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1. Introduction

The assessment of tool wear is crucial in manufacturing
systems as it enables timely decisions for tool replacement, 
ensures workpiece quality, and enhances productivity while 
yielding cost savings. In recent years, advances in computer, 
sensor, and signal processing technologies have facilitated real-
time monitoring of machining process signals, promoting the 
development of data-driven approaches for tool wear 
estimation [1,2]. The primary concept behind data-driven 
methods involves training a tool wear model using historical 
data, which is then utilized to estimate tool wear by inputting 
online-collected data into the trained model.

1.1. Tool wear estimation with machine learning

In initial research, a variety of traditional machine learning 
algorithms were employed for estimating tool wear, such as 

random forest (RF) [3,4], support vector machine (SVM) [5,6], 
gaussian process regression (GPR) [7,8], artificial neural 
network (ANN) [9,10], fuzzy neural network (FNN) [11], and 
others. These methods generally necessitate manual feature 
extraction and selection, which becomes unfeasible with the 
growing amount of monitoring data, resulting in decreased 
estimation accuracy. The significant progress in computational 
power has enabled the use of deep learning algorithms for tool 
wear estimation due to their inherent ability to learn feature 
representations [12,13]. The representing deep learning 
algorithm, convolutional neural network (CNN) [14] is widely 
employed for processing not only image data but also 
sequential data [15,16,17]. CNN exhibits weight sharing, local 
connectivity translational invariance, and spatial invariance 
properties, by stacking convolutional and pooling layers. As a 
result, it is frequently employed to extract one-dimensional or 
two-dimensional spatial features from force or vibration 
signal sequences. Martínez-Arellano et al. [18] present a new
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Nomenclature

Conv. Convolution
Cond. Condition
𝑣𝑣𝑐𝑐 Cutting speed
𝑎𝑎𝑝𝑝 Cutting depth
𝑎𝑎𝑒𝑒 Cutting width
FPT, 𝑓𝑓𝑧𝑧 Feed per tooth
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 Spindle torque
𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑥𝑥, 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑦𝑦 Orthogonal cutting force components

from the rotating cutting dynamometer
𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Resultant cutting force

from the rotating cutting dynamometer
𝐹𝐹𝑆𝑆𝑆𝑆_𝑥𝑥, 𝐹𝐹𝑆𝑆𝑆𝑆_𝑦𝑦 Orthogonal cutting force components 

from the stationary dynamometer
𝐹𝐹𝑆𝑆𝑆𝑆_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Resultant cutting force

from the stationary dynamometer
𝐹𝐹𝑆𝑆𝑆𝑆_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Cutting force

from the stationary dynamometer
aligned with the feed direction

𝐹𝐹𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 Cutting force
from the stationary dynamometer
perpendicular to the feed direction

𝑉𝑉𝑉𝑉1 Average width of flank wear land
in section one

𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_1 Maximum width of flank wear land
in section one

𝑉𝑉𝑉𝑉𝐸𝐸1 Average width of flank wear land
of cutting edge one

𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝐸𝐸1 Maximum width of flank wear land
of cutting edge one

big data approach for tool wear classification using CNN with 
signal imaging, and achieve a classification accuracy of tool 
condition above 90%. Huang et al. [19] introduce a multi-scale 
convolutional neural network featuring an attention fusion 
module for tool wear classification, demonstrating the 
effectiveness and superiority of the proposed method. These 
models demonstrate powerful spatial and temporal feature 
extraction abilities.

1.2. Transferring the tool wear estimation model

During practical applications, cutting conditions change due 
to alterations in the workpiece, cutting tool, or cutting 
parameters. Such changes result in significant variations in 
monitoring data distributions. The network obtained above is 
designed for a single cutting condition, and collecting sufficient 
data samples for each condition to train a deep learning model 
entails considerable time, experimentation, and labor costs. 
Consequently, the aforementioned method faces challenges in 
precisely estimating tool wear under varying cutting 
conditions. Li et al. [20] utilize the entropy weight method and 
gray correlation analysis to identify signal features exhibiting 
strong relationships with tool wear and weak relationships with 
cutting conditions. This strategy minimizes the influence of 

cutting conditions on both monitoring signals and tool wear, 
enabling the model to adapt to other parameter variations and 
preserve estimation accuracy. Nonetheless, the feature 
engineering involved in this approach becomes unfeasible 
when confronted with high-frequency, large-volume industrial 
data. The re-selection of features and manual examination 
under varying cutting conditions are still inevitable, and there 
is potential information loss in comparison to deep learning 
methods based on raw data.

This study aims to introduce a deep learning approach that 
considers cutting conditions, which could substantially 
enhance the estimation of actual tool wear under diverse cutting 
conditions compared to previous methods. To assess the 
model's accuracy and transferability, milling experiments were 
conducted under various cutting parameters. The subsequent 
chapter outlines the model's structure. Chapter 3 details the 
experimental setup, data processing flow, and validation 
strategy employed to evaluate the model. Chapter 4 offers an 
analysis and discussion of the validation results. The final 
chapter concludes by summarizing the proposed approach's 
characteristics and providing a perspective on its future 
advancements.

2. Incorporating Cutting Conditions in Model

The objective of this study is to ascertain the enhanced 
transferability of the proposed deep learning method in

Fig. 1. Concept of the proposed deep learning method
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contrast to approaches that disregard the cutting condition, 
thereby emphasizing the model's comparative performance 
superiority. The scope of this paper does not encompass further 
optimization strategies, such as the employment of more 
sophisticated residual networks or the integration of recurrent 
neural networks, including Long Short-Term Memory (LSTM) 
architectures. The overarching concept of the proposed deep 
learning method is depicted in Fig. 1.

The model consists of a CNN designed to estimate tool wear 
under specific cutting conditions. A typical CNN architecture 
comprises multiple distinct kernel filters that effectively and 
autonomously extract highly discriminative features from the 
input data, encompassing both the time domain of individual 
time series signals and the cross-series domain. The 
fundamental structure of CNN primarily includes an input 
layer, convolutional layers, pooling layers, fully connected 
layers, and an output layer. In the input layer, each time series 
signal from the sensor serves as a signal channel, with each 
cutting condition incorporated as an additional separate
channel. Consequently, the data at each time point comprises 
the current value of each time series signal as well as the 
prevailing cutting condition such as feed per tooth, cutting 
depth, etc. The initial convolutional layer emphasizes 
correlation and fusion among the disparate time series signals, 
accompanied by minimal compression in the time domain. 
Subsequent convolutional layers concentrate on the time 
domain. The output layer is configured with multiple outputs, 
aiming for multi-scale tool wear measurements to enhance 
model performance and robustness. The specific input signals 
and tool wear measurements are delineated in Chapter 3. The 
training configurations for all models are consistent across both 
the test and reference models. The model employs a learning 
rate decay strategy, incorporating an initial learning rate of 
0.001, a decay rate of 0.7, and a step decay approach with decay 
applied every 20 epochs. Utilizing the Adam optimization 
algorithm, each model undergoes training for a total of 100 
epochs.

3. Experimental Setup for Model Validation

The subsequent sections elucidate the experimental setup, 
encompassing the tools, materials, and sensors employed, in 
addition to the data processing and model validation 
methodologies implemented.

3.1. Experimental setup

In order to train the proposed method and validate its 
transferability, 13 groups of milling experiments were designed 
with different process parameters and conducted utilizing a
5-axis machining center DMU 85 Monoblock from DMG 
Mori. Fig. 2 shows the experimental setup. An Inconel 718 DA
ring-shaped workpiece was fixed on the stationary 
dynamometer, with a height of 3 cm, an outer diameter of 
30 cm, and an inner diameter of 8 cm. Uncoated end mills were 
employed, featuring four cutting edges, a diameter of 6 mm, 
and a corner radius of 0.15 mm. The cutting edges remained

Fig. 2. Experimental setup

unrounded and tool substrate is HM-MG10. Throughout the 
experiments, the milling process was executed 
circumferentially on the workpiece, with pre-determined 
cutting parameters. The duration of each cut, ranging from 10 
to 20 seconds, was contingent upon specific cutting parameters 
and the progression of tool wear during the examination. 
Following each cut, the tool wear was assessed with a Keyence 
VHX 900F microscope. When the maximum width of flank 
wear land 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 reached 200 µm on any of the four cutting 
edges, the tool was deemed entirely worn and subsequently not 
used further. Parameters monitored during the cutting process 
included cutting force components, spindle torque, and selected
internal machine signals. A Kistler 9255C stationary 
dynamometer (SD) was employed to measure the workpiece-
side cutting force components. Meanwhile, a Kistler 9170A 
rotating cutting dynamometer (RCD) was utilized to measure 
spindle torque and tool-side cutting force components. 
Additionally, auxiliary drive positions were documented and 
synchronized with the stationary dynamometer and RCD 
readings. 

Regarding the process parameters, all experiments will be 
conducted at a consistent cutting speed 𝑣𝑣𝑐𝑐 of 25 m/min, a 
cutting depth 𝑎𝑎𝑝𝑝 of 2.5 mm, and a cutting width 𝑎𝑎𝑒𝑒 of 1.5 mm. 
The variability in parameters stems from the feed per 
tooth 𝑓𝑓𝑧𝑧 (FPT), which ranges between 0.015 mm and 
0.060 mm. Table 1 presents a summary of the investigated feed 
per tooth values and their corresponding tool numbers.

Table 1. Feed per tooth values for milling experiments

Tool Nr. Feed per tooth 𝑓𝑓𝑧𝑧
[mm]

Cutting time per cut 
[s]

1, 2, 3 0.015 15-25

4, 5, 6 0.030 12-22

7, 8, 9 0.045 14-17

10, 11 0.525 13

12, 13 0.060 12
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3.2. Data preparation

To model tool wear using the data-driven approach, the data 
collected during the tests must first be processed. This includes 
data preprocessing and labeling. Fig. 3 shows the procedure for 
data pre-processing. A single cutting operation comprises three 
distinct phases: cut entry, milling, and cut exit, with the milling 
process characterized by consistent cutting conditions. The 
initial step involves isolating the signal segments 
corresponding to the milling process based on the auxiliary 
drive position. Each signal segment encompasses five signal
channels: the spindle torque (𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), two orthogonal cutting 
force components from the RCD (𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑥𝑥 and 𝐹𝐹𝑅𝑅𝐶𝐶𝐶𝐶_𝑦𝑦) and two 
orthogonal cutting force components (𝐹𝐹𝑆𝑆𝑆𝑆_𝑥𝑥 and 𝐹𝐹𝑆𝑆𝑆𝑆_𝑦𝑦 ) from 
the stationary dynamometer. The orthogonal cutting force 
components 𝐹𝐹𝑆𝑆𝑆𝑆_𝑥𝑥 and 𝐹𝐹𝑆𝑆𝑆𝑆_𝑦𝑦 are transformed, utilizing the 
auxiliary drive position, into a cutting force aligned with the 
feed direction (𝐹𝐹𝑆𝑆𝑆𝑆_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and a cutting force perpendicular to 
the feed direction (𝐹𝐹𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). This conversion facilitates the 
representation of circular motion as linear motion, enabling the 
comparison of signals at varying positions. The resultant 
forces, 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟and 𝐹𝐹𝑆𝑆𝑆𝑆_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, can be calculated from 
𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑥𝑥 and 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅_𝑦𝑦 or 𝐹𝐹𝑆𝑆𝑆𝑆_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝐹𝐹𝑆𝑆𝑆𝑆_𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , respectively. 
Consequently, seven sensor signal series can be obtained from 
a single cutting operation, providing comprehensive data for 
analysis and optimization of the milling process. Subsequently, 
the final one-second interval of the seven-channel raw sensor 
data is extracted as the representative signal for each cut, due 
to its proximity to the tool wear measurement. Upon 
conducting a frequency analysis of all signals, the highest 
frequency is found to be approximately 4000 Hz. 
Consequently, a low-pass filter with a cutoff frequency of 
8000 Hz is employed to reduce noise within the signals. Given 
that the sampling time is 50 µs, this one-second duration 
comprises 20,000 time steps. Correspondingly, with seven 
sensor signals, this amounts to a total of 140,000 data points.

Fig. 3. Procedure for data pre-processing

Fig. 4. Measurement results for one of the cutting edges

The width of flank wear land is used as the output of the 
model. To generate the label, the cutting edge was divided into 
four sections along its length. The first section extended from 
1000 to 1300 µm from the edge's end, the second from 700 to 
1000 µm, the third from 400 to 700 µm, and the last from 100 
to 400 µm. For each section, the average and maximum width
of flank wear land (e.g. 𝑉𝑉𝑉𝑉1 and 𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _1) were determined. 
In addition, for each cutting edge, the overall average and 
maximum width of flank wear land (e.g. 𝑉𝑉𝑉𝑉𝐸𝐸1 and  𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸1) 
were calculated, resulting in 10 values per cutting edge. Fig. 4 
presents an illustration of 10 measurement results for one of the 
cutting edges. By averaging the 40 widths of flank wear land
from the four cutting edges of a single tool by cutting edge, a 
final set of ten widths of flank wear land was obtained. The 
rationale behind this procedure is to augment the learning 
reference target of the model, thereby enhancing its overall 
performance.

3.3. Model validation methodologies

The validation scenarios were categorized into two 
types: transfer to a single new FPT and transfer to two new 
FPT. Each of these scenarios considered whether the data of a

Fig. 5. Examples of four scenarios to validate transferability
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tool under the same FPT is included in the training dataset, in 
order to verify the model's rapid learning capability. Fig. 5
shows examples of each validation scenario. In accordance 
with various validation scenarios, data of 13 tools 
encompassing five distinct FPT were divided into a training 
dataset for model training and a test dataset for validating the 
model's transfer performance on other FPT. Evaluation 
metrics, such as root-mean-square error (RMSE) and
coefficient of determination (R2), were calculated to assess the 
model's performance based on the tool wear estimates and 
actual measurements of the test dataset. A traditional data-
driven model was used as a reference, with consistent 
architecture and training hyper-parameters, but without cutting 
conditions in the input.

4. Results and discussion

In the experiment, a total of 172 milling operations with tool 
wear measurements were conducted on 13 distinct tools. This 
chapter assesses the transferability and rapid learning 
capabilities of the model by comparing the tool wear estimation 
performance of the proposed model, which takes cutting 
parameters into account (Test model), against the traditional 
model that does not consider cutting parameters (Reference 
model). The average width of flank wear land, one of the 
model's outputs, is determined by aggregating data from 16 
sections of the four cutting edges on each tool. Due to it s

Fig. 6. Model transfer performance to a single new FPT

comprehensive nature, this value is employed for model 
evaluation.

4.1. Transfer to a single new FPT

Fig. 6 illustrates the tool wear estimation performance of the 
two models when utilizing data from different FPTs as the test 
dataset. Owing to the incorporation of FPT as input to the test 
model, it achieves a performance improvement in terms of the 
metrics (i.e., RMSE and R2) compared to the reference model. 
When handling data of a new FPT, the test model demonstrates 
an average performance advantage of 22.9% on RMSE and 
36.6% on R2 relative to the reference model. This advantage 
escalates to 29.2% on RMSE upon learning a part of the new 
FPT data. Specifically, with a test dataset with a FPT of 
0.015 mm, the test model's performance improves by 60.2% 
following partial learning, while the reference model only 
exhibits a 41.3% enhancement. This indicates that the test 
model possesses better transferability compared to the 
reference model, regardless of whether data with the same FPT 
is included as part of the training data. Furthermore, the test 
model also demonstrates a strong learning capability, rapidly 
adapting model parameters after learning a part of data with a 
new FPT, resulting in enhanced tool wear estimation accuracy.

4.2. Transfer to two new FPT

Fig. 7 displays the model's performance on data of two FPTs 
after being trained on data of the other three FPTs. Similar 
outcomes are observed, with the test model exhibiting better 
performance relative to the reference model on data of new 
FPT, possessing a 28.4% advantage before partial learning and 
a 24.4% advantage after partial learning in terms of RMSE. It 
is noteworthy that the model's performance is inferior on data

Fig. 7. Model transfer performance to two new FPT



Zongshuo Li  et al. / Procedia CIRP 126 (2024) 360–365 365

with an FPT of 0.0150 mm (or 0.0600 mm) compared to data 
with an FPT of 0.0300 mm (or 0.0525 mm). This suggests that 
the greater the discrepancy in FPT between the training and test 
datasets, the poorer the model performance. However, for data 
with large differences in FPT, the test model maintains a 24.6% 
advantage on RMSE before partial learning and an 18.4% 
advantage after partial learning compared to the reference 
model. This implies that the test model can still provide more 
accurate tool wear estimates on data with considerable 
variation in FPT.

5. Conclusion and outlook

Variations in the distribution of monitoring data, stemming 
from alterations in cutting conditions during machining, pose 
considerable challenges for conventional models in estimating 
tool wear under varying cutting conditions. In this study, a deep 
learning method accounting for cutting conditions is proposed. 
The model's estimation accuracy and transferability are 
assessed through milling experiments conducted under diverse 
FPTs. By incorporating cutting conditions into the model 
inputs, the proposed approach demonstrates enhanced 
transferability compared to traditional methods, irrespective of 
the presence of data with identical FPTs in the training dataset. 
Moreover, the discrepancy in FPT between the training and test 
datasets influences the model's transferability. Greater 
differences yield poorer performance on the data with new 
FPT. Nonetheless, the proposed method also exhibits a rapid 
learning capability in comparison to conventional methods, 
swiftly adjusting model parameters after learning a subset of 
data with new FPTs, thereby enhancing tool wear estimation 
accuracy.

In future work, several aspects will be explored to enhance 
the model's performance. Firstly, the investigated parameter 
space will be expanded to further validate the model's 
transferability. Additionally, the model's structure will be 
optimized, such as integrating CNN and RNN architectures to 
further improve accuracy. Moreover, an adaptive experimental 
design algorithm will be proposed to minimize experimental 
consumption without compromising the model's performance.
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