) := |{i | ki is odd }|. Then the
F(k)SL2(q)-moduleW (k) carries a non-degenerateSL2(q)-invariant quadratic form
Qk if and only if either

(i) q is odd and e(k) is even, or
(ii) q is even and dim(W (k)) ≥ 4.

If [Fq : F(k)] is odd, then Qk has maximal Witt index and hence is of + type.

Proof (i) First assume thatq is odd and recall thatwe thenmayworkwith symmetric
bilinear forms instead of quadratic forms. AsW (k) is absolutely irreducible any
SL2(q)-invariant bilinear form is a scalar multiple of Bk := Bk0 ⊗ . . . ⊗ Bk f −1 .
This form is symmetric and hence the polarisation of an invariant quadratic form
Qk if and only if e(k) is even.

(ii) Now assume that q is even. IfW (k) is a proper tensor product, then Remark 3.5
shows that there is a non-degenerate invariant quadratic form Qk on W (k).

123



Beitr Algebra Geom

Otherwise dim(W (k)) = 2. Both orthogonal groups O+
2 (Fq) and O−

2 (Fq) of
dimension 2 are solvable, but SL2(q) is not solvable for q ≥ 4, so there cannot
be an invariant quadratic form on W (k) if dim(W (k)) = 2 and q ≥ 4.
In both cases (q even or odd) Remark 3.5 states that, after extending scalars to
the field Fq , the invariant quadratic form Fq ⊗ Qk is of maximal Witt index.
As odd degree extensions do not change the type of a quadratic form (see for
instance Sin and Willems 1991, Proposition 4.9) the type of Fq ⊗ Qk and Qk is
the same, if [Fq : F(k)] is odd.

�


3.3 The type ofQk

In this section we determine the type of the SL2(q)-invariant quadratic forms on the
simple SL2(q)-module W (k) over its field of definition F(k). We also assume that
W (k) is an orthogonal SL2(q)-module, i.e. thatk satisfies the conditions of Proposition
3.6 and that the dimension of W (k) is even, i.e. that at least one of the entries of k is
odd.

The case q = 2, where SL2(2) ∼= S3 is a group of order 6, is given in Remark 3.4,
so we assume that q ≥ 3 throughout this section.

Theorem 3.7 Let Qk : W (k) → F(k) be a non-degenerate SL2(q)-invariant
quadratic form. Then Qk is of − type if and only if dim(W (k)) ≡ 4 (mod 8) and
[Fq : F(k)] = 2.

Proof Proposition 3.6 proves Theorem 3.7 in the case that [Fq : F(k)] is odd so it
remains to consider the case where this degree is even, i.e. f is even and

k = (k0, . . . , k f /2−1, k0, . . . , k f /2−1)

where at least one of the ki is odd. In this case we show that the non-split torus T
of SL2(q) acts on W (k) such that the image A of F(k)T in End(W (k)) is a semi-
simple subalgebra that is a direct sum of even degree extension fields of F(k). Then
Proposition 2.4 allows us to conclude that the type of Qk is− if and only if the number
of composition factors of the A-module W (k) is odd.

Let t ∈ SL2(q) denote an element of order q + 1. Let τ, τ q ∈ Fq2 denote the two
eigenvalues of t on the natural SL2(q)-module V = F

2
q .

Lemma 3.8 Let k = (k0, . . . , k f −1) ∈ {0, . . . , p − 1} f and put s(k) := ∑ f −1
i=0 ki pi .

Then s(k) ≤ p f − 1. The eigenvalues of t on W (k) are exactly the elements τ e with

e ∈ E(k) :=
⎧
⎨

⎩
s(k) − 2

f −1∑

i=0

xi p
i | xi ∈ {0, . . . , ki }

⎫
⎬

⎭
⊆ {−s(k), . . . , s(k)}.

Proof After extending thefield toFq2 we choose a basis ofV consisting of eigenvectors

of t . Then the monomials inW [i]
k are eigenvectors of t where the eigenvalue of xk− j y j
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is τ e with e = (k − 2 j)pi . Therefore the eigenvalues of t on W (k) are the elements
τ e where

e ∈ E(k) :=
⎧
⎨

⎩

f−1∑

i=0

mi p
i | −ki ≤ mi ≤ ki , ki − mi even

⎫
⎬

⎭
.

Replacing mi by ki − 2xi yields the description in the lemma. �

Lemma 3.9 We have 0 ∈ E(k) if and only if all ki are even.

If p is odd, f is even, and one of ±(p f + 1)/2 ∈ E(k) then s(k) is odd.

Proof If 0 ∈ E(k) then there are xi ∈ {0, . . . , ki } such that
∑ f−1

i=0 ki pi =
∑ f −1

i=0 2xi pi . Taking the equation mod p, we get that 2x0 ≡p k0. As 2x0 ∈
{0, 2, . . . , 2k0} and k0 < p, we hence have 2x0 = k0 so k0 is even and x0 = k0/2.
Continuing like this, we obtain that xi = ki/2 for all i . Now assume that p is odd, f
is even, and ±(p f + 1)/2 ∈ E(k). Then s(k) = 2

∑ f −1
i=0 xi pi ± (p f + 1)/2. As f is

even, (p f + 1)/2 is odd and so is s(k). �

To finish the proof of Theorem 3.7 note that s(k) = (1 + p f /2)

∑ f /2−1
i=0 ki pi is

even if p is odd. The assumption that dim(W (k)) = ∏ f /2−1
i=0 (ki + 1)2 is even implies

that at least one of the ki is odd. Hence Lemma 3.9 shows that t has no eigenvalues
±1 on W (k). Now the order of t is p f + 1. As gcd(p f − 1, p f + 1) = 2 (or 1)
each eigenvalue of t that does not equal ±1 generates a quadratic extension of Fq . Let
A := F(k)[t] ≤ End(W (k)) be the F(k)-subalgebra generated by the endomorphism
t of W (k). Then A = ⊕n

i=1 Ki is semi-simple and commutative. As the adjoint
involution of BQ inverts the elements of O(Q) and inverting the eigenvalues of t is
non-trivial on Ki , this involution is the field automorphism of order 2 on each of the
Ki . To apply Proposition 2.4 it is hence enough to determine the parity of the number
of composition factors of the A-module W (k). Write d := [Fq : F(k)] = 2ab with
a ≥ 1 and b odd. Then

2a+1 is the 2-part of [Ki : F(k)] for all i (2)

because the subfields of 2-power degree in Fq2 are linearly ordered by inclusion.
As k consists of the d-fold juxtaposition of a sequence of length f /d and one of

the ki is odd, at least d of the ki are odd and hence

dim(W (k)) =
f −1∏

i=0

(ki + 1) (3)

is divisible by 2d .
Accordingly, the number of composition factors of the A-module W (k) is odd, if

and only if 2a+1 is the maximal 2-power that divides dim(W (k)). Then

a + 1 ≥ d = 2ab,
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which implies that a = 1 = b, i.e. d = 2, soF(k) = Fp f /2 . Moreover dim(W (k)) ≡ 4
(mod 8). �
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